Science.gov

Sample records for ruii sintez strukturnaya

  1. Theranostic TEMPO-functionalized Ru(ii) complexes as photosensitizers and oxidative stress indicators.

    PubMed

    Yang, Jing; Cao, Qian; Hu, Wei-Liang; Ye, Rui-Rong; He, Liang; Ji, Liang-Nian; Qin, Peter Z; Mao, Zong-Wan

    2017-01-03

    New TEMPO-functionalized Ru(ii) polypyridyl complexes were synthesized as efficient theranostic photosensitizers for cancer treatment. Interestingly, due to the presence of a redox sensitive TEMPO moiety, an enhancement in the intracellular fluorescence of TEMPO-functionalized Ru(ii) complexes was observed during photodynamic treatment in both confocal microscopy and flow cytometry. This can be explained by the conversion of the TEMPO radical moiety to diamagnetic non-radical species in cells upon PDT-induced oxidative stress. To the best of our knowledge this is the first ruthenium complex capable of simultaneously inducing and monitoring the oxidative stress. The tethered TEMPO moiety decreased the inherent dark-cytotoxicity and increased the photo-toxicity simultaneously, both of which contributed to the greatly improved photodynamic therapy (PDT) efficacy, ultimately resulting in cancer cell apoptosis. The phototoxicity index value for TEMPO-functionalized Ru(ii) complexes was selective towards cancer cell lines (280.5 for HeLa cells vs. 30.2 for LO2 cells) and ca. 40-fold higher than that for TEMPO-free Ru(ii) analogues (6.7 for HeLa cells). The main contributor for such a greatly enhanced PDT efficacy was the effect of the TEMPO moiety on the cellular uptake and intracellular ROS levels. We therefore demonstrate that the combination of TEMPO with the photosensitizers may be an emerging strategy to develop novel photosensitizer-based theranostic platforms, which can induce and monitor the PDT response simultaneously.

  2. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes.

    PubMed

    N Deepika; C Shobha Devi; Y Praveen Kumar; K Laxma Reddy; P Venkat Reddy; D Anil Kumar; Surya S Singh; S Satyanarayana

    2016-07-01

    Two Ru(II) complexes [Ru(phen)2bppp](ClO4)2 (1) and [Ru(phen)27-Br-dppz](ClO4)2 (2) [phen=1,10 phenanthroline, 7-Br-dppz=7-fluorodipyrido[3,2-a:2',3'-c]phenazine, bppp=11-bromo-pyrido[2',3':5,6]pyrazino[2,3-f] [1,10]phenanthroline] have been synthesized and characterized by elemental analysis, ES-MS, (1)H-NMR, (13)C-NMR and IR. The in vitro cytotoxicity of the complexes examined against a panel of cancer cell lines (HeLa, Du145 and A549) by MTT method, both complexes show prominent anticancer activity against various cancer cells. Live cell imaging study and flow cytometric analysis demonstrate that both the complexes 1 and 2 could cross the cell membrane accumulating in the nucleus. Further, flow cytometry experiments showed that the cytotoxic Ru(II) complexes 1 and 2 induced apoptosis of HeLa tumor cell lines. Photo induced DNA cleavage studies have been performed and results indicate that both the complexes efficiently photo cleave pBR322 DNA. The binding properties of two complexes toward CT-DNA were investigated by various optical methods and viscosity measurements. The experimental results suggested that both Ru(II) complexes can intercalate into DNA base pairs. The complexes were docked into DNA-base pairs using the GOLD docking program.

  3. Ru(0) and Ru(II) nitrosyl pincer complexes: structure, reactivity, and catalytic activity.

    PubMed

    Fogler, Eran; Iron, Mark A; Zhang, Jing; Ben-David, Yehoshoa; Diskin-Posner, Yael; Leitus, Gregory; Shimon, Linda J W; Milstein, David

    2013-10-07

    Despite considerable interest in ruthenium carbonyl pincer complexes and their substantial catalytic activity, there has been relatively little study of the isoelectronic ruthenium nitrosyl complexes. Here we describe the synthesis and reactivity of several complexes of this type as well as the catalytic activity of complex 6. Reaction of the PNP ligand (PNP = 2,6-bis((t)Bu2PCH2)pyridine) with RuCl3(NO)(PPh3)2 yielded the Ru(II) complex 3. Chloride displacement by BAr(F-) (BAr(F-) = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) gave the crystallographicaly characterized, linear NO Ru(II) complex 4, which upon treatment with NaBEt3H yielded the Ru(0) complexes 5. The crystallographically characterized Ru(0) square planar complex 5·BF4 bears a linear NO ligand located trans to the pyridilic nitrogen. Further treatment of 5·BF4 with excess LiOH gave the crystallographicaly characterized Ru(0) square planar, linear NO complex 6. Complex 6 catalyzes the dehydrogenative coupling of alcohols to esters, reaching full conversion under air or under argon. Reaction of the PNN ligand (PNN = 2-((t)Bu2PCH2)-6-(Et2NCH2)pyridine) with RuCl3(NO)(H2O)2 in ethanol gave an equilibrium mixture of isomers 7a and 7b. Further treatment of 7a + 7b with 2 equivalent of sodium isopropoxide gave the crystallographicaly characterized, bent-nitrosyl, square pyramidal Ru(II) complex 8. Complex 8 was also synthesized by reaction of PNN with RuCl3(NO)(H2O)2 and Et3N in ethanol. Reaction of the "long arm" PN(2)N ligand (PN(2)N = 2-((t)Bu2PCH2-)-6-(Et2NCH2CH2)pyridine) with RuCl3(NO)(H2O)2 in ethanol gave complex 9, which upon treatment with 2 equiv of sodium isopropoxide gave complex 10. Complex 10 was also synthesized directly by reaction of PN(2)N with RuCl3(NO)(H2O)2 and a base in ethanol. A noteworthy aspect of these nitrosyl complexes is their preference for the Ru(0) oxidization state over Ru(II). This preference is observed with both aromatized and dearomatized pincer ligands, in

  4. Site specific chemoselective labelling of proteins with robust and highly sensitive Ru(II) bathophenanthroline complexes.

    PubMed

    Uzagare, Matthew C; Claussnitzer, Iris; Gerrits, Michael; Bannwarth, Willi

    2012-03-21

    The bioorthogonal and chemoselective fluorescence labelling of several cell-free synthesized proteins containing a site-specifically incorporated azido amino acid was possible using different alkyne-functionalized Ru(II) bathophenanthroline complexes. We were able to achieve a selective labelling even in complex mixtures of proteins despite the fact that ruthenium dyes normally show a high tendency for unspecific interactions with proteins and are commonly used for total staining of proteins. Since the employed Ru complexes are extremely robust, photo-stable and highly sensitive, the approach should be applicable to the production of labelled proteins for single molecule spectroscopy and fluorescence-based interaction studies.

  5. Chemical consequences of pyrazole orientation in Ru(II) complexes of unsymmetric quinoline-pyrazole ligands.

    PubMed

    Hedberg Wallenstein, Joachim; Fredin, Lisa A; Jarenmark, Martin; Abrahamsson, Maria; Persson, Petter

    2016-08-07

    A series of homoleptic Ru(II) complexes including the tris-bidentate complexes of a new bidentate ligand 8-(1-pyrazol)-quinoline (Q1Pz) and bidentate 8-(3-pyrazol)-quinoline (Q3PzH), as well as the bis-tridentate complex of bis(quinolinyl)-1,3-pyrazole (DQPz) was studied. Together these complexes explore the orientation of the pyrazole relative to the quinoline. By examining the complexes structurally, photophysically, photochemically, electrochemically, and computationally by DFT and TD-DFT, it is shown that the pyrazole orientation has a significant influence on key properties. In particular, its orientation has noticeable effects on oxidation and reduction potentials, photostability and proton sensitivity, indicating that [Ru(Q3PzH)3](2+) is a particularly good local environment acidity-probe candidate.

  6. Ru(II) complexes of new tridentate ligands: unexpected high yield of sensitized 1O2.

    PubMed

    Liu, Yao; Hammitt, Richard; Lutterman, Daniel A; Joyce, Lauren E; Thummel, Randolph P; Turro, Claudia

    2009-01-05

    Ru(II) complexes possessing new tridentate ligands with extended pi systems, pydppx (3-(pyrid-2'-yl)-11,12-dimethyl-dipyrido[3,2-a:2',3'-c]phenazine) and pydppn (3-(pyrid-2'-yl)-4,5,9,16-tetraaza-dibenzo[a,c]naphthacene), were synthesized and characterized. The investigation of the photophysical properties of the series [Ru(tpy)(n)(L)(2-n)](2+) (L = pydppx, pydppn, n = 0-2) reveals markedly different excited state behavior among the complexes. The Ru(II) complexes possessing the pydppx ligand are similar to the pydppz (3-(pyrid-2'-yl)dipyrido[3,2-a:2',3'-c]phenazine) systems, with a lowest energy metal-to-ligand charge transfer excited state with lifetimes of 1-4 ns. In contrast, the lowest energy excited state in the [Ru(tpy)(n)(pydppn)(2-n)](2+) (n = 0, 1) complexes is a ligand-centered (3)pipi* localized on the pydppn ligand with lifetimes of approximately 20 mus. The [Ru(tpy)(n)(pydppn)(2-n)](2+) (n = 0, 1) complexes are able to generate (1)O(2) with approximately 100% efficiency. Both [Ru(tpy)(pydppn)](2+) and [Ru(pydppn)(2)](2+) bind to DNA, however, the former exhibits a approximately 10-fold greater DNA binding constant than the latter. Efficient DNA photocleavage is observed for [Ru(tpy)(pydppn)](2+), owing to its ability to photosensitize the production of (1)O(2), which can mediate the reactivity. Such high quantum yields of (1)O(2) photosensitization of transition metal complexes may be useful in the design of new systems with long-lived excited states for photodynamic therapy.

  7. Unravelling the quenching mechanisms of a luminescent Ru(II) probe for Cu(II).

    PubMed

    Santos, André Ribeiro; Escudero, Daniel; González, Leticia; Orellana, Guillermo

    2015-03-01

    We have investigated the photophysical and photochemical features of a luminescent heteroleptic Ru(II)-polypyridyl probe and of its corresponding Ru(II)-Cu(II) dinuclear complex formed upon the analyte binding through extensive density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The molecular probe contains the tailored imidazo[4,5-f]-1,10-phenanthroline (IIP) ligand for simultaneously binding the Ru(II) core and the target metal ion in aqueous solution. We have rationalized the static photoluminescence quenching observed upon the Cu(II) coordination, on the grounds of distinct excited state deactivation mechanisms which are absent in the free Ru(II) complex probe. Additionally, the emission quenching found upon increasing the solution pH has also been investigated. When coordinated IIP deprotonates, the nature of the lowest excited state of its complex changes from (3)MLCT to (3)LLCT/(3)IL. The strong base-induced emission quenching can be understood in terms of both the energy-gap law, since the (3)LLCT/(3)IL states lie at a significantly lower energy than the (3)MLCT state increasing the contribution of non-radiative mechanisms, and the expected slower radiative rates from such (3)LLCT/(3)IL states. After Cu(II) binding, the lowest triplet excited state is similar to the analyte-free probe in both energy and electronic nature. However, Cu-centered non-radiative excited states, populated after photoinduced electron transfer and intersystem crossing processes, are responsible for the population drainage of the emissive state.

  8. Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(II) complexes: synthesis, characterization and dye-sensitized solar cell applications.

    PubMed

    Jella, Tejaswi; Srikanth, Malladi; Bolligarla, Rambabu; Soujanya, Yarasi; Singh, Surya Prakash; Giribabu, Lingamallu

    2015-09-07

    We have designed and synthesized heteroleptic Ru(ii) complexes with a pyridine-benzimidazole ligand (PYBI) for dye-sensitized solar cell (DSSC) applications. The PYBI ligand has major advantages by having the flexibility to introduce appropriate substituents at the four readily available positions through molecular engineering () compared to other ancillary bipyridyl-based ligands. We have substituted position A of the PYBI ligand with either electron-releasing triphenylamine () or pyrene (). We have also introduced 2-hexylthiophene at position A and 3,5-di tert-butyl phenyl group at position B of the PYBI ligand (). All three heteroleptic Ru(ii) complexes have been characterized by mass spectrometry, (1)H NMR, and absorption and emission spectroscopies as well as electrochemical methods. The absorption spectrum of complex is red-shifted and the emission spectrum is blue-shifted, when compared to the standard sensitizer. Testing of these newly designed heteroleptic Ru(ii) sensitizers has revealed that complex exhibits an efficiency of 7.88% using an I(-)/I3(-) redox electrolyte. Experimental observations corroborated by computational calculations have elucidated the high efficiency of complex , primarily due to the fact that the substituents at position A are more influential than those at position of B of the PYBI ligand.

  9. Electrostatic bubbles and supramolecular assistance of photosensitization by carboxylated Ru(II) complexes.

    PubMed

    Potvin, Pierre G; Luyen, Phuong Uyen; Bräckow, Jan

    2003-04-23

    The paper examines the supramolecular effects at play during photosensitization by carboxylated Ru(II) sensitizers, both by experiment and by modeling. Experimentally, twelve Ru(II) complexes of pyrazolylpyridine and polypyridine ligands, including two benchmark complexes and two new species, were assessed as photosensitizers by measurement of the kinetics of methyl viologen cation radical (MV(*)(+)) generation through an oxidative, photoinduced electron transfer (PET) to methyl viologen (MV(2+)) under continuous irradiation in the presence of a sacrificial reductant. All complexes, luminescent or not, produced measurable amounts of MV(*)(+) in CH(3)CN. The assessment protocol was found to be useful with sensitizers of widely varying excited-state lifetimes (tau) as well as being easier and faster than conventional approaches. The seven sensitizers bearing peripheral COOH groups were found to be significantly more active than their non-carboxylated analogues, which is consistent with ionization of the COOH groups and electrostatic promotion of PET. Only the luminescent complexes were active in aqueous solvents, where tau appears to be the dominant effector. The benefits are exemplified by the singly carboxylated [Ru(H1)(bpy)(2)](2+) (H1 is 1-(4-carboxyphenyl)-3-(2-pyridyl)-4,5,6,7-tetrahydroindazole), a weakly luminescent sensitizer that was less active in aqueous solvents than [Ru(bpy)(3)](2+) (bpy is 2,2'-bipyridine), but which became the better sensitizer in CH(3)CN. Computationally, electrostatic field and dissociation energy calculations demonstrated that even a single peripheral COO(-) substituent suffices to provide supramolecular assistance: it defines a spheric "bubble" of electrostatically attractive space that is sufficiently large to allow the supramolecular preassociation of MV(2+), which provides an entropic advantage to PET that reduces the importance of tau in organic solvent. Calculations also show that the PET is electrostatically favored over its

  10. Synthesis and Isomeric Analysis of Ru(II) Complexes Bearing Pentadentate Scaffolds.

    PubMed

    Gil-Sepulcre, Marcos; Axelson, Jordan C; Aguiló, Joan; Solà-Hernández, Lluís; Francàs, Laia; Poater, Albert; Blancafort, Lluís; Benet-Buchholz, Jordi; Guirado, Gonzalo; Escriche, Lluís; Llobet, Antoni; Bofill, Roger; Sala, Xavier

    2016-11-07

    A Ru(II)-pentadentate polypyridyl complex [Ru(II)(κ-N(5)-bpy2PYMe)Cl](+) (1(+), bpy2PYMe = 1-(2-pyridyl)-1,1-bis(6-2,2'-bipyridyl)ethane) and its aqua derivative [Ru(II)(κ-N(5)-bpy2PYMe)(H2O)](2+) (2(2+)) were synthesized and characterized by experimental and computational methods. In MeOH, 1(+) exists as two isomers in different proportions, cis (70%) and trans (30%), which are interconverted under thermal and photochemical conditions by a sequence of processes: chlorido decoordination, decoordination/recoordination of a pyridyl group, and chlorido recoordination. Under oxidative conditions in dichloromethane, trans-1(2+) generates a [Ru(III)(κ-N(4)-bpy2PYMe)Cl2](+) intermediate after the exchange of a pyridyl ligand by a Cl(-) counterion, which explains the trans/cis isomerization observed when the system is taken back to Ru(II). On the contrary, cis-1(2+) is in direct equilibrium with trans-1(2+), with absence of the κ-N(4)-bis-chlorido Ru(III)-intermediate. All these equilibria were modeled by density functional theory calculations. Interestingly, the aqua derivative is obtained as a pure trans-[Ru(II)(κ-N(5)-bpy2PYMe)(H2O)](2+) isomer (trans-2(2+)), while the addition of a methyl substituent to a single bpy of the pentadentate ligand leads to the formation of a single cis isomer for both chlorido and aqua derivatives [Ru(II)(κ-N(5)-bpy(bpyMe)PYMe)Cl](+) (3(+)) and [Ru(II)(κ-N(5)-bpy(bpyMe)PYMe)(H2O)](2+) (4(2+)) due to the steric constraints imposed by the modified ligand. This system was also structurally and electrochemically compared to the previously reported [Ru(II)(PY5Me2)X](n+) system (X = Cl, n = 1 (5(+)); X = H2O, n = 2 (6(2+))), which also contains a κ-N(5)-Ru(II) coordination environment, and to the newly synthesized [Ru(II)(PY4Im)X](n+) complexes (X = Cl, n = 1 (7(+)); X = H2O, n = 2 (8(2+))), which possess an electron-rich κ-N(4)C-Ru(II) site due to the replacement of a pyridyl group by an imidazolic carbene.

  11. Photocatalytic degradation of ibuprofen using TiO2 sensitized by Ru(ii) polyaza complexes.

    PubMed

    Góngora, J F; Elizondo, P; Hernández-Ramírez, A

    2017-01-18

    In this work, modification of TiO2 was carried out by incorporation of two novel Ru(ii) polyaza complexes. The N(1)-(2-aminobenzyliden)-N(2),N(2)-bis(2-(2-aminobenzyliden)aminoethyl)ethane-1,2-diaminoruthenium(ii) and N(1),N(2)-bis(2-aminobenziliden)ethane-1,2-diaminoruthenium(ii) complexes were synthesized via metal-ligand direct reaction. The complexes were characterized by UV-Vis, FTIR and fluorescence spectroscopy, and the chemical composition was obtained from elemental analysis by the combustion method; additionally, the sensitized TiO2 catalysts were also characterized by XRD, SEM and diffuse reflectance techniques. The photocatalytic activity of the prepared catalysts was tested in a batch reactor under visible radiation for the degradation of ibuprofen in aqueous solution. The evolution of the drug degradation process was evaluated by high-performance liquid chromatography (HPLC), while the mineralization percentage was monitored by the determination of total organic carbon (TOC). The results indicated that the incorporation of these complexes improves the activation of TiO2 under visible light, increasing the degradation and mineralization percentage of ibuprofen up to 35% compared to the unmodified material, thereby making it suitable for application in heterogeneous photocatalysis of the said pharmaceutical in aqueous media using visible light as the energy source.

  12. A 5-(difluorenyl)-1,10-phenanthroline-based Ru(II) complex as a coating agent for potential multifunctional gold nanoparticles.

    PubMed

    Moreau, Juliette; Lux, François; Four, Mickaël; Olesiak-Banska, Joanna; Matczyszyn, Katarzyna; Perriat, Pascal; Frochot, Céline; Arnoux, Philippe; Tillement, Olivier; Samoc, Marek; Ponterini, Glauco; Roux, Stéphane; Lemercier, Gilles

    2014-07-28

    The synthesis and photophysical properties of small gold nanoparticles (NPs, AuNP-[Ru-PFF]) surface functionalized by 5-substituted-1,10-phenanthroline-ligand based Ru(II) complexes are described. Luminescence of the grafted and confined Ru(II) complexes is totally quenched on the gold surface. Nonlinear optical properties were determined via Z-scan measurements in the range 600-1300 nm for both the free Ru(II) complex and the related NPs. In the short wavelength range (around 600 nm) the behaviour switches from that of two-photon absorption (2PA) for the complex to saturable absorption for the NPs. 2PA applications such as optical power limiting or two-photon dioxygen sensitization can be anticipated for these nanoplatforms.

  13. Distance dependence of intrahelix Ru(II)* to Os(II) polypyridyl excited-state energy transfer in oligoproline assemblies.

    PubMed

    Brennaman, M Kyle; Fleming, Cavan N; Slate, Cheryl A; Serron, Scafford A; Bettis, Stephanie E; Erickson, Bruce W; Papanikolas, John M; Meyer, Thomas J

    2013-05-30

    Energy transfer between the metal-to-ligand charge transfer (MLCT) excited states of [Pra [M(II)(bpy)2(4-Me-4'(-N(H)CO)bpy)](PF6)2 units ([Pra(M(II)bpy2(mbpy)](2+): M(II) = Ru(II) or Os(II), bpy = 2,2'-bipyridine, mbpy = 4'-methyl-2,2'-bipyridine-4-carboxamido, Pra = 4-M(II)-L-proline) linked covalently to oligoproline assemblies in room temperature acetonitrile occurs on the picosecond-nanosecond time scale and has been time-resolved by transient emission measurements. Three derivatized oligoprolines, [CH3-CO-Pro6-Pra[Os(II)(bpy)2(mbpy)](2+)-Pro2-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro2-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro6-Glu-NH2](6+) (ORR-2, Pro = L-proline and Glu = glutamic acid); [CH3-CO-Pro6-Pra[Os(II)(bpy)2(mbpy)](2+)-Pro3-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro3-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro6-Glu-NH2](6+) (ORR-3); and CH3-CO-Pro6-Pra[Os(II)(bpy)2(mbpy)](2+)-Pro5-Pra[Ru(II)(bpy)2(mbpy)](2+)-Pro5-Pra[Ru(II)(bpy)2(mbpy)](2+)Pro6-Glu2-NH2](6+) (ORR-5), were prepared by using solid-phase peptide synthesis. Given the helical nature of the resulting assemblies and the nature of the synthesis, composition, length, and loading pattern are precisely controlled in the assemblies. In acetonitrile, they adopt a proline I helical secondary structure, confirmed by circular dichroism, in which the appended chromophores are ordered in well-defined orientations and internuclear separation distances although helix formation for ORR-2 is incomplete. Quantitative comparison of oligoproline ground-state absorption and steady-state emission spectra to those for the constituents, [Boc-Pra[M(II)(bpy)2(mbpy)](2+)-OH](PF6)2 (Boc = N(α)-(1,1-dimethylethoxycarbonyl), shows that following Ru(II) light absorption, Ru(II)* undergoes facile energy transfer resulting in sensitization of Os(II). Sensitization efficiencies are 93% for ORR-2, 77% for ORR-3, and 73% for ORR-5. Picosecond-resolved emission measurements reveal complex, coupled dynamics that arise from excited-state decay and kinetically

  14. Synthesis of panchromatic Ru(II) thienyl-dipyrrin complexes and evaluation of their light-harvesting capacity.

    PubMed

    Li, Guocan; Ray, Lipika; Glass, Elliot N; Kovnir, Kirill; Khoroshutin, Andrey; Gorelsky, Serge I; Shatruk, Michael

    2012-02-06

    Ru(II) complexes with 5-(3-thienyl)-4,6-dipyrrin (3-TDP), containing 2,2'-bipyridine (bpy) or 4,4'-bis(methoxycarbonyl)-2,2'-bipyridine (dcmb) as coligands, have been prepared and extensively characterized. Crystal structure determination of [Ru(bpy)(2)(3-TDP)]PF(6) (1a) and [Ru(bpy)(3-TDP)(2)] (2) reveals that the 3-thienyl substituent is rotated with respect to the plane of the dipyrrinato moiety. These complexes, as well as [Ru(dcmb)(2)(3-TDP)]PF(6) (1b), act as panchromatic light absorbers in the visible range, with two strong absorption bands observable in each case. A comparison to known Ru(II) complexes and quantum-chemical calculations at the density functional theory (DFT) level indicate that the lower-energy band is due to metal-to-ligand charge transfer (MLCT) excitation, although the frontier occupied metal-based molecular orbitals (MOs) contain significant contributions from the 3-TDP moiety. The higher energy band is assigned to the π-π* transition of the 3-TDP ligand. Each complex exhibits an easily accessible one-electron oxidation. According to DFT calculations and spectroelectrochemical experiments, the first oxidation takes place at the Ru(II) center in 1a, but is shifted to the 3-TDP ligand in 1b. An analysis of MO energy diagrams suggests that complex 1b has potential to be used for light harvesting in the dye-sensitized (Grätzel) solar cell.

  15. On the viability of cyclometalated Ru(II) complexes for light-harvesting applications.

    PubMed

    Bomben, Paolo G; Robson, Kiyoshi C D; Sedach, Pavel A; Berlinguette, Curtis P

    2009-10-19

    The effects of replacing a single polypyridyl ligand with an analogous anionic cyclometalating ligand were investigated for a set of three structurally related series of Ru(II) compounds formulated as [Ru(bpy)(2)(L)](z), [Ru(tpy)(L)](z), and [Ru(tpy)(L)Cl](z), where z = 0, +1, or +2, and L = polypyridyl (e.g., bpy = 2,2'-bipyridine, tpy = 2,2':6',2''-terpyridine) or cyclometalating ligand (e.g., deprotonated forms of 2-phenylpyridine or 3-(2-pyridinyl)-benzoic acid). Each of the complexes were synthesized and characterized by (1)H NMR spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and/or elemental analyses (EA). Cyclic voltammetry reveals that cyclometalation causes a shift of the first oxidation and reduction potentials by -0.5 to -0.8 V and -0.2 to -0.4 V, respectively, relative to their polypyridyl congeners. These disparate shifts have the effect of inducing a bathochromic shift of the lowest-energy absorption bands by as much as 90 nm. With the aid of time-dependent density functional theory (DFT), the lowest-energy bands (lambda(max) = 500-575 nm) were assigned as predominantly metal-to-ligand charge-transfer (MLCT) transitions from Ru to the polypyridyl ligands, while Ru-->C(wedge)NN (or C(wedge)N(wedge)N or N(wedge)C(wedge)N) transitions are found within the absorption bands centered at ca. 400 nm. The properties of a series of compounds furnished with carboxylic acid anchoring groups at various positions are also examined for applications involving the sensitization of metal-oxide semiconductors. It is determined that the thermodynamic potentials of many of these compounds are appropriate for conventional photoelectrochemical cells (e.g., dye-sensitized solar cells) that utilize a titania electrode and iodide-based electrolyte.

  16. Elucidation of the binding sites of two novel Ru(II) complexes on bovine serum albumin.

    PubMed

    Nišavić, Marija; Masnikosa, Romana; Butorac, Ana; Perica, Kristina; Rilak, Ana; Korićanac, Lela; Hozić, Amela; Petković, Marijana; Cindrić, Mario

    2016-06-01

    Hyphenated mass spectrometry (MS) techniques have attained an important position in analysis of covalent and non-covalent interactions of metal complexes with peptides and proteins. The aim of the present study was to qualitatively and quantitatively determine ruthenium binding sites on a protein using tandem mass spectrometry and allied techniques, i.e. liquid chromatography (LC) and inductively coupled plasma optical emission spectrometry (ICP-OES). For that purpose, two newly synthesized Ru(II) complexes of a meridional geometry, namely mer-[Ru(4' Cl-tpy)(en)Cl](+) (1) and mer-[Ru(4' Cl-tpy)(dach)Cl](+) (2) (where 4' Cl-tpy=4'-chloro-2,2':6',2″-terpyridine, en=1,2-diaminoethane and dach=1,2-diaminocyclohexane), and bovine serum albumin were used. The binding of the complexes to the protein was investigated by means of size exclusion- and reversed phase-LC, ICP OES, matrix-assisted laser desorption ionization MS and MS/MS. Ruthenated peptide sequence and a binding target amino acid were revealed through accurate elucidation of MS/MS spectra. The results obtained in this study suggest a high binding capacity of the protein towards both complexes, with up to 5.77±0.14 and 6.95±0.43mol of 1 and 2 bound per mol of protein, respectively. The proposed binding mechanism for the selected complexes includes the release of Cl ligand, its replacement with water molecule and further coordination to electron donor histidine residue.

  17. DNA intercalating Ru(II) polypyridyl complexes as effective photosensitizers in photodynamic therapy.

    PubMed

    Mari, Cristina; Pierroz, Vanessa; Rubbiani, Riccardo; Patra, Malay; Hess, Jeannine; Spingler, Bernhard; Oehninger, Luciano; Schur, Julia; Ott, Ingo; Salassa, Luca; Ferrari, Stefano; Gasser, Gilles

    2014-10-27

    Six substitutionally inert [Ru(II) (bipy)2 dppz](2+) derivatives (bipy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) bearing different functional groups on the dppz ligand [NH2 (1), OMe (2), OAc (3), OH (4), CH2 OH (5), CH2 Cl (6)] were synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). As also confirmed by DFT calculations, all complexes showed promising (1) O2 production quantum yields, well comparable with PSs available on the market. They can also efficiently intercalate into the DNA double helix, which is of high interest in view of DNA targeting. The cellular localization and uptake quantification of 1-6 were assessed by confocal microscopy and high-resolution continuum source atomic absorption spectrometry. Compound 1, and especially 2, showed very good uptake in cervical cancer cells (HeLa) with preferential nuclear accumulation. None of the compounds studied was found to be cytotoxic in the dark on both HeLa cells and, interestingly, on noncancerous MRC-5 cells (IC50 >100 μM). However, 1 and 2 showed very promising behavior with an increment of about 150 and 42 times, respectively, in their cytotoxicities upon light illumination at 420 nm in addition to a very good human plasma stability. As anticipated, the preferential nuclear accumulation of 1 and 2 and their very high DNA binding affinity resulted in very efficient DNA photocleavage, suggesting a DNA-based mode of phototoxic action.

  18. A divergent strategy for covalently-tethered (tpy)2Ru(II) systems based on Rh2(N,N'-diphenylbenzamidinates)4.

    PubMed

    Cooke, Michael W; Santoni, Marie-Pierre; Hanan, Garry S; Proust, Anna; Hasenknopf, Bernold

    2009-05-21

    A tetra Ru(II) bis(terpyridine) complex has been synthesized from Rh2(N,N'-diphenyl-4-bromobenzamidinate)4 in excellent yield using a modified Buchwald-Hartwig C-N bond forming protocol followed by efficient amide bond formation.

  19. Ru(II) Tris(3,8-Dibromo-1,10-Phenanthro1ine): A New Versatile Core for the Divergent Synthesis of Hyperbranched Systems

    NASA Technical Reports Server (NTRS)

    Sotiriou-Leventis, Chariklia; Yang, Jinhua; Duan, Penggao; Leventis, Nicholas

    2004-01-01

    We report the first synthesis of Ru(II) tris(3,8-dibromo-1,lO-phenanthroline) bishexafluorophosphate, and we demonstrate its utility as a building core for the divergent synthesis of hyperbranched systems by coupling with phenylacetylene in the preparation of Rum tris(3,8-diphenylethynyl- 1,lO-phenanthroline) dihexafluorophosphate.

  20. Modifying Charge and Hydrophilicity of Simple Ru(II) Polypyridyl Complexes Radically Alters Biological Activities: Old Complexes, Surprising New Tricks

    PubMed Central

    2015-01-01

    Compounds capable of light-triggered cytotoxicity are appealing potential therapeutics, because they can provide spatial and temporal control over cell killing to reduce side effects in cancer therapy. Two simple homoleptic Ru(II) polypyridyl complexes with almost-identical photophysical properties but radically different physiochemical properties were investigated as agents for photodynamic therapy (PDT). The two complexes were identical, except for the incorporation of six sulfonic acids into the ligands of one complex, resulting in a compound carrying an overall −4 charge. The negatively charged compound exhibited significant light-mediated cytotoxicity, and, importantly, the negative charges resulted in radical alterations of the biological activity, compared to the positively charged analogue, including complete abrogation of toxicity in the dark. The charges also altered the subcellular localization properties, mechanism of action, and even the mechanism of cell death. The incorporation of negative charged ligands provides a simple chemical approach to modify the biological properties of light-activated Ru(II) cytotoxic agents. PMID:25249443

  1. Electronic and optical response of functionalized Ru(II) complexes: joint theoretical and experimental study

    SciTech Connect

    Kilina, Svetlana; Tretiak, Sergei; Sykora, Milan; Albert, Victor; Badaeva, Ekaterina; Koposov, Alexey

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the Ru(II) complex to the surface of a semiconductor, a linking bridge -- a carboxyl group -- needs to be added to one or two of the 2,2'-bipyridine (bpy) ligands. Such changes in the ligand structure affect electronic and optical properties and, consequently, the charge transfer reactivity of Ru(II)-systems. In this study, we analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the [Ru(bpy){sub 3}]{sup 2+} complex. First principle calculations based on density functional theory (DFT) and time dependent DFT (TDDFT) are used to simulate the ground and excited-state properties, respectively, of functionalized Ru-complexes in the gas phase and acetonitrile solution. In addition, an effective Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states in all molecules. All theoretical results nicely complement and allow for detailed interpretation of experimental absorption spectra of Ru-complexes that have been done in parallel with our theoretical investigations. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show that deprotonation of the carboxyl group in the Ru-complexes results in a slight blue shift and decrease of oscillator strengths of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotonated complexes demonstrate strong agreement if the theoretical calculations are performed with the addition of a dielectric continuum model. A polar solvent is found to play an

  2. Synthesis, photophysical and electrochemical characterization of terpyridine-functionalized dendritic oligothiophenes and their Ru(II) complexes

    PubMed Central

    Mena-Osteritz, Elena

    2013-01-01

    Summary Pd-catalyzed Sonogashira cross-coupling reactions were used to synthesize novel π-conjugated oligothienylene-ethynylene dendrons and their corresponding terpyridine-based ligands. Their complexation with Ru(II) led to interesting novel metallodendrimers with rich spectroscopic properties. All new compounds were fully characterized by 1H and 13C NMR, as well as MALDI–TOF mass spectra. Density functional theory (DFT) calculations performed on these complexes gave more insight into the molecular orbital distributions. Photophysical and electrochemical studies were carried out in order to elucidate structure–property relationships and the effect of the dendritic structure on the metal complexes. Photophysical studies of the complexes revealed broad absorption spectra covering from 250 to 600 nm and high molar extinction coefficients. The MLCT emission of these complexes were significantly red-shifted (up to 115 nm) compared to the parent [Ru(tpy)2]2+ complex. PMID:23766802

  3. Photoluminiscence response of Ru(II) complex immobilized in SiO2-based matrix to dissolved oxygen in beer.

    PubMed

    Anastasova, S; Milanova, M; Todorovsky, D

    2008-04-24

    The possibility to use the photoluminescence of Ru(II) tris(4,7-diphenyl-1,10-phenathroline) dichloride, immobilized in sol-gel produced SiO2-based matrix for the determination of dissolved oxygen concentration in beer is studied. Organically-modified silane (octyltriethoxysilane) and mixtures from tetraethoxysilane and octyltriethoxysilane are used as precursors for matrix production. Spin- and dip-coating techniques are applied for films deposition. The predeposition ultrasound treatment of the sol ensures a good sensitivity and a linear sensor quenching response to oxygen in 1/6 ppm O2-concentration interval. The CO2 present practically has no effect on the films performance. Their photoluminescence show rather good stability on prolonged storage in beer.

  4. Combining a Ru(II) "Building Block" and Rapid Screening Approach to Identify DNA Structure-Selective "Light Switch" Compounds.

    PubMed

    Wachter, Erin; Moyá, Diego; Glazer, Edith C

    2017-02-13

    A chemically reactive Ru(II) "building block", able to undergo condensation reactions with substituted diamines, was utilized to create a small library of luminescent "light switch" dipyrido-[3,2-a:2',3'-c] phenazine (dppz) complexes. The impact of substituent identity, position, and the number of substituents on the light switch effect was investigated. An unbiased, parallel screening approach was used to evaluate the selectivity of the compounds for a variety of different biomolecules, including protein, nucleosides, single stranded DNA, duplex DNA, triplex DNA, and G-quadruplex DNA. Combining these two approaches allowed for the identification of hit molecules that showed different selectivities for biologically relevant DNA structures, particularly triplex and quadruplex DNA.

  5. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.

    PubMed

    Knoll, Jessica D; Albani, Bryan A; Turro, Claudia

    2015-08-18

    Uncovering the factors that govern the electronic structure of Ru(II)-polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and (1)O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field ((3)LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer ((3)MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2](2+) (bpy = 2,2'-bipyridine; L = CH3CN or py). This suggests that population of the (3)LF state proceeds from the vibrationally excited (3)MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the (3)LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)](2+) complexes (tpy = 2,2':6',2″-terpyridine; NN = bpy, 6,6'-dimethyl-2,2'-bipyridine (Me2bpy), 2,2'-biquinoline (biq)) increases by 2-3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the (3)LF state within 3-7 ps when NN is bulky, and density functional theory calculations support stabilized (3)LF states. Dual activity via ligand dissociation and (1)O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2](2+) (dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) and [Ru(tpy)(Me2dppn)(py)](2+) (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2',3'-c]phenazine) introduces

  6. New Ru(II) Complexes for Dual Photoreactivity: Ligand Exchange and 1O2 Generation

    PubMed Central

    Knoll, Jessica D.; Albani, Bryan A.; Turro, Claudia

    2016-01-01

    CONSPECTUS Uncovering the factors that govern the electronic structure of Ru(II)–polypyridyl complexes is critical in designing new compounds for desired photochemical reactions, and strategies to tune excited states for ligand dissociation and 1O2 production are discussed herein. The generally accepted mechanism for photoinduced ligand dissociation proposes that population of the dissociative triplet ligand field (3LF) state proceeds through thermal population from the vibrationally cooled triplet metal-to-ligand charge transfer (3MLCT) state; however, temperature-dependent emission spectroscopy provides varied activation energies using the emission and ligand exchange quantum yields for [Ru(bpy)2(L)2]2+ (bpy = 2,2′-bipyridine; L = CH3CN or py). This suggests that population of the 3LF state proceeds from the vibrationally excited 3MLCT state. Because the quantum yield of ligand dissociation for nitriles is much more efficient than that for py, steric bulk was introduced into the ligand set to distort the pseudo-octahedral geometry and lower the energy of the 3LF state. The py dissociation quantum yield with 500 nm irradiation in a series of [Ru(tpy)(NN)(py)]2+ complexes (tpy = 2,2′:6′,2″-terpyridine; NN = bpy, 6,6′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-biquinoline (biq)) increases by 2–3 orders of magnitude with the sterically bulky Me2bpy and biq ligands relative to bpy. Ultrafast transient absorption spectroscopy reveals population of the 3LF state within 3–7 ps when NN is bulky, and density functional theory calculations support stabilized 3LF states. Dual activity via ligand dissociation and 1O2 production can be achieved by careful selection of the ligand set to tune the excited-state dynamics. Incorporation of an extended π system in Ru(II) complexes such as [Ru(bpy)(dppn)(CH3CN)2]2+ (dppn = benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine) and [Ru(tpy)(Me2dppn)(py)]2+ (Me2dppn = 3,6-dimethylbenzo[i]dipyrido[3,2-a:2′,3

  7. Synthesis of 4‧-substituted-2,2‧;6‧,2″-terpyridine Ru(II) complexes electrochemical, fluorescence quenching and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Ezhilarasu, Tamilarasu; Sathiyaseelan, Anbazhagan; Kalaichelvan, Pudupalayam Thangavelu; Balasubramanian, Sengottuvelan

    2017-04-01

    Three new Ru(II) terpyridine complexes viz. [Ru(BBtpy)2](PF6)2 [Ru(L1)] (BBtpy = 4‧-(4-benzyloxybenzaldehyde)-2,2‧:6‧,2″-terpyridine), [Ru(BMBtpy)2](PF6)2 [Ru(L2)] (BMBtpy = 4‧-(4-benzyloxy-3-methoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) and [Ru(BEBtpy)2](PF6)2 [Ru(L3)] (BEBtpy = 4‧-(4-benzyloxy-3-ethoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) have been synthesized and characterized. The MALDI-TOF/MS fragmentation pattern of [Ru(BMBtpy)2](PF6)2 complex exhibits a molecular ion peak at m/z = 987.09 [M-2PF6]2+ fragment. These Ru(II) complexes are redox active, show both metal centered oxidation and ligand centered reduction processes. The peak potential and peak current Ipa and Ipc also undergo definite shift and increase with increase in the scan rate (20-120 mV/s). The fluorescence of Ru(II) complexes [Ru(L1)], [Ru(L2)] and [Ru(L3)] are effectively quenched by 1,4-benzoquinone and 1,4-naphthoquinone in acetonitrile. The antibacterial activity of ruthenium(II) complexes were screened against four human pathogens both gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Escherichia coli, Klebsiella pneumonia) by the well diffusion method. The antibacterial activity of Ru(II) complexes is comparable to that of standard antibiotics like tetracycline.

  8. A Ru(II) bis-terpyridine-like complex that catalyzes water oxidation: the influence of steric strain.

    PubMed

    Kaveevivitchai, Nattawut; Kohler, Lars; Zong, Ruifa; El Ojaimi, Maya; Mehta, Nirja; Thummel, Randolph P

    2013-09-16

    The complexation of 2,9-dicarboxy-1,10-phenanthroline (DPA) with [Ru(tpy)Cl3] (tpy = 2,2';6,2″-terpyridine) provides a six-coordinate species in which one carboxyl group of DPA is not bound to the Ru(II) center. A more soluble tri-t-butyl tpy analogue is also prepared. Upon oxidation, neither species shows evidence for intramolecular trapping of a seven-coordinate intermediate. The role of the tpy ligand is revealed by the preparation of [Ru(tpy)(phenq)](2+) (phenq = 2-(quinol-8'-yl)-1,10-phenanthroline) that behaves as an active water oxidation catalyst (TON = 334). This activity is explained by the expanded coordination geometry of the phenq ligand that can form a six-membered chelate ring that better accommodates the linear arrangement of axial ligands required for optimal pentagonal bipyramid geometry. When a 1,8-naphthyidine ring is substituted for each of the two peripheral pyridine rings on tpy, increased crowding in the vicinity of the metal center impedes acquisition of the prerequisite reaction geometry.

  9. Computational study: how redox affect the nonlinear optical properties of donor substituted heteroleptic bis-tridentate Ru(II) complexes?

    PubMed

    Sun, Xiu-Xin; Ma, Na-Na; Li, Xiao-Juan; Sun, Shi-Ling; Xie, Hai-Ming; Qiu, Yong-Qing

    2012-09-01

    Donor substituted heteroleptic bis-tridentate Ru(II) complexes with different deprotonated forms exhibit larger alterations of the first hyperpolarizabilities in oxidized process and are promising to become redox-switchable nonlinear optical (NLO) molecular materials. For systems with diprotonated form, the β(vec) value of the two-electron-oxidized system ¹3²⁺ is 5.3 and 178.6 times as large as those of the reduced parent 3 and the one-electron-oxidized system 3⁺ according to the DFT-FF results. For systems with mono-protonated form, the oxidization of the deprotonated benzimidazole anion is more helpful to enhance the β(vec) value because of the increasing β(x) component. For systems with fully deprotonated form, the largest ratio of |β(vec)((1″)⁺)/β(vec)(1″)| of the system without substituent is about 13.2 due to the dominant off-diagonal tensor β(zxx). And the time-dependent density functional theory (TDDFT) results indicate that the charge transfer transition of the first excited state displays an indispensable role for larger off-diagonal tensor. Finally, the calculated frequency-dependent β results exhibit a small dispersion effect at the low-frequency region.

  10. Design, synthesis and excited-state properties of mononuclear Ru(II) complexes of tridentate heterocyclic ligands.

    PubMed

    Pal, Amlan K; Hanan, Garry S

    2014-09-07

    Artificial photosynthetic systems that contain light-harvesting coordination complexes may one day replace conventional non-renewable sources of energy with renewable solar energy sources. Light-Harvesting Complexes (LHC) are important components of natural photosynthetic systems and are also sought after in artificial systems as well. Polynuclear photoactive complexes are therefore very attractive, and those based on stereogenic [Ru(2,2'-bipyridine)3](2+) are photophysically appealing, but difficult to obtain in a stereochemically pure form. On the other hand, polynuclear complexes based on the achiral [Ru(2,2':6',2''-terpyridine)2](2+) motif are easy to synthesise, however, these complexes are devoid of attractive excited-state properties. Hence strategies to increase the r.t. excited-state lifetime of these complexes would be of practical importance in vectorial electron and/or electron transfer in various optoelectronic applications. This tutorial review will report on the sophisticated synthetic strategies currently in use to enhance the photophysical properties of mononuclear Ru(II) complexes of tridentate ligands at room temperature.

  11. DNA Interaction, Photocleavage and Topoisomerase I Inhibition by Ru(II) Complex with a New Ligand Possessing Phenazine Unit.

    PubMed

    Liu, Xue-Wen; Shen, You-Ming; Shu, Jun-Shi; Xiao, Yang; Zhang, Song-Bai; Lu, Ji-Lin

    2015-09-01

    A new ruthenium complex with a dppz-like ligand pyidppz, [Ru(bpy)2(pyidppz)](2+) (pyidppz = 2-(pyridine-2-yl)imidazo-[4,5-b]dipyrido-[3,2-a:2',3'-c]phenazine) has been synthesized and characterized by ES-MS, elemental analysis, (1)H NMR. Intercalative mode of the complex bound to calf thymus DNA has been supported by different spectroscopic methods and viscosity measurements. The introduction of phenazine unit may be one of the main reasons for the weak emission of Ru(II) complex in aqueous solution. Under irradiation, this complex can efficiently cleave DNA. And the photocleavage reaction of the complex is found to be inhibited in the presence of singlet oxygen scavenger. Topoisomerase inhibition and DNA strand passage assay demonstrated that [Ru(bpy)2(pyidppz)](2+) and its parent complex [Ru(bpy)2(pyip)](2+) (pyip = 2-(pyridine-2-yl)imidazo[4,5-f][1,10]phenanthroline) can act as efficient catalytic inhibitor of DNA topoisomerase I.

  12. Syntheses and molecular structures of novel Ru(II) complexes with bidentate benzimidazole based ligands and their catalytic efficiency for oxidation of benzyl alcohol

    NASA Astrophysics Data System (ADS)

    Dayan, Osman; Tercan, Melek; Özdemir, Namık

    2016-11-01

    Five bidentate ligands derived from quinoline-2-carboxylic acid, i.e. 2-(1H-benzimidazol-2-yl)quinoline (L1), 2-(1-benzyl-1H-benzimidazol-2-yl)quinoline (L2), 2-[1-(2,3,5,6-tetramethylbenzyl)-1H-benzimidazol-2-yl]quinoline (L3), 2-[1-(4-chlorobenzyl)-1H-benzimidazol-2-yl]quinoline (L4), and 2-[1-(4-methylbenzyl)-1H-benzimidazol-2-yl]quinoline (L5) were synthesized. Treatment of L1-5 with [RuCl2(p-cymene)]2 and KPF6 afforded six-coordinate piano-stool Ru(II) complexes, namely, [RuCl(L1)(p-cymene)]PF6 (C1), [RuCl(L2)(p-cymene)]PF6 (C2), [RuCl(L3)(p-cymene)]PF6 (C3), [RuCl(L4)(p-cymene)]PF6 (C4), and [RuCl(L5)(p-cymene)]PF6 (C5). Synthesized compounds were characterized with different techniques such as 1H and 13C NMR, FT-IR, and UV-vis spectroscopy. The solid state structure of L1 and C3 was confirmed by single-crystal X-ray diffraction analysis. The single crystal structure of C3 verified coordination of L3 to the Ru(II) center. The Ru(II) center has a pseudo-octahedral three legged piano stool geometry. The complexes C1-5 were tested as catalysts for the catalytic oxidation of benzyl alcohol to benzaldehyde in the presence of periodic acid (H5IO6) (Substrate/Catalyst/Oxidant = 1/0.01/0.5). The best result was obtained with C2 (3 h→90%).

  13. Synthesis of, characterization of, and photoinduced processes in polymetallic triad complexes containing Fe(II), Ru(II), and Rh(III) metal centers

    SciTech Connect

    Ronco, S.E. |; Thompson, D.W.; Gahan, S.L.; Petersen, J.D. |

    1998-04-20

    A series of new trimetallic mixed complexes containing Fe(II), Ru(II), and Rh(III) metal centers have been prepared and characterized, and their excited-state properties in a nanosecond time domain have been investigated. These new compounds were synthesized by following a building block strategy from monomeric Rh(III) and Ru(II) polyazines and tetracyanoferrate(II) ions. The products generated in each synthetic step were fully characterized and their excited-state properties investigated. These new trimetallic complexes, [(CN){sub 4}Fe{sup II}(BL(1))Ru{sup II}(bpy)-(BL(2))Rh{sup III}(tpy)(MQ{sup +})](PF{sub 6}){sub 4} (tpy = 2,2{prime}:6{prime}:2{double_prime}-terpyridine; BL(1) = 2,3-bis(2-pyridyl)pyrazine (dpp) or 2,2{prime}-bipyrimidine (bpm); BL(2) = dpp or bpm; MQ{sup +} = N-methyl-4,4{prime}-bipyridinium (monoquat)), consist of three fundamental parts linked by bridging ligands (1) an electron donor group, the tetracyanoferrate(II) unit; (2) an antenna fragment, the Ru(II) polypyridyl moiety; and (3) an electron acceptor group. The electron acceptor group is a Rh(III) polypyridyl that contains the ligands tpy and MQ{sup +}. No emission was observed in any of the reported complexes either in fluid solutions at room temperature or in glassy solutions at 77 K. Time-resolved experiments conducted on these triads showed formation of a transient intermediate within the laser pulse. Redox properties and transient absorption observations helped the authors to identify the nature of this intermediate as an Fe(III)/Ru(II) mixed-valence species that decays exponentially by following a first-order law with a lifetime of {tau} {le} 70 ns in fluid solution at room temperature.

  14. Selective Sensing of Phosphates by a New Bis-heteroleptic Ru(II) Complex through Halogen Bonding: A Superior Sensor over Its Hydrogen-Bonding Analogue.

    PubMed

    Chowdhury, Bijit; Sinha, Sanghamitra; Ghosh, Pradyut

    2016-12-12

    The selective phosphate-sensing property of a bis-heteroleptic Ru(II) complex, 1[PF6 ]2 , which has a halogen-bonding iodotriazole unit, is demonstrated and is shown to be superior to its hydrogen-bonding analogue, 2[PF6 ]2 . Complex 1[PF6 ]2 , exploiting halogen-bonding interactions, shows enhanced phosphate recognition in both acetonitrile and aqueous acetonitrile compared with its hydrogen-bonding analogue, owing to considerable amplification of the Ru(II) -center-based metal-to-ligand charge transfer (MLCT) emission response and luminescence lifetime. Detailed solution-state studies reveal a higher association constant, lower limit of detection, and greater change in lifetime for complex 1 in the presence of phosphates compared with its hydrogen-bonding analogue, complex 2. The (1) H NMR titration study with H2 PO4(-) ascertains that the binding of H2 PO4(-) occurs exclusively through halogen-bonding or hydrogen-bonding interactions in complexes 1[PF6 ]2 and 2[PF6 ]2 , respectively. Importantly, the single-crystal X-ray structure confirms the first ever report on metal-assisted second-sphere recognition of H2 PO4(-) and H2 P2 O7(2-) with 1 through a solitary C-I⋅⋅⋅anion halogen-bonding interaction.

  15. BODIPY-modified Ru(II) arene complex--a new ligand dissociation mechanism and a novel strategy to red shift the photoactivation wavelength of anticancer metallodrugs.

    PubMed

    Zhou, Qian-Xiong; Lei, Wan-Hua; Hou, Yuan-Jun; Chen, Yong-Jie; Li, Chao; Zhang, Bao-Wen; Wang, Xue-Song

    2013-02-28

    A Ru(II) arene complex [(η(6)-p-cymene)Ru(bpy)(py-BODIPY)](PF(6))(2), where bpy is 2,2'-bipyridine and py-BODIPY is a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene dye containing a pyridine group at the 8-position, was designed and synthesized. BODIPY modification renders the monodentate pyridine ligand with long wavelength absorbing capability, and an absorption maximum at 504 nm. Upon selective irradiation of the absorption band of the py-BODIPY ligand, the dissociation of the monodentate ligand occurs efficiently, followed by substitution by 9-ethylguanine if it is present in the solution. The photoinduced ligand dissociation quantum yield was measured to be 4.1% at 480 nm. The photoinduced electron transfer from the BODIPY chromophore to the Ru(II) arene moiety plays an important role in the ligand dissociation. Such a photosensitization strategy can be utilized to develop novel anticancer metallodrugs that may respond to light in the phototherapeutic window (650-900 nm).

  16. Synthesis, characterization and biological activities of some Ru(II) complexes with substituted chalcones and their applications as chemotherapeutics against breast cancer

    NASA Astrophysics Data System (ADS)

    Singh, Ashok K.; Saxena, Gunjan; Dixit, Shivani; Hamidullah; Singh, Sachin K.; Singh, Sudheer K.; Arshad, M.; Konwar, Rituraj

    2016-05-01

    Four new Ru(II) DMSO complexes with substituted chalcone ligands viz. (E)-1-(2-hydroxyphenyl)-3-(4-methoxyphenyl)prop-2-en-1-one (HL1), (E)-1-(2-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one (HL2), (E)-3-(4-(dimethylamino)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (HL3) and (E)-1-(2-hydroxyphenyl)-3-(4-Chlorophenyl)prop-2-en-1-one (HL4) have been synthesized, and characterized by micro-analyses, IR, 1H NMR, UV-Vis and ESI-MS and screened for anti-cancer activity against breast cancer cell lines (MCF-7 and MDA MB-231). Compounds HL4 and [Ru(HL1) (O-DMSO)3(S-DMSO)]Cl (M1R) showed significant anti-breast cancer activity as evident from cytotoxicity, morphological and nuclear changes, DNA fragmentation and cell cycle arrest in breast cancer cells. UV-Vis and CD-spectra analysis showed HL4 and M1R interfered with DNA absorption spectra possibly due to DNA binding whereas these compounds were devoid of DNA topoisomerase inhibiting activity. Thus, these Ru(II) compounds have been established as new leads for future optimization by improving anti-cancer potency and safety.

  17. Marked differences in light-switch behavior of Ru(II) complexes possessing a tridentate DNA intercalating ligand.

    PubMed

    Liu, Yao; Hammitt, Richard; Lutterman, Daniel A; Thummel, Randolph P; Turro, Claudia

    2007-07-23

    The tridentate ligand 3-(pyrid-2'-yl)dipyrido[3,2-a:2',3'-c]phenazine (pydppz) has been prepared in two steps by elaboration of 2-(pyrid-2'-yl)-1,10-phenanthroline. Both homoleptic [Ru(pydppz)(2)](2+) and heteroleptic [Ru(tpy)(pydppz)](2+) (tpy = 2,2';6',2' '-terpyridine) complexes have been prepared and characterized by (1)H NMR. The absorption and emission spectra are consistent with low-lying MLCT excited states, which are typical of Ru(II) complexes. Femtosecond transient absorption measurements show that that the (3)MLCT excited state of the heteroleptic complex [Ru(tpy)(pydppz)](2+) (tau approximately 5 ns) is longer-lived than that of the homoleptic complex [Ru(pydppz)(2)](2+) (tau = 2.4 ns) and that these lifetimes are significantly longer than that of the (3)MLCT state of the parent complex [Ru(tpy)(2)](2+) (tau = 120 ps). These differences are explained by the lower-energy (3)MLCT excited state present in [Ru(tpy)(pydppz)](2+) and [Ru(pydppz)(2)](2+) compared to [Ru(tpy)(2)](2+), resulting in less deactivation of the former through the ligand-field state(s). DFT and TDDFT calculations are consistent with this explanation. [Ru(tpy)(pydppz)](2+) and [Ru(pydppz)(2)](2+) bind to DNA through the intercalation of the pydppz ligand; however, only the heteroleptic complex exhibits luminescence enhancement in the presence of DNA. The difference in the photophysical behavior of the complexes is explained by the inability of [Ru(pydppz)(2)](2+) to intercalate both pydppz ligands, such that one pydppz always remains exposed to the solvent. DNA photocleavage is observed for [Ru(tpy)(pydppz)](2+) in air, but not for [Ru(pydppz)(2)](2+). The DNA damage likely proceeds through the production of small amounts of (1)O(2) by the longer-lived complex. Although both complexes possess the intercalating pydppz ligand, they exhibit different photophysical properties in the presence of DNA.

  18. Electronic and optical response of Ru(II) complexes functionalized by methyl, carboxylate groups: joint theoretical and experimental study

    SciTech Connect

    Tretiak, Sergei

    2008-01-01

    New photovoltaic and photocatalysis applications have been recently proposed based on the hybrid Ru(II)-bipyridine-complex/semiconductor quantum dot systems. In order to attach the complex to the surface of a semiconductor, a linking bridge - a carboxyl group - is added to one or two of the 2,2{prime}-bipyridine ligands. Such changes in the ligand structure, indeed, affect electronic and optical properties and consequently, the charge transfer reactivity of Ru-systems. In this study, we apply both theoretical and experimental approaches to analyze the effects brought by functionalization of bipyridine ligands with the methyl, carboxyl, and carboxilate groups on the electronic structure and optical response of the Ru(II) bipyridine complex. First principle calculations based on density functional theory (DFT) and linear response time dependent density functional theory (TDDFT) are used to simulate the ground and excited-state structures of functionalized Ru-complexes in the gas phase, as well as in acetonitrile solution. In addition, an inelaborate Frenkel exciton model is used to explain the optical activity and splitting patterns of the low-energy excited states. All theoretical results nicely complement experimental absorption spectra of Ru-complexes and contribute to their interpretation. We found that the carboxyl group breaks the degeneracy of two low-energy optically bright excited states and red-shifts the absorption spectrum, while leaves ionization and affinity energies of complexes almost unchanged. Experimental studies show a high probability of deprotonation of the carbboxyl group in the Ru-complexes resulted in a slight blue shift and decrease of intensities of the low energy absorption peaks. Comparison of experimental and theoretical linear response spectra of deprotanated complexes demonstrate strong agreement when acetonitrile solvent is used in simulations. A polar solvent is found to play an important role in calculations of optical spectra: it

  19. Solution structure investigation of Ru(II) complex ion pairs: quantitative NOE measurements and determination of average interionic distances.

    PubMed

    Zuccaccia, C; Bellachioma, G; Cardaci, G; Macchioni, A

    2001-11-07

    The structure of the Ru(II) ion pairs trans-[Ru(COMe)[(pz(2))CH(2)](CO)(PMe(3))(2)]X (X(-) = BPh(4)(-), 1a; BPh(3)Me(-), 1b; BPh(3)(n-Bu)(-), 1c; BPh(3)(n-Hex)(-), 1d; B(3, 5-(CF(3))(2)(C(6)H(3)))(4)(-), 1e; PF(6)(-), 1f; and BF(4)(-), 1g; pz = pyrazol-1-yl-ring) was investigated in solution from both a qualitative (chloroform-d, methylene chloride-d(2), nithromethane-d(3)) and quantitative (methylene chloride-d(2)) point of view by performing 1D- and 2D-NOE NMR experiments. In particular, the relative anion-cation localization (interionic structure) was qualitatively determined by (1)H-NOESY and (19)F, (1)H-HOESY (heteronuclear Overhauser effect spectroscopy) NMR experiments. The counteranion locates close to the peripheral protons of the bispyrazolyl ligand independent of its nature and that of the solvent. In complexes 1c and 1d bearing unsymmetrical counteranions, the aliphatic chain points away from the metal center as indicated by the absence of NOE between the terminal Me group and any cationic protons. An estimation of the average interionic distances in solution was obtained by the quantification of the NOE build-up versus the mixing time under the assumption that the interionic and intramolecular correlation times (tau(c)) are the same. Such an assumption was checked by the experimental measurements of tau(c) from both the dipolar contribution to the carbon-13 longitudinal relaxation time T(DD-1)and the comparison of the intramolecular and interionic cross relaxation rate constant (sigma) dependence on the temperature. Both the methodologies indicate that anion and cation have comparable tau(c) values. The determined correlation time values were compared with those obtained for the neutral trans-[Ru(COMe)[(pz(2))BH(2)](CO)(PMe(3))(2)] complex (2), isosteric with the cation of 1. They were significantly shorter (approximately 3.8 times), indicating that the main contribution to dipolar relaxation processes comes from the overall ion pair rotation. As a

  20. Multi-pyridine decorated Fe(II) and Ru(II) complexes by Pd(0)-catalysed cross couplings: new building blocks for metallosupramolecular assemblies.

    PubMed

    Yang, Jiajia; Clegg, Jack K; Jiang, Qibai; Lui, Xiaoming; Yan, Hong; Zhong, Wei; Beves, Jonathon E

    2013-11-28

    Eight metal complexes of the type [M(tpy)2](2+) (tpy = 2,2':6',2''-terpyridine) featuring four pendant pyridine rings are reported and characterised by NMR, MS, absorption spectroscopy and electrochemical methods. Palladium-mediated Suzuki and Sonogashira cross-coupling reactions were performed on both free 4'-(3,5-dibromophenyl)-tpy and its Ru(II) complex in good yields. The ready N-alkylation of the pendant pyridyl units has significant influence on the absorption and electrochemical reduction of the complexes, processes which are localised on the periphery and leaves the [Ru(tpy)2](2+) core essentially unaffected. The binding of metal ions by the free pyridines is also demonstrated as means of assembling larger ordered non-covalent structures.

  1. Cationic half-sandwich Ru(II) complexes containing (N,N)-bound Schiff-base ligands: Synthesis, crystal structure analysis and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Tao, Li; Miao, Qian; Tehrani, Alireza Azhdari; Hajiashrafi, Taraneh; Hu, Mao-Lin; Morsali, Ali

    2016-08-01

    Three Ru(II) half-sandwich complexes containing (N,N)-bound Schiff-base ligands, [(η6-C6H6) RuCl(L1)]PF6 (1) L1 = (E)-1-(6-methylpyridin-2-yl)-N-(p-tolyl)methanimine, [(η6-p-cymene)RuCl(L1)]PF6 (2) and [(η6-p-cymene)RuCl(L2)]PF6(3) L2 = (E)-1-(6-bromopyridin-2-yl)-N-(p-tolyl)methanimine, were synthesized, characterized and their supramolecular structures were analyzed. The crystal packing of these compounds was studied using geometrical analysis and Hirshfeld surface analysis. The fluorescence behavior of these compounds was also studied. TD-DFT calculations were carried out to better understand the fluorescence properties of complexes 1-3. These compounds could be promising for the design of organometallic dye systems.

  2. Light harvesting and directional energy transfer in long-lived homo- and heterotrimetallic complexes of Fe(II), Ru(II), and Os(II).

    PubMed

    Maity, Dinesh; Bhaumik, Chanchal; Mardanya, Sourav; Karmakar, Srikanta; Baitalik, Sujoy

    2014-10-06

    A new family of trimetallic complexes of the form [(bpy)2 M(phen-Hbzim-tpy)M'(tpy-Hbzim-phen)M(bpy)2](6+) (M=Ru(II), Os; M'=Fe(II), Ru(II), Os; bpy=2,2'-bipyridine) derived from heteroditopic phenanthroline-terpyridine bridge 2-{4-[2,6-di(pyridin-2-yl) pyridine-4-yl]phenyl}-1H-imidazole[4,5-f][1,10]phenanthroline (phen-Hbzim-tpy) were prepared and fully characterized. Zn(2+) was used to prepare mixed-metal trimetallic complexes in situ by coordinating with the free tpy site of the monometallic precursors. The complexes show intense absorptions throughout the UV/Vis region and also exhibit luminescence at room temperature. The redox behavior of the compounds is characterized by several metal-centered reversible oxidation and ligand-centered reduction processes. Steady-state and time-resolved luminescence data show that the potentially luminescent Ru(II)- and Os(II)-based triplet metal-to-ligand charge-transfer ((3)MLCT) excited states in the triads are quantitatively quenched, most likely by intercomponent energy transfer to the lower lying (3)MLCT (for Ru and Os) or triplet metal-centered ((3)MC) excited states of the Fe(II) subunit (nonluminescent). Interestingly, iron did not adversely affect the photophysics of the respective systems. This suggests that the multicomponent molecular-wire-like complexes investigated here can behave as efficient light-harvesting antennas, because all the light absorbed by the various subunits is efficiently channeled to the subunit(s) in which the lowest-energy excited states are located.

  3. pH-Induced processes in wire-like multichromophoric homo- and heterotrimetallic complexes of Fe(II), Ru(II), and Os(II).

    PubMed

    Maity, Dinesh; Mardanya, Sourav; Karmakar, Srikanta; Baitalik, Sujoy

    2015-06-07

    In this work we studied the influence of pH on the absorption, steady state and time-resolved emission spectroscopic behaviors of recently reported multichromophoric trimetallic complexes of the forms [(bpy)2M(phen-Hbzim-tpy)M'(tpy-Hbzim-phen)M(bpy)2](6+) (M = Ru(II) or Os(II), and M' = Fe(II), Ru(II), and Os(II)) derived from a heteroditopic phenanthroline-terpyridine bridge, 2-(4-(2,6-di(pyridin-2-yl)pyridine-4-yl)phenyl)-1H-imidazole[4,5-f][1,10]phenanthroline (tpy-Hbzim-phen) and 2,2'-bipyridine (bpy) as the auxiliary ligand. For purposes of comparison, the UV-vis absorption and emission titrations of three monometallic model compounds [(bpy)2Ru(phen-Hbzim-tpy)](ClO4)2 (1), [(bpy)2Os(phen-Hbzim-tpy)] (ClO4)2 (2) and [(tpy-PhCH3)Ru(tpy-Hbzim-phen)](ClO4)2 (3), where tpy-PhCH3 = 4'-(4-methylphenyl)-2,2':6',2''-terpyridine) were studied under the same experimental conditions. The absorption titration data were used to determine the ground state pKa values, whereas the luminescence and lifetime data were utilized for the determination of excited state pKa* values of the complexes. The evolving factor analyses of the set of absorption spectra of the complexes obtained by varying the pH of the solution confirm that only three absorbing species exist in the pH window of 2-12. Moreover, the modulation of the rate of the intramolecular energy transfer among the components in the homo- and heterotrimetallic complexes as a function of pH of the solution was also demonstrated.

  4. Pyrene and imidazole functionalized luminescent bimetallic Ru(II) terpyridine complexes as efficient optical chemosensors for cyanide in aqueous, organic and solid media.

    PubMed

    Karmakar, Srikanta; Maity, Dinesh; Mardanya, Sourav; Baitalik, Sujoy

    2015-11-14

    We report in this work the anion recognition and sensing aspect of a new family of bimetallic Ru(ii) complexes derived from a symmetrical bridging 5,11-bis(4-([2,2':6',2''-terpyridine]-4'-yl)phenyl)-4,12-dihydropyreno[4,5-d:9,10-d']diimidazole (tpy-H2PhImzPy-tpy) terpyridine ligand in solution as well as in the solid sate through different channels such as absorption, steady state and time-resolved emission, and (1)H NMR spectroscopic techniques. Interestingly, the complexes exhibit luminescence in the red region with moderately long lifetimes compared with the related terpyridine complexes of Ru(ii). In DMSO, complexes 1 and 2 act as sensors for F(-) and to a lesser extent for AcO(-), CN(-) and H2PO4(-), whereas 3 acts as a sensor for F(-), AcO(-), CN(-) and to some extent for H2PO4(-). In contrast to DMSO, all the complexes exhibit very high selectivity towards cyanide ions in the presence of an excess of other anions in aqueous medium. The complexes display visual detection of cyanide with the detection limit lying in the range of 1.01 × 10(-7) to 9.79 × 10(-8) M. Equilibrium constants for the interaction of the complexes with the anions were evaluated from absorption and emission titration profiles and were found to lie in six orders of magnitude. It is observed that the excited-state lifetimes of the complexes were modulated to a significant extent by the selected anions in all the three media proving the utility of such complexes to act as lifetime-based sensors for anions. The fact that all the complexes can selectively sense cyanide in the presence of other anions with their detection limits lying in the range of 10(-7) M-10(-8) M in aqueous solution is particularly important for their practical applicability. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) studies were performed to understand the nature of the ground and excited states of the complexes with detailed assignments of the orbitals involved in absorption

  5. A High Molar Extinction Coefficient Bisterpyridyl Homoleptic Ru(II) Complex with trans-2-Methyl-2-butenoic Acid Functionality: Potential Dye for Dye-Sensitized Solar Cells

    PubMed Central

    Adeloye, Adewale O.; Olomola, Temitope O.; Adebayo, Akinbulu I.; Ajibade, Peter A.

    2012-01-01

    In our continued efforts in the synthesis of ruthenium(II) polypyridine complexes as potential dyes for use in varied applications, such as the dye-sensitized solar cells (DSSCs), this work particularly describes the synthesis, absorption spectrum, redox behavior and luminescence properties of a new homoleptic ruthenium(II) complex bearing a simple trans-2-methyl-2-butenoic acid functionality as the anchoring ligand on terpyridine moiety. The functionalized terpyridine ligand: 4′-(trans-2-methyl-2-butenoic acid)-terpyridyl (L1) was synthesized by aryl bromide substitution on terpyridine in a basic reaction condition under palladium carbide catalysis. In particular, the photophysical and redox properties of the complex formulated as: bis-4′-(trans-2-methyl-2-butenoic acid)-terpyridyl ruthenium(II) bis-hexafluorophosphate [Ru(L1)2(PF6)2] are significantly better compared to those of [Ru(tpy)2]2+ and compare well with those of the best emitters of Ru(II) polypyridine family containing tridentate ligands. Reasons for the improved photophysical and redox properties of the complex may be attributed partly to the presence of a substituted α,β-unsaturated carboxylic acid moiety leading to increase in the length of π-conjugation bond thereby enhancing the MLCT-MC (Metal-to-ligand-charge transfer-metal centred) energy gap, and to the reduced difference between the minima of the excited and ground states potential energy surfaces. PMID:22489165

  6. Synthesis, photophysical and electrochemical properties of a mixed bipyridyl-phenanthrolyl ligand Ru(II) heteroleptic complex having trans-2-methyl-2-butenoic acid functionalities.

    PubMed

    Adeloye, Adewale O

    2011-09-30

    In this work, two ligands: 4-(trans-2-Methyl-2-butenoic acid)-2,2'-bipyridine) (L(1)) and 5-(trans-2-methyl-2-butenoic acid)-1,10-phenanthroline (L(2)), with the corresponding mixed-ligand heteroleptic Ru(II) complex were synthesized and characterized by FT-IR, 1H-, 13C-NMR spectroscopy and elemental analysis. The influence of the mixed functionalized polypyridyl ruthenium(II) complex on the photophysical and electrochemical properties were investigated and compared to individual single-ligand homoleptic complexes. Interestingly, the mixed-ligand complex formulated as [RuL(1)L(2)(NCS)(2)] exhibits broad and intense metal-to-ligand charge transfer (MLCT) absorption with a high molar extinction coefficient (λ(max) = 514 nm, ε = 69,700 M(-1) cm(-1)), better than those of individual single-ligand complexes, [Ru(L(1))(2)(NCS)(2)] and [Ru(L(2))(2)(NCS)(2)], and a strong photoluminescence intensity ratio in the red region at λ(em) = 686 nm. The electrochemical properties of the complex indicated that the redox processes are ligand-based.

  7. Ru(II) complexes of N 4 and N 2O 2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng

    2009-07-01

    Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.

  8. Synthesis, structure and spectral and redox properties of new mixed ligand monomeric and dimeric Ru(II) complexes: predominant formation of the "cis-alpha" diastereoisomer and unusual 3MC emission by dimeric complexes.

    PubMed

    Murali, Mariappan; Palaniandavar, Mallayan

    2006-02-07

    The tetradentate ligands 1,8-bis(pyrid-2-yl)-3,6-dithiaoctane (pdto) and 1,8-bis(benzimidazol-2-yl)-3,6-dithiaoctane (bbdo) form the complexes [Ru(pdto)(mu-Cl)](2)(ClO(4))(2) 1 and [Ru(bbdo)(mu-Cl)](2)(ClO(4))(2) 2 respectively. The new di-mu-chloro dimers 1 and 2 undergo facile symmetrical bridge cleavage reactions with the diimine ligands 2,2'-bipyridine (bpy) and dipyridylamine (dpa) to form the six-coordinate complexes [Ru(pdto)(bpy)](ClO(4))(2) 3, [Ru(bbdo)(bpy)](ClO(4))(2) 4, [Ru(pdto)(dpa)](ClO(4))(2) 5 and [Ru(bbdo)(dpa)](ClO(4))(2) 6 and with the triimine ligand 2,2':6,2''-terpyridine (terpy) to form the unusual seven-coordinate complexes [Ru(pdto)(terpy)](ClO(4))(2) 7 and [Ru(bbdo)(terpy)](ClO(4))(2) 8. In 1 the dimeric cation [Ru(pdto)(mu-Cl)](2)(2+) is made up of two approximately octahedrally coordinated Ru(II) centers bridged by two chloride ions, which constitute a common edge between the two Ru(II) octahedra. Each ruthenium is coordinated also to two pyridine nitrogen and two thioether sulfur atoms of the tetradentate ligand. The ligand pdto is folded around Ru(II) as a result of the cis-dichloro coordination, which corresponds to a "cis-alpha" configuration [DeltaDelta/LambdaLambda(rac) diastereoisomer] supporting the possibility of some attractive pi-stacking interactions between the parallel py rings at each ruthenium atom. The ruthenium atom in the complex cations 3a and 4 exhibit a distorted octahedral coordination geometry composed of two nitrogen atoms of the bpy and the two thioether sulfur and two py/bzim nitrogen atoms of the pdto/bbdo ligand, which is actually folded around Ru(II) to give a "cis-alpha" isomer. The molecule of complex 5 contains a six-coordinated ruthenium atom chelated by pdto and dpa ligands in the expected distorted octahedral fashion. The (1)H and (13)C NMR spectral data of the complexes throw light on the nature of metal-ligand bonding and the conformations of the chelate rings, which indicates that the dithioether

  9. Multichromophoric bimetallic Ru(II) terpyridine complexes based on pyrenyl-bis-phenylimidazole spacer: synthesis, photophysics, spectroelectrochemistry, and TD-DFT calculations.

    PubMed

    Karmakar, Srikanta; Maity, Dinesh; Mardanya, Sourav; Baitalik, Sujoy

    2014-11-17

    A symmetrical bridging ligand, 5,11-bis(4-([2,2':6',2″-terpyridine]-4'-yl)phenyl)-4,12-dihydropyreno[4,5-d:9,10-d']diimidazole (tpy-H2PhImzPy-tpy), containing terpyridyl coordinating units connected via a pyrenyl-bis-phenylimidazole spacer have been designed to synthesize a new class of light harvesting bimetallic Ru(II) complexes. The electronic properties of this complexes can be fine-tuned by varying tridentate terminal ligands. Full characterization of the compounds has been done with the help of (1)H NMR spectroscopy, high-resolution mass spectrometry, and elemental analysis. Geometry optimization of the complexes was also carried out with density functional theory (DFT). Electronic absorption spectra exhibit a number of very intense π-π* and n-π* transitions in the UV and moderately intense MLCT and ILCT transitions in the visible region. Interestingly, the present bimetallic complexes exhibit moderately strong luminescence in the range between 657 and 703 nm and lifetimes (long component) between 5.8 and 67.0 ns at room temperature showing the dependence of the emission characteristics upon the type of terminal ligand and solvent. Detailed temperature-dependent emission measurements showed that an overall enhancement of photoluminescence intensity and lifetime occur in all three cases upon lowering of temperature. The redox behavior of the compounds is characterized by a single reversible anodic wave corresponding to two closely spaced one-electron processes. The appearance of intervalence charge transfer transition (IVCT) bands in the NIR region on electrochemical generation of Ru(II)Ru(II)/Ru(II)Ru(III) species indicates the presence of substantial electronic communication among the two ruthenium centers in the bimetallic complexes. DFT and TDDFT calculations were also done for better understanding of the absorption and emission spectral characteristics of the complexes.

  10. Modulation of the second-order nonlinear optical properties of the two-dimensional pincer Ru(II) complexes: substituent effect and proton abstraction switch.

    PubMed

    Wang, Cun-Huan; Ma, Na Na; Sun, Xiu-Xin; Sun, Shi-Ling; Qiu, Yong-Qing; Liu, Peng-Jun

    2012-11-01

    The static second-order nonlinear optical (NLO) properties on a series of the two-dimensional (2D) pincer Ru(II) complexes with the substituted Tpy and H(2)SCS tridentate ligands (Tpy = 2,2':6',2″-terpyridyl and H(2)SCS = 2,6-bis(benzylaminothiocarbonyl)phenyl) have been investigated by density functional theory (DFT). Introducing different donor/acceptor substituents to two ligands has an influence on the static first hyperpolarizabilities (β(tot)) of the 2D systems. Compared to the reference system 1 [Ru(H(2)SCS)(Tpy)](+), introducing the branches with strong electron acceptor group (p-NO(2)-phenylethynyl) to the Tpy ligand or the branches with strong electron donor group (p-NH(2)-phenylethynyl) to the H(2)SCS ligand can effectively improve the β(tot) values. Time-dependent DFT (TDDFT) calculations indicate that the enhanced β(tot) values of the substituted systems are dominated by the intraligand charge transfer (ILCT), metal-to-ligand charge transfer (MLCT) and ligand-to-metal charge transfer (LMCT) transitions. Furthermore, the proton abstraction plays an important role in tuning the second-order NLO response. Particularly, for system 5 bearing the branches with NO(2) groups on H(2)SCS ligand, there is a dramatic enhancement in the β(tot) values for its deprotonated forms. The β(tot) values of the monodeprotonated system 5-H and the dideprotonated system 5-2H (58.712 × 10(-30) and 761.803 × 10(-30) esu) are about 7.58 times and 36.4 times larger than their diprotonated system 5, respectively. The second-order NLO responses based on substituent effect and proton abstraction switch are two-dimensional in characteristic with the large off-diagonal tensor values.

  11. Crystal structure of a mononuclear Ru(II) complex with a back-to-back terpyridine ligand: [RuCl(bpy)(tpy-tpy)](.).

    PubMed

    Rein, Francisca N; Chen, Weizhong; Scott, Brian L; Rocha, Reginaldo C

    2015-09-01

    We report the structural characterization of [6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine](2,2'-bi-pyridine)-chlorido-ruthenium(II) hexa-fluorido-phosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2'-bi-pyridine (bpy) and the tridendate ligand 6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine (tpy-tpy). The [RuCl(bpy)(tpy-tpy)](+) monocation has a distorted octa-hedral geometry at the central Ru(II) ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru-N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru-Cl. For tpy-tpy, the mean Ru-N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru-Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy-tpy adopts a trans,trans conformation about the inter-annular C-C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π-π stacking inter-actions based on tpy-tpy. The crystal structure reported here is the first for a tpy-tpy complex of ruthenium.

  12. A homoleptic trisbidentate Ru(II) complex of a novel bidentate biheteroaromatic ligand based on quinoline and pyrazole groups: structural, electrochemical, photophysical, and computational characterization.

    PubMed

    Jarenmark, Martin; Fredin, Lisa A; Hedberg, Joachim H J; Doverbratt, Isa; Persson, Petter; Abrahamsson, Maria

    2014-12-15

    We synthesized a new homoleptic, tris-bidentate complex [Ru(QPzH)3](2+) based on the novel biheteroaromatic, 8-(3-pyrazolyl)-quinoline ligand QPzH. The QPzH ligand was designed to reduce the distortions typically observed in complexes incorporating the 8-quinolinyl group into the ligand framework. This was indeed observed, and was also, as anticipated, found to facilitate the formation of tris-homoleptic Ru(II) complexes; [Ru(QPzH)3](2+) is the first reported tris-homoleptic complex with ligands based on the 8-quinolinyl group. The synthesis can either result in a statistical 3:1 mer/fac ratio of the complex, or, through controlled exposure to light, be tweaked to allow isolation of the pure mer isomer only. X-ray crystallography reveals three nonequivalent ligands, with significantly less strain than other quinoline-based bidentate ligands. The complex exhibits a nearly octahedral coordination geometry but shows large differences in bond lengths between the Ru core and the quinoline and pyrazoles, respectively. The Ru-N(pyrazole) bond distances are ∼2.04 Å, while the corresponding distances for Ru-N(quinoline) are ∼2.12 Å. Structural, photophysical, electrochemical, and theoretical characterization revealed a mer-Ru(II) complex with a low oxidation potential (0.57 V vs ferrocene(0/+)) attributed to the incorporation of the pyrazolyl group, a ground state absorption that is sensitive to the local environment of the complex, and a short-lived (3)MLCT excited state.

  13. Stereoselectivity in the formation of tris-diimine complexes of Fe(II), Ru(II), and Os(II) with a C2-symmetric chiral derivative of 2,2'-bipyridine.

    PubMed

    Drahonovský, Dusan; Knof, Ulrich; Jungo, Laurence; Belser, Thomas; Neels, Antonia; Labat, Gaël Charles; Stoeckli-Evans, Helen; von Zelewsky, Alex

    2006-03-21

    A C2-symmetric enantiopure 4,5-bis(pinene)-2,2'-bipyridine ligand (-)-L was used to investigate the diastereoselectivity in the formation of [ML3]2+ coordination species (M = Fe(II), Ru(II), Os(II), Zn(II), Cd(II), Cu(II), Ni(II)), and [ML2Cl2] (M = Ru(II), Os(II)). The X-ray structures of the [ML3]2+ complexes were determined for Delta-[FeL3](PF6)2, Delta-[RuL3](PF6)2, Lambda-[RuL3](PF6)2, Delta-[OsL3](PF6)2, and Lambda-[OsL3](TfO)2. All of these compounds were also characterized by NMR, CD and UV/VIS absorption spectroscopy. The [FeL3]2+ diastereoisomers were studied in equilibrated solutions at various temperatures and in several solvents. The [RuL3]2+ complexes, which are thermally stable up to 200 degrees C, were photochemically equilibrated.

  14. Silica Aerogels Doped with Ru(II) Tris 1,l0-Phenanthro1ine)-Electron Acceptor Dyads: Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Kevebtusm Bucgikas; Rawashdeh, Abdel M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2005-01-01

    Complexes 1 and 2 were characterized in fluid and frozen solution and as dopants of silica aerogels. The intramolecular quenching efficiency of pendant 4-benzoyl-N-methylpyridinium group (4BzPy) is solvent dependent: emission is quenched completely in acetonitrile but not in alcohols. On the other hand, N-benzyl-N'-methylviologen (BzMeV) quenches the emission in all solvents completely. The differences are traced electrochemically to a stronger solvation effect by the alcohol in the case of 1. In fiozen matrices or absorbed on the surfaces of silica aerogel, both 1 and 2 are photoluminescent. The lack of quenching has been traced to the environmental rigidity. When doped aerogels are cooled to 77K, the emission shifts to the blue and its intensity increases in analogy to what is observed with Ru(II) complexes in media undergoing fluid-to-rigid transition. The photoluminescence of 1 and 2 from the aerogel is quenched by oxygen diffusing through the pores. In the presence of oxygen, aerogels doped with 1 can modulate their emission over a wider dynamic range than aerogels doped with 2, and both are more sensitive than aerogels doped with Ru(II) tris(1,l0- phenanthroline). In contrast to frozen solutions, the luminescent moieties in the bulk of aerogels kept at 77K are still accessible, leading to more sensitive platforms for oxygen sensors than other ambient temperature configurations.

  15. A dual-potential electrochemiluminescence ratiometric sensor for sensitive detection of dopamine based on graphene-CdTe quantum dots and self-enhanced Ru(II) complex.

    PubMed

    Fu, Xiaomin; Tan, Xingrong; Yuan, Ruo; Chen, Shihong

    2017-04-15

    A novel dual-potential ratiometric electrochemiluminescence (ECL) sensor was designed for detecting dopamine (DA) based on graphene-CdTe quantum dots (G-CdTe QDs) as the cathodic emitter and self-enhanced Ru(II) composite (TAEA-Ru) as the anodic emitter. TAEA-Ru was prepared by linking ruthenium(II) tris(2,2'-bipyridyl-4,4'-dicarboxylato) with tris(2-aminoethyl)amine. Firstly, 3-aminopropyltriethoxysilane founctionalized G-CdTe QDs was used as the substrate for capturing target DA via the specific recognition of the diol of DA to the oxyethyl group of APTES. Then, Cu2O nanocrystals supported TAEA-Ru was further bound by the strong interaction between amino groups of DA and carboxyl groups of the Cu2O-TAEA-Ru. With the increase in DA concentration, the loading of Cu2O-TAEA-Ru at the electrode increased. As a result, the anodic ECL signal from TAEA-Ru increased, and the cathodic ECL signal from G-CdTe QDs/O2 system decreased correspondingly. Such a decrease was resulted from the ECL resonance energy transfer (RET) from G-CdTe QDs to TAEA-Ru as well as the dual quenching effects of Cu2O to G-CdTe QDs, namely the ECL-RET from G-CdTe QDs to Cu2O and the consumption of coreactant O2 by Cu2O. Based on the ratio of two ECL signals, the determination of DA was achieved with a linear range from 10.0 fM to 1.0nM and a detection limit low to 2.9 fM (S/N=3). The combination of G-CdTe QDs/O2 and TAEA-Ru would break the limitation of the same coreatant shared in previous ECL ratiometric systems and provide a potential application of ECL ratiometric sensor in the detection of biological small molecules with the assistance of the dual molecular recognition strategy.

  16. Crystal structure of a mononuclear RuII complex with a back-to-back terpyridine ligand: [RuCl(bpy)(tpy–tpy)]+

    PubMed Central

    Rein, Francisca N.; Chen, Weizhong; Scott, Brian L.; Rocha, Reginaldo C.

    2015-01-01

    We report the structural characterization of [6′,6′′-bis­(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine](2,2′-bi­pyridine)­chlorido­ruthenium(II) hexa­fluorido­phosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2′-bi­pyridine (bpy) and the tridendate ligand 6′,6′′-bis­(pyridin-2-yl)-2,2′:4′,4′′:2′′,2′′′-quaterpyridine (tpy–tpy). The [RuCl(bpy)(tpy–tpy)]+ monocation has a distorted octa­hedral geometry at the central RuII ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru—N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru—Cl. For tpy–tpy, the mean Ru—N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru—Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy–tpy adopts a trans,trans conformation about the inter­annular C—C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π–π stacking inter­actions based on tpy–tpy. The crystal structure reported here is the first for a tpy–tpy complex of ruthenium. PMID:26396838

  17. Complexes with redox-active ligands: synthesis, structure, and electrochemical and photophysical behavior of the Ru(II) complex with TTF-annulated phenanthroline.

    PubMed

    Keniley, Lawrence K; Dupont, Nathalie; Ray, Lipika; Ding, Jie; Kovnir, Kirill; Hoyt, Jordan M; Hauser, Andreas; Shatruk, Michael

    2013-07-15

    Ru(II) complexes with chelating ligands, 4',5'-ethylenedithiotetrathiafulvenyl[4,5-f][1,10]phenanthroline (L1), 1,3-dithiole-2-thiono[4,5-f][1,10]phenanthroline (L2), and 1,3-dithiole-2-ono[4,5-f][1,10]phenanthroline (L3), have been prepared and their structural, electrochemical, and photophysical properties investigated. Density functional theory (DFT) calculations indicate that the highest occupied molecular orbital of [Ru(bpy)2(L1)](PF6)2 (1) is located on the tetrathiafulvalene (TTF) subunit and appears ~0.6 eV above the three Ru-centered d orbitals. In agreement with this finding, 1 exhibits three reversible oxidations: the two at lower potentials take place on the TTF subunit, and the one at higher potential is due to the Ru(3+)/Ru(2+) redox couple. Complexes [Ru(bpy)2(L2)](PF6)2 (2) and [Ru(bpy)2(L3)](PF6)2 (3) exhibit only the Ru(3+)/Ru(2+)-related oxidation. The optical absorption spectra of all complexes reveal a characteristic metal-to-ligand charge transfer (MLCT) band centered around 450 nm. In addition, in the spectrum of 1 the MLCT band is augmented by a low-energy tail that extends beyond 500 nm and is attributed to the intraligand charge transfer (ILCT) transition of L1, according to time-dependent DFT calculations. The substantial decrease in the luminescence quantum yield of 1 compared to those of 2 and 3 is attributed to the reductive quenching of the emissive state via electron transfer from the TTF subunit to the Ru(3+) center, thus allowing nonradiative relaxation to the ground state through the lower-lying ILCT state. In the presence of O2, complex 1 undergoes a photoinduced oxidative cleavage of the central C═C bond of the TTF fragment, resulting in complete transformation to 3. This photodegradation process was studied with (13)C NMR and optical absorption spectroscopy.

  18. The effects of structural variations of thiophene-containing Ru(II) complexes on the acid-base and DNA binding properties.

    PubMed

    Yuan, Cui-Li; Zhang, An-Guo; Zheng, Ze-Bo; Wang, Ke-Zhi

    2013-03-01

    A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)₂(Hbptip)](PF₆)₂ {bpy = 2,2'-bipyridine, Hbptip = 2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, ¹H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid-base properties of the complex were studied by UV-visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK(a1) = 1.31 ± 0.09 and pK(a2) = 5.71 ± 0.11 with the pK(a2) associated deprotonation/protonation process occurring over 3 pK(a) units more acidic than thiophenyl-free parent complex of [Ru(bpy)₂(Hpip)]²⁺ {Hpip = 2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)₂(Hbptip)]²⁺ in Tris-HCl buffer (pH 7.1 and 50 mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV-visible and emission spectroscopy techniques of UV-visible and luminescence titrations, steady-state emission quenching by [Fe(CN)₆]⁴⁻, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)₂(Hip)]²⁺, [Ru(bpy)₂(Htip)]²⁺, and [Ru(bpy)₂(Haptip)]²⁺ {Hip = 1H-imidazo[4,5-f][1,10]phenanthroline, Htip = 2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip = 2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.

  19. Synthesis and Evaluation of In Vitro DNA/Protein Binding Affinity, Antimicrobial, Antioxidant and Antitumor Activity of Mononuclear Ru(II) Mixed Polypyridyl Complexes.

    PubMed

    Putta, Venkat Reddy; Chintakuntla, Nagamani; Mallepally, Rajender Reddy; Avudoddi, Srishailam; K, Nagasuryaprasad; Nancherla, Deepika; V V N, Yaswanth; R S, Prakasham; Surya, Satyanarayana Singh; Sirasani, Satyanarayana

    2016-01-01

    The four novel Ru(II) complexes [Ru(phen)2MAFIP](2+) (1) [MAFIP = 2-(5-(methylacetate)furan-2-yl)-1 H-imidazo[4,5-f] [1, 10]phenanthroline, phen = 1,10-Phenanthroline], [Ru(bpy)2MAFIP](2+) (2) (bpy = 2,2'-bipyridine) and [Ru(dmb)2MAFIP](2+) (3) (dmb = 4,4'-dimethyl-2,2'-bipyridine) and [Ru(hdpa)2MAFIP](2+) (4) (hdpa = 2,2-dipyridylamine) have been synthesized and fully characterized via elemental analysis, NMR spectroscopy, EI-MS and FT-IR spectroscopy. In addition, the DNA-binding behaviors of the complexes 1-4 with calf thymus DNA were investigated by UV-Vis absorption, fluorescence studies and viscosity measurement. The DNA-binding experiments showed that the complexes 1-4 interact with CT-DNA through an intercalative mode. BSA protein binding affinity of synthesized complexes was determined by UV/Vis absorption and fluorescence emission titrations. The binding affinity of ruthenium complexes was supported by molecular docking. The photoactivated cleavage of plasmid pBR322 DNA by ruthenium complexes 1-4 was investigated. All the synthesized compounds were tested for antimicrobial activity by using three Gram-negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) and three Gram-positive (Micrococcus luteus, Bacillus subtilis and Bacillus megaterium) organisms, these results indicated that complex 3 was more activity compared to other complexes against all tested microbial strains while moderate antimicrobial activity profile was noticed for complex 4. The antioxidant activity experiments show that the complexes exhibit moderate antioxidant activity. The cytotoxicity of synthesized complexes on HeLa cell lines has been examined by MTT assay. The apoptosis assay was carried out with Acridine Orange (AO) staining methods and the results indicate that complexes can induce the apoptosis of HeLa cells. The cell cycle arrest investigated by flow cytometry and these results indicate that complexes 1-4 induce the cell cycle arrest at G0/G1

  20. Self assembled composites of luminescent Ru(II) metallopolymers and the Dawson polyoxometalate α-[Mo18O54(SO4)2]4-.

    PubMed

    Walsh, James J; Zhu, Jie; Zeng, Qiang; Forster, Robert J; Keyes, Tia E

    2012-09-07

    The interaction of two luminescent metallopolymers; [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP)co-poly(7)](+), where bpy is 2,2'-bipyridyl, PVP is polyvinylpyridine, and (CAIP)co-poly(7) is poly(styrene(6)-co-p-(aminomethyl)styrene) amide linked to 2-(4-carboxyphenyl)imidazo[4,5-f] [1,10]phenanthroline, with the Dawson polyoxomolybdate α-[Mo(18)O(54)(SO(4))(2)](4-) is described. Both metallopolymers undergo electrostatic association with the polyoxometalate. From both electronic and luminescence spectroscopy the thermodynamic products were determined to be {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) and {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+), i.e. in both instances, the number of ruthenium centres in the cluster exceeds the number required for charge neutralization of the molybdate centre. Association quenches the luminescence of the metallopolymer although, consistent with the excess of Ru(ii) present in the associated composites, emission is not completely extinguished even when a large excess of [Mo(18)O(54)(SO(4))(2)](4-) is present. The observed emission lifetime was not affected by [Mo(18)O(54)(SO(4))(2)](4-) therefore quenching was deemed static. The luminescent intensity data was found to fit best to a (sphere of action) Perrin model from which the radii of the quenching were calculated as 4.6 Å and 5.8 Å for [Ru(bpy)(2)(PVP)(10)](2+) and [Ru(bpy)(2)(CAIP co-poly)(7)](+) respectively. Both UV/Vis and resonance Raman data indicate the presence of a new optical transition centered around 490 nm for the composite, {[Ru(bpy)(2)(PVP)(10)](4.5)[Mo(18)O(54)(SO(4))(2)]}(5+) but not for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). This indicates strong electronic interaction between the metal centres in the former composite, which despite good thermodynamic analogy, is not observed for {[Ru(bpy)(2)(CAIP)co-poly(7)](5)[Mo(18)O(54)(SO(4))(2)]}(+). These results are consistent with photoelectrochemical studies of

  1. Design of Ru(II) Complexes Based on Anthraimidazoledione-Functionalized Terpyridine Ligand for Improvement of Room-Temperature Luminescence Characteristics and Recognition of Selective Anions: Experimental and DFT/TD-DFT Study.

    PubMed

    Mondal, Debiprasad; Bar, Manoranjan; Mukherjee, Shruti; Baitalik, Sujoy

    2016-10-03

    In this work we report synthesis and characterization of three rigid and linear rodlike monometallic Ru(II) complexes based on a terpyridine ligand tightly connected to 9,10-anthraquinone electron-acceptor unit through phenyl-imidazole spacer. The motivation of designing these complexes is to enhance their excited-state lifetimes at room temperature. Interestingly it is found that all three complexes exhibit luminescence at room temperature with excited-state lifetimes in the range of 1.6-52.8 ns, depending upon the coligand as well as the solvent. Temperature-dependent luminescence investigations indicate that the energy gap between the emitting (3)MLCT state and nonemitting metal-centered state (3)MC in the complexes increased enormously compared with parent [Ru(tpy)2](2+). In addition, by taking advantage of the imidazole NH proton(s), which became appreciably acidic upon combined effect of electron accepting anthraquinone moiety as well as metal ion coordination, we also examined anion recognition and sensing behaviors of the complexes in organic, mixed aqueous-organic as well as in solid medium through different optical channels such as absorption, steady-state and time-resolved emission, and (1)H NMR spectroscopic techniques. In conjunction with the experiment, computational investigation was also employed to examine the electronic structures of the complexes and accurate assignment of experimentally observed spectral and redox behaviors.

  2. A femtosecond study of the anomaly in electron injection for dye-sensitized solar cells: the influence of isomerization employing Ru(II) sensitizers with anthracene and phenanthrene ancillary ligands.

    PubMed

    Cheema, Hammad; Younts, Robert; Ogbose, Louis; Gautam, Bhoj; Gundogdu, Kenan; El-Shafei, Ahmed

    2015-01-28

    In this study, an intriguing difference caused by structural isomerization based on anthracene and phenanthrene stilbazole type ancillary ligands in Ru(ii) sensitizers for dye sensitized solar cells (DSCs) has been investigated using femtosecond transient absorption spectroscopy. Both anthracene and phenanthrene based sensitizers HD-7 and HD-8, respectively, resulted in a similar extinction coefficient, photophysical and thermodynamic free energy of electron injection and dye regeneration as measured by UV-Vis, excited state lifetime and cyclic voltammetry measurements, respectively. However, TiO2 adsorbed HD-7 resulted in up to 45% less photocurrent density than HD-8 although photovoltage was similar owing to comparable thermodynamic characteristics. It was obvious from the measurement of incident photon to current conversion efficiency (IPCE) that excited electrons in HD-7 are prone to internal energy loss before injection into the TiO2 conduction band. Analysis of photo-induced spectral features measured by femtosecond transient absorption spectroscopy showed that excited electrons in HD-7 are prone to ISC (intersystem crossing) much more than HD-8 and those triplet electrons are not injected into TiO2 efficiently. Interestingly, from impedance measurements, HD-7 showed higher recombination resistance than HD-8 and N719, but a shorter lifetime for electrons injected into the TiO2 conduction band.

  3. A Ru(II) complex with 2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline: synthesis, characterization, and acid-base and DNA-binding properties.

    PubMed

    Gao, Jie; Wang, Zhi-Ping; Yuan, Cui-Li; Jia, Hai-Shun; Wang, Ke-Zhi

    2011-09-01

    A new Ru(II) complex of [Ru(bpy)2(Hmspip)]Cl2 {in which bpy=2,2'-bipyridine, Hmspip=2-(4-(methylsulfonyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} have been synthesized and characterized. The ground- and excited-state acid-base properties of [Ru(bpy)2(Hmspip)]Cl2 and its parent complex of [Ru(bpy)2(Hpip)]Cl2 {Hpip=2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline} have been studied by UV-visible (UV-vis) and emission spectrophotometric pH titrations. [Ru(bpy)2(Hmspip)]Cl2 acts as a calf thymus DNA intercalators with a binding constant of 4.0×10(5) M(-1) in buffered 50 mM NaCl, as evidenced by UV-vis and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4-, DNA competitive binding with ethidium bromide, reverse salt titrations and viscosity measurements.

  4. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide

    NASA Astrophysics Data System (ADS)

    Chitrapriya, Nataraj; Sathiya Kamatchi, Thangavel; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-01

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H 2L) with [RuHCl(CO)(EPh 3) 3] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, 1H NMR and 13C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex ( 1) crystallizes in the monoclinic space group P2(1)/ c with unit cell dimensions a = 18.6236(17) Å, b = 12.8627(12) Å, c = 21.683(2) Å, α = 90.00, β = 114.626(2), γ = 90.00 V = 4721.8(8) Å, Z = 4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O—H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode.

  5. Synthesis, spectroscopic, crystal structure and DNA binding of Ru(II) complexes with 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide.

    PubMed

    Chitrapriya, Nataraj; Kamatchi, Thangavel Sathiya; Zeller, Matthias; Lee, Hyosun; Natarajan, Karuppannan

    2011-10-15

    Reactions of 2-hydroxy-benzoic acid [1-(4-hydroxy-6-methyl-2-oxo-2H-pyran-3-yl)-ethylidene]-hydrazide (H(2)L) with [RuHCl(CO)(EPh(3))(3)] (E = P or As) were carried out and the new complexes obtained were characterized by elemental analysis, electronic, IR, (1)H NMR and (13)C NMR spectroscopic techniques and single crystal X-ray diffraction studies. Complex (1) crystallizes in the monoclinic space group P2(1)/c with unit cell dimensions a=18.6236(17) Å, b=12.8627(12) Å, c=21.683(2) Å, α=90.00, β=114.626(2), γ=90.00 V=4721.8(8) Å, Z=4. The crystal structure of the complex shows Ru(II) atom is six-coordinated, forming a slightly distorted octahedral geometry with two P atoms in axial positions, and three chelating donor atoms of the tridentate Schiff base ligand and one carbonyl group located in the equatorial plane. The molecular structure is stabilized by intramolecular O-H···N interactions. No intermolecular hydrogen bond was observed. The intramolecular hydrogen bond exists between the oxygen atom from salicylic acid moiety and nitrogen from the same moiety. A variety of solution studies were carried out for the determination of DNA binding mode of the complexes. The results suggest that both complexes bind to Herring sperm DNA via non intercalative mode.

  6. Synthesis and Photophysical and Electrochemical Properties of Functionalized Mono-, Bis-, and Trisanthracenyl Bridged Ru(II) Bis(2,2′:6′,2″-terpyridine) Charge Transfer Complexes

    PubMed Central

    Adeloye, Adewale O.; Ajibade, Peter A.

    2014-01-01

    With the aim of developing new molecular devices having long-range electron transfer in artificial systems and as photosensitizers, a series of homoleptic ruthenium(II) bisterpyridine complexes bearing one to three anthracenyl units sandwiched between terpyridine and 2-methyl-2-butenoic acid group are synthesized and characterized. The complexes formulated as bis-4′-(9-monoanthracenyl-10-(2-methyl-2-butenoic acid) terpyridyl) ruthenium(II) bis(hexafluorophosphate) (RBT1), bis-4′-(9-dianthracenyl-10-(2-methyl-2-butenoic acid) terpyridyl) ruthenium(II) bis(hexafluorophosphate) (RBT2), and bis-4′-(9-trianthracenyl-10-(2-methyl-2-butenoic acid) terpyridyl) ruthenium(II) bis(hexafluorophosphate) (RBT3) were characterized by elemental analysis, FT-IR, UV-Vis, photoluminescence, 1H and 13C NMR spectroscopy, and electrochemical techniques by elemental analysis, FT-IR, UV-Vis, photoluminescence, 1H and 13C NMR spectroscopy, and electrochemical techniques. The cyclic voltammograms (CVs) of (RBT1), (RBT2), and (RBT3) display reversible one-electron oxidation processes at E1/2 = 1.13 V, 0.71 V, and 0.99 V, respectively (versus Ag/AgCl). Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, the Ru(II) bisterpyridyl complexes show characteristic broad and intense metal-to-ligand charge transfer (MLCT) band absorption transitions between 480–600 nm, ε = 9.45 × 103 M−1 cm−1, and appreciable photoluminescence spanning the visible region. PMID:24883408

  7. Dual mode of cell death upon the photo-irradiation of a RuII polypyridyl complex in interphase or mitosis† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc00387g Click here for additional data file. Click here for additional data file. Click here for additional data file. Click here for additional data file.

    PubMed Central

    Pierroz, Vanessa; Rubbiani, Riccardo; Gentili, Christian; Patra, Malay; Mari, Cristina

    2016-01-01

    Photodynamic therapy (PDT) is an attractive, complementary medical technique to chemotherapy. Among the different photosensitizers (PSs) employed, Ru(ii) polypyridyl complexes were found to be valid substitutes to porphyrin-based or phthalocyanine-based PSs. Here, we confirm that one such complex, namely [Ru(bipy)2-dppz-7-methoxy][PF6]2 (Ru65), which localizes in the nucleus of various cancer and normal cells, displays cytotoxicity only upon UV-A irradiation. Importantly, we disclose the molecular mechanism of the UV-A mediated cytotoxic action of Ru65. We demonstrate that Ru65 intercalates in DNA and, upon light irradiation, promotes guanine oxidation, resulting in nicks in the double helix. We confirm this mechanism of action in living cells, showing that the UV-A irradiation of cells loaded with Ru65 results in a transient DNA damage response and cell death. Strikingly, the photo-irradiation of Ru65 triggered distinct mechanisms of cell death in interphase or mitotic cells. The former underwent cell cycle arrest at the G2/M phase and massive cytoplasmic vacuolation, which was paralleled by an unfolded-protein stress response, resulting in a reduction of viability and cell death through a paraptosis-like mechanism. On the other hand, the UV-A irradiation of Ru65 in cells synchronized by G2/M block-release with a selective CDK1 inhibitor led to blocking mitotic entry and rapid cell death through classic apoptotic pathways. Importantly, targeting mitotic cells with Ru65 allowed increasing its photo-toxicity by a factor of 3.6. Overall, our findings show that the use of a combination of a cell cycle inhibitor and a PS targeting the nucleus could open up new avenues in PDT. PMID:27708751

  8. Study of Cross-Linking Density and the Type of Cross Linkage in Polyurethane Elastomers (Sintez i Fiziko-Khimiya Poliuretanov),

    DTIC Science & Technology

    2014-09-26

    Ya, ya ye initially, after vowels, and after u, b; e elsewhere. When written as 9 in Russian , transliterate as yf or 9. RUSSIAN AND ENGLISH...TRIGONOMETRIC FUNCTIONS Russian English Russian English Russian English sin sin sh sinh arc sh snh-1 cos cos ch cosh arc ch cosh-1tg tan th tanh arc .th tanh...1ctg cot cth coth arc cth coth 1sec sec sch sech arc sch sech-.I cosec casc csch csch arc csch csch Russian English 0 0 rot curl - lg log GRAPHICS

  9. A dinuclear Ru(II) complex capable of photoinduced ligand exchange at both metal centers.

    PubMed

    Albani, B A; Peña, B; Saha, S; White, J K; Schaeffer, A M; Dunbar, K R; Turro, C

    2015-11-28

    {[Ru(CH3CN)3]2(tppz)}(4+) (tppz = tetra-2-pyridylpyrazine) undergoes photoinduced CH3CN exchange with λirr ≥ 610 nm in H2O. In contrast, cis-{[Ru(tpy)(L)]2(bpm)}(4+) (tpy = 2,2':6',2''-terpyridine, bpm = 2,2'-bipyrimidine, L = CH3CN) is not reactive, but the complex with L = DMSO is photoactive. These complexes are potentially useful for the release of multiply caged drugs.

  10. New Ru(II) Complex for Dual Activity: Photoinduced Ligand Release and (1)O2 Production.

    PubMed

    Loftus, Lauren M; White, Jessica K; Albani, Bryan A; Kohler, Lars; Kodanko, Jeremy J; Thummel, Randolph P; Dunbar, Kim R; Turro, Claudia

    2016-03-07

    The new complex [Ru(pydppn)(biq)(py)](2+) (1) undergoes both py photodissociation in CH3CN with Φ500 =0.0070(4) and (1)O2 production with ΦΔ =0.75(7) in CH3 OH from a long-lived (3) ππ* state centered on the pydppn ligand (pydppn=3-(pyrid-2-yl)benzo[i]dipyrido[3,2-a:2',3'-c]phenazine; biq = 2,2'-biquinoline; py=pyridine). This represents an order of magnitude decrease in the Φ500 compared to the previously reported model compound [Ru(tpy)(biq)(py)](2+) (3) (tpy=2,2':6',2''-terpyridine) that undergoes only ligand exchange. The effect on the quantum yields by the addition of a second deactivation pathway through the low-lying (3) ππ* state necessary for dual reactivity was investigated using ultrafast and nanosecond transient absorption spectroscopy, revealing a significantly shorter (3) MLCT lifetime in 1 relative to that of the model complex 3. Due to the structural similarities between the two compounds, the lower values of Φ500 and ΦΔ compared to that of [Ru(pydppn)(bpy)(py)](2+) (2) (bpy=2,2'-bipyridine) are attributed to a competitive excited state population between the (3) LF states involved in ligand dissociation and the long-lived (3) ππ* state in 1. Complex 1 represents a model compound for dual activity that may be applied to photochemotherapy.

  11. Unusually Efficient Pyridine Photodissociation from Ru(II) Complexes with Sterically Bulky Bidentate Ancillary Ligands

    PubMed Central

    2015-01-01

    The introduction of steric bulk to the bidentate ligand in [Ru(tpy)(bpy)(py)]2+ (1; tpy = 2,2′:2′,6″-terpyridine; bpy = 2,2′-bipyridine; py = pyridine) to provide [Ru(tpy)(Me2bpy)(py)]2+ (2; Me2bpy = 6,6′-dimethyl-2,2′-bipyridine) and [Ru(tpy)(biq)(py)]2+ (3; biq = 2,2′-biquinoline) facilitates photoinduced dissociation of pyridine with visible light. Upon irradiation of 2 and 3 in CH3CN (λirr = 500 nm), ligand exchange occurs to produce the corresponding [Ru(tpy)(NN)(NCCH3)]2+ (NN = Me2bpy, biq) complex with quantum yields, Φ500, of 0.16(1) and 0.033(1) for 2 and 3, respectively. These values represent an increase in efficiency of the reaction by 2–3 orders of magnitude as compared to that of 1, Φ500 < 0.0001, under similar experimental conditions. The photolysis of 2 and 3 in H2O with low energy light to produce [Ru(tpy)(NN)(OH2)]2+ (NN = Me2bpy, biq) also proceeds rapidly (λirr > 590 nm). Complexes 1–3 are stable in the dark in both CH3CN and H2O under similar experimental conditions. X-ray crystal structures and theoretical calculations highlight significant distortion of the planes of the bidentate ligands in 2 and 3 relative to that of 1. The crystallographic dihedral angles defined by the bidentate ligand, Me2bpy in 2 and biq in 3, and the tpy ligand were determined to be 67.87° and 61.89°, respectively, whereas only a small distortion from the octahedral geometry is observed between bpy and tpy in 1, 83.34°. The steric bulk afforded by Me2bpy and biq also result in major distortions of the pyridine ligand in 2 and 3, respectively, relative to 1, which are believed to weaken its σ-bonding and π-back-bonding to the metal and play a crucial role in the efficiency of the photoinduced ligand exchange. The ability of 2 and 3 to undergo ligand exchange with λirr > 590 nm makes them potential candidates to build photochemotherapeutic agents for the delivery of drugs with pyridine binding groups. PMID:25027458

  12. Synthesis of Monomeric Fe(II) and Ru(II) Complexes of Tetradentate Phosphines

    SciTech Connect

    Jana, Barun; Ellern, Arkady; Pestovsky, Oleg; Sadow, Aaron; Bakac, Andreja

    2011-03-07

    rac-Bis[{l_brace}(diphenylphosphino)ethyl{r_brace}-phenylphosphino]methane (DPPEPM) reacts with iron(II) and ruthenium(II) halides to generate complexes with folded DPPEPM coordination. The paramagnetic, five-coordinate Fe(DPPEPM)Cl{sub 2} (1) in CD{sub 2}Cl{sub 2} features a tridentate binding mode as established by {sup 31}P{l_brace}{sup 1}H{r_brace} NMR spectroscopy. Crystal structure analysis of the analogous bromo complex, Fe(DPPEPM)Br{sub 2} (2) revealed a pseudo-octahedral, cis-{alpha} geometry at iron with DPPEPM coordinated in a tetradentate fashion. However, in CD{sub 2}Cl{sub 2} solution, the coordination of DPPEPM in 2 is similar to that of 1 in that one of the external phosphorus atoms is dissociated resulting in a mixture of three tridentate complexes. The chloro ruthenium complex cis-Ru({kappa}{sup 4}-DPPEPM)Cl{sub 2} (3) is obtained from rac-DPPEPM and either [RuCl{sub 2}(COD)]{sub 2} [COD = 1,5-cyclooctadiene] or RuCl{sub 2}(PPh{sub 3}){sub 4}. The structure of 3 in both the solid state and in CD{sub 2}Cl{sub 2} solution features a folded {kappa}{sup 4}-DPPEPM. This binding mode was also observed in cis-[Fe({kappa}{sup 4}-DPPEPM)(CH{sub 3}CN){sub 2}](CF{sub 3}SO{sub 3}){sub 2} (4). Addition of an excess of CO to a methanolic solution of 1 results in the replacement of one of the chloride ions by CO to yield cis-[Fe({kappa}{sup 4}-DPPEPM)Cl(CO)](Cl) (5). The same reaction in CH{sub 2}Cl{sub 2} produces a mixture of 5 and [Fe({kappa}{sup 3}-DPPEPM)Cl{sub 2}(CO)] (6) in which one of the internal phosphines has been substituted by CO. Complexes 2, 3, 4, and 5 appear to be the first structurally characterized monometallic complexes of {kappa}{sup 4}-DPPEPM.

  13. Base-enhanced catalytic water oxidation by a carboxylate–bipyridine Ru(II) complex

    PubMed Central

    Song, Na; Concepcion, Javier J.; Binstead, Robert A.; Rudd, Jennifer A.; Vannucci, Aaron K.; Dares, Christopher J.; Coggins, Michael K.; Meyer, Thomas J.

    2015-01-01

    In aqueous solution above pH 2.4 with 4% (vol/vol) CH3CN, the complex [RuII(bda)(isoq)2] (bda is 2,2′-bipyridine-6,6′-dicarboxylate; isoq is isoquinoline) exists as the open-arm chelate, [RuII(CO2-bpy-CO2−)(isoq)2(NCCH3)], as shown by 1H and 13C-NMR, X-ray crystallography, and pH titrations. Rates of water oxidation with the open-arm chelate are remarkably enhanced by added proton acceptor bases, as measured by cyclic voltammetry (CV). In 1.0 M PO43–, the calculated half-time for water oxidation is ∼7 μs. The key to the rate accelerations with added bases is direct involvement of the buffer base in either atom–proton transfer (APT) or concerted electron–proton transfer (EPT) pathways. PMID:25848035

  14. Photoinduced water oxidation sensitized by a tetranuclear Ru(II) dendrimer.

    PubMed

    La Ganga, Giuseppina; Nastasi, Francesco; Campagna, Sebastiano; Puntoriero, Fausto

    2009-12-07

    A multimetallic ruthenium(II) dendrimer is used for the first time to photosensitize dioxygen production from water by IrO2 nanoparticles; the system is more efficient than an analogous system based on the more commonly used [Ru(bpy)3]2+-type photosensitizers, in particular for the ability of the dendrimer to take advantage of the red portion of the solar spectrum.

  15. A Family of Potent Ru(II) Photosensitizers with Enhanced DNA Intercalation: Bimodal Photokillers.

    PubMed

    Pefkianakis, Eleftherios K; Theodossiou, Theodossis A; Toubanaki, Dimitra K; Karagouni, Evdokia; Falaras, Polycarpos; Papadopoulos, Kyriakos; Vougioukalakis, Georgios C

    2015-01-01

    A new family of Ru(II)-based photosensitizers was synthesized and systematically characterized. The ligands employed to coordinate the ruthenium metal center were the commercially available 2,2'-bipyridine and a pyridine-quinoline hybrid bearing an anthracene moiety. The complexes obtained carry either PF6- or Cl(-) counterions. These counterions determine the complexes' hydrophobic or hydrophilic character, respectively, therefore dictating their solubility in biologically related media. All photosensitizers exhibit characteristic, relatively strong and wide UV-Vis absorption spectral profiles. Their high efficiency in generating cytotoxic singlet oxygen was established (up to ΦΔ ~0.8). Moreover, the interaction of these photosensitizers with double-stranded DNA was studied fluoro- and photospectroscopically and their binding affinities were found to be of the order of 3 × 10(7)  M(-1) . All complexes are photocytotoxic to DU145 human prostate cancer cells. The highest light-induced toxicity was conferred by the photosensitizers bearing Cl(-) counterions, probably due to the looser ionic "chaperoning" of Cl(-) , in comparison to PF6-, leading to higher cell internalization.

  16. Unusually efficient pyridine photodissociation from Ru(II) complexes with sterically bulky bidentate ancillary ligands.

    PubMed

    Knoll, Jessica D; Albani, Bryan A; Durr, Christopher B; Turro, Claudia

    2014-11-13

    The introduction of steric bulk to the bidentate ligand in [Ru(tpy)(bpy)(py)](2+) (1; tpy = 2,2':2',6″-terpyridine; bpy = 2,2'-bipyridine; py = pyridine) to provide [Ru(tpy)(Me2bpy)(py)](2+) (2; Me2bpy = 6,6'-dimethyl-2,2'-bipyridine) and [Ru(tpy)(biq)(py)](2+) (3; biq = 2,2'-biquinoline) facilitates photoinduced dissociation of pyridine with visible light. Upon irradiation of 2 and 3 in CH3CN (λirr = 500 nm), ligand exchange occurs to produce the corresponding [Ru(tpy)(NN)(NCCH3)](2+) (NN = Me2bpy, biq) complex with quantum yields, Φ500, of 0.16(1) and 0.033(1) for 2 and 3, respectively. These values represent an increase in efficiency of the reaction by 2-3 orders of magnitude as compared to that of 1, Φ500 < 0.0001, under similar experimental conditions. The photolysis of 2 and 3 in H2O with low energy light to produce [Ru(tpy)(NN)(OH2)](2+) (NN = Me2bpy, biq) also proceeds rapidly (λirr > 590 nm). Complexes 1-3 are stable in the dark in both CH3CN and H2O under similar experimental conditions. X-ray crystal structures and theoretical calculations highlight significant distortion of the planes of the bidentate ligands in 2 and 3 relative to that of 1. The crystallographic dihedral angles defined by the bidentate ligand, Me2bpy in 2 and biq in 3, and the tpy ligand were determined to be 67.87° and 61.89°, respectively, whereas only a small distortion from the octahedral geometry is observed between bpy and tpy in 1, 83.34°. The steric bulk afforded by Me2bpy and biq also result in major distortions of the pyridine ligand in 2 and 3, respectively, relative to 1, which are believed to weaken its σ-bonding and π-back-bonding to the metal and play a crucial role in the efficiency of the photoinduced ligand exchange. The ability of 2 and 3 to undergo ligand exchange with λirr > 590 nm makes them potential candidates to build photochemotherapeutic agents for the delivery of drugs with pyridine binding groups.

  17. Theoretical Insight on the S → O Photoisomerization of DMSO Complexes of Ru(II)

    NASA Astrophysics Data System (ADS)

    Lutterman, Daniel A.; Rachford, Aaron A.; Rack, Jeffrey J.; Turro, Claudia

    2009-09-01

    Complexes of the type [Ru(tpy)(L)(dmso)]n+ (where tpy = 2,2':6',2''-terpyridine; L = 2,2'-bipyridine (bpy), n = 2; N,N,N',N'-tetramethylethylene diamine (tmen), n = 2; acetylacetonate (acac), n = 1; oxalate (ox), n = 0; malonate (mal), n = 0) were investigated by density functional theory (DFT). The results do not support a promoting role for the dσ* ligand field (LF) states during excited state S → O isomerization. Instead, the calculations show that the formation of a Ru(III) center is important in the isomerization, along with the identity of the ancillary bidentate ligand. The present work shows that the orbital contributions from the bidentate ligand to the HOMO, which is typically centered on the ruthenium, plays an important role in the photochemical and oxidative reactivity of the complexes.

  18. Excited state potential energy surfaces of bistridentate RuII complexes - A TD-DFT study

    NASA Astrophysics Data System (ADS)

    Österman, Tomas; Persson, Petter

    2012-10-01

    Time-dependent density functional theory (TD-DFT) calculations have been used to investigate low-energy singlet and triplet excited state potential energy surfaces (PES) of two prototype RuII-bistridentate complexes: [RuII(tpy)2]2+ (tpy is 2,2':6',2''-terpyridine) and [RuII(dqp)2]2+ (dqp is 2,6-di(quinolin-8-yl)pyridine). Solvent effects were considered using a self-consistent reaction field scheme. The calculations provide information about the excited state manifold along pathways for activated decay of metal-to-ligand charge-transfer (MLCT) excited states via metal-centered (MC) states for the two complexes. Significant differences in the energy profiles of the investigated PESs are explained through characterization of the electronic properties of the involved states calculated by the TD-DFT calculations. Finally, implications of the computational results for the design of octahedral metal complexes utilizing ligand field splitting (LFS) strategies for efficient light-harvesting in photochemical applications such as artificial photosynthesis are discussed.

  19. New RuII Complex for Dual Activity: Photoinduced Ligand Release and 1O2 Production

    PubMed Central

    Loftus, Lauren M.; White, Jessica K.; Albani, Bryan A.; Kohler, Lars; Kodanko, Jeremy J.; Thummel, Randolph P.

    2016-01-01

    The new complex [Ru(pydppn)(biq)(py)]2+ (1) undergoes both py photodissociation in CH3CN with Φ500=0.0070(4) and 1O2 production with ΦΔ=0.75(7) in CH3OH from a long-lived 3ππ* state centered on the pydppn ligand (pydppn=3-(pyrid-2-yl)benzo[i]dipyrido[3,2-a:2′,3′-c]phenazine; biq = 2,2′-biquinoline; py= pyridine). This represents an order of magnitude decrease in the Φ500 compared to the previously reported model compound [Ru(tpy)(biq)(py)]2+ (3) (tpy=2,2′:6′,2″-terpyridine) that undergoes only ligand exchange. The effect on the quantum yields by the addition of a second deactivation pathway through the low-lying 3ππ* state necessary for dual reactivity was investigated using ultrafast and nanosecond transient absorption spectroscopy, revealing a significantly shorter 3MLCT lifetime in 1 relative to that of the model complex 3. Due to the structural similarities between the two compounds, the lower values of Φ500 and ΦΔ compared to that of [Ru(pydppn)(bpy)(py)]2+ (2) (bpy=2,2′-bipyridine) are attributed to a competitive excited state population between the 3LF states involved in ligand dissociation and the long-lived 3ππ* state in 1. Complex 1 represents a model compound for dual activity that may be applied to photochemotherapy. PMID:26715085

  20. Photodriven Multi-electron Storage in Disubstituted Ru(II) Dppz Analogues.

    PubMed

    Aslan, Joseph M; Boston, David J; MacDonnell, Frederick M

    2015-11-23

    Four derivatives of the laminate acceptor ligand dipyrido-[3,2-a:2',3'-c]phenazine (dppz) and their corresponding ruthenium complexes, [Ru(phen)2 (dppzX2 )](2+) , were prepared and characterized by NMR spectroscopy, ESI-MS, and elemental analysis. The new ligands, generically denoted dppzX2 , were symmetrically disubstituted on the distal benzene ring to give 10,13-dibromodppz (dppz-p-Br), 11,12-dibromodppz (dppz-o-Br), 10,13-dicyanodppz (dppz-p-CN), 11,12-dicyanodppz (dppz-o-CN). Solvated ground state MO calculations of the ruthenium complexes reveal that these electron-withdrawing substituents not only lower the LUMO of the dppz ligand (dppz(CN)2

  1. New Ru(II) pincer complexes: synthesis, characterization and biological evaluation for photodynamic therapy.

    PubMed

    Tabrizi, Leila; Chiniforoshan, Hossein

    2016-11-15

    Three new ruthenium(ii) complexes of NCN pincer and phenylcyanamide derivative ligands of the formula [Ru(L)(Ph2phen)(3,5-(NO2)2pcyd)], 1, [Ru(L)(Me2phen)(3,5-(NO2)2pcyd)], 2, and [Ru(L)(Cl2phen)(3,5-(NO2)2pcyd)], 3 (HL: 5-methoxy-1,3-bis(1-methyl-1H-benzo[d]imidazol-2-yl)benzene, 3,5-(NO2)2pcyd: 3,5-(NO2)2pcyd, Ph2phen: 4,7-diphenyl-1,10-phenanthroline, Me2phen: 4,7-dimethyl-1,10-phenanthroline, Cl2phen: 4,7-dichloro-1,10-phenanthroline) have been synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). The complexes exhibited promising (1)O2 production quantum yields comparable with PSs available on the market. The DNA-binding interactions of the complexes with calf thymus DNA have been studied by absorption, emission, and viscosity measurements. All complexes cleave SC-DNA efficiently on photoactivation at 350 nm with the formation of singlet oxygen ((1)O2) and hydroxyl radicals (˙OH) in type-II and photoredox pathways. Complexes 1-3 showed very good uptake in cervical cancer cells (HeLa). The compounds studied were found to exhibit low toxicity against HeLa cells (IC50 > 300 μM) and, remarkably, on non-cancerous MRC-5 cells (IC50 > 100 μM) in the dark. However, 1 showed very promising behavior with an increment of about 90 times, in its cytotoxicity upon light illumination at 420 nm in addition to very good human plasma stability.

  2. The electrochemical detection of Ru(II) in a methyl methacrylate solution.

    PubMed

    De Wael, Karolien; Adriaens, Annemie; Temmerman, Eduard

    2006-02-15

    This article describes the voltammetric behaviour of RuCl(2)(PPh(3))(3) in a methyl methacrylate (MMA) solution. Acquiring this type of information is only possible when the ohmic resistance can be kept sufficiently low. Therefore, the conductivity study of pure methyl methacrylate and a tetrabutylammonium tetrafluoroborate (TBABF(4)) methyl methacrylate solution has been described as well. Impedance measurements show an increase in conductivity by adding TBABF(4), while a conductometric curve illustrates the presence of ion pairs, triple ions and quadrupoles depending on the TBABF(4) concentration. The conductivity of a 0.1molL(-1) TBABF(4)-MMA solution (formation of charged triple ions) was high enough to perform electrochemical experiments and a calibration curve could be obtained. The ability of obtaining relevant electrochemical data in low conducting media opens up new perspectives, especially for electroanalytical purposes used to monitor polymer reactions, more specific atom transfer radical polymerization (ATRP) reactions. This method employs a redox process with transition metal complexes in which a halogen ion is transferred reversibly between the transition metal and the polymer chain end. The dynamic equilibrium can be monitored by measuring the ruthenium concentration.

  3. Mechanistic insights into the chemistry of RuII complexes containing Cl and DMSO ligands.

    PubMed

    Mola, Joaquim; Romero, Isabel; Rodríguez, Montserrat; Bozoglian, Fernando; Poater, Albert; Solà, Miquel; Parella, Teodor; Benet-Buchholz, Jordi; Fontrodona, Xavier; Llobet, Antoni

    2007-12-10

    Two new isomers trans,mer-[RuIICl2(bpea)(DMSO)], 2a, and cis,fac-[RuIICl2(bpea)(DMSO)], 2b, (bpea = N,N-bis(2-pyridylmethyl)ethylamine), as well as the bis-DMSO complex trans,fac-[RuIICl(bpea)(DMSO)2]Cl, 3, have been synthesized and characterized by cyclic voltammetry and UV-vis and 1D and 2D NMR spectroscopy in solution. Their solid-state structure has also been solved by means of single-crystal X-ray diffraction analysis. All the three complexes display a ruthenium metal center possessing a distorted-octahedral type of coordination, where the bpea ligand is coordinated in a meridional fashion in 2a and in a facial fashion in 2b and 3. The isomer 2a is the kinetically favored and thus can be thermally converted into 2b, that is the thermodynamically favored one. A thorough kinetic analysis strongly points toward a dissociative mechanism, where in the first step a chloro ligand is removed from the metal coordination sphere, followed by a geometric rearrangement before the chloro ligand coordinates again, generating the final complex. DFT calculations agree with the experimental data for the proposed mechanism and allow us to further characterize the mechanism of the 2a --> 2b rearrangement by obtaining the intermediates and transition state.

  4. Static and time-resolved spectroscopic studies of low-symmetry Ru(II) polypyridyl complexes

    SciTech Connect

    Curtright, A.E.; McCusker, J.K.

    1999-09-02

    The spectroscopic and electrochemical properties of a series of four Ru{sup II} polypyridyl complexes are reported. Compounds of the form [Ru(dmb){sub x}(dea){sub 3{minus}x}]{sup 2+} (x = 0--3), where dmb is 4,4{prime}-dimethyl-2,2{prime}-bipyridine and dea is 4,4{prime}-bis(diethylamino)-2,2{prime}-bipyridine, have been prepared and studied using static and time-resolved electronic and vibrational spectroscopies as a prelude to femtosecond spectroscopic studies of excited-state dynamics. Static electronic spectra in CH{sub 3}CN solution reveal a systematic shift of the MLCT absorption envelope from a maximum of 458 nm in the case of [Ru(dmb){sub 3}]{sup 2+} to 518 nm for [Ru(dea){sub 3}]{sup 2+} with successive substitutions of dea for dmb, suggesting a dea-based chromophore as the lowest-energy species. However, analysis of static and time-resolved emission data indicates an energy gap ordering of [Ru(dmb){sub 3}]{sup 2+} > [Ru(dmb){sub 2}(dea)]{sup 2+} > [Ru(dea){sub 3}]{sup 2+} > [Ru(dmb)(DEA){sub 2}]{sup 2+}, at variance with the electronic structures inferred from the absorption spectra. Nanosecond time-resolved electronic absorption and time-resolved step-scan infrared data are used to resolve this apparent conflict and confirm localization of the long-lived {sup 3}MLCT state on dmb in all three complexes where this ligand is present, thus making the dea-based excited state unique to [Ru(dea){sub 3}]{sup 2+}. Electrochemical studies further reveal the origin of this result, where a strong influence of the dea ligand on the oxidative Ru{sup II/III} couple, due to {pi} donation from the diethylamino substituent, is observed. The electronic absorption spectra are then reexamined in light of the now well-determined excited-state electronic structure. The results serve to underscore the importance of complete characterization of the electronic structures of transition metal complexes before embarking on ultrafast studies of their excited-state properties.

  5. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes.

    PubMed

    Adeniyi, Adebayo A; Ajibade, Peter A

    2013-11-01

    The mechanism of activation of metal-based anticancer agents was reported to be through hydrolysis. In this study, computational method was used to gain insight to the correlation between the chemistry of the hydrolysis and the anticancer activities of selected Ru(II)-based complexes. Interestingly, we observed that the mechanism of activation by hydrolysis and their consequential anticancer activities is associated with favourable thermodynamic changes, higher hyperpolarizability (β), lower band-gap and higher first-order net current. The Fermi contact (FC) and spin dipole (SD) are found to be the two most significant Ramsey terms that determine the spin-spin couplings (J(HZ)) of most of the existing bonds in the complexes. Many of the computed properties give insights into the change in the chemistry of the complexes due to hydrolysis. Besides strong correlations of the computed properties to the anticancer activities of the complexes, using the quantum theory of atoms in a molecule (QTAIM) to analyse the spectroscopic properties shows a stronger correlation between the spectroscopic properties of Ru atom to the reported anticancer activities than the sum over of the spectroscopic properties of all atoms in the complexes.

  6. Computational studies of the electronic, conductivities, and spectroscopic properties of hydrolysed Ru(II) anticancer complexes

    NASA Astrophysics Data System (ADS)

    Adeniyi, Adebayo A.; Ajibade, Peter A.

    2013-11-01

    The mechanism of activation of metal-based anticancer agents was reported to be through hydrolysis. In this study, computational method was used to gain insight to the correlation between the chemistry of the hydrolysis and the anticancer activities of selected Ru(II)-based complexes. Interestingly, we observed that the mechanism of activation by hydrolysis and their consequential anticancer activities is associated with favourable thermodynamic changes, higher hyperpolarizability (β), lower band-gap and higher first-order net current. The Fermi contact (FC) and spin dipole (SD) are found to be the two most significant Ramsey terms that determine the spin-spin couplings (J(HZ)) of most of the existing bonds in the complexes. Many of the computed properties give insights into the change in the chemistry of the complexes due to hydrolysis. Besides strong correlations of the computed properties to the anticancer activities of the complexes, using the quantum theory of atoms in a molecule (QTAIM) to analyse the spectroscopic properties shows a stronger correlation between the spectroscopic properties of Ru atom to the reported anticancer activities than the sum over of the spectroscopic properties of all atoms in the complexes.

  7. Spectroscopic and computational studies of a Ru(II) terpyridine complex: the importance of weak intermolecular forces to photophysical properties.

    PubMed

    Garino, Claudio; Gobetto, Roberto; Nervi, Carlo; Salassa, Luca; Rosenberg, Edward; Ross, J B Alexander; Chu, Xi; Hardcastle, Kenneth I; Sabatini, Cristiana

    2007-10-15

    The complex [Ru(tpy)(CO)(2)TFA]+[PF(6)]- (where tpy = 2,2':6',2' '-terpyridine and TFA = CF(3)CO(2)-) (1) has been synthesized and fully characterized spectroscopically. The X-ray structure of the complex has been determined. The photopysical properties of the ruthenium complex and the free ligand tpy have been investigated at room temperature and at 77 K in acetonitrile solution and in the solid state. Their electronic spectra are highly influenced by intermolecular stacking interactions, both in solution and in the solid state. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations have been performed to characterize the electronic structure and the excited states of [Ru(tpy)(CO)(2)TFA]+[PF(6)]- and tpy. TDDFT calculations on three different conformations of free ligand have been performed as well. Absorption and emission spectra of tpy have been studied at different temperatures and concentrations in order to have a better understanding of this ruthenium derivative's properties. The absorption spectrum of 1 is characterized by metal-perturbed ligand-centered (LC) bands in the UV region. No metal-to-ligand charge transfer (MLCT) bands are observed in the visible for the complex. Only at high concentrations (10(-4) M) does a very weak band appear at 470 nm. At 77 K and low concentrations, solutions of 1 exhibit a major 3LC emission band centered at 468 nm (21.4 x 10(-3) cm(-1)). When the concentration of the complex is increased, an unstructured narrow emission at 603 nm (16.6 x 10(-3) cm(-1)), with a lifetime of 10 micros, dominates the emission spectrum in glassy acetonitrile. This emission originates from a pi-pi stacked dimeric (or oligomeric) species. TDDFT calculations performed on a tail-to-tail dimer structure, similar to that seen in the solid state, ascribe the transition to a triplet excited state, where intermolecular metal (d) --> ligand (pi*, polypyridine) charge transfer occurs. A good estimate of the transition energy is also obtained (623 nm, 1.94 eV).

  8. Effect of ligands with extended π-system on the photophysical properties of Ru(II) complexes.

    PubMed

    Sun, Yujie; El Ojaimi, Maya; Hammitt, Richard; Thummel, Randolph P; Turro, Claudia

    2010-11-18

    Density functional theory calculations were performed on a series of six ruthenium complexes possessing tridentate ligands: [Ru(tpy)(2)](2+) (1; tpy = [2,2';6',2'']-terpyridine), [Ru(tpy)(pydppx)](2+) (2; pydppx = 3-(pyrid-2'-yl)-11,12-dimethyldipyrido[3,2-a: 2',3'-c]phenazine), [Ru(pydppx)(2)](2+) (3), [Ru(tpy)(pydppn)](2+) (4; pydppn = 3-(pyrid-2'-yl)-4,5,9,16-tetraazadibenzo[a,c]naphthacene), [Ru(pydppn)(2)](2+) (5), and [Ru(tpy)(pydbn)](+) (6; pyHdbn = 3-pyrid-2'-yl-4,9,16-triazadibenzo[a,c]naphthacene). The calculations were compared to experimental data, including electrochemistry and electronic absorption spectra. The theoretical results reveal that the lowest-lying singlet and triplet states in 4 and 5 are pydppn-based ππ* in character, which are remarkably different from the lowest-lying metal-to-ligand charge transfer (MLCT) states in 1-3. The calculated lowest triplet states in 4 and 5 are consistent with the (3)ππ* states observed experimentally. However, although the extended π-system of pydbn(-) is similar to that of pydppn, the HOMO of 6 lies above those of 4 and 5, resulting in strikingly different spectroscopic properties. Calculations show that the lowest triplet excited state of 6 is a combination of (3)MLCT and (3)ππ*. This work demonstrates that the electronic structure of the tridentate ligand has a pronounced effect on the photophysical properties of ruthenium(II) complexes and that DFT and TD-DFT methods are a useful tool that can be used to predict photophysical and redox properties of transition metal complexes.

  9. Synthesis and Characterization of a Heteroleptic Ru(II) Complex of Phenanthroline Containing Oligo-Anthracenyl Carboxylic Acid Moieties

    PubMed Central

    Adeloye, Adewale O.; Ajibade, Peter A.

    2010-01-01

    In an effort to develop new ruthenium(II) complexes, this work describes the design, synthesis and characterization of a ruthenium(II) functionalized phenanthroline complex with extended π-conjugation. The ligand were L1 (4,7-bis(2,3-dimethylacrylic acid)-1,10-phenanthroline), synthesized by a direct aromatic substitution reaction, and L2 (4,7-bis(trianthracenyl-2,3-dimethylacrylic acid)-1,10-phenanthroline), which was synthesized by the dehalogenation of halogenated aromatic compounds using a zero-valent palladium cross-catalyzed reaction in the absence of magnesium-diene complexes and/or cyclooctadienyl nickel (0) catalysts to generate a new carbon-carbon bond (C-C bond) polymerized hydrocarbon units. The ruthenium complex [RuL1L2(NCS)2] showed improved photophysical properties (red-shifted metal-to-ligand charge-transfer transition absorptions and enhanced molar extinction coefficients), luminescence and interesting electrochemical properties. Cyclic and square wave voltammetry revealed five major redox processes. The number of electron(s) transferred by the ruthenium complex was determined by chronocoulometry in each case. The results show that processes I, II and III are multi-electron transfer reactions while processes IV and V involved one-electron transfer reaction. The photophysical property of the complex makes it a promising candidate in the design of chemosensors and photosensitizers, while its redox-active nature makes the complex a potential mediator of electron transfer in photochemical processes. PMID:20957086

  10. A photochemical activation scheme of inert dinitrogen by dinuclear Ru(II) and Fe(II) complexes.

    PubMed

    Reiher, Markus; Kirchner, Barbara; Hutter, Jürg; Sellmann, Dieter; Hess, Bernd Artur

    2004-09-20

    A general photochemical activation process of inert dinitrogen coordinated to two metal centers is presented on the basis of high-level DFT and ab initio calculations. The central feature of this activation process is the occupation of an antibonding pi* orbital upon electronic excitation from the singlet ground state S0 to the first excited singlet state S1. Populating the antibonding LUMO weakens the triple bond of dinitrogen. After a vertical excitation, the excited complex may structurally relax in the S1 state and approaches its minimum structure in the S1 state. This excited-state minimum structure features the dinitrogen bound in a diazenoid form, which exhibits a double bond and two lone pairs localized at the two nitrogen atoms, ready to be protonated. Reduction and de-excitation then yield the corresponding diazene complex; its generation represents the essential step in a nitrogen fixation and reduction protocol. The consecutive process of excitation, protonation, and reduction may be rearranged in any experimentally appropriate order. The protons needed for the reaction from dinitrogen to diazene can be provided by the ligand sphere of the complexes, which contains sulfur atoms acting as proton acceptors. These protonated thiolate functionalities bring protons close to the dinitrogen moiety. Because protonation does not change the pi*-antibonding character of the LUMO, the universal and well-directed character of the photochemical activation process makes it possible to protonate the dinitrogen complex before it is irradiated. The pi*-antibonding LUMO plays the central role in the activation process, since the diazenoid structure was obtained by excitation from various occupied orbitals as well as by a direct two-electron reduction (without photochemical activation) of the complex; that is, the important bending of N2 towards a diazenoid conformation can be achieved by populating the pi*-antibonding LUMO.

  11. Study on DNA binding behavior and light switch effect of new coumarin-derived Ru(II) complexes

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Shen, You-Ming; Li, Zhi-Xin; Zhong, Xiao; Chen, Yuan-Dao; Zhang, Song-Bai

    2015-10-01

    A new ligand mhcip (mhcip = 2-(4-methyl-7-hydroxyl-8-coumarinyl)imidazo[4,5-f]-[1,10]phenanthroline) and its ruthenium complexes, [Ru(L)2mhcip]2+ (L = bpy (2,2‧-bipyridine), phen (1,10-phenanthroline)), have been synthesized and characterized. The introduction of coumarin ring may play an important role in the strong fluorescence of the complexes. Intercalative binding mode between both complexes and CT-DNA was determined by UV-visible spectroscopy, fluorescence spectroscopy and viscosity measurements. The two complexes show efficient DNA photocleavage under irradiation at 365 nm. The cycling of light switch off and on has been achieved for both complexes through the introduction of Cu2+ and EDTA in the absence or presence of DNA.

  12. High coating of Ru(II) complexes on gold nanoparticles for single particle luminescence imaging in cells.

    PubMed

    Rogers, Nicola J; Claire, Sunil; Harris, Robert M; Farabi, Shiva; Zikeli, Gerald; Styles, Iain B; Hodges, Nikolas J; Pikramenou, Zoe

    2014-01-18

    Gold nanoparticles are efficiently labelled with a luminescent ruthenium complex, producing 13 and 100 nm diameter, monodisperse red-emissive imaging probes with luminescence lifetimes prolonged over the molecular unit. Single, 100 nm particles are observed in whole cell luminescence imaging which reveals their biomolecular association with chromatin in the nucleus of cancer cells.

  13. Excited State Investigation of a New Ru(II) Complex for Dual Reactivity with Low Energy Light

    PubMed Central

    Knoll, J. D.; Albani, B. A.; Turro, C.

    2015-01-01

    The new complex [Ru(tpy)(Me2dppn)(py)]2+ efficiently photodissociates py in CH3CN with Φ500 = 0.053(1) induced by steric bulk from methyl substituents and produces 1O2 with ΦΔ = 0.69(9) from its long-lived 3ππ* excited state. The unique excited state processes that result in dual reactivity were investigated using ultrafast transient absorption spectroscopy. PMID:25912170

  14. Homochiral D4-symmetric metal–organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules

    PubMed Central

    Wu, Kai; Li, Kang; Hou, Ya-Jun; Pan, Mei; Zhang, Lu-Yin; Chen, Ling; Su, Cheng-Yong

    2016-01-01

    Absolute chiral environments are rare in regular polyhedral and prismatic architectures, but are achievable from self-assembly of metal–organic cages/containers (MOCs), which endow us with a promising ability to imitate natural organization systems to accomplish stereochemical recognition, catalysis and separation. Here we report a general assembly approach to homochiral MOCs with robust chemical viability suitable for various practical applications. A stepwise process for assembly of enantiopure ΔΔΔΔΔΔΔΔ- and ΛΛΛΛΛΛΛΛ-Pd6(RuL3)8 MOCs is accomplished by pre-resolution of the Δ/Λ-Ru-metalloligand precursors. The obtained Pd–Ru bimetallic MOCs feature in large D4-symmetric chiral space imposed by the predetermined Ru(II)-octahedral stereoconfigurations, which are substitutionally inert, stable, water-soluble and are capable of encapsulating a dozen guests per cage. Chiral resolution tests reveal diverse host–guest stereoselectivity towards different chiral molecules, which demonstrate enantioseparation ability for atropisomeric compounds with C2 symmetry. NMR studies indicate a distinctive resolution process depending on guest exchange dynamics, which is differentiable between host–guest diastereomers. PMID:26839048

  15. Are silicone-supported [C60]-fullerenes an alternative to Ru(II) polypyridyls for photodynamic solar water disinfection?

    PubMed

    Manjón, Francisco; Santana-Magaña, Montserrat; García-Fresnadillo, David; Orellana, Guillermo

    2014-02-01

    Different photosensitizing materials manufactured by immobilizing (0.5-3.0 g m(-2)) tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) (RDP(2+)), [C60]-fullerene, or 1-(4-methyl)-piperazinylfullerene (MPF) on porous neutral (pSil) or surface-modified anionic (pSil(-)) poly(dimethylsiloxane) are compared on the grounds of their singlet molecular oxygen ((1)O2) production and photodynamic solar water disinfection capability. The C60-based sensitizers display a broad weak absorption in the visible and strong absorption in the UV, while absorption of light by RDP(2+) supported on pSil is strong in both the UV and blue regions. The (1)O2 emission lifetimes (τ(Δ)) determined for RDP(2+) and MPF on porous silicone materials under air are similar (40-50 μs) and correspond to the decay of (1)O2 generated by sensitizers dissolved in the polymer support. In contrast, τ(Δ) measured for C60 in pSil is similar to that observed for MPF or RDP(2+) when immobilized at low loading on pSil, but dramatically increases up to 5 ms if C60 aggregates are formed in the porous material as evidenced by microscopy evaluation. The photosensitizing properties of the dyes, together with their electrical charge and the overall charge of the porous silicone-based materials, lead to highly different sunlight-driven bacteria inactivation efficiencies, as tested with waterborne E. faecalis. RDP/pSil provides efficient disinfection by photosensitization unlike MPF/pSil, which leads to reduced bacteria inactivation rates due to poorer (1)O2 production. C60/pSil and MPF/pSil(-) materials, despite their (1)O2 photogeneration, show unsuccessful waterborne bacteria inactivation due to the negative surface charge of fullerene aggregates in contact with water, and to the net negative charge of the pSil(-), respectively.

  16. Catalytic ability of a cationic Ru(II) monochloro complex for the asymmetric hydrogenation of dimethyl itaconate and enamides.

    PubMed

    Serrano, Isabel; Rodríguez, Montserrat; Romero, Isabel; Llobet, Antoni; Parella, Teodor; Campelo, Juan M; Luna, Diego; Marinas, José M; Benet-Buchholz, Jordi

    2006-03-20

    The synthesis of two Ru chloro complexes, Ru(III)Cl(3)(bpea), 1, and cis-fac-Delta-[Ru(II)Cl{(R)-(bpea)}{(S)-(BINAP)}](BF(4)), cis-fac-Delta-(R)-(S)-2, (bpea = N,N-bis(2-pyridylmethyl)ethylamine; (S)-BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl), is described. Complex 2 is characterized in solution through UV-vis, cyclic voltammetry (CV), and 1D and 2D NMR spectroscopy. X-ray diffraction analysis indicates that in the solid state it possesses the same structure as in solution, as expected for a low-spin d(6) Ru(II)-type complex. The molecular structure of cis-fac-Delta-(R)-(S)-2, consists of a nonsymmetric complex, where the Ru metal center has a significantly distorted octahedral-type coordination because of the bulkiness of the (S)-BINAP ligand. cis-fac-Delta-(R)-(S)-2 has a remarkable catalytic performance at P = 6.8 atm of H2 and T = 70 degrees C toward the hydrogenation of prochiral double bonds both from efficiency and from stereoselectivity viewpoints. As an example, prochiral olefins of technological interest such as dimethyl itaconate, methyl 2-acetamidoacrylate or methyl 2-acetamidocinnamate are catalytically hydrogenated by cis-fac-Delta-(R)-(S)-2, with conversions higher than 99.9% and ee > 99. Furthermore, cis-fac-Delta-(R)-(S)-2, also catalyzes the selective hydrogenation of beta-keto esters, although the reaction rates are lower than those found with the former substrates.

  17. Cellular toxicity induced by the photorelease of a caged bioactive molecule: design of a potential dual-action Ru(II) complex.

    PubMed

    Sgambellone, Mark A; David, Amanda; Garner, Robert N; Dunbar, Kim R; Turro, Claudia

    2013-07-31

    The series [Ru(tpy)(CH3CN)3](2+) (1), cis-[Ru(tpy)(CH3CN)2Cl](+) (2), and [Ru(tpy)(5CNU)3](2+) (3), where tpy = 2,2':6',2″-terpyridine and 5CNU = 5-cyanouracil, was synthesized, and their photochemical properties were investigated for use as potential photodynamic therapy (PDT) agents. When irradiated with visible light, 1-3 exhibit efficient exchange of the axial CH3CN or 5CNU ligand with H2O solvent molecules. Complexes 1-3 also exhibit photoinitiated binding to DNA when irradiated with λirr ≥ 395 nm light, and DNA binding can be accessed for 2 with λirr > 645 nm, well within the PDT window. Since 3 binds DNA and simultaneously releases biologically active 5CNU, it has the potential to be a dual-action therapeutic agent. Indeed, 3 is cytotoxic upon irradiation with visible light, whereas 1 is not under similar experimental conditions. The lack of toxicity imparted by 1 is explained by the exchange of only one CH3CN ligand in the complex under the irradiation conditions used for the cellular studies. Strategies are being sought to increase the quantum yields of ligand exchange and the cellular penetration of these compounds.

  18. Ru(II) and Os(II) complexes based on terpyridyl-imidazole ligand rigidly linked to pyrene: synthesis, structure, photophysics, electrochemistry, and anion-sensing studies.

    PubMed

    Maity, Dinesh; Bhaumik, Chanchal; Mondal, Debiprasad; Baitalik, Sujoy

    2013-12-16

    We report in this work a new family of bis-tridentate ruthenium(II) and osmium(II) complexes bearing a terpyridyl ligand rigidly link to pyrenyl-benzimidazole moiety (tpy-HImzPy = 10-(4-[2,2':6',2''-terpyridine]terpyridin-4'-yl-phenyl)-9H-9,11-diaza-cyclopenta[e]pyrene) along with other tridentate ligands such as 4'-(2-naphthyl)-2,2':6',2″-terpyridine (tpy-NaPh) and 2,6-bis(benzimidazole-2-yl)pyridine (H2pbbzim). All the complexes are thoroughly characterized by their elemental analysis, ESI mass spectrometry, and (1)H NMR spectroscopy. The molecular structures of two complexes [Ru(tpy-HImzPy)2](ClO4)2 (3) and [(pbbzim)Ru(tpy-HImzPy)] (2a) in the solid state were determined by X-ray crystallography. The absorption, steady-state, and time-resolved luminescence and electrochemical properties of all the four compounds have been studied. On excitation at their MLCT bands, all four compounds exhibit moderately strong room-temperature luminescence with lifetimes ranging between 3.8 and 161.1 ns in aerated condition, whereas in the deaerated (N2 purged) condition, the lifetimes vary between 8.2 and 199.1 ns, depending upon the nature of the solvents. The presence of imidazole N-H protons in all the complexes motivates us to study anion sensing properties of the complexes in solution through different channels. Spectrophotometeric, fluorometric, (1)H NMR spectroscopic, and cyclic voltammetric studies of the complexes in presence of anions reveal that the complexes sense principally F(-), CN(-), and to a lesser extent for AcO(-). Multichannel anion sensing studies also indicate that anion-induced deprotonation of the imidazole N-H protons occur in all four compounds. The equilibrium constant of this deprotonation steps have been estimated from UV-vis absorption and emission titration data. Anion-induced modulation of lifetimes makes all the four complexes suitable for lifetime-based sensors for selective anions.

  19. A novel heteroditopic terpyridine-pincer ligand as building block for mono- and heterometallic Pd(II) and Ru(II) complexes.

    PubMed

    Gagliardo, Marcella; Rodríguez, Gema; Dam, Henk H; Lutz, Martin; Spek, Anthony L; Havenith, Remco W A; Coppo, Paolo; De Cola, Luisa; Hartl, Frantisek; van Klink, Gerard P M; van Koten, Gerard

    2006-03-06

    A palladium-catalyzed Stille coupling reaction was employed as a versatile method for the synthesis of a novel terpyridine-pincer (3, TPBr) bridging ligand, 4'-{4-BrC6H2(CH2NMe2)2-3,5}-2,2':6',2' '-terpyridine. Mononuclear species [PdX(TP)] (X = Br, Cl), [Ru(TPBr)(tpy)](PF6)2, and [Ru(TPBr)2](PF6)2, synthesized by selective metalation of the NCNBr-pincer moiety or complexation of the terpyridine of the bifunctional ligand TPBr, were used as building blocks for the preparation of heterodi- and trimetallic complexes [Ru(TPPdCl)(tpy)](PF6)2 (7) and [Ru(TPPdCl)2](PF6)2 (8). The molecular structures in the solid state of [PdBr(TP)] (4a) and [Ru(TPBr)2](PF6)2 (6) have been determined by single-crystal X-ray analysis. Electrochemical behavior and photophysical properties of the mono- and heterometallic complexes are described. All the above di- and trimetallic Ru complexes exhibit absorption bands attributable to (1)MLCT (Ru --> tpy) transitions. For the heteroleptic complexes, the transitions involving the unsubstituted tpy ligand are at a lower energy than the tpy moiety of the TPBr ligand. The absorption bands observed in the electronic spectra for TPBr and [PdCl(TP)] have been assigned with the aid of TD-DFT calculations. All complexes display weak emission both at room temperature and in a butyronitrile glass at 77 K. The considerable red shift of the emission maxima relative to the signal of the reference compound [Ru(tpy)2]2+ indicates stabilization of the luminescent 3MLCT state. For the mono- and heterometallic complexes, electrochemical and spectroscopic studies (electronic absorption and emission spectra and luminescence lifetimes recorded at room temperature and 77 K in nitrile solvents), together with the information gained from IR spectroelectrochemical studies of the dimetallic complex [Ru(TPPdSCN)(tpy)](PF6)2, are indicative of charge redistribution through the bridging ligand TPBr. The results are in line with a weak coupling between the {Ru(tpy)2} chromophoric unit and the (non)metalated NCN-pincer moiety.

  20. Mixed-metal supramolecular complexes coupling phosphine-containing Ru(II) light absorbers to a reactive Pt(II) through polyazine bridging ligands.

    PubMed

    Swavey, Shawn; Fang, Zhenglai; Brewer, Karen J

    2002-05-06

    Supramolecular bimetallic Ru(II)/Pt(II) complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) and their synthons [(tpy)Ru(L)(BL)](n)()(+) (where L = Cl(-), CH(3)CN, or PEt(2)Ph; tpy = 2,2':6',2''-terpyridine; and BL = 2,2'-bipyrimidine (bpm) or 2,3-bis(2-pyridyl)pyrazine (dpp)) have been synthesized and studied by cyclic voltammetry, electronic absorption spectroscopy, mass spectral analysis, and (31)P NMR. The mixed-metal bimetallic complexes couple phosphine-containing Ru chromophores to a reactive Pt site. These complexes show how substitution of the monodentate ligand on the [(tpy)RuCl(BL)](+) synthons can tune the properties of these light absorbers (LA) and incorporate a (31)P NMR tag by addition of the PEt(2)Ph ligand. The redox potentials for the Ru(III/II) couples occur at values greater than 1.00 V versus the Ag/AgCl reference electrode and can be tuned to more positive potentials on going from Cl(-) to CH(3)CN or PEt(2)Ph (E(1/2) = 1.01, 1.55, and 1.56 V, respectively, for BL = bpm). The BL(0/-) couple at -1.03 (bpm) and -1.05 V (dpp) for [(tpy)Ru(PEt(2)Ph)(BL)](2+) shifts dramatically to more positive potentials upon the addition of the PtCl(2) moiety to -0.34 (bpm) and -0.50 V (dpp) for the [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) bridged complex. The lowest energy electronic absorption for these complexes is assigned as the Ru(d pi) --> BL(pi*) metal-to-ligand charge transfer (MLCT) transition. These MLCT transitions are tuned to higher energy in the monometallic synthons when Cl(-) is replaced by CH(3)CN or PEt(2)Ph (516, 452, and 450 nm, for BL = bpm, respectively) and to lower energy when Pt(II)Cl(2) is coordinated to the bridging ligand (560 and 506 nm for BL = bpm or dpp). This MLCT state displays a broad emission at room temperature for all the dpp systems with the [(tpy)Ru(PEt(2)Ph)(dpp)PtCl(2)](2+) system exhibiting an emission centered at 750 nm with a lifetime of 56 ns. These supramolecular complexes [(tpy)Ru(PEt(2)Ph)(BL)PtCl(2)](2+) represent the covalent linkage of TAG-LA-BL-RM assembly (TAG = NMR active tag, RM = Pt(II) reactive metal).

  1. Luminescent Ru(II) Phenanthroline Complexes as a Probe for Real-Time Imaging of Aβ Self-Aggregation and Therapeutic Applications in Alzheimer's Disease.

    PubMed

    Silva, Debora E S; Cali, Mariana P; Pazin, Wallance M; Carlos-Lima, Estevão; Salles Trevisan, Maria Teresa; Venâncio, Tiago; Arcisio-Miranda, Manoel; Ito, Amando S; Carlos, Rose M

    2016-10-13

    The complexes cis-[Ru(phen)2(Apy)2](2+), Apy = 4-aminopyridine and 3,4-aminopyridine, are stable in aqueous solution with strong visible absorption. They present emission in the visible region with long lifetime that accumulates in the cytoplasm of Neuro2A cell line without appreciable cytotoxicity. The complexes also serve as mixed-type reversible inhibitors of human AChE and BuChE with high active site contact. cis-[Ru(phen)2(3,4Apy)2](2+) competes efficiently with DMPO by the OH(•) radical. Luminescence using fluorescence lifetime imaging (FLIM) enables real-time imaging of the conformational changes of the self-aggregation of Aβ with incubation of complexes (0-24 h) in phosphate buffer at micromolar concentrations. By this technique, we identified protofibrills in the self-assembly of Aβ1-40 and globular structures in the short fragment Aβ15-21 in aqueous solution.

  2. Thermochromic organometallic complexes: experimental and theoretical studies of 16- to 18-electron interconversions of adducts of arene Ru(II) carboranes with aromatic amine ligands.

    PubMed

    Barry, Nicolas P E; Deeth, Robert J; Clarkson, Guy J; Prokes, Ivan; Sadler, Peter J

    2013-02-21

    A series of 18-electron complexes of general formula [Ru(p-cym)(1,2-dicarba-closo-dodecaborane-1,2-dithiolato)(L)] (p-cym = para-cymene; L = 4-dimethylaminopyridine (2), nicotinamide (3), 3-ethynylpyridine (4), N-methylimidazole (5), 4-cyanopyridine (6), and pyridine (7)) were synthesised by reactions between the 16-electron precursor [Ru(p-cym)(1,2-dicarba-closo-dodecaborane-1,2-dithiolato)] (1) and corresponding heterocyclic bases. X-ray crystal structures of complexes 2 and 5 were determined. In dichloromethane and chloroform solutions at ambient temperature, the 18-electron complexes 2-7 are in equilibrium with the 16-electron precursor 1. Each equilibrium is displaced towards the formation of the blue 16-electron or yellow 18-electron complex by increasing or decreasing the temperature of the solution, respectively, which results in controlled and reversible thermochromism. Binding constants (K) and Gibbs free energies (ΔG°) of the six equilibria have been determined by a combination of experiments (Job plots, UV-visible titrations, NMR studies) and also by computation (time-dependent density functional theory, TD-DFT). A linear free energy relationship for log K versus pK(a) for the pyridine and imidazole ligands was established. The predicted strong interactions of 1 with other aromatic amine ligands, such as amphetamine derivatives, were verified experimentally. This appears to be the first report of reversible 16/18-electron interconversions with associated thermochromic properties for a well-known family of complexes.

  3. Sensitive and selective determination of GSH based on the ECL quenching of Ru(II) 1,10-phenanthroline-5,6-dione complex.

    PubMed

    Xu, Yanxue; Zhang, Lei; Liu, Yuan; Jin, Zhaoyu; Zhao, Qian; Yang, Feng; Xiao, Dan

    2016-03-15

    Electrochemiluminescence (ECL) material Ru-dpq (Ru(bpy)2dpq(2+), dpq=1,10-phenanthroline-5,6-dione; bpy=2,2'-bipyridine) is found to be produced strong and stable anodic ECL signal, which could be quenched by reduced glutathione (GSH) and exhibits high sensitivity and selectivity simultaneously. According to the mass spectra of Ru-SG (product of Ru-dpq reacted with GSH), and single crystal structure of the final oxidized product Ru-dcbpy ((Ru(bpy)2dcbpy(2+), dcbpy=3,3-dicarboxy-2,2-bipyridine), we propose a new interacted mechanism between Ru-dpq and GSH. A good linear relation is estimated to be from 0.1 pM to 50 μM in the presence of calcium ion and the detection limit is as low as 0.087 pM (with the signal-to-noise ratio of 3). The relative standard deviation is 2.3% (for three repeated measurements). Furthermore, the ECL signal of Ru-dpq under a constant potential (1.2V) is extremely stable and the intensity could be maintained over 600 s, which promotes us to determine the concentration of GSH via chronoamperometry.

  4. A novel ECL biosensor for β-lactamase detection: Using RU(II) linked-ampicillin complex as the recognition element.

    PubMed

    Gui, Guo-Feng; Zhuo, Ying; Chai, Ya-Qin; Xiang, Yun; Yuan, Ruo

    2015-08-15

    In this work, Ru(phen)2(cpaphen)(2+) linked-ampicillin (Ru-Amp), as the novel specific recognition element, was proposed to construct a simple and sensitive electrogenerated chemiluminescence (ECL) biosensor for the determination of β-lactamase. Here, Ru-Amp complex acted not only as a novel specific recognition element for β-lactamase but also as the ECL Luminescent reagent. Through electrostatic adsorption and the intermolecular π-π interactions, a large amount of Ru-Amp was immobilized to gold nanoparticles (TA@AuNPs) prepared by thiophenemalonic acid (TA) to obtain Ru-Amp/TA@AuNPs nanocomposites. The nanocomposites, which can produce very stable films exhibiting excellent ECL behaviors, were self-assembled on the CNTs-Nf modified glassy carbon electrode surface. The presence of the target β-lactamase resulted in autonomous hydrolysis reaction of Amp, achievement of the efficient ECL emission and highly sensitive detection of β-lactamase. The biosensor for β-lactamase detection was developed with excellent sensitivity of a concentration variation from 50 pg mL(-1) to 100 ng mL(-1) with a low detection limit of 37 pg mL(-1). An ECL assay offers the proposed method opportunities for designing new Ru-based ECL luminophores for biosensing applications.

  5. Electronic optimization of heteroleptic Ru(II) bipyridine complexes by remote substituents: synthesis, characterization, and application to dye-sensitized solar cells.

    PubMed

    Han, Won-Sik; Han, Jung-Kyu; Kim, Hyun-Young; Choi, Mi Jin; Kang, Yong-Soo; Pac, Chyongjin; Kang, Sang Ook

    2011-04-18

    We prepared a series of new heteroleptic ruthenium(II) complexes, Ru(NCS)(2)LL' (3a-3e), where L is 4,4'-di(hydroxycarbonyl)-2,2'-bipyridine and L' is 4,4'-di(p-X-phenyl)-2,2'-pyridine (X = CN (a), F (b), H (c), OMe (d), and NMe(2) (e)), in an attempt to explore the structure-activity relationships in their photophysical and electrochemical behavior and in their performance in dye-sensitized solar cells (DSSCs). When substituent X is changed from electron-donating NMe(2) to electron-withdrawing CN, the absorption and emission maxima reveal systematic bathochromic shifts. The redox potentials of these dyes are also significantly influenced by X. The electronic properties of the dyes were theoretically analyzed using density functional theory calculations; the results show good correlations with the experimental results. The solar-cell performance of DSSCs based on dye-grafted nanocrystalline TiO(2) using 3a-3e and standard N3 (bis[(4,4'-carboxy-2,2'-bipyridine)(thiocyanato)]ruthenium(II)) were compared, revealing substantial dependences on the dye structures, particularly on the remote substituent X. The 3d-based device showed the best performance: η = 8.30%, J(SC) = 16.0 mA·cm(-2), V(OC) = 717 mV, and ff = 0.72. These values are better than N3-based device.

  6. Novel Ru(II) sensitizers bearing an unsymmetrical pyridine-quinoline hybrid ligand with extended π-conjugation: synthesis and application in dye-sensitized solar cells.

    PubMed

    Vougioukalakis, Georgios C; Stergiopoulos, Thomas; Kontos, Athanassios G; Pefkianakis, Eleftherios K; Papadopoulos, Kyriakos; Falaras, Polycarpos

    2013-05-14

    Heteroleptic ruthenium(II) sensitizers DV42 and DV51, encompassing a novel unsymmetrical pyridine-quinoline hybrid ligand with extended π-conjugation, were synthesized, characterized, and utilized in nanocrystalline dye-sensitized solar cells. Due to the extended conjugation of DV42 and DV51, the absorption of the corresponding sensitized TiO2 films extends into the red spectral range, shifted by 30-40 nm relative to the absorption of TiO2 films sensitized with the standard Z907 ruthenium(II) dye. Contact angle measurements of DV42- and DV51-sensitized TiO2 films suggest that these films are hydrophilic with contact angle values commonly observed upon sensitization with the standard N3 ruthenium(II) dye. Electrochemical studies of the novel ruthenium(II) dyes show that their first oxidation potentials lie well below the I(-)/I3(-) redox potential allowing easy regeneration. The excited-state oxidation potentials of both dyes lie above the TiO2 conduction band, permitting efficient electron injection from the excited dye molecules into the semiconductor conduction band. Liquid electrolyte dye-sensitized solar cells incorporating DV42- or DV51-sensitized TiO2 photoelectrodes afford overall power conversion efficiencies of 3.24 or 4.36% respectively. These efficiencies are up to 56% of the power conversion efficiencies attained by TiO2 photoelectrodes sensitized by the benchmark Z907 ruthenium(II) dye under similar experimental conditions.

  7. Dynamics of the 3MLCT in Ru(II) terpyridyl complexes probed by ultrafast spectroscopy: evidence of excited-state equilibration and interligand electron transfer.

    PubMed

    Hewitt, Joshua T; Vallett, Paul J; Damrauer, Niels H

    2012-11-29

    Ground- and excited-state properties of [Ru(tpy)(2)](2+), [Ru(tpy)(ttpy)](2+), and [Ru(ttpy)(2)](2+) (where tpy = 2,2':6',2″-terpyridine and ttpy = 4'-(4-methylphenyl)-2,2':6',2″-terpyridine) in room temperature acetonitrile have been investigated using linear absorption, electrochemical, and ultrafast transient pump-probe techniques. Spectroelectrochemistry was used to assign features observed in the transient spectra while single wavelength kinetics collected at a variety of probe wavelengths were used to monitor temporal evolution of the MLCT excited state. From these data, the excited-state lifetime of each complex was recovered and the rate limiting decay step was identified. In the bis-heteroleptic complex [Ru(tpy)(ttpy)](2+), photoexcitation to the (1)MLCT manifold generates both tpy-localized and ttpy-localized excited states. Accordingly, interligand electron transfer (ILET) from tpy-localized to the ttpy-localized (3)MLCT excited states is observable and the time scale has been measured to be 3 ps. For the homoleptic complex [Ru(tpy)(2)](2+), evidence for equilibration of the (3)MLCT excited-state population with the (3)MC has been observed and the time scale is reported at 2 ps.

  8. Effect of water vapors on the luminescence of cation-exchange membranes modified by Pt(II) and Ru(II) complexes and Nile blue

    NASA Astrophysics Data System (ADS)

    Khakhalina, M. S.; Musaeva, D. N.; Tikhomirova, I. Yu.; Puzyk, M. V.

    2010-04-01

    The surface of a cation-exchange membrane was modified by the [PtEnPpy]+, [PtEnBt]+, [PtEnTpy]+, [RuBpy3]+2, and NB+, (En is ethylenediamine; Ppy, Bt, Tpy are α-deprotonated forms of 2-phenylpyridine, 2-phenylbenzothiazole, and 2-(2'-thienyl)pyridine, respectively; Bpy is 2,2'-bipyridyl, and NB+ is Nile blue) ions, which exhibit intense luminescence. It is found that the quenching of the luminescence of the modified cation-exchange membrane by water vapors depends on the nature of the excited electronic state of the immobilized cation.

  9. Synthesis, Characterization and Luminescence Sensitivity with Variance in pH, DNA and BSA Binding Studies of Ru(II) Polypyridyl Complexes.

    PubMed

    Vuradi, Ravi Kumar; Avudoddi, Srishailam; Putta, Venkat Reddy; Kotha, Laxma Reddy; Yata, Praveen Kumar; Sirasani, Satyanarayana

    2017-02-03

    Three ruthenium(II) polypyridyl complexes, [Ru(phen)2(mip)](ClO4)2 (1) (phen =1,10-Phenanthroline), [Ru(bpy)2(mip)](ClO4)2 (2) (bpy = 2,2'bipyridyl) and [Ru(dmb)2(mip)](ClO4)2 (3) (dmb = 4, 4'-dimethyl 2, 2'-bipyridine), were synthesized with an intercalative ligand mip (2-morpholino-1H-imidazo[4,5-f][1, 10]phenanthroline) and characterized by (1)H, (13)C-NMR, IR, UV-vis, mass spectra and elemental analysis. pH effect, ion selectivity (cations, anions) and solvent sensitivity of complexes were studied. The interaction of these complexes with DNA was performed using absorption, emission spectroscopy and viscosity measurements. The experimental results indicated that the two complexes interacted with calf thymus DNA (CT-DNA) by intercalative mode. BSA (Bovine Serum Albumin) protein binding of these complexes was studied by UV-visible and fluorescence techniques. The binding capacity of these complexes was explained theoretically by molecular docking method.

  10. Structural and chelation behaviors of new Ru(II), Pt(IV) and Ir(III) gatifloxacin drug complexes: Spectroscopic characterizations

    NASA Astrophysics Data System (ADS)

    Alghamdi, Mohammed T.; Alsibaai, A. A.; El-Shahawi, M. S.; Refat, Moamen S.

    2017-02-01

    The interaction between gatifloxacin drug (GAT) with some transition metals (Ru(III), Pt(IV) and Ir(III)) yield the complexes of formulas [Ru(GAT-NH4)(Cl)3(H2O)2], [Pt(GAT-NH4)2(Cl)4]·3H2O and [Ir(GAT-NH4)2(Cl)2(H2O)2]·Cl·2H2O at pH = 7-8. The composition of the GAT complexes was confirmed by elemental data. The IR frequencies reveal the coordination of the GAT with metal ions and the coordination mode of the sbnd N atom of 3-methylpiperazinyl moiety to metal. XRD pattern show isomorphism among the complexes with similar chelation behavior. Scanning electron microscope (SEM) and transmission electron microscopy (TEM) were used to identify the particle size of GAT complexes. The thermal data reveals that various steps of decomposition of the complexes to form their metal oxide as final product. The electronic spectra and the magnetic susceptibility values reveal that the coordination and geometry of Ru3+, Pt4+ and Ir3+ complexes possess distorted octahedral geometry with six number of coordination. Thermodynamic parameters (E*, ΔS*, ΔH* and ΔG*) were calculated from TG curves dependent on Coats-Redfern and Horowitz-Metzeger non-isothermal methods.

  11. Cytotoxicity of Ru(II) piano-stool complexes with chloroquine and chelating ligands against breast and lung tumor cells: Interactions with DNA and BSA.

    PubMed

    Colina-Vegas, Legna; Villarreal, Wilmer; Navarro, Maribel; de Oliveira, Clayton Rodrigues; Graminha, Angélica E; Maia, Pedro Ivo da S; Deflon, Victor M; Ferreira, Antonio G; Cominetti, Marcia Regina; Batista, Alzir A

    2015-12-01

    The synthesis and spectroscopic characterization of nine π-arene piano-stool ruthenium (II) complexes with aromatic dinitrogen chelating ligands or containing chloroquine (CQ), are described in this study: [Ru(η(6)-C10H14)(phen)Cl]PF6 (1), [Ru(η(6)-C10H14)(dphphen)Cl]PF6 (2), [Ru(η(6)-C10H14)(bipy)Cl]PF6 (3), [Ru(η(6)-C10H14)(dmebipy)Cl]PF6 (4) and [Ru(η(6)-C10H14)(bdutbipy)Cl]PF6 (5), [Ru(η(6)-C10H14)(phen)CQ](PF6)2 (6), [Ru(η(6)-C10H14)(dphphen)CQ](PF6)2 (7), [Ru(η(6)-C10H14)(bipy)CQ](PF6)2 (8), [Ru(η(6)-C10H14)(dmebipy)CQ](PF6)2 (9): [1,10-phenanthroline (phen), 4,7-diphenyl-1,10-phenanthroline (dphphen), 2,2'-bipyridine (bipy), 5,5'-dimethyl-2,2'-bipyridine (dmebipy), and 4,4'-di-t-butyl-2,2'-bipyridine (dbutbipy)]. The solid state structures of five ruthenium complexes (1-5) were determined by X-ray crystallography. Electrochemical experiments were performed by cyclic voltammetry to estimate the redox potential of the Ru(II)/Ru(III) couple in each case. Their interactions with DNA and BSA, and activity against four cell lines (L929, A549, MDA-MB-231 and MCF-7) were evaluated. Compounds 2, 6 through 9, interact with DNA which was comparable to the one observed for free chloroquine. The results of fluorescence titration revealed that these complexes strongly quenched the intrinsic fluorescence of BSA following a static quenching procedure. Binding constants (Kb) and the number of binding sites (n~1) were calculated using modified Stern-Volmer equations. The thermodynamic parameters ΔG at different temperatures were calculated and subsequently the values of ΔH and ΔS were also calculated, which revealed that hydrophobic and electrostatic interactions play a major role in the BSA-complex association. The MTT assay results indicated that complexes 2, 5 and 7 showed cytostatic effects at appreciably lower concentrations than those needed for cisplatin, chloroquine and doxorubicin.

  12. Synthesis, spectral, catalytic and antimicrobial studies of PPh 3/AsPh 3 complexes of Ru(II) with dibasic tridentate O, N, S donor ligands

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K. P.; Karvembu, R.; Prabhakaran, R.; Chinnusamy, V.; Natarajan, K.

    2007-09-01

    Complexes of the type [Ru(CO)(EPh 3)(B)(L)] (E = P or As; B = PPh 3, AsPh 3, py or pip; L = dianion of the Schiff bases derived from thiosemicarbazone with acetoacetanilide, acetoacet- o-toluidide and o-chloro acetoacetanilide) have been synthesized from the reactions of equimolar amounts of [RuHCl(CO)(EPh 3) 2(B)] and Schiff bases in benzene. The new complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. The arrangement of PPh 3 groups around ruthenium metal was determined from 31P NMR spectra. An octahedral structure has been assigned for all the new complexes. All the complexes exhibited catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in presence of N-methylmorpholine- N-oxide as co-oxidant. The complexes also exhibited antibacterial activity against E. coli, Aeromonas hydrophilla and Salmonella typhi. The activity was compared with standard streptomycin.

  13. Ligand-based photooxidations of dithiomaltolato complexes of Ru(II) and Zn(II): photolytic CH activation and evidence of singlet oxygen generation and quenching.

    PubMed

    Bruner, Britain; Walker, Malin Backlund; Ghimire, Mukunda M; Zhang, Dong; Selke, Matthias; Klausmeyer, Kevin K; Omary, Mohammad A; Farmer, Patrick J

    2014-08-14

    The complex [Ru(bpy)2(ttma)](+) (bpy = 2,2'-bipyridine; ttma = 3-hydroxy-2-methyl-thiopyran-4-thionate, 1, has previously been shown to undergo an unusual C-H activation of the dithiomaltolato ligand upon outer-sphere oxidation. The reaction generated alcohol and aldehyde products 2 and 3 from C-H oxidation of the pendant methyl group. In this report, we demonstrate that the same products are formed upon photolysis of 1 in presence of mild oxidants such as methyl viologen, [Ru(NH3)6](3+) and [Co(NH3)5Cl](2+), which do not oxidize 1 in the dark. This reactivity is engendered only upon excitation into an absorption band attributed to the ttma ligand. Analogous experiments with the homoleptic Zn(ttma)2, 4, also result in reduction of electron acceptors upon excitation of the ttma absorption band. Complexes 1 and 4 exhibit short-lived visible fluorescence and long-lived near-infrared phosphorescence bands. Singlet oxygen is both generated and quenched during aerobic excitation of 1 or 4, but is not involved in the C-H activation process.

  14. A general system for evaluating the efficiency of chromophore-assisted light inactivation (CALI) of proteins reveals Ru(II) tris-bipyridyl as an unusually efficient "warhead".

    PubMed

    Lee, Jiyong; Yu, Peng; Xiao, Xiangshu; Kodadek, Thomas

    2008-01-01

    Chromophore-assisted light inactivation (CALI) of proteins is a potentially powerful tool in biological research for the triggered disruption of protein function. It involves the creation of chimeric molecules that can bind specifically to the protein target and can also sensitize the photo-generation of singlet oxygen, which inactivates the target protein. There remains a need for more efficient chromophores for singlet oxygen generation. Here we report a general and convenient system with which to evaluate the efficiency of chromophores in CALI both in crude extracts and in living cells. We employ this system to show that a readily available derivative of ruthenium(II) tris-bipyridyl dication is an unusually efficient "warhead" for CALI, exhibiting a performance markedly superior to the commonly used organic fluorophore, fluorescein.

  15. New aqua N-heterocyclic carbene Ru(II) complexes with two-electron process as selective epoxidation catalysts: an evaluation of geometrical and electronic effects.

    PubMed

    Dakkach, Mohamed; Atlamsani, Ahmed; Parella, Teodor; Fontrodona, Xavier; Romero, Isabel; Rodríguez, Montserrat

    2013-05-06

    New ruthenium complexes with general formula [Ru(II)(T)(CN-Me)X](n+) (X = Cl(-) or H2O; T = 2,2':6',2″-terpyridine, trpy, or N,N-bis(2-pyridyl)ethylamine, bpea; CN-Me = N-methyl-N'-2-pyridylimidazolium) have been prepared. The complexes obtained have been characterized in solution by spectroscopic (1D- and 2D-NMR and UV-vis) techniques, mass spectrometry, and elemental analysis. The chloro complexes have also been characterized by X-ray diffraction analysis. The redox properties of all the compounds were studied by CV revealing, for the reported Ru-OH2 complexes, bielectronic Ru(IV/II) redox processes throughout a wide pH range. The catalytic activity of aquo complexes was evaluated in the epoxidation of olefins using PhIO as oxidant, displaying in general good yields and high selectivities for the epoxide product. The influence of electronic and geometrical factors on the spectroscopic and electrochemical properties as well as on the catalytic activity is discussed.

  16. Synthesis and characterization of poly(phenylacetylene)s with Ru(II) bis-terpyridine complexes in the side-chain.

    PubMed

    Breul, Alexander M; Kübel, Joachim; Häupler, Bernhard; Friebe, Christian; Hager, Martin D; Winter, Andreas; Dietzek, Benjamin; Schubert, Ulrich S

    2014-04-01

    An alkyne-functionalized ruthenium(II) bis-terpyridine complex is directly copolymerized with phenylacetylene by alkyne polymerization. The polymer is characterized by size-exclusion chromatography (SEC), (1) H NMR spectroscopy, cyclic voltammetry (CV) measurements, and thermal analysis. The photophysical properties of the polymer are studied by UV-vis absorption spectroscopy. In addition, spectro-electrochemical measurements are carried out. Time-resolved luminescence lifetime decay curves show an enhanced lifetime of the metal complex attached to the conjugated polymer backbone compared with the Ru(tpy)2 (2+) model complex.

  17. Red Light Activation of Ru(II) Polypyridyl Prodrugs via Triplet-Triplet Annihilation Upconversion: Feasibility in Air and through Meat.

    PubMed

    Askes, Sven H C; Meijer, Michael S; Bouwens, Tessel; Landman, Iris; Bonnet, Sylvestre

    2016-11-01

    Triplet-triplet annihilation upconversion (TTA-UC) is a promising photophysical tool to shift the activation wavelength of photopharmacological compounds to the red or near-infrared wavelength domain, in which light penetrates human tissue optimally. However, TTA-UC is sensitive to dioxygen, which quenches the triplet states needed for upconversion. Here, we demonstrate not only that the sensitivity of TTA-UC liposomes to dioxygen can be circumvented by adding antioxidants, but also that this strategy is compatible with the activation of ruthenium-based chemotherapeutic compounds. First, red-to-blue upconverting liposomes were functionalized with a blue-light sensitive, membrane-anchored ruthenium polypyridyl complex, and put in solution in presence of a cocktail of antioxidants composed of ascorbic acid and glutathione. Upon red light irradiation with a medical grade 630 nm PDT laser, enough blue light was produced by TTA-UC liposomes under air to efficiently trigger full activation of the Ru-based prodrug. Then, the blue light generated by TTA-UC liposomes under red light irradiation (630 nm, 0.57 W/cm²) through different thicknesses of pork or chicken meat was measured, showing that TTA-UC still occurred even beyond 10 mm of biological tissue. Overall, the rate of activation of the ruthenium compound in TTA-UC liposomes using either blue or red light (1.6 W/cm²) through 7 mm of pork fillet were found comparable, but the blue light caused significant tissue damage, whereas red light did not. Finally, full activation of the ruthenium prodrug in TTA-UC liposomes was obtained under red light irradiation through 7 mm of pork fillet, thereby underlining the in vivo applicability of the activation-by-upconversion strategy.

  18. Synthesis, characterization, redox property and biological activity of Ru(II) carbonyl complexes containing O,N-donor ligands and heterocyclic bases

    NASA Astrophysics Data System (ADS)

    Kumar, K. Naresh; Ramesh, R.

    2004-10-01

    Stable ruthenium(II) carbonyl complexes having the general composition [RuCl(CO)(PPh 3)(B)(L)] (where B=PPh 3, pyridine, piperidine or morpholine; L = anion of bidentate Schiff bases (Vanmet, Vanampy, Vanchx)) were synthesized from the reaction of [RuHCl(CO)(PPh 3) 2(B)] with bidentate Schiff base ligands derived from condensation of o-vanillin with primary amines such as methylamine, 2-aminopyridine and cyclohexylamine. The new complexes were characterized by elemental analysis, IR, UV-Vis and 1H NMR spectral data. The redox property of the complexes were studied by cyclic voltammetric technique and the stability of the complexes towards oxidation were related to the electron releasing or electron withdrawing ability of the substituent in the phenyl ring of o-vanillin. An octahedral geometry has been assigned for all the complexes. In all the above reactions, the Schiff bases replace one molecule of PPh 3 and hydride ion from the starting complexes, which indicate that the Ru-N bonds present in the complexes containing heterocyclic nitrogen bases are stronger than the Ru-P. The Schiff bases and their ruthenium(II) complexes have been tested in vitro to evaluate their activity against bacteria, viz., Staphylococus aureus (209p) and E. coli (ESS 2231).

  19. Molecular Engineering, Photophysical and Electrochemical Characterizations of Novel Ru(II) and BODIPY Sensitizers for Mesoporous TiO2 Solar Cells

    NASA Astrophysics Data System (ADS)

    Cheema, Hammad Arshad

    To realize the dream of a low carbon society and ensure the wide spread application of renewable energy sources such as solar energy, photovoltaic devices should be highly efficient, cost-effective and stable for at least 20 years. Dye sensitized solar cells (DSCs) are photovoltaic cells that mimic the natural photosynthesis. In a DSC, the dye absorbs photons from incident light and converts those photons to electric charges, which are then extracted to the outer circuit through semiconductor TiO2, whereas the mediator regenerates the oxidized dye. A sensitizer is the pivotal component in the device in terms of determining the spectral response, color, photocurrent density, long term stability, and thickness of a DSC. The breakthrough report by O'Regan and Gratzel in 1991 has garnered more than 18,673 citations (as of October 9, 2014), which indicates the immense scientific interest to better understand and improve the fundamental science of this technology. With the aforementioned in mind, this study has focused on the molecular engineering of novel sensitizers to provide a better understanding of structure-property relationships of novel sensitizers for DSCs. The characterization of sensitizers (HD-1-mono, HD-2-mono and HD-2) for photovoltaic applications showed that the photocurrent response of DSCs can be increased by using mono-ancillary ligand instead of bis-ancillary ligands, which is of great commercial value considering the difference in the molecular weights of both dyes. The results of this work were published in Journal of Materials Chemistry A (doi:10.1039/c4ta01942c) and ACS Applied Materials and Interfaces (doi: 10.1021/am502400b). Furthermore, structure-property relationships were investigated in Ru (II) sensitizers HL-41 and HL-42 in order to elucidate the steric effects of electron donating ancillary ligands on photocurrent and photovoltage, as discussed in Chapter 4. It was found that the electron donating group (ethoxy) ortho to the CH=CH spacer precludes coplanarity of the naphthalene moiety, thus decreasing the extracted photocurrent response from solar device. The findings were published in Dyes and Pigments (doi:10.1016/j.dyepig.2014.08.005). For HD-7 and HD-8, intriguing difference caused by structural isomerization based on anthracene and phenanthrene stilbazole type ancillary ligands, respectively in Ru (II) sensitizers was investigated using femtosecond transient absorption spectroscopy. It was found that the excited electrons in HD-7 are prone to ISC (intersystem crossing) much more than that in HD-8 and those triplet electrons are not being injected in TiO2 efficiently as discussed in Chapter 5. To achieve long term stability, we combined the strong electron donor characteristics of carbazole and the hydrophobic nature of long alkyl chains, C7 (HD-14 ), C18 (HD-15) and C2 (NCSU-10), tethered to N-carbazole. HD-15 showed strikingly good long term light soaking stability and maintained up to 98% of initial efficiency value compared to 92% for HD-14 and 78% for NCSU-10, as discussed in Chapter 6. Boron dipyromethene (BODIPY) dyes HB-1, HB-2 and HB-3 were synthesized and fully characterized for dye solar cells. It was found that having long alkyl chains tethered to the donor groups alone are not sufficient for achieving highly efficient photovoltaic response from BODIPY dyes (Chapter 7). Thus, replacement of fluorines from BODIPY core with long alkoxy chains has been suggested for future work.

  20. Hydrogen bonding and anticancer properties of water-soluble chiral p-cymene Ru(II) compounds with amino-oxime ligands

    PubMed Central

    Benabdelouahab, Yosra; Muñoz-Moreno, Laura; Frik, Malgorzata; de la Cueva-Alique, Isabel; El Amrani, Mohammed Amin; Contel, María; Bajo, Ana M.; Cuenca, Tomás

    2016-01-01

    The investigation of the hydrogen-bonding effect on the aggregation tendency of ruthenium compounds [(η6-p-cymene)Ru(κNHR,κNOH)Cl]Cl (R = Ph (1a), Bn (1b)) and [(η6-p-cymene)Ru(κ2NH(2-pic),κNOH)][PF6]2 (1c), [(η6-p-cymene)Ru(κNHBn,κNO)Cl] (2b) and [(η6-p-cymene)Ru(κNBn,κ2NO)] (3b), has been performed by means of concentration dependence 1H NMR chemical shifts and DOSY experiments. The synthesis and full characterization of new compounds 1c, [(η6-p-cymene)Ru(κNPh,κ2NO)] (3a) and 3b are also reported. The effect of the water soluble ruthenium complexes 1a-1c on cytotoxicity, cell adhesion and cell migration of the androgen-independent prostate cancer PC3 cells have been assessed by MTT, adhesion to type-I-collagen and recovery of monolayer wounds assays, respectively. Interactions of 1a-1c with DNA and human serum albumin have also been studied. Altogether, the properties reported herein suggest that ruthenium compounds 1a-1c have considerable potential as anticancer agents against advanced prostate cancer. PMID:27175101

  1. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 5, 1976

    DTIC Science & Technology

    1976-05-01

    emission current from the electron gun as well as by pulsations of accelerating voltage and currents in the magnetic system of the gun . Analogous waves...flows). Novosibirsk, Izd-vo Nauka, Sib. otd-ye, 1975, 168 p. Luk’yanov, S. Yu. Goryachaya plazma i upravlyayemyy yadernyy sintez

  2. Enhanced DNA photocleavage properties of Ru(II) terpyridine complexes upon incorporation of methylphenyl substituted terpyridine and/or the polyazine bridging ligand dpp (2,3-bis(2-pyridyl)pyrazine).

    PubMed

    Jain, Avijita; Slebodnick, Carla; Winkel, Brenda S J; Brewer, Karen J

    2008-10-01

    The heteroleptic complexes, [(MePhtpy)RuCl(dpp)](PF(6)) and [(tpy)RuCl(dpp)](PF(6)), have been synthesized, characterized, and investigated with respect to their photophysical, redox, and DNA photocleavage properties (where MePhtpy=4'-(4-methylphenyl)-2,2':6',2''-terpyridine and dpp=2,3-bis(2-pyridyl)pyrazine, tpy=2,2':6',2''-terpyridine). The X-ray crystal structure confirms the identity of the new [(MePhtpy)RuCl(dpp)](PF(6)) complex. These heteroleptic complexes were found to photocleave DNA in the presence of oxygen, unlike the previously studied complex, [Ru(tpy)(2)](PF(6))(2). The photophysical, redox, and DNA photocleavage properties of the heteroleptic complexes were compared with those of the homoleptic complexes, [Ru(MePhtpy)(2)](PF(6))(2) and [Ru(tpy)(2)](PF(6))(2). The heteroleptic complexes showed intense metal to ligand charge transfer (MLCT) transition at lower energy ([(MePhtpy)RuCl(dpp)](PF(6)), 522nm; [(tpy)RuCl(dpp)](PF(6)), 516nm) and longer excited state lifetimes as compared to the homoleptic complexes. The [Ru(MePhtpy)(2)](2+) complex was found to photocleave DNA in contrast to [Ru(tpy)(2)](2+). The introduction of a methylphenyl group on the tepyridine ligand not only enhances the (3)MLCT excited state lifetime but also increases the lipophilicity and thereby the DNA binding ability of the molecule. An increase in lipophilicity upon addition of a methylphenyl group on the 2,2':6',2''-terpyridine ligand was confirmed by determination of the partition coefficient ([(MePhtpy)RuCl(dpp)](PF(6)), logP=+1.16; [(tpy)RuCl(dpp)](PF(6)), logP=-1.27). The heteroleptic complexes photocleave DNA more efficiently than the homoleptic complexes, with the greatest activity being observed for the newly prepared [(MePhtpy)RuCl(dpp)](PF(6)) complex.

  3. Anticancer activity and DNA binding of a bifunctional Ru(II) arene aqua-complex with the 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine ligand.

    PubMed

    Busto, Natalia; Valladolid, Jesús; Martínez-Alonso, Marta; Lozano, Héctor J; Jalón, Félix A; Manzano, Blanca R; Rodríguez, A M; Carrión, M Carmen; Biver, Tarita; Leal, José M; Espino, Gustavo; García, Begoña

    2013-09-03

    The synthesis and full characterization of the new aqua-complex [(η(6)-p-cymene)Ru(OH2)(κ(2)-N,N-2-pydaT)](BF4)2, [2](BF4)2, and the nucleobase derivative [(η(6)-p-cymene)Ru(9-MeG)(κ(2)-N,N-2-pydaT)](BF4)2, [4](PF6)2, where 2-pydaT = 2,4-diamino-6-(2-pyridyl)-1,3,5-triazine and 9-MeG = 9-methylguanine, are reported here. The crystal structures of both [4](PF6)2 and the chloro complex [(η(6)-p-cymene)RuCl(κ(2)-N,N-2-pydaT)](PF6), [1](PF6), have been elucidated by X-ray diffraction. The former provided relevant information regarding the interaction of the metallic fragment [(η(6)-p-cymene)Ru(κ(2)-N,N-2-pydaT)](2+) and a simple model of DNA. NMR and kinetic absorbance studies have proven that the aqua-complex [2](BF4)2 binds to the N7 site of guanine in nucleobases, nucleotides, or DNA. A stable bifunctional interaction (covalent and partially intercalated) between the [(η(6)-p-cymene)Ru(κ(2)-N,N-2-pydaT)](2+) fragment and CT-DNA has been corroborated by kinetic, circular dichroism, viscometry, and thermal denaturation experiments. The reaction mechanism entails the very fast formation of the Ru-O-(PO3) linkage prior to the fast intercalation of the 2-pydaT fragment. Then, a Ru-N7-(G) covalent bond is formed at the expense of the Ru-O-(PO3) bond, yielding a bifunctional complex. The dissociation rate of the intercalated fragment is slow, and this confers additional interest to [2](BF4)2 in view of the likely correlation between slow dissociation and biological activity, on the assumption that DNA is the only biotarget. Furthermore, [2](BF4)2 displays notable pH-dependent cytotoxic activity in human ovarian carcinoma cells (A2780, IC50 = 11.0 μM at pH = 7.4; IC50 = 6.58 μM at pH = 6.5). What is more, complex [2](BF4)2 is not cross-resistant with cisplatin, exhibiting a resistance factor, RF(A2780cis), of 0.28, and it shows moderate selectivity toward the cancer cell lines, in particular, A2780cis (IC50 = 3.0 5 ± 0.08 μM), relative to human lung fibroblast cells (MRC-5; IC50 = 24 μM), the model for healthy cells.

  4. Concerning the electronic coupling of MoMo quadruple bonds linked by 4,4'-azodibenzoate and comparison with t2g 6-Ru(II) centers by 4,4'-azodiphenylcyanamido ligands.

    PubMed

    Chisholm, Malcolm H; D'Acchioli, Jason S; Hadad, Christopher M; Patmore, Nathan J

    2006-12-25

    From the reactions between Mo2(O2CtBu)4 and each of terephthalic acid and 4,4'-azodibenzoic acid, the compounds [Mo2(O2CtBu)3]2(mu-O2CC6H4CO2) (1) and [Mo2(O2CtBu)3]2(mu-O2CC6H4N2C6H4CO2) (2) have been made and characterized by spectroscopic and electrochemical methods. Their electronic structures have been examined by computations employing density functional theory on model compounds where HCO2 substitutes for tBuCO2. On the basis of these studies, the two Mo2 units are shown to be only weakly coupled and the mixed-valence ions 1+ and 2+ to be valence-trapped and Class II and I, respectively, on the Robin-Day classification scheme for mixed-valence compounds. These results are compared to t2g6-Ru centers linked by 1,4-dicyanamidobenzene and azo-4,4'-diphenylcyanamido bridges for which the mixed-valence ions [Ru-bridge-Ru]5+ have been previously classified as fully delocalized, Class III [Crutchley et al. Inorg. Chem. 2001, 40, 1189; Inorg. Chem. 2004, 43, 1770], and on the basis of results described herein, it is proposed that the latter complex ion is more likely a mixed-valence organic radical where the bridge is oxidized and not the Ru(2+) centers.

  5. Conducting polymers containing in-chain metal centers: electropolymerization of oligothienyl-substituted {M(tpy)2} complexes and in situ conductivity studies, M = Os(II), Ru(II).

    PubMed

    Hjelm, Johan; Handel, Robyn W; Hagfeldt, Anders; Constable, Edwin C; Housecroft, Catherine E; Forster, Robert J

    2005-02-21

    The electropolymerization of a series of Ru and Os bis-terpyridine complexes that form rodlike polymers with bithienyl, quaterthienyl, or hexathienyl bridges has been studied. Absorption spectroscopy, scanning electron microscopy, and cyclic voltammetry have been used to characterize the monomers and resulting polymer films. The absolute dc conductivity of the quaterthienyl-bridged {Ru(tpy)2} and {Os(tpy)2} polymers is unusually large and independent of the identity of the metal center at 1.6 x 10(-3) S cm(-1). The maximum conductivity occurs at the formal potential of each redox process, which typically is observed for systems where redox conduction is the dominant charge transport mechanism. Significantly, the dc conductivity of the metal-based redox couple observed in these polymers is 2 orders of magnitude higher thanthat of a comparable nonconjugated system.

  6. Role of the inner-sphere reorganization in the photoinduced electron transfer reaction of Ru(II) complexes containing imine C=N or Azo N=N double bonds in the ligands

    SciTech Connect

    Maruyama, Mutsuhiro; Kaizu, Youkoh

    1995-04-20

    Photoinduced oxidative and reductive electron transfer (ET) reactions of excited Ru(imin){sub 3}{sup 2+} (imin = 2-(N-methylformimidoyl)pyridine), Ru(imin){sub 2}(CN){sub 2}, and Ru(azpy){sub 3}{sup 2+} (azpy = 2-(phenylazo)pyridine), where imin and azpy contain imine C=N and azo N=N double bonds, respectively, with organic quenchers were investigated in acetonitrile solutions, and their {Delta}G dependencies of the quenching rate constants (k{sub q}) were compared with those of Ru(bpy){sub 3}{sup 2+} (bpy = 2,2`-bipyridine) and Ru(L){sub 2}(CN){sub 2} complexes where L = 4,4`- or 5,5`-dmbpy (dmbpy = dimethyl-2,2`-bipyridine) and phen (phen = 1,10-phenanthroline). The oxidative quenching rate constants of Ru(imin){sub 3}{sup 2+} and Ru(imin){sub 2}(CN){sub 2} are smaller than those of the corresponding bpy, dmbpy, and phen complexes at the same {Delta}G value in the normal region. However, the {Delta}G dependencies of the reductive quenching rate constants of Ru(imin){sub 3}{sup 2+} and Ru(azpy){sub 3}{sup 2+} coincide with that of the corresponding bpy complex. The inner-sphere reorganization ({lambda}{sub in}) caused by the deformation of the C=N bond of imin is considered to be the main reason for the disadvantage of ET in the normal region of the oxidative ET reactions of excited Ru(imin){sub 3}{sup 2+} and Ru(imin){sub 2}(CN){sub 2}. 44 refs., 6 figs., 6 tabs.

  7. Differences of pH-Dependent Mechanisms on Generation of Hydride Donors using Ru(II) Complexes Containing Geometric Isomers of NAD+ Model Ligands: NMR and Radiolysis Studies in Aqueous Solution

    SciTech Connect

    Fujita, E.; Cohen, B.W.; Polyansky, D.E.; Zong, R.; Zhou, H.; Ouk, T.; Cabelli, D.; Thummel, R.P.

    2010-09-06

    The pH-dependent mechanism of the reduction of the nicotinamide adenine dinucleotide (NADH) model complex [Ru(bpy)(2)(5)](2+) (5 = 3-(pyrid-2{prime}-yl)-4-azaacridine) was compared to the mechanism of the previously studied geometric isomer [Ru(bpy)(2)(pbn)](2+) (pbn = 2-(pyrid-2{prime}-yl)-1-azaacridine, previously referred to as 2-(pyrid-2{prime}-yl)-benzo[b]-1,5-naphthyridine) in aqueous media. The exposure of [Ru(bpy)(2)(5)](2+) to CO(2)(*-) leads to the formation of the one-electron reduced species (k = 4.4 x 10(9) M(-1) s(-1)). At pH < 11.2, the one-electron reduced species can be protonated, k = 2.6 x 10(4) s(-1) in D(2)O. Formation of a C-C bonded dimer is observed across the pH range of 5-13 (k = 4.5 x 10(8) M(-1) s(-1)). At pH < 11, two protonated radical species react to form a stable C-C bonded dimer. At pH > 11, dimerization of two one-electron reduced species is followed by disproportionation to one equivalent starting complex [Ru(bpy)(2)(5)](2+) and one equivalent [Ru(bpy)(2)(5HH)](2+). The structural difference between [Ru(bpy)(2)(pbn)](2+) and [Ru(bpy)(2)(5)](2+) dictates the mechanism and product formation in aqueous medium. The exchange of the nitrogen and carbon atoms on the azaacridine ligands alters the accessibility of the dimerization reactive site, thereby changing the mechanism and the product formation for the reduction of the [Ru(bpy)(2)(5)](2+) compound.

  8. Synthesis and evaluation of new salicylaldehyde-2-picolinylhydrazone Schiff base compounds of Ru(II), Rh(III) and Ir(III) as in vitro antitumor, antibacterial and fluorescence imaging agents.

    PubMed

    Palepu, Narasinga Rao; Nongbri, S L; Premkumar, J Richard; Verma, Akalesh Kumar; Bhattacharjee, Kaushik; Joshi, S R; Forbes, Scott; Mozharivskyj, Yurij; Thounaojam, Romita; Aguan, K; Kollipara, Mohan Rao

    2015-06-01

    Reaction of salicylaldehyde-2-picolinylhydrazone (HL) Schiff base ligand with precursor compounds [{(p-cymene)RuCl2}2] 1, [{(C6H6)RuCl2}2] 2, [{Cp*RhCl2}2] 3 and [{Cp*IrCl2}2] 4 yielded the corresponding neutral mononuclear compounds 5-8, respectively. The in vitro antitumor evaluation of the compounds 1-8 against Dalton's ascites lymphoma (DL) cells by fluorescence-based apoptosis study and by their half-maximal inhibitory concentration (IC50) values revealed the high antitumor activity of compounds 3, 4, 5 and 6. Compounds 1-8 render comparatively lower apoptotic effect than that of cisplatin on model non-tumor cells, i.e., peripheral blood mononuclear cells (PBMC). The antibacterial evaluation of compounds 5-8 by agar well-diffusion method revealed that compound 6 is significantly effective against all the eight bacterial species considered with zone of inhibition up to 35 mm. Fluorescence imaging study of compounds 5-8 with plasmid circular DNA (pcDNA) and HeLa RNA demonstrated their fluorescence imaging property upon binding with nucleic acids. The docking study with some key enzymes associated with the propagation of cancer such as ribonucleotide reductase, thymidylate synthase, thymidylate phosphorylase and topoisomerase II revealed strong interactions between proteins and compounds 5-8. Conformational analysis by density functional theory (DFT) study has corroborated our experimental observation of the N, N binding mode of ligand. Compounds 5-8 exhibited a HOMO (highest occupied molecular orbital)-LUMO (lowest unoccupied molecular orbital) energy gap 2.99-3.04 eV. Half-sandwich ruthenium, rhodium and iridium compounds were obtained by treatment of metal precursors with salicylaldehyde-2-picolinylhydrazone (HL) by in situ metal-mediated deprotonation of the ligand. Compounds under investigation have shown potential antitumor, antibacterial and fluorescence imaging properties. Arene ruthenium compounds exhibited higher activity compared to that of Cp*Rh/Cp*Ir in inhibiting the cancer cells growth and pathogenic bacteria. At a concentration 100 µg/mL, the apoptosis activity of arene ruthenium compounds, 5 and 6 (~30 %) is double to that of Cp*Rh/Cp*Ir compounds, 7 and 8 (~12 %). Among the four new compounds 5-8, the benzene ruthenium compound, i.e., compound 6 is significantly effective against the pathogenic bacteria under investigation.

  9. Synthesis, characterization, DNA-binding and cytotoxic properties of Ru(II) complexes: [Ru(MeIm)4L]2+ (MeIm = 1-methylimidazole, L = phen, ip and pip)

    NASA Astrophysics Data System (ADS)

    Zeng, Leli; Xiao, Yue; Liu, Jing; Tan, Lifeng

    2012-07-01

    Three new ruthenium(II) complexes, [Ru(MeIm)4phen]2+ (1), [Ru(MeIm)4ip]2+ (2) and [Ru(MeIm)4pip]2+ (3), have been synthesized and characterized. The binding properties of the three complexes towards calf-thymus DNA were investigated by different spectrophotometric methods and viscosity measurements. In addition, the cytotoxicity of these complexes has been evaluated by MTT method and Giemsa staining experiment. The main results reveal that the plane area and hydrophobicity of intercalative ligands have a significant effect on the DNA-binding behaviors and the IC50 value of complex 2 against MCF-7 cells is close to that of cis-Pt(NH3)2Cl2.

  10. Efficient hydrogenation of biomass-derived cyclic di-esters to 1,2-diols.

    PubMed

    Balaraman, Ekambaram; Fogler, Eran; Milstein, David

    2012-01-28

    The unprecedented homogeneous hydrogenation of cyclic di-esters, in particular biomass-derived glycolide and lactide, to the corresponding 1,2-diols is catalyzed by Ru(II) PNN (1) and Ru(II) CNN (2) pincer complexes under mild hydrogen pressure and (in the case of 1) neutral conditions. No racemization was observed when a chiral di-ester was used.

  11. Contractile responses to rat urotensin II in resting and depolarized basilar arteries.

    PubMed

    Porras-González, Cristina; Ureña, Juan; Egea-Guerrero, Juan José; Gordillo-Escobar, Elena; Murillo-Cabezas, Francisco; González-Montelongo, María del Carmen; Muñoz-Sánchez, María Angeles

    2014-03-01

    The effects of human urotensin II (hUII) on the vascular tone of different animal species has been studied extensively. However, little has been reported on the vasoactive effects of rat urotensin (rUII) in murine models. The aim of the present study was to investigate the effects of rUII on vasoreactivity in rat basilar arteries. Basilar arteries from adult male Wistar rats (300-350 g) were isolated, cut in rings, and mounted on a small vessel myograph to measure isometric tension. rUII concentrations were studied in both resting and depolarized state. To remove endothelial nitric oxide effects from the rUII response, we treated selected arterial rings with Nω-nitro-L-arginine methyl ester (L-NAME). 10 μM rUII produced a potent vasoconstrictor response in rat basilar arteries with intact endothelium, while isometric forces remained unaffected in arterial rings treated with lower rUII concentrations. Although L-NAME did not have a significant effect on 10 μM rUII-evoked contraction, it slightly increased arterial ring contraction elicited by 1 μM rUII. In depolarized arteries, dose-dependent rUII increased depolarization-induced contractions. This effect was suppressed by L-NAME. Our results show that the rat basilar artery has a vasoconstrictor response to rUII. The most potent vasoconstrictor effect was produced by lower doses of rUII (0.1 and 1 μM) in depolarized arteries with intact endothelium. This effect could facilitate arterial vasospasm in vascular pathophysiological processes such as subarachnoid hemorrhage and hypertension, when sustained depolarization and L-type Ca(2+) channel activation are present.

  12. A highly selective OFF-ON red-emitting phosphorescent thiol probe with large stokes shift and long luminescent lifetime.

    PubMed

    Ji, Shaomin; Guo, Huimin; Yuan, Xiaolin; Li, Xiaohuan; Ding, Haidong; Gao, Peng; Zhao, Chunxia; Wu, Wenting; Wu, Wanhua; Zhao, Jianzhang

    2010-06-18

    An OFF-ON red-emitting phosphorescent thiol probe is designed by using the (3)MLCT photophysics of Ru(II) complexes, i.e., with Ru(II) as the electron donor. The probe is non-luminescent because the MLCT is corrupted by electron transfer from Ru(II) to an intramolecular electron sink (2,4-dinitrobenzenesulfonyl). Thiols cleave the electron sink, and the MLCT is re-established. Phosphorescence at 598 nm was enhanced by 90-fold, with a 143 nm (5256 cm(-1)) Stokes shift and a 1.1 mus luminescent lifetime.

  13. Photochemistry of RuII 4,4′-Bi-1,2,3-triazolyl (btz) Complexes: Crystallographic Characterization of the Photoreactive Ligand-Loss Intermediate trans-[Ru(bpy)(κ2-btz)(κ1-btz)(NCMe)]2+

    PubMed Central

    Welby, Christine E; Armitage, Georgina K; Bartley, Harry; Wilkinson, Aaron; Sinopoli, Alessandro; Uppal, Baljinder S; Rice, Craig R; Elliott, Paul I P

    2014-01-01

    We report the unprecedented observation and unequivocal crystallographic characterization of the meta-stable ligand loss intermediate solvento complex trans-[Ru(bpy)(κ2-btz)(κ1-btz)(NCMe)]2+ (1 a) that contains a monodentate chelate ligand. This and analogous complexes can be observed during the photolysis reactions of a family of complexes of the form [Ru()(btz)2]2+ (1 a–d: btz=1,1′-dibenzyl-4,4′-bi-1,2,3-triazolyl; =a) 2,2′-bipyridyl (bpy), b) 4,4′-dimethyl-2,2′-bipyridyl (dmbpy), c) 4,4′-dimethoxy-2,2′-bipyridyl (dmeobpy), d) 1,10-phenanthroline (phen)). In acetonitrile solutions, 1 a–d eventually convert to the bis-solvento complexes trans-[Ru()(btz)(NCMe)2]2+ (3 a–d) along with one equivalent of free btz, in a process in which the remaining coordinated bidentate ligands undergo a new rearrangement such that they become coplanar. X-ray crystal structure of 3 a and 3 d confirmed the co-planar arrangement of the and btz ligands and the trans coordination of two solvent molecules. These conversions proceed via the observed intermediate complexes 2 a–d, which are formed quantitatively from 1 a–d in a matter of minutes and to which they slowly revert back on being left to stand in the dark over several days. The remarkably long lifetime of the intermediate complexes (>12 h at 40 °C) allowed the isolation of 2 a in the solid state, and the complex to be crystallographically characterized. Similarly to the structures adopted by complexes 3 a and d, the bpy and κ2-btz ligands in 2 a coordinate in a square-planar fashion with the second monodentate btz ligand coordinated trans to an acetonitrile ligand. PMID:24889966

  14. Synthesis and Characterization of Ru(II) Tris(1,1O-phenanthroline)-Electron Acceptor Dyads Incorporating the 4-benzoyl-N-methylpyridinium Cation or N-Benzyl-N'-methyl-viologen. Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Optical Oxygen Sensors

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas; Rawashdeh, Abdel-Monen M.; Elder, Ian A.; Yang, Jinhua; Dass, Amala; Sotiriou-Leventis, Chariklia

    2004-01-01

    The title compounds (1 and 2, above) were synthesized by Sonogashira coupling reactions of appropriate Ru(1I) complexes with the electron a cceptors. Characterization was conducted in solution and in frozen ma trices. Finally, the title compounds were evaluated as dopants of sol-gel materials. It was found that the intramolecular quenching efficie ncy of 4-benzoyl-Nmethylpyridinium cation in solution depends on the solvent: photoluminescence is quenched completely in CH,CN, but not i n methanol or ethanol. On the other hand, intramolecular emission que nching by 4-benzyl-N-methyl viologen is complete in all solvents. The difference between the two quenchers is traced electrochemically to t he solvation of the 4-benzoyl-Nmethylpyridiniums by alcohol. In froze n matrices or adsorbed on the surfaces of silica aerogel, both Ru(I1) complex/electron acceptor dyads of this study are photoluminescent, and the absence of quenching has been traced to the environmental rigi dity. When doped aerogels are cooled at 77 K, the emission intensity increases by approximately 4x, and the spectra shift to the blue, analogous to what is observed with Ru(I1) complexes in solutions undergoi ng fluid-to-rigid transition. However, in contrast to frozen solution s, the luminescent moieties in the bulk of aerogels kept at low tempe ratures are still accessible to gas-phase quenchers diffusing through the mesopores, leading to more sensitive platforms for sensors than o ther room-temperature configurations. Thus the photoluminescence of o ur Ru(I1) complex dyads adsorbed on aerogel is quenchable by O2 both at room temperature and at 77 K. Furthermore, it was also found that O 2 modulates the photoluminescence of aerogels doped with 4-benzoyl -N -methylpyridinium-based dyads over a wider dynamic range compared wi th aerogels doped with either our vislogen-based dyads or with Ru(I1) tris(1,lO-phenanthroline) itself.

  15. Separation and indirect detection of small-chain peptides using chromophoric mobile phase additives.

    PubMed

    Yuan, D X; Pietrzyk, D J

    1990-06-22

    Ruthenium(II) 1,10-phenanthroline, Ru(phen)3(2+), and ruthenium(II) 2,2'-bipyridyl, Ru(bipy)3(2+), salts were evaluated as mobile phase additives for the liquid chromatographic separation of small-chain peptides on a polystyrene-divinylbenzene copolymeric (Hamilton PRP-1) stationary phase. In a basic mobile phase peptides are anions, and retention, resolution and detection occur because of the interactions between the stationary phase, the RuII complex and the peptide anion. Since the RuII complex concentration changes in the analyte band relative to the background eluent RuII complex concentration, the peptide can be detected by indirect photometric detection using the wavelength where the RuII complex absorbs. Peptide analyte peaks may be positive or negative depending on the counter-anion and its concentration. Small-chain peptides that do not contain chromophoric side-chains are detected without derivatization at about 0.1 nmol injected at a 3:1 signal-to-noise ratio. Factors that affect retention, resolution and indirect photometric detection are the RuII complex, its mobile phase concentration, mobile phase pH and solvent composition, and the type and concentration of the mobile phase counter-anion and/or buffer anion.

  16. cis-Bis(O-methyl­dithio­carbonato-κ2 S,S′)bis­(tri­phenyl­phosphane-κP)ruthenium(II)

    PubMed Central

    Valerio-Cárdenas, Cintya; Hernández-Ortega, Simón; Reyes-Martínez, Reyna; Morales-Morales, David

    2013-01-01

    In the title compound, [Ru(CH3OCS2)2(C18H15P)2], the RuII atom is in a distorted octa­hedral coordination by two xanthate anions (CH3OCS2) and two tri­phenyl­phosphane (PPh3) ligands. Both bidentate xanthate ligands coordinate the RuII atom with two slightly different Ru—S bond lengths but with virtually equal bite angles [71.57 (4) and 71.58 (3)°]. The packing of the complexes is assured by C—H⋯O and C—H⋯π inter­actions. PMID:24046578

  17. The study of redox-active inorganic substituents of cellulase enzyme. Quarterly report, 25 August--25 November 1992

    SciTech Connect

    Not Available

    1992-12-31

    Hexaammineruthemium(III) chloride enhances the catalytic activity of Trichoderma reesei cellobiohydrolase I (CBHI) by as much as 45 percent over a 24 hr period. The mechanism involved could be related to the redox activity and reduction of O{sub 2} by RU(II) complexes. Since the addition of ascorbic acid is not required for the enhancement of CBHI activity, we speculate that the cellobiose generated by the enzyme activity may serve as the reducing agent for the formation of RU(II) species.

  18. The study of redox-active inorganic substituents of cellulase enzyme

    SciTech Connect

    Not Available

    1992-01-01

    Hexaammineruthemium(III) chloride enhances the catalytic activity of Trichoderma reesei cellobiohydrolase I (CBHI) by as much as 45 percent over a 24 hr period. The mechanism involved could be related to the redox activity and reduction of O[sub 2] by RU(II) complexes. Since the addition of ascorbic acid is not required for the enhancement of CBHI activity, we speculate that the cellobiose generated by the enzyme activity may serve as the reducing agent for the formation of RU(II) species.

  19. Oligomer and mixed-metal compounds, potential multielectron transfer catalysts. Progress report, January 1, 1990--January 1, 1993

    SciTech Connect

    Rillema, D.P.

    1993-08-01

    Physical, photophysical, and photochemical properties of Ru(II), Re(I), Pt(II), and Cu(II) monometallic complexes and of Ru(II)-Ru(II), Ru(II)-Co(III), Ru(II)-Re(I) bimetallic complexes were investigated. In an application, Pt and Au working electrodes were modified with the hydrogel kappa-carrageenan (anionic polysaccharide from seaweed), which was cured on the electrode surface with Ru(II) trisbipyridine and methyl viologen. Max photocurrent obtained was 12 {mu}A.cm{sup 2}.

  20. [The antiallergic eye drops "polynadyme": development, experimental and clinical studies].

    PubMed

    Maĭchuk, Iu F; Pozdniakov, V I; Pozdniakova, V V; Iakushina, L N

    2006-01-01

    The antiallergic eye drops "Polynadyme", proposed by the Helmgolz Moscow Research Institute of Eye Diseases, have been prepared by the "Sintez" PJSC (Kurgan). The drops exert a combination of antihistaminic and vasoconstrictive effects and, for better tolerability, contain a low-toxic preserving complex. The drops are polymer-based, which ensures a long action and an artificial tear effect. Preclinical rabbit trials have shown the safety of the "Polynadyme" eye drops, their specific activity in preventing an allergic reaction, and their antiallergic effect on a model of allergic conjunctivitis. Comparative clinical trials covering 150 patients have yielded excellent and good results in 93% of cases. In acute allergic reactions, hyperemia, itch, and burning diminished just 5 minutes after administration. The "Polynadyme" eye drops are effective in treating pollinous conjunctivitis, spring (vernal) keratoconjunctivitis, allergic reactions when wearing contact lenses, the dry eye syndrome, drug-induced and toxicoallergic conjunctivitis, and other ocular allergic reactions.

  1. Pushing the limit: synthesis, photophysical and DNA binding studies of a NIR-emitting Ru(II)-polypyridyl probe with 'light switch' behaviour.

    PubMed

    Elmes, Robert B P; Kitchen, Jonathan A; Williams, D Clive; Gunnlaugsson, Thorfinnur

    2012-06-14

    The new Ru(II) polypyridyl complex 1 was synthesised using microwave irradiation from the new polypyridyl ligand 2'DipyTAP', and its photophysical properties, and DNA binding abilities were investigated using various spectroscopic techniques; and 1 was shown to act as a 'NIR molecular light switch' for DNA with an emission window between 680 and 860 nm.

  2. Ru complexes of thienyl-functionalized dipyrrins as NCS-free sensitizers for the dye-sensitized solar cell.

    PubMed

    Li, Guocan; Bomben, Paolo G; Robson, Kiyoshi C D; Gorelsky, Serge I; Berlinguette, Curtis P; Shatruk, Michael

    2012-09-11

    We report the first case of Ru(II) dipyrrinates employed as dyes in dye-sensitized solar cells. These complexes exhibit panchromatic light harvesting that results in significant DSSC current densities, rendering them promising for photovoltaic applications. Adjustment of the lowest excited state energy is required to boost the power conversion efficiency.

  3. Synthesis, characterization, and DNA-binding studies of ruthenium complexes [Ru(tpy)(ptn)]2+ and Ru(dmtpy)(ptn)]2+.

    PubMed

    Li, Lü-Ying; Jia, Hai-Na; Yu, Hui-Juan; Du, Ke-Jie; Lin, Qi-Tian; Qiu, Kang-Qiang; Chao, Hui; Ji, Liang-Nian

    2012-08-01

    Two ruthenium(II) polypyridyl complexes [Ru(tpy)(ptn)](2+) (1) and Ru(dmtpy)(ptn)](2+) (2) (ptn=3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]naphthalene, tpy=2,2':6',2"-terpyridine, dmtpy=5,5'-dimethyl-2,2':6',2"-terpyridine) have been synthesized and characterized by elemental analysis, (1)H NMR, mass spectrometry and crystal structure analysis. Spectroscopic studies together with isothermal titration calorimetry (ITC) and viscosity measurements prove that two complexes bind to DNA in an intercalative mode. ITC experiments show that the binding mode for complex 2 is entropically driven, while an entropy-driven initial binding of complex 1 is followed by an entropically and enthalpically favorable process. This difference may be attributed to the ancillary ligand effects on the DNA binding of Ru(II) complexes. Circular dichroism titrations of calf thymus DNA (CT-DNA) with Ru(II) complexes show that complexes 1 and 2 induce B to Z conformational transition of calf thymus DNA at low ionic strength (0.05 M NaCl). The induced Z-DNA conformation can revert to B form when Ru(II) complexes are displaced by ethidium bromide or at high ionic strengths ([NaCl]=0.4 M), but keeps intact with temperature ranged from 25 to 90 °C. The unique structure and characteristics of Ru(II) complexes designed in this investigation will be useful for the study of Z-DNA.

  4. Hydrogenation of imines catalysed by ruthenium(II) complexes based on lutidine-derived CNC pincer ligands.

    PubMed

    Hernández-Juárez, Martín; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2013-01-14

    The preparation of new Ru(II) complexes incorporating fac-coordinated lutidine-derived CNC ligands is reported. These derivatives are selectively deprotonated by (t)BuOK at one of the methylene arms of the pincer, leading to catalytically active species in the hydrogenation of imines.

  5. Neutral and anionic tetrazole-based ligands in designing novel ruthenium dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Kaneko, Ryuji; Zhang, Yaohong; Shinozaki, Yoshinao; Sugawa, Kosuke; Islam, Ashraful; Han, Liyuan; Bedja, Idriss; Gupta, Ravindra Kumar; Shen, Qing; Otsuki, Joe

    2016-03-01

    Two novel thiocyanate-free Ru(II) complexes have been synthesized, characterized and evaluated as dyes for dye-sensitized solar cells. Both complexes have two tridentate ligands: one is the tricarboxyterpyridine as an anchoring ligand and the other is one of the two bis(tetrazolyl)pyridine derivatives. One of the bis(tetrazolyl)pyridine ligand coordinates to the Ru(II) ion as a doubly deprotonated tetrazolate anion with a formal charge of -2 to form a neutral complex, which is coded as BTP dye, while the other bis(methyltetrazolyl)pyridine ligand coordinates to the Ru(II) ion as a neutral ligand forming a divalent cationic complex, coded as BMTP dye. Unexpectedly, the oxidation potentials for these two compounds are similar, implying similar electron-donating effects of the anionic tetrazolate ligand and the neutral methyltetrazole ligand to the Ru(II) ion. Despite similar HOMO/LUMO levels, BTP dye performs much better, recording 6.10% efficiency, than BMTP dye for DSSCs. Electrochemical impedance spectroscopy as well as nanosecond transient absorption spectroscopy indicates that the differences in the electron injection and electron recombination processes, which may be the consequences of the difference in the localization of LUMO as suggested by DFT calculations, are the main causes for the differences in performance.

  6. Influence of filled d pi-manifold and L/L' ligands on the structure, basicity, and bond rotations of the octahedral and d(6) amido complexes TpRu(L)(L')(NHPh) (Tp = hydridotris(pyrazolyl)borate; L = L' = PMe(3) or P(OMe)(3), or L = CO and L' = PPh(3)): solid-state structures of [TpRu(PMe(3))(2)(NH(2)Ph)][OTf], [TpRu[P(OMe)(3)](2)(NH(2)Ph)][OTf], and TpRu[P(OMe)(3)](2)(NHPh).

    PubMed

    Conner, David; Jayaprakash, K N; Gunnoe, T Brent; Boyle, Paul D

    2002-06-03

    It has been suggested that the reactivity of pi-donating ligands bound to late-transition-metal complexes is heightened due to high d-electron counts. Herein, the synthesis and characterization of the Ru(II) amine and Ru(II) amido complexes [TpRuL(2)(NH(2)Ph)][OTf] (OTf = trifluoromethanesulfonate) and TpRuL(2)(NHPh) (L = PMe(3) or P(OMe)(3)) are presented, including solid-state X-ray diffraction studies of [TpRu(PMe(3))(2)(NH(2)Ph)][OTf], [TpRu[P(OMe)(3)](2)(NH(2)Ph)][OTf], and TpRu[P(OMe)(3)](2)(NHPh). The pK(a)'s of the Ru(II) amine complexes and the previously reported [TpRu(CO)(PPh(3))(NH(2)Ph)](+) have been estimated to be comparable to that of malononitrile in methylene chloride. In addition, the impact of the filled dpi-manifold (i.e., Ru(II) and d(6) octahedral systems) on barriers to rotation of the Ru-NHPh moieties has been studied. For TpRu(PMe(3))(2)(NHPh) and TpRu[P(OMe)(3)](2)(NHPh), evidence for hindered rotation about the amido nitrogen and phenyl ipso carbon has been observed, and the relative N-C and Ru-N bond rotational barriers for the series of three amido complexes are discussed in terms of the pi-conflict.

  7. Static and dynamic quenching of luminescent species in polymer media.

    PubMed

    Hartmann, P; Leiner, M J; Lippitsch, M E

    1994-12-01

    A method developed for quantitative determination of static and dynamic contributions to luminescence quenching is applied to Ru(II) complexes in polymer matrices (silica gel and polystyrene), quenched by oxygen. This method is based on both intensity and lifetime quenching experiments. The curvature of intensity Stern-Volmer plots is related to the results.

  8. Generation of long-lived methylviologen radical cation in the triplet-state mediated electron transfer in a β-cyclodextrin based supramolecular triad

    NASA Astrophysics Data System (ADS)

    Rakhi, Arikkottira M.; Gopidas, Karical R.

    2015-01-01

    A novel tris(bipyridyl)ruthenium-pyrene-methylviologen supramolecular triad was assembled through inclusion complexation of adamantane-linked Ru(II)-Py dyad in MV2+-linked β-cyclodextrin. Excitation of the Ru(II) chromophore populated its 3MLCT which upon energy transfer gave 3Py, which donates an electron to MV2+ to give Ru(II)-Pyrad +-MVrad +. A second electron transfer then occurs from Ru(II) to Pyrad + to give the supramolecular Ru(III)-Py-MVrad + charge separated state. Laser flash photolysis experiments confirmed formation of MVrad + which exhibited 100 μs lifetime. Steady state irradiation of the self-assembled system in the presence of sacrificial donor also led to formation of long-lived MVrad +.

  9. An unsymmetrical binuclear ruthenium(II) complex of tris(2-pyridyl)-1,3,5-triazine and its identification by sup 1 H NMR spectroscopy

    SciTech Connect

    Chirayil, S.; Hegde, V.; Jahng, Yurngdong; Thummel, R.P. )

    1991-06-26

    The use of tris(2-pyridyl)-1,3,5-triazine (TPT) for use as a bridging ligand that incorporates two Ru(II) atoms in nonequivalent sites such that one Ru(II) is bound in a bidentate fashion and the other is bound in a tridentate manner is described herein. The use of bpy-d{sub 8} as an auxiliary ligand in the formation and characterization of an unsymmetrical mononuclear ruthenium (I) complex has been extended to the perdeuterio analog of 2,2{prime};6,2{double prime}-terpyridine (Tpy), and its use in the characterization of a binuclear complex of TPT are reported. {sup 1}H NMR chemical shift data for the ligands and the ruthenium complexes are presented. 15 refs., 3 figs., 1 tab.

  10. Photochemical Reduction of Low Concentrations of CO2 in a Porous Coordination Polymer with a Ruthenium(II)-CO Complex.

    PubMed

    Kajiwara, Takashi; Fujii, Machiko; Tsujimoto, Masahiko; Kobayashi, Katsuaki; Higuchi, Masakazu; Tanaka, Koji; Kitagawa, Susumu

    2016-02-18

    Direct use of low pressures of CO2 as a C1 source without concentration from gas mixtures is of great interest from an energy-saving viewpoint. Porous heterogeneous catalysts containing both adsorption and catalytically active sites are promising candidates for such applications. Here, we report a porous coordination polymer (PCP)-based catalyst, PCP-Ru(II) composite, bearing a Ru(II) -CO complex active for CO2 reduction. The PCP-Ru(II) composite showed improved CO2 adsorption behavior at ambient temperature. In the photochemical reduction of CO2 the PCP-Ru(II) composite produced CO, HCOOH, and H2 . Catalytic activity was comparable with the corresponding homogeneous Ru(II) catalyst and ranks among the highest of known PCP-based catalysts. Furthermore, catalytic activity was maintained even under a 5 % CO2 /Ar gas mixture, revealing a synergistic effect between the adsorption and catalytically active sites within the PCP-Ru(II) composite.

  11. DNA Interactions with Ruthenium(ll) Polypyridine Complexes Containing Asymmetric Ligands

    PubMed Central

    Chao, Hui

    2005-01-01

    In an attempt to probe nucleic acid structures, numerous Ru(II) complexes with different ligands have been synthesized and investigated. In this contribution we focus on the DNA-binding properties of ruthenium(II) complexes containing asymmetric ligands that have attracted little attention in the past decades. The influences of the shape and size of the ligand on the binding modes, affinity, enantioselectivities and photocleavage of the complexes to DNA are described. PMID:18365086

  12. A perfluorocyclopentene based diarylethene bearing two terpyridine moieties – synthesis, photochemical properties and influence of transition metal ions

    PubMed Central

    Wehmeier, Falk

    2010-01-01

    Summary The synthesis of a perfluorocyclopentene based diarylethene bearing two terpyridine units is reported. Furthermore studies of the free ligand’s photochromism and investigations regarding the influence of various transition metal ions on the photochromic reaction are presented. The photochromism of the central diarylethene unit is strongly dependent on the transition metal present, vice versa the photochromic reaction seems to influence the MLCT transition of a binuclear Ru(II) complex. PMID:20625529

  13. Studies of Phlebotomine Sand Flies.

    DTIC Science & Technology

    1980-08-31

    submitted for publication. iii 7. Key Words: Sand fly Lutzomyia Phlebotominae Phlebotomus Leishmaniasis 1i Note: Copies of this report are filed with...5 II. Sand Flies of the Central Amazon of Brazil. 2. De- scription of Lutzomyia (Triehophoromyia) ruii n. sp. . 28 III. A New Phlebotomine Sand...previously unknown in the Republic. These are Brvmptomyia hamata, B. galindoi, Lutzomyia odax, L. ovallesi, L. carpenteri, L. shannoni, L. texana, L

  14. Polymer-Based Ruthenium(II) Polypyridyl Chromophores on TiO2 for Solar Energy Conversion.

    PubMed

    Leem, Gyu; Morseth, Zachary A; Wee, Kyung-Ryang; Jiang, Junlin; Brennaman, M Kyle; Papanikolas, John M; Schanze, Kirk S

    2016-04-20

    A polychromophoric light-harvesting assembly featuring a polystyrene (PS) backbone with ionic carboxylate-functionalized Ru(II) polypyridyl complexes as pendant groups (PS-Ru-A) was synthesized and successfully anchored onto mesoporous structured TiO2 films (TiO2 //PS-Ru-A). Studies of the resulting TiO2 //PS-Ru-A films carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) confirmed that the ionic carboxylated Ru(II) complexes from PS-Ru-A led to the surface immobilization on the TiO2 film. Monochromatic light photocurrent spectroscopy (IPCE) and white light (AM1.5G) current-voltage studies of dye-sensitized solar cells using the TiO2 //PS-Ru-A photoanode give rise to modest photocurrent and white light efficiency (24 % peak IPCE and 0.33 % PCE, respectively). The photostability of surface-bound TiO2 //PS-Ru-A films was tested and compared to a monomeric Ru(II) complex (TiO2 //Ru-A), showing an enhancement of ∼14 % in the photostability of PS-Ru-A. Transient absorption measurements reveal that electron injection from surface-bound pendants occurs on the picosecond time scale, similar to TiO2 //Ru-A, while time-resolved emission measurements reveal delayed electron injection occurring in TiO2 //PS-Ru-A on the nanosecond time scale, underscoring energy transport from unbound to surface-bound complexes. Additionally, charge recombination is delayed in PS-Ru-A, pointing towards intra-assembly hole transport to complexes away from the surface. Molecular dynamics simulations of PS-Ru-A in fluid solution indicate that a majority of the pendant Ru(II) complexes lie within 10-20 Å of each other, facilitating efficient energy- and charge transport among the pendant complexes.

  15. Phosphoryl group as a strong σ-donor anionic phosphine-type ligand: a combined experimental and theoretical study on long-lived room temperature luminescence of the [Ru(tpy)(bpy)(Ph2PO)]+ complex.

    PubMed

    Lebon, Emilie; Sylvain, Rémy; Piau, Rémi E; Lanthony, Cloé; Pilmé, Julien; Sutra, Pierre; Boggio-Pasqua, Martial; Heully, Jean-Louis; Alary, Fabienne; Juris, Alberto; Igau, Alain

    2014-02-17

    A phosphoryl Ru(II) polypyridyl complex was prepared in a one-pot process. Theoretical analysis suggests that the phosphoryl ligand may be viewed as a strong σ-donor anionic phosphine L-type ligand. State-of-the-art free-energy profile calculations on the excited states demonstrate that both favorable thermodynamic and kinetic factors are responsible for the remarkable room temperature luminescence properties of the phosphoryl complex.

  16. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    DTIC Science & Technology

    2013-02-12

    materials. enrichment in ruthenium with the N-modified samples as compared to the non-implanted commercial and in-house sputtered samples. Over- all we...found a major difference between commercial and sputtered samples with respect to their ruthenium compositions with the results summarized in Table I. In...commercial catalysts, surface ruthenium is distributed between metallic ruthenium (Ru(0), Ru(II), Ru(IV), ruthe- nium oxide RuO2 and hydrous ruthenium

  17. A Photo Touch on Amines: New Synthetic Adventures of Nitrogen Radical Cations

    PubMed Central

    Maity, Soumitira; Zheng, Nan

    2013-01-01

    Amines have been used as sacrificial electron donors to reduce photoexcited Ru(II) or Ir(III) complexes, during which they are oxidized to nitrogen radical cations. Recently, the synthetic potential of these nitrogen radical cations have caught synthetic organic chemists’ attention. They have been exploited in various transformations yielding a number of elegant methods for amine synthesis. This article highlights recent developments on nitrogen radical cation chemistry under visible-light photocatalysis. PMID:23419975

  18. Photocatalitic Properties of Tio2 and ZnO Nanopowders / Tio2 un Zno Nanopulveru Fotokatalitiskās Īpašības

    NASA Astrophysics Data System (ADS)

    Grigorjeva, L.; Rikveilis, J.; Grabis, J.; Jankovica, Dz.; Monty, C.; Millers, D.; Smits, K.

    2013-08-01

    Photocatalytic activity of TiO2 and ZnO nanopowders is studied depending on the morphology, grain sizes and method of synthesizing. Photocatalysis of the prepared powders was evaluated by degradation of the methylene blue aqueous solution. Absorbance spectra (190-100 nm) were measured during exposure of the solution to UV light. The relationships between the photocatalytic activity and the particle size, crystal polymorph phases and grain morphology were analyzed. The photocatalytic activity of prepared TiO2 nanopowders has been found to depend of the anatase-to-rutile phase ratio. Comparison is given for the photocatalytic activity of ZnO nanopowders prepared by sol-gel and solar physical vapour deposition (SPVD) methods Darbā pētīta fotokatalīzes efektivitāte ar dažādām metodēm sintezētiem TiO2 and ZnO nanopulveriem, kuriem ir atšķirīga morfoloģija un grauda izmērs. Foto katalīzes process raksturots ar metilenzilā sagraušanu ūdens šķīdumā, to apstarojot ar UV gaismu. Analizēta fotokatalīzes efektivitātes atkarība no grauda izmēra, nanokristālu graudu morfoloģijas, TiO2 nanopulveru anatasa-rutīla fāžu svara attiecībām. Parādīts, ka fotokatalītiskā efektivitāte ir atšķirīga TiO2 nanopulveriem sintezētiem ar dažādām metodēm: sola-gēla un tvaicēšanu-kondensēšanu saules reaktorā. Salīdzināta fotokatalīzes efektivitāte ZnO un TiO2 nanopulveriem un secināts, ka ZnO nanopulveri ar tetrapodu morfoloģiju ir labs fotokatalizators

  19. Aqua­[2-(2-pyrid­yl)-1,8-naphthyridine-κ2 N 1,N 2](2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)ruthenium(II) bis­(hexa­fluorido­phosphate) acetone sesquisolvate

    PubMed Central

    Oyama, Dai; Yuzuriya, Kazumi; Takase, Tsugiko

    2011-01-01

    The asymmetric unit of the title compound, [Ru(C13H9N3)(C15H11N3)(H2O)](PF6)2·1.5C3H6O, consists of two crystallographically independent RuII complexes. Each complex is approximately octa­hedral with the RuII atom bound by an N,N′-coordinated 2-(2-pyrid­yl)-1,8-naphthyridine (pynp) ligand, a meridional 2,2′:6′,2′′-terpyridine (tpy) ligand and one aqua ligand. The tpy ligand is coordinated in a planar tridentate fashion with the central N atom closest to the RuII atom. The aqua ligand is trans to the pyridine N atom of pynp. The long Ru—O distances [2.150 (5) and 2.138 (5) Å] are typical for aqua ligands in polypyridyl ruthenium complexes. In the crystal, both intra­molecular O—H⋯N and inter­molecular O—H⋯O hydrogen bonds are observed. PMID:21754631

  20. A functional ruthenium(ii) complex for imaging biothiols in living bodies.

    PubMed

    Ye, Zhiqiang; Gao, Quankun; An, Xin; Song, Bo; Yuan, Jingli

    2015-05-07

    A unique ruthenium(ii) complex, [Ru(bpy)2(DNS-bpy)](PF6)2 [bpy: 2,2'-bipyridine, DNS-bpy: 4-(2,4-dinitrophenylthio)-2,2'-bipyridine], that can act as a probe for the recognition and luminescence sensing of biothiols has been designed and synthesized. Due to the presence of effective photo-induced electron transfer (PET) from the potent electron donor (Ru-bpy centre) to the strong electron acceptor (2,4-dinitrophenyl moiety), the Ru(ii) complex itself is weakly luminescent. Reaction of [Ru(bpy)2(DNS-bpy)](PF6)2 with biothiols leads to the replacement of the 2,4-dinitrophenyl moiety by biothiols, which results in the loss of PET within the complex, to allow recovery of the MLCT-based emission of the Ru(ii) complex with an 80-fold increase in luminescence intensity. Taking advantage of the high specificity and sensitivity, and the excellent photophysical properties of Ru(ii) complexes, [Ru(bpy)2(DNS-bpy)](PF6)2 was successfully applied to the luminescence imaging of biothiols in living Daphnia magna. The results demonstrated the practical applicability of [Ru(bpy)2(DNS-bpy)](PF6)2 as a luminescent probe for the monitoring of biothiols in living bodies.

  1. (η(6)-Benzene)-dichlorido(dicyclo-hexyl-phenyl-phosphane)ruthenium(II) benzene sesquisolvate.

    PubMed

    Muller, Alfred; Davis, Wade L

    2012-12-01

    The asymmetric unit of the title compound, [RuCl2(C6H6)(C18H27P)]·1.5C6H6, contains one mol-ecule of the Ru(II) complex and one and a half solvent molecules as one of these is located about a centre of inversion. The Ru(II) atom has a classical three-legged piano-stool environment being coordinated by an η(6)-benzene ligand [Ru-centroid = 1.6964 (6) Å], two chloride ligands with an average Ru-Cl bond length of 2.4138 (3) Å and a dicyclo-hexyl-phenyl-phosphane ligand [Ru-P = 2.3786 (3) Å]. The effective cone angle for the phosphane was calculated to be 158°. In the crystal, weak C-H⋯Cl hydrogen bonds link the Ru(II) complexes into centrosymmetric dimers. The crystal packing exhibits intra- and inter-molecular C-H⋯π inter-actions resulting in a zigzag pattern in the [101] direction.

  2. Electrogenerated chemiluminescence. 80. C-reactive protein determination at high amplification with [Ru(bpy)3]2+-containing microspheres.

    PubMed

    Miao, Wujian; Bard, Allen J

    2004-12-01

    Biotinylated anti-C-reactive protein (CRP) species were attached to the surface of streptavidin-coated magnetic beads (MB) and avidin-coated polystyrene microspheres/beads (PSB) entrapping a large number of electrogenerated chemiluminescence (ECL) labels ( approximately 10(9) Ru(bpy)(3)[B(C(6)F(5))(4)](2)/bead) to form anti-CRP<-->MB and Ru(II) subsetPSB/avidin<-->anti-CRP conjugates, respectively. Sandwich-type Ru(II) subsetPSB/avidin<-->anti-CRP CRP anti-CRP<-->MB aggregates were formed when Ru(II) subsetPSB/avidin<-->anti-CRP was mixed with anti-CRP<-->MB conjugates in the presence of analyte CRP. The newly formed aggregates were magnetically separated from the reaction media and dissolved in MeCN containing tri-n-propylamine as an ECL coreactant. ECL was carried out with a potential scan from 0 to 2.8 V vs Ag/Ag(+), and the ECL intensity was found to be proportional to the analyte CRP concentration over the range of 0.010-10 mug/mL. The CRP concentration of an unknown human plasma specimen was measured by the standard addition method based on this technique. Elimination of the nonspecific adsorption of the CRP system with several different blocking agents was also studied, and 2.0% bovine serum albumin was found to be best.

  3. Water-Soluble Ruthenium (II) Chiral Heteroleptic Complexes with Amoebicidal in Vitro and in Vivo Activity.

    PubMed

    Toledano-Magaña, Yanis; García-Ramos, Juan C; Torres-Gutiérrez, Carolina; Vázquez-Gasser, Cristina; Esquivel-Sánchez, José M; Flores-Alamo, Marcos; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Nequiz, Mario; Gudiño-Zayas, Marco; Laclette, Juan P; Carrero, Julio C; Ruiz-Azuara, Lena

    2017-02-09

    Three water-soluble Ru(II) chiral heteroleptic coordination compounds [Ru(en)(pdto)]Cl2 (1), [Ru(gly)(pdto)]Cl (2), and [Ru(acac)(pdto)]Cl (3), where pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine, en = ethylendiamine, gly = glycinate, and acac = acetylacetonate, have been synthezised and fully characterized. The crystal structures of compounds 1-3 are described. The IC50 values for compounds 1-3 are within nanomolar range (14, 12, and 6 nM, respectively). The cytotoxicity for human peripheral blood lymphocytes is extremely low (>100 μM). Selectivity indexes for Ru(II) compounds are in the range 700-1300. Trophozoites exposed to Ru(II) compounds die through an apoptotic pathway triggered by ROS production. The orally administration to infected mice induces a total elimination of the parasite charge in mice faeces 1-2-fold faster than metronidazole. Besides, all compounds inhibit the trophozoite proliferation in amoebic liver abscess induced in hamster. All our results lead us to propose these compounds as promising candidates as antiparasitic agents.

  4. Effects of TiO2 crystal structure on the luminescence quenching of [Ru(bpy)2(dppz)](2+)-intercalated into DNA.

    PubMed

    Chen, Linlin; Wang, Yi; Huang, Minggao; Li, Xiaodan; Zhu, Licai; Li, Hong

    2017-03-22

    The intercalation of [Ru(bpy)2(dppz)](2+) labeled as Ru(II) (bpy=2,2'-bipyridine and dppz=dipyrido[3,2,-a:2',3'-c]phenazine) into herring sperm DNA leads to the formation of emissive Ru(II)-DNA dyads, which can be quenched by TiO2 nanoparticles (NPs) and sol-gel silica matrices at heterogeneous interfaces. The calcinations temperature exhibits a remarkable influence on the luminescence quenching of the Ru(II)-DNA dyads by TiO2 NPs. With increasing calcinations temperature in the range from 200 to 850°C, the anatase-to-rutile TiO2 crystal structure transformation increases the average particle size and hydrodynamic diameter of TiO2 and DNA@TiO2. The anatase TiO2 has the stronger ability to unbind the Ru(II)-DNA dyads than the rutile TiO2 at room temperature. The TiO2 NPs and sol-gel silica matrices can quench the luminescence of the Ru(II) complex intercalated into DNA by selectively capturing the negatively DNA and positively charged Ru(II) complex to unbind the dyads, respectively. This present results provide new insights into the luminescence quenching and competitive binding of dye-labeled DNA dyads by inorganic NPs.

  5. Design of photoactive ruthenium complexes to study electron transfer and proton pumping in cytochrome oxidase.

    PubMed

    Durham, Bill; Millett, Francis

    2012-04-01

    This review describes the development and application of photoactive ruthenium complexes to study electron transfer and proton pumping reactions in cytochrome c oxidase (CcO). CcO uses four electrons from Cc to reduce O(2) to two waters, and pumps four protons across the membrane. The electron transfer reactions in cytochrome oxidase are very rapid, and cannot be resolved by stopped-flow mixing techniques. Methods have been developed to covalently attach a photoactive tris(bipyridine)ruthenium group [Ru(II)] to Cc to form Ru-39-Cc. Photoexcitation of Ru(II) to the excited state Ru(II*), a strong reductant, leads to rapid electron transfer to the ferric heme group in Cc, followed by electron transfer to Cu(A) in CcO with a rate constant of 60,000s(-1). Ruthenium kinetics and mutagenesis studies have been used to define the domain for the interaction between Cc and CcO. New ruthenium dimers have also been developed to rapidly inject electrons into Cu(A) of CcO with yields as high as 60%, allowing measurement of the kinetics of electron transfer and proton release at each step in the oxygen reduction mechanism.

  6. Effect of Bridge Alteration on Ground- and Excited-State Properties of Ruthenium(II) Complexes with Electron-Donor-Substituted Dipyrido[3,2-a:2',3'-c]phenazine Ligands.

    PubMed

    Shillito, Georgina E; Larsen, Christopher B; McLay, James R W; Lucas, Nigel T; Gordon, Keith C

    2016-11-07

    A series of Ru(II) 2,2'-bipyridine (bpy) complexes with an electron-accepting dipyrido[3,2-a:2',3'-c]phenazine (dppz) ligand coupled to an electron-donating triarylamine (TAA) group have been investigated. Systematic alteration of a bridging unit between the dppz and TAA allowed exploration into how communication between the donor and acceptor is perturbed by distance, as well as by steric and electronic effects. The effect of the bridging group on the electronic properties of the systems was characterized using a variety of spectroscopic methods, including Fourier transform-Raman (FT-Raman) spectroscopy, resonance Raman spectroscopy, and transient resonance Raman (TR(2)) spectroscopy. These methods were used in conjunction with ground- and excited-state absorption spectroscopy, electrochemical studies, and DFT calculations. The ground-state electronic absorption spectra show distinct variation with the bridging group, with the wavelength observed for the lowest energy electronic transition ranging from 449 nm to 522 nm, accompanied by large changes in the molar absorptivity. The lowest-energy Franck-Condon state was determined to be intra-ligand charge transfer (ILCT) in nature for most compounds. The presence of higher-energy metal-to-ligand charge transfer (MLCT) Ru(II) → bpy and Ru(II) → dppz transitions was also confirmed via resonance Raman spectroscopy. The TR(2) spectra showed characteristic dppz(• -) and TAA(• +) vibrations, indicating that the THEXI state formed was also ILCT in nature. Excited-state lifetime measurements reveal that the rate of decay is in accordance with the energy gap law and is not otherwise affected by the nature of the bridging unit.

  7. Homo- and Heterobimetallic Ruthenium(II) and Osmium(II) Complexes Based on a Pyrene-Biimidazolate Spacer as Efficient DNA-Binding Probes in the Near-Infrared Domain.

    PubMed

    Mardanya, Sourav; Karmakar, Srikanta; Mondal, Debiprasad; Baitalik, Sujoy

    2016-04-04

    We report in this work a new family of homo- and heterobimetallic complexes of the type [(bpy)2M(Py-Biimz)M'(II)(bpy)2](2+) (M = M' = Ru(II) or Os(II); M = Ru(II) and M' = Os(II)) derived from a pyrenyl-biimidazole-based bridge, 2-imidazolylpyreno[4,5-d]imidazole (Py-BiimzH2). The homobimetallic Ru(II) and Os(II) complexes were found to crystallize in monoclinic form with space group P21/n. All the complexes exhibit strong absorptions throughout the entire UV-vis region and also exhibit luminescence at room temperature. For osmium-containing complexes (2 and 3) both the absorption and emission band stretched up to the NIR region and thus afford more biofriendly conditions for probable applications in infrared imaging and phototherapeutic studies. Detailed luminescence studies indicate that the emission originates from the respective (3)MLCT excited state mainly centered in the [M(bpy)2](2+) moiety of the complexes and is only slightly affected by the pyrene moiety. The bimetallic complexes show two successive one-electron reversible metal-centered oxidations in the positive potential window and several reduction processes in the negative potential window. An efficient intramolecular electronic energy transfer is found to occur from the Ru center to the Os-based component in the heterometallic dyad. The binding studies of the complexes with DNA were thoroughly studied through different spectroscopic techniques such as UV-vis absorption, steady-state and time-resolved emission, circular dichroism, and relative DNA binding study using ethidium bromide. The intercalative mode of binding was suggested to be operative in all cases. Finally, computational studies employing DFT and TD-DFT were also carried out to interpret the experimentally observed absorption and emission bands of the complexes.

  8. Variable noninnocence of substituted azobis(phenylcyanamido)diruthenium complexes.

    PubMed

    Choudhuri, Mohommad M R; Behzad, Mahdi; Al-Noaimi, Mousa; Yap, Glenn P A; Kaim, Wolfgang; Sarkar, Biprajit; Crutchley, Robert J

    2015-02-16

    The synthetic chemistry of substituted 4,4'-azobis(phenylcyanamide) ligands was investigated, and the complexes [{Ru(tpy)(bpy)}2(μ-L)][PF6]2, where L = 2,2':5,5'-tetramethyl-4,4'-azobis(phenylcyanamido) (Me4adpc(2-)), 2,2'-dimethyl-4,4'-azobis(phenylcyanamido) (Me2adpc(2-)), unsubstituted (adpc(2-)), 3,3'-dichloro-4,4'-azobis(phenylcyanamido) (Cl2adpc(2-)), and 2,2':5,5'-tetrachloro-4,4'-azobis(phenylcyanamido) (Cl4adpc(2-)), were prepared and characterized by cyclic voltammetry and vis-near-IR (NIR) and IR spectroelectrochemistry. The room temperature electron paramagnetic resonance spectrum of [{Ru(tpy)(bpy)}2(μ-Me4adpc)](3+) showed an organic radical signal and is consistent with an oxidation-state description [Ru(II), Me4adpc(•-), Ru(II)](3+), while that of [{Ru(tpy)(bpy)}2(μ-Cl2adpc)](3+) at 10 K showed a low-symmetry Ru(III) signal, which is consistent with the description [Ru(III), Cl2adpc(2-), Ru(II)](3+). IR spectroelectrochemistry data suggest that [{Ru(tpy)(bpy)}2(μ-adpc)](3+) is delocalized and [{Ru(tpy)(bpy)}2(μ-Cl2adpc)](3+) and [{Ru(tpy)(bpy)}2(μ-Cl4adpc)](3+) are valence-trapped mixed-valence systems. A NIR absorption band that is unique to all [{Ru(tpy)(bpy)}2(μ-L)](3+) complexes is observed; however, its energy and intensity vary depending on the nature of the bridging ligand and, hence, the complexes' oxidation-state description.

  9. Synthesis, structural, photophysical and electrochemical studies of various d-metal complexes of btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] ligands that give rise to the formation of metallo-supramolecular gels.

    PubMed

    Byrne, Joseph P; Kitchen, Jonathan A; Kotova, Oxana; Leigh, Vivienne; Bell, Alan P; Boland, John J; Albrecht, Martin; Gunnlaugsson, Thorfinnur

    2014-01-07

    2,6-Bis(1,2,3-triazol-4-yl)pyridine (btp) is a terdentate binding motif that is synthesised modularly via the CuAAC reaction. Herein, we present the synthesis of ligands 1 and 2 and the investigation of the coordination chemistry, photophysical behaviour and electrochemistry of complexes of these with a number of d-metal ions (e.g. Ru(II), Ir(III), Ni(II) and Pt(II)). The X-ray crystal structures of ligand 1 and the complexes [Ru·2(2)](PF6)Cl, [Ni·1(2)](PF6)Cl and [Ir·1Cl3] are also presented. All of the complexes displayed non-classical triazolyl C-H···Cl(-) hydrogen bonding. All but one complex showed no metal-based luminescence at room temperature, while all of the Pt(ii) complexes displayed luminescence at 77 K. The electrochemistry of the Ru(II) complexes was also studied and these complexes were found to have higher oxidation potentials than analogous compounds. The redox behaviour of [RuL2](2+) complexes with both 1 and 2 was nearly identical, while [Ru·1Cl2(DMSO)] was oxidised at significantly lower potential. We also show that the Ru(II) complex of 2, [Ru·2(2)](PF6)Cl, gave rise to the formation of a metallo-supramolecular gel, the morphology of which was studied using scanning electron and helium ion microscopy.

  10. Time resolved study of three ruthenium(II) complexes at micellar surfaces: A new long excited state lifetime probe for determining critical micelle concentration of surfactant nano-aggregates.

    PubMed

    Patra, Digambara; Chaaban, Ahmad H; Darwish, Shaza; Saad, Huda A; Nehme, Ali S; Ghaddar, Tarek H

    2016-02-01

    Three different ruthenium complexes have been synthesized and their luminescence properties in different solvent environments are reported. Luminescence intensities and excited state lifetimes of Ru-I, Ru-II and Ru-III vary with solvent viscosity. The excited state lifetime of Ru-I linearly increases in the viscosity range 1.76-12,100cP. Ru-II shows two linear increases: one in the low and another in the high viscosity ranges, whereas Ru-III illustrates a linear enhancement only in the low viscosity range. Interestingly, luminescence intensities and excited state lifetimes of Ru-I, Ru-II and Ru-III are found to be sensitive to nano-aggregation. However, the surfactant head charge and that of the ruthenium center as well as the hydrophobic tail of the ancillary ligand of the complexes have a great role in deciding the nature of the interaction and on the excited state properties at micellar surfaces. It is proposed that the long lifetime of Ru-III in water could be due to the coiling of the carbon chain of the ancillary ligand around the ruthenium center. At micelle surface, this coiling of the carbon chain is lost due to the parallel alignment with surfactants and thus quenching of the excited state lifetime is seen. Furthermore, it is shown that the variation of the excited state lifetime with respect to the change in surfactant concentration is a result of the formation of micelles from the surfactant monomer, thus, a novel technique for the determination of the critical micelle concentration (cmc) based on the long excited state lifetime of Ru-III located at the micellar nano-aggregates is reported.

  11. A ruthenium(II) complex-based lysosome-targetable multisignal chemosensor for in vivo detection of hypochlorous acid.

    PubMed

    Cao, Liyan; Zhang, Run; Zhang, Wenzhu; Du, Zhongbo; Liu, Chunjun; Ye, Zhiqiang; Song, Bo; Yuan, Jingli

    2015-11-01

    Although considerable efforts have been made for the development of ruthenium(II) complex-based chemosensors and bioimaging reagents, the multisignal chemosensor using ruthenium(II) complexes as the reporter is scarce. In addition, the mechanisms of cellular uptake of ruthenium(II)-based chemosensors and their intracellular distribution are ill-defined. Herein, a new ruthenium(II) complex-based multisignal chemosensor, Ru-Fc, is reported for the highly sensitive and selective detection of lysosomal hypochlorous acid (HOCl). Ru-Fc is weakly luminescent because the MLCT (metal-to-ligand charge transfer) state is corrupted by the efficient PET (photoinduced electron transfer) process from Fc (ferrocene) moiety to Ru(II) center. The cleavage of Fc moiety by a HOCl-induced specific reaction leads to elimination of PET, which re-establishes the MLCT state of the Ru(II) complex, accompanied by remarkable photoluminescence (PL) and electrochemiluminescence (ECL) enhancements. The result of MTT assay showed that the proposed chemosensor, Ru-Fc, was low cytotoxicity. The applicability of Ru-Fc for the quantitative detection of HOCl in live cells was demonstrated by the confocal microscopy imaging and flow cytometry analysis. Dye colocalization studies confirmed very precise distribution of the Ru(II) complex in lysosomes, and inhibition studies revealed that the caveolae-mediated endocytosis played an important role during the cellular internalization of Ru-Fc. By using Ru-Fc as a chemosensor, the imaging of the endogenous HOCl generated in live macrophage cells during the stimulation was achieved. Furthermore, the practical applicability of Ru-Fc was demonstrated by the visualizing of HOCl in laboratory model animals, Daphnia magna and zebrafish.

  12. Photocatalytic degradation of bromothymol blue with Ruthenium(II) bipyridyl complex in aqueous basic solution

    NASA Astrophysics Data System (ADS)

    Fui, Mark Lee Wun; Hang, Ng Kim; Arifin, Khuzaimah; Minggu, Lorna Jeffery; Kassim, Mohammad Bin

    2016-11-01

    Ru(II) bipyridyl photocatalyst with the formula, [Ru(bpy)2(o-CH3-bzpypz)](PF6)2] (Ru01) and [Ru(bpy)2(o-Cl-bzpypz)](PF6)2] (Ru02), where bpy = 2,2'-bipyridyl, o-CH3-bzpypz = (3-(pyridin-2-yl)-1H-pyrazol-1-yl)(o-tolyl)methanone and o-Cl-bzpypz = (2-chlorophenyl)(3-(pyridin-2-yl)-1H-pyrazol-1-yl)methanone, has been successfully synthesized and characterized on the basis of C, H, N elemental analysis, IR, UV-Vis and NMR spectroscopy. Both Ru(II) complexes showed Infrared stretching frequencies at 1742-1736 cm-1 v(C=O), 1605 cm-1 v(C=N) and 842-837 cm-1 v(PF). Full geometry optimization of the complex structures were carried out using DFT method with B3LYP exchange-correlation functional and 6-31G (d,p) basis-set for H, C, N, O and Cl; and LAN2LDZ basis set as effective core potential for the ruthenium centre. The highest-occupied molecular orbital (HOMO) energy levels of Ru01 and Ru02 are -5.63 and -5.55 eV, respectively. The photocatalytic properties of the Ru(II) complexes were evaluated by studying the degradation of aqueous bromothymol blue (BTB) under light illumination. The mechanisms are presented and discussed to highlight the role of the ruthenium complex in the degradation process.

  13. Theoretical investigation on dye sensitizer solar cell: Spin-forbidden transition

    SciTech Connect

    Imamura, Yutaka

    2015-12-31

    We studied spin-forbidden transitions of metal polypyridyl sensitizers by two-component relativistic time-dependent density functional theory with the spin-orbit interaction based on Tamm-Dancoff approximation. The singlet-to-triplet transition, which is assigned to a metal-to-ligand charge-transfer type excitation, appears for a phosphine-coordinated Ru(II), DX1. Absorption spectra of the modified DX1 molecules, whose Ru is replaced with Fe and Os, were also calculated for examining the effects of metals on the spin-orbit interaction.

  14. [(1R)-3-Benzoyl-1,7,7-trimethyl­bicyclo­[2.2.1]heptan-2-onato-κ2 O,O′]chlorido(η6-p-cymene)ruthenium(II)

    PubMed Central

    Harrad, Mohamed Anouar; Valerga, Pedro; Puerta, M. Carmen; Ali, Mustapha Ait; El Firdoussi, Larbi; Karim, Abdellah

    2010-01-01

    The asymmetric unit of the title compound, [RuCl(C10H14)(C17H19O2)], contains two diastereomers. In both, the RuII ion has a tetra­hedral coordination, formed by two O atoms of the camphor-derived ligand and the p-cymene and Cl ligands. In the crystal structure, weak inter­molecular C—H⋯Cl inter­actions link the mol­ecules into columns propagated along [010]. PMID:21580227

  15. Rh(III) and Ru(II)-catalyzed site-selective C-H alkynylation of quinolones.

    PubMed

    Kang, Dahye; Hong, Sungwoo

    2015-04-17

    C2- and C5-alkynylated quinolone scaffolds are core structures of numerous biologically active molecules. Utilizing TIPS-EBX as an alkynylating agent, we have developed an efficient and site-selective C5 alkynylation of 4-quinolones that is directed by the weakly coordinating carbonyl group. In addition, Ru(II) catalyzed C2-selective alkynylation was successfully realized via N-pyrimidyl group-directed cross-couplings to access valuable C2-alkynylated 4-quinolones. This strategy provides direct access to the C2 or C5 alkynylated 4-quinolones. Furthermore, the reaction was applied to isoquinolones for C3-selective alkynylation.

  16. Tuning the cytotoxic properties of new ruthenium(III) and ruthenium(II) complexes with a modified bis(arylimino)pyridine Schiff base ligand using bidentate pyridine-based ligands.

    PubMed

    Garza-Ortiz, Ariadna; Maheswari, Palanisamy Uma; Lutz, Martin; Siegler, Maxime A; Reedijk, Jan

    2014-06-01

    Synthesis, spectroscopy, characterization, structures, and cytotoxicity studies of 2,6-bis(2,6-diisopropylphenyliminomethyl)pyridine (LLL) ruthenium compounds are described. The starting compound [RuCl3(LLL)] has been fully characterized using IR spectroscopy, UV-vis spectroscopy, electrospray ionization mass spectrometry, and NMR spectroscopy. In addition, the crystal structure of the ligand LLL has been determined using single-crystal X-ray diffraction. With the ruthenium(III) trichloride compound as starting material, a new family of Ru(II) complexes with a number of neutral and charged bidentate co-ligands have been synthesized and used for characterization and cytotoxicity studies. The synthesis of the corresponding [Ru(II)LLL(LL)Cl](+/0) complexes with co-ligands- LL is 1,10-phenanthroline, 2,2'-bipyridyl, 2-(phenylazo)pyridine, 2-(phenylazo)-3-methylpyridine, 2-(tolylazo)pyridine, or the anionic 2-picolinate-is reported. Analytical, spectroscopic (IR spectroscopy, UV-vis spectroscopy, (1)H NMR spectroscopy, and electrospray ionization mass spectrometry), and structural characterization of the new compounds is described. Crystal structure analyses of two Ru(II) compounds show a slightly distorted octahedral Ru(II) geometry with tridentate LLL coordinated in a planar meridional fashion, and the chelating co-ligand (LL) and a chloride ion complete the octahedron. The co-ligand plays a significant role in modulating the physicochemical and cytotoxic properties of these new ruthenium complexes. The in vitro cytotoxicity of these new Ru(II) complexes (half-maximal inhibitory concentration, IC50, of 0.5-1.5 μM), in comparison with the parent Ru(III) compound (half-maximal inhibitory concentration of 3.9-4.3 μM) is higher for several of the human cancer cell lines tested. The cytotoxic activity of some of the new ruthenium compounds is even higher than that of cisplatin in the same cancer cell lines. The cytotoxicity of these new anticancer compounds is

  17. The direct synthesis of organic and organometallic-containing MICA-type aluminosilicates

    SciTech Connect

    Carrado, K.A.; Awaluddin, A.

    1993-08-01

    Layer-silicate clay structures can provide supramolecular organization for catalysis, chiral reactions, colloid science, and electron transfer. The authors have successfully modified the experimental preparations of several different layer silicates in order to incorporate a wide variety of organic and organometallic molecules in the clay galleries. Synthesis and physical characterization of these materials are described and compared to ion-exchanged natural clay analogs. In addition, the photophysical properties of organometallic Ru(II) complexes incorporated by direct hydrothermal crystallization into synthetic clays were measured. 3 tabs, 21 refs.

  18. Ru(II)-Catalyzed Mild [3+2] Carbocyclization with Aromatic N-H Ketimines and Internal Alkynes Using N-Heterocyclic Carbene (NHC) Ligands

    PubMed Central

    Zhang, Jing; Ugrinov, Angel

    2013-01-01

    A convenient and highly efficient synthesis of indenamines has been developed via ruthenium-catalyzed [3+2] carbocyclization under very mild conditions. A catalyst system of Ru(II) π-allyl precursor and N-heterocyclic carbene (NHC) ligand promotes facile coupling between aromatic N–H ketimines with internal alkynes at mild temperatures, without added oxidants or other metal salts, and in non-polar solvents. A proposed mechanism involves imine-directed activation of aromatic C–H bond, alkyne insertion, and carbocyclization by intramolecular imine insertion into Ru–alkenyl linkages. PMID:23696055

  19. Design and Implementation of A Backend Multiple-Processor Relational Data Base Computer System.

    DTIC Science & Technology

    1981-12-01

    TITIS ~ ~ rUII !1-1C J d AvallZ’CLI)tY C,1; -e 1" SPECr ~to’ ..... ii’ i Contents P a Preface..................... . . ... . .. .. .. . . ... List of...the ordering of the columns is insignificant, and, (4) all table entries are atomic (nondecomposable) data items. Each row of the relation is called a...relation is one in which each attribute 22 contains only atomic (nondecomposable) values. Three levels of normalization have been defined. All normalized

  20. High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation.

    PubMed

    Yamada, Yusuke; Oyama, Kohei; Gates, Rachel; Fukuzumi, Shunichi

    2015-05-04

    A near-stoichiometric amount of O2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru(II) (2,2'-bipyridine)3 ] as a photosensitizer, Na2 S2 O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co(III) or Pt(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes.

  1. Dichlorido(furfuryl-amine-κN)(η-hexa-methyl-benzene)-ruthenium(II).

    PubMed

    Garci, Amine; Thai, Trieu-Tien; Süss-Fink, Georg; Therrien, Bruno

    2011-11-01

    The single-crystal X-ray structure analysis of [RuCl(2)(C(12)H(18))(C(5)H(7)NO)] reveals a distorted piano-stool geometry around the Ru(II) atom, with a hexa-methyl-benzene ligand, two chloride ligands and a furfuryl-amine ligand, the latter coordinating through the amine group. In the crystal, a dimeric structure is observed as a result of N-H⋯Cl inter-actions between two symmetry-related mol-ecules.

  2. A complex containing three different kinds of Ru-N bonds: ethoxydinitronitrosyl(N,N,N',N'-tetramethylethylenediamine-kappa2N,N')ruthenium(II).

    PubMed

    Albores, Pablo; Chaia, Zulema D; Baraldo, Luis; Castellano, Eduardo E; Piro, Oscar E

    2002-04-01

    The octahedral title compound, [Ru(C(2)H(5)O)(NO)(NO(2))(2)(C(6)H(16)N(2))], crystallizes in the rhombohedral space group P3(1) with an ethoxy ligand axially coordinated trans to the nitrosyl ligand. The RuII ion is equatorially coordinated by a tetramethylethylenediamine group acting as a bidentate ligand, and to two nitro moieties whose planes are tilted with respect to the mean equatorial plane. Each nitrogen ligand bonded to the metallic centre has a different hybridization state.

  3. Metamodels for New Designs of Outer-Rotor Brushless Synchronous Electric Motors

    NASA Astrophysics Data System (ADS)

    Dirba, J.; Lavrinovicha, L.

    2014-04-01

    The authors consider the possibilities to synthesise metamodels for the analysis and optimisation of brushless synchronous motors. The metamodels are presented for new designs of the outer-rotor permanent magnet synchronous motor and the outer-rotor reluctance motor. The metamodels are synthesised based on the results obtained by the numerical calculations of magnetic field taking into account magnetic saturation. Analysis of the results for the motor magnetic field and tests of the metamodels at the selected and intermediate points shows that these can be synthesised with acceptable accuracy using numerical calculations instead of expensive real experiments. Rakstā ir apskatītas metamodeļu iegūšanas iespējas to izmantošanai bezkontaktu sinhrono dzinēju analīzē un optimizācijā. Ir iegūti metamodeļi sinhronam dzinējam ar pastāvīgajiem magnētiem un reaktīvam dzinējam ar ārējo rotoru. Sintezēto metamodeļu iegūšanai izmantoti elektrisko dzinēju magnētiskā lauka skaitlisko aprēķinu rezultāti, ievērojot magnētiskās ķēdes piesātinājumu. Metamodeļu pārbaude aprēķinu un starppunktos parādīja, ka to iegūšanai dārgo reālo eksperimentu vietā var izmantot magnētiskā lauka aprēķinu rezultātus.

  4. Development and Experimental Study of Phantoms for Mapping Skin Chromophores

    NASA Astrophysics Data System (ADS)

    Silapetere, A.; Spigulis, J.; Saknite, I.

    2014-06-01

    Skin chromophore phantoms are widely used for better understanding of the light interaction with tissue and for calibration of skin diagnostic imaging techniques. In this work, different phantoms were examined and compared in order to find biologically equivalent substances that are the most promising for this purpose. For mimicking the skin medium and layered structure, a fibrin matrix with epidermal and dermal cell inclusion was used. Synthesized bilirubin, red blood cells and nigrosin were taken as absorbers. For spectral analysis of the developed phantoms a computer-aided multispectral imaging system Nuance 2.4 (Cambridge Research & Instrumentation, Inc., USA) was used. In this study, skin phantoms were created using such substances as bilirubin, melanin, haemoglobin and nigrosin Mūsdienās multispektrālās attēlošanas iekārtas izmanto ādas parametru un fizioloģisko procesu aprakstīšanai gan pētniecības, gan diagnostikas nolūkiem. Iekārtu darbības uzlabošanai ir nepieciešams labāk saprast gaismas mijiedarbību ar audiem, kā arī veikt šo iekārtu kalibrēšanu ar ādas maketu. Redzamā un tuvā infrasarkanā optiskā diapazona spektroskopijā ir svarīgi ādas maketi, kas simulē audu slāņaino struktūru un ķīmiskās īpašības, kā arī maketi, kas ir bioloģiski līdzvērtīgi. Šajā pētījumā tika izveidots ādas makets no bioloģiskām un ķīmiski sintezētām struktūrām. Ādas maketa izveidei tika izmantota fibrīna matrica ar dermālo un epidermālo šūnu piejaukumu, lai imitētu ādas slāņaino struktūru. Fibrīna matrica tiek veidota no 0,47 ml asins plazmas, 0,4 ml fizioloģiskā šķīduma, 0,8 μl treneksāmskābes un 89,4 μl kalcija glukanāta. Izveidoto matricu ievieto šūnu inkubatorā, lai tā polimerizētos. Nākošais slānis tiek veidots ar dermālo šūnu piejaukumu (180-270 šūnas), un pēdējais fibrīna matriksa slānis tiek veidots ar epidermālo šūnu piejaukumu (270 šūnas) un šūnu aug

  5. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  6. Photoinduced energy transfer in transition metal complex oligomers

    SciTech Connect

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared, characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.

  7. Crystal structure of bis-[μ-(4-meth-oxy-phen-yl)methane-thiol-ato-κ(2) S:S]bis-[chlorido-(η(6)-1-isopropyl-4-methyl-benzene)-ruthenium(II)] chloro-form disolvate.

    PubMed

    Stíbal, David; Süss-Fink, Georg; Therrien, Bruno

    2015-10-01

    The mol-ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pr (i) )2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related Ru(II) atoms are bridged by two 4-meth-oxy-α-toluene-thiol-ato [(4-meth-oxy-phen-yl)methane-thiol-ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the Ru(II) atom. In the crystal, the CH moiety of the chloro-form mol-ecule inter-acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter-acts more weakly with the methyl group of the bridging 4-meth-oxy-α-toluene-thiol-ato unit. This assembly leads to the formation of supra-molecular chains extending parallel to [021].

  8. Ruthenium(II) and osmium(II) 1,2,3-triazolylidene organometallics: a preliminary investigation into the biological activity of 'click' carbene complexes.

    PubMed

    Kilpin, Kelly J; Crot, Stéphanie; Riedel, Tina; Kitchen, Jonathan A; Dyson, Paul J

    2014-01-21

    Taking advantage of the facile and versatile synthetic properties of 'click' 1,2,3-triazolylidene N-heterocyclic carbenes (tzNHC's), a range of new organometallic Ru(II) and Os(II) arene complexes containing functionalised tzNHC ligands, [M(η(6)-p-cymene)(tzNHC)Cl2] [M = Ru(II), Os(II)], have been synthesised and fully characterised, including the X-ray crystal structure of one of the Os(II) complexes. The tzNHC ligands remain coordinated to the metal centres under relevant physiological conditions, and following binding to the model protein, ubiquitin. The in vitro cytotoxicity of the compounds towards human ovarian cancer cells is dependent on the substituent on the tzNHC ligand but is generally <50 μM and in some cases <1 μM, whilst still retaining a high degree of selectivity towards cancer cells over healthy cells (1.85 μM in A2780 ovarian cancer cells versus 435 μM in human embryonic kidney cells in one case).

  9. Ruthenium(II) sulfoxide-maltolato and -nitroimidazole complexes: synthesis and MTT assay.

    PubMed

    Wu, Adam; Kennedy, David C; Patrick, Brian O; James, Brian R

    2003-11-17

    Ru(II) sulfoxide-maltolato complexes, Ru(ma)(2)(L)(2) (L = DMSO (1a) and TMSO (1b) or L(2) = BESE (1c)), were synthesized, as well as the analogous ethylmaltolato derivatives, Ru(etma)(2)(L)(2) (2a-c) (ma = 3-hydroxy-2-methylpyran-4-onate, etma = 2-ethyl-3-hydroxypyran-4-onate, TMSO = tetramethylene sulfoxide, BESE = 1,2-bis(ethylsulfinyl)ethane). A Ru(II) bidentate sulfoxide-metronidazole complex, RuCl(2)(BESE)(metro)(2) (3), was also synthesized (metro = metronidazole = 2-methyl-5-nitroimidazole-1-ethanol). The complexes were characterized generally by (1)H NMR, UV-vis, and IR spectroscopies, as well as MS, elemental analysis, solution conductivity, and cyclic voltammetry. The molecular structures of Ru(ma)(2)(S,R-BESE) (1c) and trans-RuCl(2)(R,R-BESE)(metro)(2) (3) were determined by X-ray crystallography. All sulfoxide ligands are S-bonded. The complexes were tested against human breast cancer cells (MDA-MB-435S) using an in vitro MTT assay, a colorimetric determination of cell viability: 2a,b exhibit the lowest IC(50) values of 190 +/- 10 and 220 +/- 10 microM, respectively. Cisplatin exhibits an IC(50) value of 30 +/- 5 microM.

  10. Measurements of contact specific low-bias negative differential resistance of single metalorganic molecular junctions

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfeng; Samanta, Satyabrata; Guo, Cunlan; Locklin, Jason; Xu, Bingqian

    2013-06-01

    Negative differential resistance (NDR) behaviors of single molecule junctions composed of a thiol-terminated Ru(ii) bis-terpyridine (Ru(tpy-SH)2) molecule sandwiched between two gold electrodes are measured using a specifically modified scanning probe microscope break junction technique (SPMBJ) at room temperature. The low-bias (0.623 +/- 0.135 V) NDR observed for one of the three conductance groups is contact specific and is caused by a bias induced electrode-molecule coupling changes.Negative differential resistance (NDR) behaviors of single molecule junctions composed of a thiol-terminated Ru(ii) bis-terpyridine (Ru(tpy-SH)2) molecule sandwiched between two gold electrodes are measured using a specifically modified scanning probe microscope break junction technique (SPMBJ) at room temperature. The low-bias (0.623 +/- 0.135 V) NDR observed for one of the three conductance groups is contact specific and is caused by a bias induced electrode-molecule coupling changes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01284k

  11. Mechanistic insights into electrocatalytic CO2 reduction within [Ru(II)(tpy)(NN)X]n+ architectures.

    PubMed

    White, Travis A; Maji, Somnath; Ott, Sascha

    2014-10-28

    A series of Ru(II)-polypyridyl complexes of the design [Ru(II)(tpy)(NN)X](n+) (tpy = 2,2':6',2''-terpyridine; NN = bidentate polypyridine; X = Cl(-) or CH3CN; n = 1 or 2) have been synthesized and analyzed for their ability to function as electrocatalysts in the reduction of CO2 to CO. Varying the electron-donating/withdrawing character of the NN polypyridyl ligand has allowed for modification of electron density at the formally Ru(II) metal center. Complexes where X = Cl(-) display ligand substitution for CH3CN with differing rates of Cl(-) dissociation (k-Cl), therefore providing a degree of insight into the electron density and thus the chemical activity at the Ru(II) center. Detailed analysis of the cyclic voltammograms under argon vs. CO2 atmospheres using multiple switching potentials and scan rates ranging from ν = 25-2000 mV s(-1) has painted a picture of how monodentate ligand lability due to NN polypyridyl electron-donating character is related to electrocatalytic CO2 reduction activity of Ru(II)-polypyridyl complexes. From these studies, multiple mechanistic pathways towards generating the catalytically active [Ru(tpy(-))(NN(-))CO2](0) species are proposed and differ via the order of electrochemical and chemical processes.

  12. Proton-Coupled Electron-Transfer Processes in Ultrafast Time Domain: Evidence for Effects of Hydrogen-Bond Stabilization on Photoinduced Electron Transfer.

    PubMed

    Dey, Ananta; Dana, Jayanta; Aute, Sunil; Maity, Partha; Das, Amitava; Ghosh, Hirendra N

    2017-03-08

    The proton-coupled electron-transfer (PCET) reaction is investigated for a newly synthesized imidazole-anthraquinone biomimetic model with a photoactive Ru(II) -polypyridyl moiety that is covalently coupled to the imidazole fragment. Intramolecular H-bonding interactions between imidazole and anthraquinone moieties favor the PCET process; this can be correlated to an appreciable positive shift in the one-electron reduction potential of the coordinated anthraquinone moiety functionalized with the imidazole fragment. This can also be attributed to the low luminescence quantum yield of the Ru(II) -polypyridyl complex used. The dynamics of the intramolecular electron-transfer (ET) and PCET processes are studied by using femtosecond transient absorption spectroscopy. The steady-state spectroscopic studies and the results of the time-resolved absorption studies confirm that H-bonded water molecules play a major role in both ET and PCET dynamics as a proton relay in the excited state. The electron-transfer process is followed by a change in the H-bonding equilibrium between AQ and imidazole in acetonitrile solvent, and protonation of AQ(.-) by water leads to PCET in the presence of water. A slower forward and backward electron-transfer rate is observed in the presence of D2 O compared with that in H2 O. These results provide further experimental support for a detailed understanding of the PCET process.

  13. Photodissociation of a ruthenium(II) arene complex and its subsequent interactions with biomolecules: a density functional theory study.

    PubMed

    Wang, Hanlu; DeYonker, Nathan J; Zhang, Xiting; Zhao, Cunyuan; Ji, Liangnian; Mao, Zong-Wan

    2012-10-01

    The piano-stool Ru(II) arene complex [(η⁶-benz)Ru(bpm)(py)]²⁺ (benz = benzene, bpm = 2,2'-bipyrimidine, and py = pyridine), which is conventionally nonlabile (on a timescale and under conditions relevant for biological reactivity), can be activated by visible light to selectively photodissociate the monodentate ligand (py). In the present study, the aquation and binding of the photocontrolled ruthenium(II) arene complex [(η⁶-benz)Ru(bpm)(py)]²⁺ to various biomolecules are studied by density functional theory (DFT) and time-dependent DFT (TDDFT). Potential energy curves (PECs) calculated for the Ru-N (py) bonds in [(η⁶-benz)Ru(bpm)(py)]²⁺ in the singlet and triplet state give useful insights into the photodissociation mechanism of py. The binding energies of the various biomolecules are calculated, which allows the order of binding affinities among the considered nuleic-acid- or protein-binding sites to be discerned. The kinetics for the replacement of water in the aqua complex with biomolecules is also considered, and the results demonstrate that guanine is superior to other biomolecules in terms of coordinating with the Ru(II) aqua adduct, which is in reasonable agreement with experimental observations.

  14. Influence of different ruthenium(II) bipyridyl complex on the photocatalytic H 2 evolution over TiO 2 nanoparticles with mesostructures

    NASA Astrophysics Data System (ADS)

    Peng, Tianyou; Ke, Dingning; Cai, Ping; Dai, Ke; Ma, Liang; Zan, Ling

    H 2 production over dye-sensitized Pt/TiO 2 nanoparticles with mesostructures (m-TiO 2) under visible light (λ > 420 nm) was investigated by using methanol as electron donors. Experimental results indicate that three types of ruthenium(II) bipyridyl complex dyes (one binuclear Ru, two mononuclear Ru), which can be attached to Pt/ m-TiO 2 with different linkage modes, show different photosensitization effects due to their different coordination circumstances and physicochemical properties. The dye tightly linked with m-TiO 2 has better durability but the lowest H 2 evolution efficiency, whereas the loosely attached dyes possess higher H 2 evolution efficiency and preferable durability. It seems that the dynamic equilibrium between the linkage of the ground state dye with TiO 2 and the divorce of the oxidization state dye from the surfaces plays a crucial role in the photochemical behavior during the photocatalyst sensitization process. It is helpful to improve the H 2 evolution efficiency by enhancing the electron injection and hindering the backward transfer. The binuclear Ru(II) dye shows a better photosensitization in comparison with mononuclear Ru(II) dyes due to its large molecular area, conjugation system, and "antenna effect", which, in turn, improve the visible light harvesting and electron transfer between the dye molecules and TiO 2.

  15. Heteroleptic Ru(ii)-bipyridine complexes based on hexylthioether-, hexyloxy- and hexyl-substituted thienylenevinylenes and their application in dye-sensitized solar cells.

    PubMed

    Urbani, Maxence; Sánchez Carballo, María; Kumar, Sangeeta Amit; Vázquez, Purificación; Grätzel, Michael; Khaja Nazeeruddin, Mohammad; Langa, Fernando; Torres, Tomás

    2016-04-28

    A series of eight Ru(ii) heteroleptic complexes incorporating an ancillary [2,2']bipyridine functionalised at the [4,4'] positions with one (-type) or two (-type) thienylenevinylenes (nTVs, n = 2 or 4) is reported. Three types of substitutions have been used for nTVs: hexylthioether, hexyloxy and hexyl. The characterisation of the half-sandwich intermediates and final complexes is provided. In particular, the half-sandwich complexes in the -type series are obtained as a racemate, whereas the heteroleptic complexes consist of two regioisomers. Finally, these complexes have been tested as dyes in dye-sensitized solar cells (DSSCs). Counterintuitively, better performances were obtained for -type complexes with shorter 2TV moieties. The best performing dye was the Ru(ii) complex mono-functionalized with a 2TV moiety having an hexylthioether substitution (), which achieved a maximum power efficiency of 2.77% under full sun illumination (AM1.5G standard conditions). The structure-performance relationship in DSSCs is discussed based on photovoltaic and electrochemical data and DFT-calculations.

  16. Experimental, numerical, and mechanistic analysis of the nonmonotonic relationship between oscillatory frequency and photointensity for the photosensitive Belousov-Zhabotinsky oscillator

    NASA Astrophysics Data System (ADS)

    Ren, Lin; Fan, Bowen; Gao, Qingyu; Zhao, Yuemin; Luo, Hainan; Xia, Yahui; Lu, Xingjie; Epstein, Irving R.

    2015-06-01

    The oscillation frequency of a nonlinear reaction system acts as a key factor for interaction and superposition of spatiotemporal patterns. To control and design spatiotemporal patterns in oscillatory media, it is important to establish the dominant frequency-related mechanism and the effects of external forces and species concentrations on oscillatory frequency. In the Ru(bipy)32+-catalyzed Belousov-Zhabotinsky oscillator, a nonmonotonic relationship exists between light intensity and oscillatory frequency (I-F relationship), which is composed of fast photopromotion and slow photoinhibition regions in the oscillation frequency curve. In this work, we identify the essential mechanistic step of the I-F relationship: the previously proposed photoreaction Ru(II)* + Ru(II) + BrO3- + 3H+ → HBrO2 + 2Ru(III) + H2O, which has both effects of frequency-shortening and frequency-lengthening. The concentrations of species can shift the light intensity that produces the maximum frequency, which we simulate and explain with a mechanistic model. This result will benefit studies of pattern formation and biomimetic movement of oscillating polymer gels.

  17. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    PubMed

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level.

  18. Photochemical activation of ruthenium(II)-pyridylamine complexes having a pyridine-N-oxide pendant toward oxygenation of organic substrates.

    PubMed

    Kojima, Takahiko; Nakayama, Kazuya; Sakaguchi, Miyuki; Ogura, Takashi; Ohkubo, Kei; Fukuzumi, Shunichi

    2011-11-09

    Ruthenium(II)-acetonitrile complexes having η(3)-tris(2-pyridylmethyl)amine (TPA) with an uncoordinated pyridine ring and diimine such as 2,2'-bipyridine (bpy) and 2,2'-bipyrimidine (bpm), [Ru(II)(η(3)-TPA)(diimine)(CH(3)CN)](2+), reacted with m-chloroperbenzoic acid to afford corresponding Ru(II)-acetonitrile complexes having an uncoordinated pyridine-N-oxide arm, [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+), with retention of the coordination environment. Photoirradiation of the acetonitrile complexes having diimine and the η(3)-TPA with the uncoordinated pyridine-N-oxide arm afforded a mixture of [Ru(II)(TPA)(diimine)](2+), intermediate-spin (S = 1) Ru(IV)-oxo complex with uncoordinated pyridine arm, and intermediate-spin Ru(IV)-oxo complex with uncoordinated pyridine-N-oxide arm. A Ru(II) complex bearing an oxygen-bound pyridine-N-oxide as a ligand and bpm as a diimine ligand was also obtained, and its crystal structure was determined by X-ray crystallography. Femtosecond laser flash photolysis of the isolated O-coordinated Ru(II)-pyridine-N-oxide complex has been investigated to reveal the photodynamics. The Ru(IV)-oxo complex with an uncoordinated pyridine moiety was alternatively prepared by reaction of the corresponding acetonitrile complex with 2,6-dichloropyridine-N-oxide (Cl(2)py-O) to identify the Ru(IV)-oxo species. The formation of Ru(IV)-oxo complexes was concluded to proceed via intermolecular oxygen atom transfer from the uncoordinated pyridine-N-oxide to a Ru(II) center on the basis of the results of the reaction with Cl(2)py-O and the concentration dependence of the consumption of the starting Ru(II) complexes having the uncoordinated pyridine-N-oxide moiety. Oxygenation reactions of organic substrates by [Ru(II)(η(3)-TPA-O)(diimine)(CH(3)CN)](2+) were examined under irradiation (at 420 ± 5 nm) and showed selective allylic oxygenation of cyclohexene to give cyclohexen-1-ol and cyclohexen-1-one and cumene oxygenation to afford cumyl alcohol

  19. [2,6-Bis(5-chloro­pyrimidin-2-yl-κN)pyri­dine-κN](2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)ruthenium(II) bis­(hexa­fluoridophosphate) acetonitrile disolvate

    PubMed Central

    Medlycott, Elaine A.; Wang, Jianhua; Hanan, Garry S.

    2008-01-01

    In the title compound, [Ru(C13H7Cl2N5)(C15H11N3)](PF6)2·2CH3CN, the RuII atom is coordinated in a distorted octa­hedral geometry by a tridentate 2,2′:6′,2′′-terpyridine ligand and a tridentate 2,6-bis­(5-chloro­pyrimidin-2-yl)pyridine ligand. Least-squares mean-plane distortions of only 1.72 (2) and 2.91 (2)° of the pyrimidyl rings with respect to the central pyridine are observed for the bis­(pyrimid­yl)pyridine-based tridentate ligand, while the distal pyridyl rings of terpyridine twist by 13.43 (7) and 4.68 (9)° away from the central pyridine ring. PMID:21201294

  20. Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems

    PubMed Central

    Reece, Steven Y.; Nocera, Daniel G.

    2015-01-01

    Proton-coupled electron transfer (PCET) underpins energy conversion in biology. PCET may occur with the unidirectional or bidirectional transfer of a proton and electron and may proceed synchronously or asynchronously. To illustrate the role of PCET in biology, this review presents complementary biological and model systems that explore PCET in electron transfer (ET) through hydrogen bonds [azurin as compared to donor-acceptor (D–A) hydrogen-bonded networks], the activation of C–H bonds [alcohol dehydrogenase and soybean lipoxygenase (SLO) as compared to Fe(III) metal complexes], and the generation and transport of amino acid radicals [photosystem II (PSII) and ribonucleotide reductase (RNR)as compared to tyrosine-modified photoactive Re(I) and Ru(II) complexes]. In providing these comparisons, the fundamental principles of PCET in biology are illustrated in a tangible way. PMID:19344235

  1. (η6-p-Cymene)bis­(trichlorido­stannyl)(triethoxy­phosphine-κP)ruthenium(II)

    PubMed Central

    Shapovalov, Sergey S.; Therrien, Bruno

    2009-01-01

    In the title complex, [RuSn2(C10H14)Cl6(C6H15O3P)], the Ru—Sn bond lengths [2.5619 (3) and 2.5669 (3) Å] are about 0.3 Å shorter than the sum of the covalent Ru and Sn radii (1.46 + 1.39 = 2.85 Å), in line with other structurally characterized arene ruthenium trichlorido­stannyl derivatives. The Ru(II) atom is surrounded by a para-cymene, a triethylphosphite and two trichloridostannyl ligands in a typical piano-stool coordination. PMID:21578155

  2. [1,1′-Bis(di­phenyl­phosphan­yl)cobalto­cenium-κ2 P,P′](η5-cyclo­penta­dien­yl){2-[4-(4-ethynylphen­yl)phen­yl]ethynyl-κC}ruthenium(II) hexa­fluorido­phosphate

    PubMed Central

    Zeng, Ling-Zhen; Wu, Yun-Ying; Tian, Guang-Xuan; Li, Zhen

    2013-01-01

    In the title compound, [CoRu(C5H5)(C16H9)(C17H14P)2]PF6, the RuII atom is coordinated by a cyclo­penta­dienyl ring in an η5-mode, one C atom from a 4,4′-diethynyl-1,1′-biphenyl ligand and two P atoms from a chelating 1,1′-bis­(di­phenyl­phosphan­yl)cobaltocenium ligand, giving a three-legged piano-stool geometry. In the crystal, weak C—H⋯F hydrogen bonds link the complex cations and hexa­fluorido­phosphate anions into a three-dimensional supra­molecular structure. PMID:24454037

  3. cis-cis-trans-Bis(acetonitrile-κN)dichloridobis(triphenyl­phosphine-κP)ruthenium(II) acetonitrile disolvate

    PubMed Central

    Al-Far, Ahmad M.; Slaughter, LeGrande M.

    2008-01-01

    The title compound, [RuCl2(C2H3N)2(C18H15P)2]·2C2H3N, was obtained upon stirring an acetonitrile/ethanol solution of [RuCl2(PPh3)3]. In the crystal structure, each RuII ion is coordinated by two Cl [Ru—Cl = 2.4308 (7) and 2.4139 (7) Å], two N [Ru—N = 2.016 (2) and 2.003 (2) Å], and two P [Ru—P = 2.3688 (7) and 2.3887 (7) Å] atoms in a distorted octa­hedral geometry. Packing inter­actions include typical C—H⋯π contacts involving phenyl groups as well as weak hydrogen bonds between CH3CN methyl H atoms and Cl or solvent CH3CN N atoms. PMID:21200532

  4. Fabrication of robust multilayer films by triggering the coupling reaction between phenol and primary amine groups with visible light irradiation

    NASA Astrophysics Data System (ADS)

    Yu, You; Zhang, Hui; Cui, Shuxun

    2011-09-01

    We prepared robust cross-linked (x-linked) multilayer films under visible light irradiation with the catalysis of a Ru(ii) complex. The x-linking is achieved by the coupling reaction between phenol group and primary amine group within the self-assembled multilayer films that were prepared beforehand. Three kinds of polymers, i.e., poly(4-vinylphenol), poly(allylamine) and poly(ethyleneimine), were selected as the model system to illustrate the concept of this strategy. Upon visible light irradiation, the chemical stability of the x-linked films towards solution etching was greatly enhanced. In previous studies, horseradish peroxidase (HRP) is often utilized to catalyze the C-C, C-O and C-N coupling structures, which is useful to prepare polymers, capsules and bulk hydrogels. We also tried to prepare the x-linked films by the catalysis of HRP. The comparison of the two methods suggests that the Ru(ii) complex method is more ideal for fabricating x-linked films. In addition, the photo-triggered chemical reaction within the films was confirmed by the solid-state 13C NMR, XPS and FT-IR measurements. Without UV light irradiation or thermal treatment, this strategy brings many advantages. It is anticipated that this approach can be easily extended to the applications of the biological related fields in the future.We prepared robust cross-linked (x-linked) multilayer films under visible light irradiation with the catalysis of a Ru(ii) complex. The x-linking is achieved by the coupling reaction between phenol group and primary amine group within the self-assembled multilayer films that were prepared beforehand. Three kinds of polymers, i.e., poly(4-vinylphenol), poly(allylamine) and poly(ethyleneimine), were selected as the model system to illustrate the concept of this strategy. Upon visible light irradiation, the chemical stability of the x-linked films towards solution etching was greatly enhanced. In previous studies, horseradish peroxidase (HRP) is often utilized to

  5. Selective Synthesis of Molecular Borromean Rings: Engineering of Supramolecular Topology via Coordination-Driven Self-Assembly.

    PubMed

    Kim, Taegeun; Singh, Nem; Oh, Jihun; Kim, Eun-Hee; Jung, Jaehoon; Kim, Hyunuk; Chi, Ki-Whan

    2016-07-13

    Molecular Borromean rings (BRs) is one of the rare topology among interlocked molecules. Template-free synthesis of BRs via coordination-driven self-assembly of tetracene-based Ru(II) acceptor and ditopic pyridyl donors is reported. NMR and single-crystal XRD analysis observed sequential transformation of a fully characterized monomeric rectangle to molecular BRs and vice versa. Crystal structure of BRs revealed that the particular topology was enforced by the appropriate geometry of the metallacycle and multiple parallel-displaced π-π interactions between the donor and tetracene moiety of the acceptor. Computational studies based on density functional theory also supported the formation of BRs through dispersive intermolecular interactions in solution.

  6. A comparative DFT study on aquation and nucleobase binding of ruthenium (II) and osmium (II) arene complexes.

    PubMed

    Wang, Hanlu; Zeng, Xingye; Zhou, Rujin; Zhao, Cunyuan

    2013-11-01

    The potential energy surfaces of the reactions of organometallic arene complexes of the type [(η (6)-arene)M(II)(pic)Cl] (where pic = 2-picolinic acid, M = Ru or Os) were examined by a DFT computational study. Among the seven density functional methods, hybrid exchange functional B3LYP outperforms the others to explain the aquation of the complexes. The reactions and binding energies of Ru(II) and Os(II) arene complexes with both 9EtG and 9EtA were studied to gain insight into the reactivity of these types of organometallic complexes with DNA. The obtained data rationalize experimental observation, contributing to partly understanding the potential biological and medical applications of organometallic complexes.

  7. Dipyrido[4,3-b;5,6-b]acridine derivatives and their ruthenium(II) complexes

    SciTech Connect

    Hung, Chi-Ying; Wang, Tie-Lin; Jang, Youngchan |

    1996-09-25

    Two of the most common bidentate chelating ligands employed in coordination chemistry are 2,2{prime}-bipyridine (bpy) and 1,10-phenanthroline (phen). The latter may be considered as a 3,3{prime}-etheno-bridged derivative of the former. The steric requirements of both ligands are very similar, and differences in the properties of their metal complexes may be mostly attributed to electronic differences arising from the greater electronegativity of phen. The next higher homologue of bpy is 2,2{prime};6,2{double_prime}-terpyridine (tpy), which behave as a tridentate chelator but enjoys many of the same coordination properties as bpy. The coordination chemistry of the analogous 3,3{prime}-etheno-bridged derivatives of tpy has not yet been explored. This report will present the preparation and properties of these derivatives and their complexation with Ru(II).

  8. Synthesis, crystal structure and anaerobic DNA photocleavage of ruthenium complexes [Ru(tpy)(dpoq)Cl](+) and [Ru(tpy)(dpoq)CH3CN](2.).

    PubMed

    Yu, Hui-juan; Huang, Shu-mei; Chao, Hui; Ji, Liang-nian

    2015-08-01

    Two new Ru(II) complexes [Ru(tpy)(dpoq)Cl](+)1 and [Ru(tpy)(dpoq)CH3CN](2+)2 (tpy = 2,2':6',2''-terpyridine; dpoq = dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline) have been synthesized and characterized by elemental analysis, (1)H NMR, electrospray ionization mass spectra (ESI-MS) and X-ray crystallographic study. The experimental results of spectra titration, thermal denaturation and viscosity measurements suggest that the two complexes intercalatively bind to DNA. When irradiated under light, the two complexes could efficiently photocleave DNA both under aerobic and anaerobic condition. The mechanism studies reveal that the photocleavage reaction functions through both oxygen-independent (photoinduced electron transfer, type III reaction) and oxygen-dependent (singlet oxygen generation, type II reaction) pathways and the oxygen-independent pathway is the major process. These complexes will be more promising photodynamic therapy (PDT) candidates used for treating hypoxic tumors.

  9. Selective Luminescent Labeling of DNA and RNA Quadruplexes by π-Extended Ruthenium Light-Up Probes.

    PubMed

    Saadallah, Dounia; Bellakhal, Mehdi; Amor, Souheila; Lefebvre, Jean-François; Chavarot-Kerlidou, Murielle; Baussanne, Isabelle; Moucheron, Cécile; Demeunynck, Martine; Monchaud, David

    2017-01-26

    A series of Ru(II) complexes exhibiting π-extended, acridine-based ancillary chelating heterocycles display high affinity and selectivity for DNA and RNA quadruplexes. The most promising candidates (3, 4) possess remarkable light-up luminophore properties (up to 330-fold luminescence enhancement upon interaction with quadruplexes), enabling them to discriminate quadruplexes from genomic DNA owing to a photochemical mechanism involving DNA protection against non-radiative decay (DAND), thus deviating from the other complexes of this series of ligands that exhibit an excited-state intramolecular proton transfer (ESIPT) that quenches their luminescence. The in vitro and preliminary in cellulo results shown here confirm the interest of this new family of fluorophores as invaluable molecular tools to detect G-quadruplexes in cells.

  10. cis-Bis(1,10-phenanthroline-κ(2)N,N')bis-(pyridin-4-amine-κN(1))ruthenium(II) bis-(hexa-fluoridophosphate).

    PubMed

    Camilo, Mariana R; Martins, Felipe T; Malta, Valéria R S; Ellena, Javier; Carlos, Rose M

    2013-02-01

    In the title complex, [Ru(C(12)H(8)N(2))(2)(C(5)H(6)N(2))(2)](PF(6))(2), the Ru(II) atom is bonded to two α-diimine ligands, viz. 1,10-phenanthroline (phen), in a cis configuration, in addition with with two 4-amino-pyridine (4Apy) ligands, resulting in a distorted octa-hedral coordination geometry. N-H⋯F hydrogen-bonding inter-actions play an important role in the crystal assembly: 2(1)-screw-axis-related complex mol-ecules and PF(6) (-) counter-ions alternate in helical chains formed along the a axis by means of these contacts. N-H⋯π contacts (H⋯centroid = 3.45 Å) are responsible for cross-linking between the helical chains along [001].

  11. Optimum bifunctionality in a 2-(2-pyridyl-2-ol)-1,10-phenanthroline based ruthenium complex for transfer hydrogenation of ketones and nitriles: impact of the number of 2-hydroxypyridine fragments.

    PubMed

    Paul, Bhaskar; Chakrabarti, Kaushik; Kundu, Sabuj

    2016-07-05

    Considerable differences in reactivity and selectivity for 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation are described. Bifunctional Ru(ii)-(phenpy-OH) [phenpy-OH: 2-(2-pyridyl-2-ol)-1,10-phenanthroline] complex () exhibited excellent catalytic activity in transfer hydrogenation (TH) of ketones and nitriles. Notably, in comparison with all the reported 2-hydroxypyridine (2-HP) derived ruthenium complexes in transfer hydrogenation, complex displayed significantly higher activity. Additionally, exploiting the metal-ligand cooperativity in complex , chemoselective TH of ketones was achieved and sterically demanding ketones were readily reduced. An outer-sphere mechanism is proposed for this system as exogenous PPh3 has no significant effect on the rate of this reaction. This is a rare example of a highly active bifunctional Ru(ii) catalyst bearing only one 2-HP unit.

  12. Light-Activated Protein Inhibition through Photoinduced Electron Transfer of a Ruthenium(II)–Cobalt(III) Bimetallic Complex

    PubMed Central

    Holbrook, Robert J.; Weinberg, David J.; Peterson, Mark D.; Weiss, Emily A.; Meade, Thomas J.

    2015-01-01

    We describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly, the rate of α-thrombin inhibition increases over 5-fold upon irradiation. These results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers. PMID:25671465

  13. Crystal structure of (2,2′-bi­pyridine-κ2 N,N′)bis­(3,5-di-tert-butyl-o-benzo­quinonato-κ2 O,O′)ruthenium(II)

    PubMed Central

    Ali, Akram; Potaskalov, Vadim A.

    2017-01-01

    In the title mononuclear complex, [Ru(C14H20O2)2(C10H8N2)], the RuII ion has a distorted octa­hedral coordination environment defined by two N atoms of the chelating 2,2′-bi­pyridine ligand and four O atoms from two 3,5-di-tert-butyl-o-benzo­quinone ligands. In the crystal, the complex mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds and π–π stacking inter­actions between the 2,2′-bi­pyridine ligands [centroid–centroid distance = 3.538 (3) Å], resulting in a layer structure extending parallel to the ab plane. PMID:28316832

  14. Light-activated protein inhibition through photoinduced electron transfer of a ruthenium(II)–cobalt(III) bimetallic complex

    DOE PAGES

    Holbrook, Robert J.; Weinberg, David J.; Peterson, Mark D.; ...

    2015-02-11

    In this paper, we describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly,more » the rate of α-thrombin inhibition increases over 5-fold upon irradiation. Finally, these results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers.« less

  15. A dendritic nano-sized hexanuclear ruthenium(II) complex as a one- and two-photon luminescent tracking non-viral gene vector

    PubMed Central

    Qiu, Kangqiang; Yu, Bole; Huang, Huaiyi; Zhang, Pingyu; Huang, Juanjuan; Zou, Shanshan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2015-01-01

    Fluorescent tracking gene delivery could provide us with a better understanding of the critical steps in the transfection process. However, for in vivo tracking applications, a small diameter (<10 nm) is one of the rigorous requirements for tracking vectors. Herein, we have demonstrated a new paradigm for two-photon tracking gene delivery based on a dendritic nano-sized hexanuclear ruthenium(II) polypyridyl complex. Because this metallodendrimer has a multivalent periphery, the complex, which is 6.1 nm, showed high stability and excellent dispersibility and could stepwise condense DNA in vitro. With the outstanding photochemical properties of Ru(II) polypyridyl, this complex could track gene delivery in vivo using one- and two-photon imaging. PMID:26185052

  16. Excited‐State Dynamics of a Two‐Photon‐Activatable Ruthenium Prodrug

    PubMed Central

    Greenough, Simon E.; Horbury, Michael D.; Smith, Nichola A.; Sadler, Peter J.; Paterson, Martin J.

    2016-01-01

    Abstract We present a new approach to investigate how the photodynamics of an octahedral ruthenium(II) complex activated through two‐photon absorption (TPA) differ from the equivalent complex activated through one‐photon absorption (OPA). We photoactivated a RuII polypyridyl complex containing bioactive monodentate ligands in the photodynamic therapy window (620–1000 nm) by using TPA and used transient UV/Vis absorption spectroscopy to elucidate its reaction pathways. Density functional calculations allowed us to identify the nature of the initially populated states and kinetic analysis recovers a photoactivation lifetime of approximately 100 ps. The dynamics displayed following TPA or OPA are identical, showing that TPA prodrug design may use knowledge gathered from the more numerous and easily conducted OPA studies. PMID:26632426

  17. A Ruthenium(III)-Oxyl Complex Bearing Strong Radical Character.

    PubMed

    Shimoyama, Yoshihiro; Ishizuka, Tomoya; Kotani, Hiroaki; Shiota, Yoshihito; Yoshizawa, Kazunari; Mieda, Kaoru; Ogura, Takashi; Okajima, Toshihiro; Nozawa, Shunsuke; Kojima, Takahiko

    2016-11-02

    Proton-coupled electron-transfer oxidation of a Ru(II) -OH2 complex, having an N-heterocyclic carbene ligand, gives a Ru(III) -O(.) species, which has an electronically equivalent structure of the Ru(IV) =O species, in an acidic aqueous solution. The Ru(III) -O(.) complex was characterized by spectroscopic methods and DFT calculations. The oxidation state of the Ru center was shown to be close to +3; the Ru-O bond showed a lower-energy Raman scattering at 732 cm(-1) and the Ru-O bond length was estimated to be 1.77(1) Å. The Ru(III) -O(.) complex exhibits high reactivity in substrate oxidation under catalytic conditions; particularly, benzaldehyde and the derivatives are oxidized to the corresponding benzoic acid through C-H abstraction from the formyl group by the Ru(III) -O(.) complex bearing a strong radical character as the active species.

  18. rac-cis-Dicarbonyl-chlorido{1-[2-(diphenyl-phosphanyl-κP)benz-yl]-3-(phenyl-κC(1))imidazol-2-yl-idene-κC(2)}ruthenium(II) dichloro-methane monosolvate.

    PubMed

    Domski, Gregory J; Pecak, Wiktoria H; Swenson, Dale C

    2012-09-01

    In the title compound, [Ru(C(28)H(22)N(2)P)Cl(CO)(2)]·CH(2)Cl(2), the Ru(II) atom exhibits a distorted octa-hedral coordination geometry. The N-phenyl group of the ligand has undergone orthometalation; as a result, the tridentate phosphane-functionalized N-heterocyclic carbene ligand is coordinating in a meridional fashion. This complex is of inter-est with respect to transfer hydrogenation catalysis and also provides an example of C-H activation behavior in late transition metal complexes. The dichloro-methane solvent mol-ecule is disordered over two sets of sites with an occupancy ratio of 0.873 (14):0.127 (14).

  19. Coordination chemistry of N-heterocyclic nitrenium-based ligands.

    PubMed

    Tulchinsky, Yuri; Kozuch, Sebastian; Saha, Prasenjit; Mauda, Assaf; Nisnevich, Gennady; Botoshansky, Mark; Shimon, Linda J W; Gandelman, Mark

    2015-05-04

    Comprehensive studies on the coordination properties of tridentate nitrenium-based ligands are presented. N-heterocyclic nitrenium ions demonstrate general and versatile binding abilities to various transition metals, as exemplified by the synthesis and characterization of Rh(I) , Rh(III) , Mo(0) , Ru(0) , Ru(II) , Pd(II) , Pt(II) , Pt(IV) , and Ag(I) complexes based on these unusual ligands. Formation of nitrenium-metal bonds is unambiguously confirmed both in solution by selective (15) N-labeling experiments and in the solid state by X-ray crystallography. The generality of N-heterocyclic nitrenium as a ligand is also validated by a systematic DFT study of its affinity towards all second-row transition and post-transition metals (Y-Cd) in terms of the corresponding bond-dissociation energies.

  20. Synthesis, Characterization, In Vitro Cytotoxicity, and Apoptosis-Inducing Properties of Ruthenium(II) Complexes

    PubMed Central

    Xu, Li; Zhong, Nan-Jing; Xie, Yang-Yin; Huang, Hong-Liang; Jiang, Guang-Bin; Liu, Yun-Jun

    2014-01-01

    Two new Ru(II) complexes, [Ru(bpy)2(FAMP)](ClO4)2 1 and 2, are synthesized and characterized by elemental analysis, electrospray mass spectrometry, and 1H nuclear magnetic resonance. The in vitro cytotoxicities and apoptosis-inducing properties of these complexes are extensively studied. Complexes 1 and 2 exhibit potent antiproliferative activities against a panel of human cancer cell lines. The cell cycle analysis shows that complexes 1 and 2 exhibit effective cell growth inhibition by triggering G0/G1 phase arrest and inducing apoptosis by mitochondrial dysfunction. The in vitro DNA binding properties of the two complexes are investigated by different spectrophotometric methods and viscosity measurements. PMID:24804832

  1. Protein-binding, cytotoxicity in vitro and cell cycle arrest of ruthenium(II) polypyridyl complexes

    NASA Astrophysics Data System (ADS)

    Liu, Si-Hong; Zhu, Jian-Wei; Xu, Hui-Hua; Wang, Yan; Liu, Ya-Min; Liang, Jun-Bo; Zhang, Gui-Qiang; Cao, Di-Hua; Lin, Yang-Yang; Wu, Yong; Guo, Qi-Feng

    2016-05-01

    The cytotoxic activity of two Ru(II) complexes against A549, BEL-7402, HeLa, PC-12, SGC-7901 and SiHa cell lines was investigated by MTT method. Complexes 1 and 2 show moderate cytotoxicity toward BEL-7402 cells with an IC50 value of 53.9 ± 3.4 and 39.3 ± 2.1 μM. The effects of the complexes inducing apoptosis, cellular uptake, reactive oxygen species and mitochondrial membrane potential in BEL-7402 cells have been studied by fluorescence microscopy. The percentages of apoptotic and necrotic cells and cell cycle arrest were studied by flow cytometry. The BSA-binding behaviors were investigated by UV/visible and fluorescent spectra.

  2. Light-activated protein inhibition through photoinduced electron transfer of a ruthenium(II)–cobalt(III) bimetallic complex

    SciTech Connect

    Holbrook, Robert J.; Weinberg, David J.; Peterson, Mark D.; Weiss, Emily A.; Meade, Thomas J.

    2015-02-11

    In this paper, we describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly, the rate of α-thrombin inhibition increases over 5-fold upon irradiation. Finally, these results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers.

  3. Chlorido(chloro­diphenyl­phosphine-κP)(diphenyl­piperidinophosphine-κP)(η5-penta­methyl­cyclo­penta­dien­yl)ruthenium(II)

    PubMed Central

    Jantscher, Florian; Kirchner, Karl; Mereiter, Kurt

    2009-01-01

    The title compound, [Ru(C10H15)Cl(C12H10ClP)(C17H20NP)], is a half-sandwich complex of RuII with the chloro­diphenyl­phosphine ligand formed from the diphenyl­piperidinophosphine and chlorine of the precursor complex [Ru(η5-C5Me5)(κ1P—Ph2PNC5H10)Cl2] by an unexpected reaction with NaBH4. The complex has a three-legged piano-stool geometry, with Ru—P bond lengths of 2.2598 (5) Å for the chloro­phosphine and 2.3303 (5) Å for the amino­phosphine. PMID:21583392

  4. Diversity and distribution of sandflies (Diptera: Psychodidae: Phlebotominae) in a military area in the state of Amazonas, Brazil

    PubMed Central

    Gomes, Luís Henrique Monteiro; Albuquerque, Maria Ivonei Carvalho; da Rocha, Liliane Coelho; Pinheiro, Francimeire Gomes; Franco, Antonia Maria Ramos

    2013-01-01

    This study reports the distribution, ecotopes and fauna diversity of sandflies captured in five training bases on a military reserve in Manaus, state of Amazonas (AM). A total of 10,762 specimens were collected, which were distributed among 58 species, with the highest number recorded at Base Instruction 1 (BI1). A higher rate of species richness was found at the Base Instruction Boina Rajada and low levels of diversity associated with a high abundance index with the clear dominance of Lutzomyia umbratilis, Lutzomyia ruii and Lutzomyia anduzei were found at BI1. The abundance of Lu. umbratilis raises the possibility of outbreaks of American cutaneous leishmaniasis by the main vector of the disease in AM. PMID:23903983

  5. The influence of arene-ring size on stacking interaction with canonical base pairs

    NASA Astrophysics Data System (ADS)

    Formánek, Martin; Burda, Jaroslav V.

    2014-04-01

    Stacking interactions between aromatic molecules (benzene, p-cymene, biphenyl, and di- and tetra-hydrogen anthracene) and G.C and A.T canonical Watson-Crick (WC) base pairs are explored. Two functionals with dispersion corrections: ω-B97XD and B3LYP-D3 are used. For a comparison also the MP2 and B3LYP-D3/PCM methods were used for the most stable p-cymene…WC geometries. It was found that the stacking interaction increases with the size of π-conjugation system. Its extent is in agreement with experimental finding on anticancer activity of Ru(II) piano-stool complexes where intercalation of these aromatic molecules should play an important role. The explored structures are considered as ternary system so that decomposition of the interaction energy to pairwise and non-additivity contributions is also examined.

  6. Lightening up Ruthenium Complexes to Fight Cancer?

    PubMed

    Mari, Cristina; Gasser, Gilles

    2015-01-01

    In medicine, light is used in a medical treatment called photodynamic therapy (PDT) to treat some types of cancer and skin diseases. This technique generally allows for reduced side effects compared to traditional chemotherapy. However, PDT is not fully effective on hypoxic tumors (i.e. lacking oxygen). To overcome this important drawback, photoactivated chemotherapy (PACT) agents have been designed to obtain light-mediated cancer cell death via an oxygen-independent mechanism. Ruthenium complexes have already been and are currently deeply explored as traditional anticancer agents. However, as reported in this short review article, such compounds can also bring novel opportunities in the field of light-mediated cancer treatment. Herein, we report on our findings in the optimization of Ru(II) polypyridyl complexes as PDT and PACT agents for the potential treatment of cancer and, interestingly, also of bacterial infections.

  7. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO.

    PubMed

    Balaraman, Ekambaram; Gunanathan, Chidambaram; Zhang, Jing; Shimon, Linda J W; Milstein, David

    2011-07-22

    Catalytic hydrogenation of organic carbonates, carbamates and formates is of significant interest both conceptually and practically, because these compounds can be produced from CO2 and CO, and their mild hydrogenation can provide alternative, mild approaches to the indirect hydrogenation of CO2 and CO to methanol, an important fuel and synthetic building block. Here, we report for the first time catalytic hydrogenation of organic carbonates to alcohols, and carbamates to alcohols and amines. Unprecedented homogeneously catalysed hydrogenation of organic formates to methanol has also been accomplished. The reactions are efficiently catalysed by dearomatized PNN Ru(II) pincer complexes derived from pyridine- and bipyridine-based tridentate ligands. These atom-economical reactions proceed under neutral, homogeneous conditions, at mild temperatures and under mild hydrogen pressures, and can operate in the absence of solvent with no generation of waste, representing the ultimate 'green' reactions. A possible mechanism involves metal-ligand cooperation by aromatization-dearomatization of the heteroaromatic pincer core.

  8. Iodide Recognition and Sensing in Water by a Halogen‐Bonding Ruthenium(II)‐Based Rotaxane

    PubMed Central

    Langton, Matthew J.; Marques, Igor; Robinson, Sean W.; Félix, Vítor

    2015-01-01

    Abstract The synthesis and anion‐recognition properties of the first halogen‐bonding rotaxane host to sense anions in water is described. The rotaxane features a halogen‐bonding axle component, which is stoppered with water‐solubilizing permethylated β‐cyclodextrin motifs, and a luminescent tris(bipyridine)ruthenium(II)‐based macrocycle component. 1H NMR anion‐binding titrations in D2O reveal the halogen‐bonding rotaxane to bind iodide with high affinity and with selectively over the smaller halide anions and sulfate. The binding affinity trend was explained through molecular dynamics simulations and free‐energy calculations. Photo‐physical investigations demonstrate the ability of the interlocked halogen‐bonding host to sense iodide in water, through enhancement of the macrocycle component’s RuII metal–ligand charge transfer (MLCT) emission. PMID:26626866

  9. Nature-Inspired, Highly Durable CO2 Reduction System Consisting of a Binuclear Ruthenium(II) Complex and an Organic Semiconductor Using Visible Light.

    PubMed

    Kuriki, Ryo; Matsunaga, Hironori; Nakashima, Takuya; Wada, Keisuke; Yamakata, Akira; Ishitani, Osamu; Maeda, Kazuhiko

    2016-04-20

    A metal-free organic semiconductor of mesoporous graphitic carbon nitride (C3N4) coupled with a Ru(II) binuclear complex (RuRu') containing photosensitizer and catalytic units selectively reduced CO2 into HCOOH under visible light (λ > 400 nm) in the presence of a suitable electron donor with high durability, even in aqueous solution. Modification of C3N4 with Ag nanoparticles resulted in a RuRu'/Ag/C3N4 photocatalyst that exhibited a very high turnover number (>33000 with respect to the amount of RuRu'), while maintaining high selectivity for HCOOH production (87-99%). This turnover number was 30 times greater than that reported previously using C3N4 modified with a mononuclear Ru(II) complex, and by far the highest among the metal-complex/semiconductor hybrid systems reported to date. The results of photocatalytic reactions, emission decay measurements, and time-resolved infrared spectroscopy indicated that Ag nanoparticles on C3N4 collected electrons having lifetimes of several milliseconds from the conduction band of C3N4, which were transferred to the excited state of RuRu', thereby promoting photocatalytic CO2 reduction driven by two-step photoexcitation of C3N4 and RuRu'. This study also revealed that the RuRu'/Ag/C3N4 hybrid photocatalyst worked efficiently in water containing a proper electron donor, despite the intrinsic hydrophobic nature of C3N4 and low solubility of CO2 in an aqueous environment.

  10. Ruthenium Complexes Induce HepG2 Human Hepatocellular Carcinoma Cell Apoptosis and Inhibit Cell Migration and Invasion through Regulation of the Nrf2 Pathway

    PubMed Central

    Lu, Yiyu; Shen, Ting; Yang, Hua; Gu, Weiguang

    2016-01-01

    Ruthenium (Ru) complexes are currently the focus of substantial interest because of their potential application as chemotherapeutic agents with broad anticancer activities. This study investigated the in vitro and in vivo anticancer activities and mechanisms of two Ru complexes—2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine Ru(II) carbonyl (Ru1) and 5,10,15,20-Tetraphenyl-21H,23H-porphine Ru(II) carbonyl (Ru2)—against human hepatocellular carcinoma (HCC) cells. These Ru complexes effectively inhibited the cellular growth of three human hepatocellular carcinoma (HCC) cells, with IC50 values ranging from 2.7–7.3 μM. In contrast, the complexes exhibited lower toxicity towards L02 human liver normal cells with IC50 values of 20.4 and 24.8 μM, respectively. Moreover, Ru2 significantly inhibited HepG2 cell migration and invasion, and these effects were dose-dependent. The mechanistic studies demonstrated that Ru2 induced HCC cell apoptosis, as evidenced by DNA fragmentation and nuclear condensation, which was predominately triggered via caspase family member activation. Furthermore, HCC cell treatment significantly decreased the expression levels of Nrf2 and its downstream effectors, NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1). Ru2 also exhibited potent in vivo anticancer efficacy in a tumor-bearing nude mouse model, as demonstrated by a time- and dose-dependent inhibition on tumor growth. The results demonstrate the therapeutic potential of Ru complexes against HCC via Nrf2 pathway regulation. PMID:27213353

  11. A Cytostatic Ruthenium(II)-Platinum(II) Bis(terpyridyl) Anticancer Complex That Blocks Entry into S Phase by Up-regulating p27(KIP1).

    PubMed

    Ramu, Vadde; Gill, Martin R; Jarman, Paul J; Turton, David; Thomas, Jim A; Das, Amitava; Smythe, Carl

    2015-06-15

    Cytostatic agents that interfere with specific cellular components to prevent cancer cell growth offer an attractive alternative, or complement, to traditional cytotoxic chemotherapy. Here, we describe the synthesis and characterization of a new binuclear Ru(II) -Pt(II) complex [Ru(tpy)(tpypma)Pt(Cl)(DMSO)](3+) (tpy=2,2':6',2''-terpyridine and tpypma=4-([2,2':6',2''-terpyridine]-4'-yl)-N-(pyridin-2-ylmethyl)aniline), VR54, which employs the extended terpyridine tpypma ligand to link the two metal centres. In cell-free conditions, VR54 binds DNA by non-intercalative reversible mechanisms (Kb =1.3×10(5)  M(-1) ) and does not irreversibly bind guanosine. Cellular studies reveal that VR54 suppresses proliferation of A2780 ovarian cancer cells with no cross-resistance in the A2780CIS cisplatin-resistant cell line. Through the preparation of mononuclear Ru(II) and Pt(II) structural derivatives it was determined that both metal centres are required for this anti-proliferative activity. In stark contrast to cisplatin, VR54 neither activates the DNA-damage response network nor induces significant levels of cell death. Instead, VR54 is cytostatic and inhibits cell proliferation by up-regulating the cyclin-dependent kinase inhibitor p27(KIP1) and inhibiting retinoblastoma protein phosphorylation, which blocks entry into S phase and results in G1 cell cycle arrest. Thus, VR54 inhibits cancer cell growth by a gain of function at the G1 restriction point. This is the first metal-coordination compound to demonstrate such activity.

  12. Crystal structure of cis,fac-{N,N-bis­[(pyridin-2-yl)meth­yl]methyl­amine-κ3 N,N′,N′′}di­chlorido­(dimethyl sulfoxide-κS)ruthenium(II)

    PubMed Central

    Trotter, Kasey; Arulsamy, Navamoney; Hulley, Elliott

    2015-01-01

    The reaction of di­chlorido­tetra­kis­(dimethyl sulfoxide)­ruthen­ium(II) with N,N-bis[(pyridin-2-yl)meth­yl]methyl­amine aff­ords the title complex, [RuCl2(C13H15N3)(C2H6OS)]. The asymmetric unit contains a well-ordered complex mol­ecule. The N,N-bis­[(pyridin-2-yl)meth­yl]methyl­amine (bpma) ligand binds the cation through its two pyridyl N atoms and one aliphatic N atom in a facial manner. The coordination sphere of the low-spin d 6 RuII is distorted octahedral. The dimethyl sulfoxide (dmso) ligand coordinates to the cation through its S atom and is cis to the aliphatic N atom. The two chloride ligands occupy the remaining sites. The bpma ligand is folded with the dihedral angle between the mean planes passing through its two pyridine rings being 64.55 (8)°. The two N—Ru—N bite angles of the ligand at 81.70 (7) and 82.34 (8)° illustrate the distorted octa­hedral coordination geometry of the RuII cation. Two neighboring molecules are weakly associated through mutual intermolecular hydrogen bonding involving the O atom and one of the methyl groups of the dmso ligand. One of the chloride ligands is also weakly hydrogen bonded to a pyridyl H atom of another molecule. PMID:26396870

  13. Simulating Ru L 3 -Edge X-ray Absorption Spectroscopy with Time-Dependent Density Functional Theory: Model Complexes and Electron Localization in Mixed-Valence Metal Dimers

    SciTech Connect

    Van Kuiken, Benjamin E.; Valiev, Marat; Daifuku, Stephanie L.; Bannan, Caitlin; Strader, Matthew L.; Cho, Hana; Huse, Nils; Schoenlein, Robert W.; Govind, Niranjan; Khalil, Munira

    2013-05-30

    Ruthenium L3-edge X-ray absorption (XA) spectroscopy probes unoccupied 4d orbitals of the metal atom and is increasingly being used to investigate the local electronic structure in ground and excited electronic states of Ru complexes. The simultaneous development of computational tools for simulating Ru L3-edge spectra is crucial for interpreting the spectral features at a molecular level. This study demonstrates that time-dependent density functional theory (TDDFT) is a viable and predictive tool for simulating ruthenium L3-edge XA spectroscopy. We systematically investigate the effects of exchange correlation functional and implicit and explicit solvent interactions on a series of RuII and RuIII complexes in their ground and electronic excited states. The TDDFT simulations reproduce all of the experimentally observed features in Ru L3-edge XA spectra within the experimental resolution (0.4 eV). Our simulations identify ligand-specific charge transfer features in complicated Ru L3-edge spectra of [Ru(CN)6]4- and RuII polypyridyl complexes illustrating the advantage of using TDDFT in complex systems. We conclude that the B3LYP functional most accurately predicts the transition energies of charge transfer features in these systems. We use our TDDFT approach to simulate experimental Ru L3-edge XA spectra of transition metal mixed-valence dimers of the form [(NC)5MII-CN-RuIII(NH3)5] (where M = Fe or Ru) dissolved in water. Our study determines the spectral signatures of electron delocalization in Ru L3-edge XA spectra. We find that the inclusion of explicit solvent molecules is necessary for reproducing the spectral features and the experimentally determined valencies in these mixed-valence complexes. This study validates the use of TDDFT for simulating Ru 2p excitations using popular quantum chemistry codes and providing a powerful interpretive tool for equilibrium and ultrafast Ru L3-edge XA spectroscopy.

  14. Synthesis and linkage isomerization of thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex with D-penicillaminate.

    PubMed

    Tamura, Motoshi; Yamagishi, Masakazu; Kawamoto, Tatsuya; Igashira-Kamiyama, Asako; Tsuge, Kiyoshi; Konno, Takumi

    2009-09-21

    The reaction of [Ru(solvent)(2)(bpy)(2)](2+) (bpy = 2,2'-bipyridine) with D-H(2)pen (D-penicillamine) in ethanol/water in the presence of Ag(+) gave a thiolato-bridged Ru(II)Ag(I)Ru(II) trinuclear complex, [Ag{Ru(D-Hpen)(bpy)(2)}(2)](3+) ([1](3+)), in which two octahedral [Ru(II)(D-Hpen)(bpy)(2)](+) units are linked by a linear Ag(I) ion. Of three possible isomers (Delta(D)Delta(D), Delta(D)Lambda(D), and Lambda(D)Lambda(D)), [1](3+) formed the Delta(D)Delta(D) and Lambda(D)Lambda(D) isomers that were separately isolated by fractional crystallization with the use of [Sb(2)(R,R-tartrato)(2)](2-). In [1](3+), each D-Hpen ligand chelates to a Ru(II) center through thiolate and carboxylate groups, while an amine group of D-Hpen is protonated and does not participate in the coordination. On refluxing in ethanol/water, the Delta(D)Delta(D) isomer of [1](3+) was converted to Delta(D)Delta(D)-[2](3+), in which each D-Hpen ligand chelates to a Ru(II) center through thiolate and amine groups with a non-coordinating carboxyl group. On the other hand, a similar thermal linkage isomerization was not noticed for the Lambda(D)Lambda(D) isomer of [1](3+) under the same conditions. The isolated Delta(D)Delta(D)-[1](3+), Lambda(D)Lambda(D)-[1](3+), and Delta(D)Delta(D)-[2](3+) were fully characterized by electronic absorption, CD, and NMR spectroscopies, along with single-crystal X-ray crystallography for Lambda(D)Lambda(D)-[1](3+) and Delta(D)Delta(D)-[2](3+).

  15. Facile concerted proton-electron transfers in a ruthenium terpyridine-4'-carboxylate complex with a long distance between the redox and basic sites.

    PubMed

    Manner, Virginia W; Dipasquale, Antonio G; Mayer, James M

    2008-06-11

    We have designed and prepared ruthenium complexes with terpyridine-4'-carboxylate (tpyCOO) ligands, in which there are six bonds between the redox-active Ru and the basic carboxylate. The protonated Ru(II) complex, RuII(dipic)(tpyCOOH) (Ru(II)COOH), is prepared in one-pot from [(p-cymene)RuCl2]2, tpyCOONa, and then sodium pyridine-2,6-dicarboxylate [Na(dipic)]. A crystal structure of the deprotonated Ru(II) complex, Ru(II)COO-, shows a distance of 6.9 A between the metal and basic sites. The Ru(III) complex (Ru(III)COO) has been isolated by one-electron oxidation of Ru(II)COO- with triarylaminium radical cations (NAr3*+). Ru(III)COO has a bond dissociation free energy (BDFE) of 81 +/- 1 kcal mol(-1), from pKa and E1/2 measurements. It oxidizes 2,4,6-tri-tert-butylphenol (BDFE = 77 +/- 1 kcal mol(-1)) by removal of e- and H+ (triple bond H*) to form 2,4,6-tri-tert-butylphenoxyl radical and Ru(II)COOH, with a second-order rate constant of (2.3 0.2) x 10(4) M(-1) s(-1) and a kH/kD of 7.7 1.2. Thermochemical analysis suggests a concerted proton-electron transfer (CPET) mechanism for this reaction, despite the 6.9 A distance between the redox-active Ru and the H+-accepting oxygen. Ru(III)COO also oxidizes the hydroxylamine TEMPOH to the stable free radical TEMPO and xanthene to bixanthyl. These reactions appear to be similar to processes that have been previously termed hydrogen atom transfer.

  16. Ru(ii)-polypyridyl surface functionalised gold nanoparticles as DNA targeting supramolecular structures and luminescent cellular imaging agents

    NASA Astrophysics Data System (ADS)

    Martínez-Calvo, Miguel; Orange, Kim N.; Elmes, Robert B. P.; La Cour Poulsen, Bjørn; Williams, D. Clive; Gunnlaugsson, Thorfinnur

    2015-12-01

    The development of Ru(ii) functionalized gold nanoparticles 1-3.AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1-3.AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1-3.AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics.The development of Ru(ii) functionalized gold nanoparticles 1-3.AuNP is described. These systems were found to be mono-disperse with a hydrodynamic radius of ca. 15 nm in water but gave rise to the formation of higher order structures in buffered solution. The interaction of 1-3.AuNP with DNA was also studied by spectroscopic and microscopic methods and suggested the formation of large self-assembly structures in solution. The uptake of 1-3.AuNP by cancer cells was studied using both confocal fluorescence as well as transmission electron microscopy (TEM), with the aim of investigating their potential as tools for cellular biology. These systems displaying a non-toxic profile with favourable photophysical properties may have application across various biological fields including diagnostics and therapeutics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05598a

  17. Kinetic and mechanistic study on the reactions of ruthenium(ii) chlorophenyl terpyridine complexes with nucleobases, oligonucleotides and DNA.

    PubMed

    Milutinović, Milan M; Elmroth, Sofi K C; Davidović, Goran; Rilak, Ana; Klisurić, Olivera R; Bratsos, Ioannis; Bugarčić, Živadin D

    2017-02-14

    In this study, we investigated the ability of Ru(ii) polypyridyl complexes to act as DNA binders. The substitution reactions of three Ru(ii) chlorophenyl terpyridine complexes, i.e. [Ru(Cl-Ph-tpy)(en)Cl]Cl (1), [Ru(Cl-Ph-tpy)(dach)Cl]Cl (2) and [Ru(Cl-Ph-tpy)(bpy)Cl]Cl (3) (Cl-Ph-tpy = 4'-(4-chlorophenyl)-2,2':6',2''-terpyridine, en = 1,2-diaminoethane, dach = 1,2-diaminocyclohexane, bpy = 2,2'-bipyridine), with a mononucleotide guanosine-5'-monophosphate (5'-GMP) and oligonucleotides such as fully complementary 15-mer and 22-mer duplexes with a centrally located GG-binding site for DNA, and fully complementary 13-mer duplexes with a centrally located GG-binding site for RNA were studied quantitatively by UV-Vis spectroscopy. Duplex RNA reacts faster with complexes 1-3 than duplex DNA, while shorter duplex DNA (15mer GG) reacts faster compared with 22mer GG duplex DNA. The measured enthalpies and entropies of activation (ΔH(≠) > 0, ΔS(≠) < 0) support an associative mechanism for the substitution process. (1)H NMR spectroscopy studies performed on complex 3 demonstrated that after the hydrolysis of the Cl ligand, it is capable to interact with guanine derivatives (i.e., 9-methylguanine (9MeG) and 5'-GMP) through N7, forming monofunctional adducts. The molecular structure of the cationic compound [Ru(Cl-Ph-tpy)(bpy)Cl]Cl (3) was determined in the solid state by X-ray crystallography. The interactions of 1-3 with calf thymus (CT) and herring testes (HT) DNA were examined by stopped-flow spectroscopy, in which HT DNA was sensibly more reactive than CT DNA. The reactivity towards the formation of Ru-DNA adducts was also revealed by a gel mobility shift assay, showing that complexes 1 and 2 have a stronger DNA unwinding ability compared to complex 3. Overall, the complexes with bidentate aliphatic diamines proved to be superior to those with bpy in terms of capability to bind to the here studied biomolecules.

  18. Photoacid behavior versus proton-coupled electron transfer in phenol-Ru(bpy)3(2+) dyads.

    PubMed

    Kuss-Petermann, Martin; Wenger, Oliver S

    2013-07-18

    Two dyads composed of a Ru(bpy)3(2+) (bpy = 2,2'-bipyridine) photosensitizer and a covalently attached phenol were synthesized and investigated. In the shorter dyad (Ru-PhOH) the ruthenium complex and the phenol are attached directly to each other whereas in the longer dyad there is a p-xylene (xy) spacer in between (Ru-xy-PhOH). Electrochemical investigations indicate that intramolecular electron transfer (ET) from phenol to the photoexcited metal complex is endergonic by more than 0.3 eV in both dyads, explaining the absence of any (3)MLCT (metal-to-ligand charge transfer) excited-state quenching by the phenols in pure CH3CN and CH2Cl2. When pyridine is added to a CH2Cl2 solution, significant excited-state quenching can be observed for both dyads, but the bimolecular quenching rate constants differ by 2 orders of magnitude between Ru-PhOH and Ru-xy-PhOH. Transient absorption spectroscopy shows that in the presence of pyridine both dyads react to photoproducts containing Ru(II) and phenolate. The activation energies associated with the photoreactions in the two dyads differ by 1 order of magnitude, and this might suggest that the formation of identical photoproducts proceeds through fundamentally different reaction pathways in Ru-PhOH and Ru-xy-PhOH. For Ru-PhOH direct proton release from the photoexcited dyad is a plausible reaction pathway. For Ru-xy-PhOH a sequence of a photoinduced proton-coupled electron transfer (PCET) followed by an intramolecular (thermal) electron transfer in the reverse direction is a plausible reaction pathway; this two-step process involves a reaction intermediate containing Ru(I) and phenoxyl radical that reacts very rapidly to Ru(II) and phenolate. Thermal back-reactions to restore the initial starting materials occur on a 30-50 μs time scale in both dyads; i.e., due to proton release the photoproducts are very long-lived. These back-reactions exhibit inverse H/D kinetic isotope effects of 0.7 ± 0.1 (Ru-PhOH) and 0.6 ± 0.1 (Ru

  19. Ultrafast dynamics in multifunctional Ru(II)-loaded polymers for solar energy conversion.

    PubMed

    Morseth, Zachary A; Wang, Li; Puodziukynaite, Egle; Leem, Gyu; Gilligan, Alexander T; Meyer, Thomas J; Schanze, Kirk S; Reynolds, John R; Papanikolas, John M

    2015-03-17

    The use of sunlight to make chemical fuels (i.e., solar fuels) is an attractive approach in the quest to develop sustainable energy sources. Using nature as a guide, assemblies for artificial photosynthesis will need to perform multiple functions. They will need to be able to harvest light across a broad region of the solar spectrum, transport excited-state energy to charge-separation sites, and then transport and store redox equivalents for use in the catalytic reactions that produce chemical fuels. This multifunctional behavior will require the assimilation of multiple components into a single macromolecular system. A wide variety of different architectures including porphyrin arrays, peptides, dendrimers, and polymers have been explored, with each design posing unique challenges. Polymer assemblies are attractive due to their relative ease of production and facile synthetic modification. However, their disordered nature gives rise to stochastic dynamics not present in more ordered assemblies. The rational design of assemblies requires a detailed understanding of the energy and electron transfer events that follow light absorption, which can occur on time scales ranging from femtoseconds to hundreds of microseconds, necessitating the use of sophisticated techniques. We have used a combination of time-resolved absorption and emission spectroscopies with observation times that span 9 orders of magnitude to follow the excited-state evolution within polymer-based molecular assemblies. We complement experimental observations with molecular dynamics simulations to develop a microscopic view of these dynamics. This Account provides an overview of our work on polymers decorated with pendant Ru(II) chromophores, both in solution and on surfaces. We have examined site-to-site energy transport among the Ru(II) complexes, and in systems incorporating π-conjugated polymers, we have observed ultrafast formation of a long-lived charge-separated state. When attached to TiO2

  20. Fabrication of Three-Layer-Component Organoclay Hybrid Films with Reverse Deposition Orders by a Modified Langmuir-Schaefer Technique and Their Pyroelectric Currents Measured by a Noncontact Method.

    PubMed

    Hirahara, Masanari; Umemura, Yasushi

    2015-08-04

    In an aqueous clay mineral (montmorillonite) dispersion at a low concentration, isolated clay nanosheets with negative charges were suspended. When a solution of amphiphilic octadecylammonium chloride (ODAH(+)Cl(-)) was spread on an air-dispersion interface, the clay nanosheets were adsorbed on the ODAH(+) cations at the interface to form a stable ultrathin floating film. The floating film was transferred onto a substrate by the Schaefer method, and then the film was immersed in a [Ru(dpp)3]Cl2 (dpp = 4,7-diphenyl-1,10-phenanthroline) solution. The Ru(II) complex cations were adsorbed on the film surface because the film surface possessed a cation-exchange ability. The layers of ODAH(+), clay nanosheets, and [Ru(dpp)3](2+) were deposited in this order. By repeating these procedures, three-layer-component films were fabricated (OCR films). In a similar way, three-layer-component films in which the layers of [Ru(dpp)3](2+), clay nanosheets, and ODAH(+) were deposited in the reverse order (RCO films) were prepared by spreading a [Ru(dpp)3](ClO4)2 solution and immersing the films in an ODAH(+)Cl(-) solution. Both OCR and RCO films were characterized by surface pressure-molecular area (π-A) curve measurements, IR and visible spectroscopy, and the XRD method. The OCR and RCO film systems possessed nearly the same properties in the densities of ODAH(+) and [Ru(dpp)3](2+) and the tilt angle of the Ru(II) complex cation, although the layer distance for the RCO film was a little longer than that for the OCR film and the layered structure for the RCO film was less ordered than that for the OCR film. Pyroelectric currents for the films were measured by a noncontact method using an (241)Am radioactive electrode. When the films were heated, the pyroelectric currents were observed and the current directions for the OCR and RCO films were different. This was clear evidence that the layer order in the OCR film was reverse of that in the RCO film.

  1. Competition between glutathione and guanine for a ruthenium(II) arene anticancer complex: detection of a sulfenato intermediate.

    PubMed

    Wang, Fuyi; Xu, Jingjing; Habtemariam, Abraha; Bella, Juraj; Sadler, Peter J

    2005-12-21

    The organometallic anticancer complex [(eta6-bip)Ru(en)Cl]+ (1; bip = biphenyl, en = ethylenediamine) selectively binds to guanine (N7) bases of DNA (Novakova, O.; Chen, H.; Vrana, O.; Rodger, A.; Sadler, P. J.; Brabec, V. Biochemistry 2003, 42, 11544-11554). In this work, competition between the tripeptide glutathione (gamma-L-Glu-L-Cys-Gly; GSH) and guanine (as guanosine 3',5'-cyclic monophosphate, cGMP) for complex 1 was investigated using HPLC, LC-MS and 1H,15N NMR spectroscopy. In unbuffered solution (pH ca. 3), the reaction of 1 with GSH gave rise to three intermediates: an S-bound thiolato adduct [(eta6-bip)Ru(en)(GS-S)] (4) and two carboxylate-bound glutathione products [(eta6-bip)Ru(en)(GSH-O)]+ (5, 6) during the early stages (<6 h), followed by en displacement and formation of a tri-GS-bridged dinuclear Ru(II) complex [((eta6-bip)Ru)2(GS-mu-S)3]2- (7). Under physiologically relevant conditions (micromolar Ru concentrations, pH 7, 22 mM NaCl, 310 K), the thiolato complex 4 was unexpectedly readily oxidized by dioxygen to the sulfenato complex [(eta6-bip)Ru(en)(GS(O)-S)] (8) instead of forming the dinuclear complex 7. Under these conditions, competitive reaction of complex 1 with GSH and cGMP gave rise to the cGMP adduct [(eta6-bip)Ru(en)(cGMP-N7)]+ (10) as the major product, accounting for ca. 62% of total Ru after 72 h, even in the presence of a 250-fold molar excess of GSH. The oxidation of coordinated glutathione in the thiolato complex 4 to the sulfenate in 8 appears to provide a facile route for displacement of S-bound glutathione by G N7. Redox reactions of cysteinyl adducts of these Ru(II) arene anticancer complexes could therefore play a significant role in their biological activity.

  2. Synthesis, spectral and excited state energy transfer studies on new supramolecular ruthenium polypyridyl triads with octakis(methylthio)tetraazaporphyrinzinc(II)

    NASA Astrophysics Data System (ADS)

    Kumar, Rajeev; Prasad, Rajendra

    2009-03-01

    New bichromophoric di- and trinuclear complexes were synthesized through coordinate strapping of one or two (bpy) 2Ru II/(phen) 2Ru II/Cp(PPh 3)Ru II moieties to [Zn{(MeS) 8TAP}] 1, core. Thus five new complexes of the type [Zn{(MeS) 8TAP}{Ru(bpy) 2}][PF 6] 22, bent and linear [Zn{(MeS) 8TAP}{Ru(bpy) 2}{Ru(phen) 2}][PF 6] 43 and 4, bent and linear [Zn{(MeS) 8TAP}{Ru(bpy) 2}{RuCp(PPh 3)}][PF 6] 35 and 6, were synthesized and characterized using IR, 1H NMR, UV-visible, and mass spectral data. The trinuclear complexes 3- 6 possessed bent (κ 4-S 2,S 3,S 7,S 8)[Ru II] 2 and linear (κ 4-S 2,S 3,S 12,S 13)[Ru II] 2 arrangements of the peripheral metallo-chromophore units. Unlike the two reversible reduction waves in complex 1 observed at E1/2 -0.34 and -0.60 V, only one reversible reduction wave was observed, between E1/2 -0.56 to -0.58 V vs. Ag/AgCl, in the di- and trinuclear complexes 2- 6. Also in the anodic scans, the dinuclear complexes 2, as well as linear trinuclear complexes 4 and 6, exhibited two successive one electron oxidations, the first at E1/2 ˜ 0.62 V due to Ru(II)/Ru(III) process and second at E1/2 ˜ 1.16 V vs. Ag/AgCl due to {(MeS) 8TAP}/{(MeS) 8TAP} + processes, while the bent trinuclear complexes 3 and 5 exhibited three successive one electron oxidations, i.e. one additional oxidation wave at E1/2 0.88 and 0.90 V vs. Ag/AgCl, respectively. In the fluorescence measurements, Soret excitation led to strong [Zn{(MeS) 8TAP}] centered S 2 emission together with a rapid intercomponent excitation energy transfer ( k 10 7-10 8 s -1) to peripheral Ru(II) unit that showed emission maxima between 535 and 545 nm. Lifetime analysis showed that Ru(II) ∗ emission predominated in the dinuclear complex 2, but its contribution dropped significantly upon formation of the trinuclear complexes, which has been explained in terms of relative variation of the LUMO energies of the linked chromophores in the excited states.

  3. Isomeric Diruthenium Complexes of a Heterocyclic and Quinonoid Bridging Ligand: Valence and Spin Alternatives for the Metal/Ligand/Metal Arrangement.

    PubMed

    Ansari, Mohd Asif; Mandal, Abhishek; Paretzki, Alexa; Beyer, Katharina; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2016-12-05

    5,7,12,14-Tetraazapentacene-6,13-quinone (L) reacts with 2 equiv of [Ru(acac)2(CH3CN)2] to form two linkage isomeric bis(chelate) compounds, [{Ru(II)(acac)2}2(μ-L)], blue 1, with 5,6;12,13 coordination and violet 2 with 5,6;13,14 coordination. The linkage isomers could be separated, structurally characterized in crystals as rac diastereomers (ΔΔ/ΛΛ), and studied by voltammetry (CV, DPV), EPR, and UV-vis-NIR spectroelectrochemistry (meso-1, rac-2). DFT and TD-DFT calculations support the structural and spectroscopic results and suggest a slight energy preference (ΔE = 263 cm(-1)) for the rac-isomer 1 as compared to 2. Starting from the Ru(II)-(μ-L(0))-Ru(II) configurations of 1 and 2 with low-lying metal-to-ligand charge transfer (MLCT) absorptions, the compounds undergo two reversible one-electron oxidation steps with open-shell intermediates 1(+) (Kc = 4 × 10(4)) and 2(+) (Kc = 6 × 10(5)). Both monocations display metal-centered spin according to EPR, but the DFT-calculated spin densities suggest a Ru(III)(μ-L(•-))Ru(III) three-spin situation with opposite spin density at the bridging ligand for the meso form of 1(+), estimated to lie 1887 cm(-1) lower in energy than rac-1(+), which is calculated with a Class II mixed-valent situation Ru(III)-(μ-L(0))-Ru(II). A three-spin arrangement Ru(III)-(μ-L(•-))-Ru(III) with negative spin density at one metal site is suggested by DFT for rac-2(+) which is more stable by ΔE = 890 cm(-1) than rac-1(+). Reduction of 1 or 2 (Kc = 10(7)-10(8)) occurs mainly at the central bridging ligand with notable contributions (30%) from the metals in 1(-) and 2(-). The mixed-valent Ru(III)(μ-L)Ru(II) versus radical-bridged Ru(III)(μ-L(•-))Ru(III) alternative is discussed comprehensively in comparison with related valence-ambiguous cases.

  4. UV Sensing Properties of ZnO Nanowires Grown on Glass by Rapid Thermal Oxidation of Zinc Films

    NASA Astrophysics Data System (ADS)

    Mihailova, I.; Gerbreders, V.; Sļedevskis, Ē.; Bulanovs, A.; Paškevičs, V.

    2014-08-01

    The nanostructured ZnO thin films were successfully synthesized by rapid thermal oxidation of metallic zinc films without catalysts or additives. On the surface of thin films the formation of ZnO nanowires was observed. In the work, the optical and electrical parameters and photoresponses of the obtained ZnO thin films were investigated. Nanostructured thin films of the type have a promising potential for the use in optoelectronics, sensor technique and biomedical sciences Šī darba galvenais mērķis bija izpētīt UV fotodetektora izgatavošanas iespējamību uz nanostrukturētu ZnO plāno kārtiņu bāzes, kas sintezētas termiski oksidējot Zn plānās kārtiņas. Termiskās oksidēšanas rezultātā tika novērota adatveidīgu ZnO nanostruktūru formēšanās uz kārtiņu virsmas. Izpētītas iegūto paraugu optiskās un elektriskās īpašības, kā arī fotoreakcija. Tika konstatēts, ka iegūto nanostrukturēto ZnO kārtiņu elektriskā vadītspēja ir ārkārtīgi jutīga pret UV starojumu, taču, apstarojot ar redzamo gaismu, strāva paliek gandrīz nemainīga. Kārtiņu elektriskās vadītspējas fotoreakcija ir atkarīga arī no nanostruktūru daudzuma uz virsmas. Visaugstākā UV fotovadītspēja tika novērota paraugam ar vislielāko ZnO nanoadatu koncentrāciju. UV gaismas inducētais vadītspējas pieaugums ļauj ZnO nanoadatas reversīvi pārslēgt starp stāvokļiem "ieslēgts" un "izslēgts". Līdz ar to, šīs fotojutīgās nanoadatas var tikt izmantotas UV gaismas detektoros un optiskajos slēdžos. Šādas nanostrukturētas plānās kārtiņas var tikt pielietotas arī ķīmiskajos un bioloģiskajos sensoros, pjezoelektriskajās ierīcēs, saules elementos utt. Turklāt, šādu nanostrukturēto ZnO plāno kārtiņu sintēzes process ir salīdzinoši lēts un vienkāršs, dodot iespēju liela mēroga produkcijas ražošanai

  5. The Kinetic Study of The Hydrothermal Growth of Zno Nanorod Array Films / Zno Nanostieņu Kopu Pārklājuma Hidrotermālās Augšanas Kinētikas Izpēte

    NASA Astrophysics Data System (ADS)

    Gerbreders, V.; Sarajevs, P.; Mihailova, I.; Tamanis, E.

    2015-10-01

    The simple analysis method has been introduced for the kinetic analysis of the hydrothermal growth. The zinc oxide nanorod arrays have been synthesized via a hydrothermal process. Zinc nitrate hexahydrate (Zn(NO3)2 · 6H2O) has been used as the precursor in the presence of hexamethylenetetramine (C6H12N4) for the formation of ZnO nanostructures. Long-term isothermal growth kinetics of ZnO nanorods has been investigated. The effect of the solution temperature (70-90 ℃) on the kinetics of the hydrothermal growth of ZnO nanorods has been examined. An extensive analysis by scanning electron microscopy, energy dispersive spectroscopy and x-ray diffraction has revealed that the as-synthesized ZnO nanorod arrays are well-crystalline and possessing hexagonal wurtzite structure. These ZnO films have promising potential advantages in microelectronic and optoelectronic applications. Tiek piedāvāta vienkārša analīzes metode kristālu hidrotennālās augšanas kinētikasizpētei. Labi sakārtotu ZnO nanostieņu kopa tika sintezēta pielieto­jot hidrotennālās augšanas metodi, cinka nitrāta heksahidrāta (Zn(NO3)2 · 6H2O) un heksametilēntetramīna (C6H12N4) šķīdumā. Plānās kārtiņas biezuma izmaiņas tika novērotas reālā laikā, pielietojot interferometrijas tehniku. Tika mērīts no sistēmas plānā kārtiņa - pamatne atstarotais lāzerstars; iegūtā interferences aina tika izman­tota plānās kārtiņas biezuma aprēķiniem. ZnO nanostieņu izotermiskās kristalizācijas procesa kinētika tika aprakstīta ar parabolisku likumu. Tika aprēķināts, ka ZnO nanostieņu kopu hidrotennālās augšanas aktivācijas enerģija ir 123kJ/mol. Šī metode ir piemērota viendimensionālas augšanas procesu analīzei un paver jaunas iespējas turpmākiem pētījumiem.

  6. New Ru(II)/Os(II)-polypyridyl complexes for coupling to TiO2 surfaces through acetylacetone functionality and studies on interfacial electron-transfer dynamics.

    PubMed

    Banerjee, Tanmay; Biswas, Abul Kalam; Sahu, Tuhin Subhra; Ganguly, Bishwajit; Das, Amitava; Ghosh, Hirendra Nath

    2014-09-28

    New Ru(ii)- and Os(ii)-polypyridyl complexes have been synthesized with pendant acetylacetone (acac) functionality for anchoring on nanoparticulate TiO2 surfaces with a goal of developing an alternate sensitizer that could be utilized for designing an efficient dye-sensitized solar cell (DSSC). Time-resolved transient absorption spectroscopic studies in the femtosecond time domain have been carried out. The charge recombination rates are observed to be very slow, compared with those for strongly coupled dye molecules having catechol as the anchoring functionality. The results of such studies reveal that electron-injection rates from the metal complex-based LUMO to the conduction band of TiO2 are faster than one would expect for an analogous complex in which the chromophoric core and the anchoring moiety are separated with multiple saturated C-C linkages. Such an observation is rationalized based on computational studies, and a relatively smaller spatial distance between the dye LUMO and the TiO2 surface accounted for this. Results of this study are compared with those for analogous complexes having a gem-dicarboxy group as the anchoring functionality for covalent binding to the TiO2 surface to compare the role of binding functionalities on electron-transfer dynamics.

  7. Site-specific electronic couplings in dyads with MLCT excited states. Intramolecular energy transfer in isomeric Ru(II)-Ru(II) cyclometalated complexes.

    PubMed

    Polson, Matthew; Chiorboli, Claudio; Fracasso, Sandro; Scandola, Franco

    2007-04-01

    The rod-like binuclear complexes [(ttpy)Ru(tpy-ph(2)-phbpy)Ru(ttpy)](4+) and [(ttpy)Ru(tpy-ph(2)-tpy)Ru(phtbpy)](4+) (for abbreviations, see text) have been synthesized and characterized. In both complexes, the polypyridine Ru(II) centers have (N--N--N)Ru(N--N--N) and (N--N--N)Ru(C--N--N) coordination environment. The two isomeric species differ in whether the cyclometalating carbon resides on the bridging or on the terminal ligand. The two complexes have virtually identical energy levels, but MLCT excited states of different (bridging or terminal) ligand localization. They are thus ideally suited to investigate possible effects of excited-state localization on intramolecular energy transfer kinetics. In fact, ultrafast spectroscopic measurements yield different energy transfer time constants for the two isomers, with the bridge-cyclometalated complex (2.7 ps) being faster than the terminal-cyclometalated one (8.0 ps). This difference can be explained in terms of different electronic factors for Dexter energy transfer. The study highlights the peculiar intricacies of intramolecular energy transfer in inorganic dyads involving MLCT excited states.

  8. (2,2′-Bipyridine-κ2 N,N′)chlorido[4′-(2,5-dimethoxy­phen­yl)-2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′]ruthenium(II) hexa­fluorido­phosphate acetonitrile monosolvate

    PubMed Central

    Oyama, Dai; Kido, Masato; Orita, Ai; Takase, Tsugiko

    2009-01-01

    In the title compound, [RuCl(C10H8N2)(C23H19N3O2)]PF6·CH3CN, the ligand environment about the RuII atom is distorted octa­hedral, with the substituted terpyridyl ligand coordinated in a meridional fashion, the bipyridyl ligand coordinated in a cis fashion and the Cl atom trans to one of the bipyridyl N atoms. The Ru—N distances are in the range 2.036 (2)–2.084 (2) Å with the exception of the central Ru—N bond from the terpyridyl ligand, which is shorter [1.9503 (19) Å], as expected. The pendant dimethoxy­phenyl substituent is not coplanar with the terpyridyl unit; the dihedral angle between the central pyridyl ring and the benzene ring is 46.72 (11)°. The anion is disordered equally over two positions around an F—P—F bond axis. PMID:21577461

  9. Tris­[4-(di­methyl­amino)­pyridine][tris(pyra­zol-1-yl)methane]­­ruthenium(II) bis­(hexa­fluorido­phosphate) diethyl ether monosolvate

    PubMed Central

    Coe, Benjamin J.; Raftery, James; Rusanova, Daniela

    2013-01-01

    In the title compound, [Ru(C10H10N6)(C7H10N2)3](PF6)2·C4H10O, the RuII cation is coordinated by one tris­(1-pyrazol­yl)methane (Tpm) and three dimethylaminopyridine (dmap) ligands in a slightly distorted octa­hedral geometry. The asymmetric unit consists of one complex cation, two hexa­fluorido­phosphate anions and one diethyl ether solvent mol­ecule in general positions. Although quite a large number of ruthenium complexes of the facially coordinating tridentate Tpm ligand have been structurally characterized, this is only the second one containing three pyridyl co-ligands. The average Ru—N(Tpm) distance is 2.059 (12) Å, while the average Ru—N(dmap) [dmap = 4-(di­methyl­amino)­pyridine] distance is somewhat longer at 2.108 (13) Å. The orientation of the dmap ligands varies greatly, with dihedral angles between the pyridyl and opposite pyrazolyl rings of 14.3 (2), 23.2 (2) and 61.2 (2)°. PMID:24098179

  10. Excited-state spectroscopic investigations of multinuclear complexes based on [Ru(bpy)3](2+) moieties connected to 2,2'-bipyridine and 2,2';6',2''-terpyridine ligands.

    PubMed

    Horvath, Raphael; Lombard, Jean; Leprêtre, Jean-Claude; Collomb, Marie-Noëlle; Deronzier, Alain; Chauvin, Jérôme; Gordon, Keith C

    2013-12-21

    A number of multinuclear assemblies based on [Ru(bpy)3](2+) photosensitive moieties covalently linked to Fe(II), Co(II) or Zn(II) polypyridyl complexes are investigated regarding their initial and thermally equilibrated excited states. Ground state absorption and vibrational spectroscopic techniques are carried out, along with resonance Raman, transient absorption, and time resolved resonance Raman measurements. These methods are also supplemented by computational modelling. In all systems, the results clearly show that under visible irradiation, the substituted bpy linker ligand is involved in the initial (1)MLCT excitation of the Ru(II) subunit. For the Ru(II)/Fe(II) linked assemblies, absorption due to [Ru(bpy)3](2+) and [Fe(tpy)2](2+) subunits are identified to give rise to differing resonance Raman spectra. Transient absorption spectra of complexes containing two [Ru(bpy)3](2+) and one [Fe(tpy)2](2+) subunits show a strong depletion for the [Fe(tpy)2](2+) absorption peaks, which decay on a much faster timescale than the remainder of the transient features. This is consistent with a single excitation of the multimetallic assembly, followed by fast depletion (<10 ns) of the spectral signal from the bpy ligand bound to the Fe subunit. The results are supported by time resolved resonance Raman measurements where a number of features assigned to the linker are found at early time-scales. Using transient absorption this process can be followed for most complexes.

  11. trans-Chloridobis(4-methyl­pyridine-κN)(4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)ruthenium(II) hexa­fluoridophosphate acetone monosolvate

    PubMed Central

    Redford, Christopher; Gimbert-Suriñach, Carolina; Bhadbhade, Mohan; Colbran, Stephen B.

    2012-01-01

    The title compound, [RuCl(C6H7N)2(C27H35N3)]PF6·C3H6O, was obtained unintentionally as the product of the reaction of 1,1′-methyl­enebis(4-methyl­pyridinium) hexa­fluoriso­phos­phate and RuCl3(tpy*) (tpy* is 4,4′,4′′-tri-tert-butyl-2,2′:6′,2′′-terpyridine) in the presence of triethyl­amine and LiCl. The mol­ecular structure of the complex displays an octa­hedral geometry around the RuII ion and the unit cell contains an acetone solvent mol­ecule and one orientationally disordered PF6 − anion (occupancy ratio 0.75:0.25) which is hydrogen bonded to two H atoms of the tpy* ligand of the nearest [RuCl(pic)2(tpy*)]+ cation (pic is 4-methyl­pyridine). One of the tert-butyl groups of the tpy* ligand is also disordered over two sets of sites in a 0.75:0.25 ratio. PMID:22412442

  12. Water oxidation with mononuclear ruthenium(II) polypyridine complexes involving a direct Ru(IV)═O pathway in neutral and alkaline media.

    PubMed

    Badiei, Yosra M; Polyansky, Dmitry E; Muckerman, James T; Szalda, David J; Haberdar, Rubabe; Zong, Ruifa; Thummel, Randolph P; Fujita, Etsuko

    2013-08-05

    The catalytic water oxidation mechanism proposed for many single-site ruthenium complexes proceeds via the nucleophilic attack of a water molecule on the Ru(V)═O species. In contrast, Ru(II) complexes containing 4-t-butyl-2,6-di-1',8'-(naphthyrid-2'-yl)-pyridine (and its bisbenzo-derivative), an equatorial water, and two axial 4-picolines follow the thermodynamically more favorable "direct pathway" via [Ru(IV)═O](2+), which avoids the higher oxidation state [Ru(V)═O](3+) in neutral and basic media. Our experimental and theoretical results that focus on the pH-dependent onset catalytic potentials indicative of a PCET driven low-energy pathway for the formation of products with an O-O bond (such as [Ru(III)-OOH](2+) and [Ru(IV)-OO](2+)) at an applied potential below the Ru(V)═O/Ru(IV)═O couple clearly support such a mechanism. However, in the cases of [Ru(tpy)(bpy)(OH2)](2+) and [Ru(tpy)(bpm)(OH2)](2+), the formation of the Ru(V)═O species appears to be required before O-O bond formation. The complexes under discussion provide a unique functional model for water oxidation that proceeds by four consecutive PCET steps in neutral and alkaline media.

  13. Reactivity of an adsorbed Ru(VI)-oxo complex: oxidation of benzyl alcohol.

    PubMed

    Hornstein, Brooks J; Dattelbaum, Dana M; Schoonover, Jon R; Meyer, Thomas J

    2007-10-01

    The phosphonated ruthenium complex, [Ru(tpy-PO(3)H(2))(OH(2))(3)](2+) (1) (tpy-PO(3)H(2) = 4'-phosphonato-2,2':6',2' '-terpyridine), was synthesized and attached to glass|ITO or glass|ITO|TiO(2) electrodes. After attachment to the metal oxide surface through the phosphonate linkage, 1 can be oxidized (either chemically or electrochemically) to the reactive Ru(VI)-dioxo complex, glass|ITO|[((HO)(2)OP)tpy)RuVI(O)(2)(OH(2))](2+), which remains attached to the surface. The attached Ru(VI) complex reacts with benzyl alcohol through mechanisms similar to those proposed for the solution analog. More specifically, Ru(VI) is reduced in a stepwise fashion to Ru(IV) and then finally to Ru(II). The reduction of Ru(VI) is accompanied by a rate-limiting insertion to the C-H bond of benzyl alcohol, followed by solvolysis of the aldehyde hydrate. In addition, the surface-bound Ru(VI) acts as an electrooxidation catalyst which carries out approximately 130 (2e(-)) turnovers before deactivation.

  14. Demonstration of intramolecular energy transfer in asymmetric bimetallic ruthenium(ii) complexes.

    PubMed

    Bar, Manoranjan; Maity, Dinesh; Das, Shyamal; Baitalik, Sujoy

    2016-11-01

    A new family of bimetallic Ru(ii) complexes derived from an asymmetric bridging ligand (tpy-Hbzim-dipy) consisting of both bipyridine and terpyridine chelating sites covalently connected via phenyl-imidazole spacer were designed in this work to demonstrate intramolecular energy transfer from one component to the other in asymmetric dyads. To fine tune the photo-redox properties, both bidentate and tridentate terminal ligands in the complexes were varied systematically. Both steady state and time-resolved luminescence spectral results indicated photo-induced intramolecular energy transfer from the excited MLCT state of the [(bpy/phen)2Ru(II)(dipy-Hbzim-tpy)] component to the MLCT state of the tpy-containing unit [(dipy-Hbzim-tpy)Ru(II)(tpy-PhCH3/H2pbbzim)] in dyads with rate constant values on the order of 10(6)-10(7) s(-1). Temperature-dependent luminescence studies indicated an enhancement in the luminescence intensity and excited state lifetimes upon decreasing the temperature.

  15. Self-assembly of linear and cyclic siloxane-containing mesogens: investigation of layered structures in bulk and thin films.

    PubMed

    Heinz, Paul; Hindelang, Konrad; Golosova, Anastasia; Papadakis, Christine M; Rieger, Bernhard

    2011-12-23

    Silicon-containing materials which possess the ability to form mesophases are promising systems for applications in the fields of electro-optical devices, nonlinear optics, and information storage media. In this work, the formation of supramolecular assemblies of a series of low molecular weight siloxane-containing mesogens is presented. Besides a novel synthesis route via Ru(II) -catalyzed hydrosilylation of phenyl acetylene derivatives, mesophase characterization by modern analysis techniques is performed. As linker groups, leading to bi- and tetramesogens, linear disiloxane and cyclic tetrasiloxane are utilized. In the resulting class of materials, high thermal stability, induced by the formation of layered smectic-type structures, is predominant. The smectic-type phases were found to be monotropic. Layer distances in the assemblies, as well as the phase transition temperatures, can be controlled by the substitution motif on the mesogens (number and length of alkyl chains). In spin-cast thin films, the layered domains are visualized by atomic force microscopy; furthermore, domain dimensions and electron densities are determined by grazing-incidence small-angle X-ray scattering.

  16. Biomolecule binding vs. anticancer activity: reactions of Ru(arene)[(thio)pyr-(id)one] compounds with amino acids and proteins.

    PubMed

    Meier, Samuel M; Hanif, Muhammad; Kandioller, Wolfgang; Keppler, Bernhard K; Hartinger, Christian G

    2012-03-01

    The interactions of the ruthenium(arene) complexes [chlorido(η(6)-p-cymene)(2-methyl-3-(oxo-κO)-4H-pyran-4-onato-κO)ruthenium(II)] 1, [chlorido(η(6)-p-cymene)(2-methyl-3-(oxo-κO)-4H-thiopyran-4-onato-κS)ruthenium(II)] 2 and [chlorido(η(6)-p-cymene){N-[(ethoxycarbonyl)methyl]-3-(oxo-κO)-1H-pyrid-2-onato-κO}ruthenium(II)] 3 with biomolecules such as l-methionine (Met) and ubiquitin (Ub) were investigated by electrospray ionization (ESI) ion trap mass spectrometry (MS). These Ru(II) compounds were shown to exhibit anticancer activity which varies depending on the (thio)pyr(id)onato ligands. Compounds 1 and 3 reacted readily with the model protein Ub to yield stable [Ub+Ru(p-cym)] adducts (p-cym=η(6)-p-cymene), whereas 2 was converted only to a minor degree. The protein adduct formation is reversible by incubation with N- and S-donor systems, the latter being more efficient. From these studies, an inverse correlation between metallodrug-protein interaction and cytotoxicity against human tumor cell lines was derived, where low protein binding ability is indicative of increased cytotoxic activity.

  17. Probing the Electronic Structure of a Photoexcited Solar Cell Dye with Transient X-ray Absorption Spectroscopy

    SciTech Connect

    Van Kuiken, Benjamin E.; Huse, Nils; Cho, Hana; Strader, Matthew L.; Lynch, Michael S.; Schoenlein, Robert W.; Khalil, Munira

    2012-06-21

    This study uses transient X-ray absorption (XA) spectroscopy and timedependent density functional theory (TD-DFT) to directly visualize the charge density around the metal atom and the surrounding ligands following an ultrafast metal-to-ligand charge-transfer (MLCT) process in the widely used RuII solar cell dye, Ru(dcbpy)2(NCS)2 (termed N3). We measure the Ru L-edge XA spectra of the singlet ground (1A1) and the transient triplet (3MLCT) excited state of N34 and perform TD-DFT calculations of 2p core-level excitations, which identify a unique spectral signature of the electron density on the NCS ligands. We find that the Ru 2p, Ru eg, and NCS orbitals are stabilized by 2.0, 1.0, and 0.6 eV, respectively, in the transient 3MLCT state of the dye. These results highlight the role of the NCS ligands in governing the oxidation state of the Ru center.

  18. Efficient transfer of either one or two dithiolene ligands from nickel to ruthenium: synthesis and crystal structures of [Ru(SCR=CPhS)(2)(PPh(3))] and [RuCl(2)(SCR=CPhS)(PPh(3))(2)] (R = Ph, H).

    PubMed

    Adams, Harry; Coffey, Anna M; Morris, Michael J; Morris, Sarah A

    2009-12-21

    High yields of two different types of ruthenium dithiolene complex have been obtained by reactions that involve transfer of the dithiolene ligands from the nickel complexes [Ni(SCR=CPhS)(2)] (R = Ph, H) to [RuCl(2)(PPh(3))(3)]. At room temperature one dithiolene is rapidly transferred to yield [RuCl(2)(SCR=CPhS)(PPh(3))(2)], whereas under thermal conditions (refluxing toluene) two dithiolene ligands are incorporated to give [Ru(SCR=CPhS)(2)(PPh(3))]. The crystal structures of the ruthenium bis(dithiolene) complexes indicate that the dithiolene ligands are bonded in the monoanionic form, whereas in the monodithiolene complexes the dithioketone canonical form of the dithiolene ligand is more in evidence, as shown by the average C-S and C=C bond distances in the ligands. This is consistent with both complexes containing Ru(II) centers. The synthesis of the mixed-ligand bis(dithiolene) complex [Ru(SCH=CPhS)(S(2)C(2)Ph(2))(PPh(3))] has been achieved and it is shown that the bis(dithiolene) complexes undergo relatively slow scrambling of the dithiolene ligands in solution. The complex [Ru(SCH=CFcS)(2)(PPh(3))], containing two ferrocenyl-substituted dithiolene ligands, was also prepared, but attempts to establish the degree of electrochemical communication between them were hampered by instability and the irreversible nature of the redox processes.

  19. Rationalization of the inhibition activity of structurally related organometallic compounds against the drug target cathepsin B by DFT.

    PubMed

    Casini, Angela; Edafe, Fabio; Erlandsson, Mikael; Gonsalvi, Luca; Ciancetta, Antonella; Re, Nazzareno; Ienco, Andrea; Messori, Luigi; Peruzzini, Maurizio; Dyson, Paul J

    2010-06-21

    A series of organometallic compounds of general formula [(arene)M(PTA)(n)X(m)]Y (arene = eta(6)-C(10)H(14), eta-C(5)Me(5)); M = Ru(ii), Os(ii), Rh(iii) and Ir(iii); X = Cl, mPTA; Y = OTf, PF(6)) have been screened for their cytotoxicity and ability to inhibit cathepsin B in vitro, in comparison to the antimetastatic compound NAMI-A. The Ru and Os analogues and NAMI-A showed similar enzyme inhibition properties (with IC(50) values in the low muM range), whereas the Rh(iii) and Ir(iii) compounds were inactive. In order to build up a rational for the observed differences, DFT calculations of the metal complexes adducts with N-acetyl-l-cysteine-N'-methylamide, a mimic for the Cys residue in the cathepsin B active site, were performed to provide insights into binding thermodynamics in solution. Initial structure-activity relationships have been defined with the calculated binding energies of the M-S bonds correlating well with the observed inhibition properties of the compounds.

  20. Synergistic "ping-pong" energy transfer for efficient light activation in a chromophore-catalyst dyad.

    PubMed

    Quaranta, Annamaria; Charalambidis, Georgios; Herrero, Christian; Margiola, Sofia; Leibl, Winfried; Coutsolelos, Athanassios; Aukauloo, Ally

    2015-10-07

    The synthesis of a porphyrin-Ru(II) polypyridine complex where the porphyrin acts as a photoactive unit and the Ru(II) polypyridine as a catalytic precursor is described. Comparatively, the free base porphyrin was found to outperform the ruthenium based chromophore in the yield of light induced electron transfer. Mechanistic insights indicate the occurrence of a ping-pong energy transfer from the (1)LC excited state of the porphyrin chromophore to the (3)MCLT state of the catalyst and back to the (3)LC excited state of the porphyrin unit. The latter, triplet-triplet energy transfer back to the chromophore, efficiently competes with fast radiationless deactivation of the excited state at the catalyst site. The energy thus recovered by the chromophore allows improved yield of formation of the oxidized form of the chromophore and concomitantly of the oxidation of the catalytic unit by intramolecular charge transfer. The presented results are among the rare examples where a porphyrin chromophore is successfully used to drive an oxidative activation process where reductive processes prevail in the literature.

  1. Application of time-resolved step-scan FTIR to the photodynamics of transition metal complexes and heme proteins

    NASA Astrophysics Data System (ADS)

    Palmer, Richard A.; Plunkett, Susan E.; Dyer, R. B.; Schoonover, Jon; Meyer, Thomas J.; Chao, James L.

    1994-01-01

    Time-resolved step-scan FT-IR spectroscopy is used to monitor two distinct photo-induced processes. In the first, the third harmonic of a pulsed Nd:YAG laser (355 nm) is used to initiate a metal-to-ligand charge transfer process (MLCT) in a number of Ru(II) and/or Re(I) polypyridyl complexes. Changes in the position and shape of the vibrational signatures of (pi) -backbonding ligands such as CO and/or CN provide information about the changes in oxidation state of the metal resulting from electronic excitation. Changes in the other ligands vibrational bands indicate which is the electron acceptor (radical anion). In the second example demonstrated here, the second harmonic of the Nd:YAG laser (532 nm) pumps into the (beta) -Visible band of carbonmonoxymyoglobin (MbCO). This dissociates the Fe-CO bond of the heme prosthetic group, and the recombination process is observed as indicated by changes in the amide bands of the polypeptide chain. In both cases, these are some of the very few examples of fast (sub-microsecond(s) ) TR FT-IR in the absorbance mode.

  2. Synthesis, characterization and biological evaluation of ruthenium flavanol complexes against breast cancer.

    PubMed

    Singh, Ashok Kumar; Saxena, Gunjan; Sahabjada; Arshad, M

    2017-03-01

    Four Ru(II) DMSO complexes (M1R-M4R) having substituted flavones viz. 3-Hydroxy-2-(4-methoxyphenyl)-4H-chromen-4-one (HL1), 3-Hydroxy-2-(4-nitrophenyl)-4H-chromen-4-one (HL2), 3-Hydroxy-2-(4-dimethylaminophenyl)-4H-chromen-4-one (HL3) and 3-Hydroxy-2-(4-chlorophenyl)-4H-chromen-4-one (HL4) were synthesized and characterized by elemental analysis, IR, UV-Vis, (1)H NMR spectroscopies and ESI-MS. The molecular structures of the complexes were investigated by integrated spectroscopic and computational techniques (DFT). Both ligands as well as their complexes were screened for anticancer activities against breast cancer cell lines MCF-7. Cytotoxicity was assayed by MTT [3-(4, 5-dimethyl thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide] assay. All ligands and their complexes exhibited significant cytotoxic potential of 5-40μM concentration at incubation period of 24h. The cell cytotoxicity increased significantly in a concentration-dependent manner. In this series of compounds, HL2 (IC50 17.2μM) and its complex M2R (IC50 16μM) induced the highest cytotoxicity.

  3. Organometallic chemistry meets crystal engineering to give responsive crystalline materials.

    PubMed

    Bacchi, A; Pelagatti, P

    2016-01-25

    Dynamically porous crystalline materials have been obtained by engineering organometallic molecules. This feature article deals with organometallic wheel-and-axle compounds, molecules with two relatively bulky groups (wheels) connected by a linear spacer. The wheels are represented by half-sandwich Ru(ii) moieties, while the spacer can be covalent or supramolecular in character. Covalent spacers are obtained using divergent bidentate ligands connecting two [(arene)RuX2] groups. Supramolecular spacers are instead obtained by exploiting the dimerization of COOH or C(O)NH2 groups appended to N-based ligands. A careful choice of ligand functional groups and X ligands leads to the isolation of crystalline materials with remarkable host-guest properties, evidenced by the possibility of reversibly capturing/releasing volatile guests through heterogenous solid-gas reactions. Structural correlations between the crystalline arrangement of the apohost and the host-guest compounds allow us to envisage the structural path followed by the system during the exchange processes.

  4. Peroxydisulfate activation by [RuII(tpy)(pic)(H2O)]+. Kinetic, mechanistic and anti-microbial activity studies.

    PubMed

    Chatterjee, Debabrata; Banerjee, Priyabrata; Bose, Jagadeesh C K; Mukhopadhyay, Sudit

    2012-03-07

    The oxidation of [Ru(II)(tpy)(pic)H(2)O](+) (tpy = 2,2',6',2''-terpyridine; pic(-) = picolinate) by peroxidisulfate (S(2)O(8)(2-)) as precursor oxidant has been investigated kinetically by UV-VIS, IR and EPR spectroscopy. The overall oxidation of Ru(II)- to Ru(IV)-species takes place in a consecutive manner involving oxidation of [Ru(II)(tpy)(pic)H(2)O](+) to [Ru(III)(tpy)(pic)(OH)](+), and its further oxidation of to the ultimate product [Ru(IV)(tpy)(pic)(O)](+) complex. The time course of the reaction was followed as a function of [S(2)O(8)(2-)], ionic strength (I) and temperature. Kinetic data and activation parameters are interpreted in terms of an outer-sphere electron transfer mechanism. Anti-microbial activity of Ru(II)(tpy)(pic)H(2)O](+) complex by inhibiting the growth of Escherichia coli DH5α in presence of peroxydisulfate has been explored, and the results of the biological studies have been discussed in terms of the [Ru(IV)(tpy)(pic)(O)](+) mediated cleavage of chromosomal DNA of the bacteria.

  5. Electronic coupling between two cyclometalated ruthenium centers bridged by 1,3,6,8-tetrakis(1-butyl-1H-1,2,3-triazol-4-yl)pyrene.

    PubMed

    Wang, Lei; Yang, Wen-Wen; Zheng, Ren-Hui; Shi, Qiang; Zhong, Yu-Wu; Yao, Jiannian

    2011-08-01

    A new bridging ligand 1,3,6,8-tetrakis(1-butyl-1H-1,2,3-triazol-4-yl)pyrene (ttapyr) was designed and synthesized by "click" chemistry. This ligand was used to construct a linear dimetallic biscyclometalated Ru(II) complex [(tpy)Ru(ttapyr)Ru(tpy)](2+) and a monometallic complex [(tpy)Ru(ttapyr)](+), where tpy is 2,2':6',2″-terpyridine. The electronic properties of these complexes were studied and compared by electrochemical and spectroscopic methods with the aid of DFT calculations. One-electron oxidation of [(tpy)Ru(ttapyr)Ru(tpy)](2+) with cerium ammonium nitrate produced a mixed-valent complex [(tpy)Ru(ttapyr)Ru(tpy)](3+). The intramolecular electronic coupling between individual metal centers was quantified by the intervalence charge transfer transition analysis. Mixed-valent complex [(tpy)Ru(ttapyr)Ru(tpy)](3+) exhibits a metal-centered rhombic EPR signal at 77 K with an average g factor of 2.203.

  6. Externally controlled spin state switching in metal-organic complexes.

    NASA Astrophysics Data System (ADS)

    Bagrets, Alexei; Meded, Velimir; Ruben, Mario; Evers, Ferdinand

    2009-03-01

    Recent transport experiments have demonstrated that a manipulation of the charge of individual molecules is feasible using electromigrated metal junctions [1] or electrochemical gates in conjunction with the STM [2]. Using elaborated density functional theory calculations, we will discuss a possibility to induce -- by means of charging or applied stress -- a switching between low and high spin states in certain metal-organic systems, [Fe(bpp)2]^2+ (bpp: bispyrazolyl pyridine) and [Mn(tpy)2]^2+ (tpy: terpyridine). Based upon a recent success of the single molecular conduction experiment through Ru(II) complex [3], we anticipate the transport properties of Fe(II) and Mn(II) complexes to be gate controlled via exploiting their spin degree of freedom. [1] E. A. Osorio et al., J. Phys.: Condens. Matter20, 374121 (2008); [2] F. Chen el al., Ann. Rev. Phys. Chem. 58, 535 (2007); Li et al., Nanotechnology 18, 044018 (2007). [3] M. Ruben, A. Landa, E. L"ortscher, H. Riel, M. Mayor, H. G"orls, H. Weber, A. Arnold, and F. Evers, Small (online), DOI: 10.1002/smll.200800390 (2008).

  7. Varied roles of Pb in transition-metal PbMO3 perovskites (M = Ti, V, Cr, Mn, Fe, Ni, Ru).

    PubMed

    Goodenough, John B; Zhou, Jianshi

    2015-06-01

    Different structural chemistries resulting from the Pb(2+) lone-pair electrons in the PbMO3 perovskites are reviewed. The Pb(2+) lone-pair electrons enhance the ferroelectric transition temperature in PbTiO3, stabilize vanadyl formation in PbVO3, and induce a disproportionation reaction of Cr(IV) in PbCrO3. A Pb(2+) + Ni(IV) = Pb(4+) + Ni(II) reaction in PbNiO3 stabilizes the LiNbO3 structure at ambient pressure, but an A-site Pb(4+) in an orthorhombic perovskite PbNiO3 is stabilized at modest pressures at room temperature. In PbMnO3, a ferroelectric displacement due to the lone pair electron effect is minimized by the spin-spin exchange interaction and the strong octahedral site preference of the Mn(IV/III) cation. PbRuO3 is converted under pressure from the defective pyrochlore to the orthorhombic (Pbnm) perovskite structure where Pb-Ru interactions via a common O -2p orbital stabilize at low temperature a metallic Imma phase at ambient pressure. Above Pc [Formula: see text] a covalent Pb-Ru bond is formed by Pb(2+) + Ru(IV) = Pb(4+) + Ru(II) electron sharing.

  8. Ruthenium(II) bipyridine complexes bearing quinoline-azoimine (NN‧N″) tridentate ligands: Synthesis, spectral characterization, electrochemical properties and single-crystal X-ray structure analysis

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Abdel-Rahman, Obadah S.; Fasfous, Ismail I.; El-khateeb, Mohammad; Awwadi, Firas F.; Warad, Ismail

    Four octahedral ruthenium(II) azoimine-quinoline complexes having the general molecular formula [RuII(Lsbnd Y)(bpy)Cl](PF6) {Lsbnd Y = YC6H4Ndbnd NC(COCH3)dbnd NC9H6N, Y = H (1), CH3 (2), Br (3), NO2 (4) and bpy = 2,2‧-bipyrdine} were synthesized. The azoimine-quinoline based ligands behave as NN‧N″ tridentate donors and coordinated to ruthenium via azo-N‧, imine-N‧ and quinolone-N″ nitrogen atoms. The composition of the complexes has been established by elemental analysis, spectral methods (FT-IR, electronic, 1H NMR, UV/Vis and electrochemical (cyclic voltammetry) techniques. The crystal structure of complex 1 is reported. The Ru(II) oxidation state is greatly stabilized by the novel tridentate ligands, showing Ru(III/II) couples ranging from 0.93-1.27 V vs. Cp2Fe/Cp2Fe+. The absorption spectrum of 1 in dichloromethane was modeled by time-dependent density functional theory (TD-DFT).

  9. Structure and properties of Dinuclear [RuII([n]aneS4)] complexes of 3,6-Bis(2-pyridyl)-1,2,4,5-tetrazine.

    PubMed

    Newell, Mike; Ingram, James D; Easun, Timothy L; Vickers, Steven J; Adams, Harry; Ward, Michael D; Thomas, Jim A

    2006-01-23

    The synthesis of dinuclear [Ru(II)([n]aneS(4))] (where n = 12, 14) complexes of the bridging ligand 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine are reported. The X-ray structures of both of the new complexes are compared to a newly obtained structure for a dinuclear [Ru(II)([9]aneS(3))]-based analogue, whose synthesis has previously been reported. A comparison of the electrochemistry of the three complexes reveals that the first oxidation of the [Ru(II)([n]aneS(4))]-based systems is a ligand-based couple, indicating that the formation of the radical anion form of the bridging ligand is stabilized by metal center coordination. Spectroelectrochemistry studies on the mixed-valence form of the new complexes suggest that they are Robin and Day Class II systems. The electrochemical and electronic properties of these complexes is rationalized by a consideration of the pi-bonding properties of thiacrown ligands.

  10. 3-Hydroxyflavones vs. 3-hydroxyquinolinones: structure-activity relationships and stability studies on Ru(II)(arene) anticancer complexes with biologically active ligands.

    PubMed

    Kurzwernhart, Andrea; Kandioller, Wolfgang; Enyedy, Éva A; Novak, Maria; Jakupec, Michael A; Keppler, Bernhard K; Hartinger, Christian G

    2013-05-07

    Ru(II)(η(6)-arene) complexes, especially with bioactive ligands, are considered to be very promising compounds for anticancer drug design. We have shown recently that Ru(II)(η(6)-p-cymene) complexes with 3-hydroxyflavone ligands exhibit very high in vitro cytotoxic activities correlating with a strong inhibition of topoisomerase IIα. In order to expand our knowledge about the structure-activity relationships and to determine the impact of lipophilicity of the arene ligand and of the hydrolysis rate on anticancer activity, a series of novel 3-hydroxyflavone derived Ru(II)(η(6)-arene) complexes were synthesised. Furthermore, the impact of the heteroatom in the bioactive ligand backbone was studied by comparing the cytotoxic activity of Ru(II)(η(6)-p-cymene) complexes of 3-hydroxyquinolinone ligands with that of their 3-hydroxyflavone analogues. To better understand the behaviour of these Ru(II) complexes in aqueous solution, the stability constants and pK(a) values for complexes and the corresponding ligands were determined. Furthermore, the interaction with the DNA model 5'-GMP and with a series of amino acids was studied in order to identify potential biological target structures.

  11. Ru-Catalyzed C–H Arylation of Fluoroarenes with Aryl Halides

    PubMed Central

    2016-01-01

    Although the ruthenium-catalyzed C–H arylation of arenes bearing directing groups with haloarenes is well-known, this process has never been achieved in the absence of directing groups. We report the first example of such a process and show that unexpectedly the reaction only takes place in the presence of catalytic amounts of a benzoic acid. Furthermore, contrary to other transition metals, the arylation site selectivity is governed by both electronic and steric factors. Stoichiometric and NMR mechanistic studies support a catalytic cycle that involves a well-defined η6-arene-ligand-free Ru(II) catalyst. Indeed, upon initial pivalate-assisted C–H activation, the aryl-Ru(II) intermediate generated is able to react with an aryl bromide coupling partner only in the presence of a benzoate additive. In contrast, directing-group-containing substrates (such as 2-phenylpyridine) do not require a benzoate additive. Deuterium labeling and kinetic isotope effect experiments indicate that C–H activation is both reversible and kinetically significant. Computational studies support a concerted metalation–deprotonation (CMD)-type ruthenation mode and shed light on the unusual arylation regioselectivity. PMID:26942551

  12. A cyclometallated fluorenyl Ir(iii) complex as a potential sensitiser for two-photon excited photodynamic therapy (2PE-PDT).

    PubMed

    Boreham, Elizabeth M; Jones, Lucy; Swinburne, Adam N; Blanchard-Desce, Mireille; Hugues, Vincent; Terryn, Christine; Miomandre, Fabien; Lemercier, Gilles; Natrajan, Louise S

    2015-09-28

    A new Ir(iii) cyclometallated complex bearing a fluorenyl 5-substituted-1,10-phenanthroline ligand ([Ir(ppy)2()][PF6], ppy = 2-phenylpyridine) is presented which exhibits enhanced triplet oxygen sensing properties. The efficacy of this complex to act as a photosensitiser for altering the morphology of C6 Glioma cells that represent malignant nervous tumours has been evaluated. The increased heavy metal effect and related spin-orbit coupling parameters on the photophysical properties of this complex are evidenced by comparison with Ru(ii) analogues. The complex [Ir(ppy)2()][PF6] is shown to exhibit relatively high two-photon absorption efficiencies for the lowest energy MLCT electronic transitions with two-photon absorption cross sections that range from 50 to 80 Goeppert-Mayer units between 750 to 800 nm. Quantum yields for the complex were measured up to 23% and the Stern-Volmer quenching constant, KSV was determined to be 40 bar(-1) in acetonitrile solution, confirming the high efficiency of the complex as a triplet oxygen sensitiser. Preliminary in vitro experiments with C6 Glioma cells treated with [Ir(ppy)2()][PF6], show that the complex is an efficient sensitizer for triplet oxygen, producing cytotoxic singlet oxygen ((1)O2) by two-photon excitation at 740 nm resulting in photodynamic effects that lead to localised cell damage and death.

  13. Tuning the cellular uptake properties of luminescent heterobimetallic iridium(III)-ruthenium(II) DNA imaging probes.

    PubMed

    Wragg, Ashley; Gill, Martin R; Turton, David; Adams, Harry; Roseveare, Thomas M; Smythe, Carl; Su, Xiaodi; Thomas, Jim A

    2014-10-20

    The synthesis of two new luminescent dinuclear Ir(III)-Ru(II) complexes containing tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) as the bridging ligand is reported. Unlike many other complexes incorporating cyclometalated Ir(III) moieties, these complexes display good water solubility, allowing the first cell-based study on Ir(III)-Ru(II) bioprobes to be carried out. Photophysical studies indicate that emission from each complex is from a Ru(II) excited state and both complexes display significant in vitro DNA-binding affinities. Cellular studies show that each complex is rapidly internalised by HeLa cells, in which they function as luminescent nuclear DNA-imaging agents for confocal microscopy. Furthermore, the uptake and nuclear targeting properties of the complex incorporating cyclometalating 2-(4-fluorophenyl)pyridine ligands around its Ir(III) centre is enhanced in comparison to the non-fluorinated analogue, indicating that fluorination may provide a route to promote cell uptake of transition-metal bioprobes.

  14. The effects of linear assembly of two carbazole groups on acid-base and DNA-binding properties of a ruthenium(II) complex.

    PubMed

    Chen, Xi; Xue, Long-Xin; Ju, Chun-Chuan; Wang, Ke-Zhi

    2013-07-01

    A novel Ru(II) complex of [Ru(bpy)2(Hbcpip)](ClO4)2 {where bpy=2,2-bipyridine, Hbcpip=2-(4-(9H-3,9'-bicarbazol-9-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} is synthesized and characterized. Calf-thymus DNA-binding properties of the complex were studied by UV-vis absorption and luminescence titrations, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, thermal denaturation and DNA viscosity measurements. The results indicate that the complex partially intercalated into the DNA with a binding constant of (5.5±1.4)×10(5) M(-1) in buffered 50 mM NaCl. The acid-base properties of the complex were also studied by UV-visible and luminescence spectrophotometric pH titrations, and ground- and excited-state acidity ionization constant values were derived.

  15. Studies on Photocleavage, DNA Binding, Cytotoxicity, and Docking Studies of Ruthenium(II) Mixed Ligand Complexes.

    PubMed

    Kumar, Yata Praveen; Devi, C Shobha; Srishailam, A; Deepika, N; Kumar, V Ravi; Reddy, P Venkat; Nagasuryaprasad, K; Singh, Surya S; Nagababu, Penumaka; Satyanarayana, S

    2016-11-01

    This article describes the synthesis and characterization of three new Ru(II) polypyridyl complexes including [Ru(phen)2(dpphz)](2+) (1), [Ru(bpy)2(dpphz)](2+) (2) and [Ru(dmb)2(dpphz)](2+) (3) where dpphz = dipyrido[3,2-a:2',3'-c] phenazine-11-hydrazide, phen =1,10-phenanthroline, bpy = 2,2'-bipyridine and dmb = 4,4'-dimethyl2,2'-bipyridine. The binding behaviors of these complexes to calf thymus DNA (CT-DNA) were explored by spectroscopic titrations, viscosity measurements. Results suggest that these complexes can bind to CT-DNA through intercalation. However, their binding strength differs from each other; this may be attributed to difference in the ancillary ligand. The cytotoxicity of 1-3 was evaluated by MTT assay; results indicated that all complexes have significant dose dependent cytotoxicity with HeLa tumor cell line. All complexes exhibited efficient photocleavage of pBR322 DNA upon irradiation. The DNA binding ability of 1-3 was also studied by docking the complexes into B-DNA using docking program.

  16. Thiol-Activated HNO Release from a Ruthenium Antiangiogenesis Complex and HIF-1α Inhibition for Cancer Therapy

    PubMed Central

    2016-01-01

    Metallonitrosyl complexes are promising as nitric oxide (NO) donors for the treatment of cardiovascular, endothelial, and pathogenic diseases, as well as cancer. Recently, the reduced form of NO– (protonated as HNO, nitroxyl, azanone, isoelectronic with O2) has also emerged as a candidate for therapeutic applications including treatment of acute heart failure and alcoholism. Here, we show that HNO is a product of the reaction of the RuII complex [Ru(bpy)2(SO3)(NO)]+ (1) with glutathione or N-acetyl-L-cysteine, using met-myoglobin and carboxy-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) as trapping agents. Characteristic absorption spectroscopic profiles for HNO reactions with met-myoglobin were obtained, as well as EPR evidence from carboxy-PTIO experiments. Importantly, the product HNO counteracted NO-induced as well as hypoxia-induced stabilization of the tumor-suppressor HIF-1α in cancer cells. The functional disruption of neovascularization by HNO produced by this metallonitrosyl complex was demonstrated in an in vitro angiogenesis model. This behavior is consistent with HNO biochemistry and contrasts with NO-mediated stabilization of HIF-1α. Together, these results demonstrate for the first time thiol-dependent production of HNO by a ruthenium complex and subsequent destabilization of HIF-1α. This work suggests that the complex warrants further investigation as a promising antiangiogenesis agent for the treatment of cancer. PMID:27191177

  17. DNA-binding, topoisomerases I and II inhibition and in vitro cytotoxicity of ruthenium(II) polypyridyl complexes: [Ru(dppz)2L]2+ (L = dppz-11-CO2Me and dppz)

    NASA Astrophysics Data System (ADS)

    He, Xiaojun; Jin, Lianhe; Tan, Lifeng

    2015-01-01

    Two ruthenium(II) polypyridyl complexes, [Ru(dppz)2dppz-11-CO2Me](ClO4)2 (Ru1) and [Ru(dppz)3](ClO4)2 (Ru2), have been synthesized and characterized. The spectral characteristics of Ru1 and Ru2 were investigated by fluorescence spectroscopy and revealed that both complexes were sensitive to solvent polarity. The binding properties of the two complexes towards calf-thymus DNA (CT-DNA) have been investigated by different spectrophotometric methods and viscosity measurements, indicating that both complexes bind to CT-DNA by means of intercalation, but with different binding affinities. Topoisomerase inhibition and DNA strand passage assay demonstrates that the two complexes are dual inhibitors of topoisomerases I and IIa. On the other hand, the cytotoxicity of both complexes has been evaluated by MTT assays and Giemsa staining experiments. The main results reveal that the ester functional group has a significant effect on the DNA-binding affinities and topoisomerases inhibition effects of Ru1 and Ru2, and further advance our knowledge on the DNA-binding and topoisomerase inhibition by Ru(II) complexes.

  18. Structure and spectroscopic properties of ruthenium(II) bipyridyl N-benzoyl-N'-(1,10-phenanthrolin-5-Yl)-thiourea

    NASA Astrophysics Data System (ADS)

    Tan, Siew San; Kassim, Mohammad B.

    2015-09-01

    Ruthenium bipyridyl incorporating phenanthroline with thiourea molecules, [Ru(bpy)2(Phen-BT)](PF6)2], has been synthesized and characterized by spectroscopic and electrochemical techniques. The infrared spectra of the complex shows the characteristics stretching frequencies for N-H at 3646 and 3585 cm-1, ν(C-N)phen 1426 cm-1, ν(C=O) 1675 cm-1, ν(C=S) 1246 cm-1, ν(C-H)aromatic 3353-3086 cm-1, ν(C-N)aliphatic 1169-1026 cm-1, ν(C-H)bend 764 cm-1 and ν(PF6-)free 842 cm-1. The complex reveals two π→π* absorption bands at 237 (ɛ=26,302) and 286 nm (ɛ=36,848), which were assigned to the phenanthroline and bipyridyl moieties, respectively. A slightly broad and low energy band in the UV-vis spectrum at 450 nm (ɛ=7,209) of the complex was assigned to a MLCT transition. Besides, the complex also exhibits an emission band at 615 nm that arises from an excitation with a 440 nm light energy. The cyclic voltammetry of the complex shows an oxidation potential at +1.305 V vs. SCE that corresponds to the formal oxidation of Ru(II) to Ru(III).

  19. A high molar extinction coefficient mono-anthracenyl bipyridyl heteroleptic ruthenium(II) complex: synthesis, photophysical and electrochemical properties.

    PubMed

    Adeloye, Adewale O; Ajibade, Peter A

    2011-06-03

    In our quest to develop good materials as photosensitizers for photovoltaic dye-sensitized solar cells (DSSCs), cis-dithiocyanato-4-(2,3-dimethylacrylic acid)-2,2'-bipyridyl-4-(9-anthracenyl-(2,3-dimethylacrylic)-2,2'-bipyridyl ruthenium(II) complex, a high molar extinction coefficient charge transfer sensitizer, was designed, synthesized and characterized by spectroscopy and electrochemical techniques. Earlier studies on heteroleptic ruthenium(II) complex analogues containing functionalized oligo-anthracenyl phenanthroline ligands have been reported and documented. Based on a general linear correlation between increase in the length of π-conjugation bond and the molar extinction coefficients, herein, we report the photophysical and electrochemical properties of a Ru(II) bipyridyl complex analogue with a single functionalized anthracenyl unit. Interestingly, the complex shows better broad and intense metal-to ligand charge transfer (MLCT) band absorption with higher molar extinction coefficient (λ(max) = 518 nm, e = 44900 M⁻¹ cm⁻¹), and appreciable photoluminescence spanning the visible region than those containing higher anthracenyl units. It was shown that molar absorption coefficient of the complexes may not be solely depended on the extended π-conjugation but are reduced by molecular aggregation in the molecules.

  20. Ruthenium(II) bipyridine complexes bearing quinoline-azoimine (NN'N″) tridentate ligands: synthesis, spectral characterization, electrochemical properties and single-crystal X-ray structure analysis.

    PubMed

    Al-Noaimi, Mousa; Abdel-Rahman, Obadah S; Fasfous, Ismail I; El-khateeb, Mohammad; Awwadi, Firas F; Warad, Ismail

    2014-05-05

    Four octahedral ruthenium(II) azoimine-quinoline complexes having the general molecular formula [Ru(II)(L-Y)(bpy)Cl](PF6) {L-Y=YC6H4N=NC(COCH3)=NC9H6N, Y=H (1), CH3 (2), Br (3), NO2 (4) and bpy=2,2'-bipyrdine} were synthesized. The azoimine-quinoline based ligands behave as NN'N″ tridentate donors and coordinated to ruthenium via azo-N', imine-N' and quinolone-N″ nitrogen atoms. The composition of the complexes has been established by elemental analysis, spectral methods (FT-IR, electronic, (1)H NMR, UV/Vis and electrochemical (cyclic voltammetry) techniques. The crystal structure of complex 1 is reported. The Ru(II) oxidation state is greatly stabilized by the novel tridentate ligands, showing Ru(III/II) couples ranging from 0.93-1.27 V vs. Cp2Fe/Cp2Fe(+). The absorption spectrum of 1 in dichloromethane was modeled by time-dependent density functional theory (TD-DFT).

  1. An Unusually Delocalized Mixed-Valence State of a Cyanidometal-Bridged Compound Induced by Thermal Electron Transfer.

    PubMed

    Ma, Xiao; Lin, Chen-Sheng; Zhu, Xiao-Quan; Hu, Sheng-Min; Sheng, Tian-Lu; Wu, Xin-Tao

    2017-02-01

    The heterometallic complexes trans-[Cp(dppe)FeNCRu(o-bpy)CNFe(dppe)Cp][PF6 ]n (1[PF6 ]n , n=2, 3, 4; o-bpy=1,2-bis(2,2'-bipyridyl-6-yl)ethane, dppe=1,2-bis(diphenylphosphino)ethane, Cp=1,3-cyclopentadiene) in three distinct states have been synthesized and fully characterized. 1(3+) [PF6 ]3 and 1(4+) [PF6 ]4 are the one- and two-electron oxidation products of 1(2+) [PF6 ]2 , respectively. The investigated results suggest that 1[PF6 ]3 is a Class II mixed valence compound. 1[PF6 ]4 after a thermal treatment at 400 K shows an unusually delocalized mixed valence state of [Fe(III) -NC-Ru(III) -CN-Fe(II) ], which is induced by electron transfer from the central Ru(II) to the terminal Fe(III) in 1[PF6 ]4 , which was confirmed by IR spectroscopy, magnetic data, and EPR and Mössbauer spectroscopy.

  2. Half-sandwich ruthenium(II) biotin conjugates as biological vectors to cancer cells.

    PubMed

    Babak, Maria V; Plażuk, Damian; Meier, Samuel M; Arabshahi, Homayon John; Reynisson, Jóhannes; Rychlik, Błażej; Błauż, Andrzej; Szulc, Katarzyna; Hanif, Muhammad; Strobl, Sebastian; Roller, Alexander; Keppler, Bernhard K; Hartinger, Christian G

    2015-03-23

    Ruthenium(II)-arene complexes with biotin-containing ligands were prepared so that a novel drug delivery system based on tumor-specific vitamin-receptor mediated endocytosis could be developed. The complexes were characterized by spectroscopic methods and their in vitro anticancer activity in cancer cell lines with various levels of major biotin receptor (COLO205, HCT116 and SW620 cells) was tested in comparison with the ligands. In all cases, coordination of ruthenium resulted in significantly enhanced cytotoxicity. The affinity of Ru(II) -biotin complexes to avidin was investigated and was lower than that of unmodified biotin. Hill coefficients in the range 2.012-2.851 suggest strong positive cooperation between the complexes and avidin. To estimate the likelihood of binding to the biotin receptor/transporter, docking studies with avidin and streptavidin were conducted. These explain, to some extent, the in vitro anticancer activity results and support the conclusion that these novel half-sandwich ruthenium(II)-biotin conjugates may act as biological vectors to cancer cells, although no clear relationship between the cellular Ru content, the cytotoxicity, and the presence of the biotin moiety was observed.

  3. Ruthenium-Clotrimazole complex has significant efficacy in the murine model of cutaneous leishmaniasis.

    PubMed

    Iniguez, Eva; Varela-Ramirez, Armando; Martínez, Alberto; Torres, Caresse L; Sánchez-Delgado, Roberto A; Maldonado, Rosa A

    2016-12-01

    In previous studies we reported a novel series of organometallic compounds, Ru(II) complexed with clotrimazole, displaying potent trypanosomatid activity with unnoticeable toxicity toward normal mammalian cells. In view of the promising activity of Ru-clotrimazole complexes against Leishmania major (L. major), the present work sought to investigate the anti-leishmanial activity of the AM162 complex in the murine model of cutaneous leishmaniasis. In addition, to facilitate the design of new therapeutic strategies against this disease, we investigated the mode of action of two Ru-clotrimazole complexes in L. major promastigotes. Overall, we demonstrate that AM162 significantly reduced the lesion size in mice exposed to L. major infection. In addition, Ru-clotrimazole compounds are able to induce a mitochondrial dependent apoptotic-like death in the extracellular form of the parasite based on labeling of DNA fragments, mitochondrial depolarization, cell cycle alteration profile and plasma membrane phospholipid externalization. Our findings reveal a promising efficacy of the Ru-clotrimazole AM162 complex for the treatment of cutaneous leishmaniasis, as well as pro-apoptotic activity and thus guarantees further evaluation in pre-clinical studies.

  4. Synthesis and structures of ruthenium di- and tricarbonyl complexes derived from 4,5-diazafluoren-9-one.

    PubMed

    Jimenez, Jorge; Chakraborty, Indranil; Mascharak, Pradip

    2015-11-01

    Carbon monoxide (CO) has recently been shown to impart beneficial effects in mammalian physiology and considerable research attention is now being directed toward metal-carbonyl complexes as a means of delivering CO to biological targets. Two ruthenium carbonyl complexes, namely trans-dicarbonyldichlorido(4,5-diazafluoren-9-one-κ(2)N,N')ruthenium(II), [RuCl2(C11H6N2O)(CO)2], (1), and fac-tricarbonyldichlorido(4,5-diazafluoren-9-one-κN)ruthenium(II), [RuCl2(C11H6N2O)(CO)3], (2), have been isolated and structurally characterized. In the case of complex (1), the trans-directing effect of the CO ligands allows bidentate coordination of the 4,5-diazafluoren-9-one (dafo) ligand despite a larger bite distance between the N-donor atoms. In complex (2), the cis disposition of two chloride ligands restricts the ability of the dafo molecule to bind ruthenium in a bidentate fashion. Both complexes exhibit well defined (1)H NMR spectra confirming the diamagnetic ground state of Ru(II) and display a strong absorption band around 300 nm in the UV.

  5. Orbital entanglement and CASSCF analysis of the Ru–NO bond in a Ruthenium nitrosyl complex

    PubMed Central

    Freitag, Leon; Knecht, Stefan; Keller, Sebastian F.; Delcey, Mickaël G.; Aquilante, Francesco; Bondo Pedersen, Thomas; Lindh, Roland

    2015-01-01

    Complete active space self-consistent field (CASSCF) wavefunctions and an orbital entanglement analysis obtained from a density-matrix renormalisation group (DMRG) calculation are used to understand the electronic structure, and, in particular, the Ru–NO bond of a Ru nitrosyl complex. Based on the configurations and orbital occupation numbers obtained for the CASSCF wavefunction and on the orbital entropy measurements evaluated for the DMRG wavefunction, we unravel electron correlation effects in the Ru coordination sphere of the complex. It is shown that Ru–NO π bonds show static and dynamic correlation, while other Ru–ligand bonds feature predominantly dynamic correlation. The presence of static correlation requires the use of multiconfigurational methods to describe the Ru–NO bond. Subsequently, the CASSCF wavefunction is analysed in terms of configuration state functions based on localised orbitals. The analysis of the wavefunctions in the electronic singlet ground state and the first triplet state provides a picture of the Ru–NO moiety beyond the standard representation based on formal oxidation states. A distinct description of the Ru and NO fragments is advocated. The electron configuration of Ru is an equally weighted superposition of RuII and RuIII configurations, with the RuIII configuration originating from charge donation mostly from Cl ligands. However, and contrary to what is typically assumed, the electronic configuration of the NO ligand is best described as electroneutral. PMID:25767830

  6. Duplex-Selective Ruthenium-based DNA Intercalators

    PubMed Central

    Shade, Chad M.; Kennedy, Robert D.; Rouge, Jessica L.; Rosen, Mari S.; Wang, Mary X.; Seo, Soyoung E.; Clingerman, Daniel J.

    2016-01-01

    We report the design and synthesis of small molecules that exhibit enhanced luminescence in the presence of duplex rather than single-stranded DNA. The local environment presented by a well-known [Ru(dipyrido[2,3-a:3',2'-c]phenazine)L2]2+-based DNA intercalator was modified by functionalizing the bipyridine ligands with esters and carboxylic acids. By systematically varying the number and charge of the pendant groups, it was determined that decreasing the electrostatic interaction between the intercalator and the anionic DNA backbone reduced single-strand interactions and translated to better duplex specificity. In studying this class of complexes, a single RuII complex emerged that selectively luminesces in the presence of duplex DNA with little to no background from interacting with single stranded DNA. This complex shows promise as a new dye capable of selectively staining double versus single-stranded DNA in gel electrophoresis, which cannot be done with conventional SYBR dyes. PMID:26119581

  7. Cardiovascular effects of native and non-native urotensin II and urotensin II-related peptide on rat and salmon hearts.

    PubMed

    Prosser, H C G; Leprince, J; Vaudry, H; Richards, A M; Forster, M E; Pemberton, C J

    2006-12-01

    Urotensin II (UII) was first discovered in the urophyses of goby fish and later identified in mammals, while urotensin II-related peptide (URP) was recently isolated from rat brain. We studied the effects of UII on isolated heart preparations of Chinook salmon and Sprague-Dawley rats. Native rat UII caused potent and sustained, dose-dependent dilation of the coronary arteries in the rat, whereas non-native UII (human and trout UII) showed attenuated vasodilation. Rat URP dilated rat coronary arteries, with 10-fold less potency compared with rUII. In salmon, native trout UII caused sustained dilation of the coronary arteries, while rat UII and URP caused significant constriction. Nomega-nitro-(l)-arginine methyl (l-NAME) and indomethacin significantly attenuated the URP and rat UII-induced vasodilation in the rat heart. We conclude that UII is a coronary vasodilator, an action that is species form specific. We also provide the first evidence for cardiac actions of URP, possibly via mechanisms common with UII.

  8. Ruthenium Complex “Light Switches” that are Selective for Different G-Quadruplex Structures

    PubMed Central

    Wachter, Erin; Moyá, Diego; Parkin, Sean

    2015-01-01

    Recognition and regulation of G-quadruplex nucleic acid structures is an important goal for the development of chemical tools and medicinal agents. The addition of a bromo substituent to the dipyridylphenazine (dppz) ligands in the photophysical “light switch”, [Ru(bpy)2dppz]2+, and the photochemical “light switch”, [Ru(bpy)2dmdppz]2+, creates compounds with increased selectivity for an intermolecular parallel G-quadruplex and the mixed-hybrid G-quadruplex, respectively. When [Ru(bpy)2dppz-Br]2+ and [Ru(bpy)2dmdppz-Br]2+ are incubated with the G-quadruplexes, they have a stabilizing effect on the DNA structures. Activation of [Ru(bpy)2dmdppz-Br]2+ with light results in covalent adduct formation with the DNA. These complexes demonstrate that subtle chemical modifications of RuII complexes can alter G-quadruplex selectivity, and could be useful for the rational design of in vivo G-quadruplex probes. PMID:26560887

  9. Acetylcholine-like and trimethylglycine-like PTA (1,3,5-triaza-7-phosphaadamantane) derivatives for the development of innovative Ru- and Pt-based therapeutic agents.

    PubMed

    Ferretti, Valeria; Fogagnolo, Marco; Marchi, Andrea; Marvelli, Lorenza; Sforza, Fabio; Bergamini, Paola

    2014-05-19

    The PTA N-alkyl derivatives (PTAC2H4OCOMe)X (1X: 1a, X = Br; 1b, X = I; 1c, X = PF6; 1d, X = BPh4), (PTACH2COOEt)X (2X: 2a, X = Br; 2b, X = Cl; 2c, X = PF6), and (PTACH2CH2COOEt)X (3X: 3a, X = Br; 3c, X = PF6), presenting all the functional groups of the natural cationic compounds acetylcholine or trimethylglycine combined with a P-donor site suitable for metal ion coordination, were prepared and characterized by NMR, ESI-MS, and elemental analysis. The X-ray crystal structures of 1d and 2c were determined. Ligands 1c, 2b, and 3c were coordinated to Pt(II) and Ru(II) to give the cationic complexes cis-[PtCl2(L)2]X2 and [RuCpCl(PPh3)(L)]X (L = 1, 2, 3, X = Cl or PF6) designed with a structure targeted for anticancer activity. The X-ray crystal structure of [CpRu(PPh3)(PTAC2H4OCOMe)Cl]PF6 (1cRu) was determined. The antiproliferative activity of the ligands and the complexes was evaluated on three human cancer cell lines.

  10. Simultaneous determination of codeine and noscapine by flow-injection chemiluminescence method using N-PLS regression.

    PubMed

    Rezaei, B; Khayamian, T; Mokhtari, A

    2009-02-20

    A flow injection chemiluminescent (FI-CL) method has been developed for the simultaneous determination of codeine and noscapine using N-PLS regression. The method is based on the fact that kinetic characteristics of codeine and noscapine are different in the Ru(phen)(3)(2+)-Ce(IV) CL system. In flow injection mode, codeine gives broad peak with the highest CL intensity at 4.4s, whereas the maximum CL intensity of the noscapine appears at about 2.6s. Moreover, the effect of increasing H(2)SO(4) concentration was different on the CL intensity of the compounds. An experimental design, central composite design (CCD), was used to realize the optimized variables such as Ru(II) and Ce(IV) concentrations for the both compounds. At the optimized condition, a three-way data structure (samples, H(2)SO(4) concentration, time) was constructed and followed by N-PLS regression. The number of factors for the N-PLS regression was selected based on the minimum values for the root mean squared error of cross validation (RMSECV). The proposed method is applied to the simultaneous quantification of codeine and noscapine in the pharmaceutical preparations.

  11. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.

    PubMed

    Li, Sie-Rong; Lee, Chuan-Pei; Yang, Po-Fan; Liao, Chia-Wei; Lee, Mandy M; Su, Wei-Lin; Li, Chun-Ting; Lin, Hao-Wu; Ho, Kuo-Chuan; Sun, Shih-Sheng

    2014-08-04

    The high performances of dye-sensitized solar cells (DSSCs) based on seven new dyes are disclosed. Herein, the synthesis and electrochemical and photophysical properties of a series of intentionally designed dipolar organic dyes and their application in DSSCs are reported. The molecular structures of the seven organic dyes are composed of a triphenylamine group as an electron donor, a cyanoacrylic acid as an electron acceptor, and an electron-deficient diphenylquinoxaline moiety integrated in the π-conjugated spacer between the electron donor and acceptor moieties. The DSSCs based on the dye DJ104 gave the best overall cell performance of 8.06 %; the efficiency of the DSSC based on the standard N719 dye under the same experimental conditions was 8.82 %. The spectral coverage of incident photon-to-electron conversion efficiencies extends to the onset at the near-infrared region due to strong internal charge-transfer transition as well as the effect of electron-deficient diphenylquinoxaline to lower the energy gap in these organic dyes. A combined tetraphenyl segment as a hydrophobic barrier in these organic dyes effectively slows down the charge recombination from TiO2 to the electrolyte and boosts the photovoltage, comparable to their Ru(II) counterparts. Detailed spectroscopic studies have revealed the dye structure-cell performance correlations, to allow future design of efficient light-harvesting organic dyes.

  12. A new dinuclear Ru-Hbpp based water oxidation catalyst with a trans-disposition of the Ru-OH.

    PubMed

    Mola, Joaquim; Dinoi, Chiara; Sala, Xavier; Rodríguez, Montserrat; Romero, Isabel; Parella, Teodor; Fontrodona, Xavier; Llobet, Antoni

    2011-04-14

    The bis(2-pyridyl)ethylamine (bpea) ligand has been used as a starting material for the synthesis of dinuclear Ru complexes of general formula trans,fac-{[Ru(n)X(bpea)](2)(μ-bpp)}(m+) (for X = Cl, n = II, m = 1, trans-Ru(II)-Cl, 1(+); for X = OH, n = III, m = 3, trans-Ru(III)-OH, 2(3+)) where the 3,5-bis(2-pyridyl)pyrazolate anionic ligand (bpp) acts as bridging dinucleating ligand, the bpea ligand coordinates in a facial manner and the monodentate ligands X are situated in a trans fashion with regard to one another. These complexes have been characterized in solution by 1D and 2D NMR spectroscopy, UV-vis and electrochemical techniques and in the solid state by X-ray diffraction analysis. The reaction of 1(PF(6)) with Ag(+) generates the corresponding solvated complex where the Cl ligand has been removed as insoluble AgCl, followed by the oxidation of Ru(II) to Ru(III) to generate the corresponding dinuclear complex trans-Ru(III)-OH, 2(PF(6))(3). The latter has been shown to catalytically oxidize water to molecular dioxygen using Ce(IV) as oxidant. Quantitative gas evolution as a function of time has been monitored on line by both manometry and mass spectroscopy (MS) techniques. Relative initial velocities of oxygen formation together with structural considerations rule out an intramolecular O-O bond formation pathway.

  13. cis,fac-Dichlorido{N-[3,5-di-tert-butyl-2-(trimethyl­silyl­oxy)benz­yl]-N,N-bis­(2-pyridylmeth­yl)amine}(dimethyl sulfoxide)ruthenium(II) dichloro­methane disolvate

    PubMed Central

    Fischer, Paul J.; Minasian, Stefan G.; Arnold, John

    2009-01-01

    Reaction of dichloridotetra­kis(dimethyl sulfoxide)ruthenium(II) and N-[3,5-di-tert-butyl-2-(trimethyl­silyl­oxy)benz­yl]-N,N-bis­(2-pyridylmeth­yl)amine (BPPA-TMS) affords the thermodynamic product cis,fac-[RuCl2(BPPA-TMS)(DMSO)] and kinetic product trans,mer-[RuCl2(BPPA-TMS)(DMSO)]. The title complex, [RuCl2(C30H43N3OSi)(C2H6OS)]·2CH2Cl2, crystallizes as a dichloro­methane disolvate, with two formula units in the asymmetric unit. The complex exhibits a distorted-octa­hedral geometry about the low spin d 6 RuII center. The BPPA-TMS ligand is coordinated in a facial fashion, with the DMSO ligand cis to the aliphatic nitro­gen atom of the BPPA-TMS ligand. One of the two dichloromethane solvate molecules is disordered over two positions in a 0.695:0.305 ratio. PMID:21578123

  14. A Recoverable Ruthenium Aqua Complex Supported on Silica Particles: An Efficient Epoxidation Catalyst.

    PubMed

    Ferrer, Íngrid; Fontrodona, Xavier; Roig, Anna; Rodríguez, Montserrat; Romero, Isabel

    2017-03-23

    The preparation and characterization of complexes with a phosphonated terpyridine (trpy) ligand (trpy-P-Et) and a bidentate pyridylpyrazole (pypz-Me) ligand, with formula [Ru(II) (trpy-P-Et)(pypz-Me)X](n+) (2: X=Cl, n=1; 3: X=H2 O, n=2), is described, together with the anchoring of 3 on two types of supports: mesoporous silica particles (SP) and silica-coated magnetic particles (MSP). Aqua complex 3 is easily obtained by heating 2 in refluxing water and exhibits a two-electron Ru(IV/II) redox process. It was anchored on SP and MSP supports by two different synthetic strategies, yielding the heterogeneous systems SP@3 and MSP@3, which were fully characterized by IR and UV/Vis spectroscopy, SEM, cyclic voltammetry, and differential pulse voltammetry. Catalytic olefin epoxidation was tested with molecular complex 3 and its SP@3 and MSP@3 heterogeneous counterparts, including reuse of the heterogeneous systems. The MSP@3 material can be easily recovered by a magnet, which facilitates its reusability.

  15. Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore–Catalyst Assembly

    SciTech Connect

    Sherman, Benjamin D.; Xie, Yan; Sheridan, Matthew V.; Wang, Degao; Shaffer, David W.; Meyer, Thomas J.; Concepcion, Javier J.

    2016-12-09

    The preparation and characterization of new Ru(II) polypyridyl-based chromophore–catalyst assemblies, [(4,4'-PO3H2-bpy)2Ru(4-Mebpy-4'-epic)Ru(bda)(pic)]2+ (1, bpy = 2,2'-bipyridine; 4-Mebpy-4'-epic = 4-(4-methylbipyridin-4'-yl-ethyl)-pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate; pic = 4-picoline), and [(bpy)2Ru(4-Mebpy-4'-epic)Ru(bda)(pic)]2+ (1') are described, as is the application of 1 in a dye-sensitized photoelectrosynthesis cell (DSPEC) for solar water splitting. Furthermore, on SnO2/TiO2 core–shell electrodes in a DSPEC configuration with a Pt cathode, the chromophore–catalyst assembly undergoes light-driven water oxidation at pH 5.7 in a 0.1 M acetate buffer, 0.5 M in NaClO4. We observed photocurrents of ~0.85 mA cm–2, with illumination by a 100 mW cm–2 white light source, after 30 s under a 0.1 V vs Ag/AgCl applied bias with a faradaic efficiency for O2 production of 74% measured over a 5 min illumination period.

  16. Interaction of octahedral ruthenium(II) polypyridyl complex [Ru(bpy)2(PIP)](2+) with poly(U)·poly(A)*poly(U) triplex: Increasing third-strand stabilization of the triplex without affecting the stability of the duplex.

    PubMed

    Zhu, Zhiyuan; Peng, Mengna; Zhang, Jingwen; Tan, Lifeng

    2017-04-01

    Triple-helical RNA are of interest because of possible biological roles as well as the potential therapeutic uses of these structures, while the stability of triplexes is usually weaker than that of the Watson-Crick base pairing duplex strand due to the electrostatic repulsion between three polyanionic strands. Therefore, how to increase the stability of the specific sequences of triplexes are of importance. In this paper the binding of a Ru(II) complex, [Ru(bpy)2(PIP)](2+) (bpy=2.2'-bipyridine, PIP=2-phenyl-1H-imidazo[4,5-f]- [1,10]-phenanthroline), with poly(U)·poly(A)*poly(U) triplex has been investigated by spectrophotometry, spectrofluorometry, viscosimetry and circular dichroism. The results suggest that [Ru(bpy)2(PIP)](2+) as a metallointercalator can stabilize poly(U)·poly(A)*poly(U) triplex (where · denotes the Watson-Crick base pairing and * denotes the Hoogsteen base pairing),while it stabilizes third-strand with no obvious effect on the duplex of poly(U)·poly(A), reflecting the binding of this complex with the triplex is favored by the Hoogsteen paired poly(U) third strand to a great extent.

  17. Orbital entanglement and CASSCF analysis of the Ru-NO bond in a Ruthenium nitrosyl complex.

    PubMed

    Freitag, Leon; Knecht, Stefan; Keller, Sebastian F; Delcey, Mickaël G; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland; Reiher, Markus; González, Leticia

    2015-06-14

    Complete active space self-consistent field (CASSCF) wavefunctions and an orbital entanglement analysis obtained from a density-matrix renormalisation group (DMRG) calculation are used to understand the electronic structure, and, in particular, the Ru-NO bond of a Ru nitrosyl complex. Based on the configurations and orbital occupation numbers obtained for the CASSCF wavefunction and on the orbital entropy measurements evaluated for the DMRG wavefunction, we unravel electron correlation effects in the Ru coordination sphere of the complex. It is shown that Ru-NO π bonds show static and dynamic correlation, while other Ru-ligand bonds feature predominantly dynamic correlation. The presence of static correlation requires the use of multiconfigurational methods to describe the Ru-NO bond. Subsequently, the CASSCF wavefunction is analysed in terms of configuration state functions based on localised orbitals. The analysis of the wavefunctions in the electronic singlet ground state and the first triplet state provides a picture of the Ru-NO moiety beyond the standard representation based on formal oxidation states. A distinct description of the Ru and NO fragments is advocated. The electron configuration of Ru is an equally weighted superposition of Ru(II) and Ru(III) configurations, with the Ru(III) configuration originating from charge donation mostly from Cl ligands. However, and contrary to what is typically assumed, the electronic configuration of the NO ligand is best described as electroneutral.

  18. A highly selective phosphorescence probe for histidine in living bodies.

    PubMed

    Gao, Quankun; Song, Bo; Ye, Zhiqiang; Yang, Liu; Liu, Ruoyang; Yuan, Jingli

    2015-11-14

    In this work, we designed and synthesized a heterobimetallic ruthenium(ii)-nickel(ii) complex, [Ru(bpy)2(phen-DPA)Ni](PF6)4 (Ru-Ni), as a highly selective phosphorescence probe for histidine. The probe exhibited weak emission at 603 nm because the phosphorescence of the Ru(ii) complex can be strongly quenched by the paramagnetic Ni(2+) ion. In the presence of histidine, reaction of Ru-Ni with histidine resulted in the release of nickel(ii) and an enhancement in the phosphorescence intensity at 603 nm. Ru-Ni showed high selectivity for histidine even in the presence of other amino acids and cellular abundant species. Cell imaging experimental results demonstrated that Ru-Ni is membrane permeable, and can be applied for visualizing histidine in live cells. More interestingly, Ru-Ni also can act as a novel reaction-based nuclear staining agent for visualizing exclusively the nuclei of living cells with a significant phosphorescence enhancement. In addition, the potential of the probe for biological applications was confirmed by employing it for phosphorescence imaging of histidine in larval zebrafish and Daphnia magna. These results demonstrated that Ru-Ni would be a useful tool for physiological and pathological studies involving histidine.

  19. Ruthenium(II) Complexes with 2-Phenylimidazo[4,5-f][1,10]phenanthroline Derivatives that Strongly Combat Cisplatin-Resistant Tumor Cells

    NASA Astrophysics Data System (ADS)

    Zeng, Leli; Chen, Yu; Liu, Jiangping; Huang, Huaiyi; Guan, Ruilin; Ji, Liangnian; Chao, Hui

    2016-01-01

    Cisplatin was the first metal-based therapeutic agent approved for the treatment of human cancers, but its clinical activity is greatly limited by tumor drug resistance. This work utilized the parent complex [Ru(phen)2(PIP)]2+ (1) to develop three Ru(II) complexes (2–4) with different positional modifications. These compounds exhibited similar or superior cytotoxicities compared to cisplatin in HeLa, A549 and multidrug-resistant (A549R) tumor cell lines. Complex 4, the most potent member of the series, was highly active against A549R cancer cells (IC50 = 0.8 μM). This complex exhibited 178-fold better activity than cisplatin (IC50 = 142.5 μM) in A549R cells. 3D multicellular A549R tumor spheroids were also used to confirm the high proliferative and cytotoxic activity of complex 4. Complex 4 had the greatest cellular uptake and had a tendency to accumulate in the mitochondria of A549R cells. Further mechanistic studies showed that complex 4 induced A549R cell apoptosis via inhibition of thioredoxin reductase (TrxR), elevated intracellular ROS levels, mitochondrial dysfunction and cell cycle arrest, making it an outstanding candidate for overcoming cisplatin resistance.

  20. Label-free photoelectrochemical detection of double-stranded HIV DNA by means of a metallointercalator-functionalized electrogenerated polymer.

    PubMed

    Haddache, Fatima; Le Goff, Alan; Reuillard, Bertrand; Gorgy, Karine; Gondran, Chantal; Spinelli, Nicolas; Defrancq, Eric; Cosnier, Serge

    2014-11-17

    The design of photoactive functionalized electrodes for the sensitive transduction of double-stranded DNA hybridization is reported. Multifunctional complex [Ru(bpy-pyrrole)2 (dppn)](2+) (bpy-pyrrole=4-methyl-4'-butylpyrrole-2,2'-bipyridine, dppn=benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) exhibiting photosensitive, DNA-intercalating, and electropolymerizable properties was synthesized and characterized. The pyrrole groups undergo oxidative electropolymerization on planar electrodes forming a metallopolymer layer on the electrode. Thanks to the photoelectrochemical and intercalating properties of the immobilized Ru(II) complex, the binding of a double-stranded HIV DNA target was photoelectrochemically detected on planar electrodes. Photocurrent generation through visible irradiation was correlated to the interaction between double-stranded DNA and the metallointercalator polymer. These interactions were well fitted by using a Langmuir isotherm, which allowed a dissociation constant of 2×10(6)  L mol(-1) to be estimated. The low detection limit of 1 fmol L(-1) and sensitivity of 0.01 units per decade demonstrate excellent suitability of these modified electrodes for detection of duplex DNA.

  1. Thiocyanate-free asymmetric ruthenium(II) dye sensitizers containing azole chromophores with near-IR light-harvesting capacity

    NASA Astrophysics Data System (ADS)

    Wu, Guohua; Kaneko, Ryuji; Islam, Ashraful; Zhang, Yaohong; Sugawa, Kosuke; Han, Liyuan; Shen, Qing; Bedja, Idriss; Gupta, Ravindra Kumar; Otsuki, Joe

    2016-11-01

    A new series of thiocyanate-free bis-tridentate Ru(II) complexes containing azole ligands as well as an organometallic Ru-C bond are synthesized, characterized, and evaluated in dye-sensitized solar cells (DSSCs). CF3-substituted pyrazolyl, CF3-substituted triazolyl, and tetrazolyl derivatives are employed as ligands in the three neutral complexes PYZ, TRZ, and TEZ dyes, respectively. Despite their different structures, all the three complexes exhibit similar absorption features and panchromatic absorption covering the visible and near-IR regions. By switching from a pyrazolyl via triazolyl to tetrazolyl moiety in the ligand, the photocurrent value, open-circuit voltage, and overall efficiency are increased accordingly under the same conditions. Among them, photon-to-current conversion efficiency (ƞ) of TEZ dye reaches the maximum of 6.44% with a short-circuit photocurrent density (Jsc) of 17.8 mA cm-2, an open-circuit photovoltage (Voc) of 0.54 V and fill factor (FF) of 0.67 under illumination of an AM1.5G solar simulator. TEZ dye shows a good long term light soaking stability and maintains up to more than 90% of the initial power conversion efficiency after 1000 h.

  2. Molecular mass spectrometry in metallodrug development: a case of mapping transferrin-mediated transformations for a ruthenium(III) anticancer drug.

    PubMed

    Jarosz, Maciej; Matczuk, Magdalena; Pawlak, Katarzyna; Timerbaev, Andrei R

    2014-12-03

    Electrospray ionization mass spectrometry (ESI-MS) techniques have been used to characterize the speciation of a Ru(III) anticancer drug, indazolium trans-[tetrachloridobis(1H-indazole) ruthenate(III)], upon its binding to transferrin and the impact of cellular reducing components on drug-transferrin adducts. Using time-of-flight ESI-MS, the polymorphism of apo- (iron-free) and holo-form (iron-saturated) of the protein was confirmed. While the ruthenium moieties bound to each of five isoforms under simulated extracellular conditions are essentially identical in numbers for apo- and holo-transferrin, distinct differences were found in the composition of Ru(III) species attached to either of the protein forms, which are dominated by differently coordinated aquated complexes. On the other hand, at least one of the RuN bonds in metal-organic framework remains intact even after prolonged interaction with the protein. Triple quadrupole tandem ESI-MS measurements demonstrated that the ruthenium species released from drug adducts with holo-transferrin in simulated cancer cytosol are underwent strong ligand exchange (as compared to the protein-bound forms) but most strikingly, they contain the metal center in the reduced Ru(II) state. In vitro probing the extra- and intracellular interactions of promising Ru(III) drug candidate performed by ESI-MS is thought to shed light on the transportation to tumor cells by transferrin and on the activation to more reactive species by the reducing environment of solid tumors.

  3. The contrasting activity of iodido versus chlorido ruthenium and osmium arene azo- and imino-pyridine anticancer complexes: control of cell selectivity, cross-resistance, p53 dependence, and apoptosis pathway.

    PubMed

    Romero-Canelón, Isolda; Salassa, Luca; Sadler, Peter J

    2013-02-14

    Organometallic half-sandwich complexes [M(p-cymene)(azo/imino-pyridine)X](+) where M = Ru(II) or Os(II) and X ═ Cl or I, exhibit potent antiproliferative activity toward a range of cancer cells. Not only are the iodido complexes more potent than the chlorido analogues, but they are not cross-resistant with the clinical platinum drugs cisplatin and oxaliplatin. They are also more selective for cancer cells versus normal cells (fibroblasts) and show high accumulation in cell membranes. They arrest cell growth in G1 phase in contrast to cisplatin (S phase) with a high incidence of late-stage apoptosis. The iodido complexes retain potency in p53 mutant colon cells. All complexes activate caspase 3. In general, antiproliferative activity is greatly enhanced by low levels of the glutathione synthase inhibitor l-buthionine sulfoxime. The work illustrates how subtle changes to the design of low-spin d(6) metal complexes can lead to major changes in cellular metabolism and to potent complexes with novel mechanisms of anticancer activity.

  4. (R,R Fc,S Ru)-Chlorido(η6-p-cymene){1-[1-(diphenyl­phosphanyl)ethyl]-2-[2-(diphenyl­phosphanyl)phenyl]ferrocene-κ2 P,P′}ruthenium(II) hexa­fluorido­phosphate

    PubMed Central

    Schuecker, Raffael; Weissensteiner, Walter; Mereiter, Kurt

    2011-01-01

    The asymmetric unit of the title compound, [FeRuCl(C5H5)(C10H14)(C37H31P2)]PF6, contains two independent, geometrically similar RuII complexes of a chiral ferrocenyldiphosphane with piano-stool coordination through the η6-bound p-cymene ligand, two chelating phospho­rus donor atoms, and an exo-oriented chloride ion. The mean bond lengths of the two Ru complexes are Ru—C = 2.276 Å, Ru—P = 2.3816 Å, and Ru—Cl = 2.3924 Å. Both chloride ligands form only intra­molecular C—H⋯Cl inter­actions. Seven weak inter­molecular C—H⋯F inter­actions involving mainly arene H atoms consolidate the crystal packing, which reveals an approximate c/2 pseudo-translation relating the two independent Ru complex mol­ecules. PMID:22058697

  5. Effect of a κ(1)-Bonded-M-1,2,3-triazole (M = Co, Ru) on the Structure and Reactivity of Group 6 Alkoxy (Fischer) Carbenes.

    PubMed

    Giner, Elena A; Gómez-Gallego, Mar; Casarrubios, Luis; de la Torre, María C; Ramírez de Arellano, Carmen; Sierra, Miguel A

    2017-03-06

    The [3 + 2] cycloaddition of two different metal-bound azides, [(Me4cyclam)Co(II)(N3)]ClO4 and (η(5)-C5H5)(dppe)Ru(II)(N3), (dppe = Ph2PCH2CH2PPh2) with Cr(0) and W(0) (ethoxy)(alkynyl) Fischer carbenes has been efficiently used for the preparation of polymetallic metal-carbene complexes. The presence of the κ(1)-bonded metal triazole causes a significant influence on the electronic properties, structure, and reactivity of this new class of Fischer alkoxycarbenes. For the Ru(II) derivatives, their chemical behavior is considerably influenced by the interaction of the (η(5)-C5H5)(dppe)Ru(II)-triazole moiety with the empty p-carbene orbital that provokes a noticeable decrease in the electrophilicity of the M═C carbon (manifested by the shielding of the (13)C NMR chemical shifts). In turn, in the Co(II) derivatives, the incorporation of the (Me4cyclam)Co(II) moiety diminishes the aromaticity of the triazole ring and has a marked effect on the energy and distribution of the LUSO orbital, mostly resident on the Co(II) fragment. The almost negligible participation of the carbene moiety in the LUSO makes this position unable to react with nucleophiles. The reactions reported in this work constitute the first examples of [3 + 2] cycloaddition of azides and alkynyl Fischer carbene complexes in solution.

  6. A Decaheme Cytochrome as a Molecular Electron Conduit in Dye-Sensitized Photoanodes

    PubMed Central

    Hwang, Ee Taek; Sheikh, Khizar; Orchard, Katherine L; Hojo, Daisuke; Radu, Valentin; Lee, Chong-Yong; Ainsworth, Emma; Lockwood, Colin; Gross, Manuela A; Adschiri, Tadafumi; Reisner, Erwin; Butt, Julea N; Jeuken, Lars J C

    2015-01-01

    In nature, charge recombination in light-harvesting reaction centers is minimized by efficient charge separation. Here, it is aimed to mimic this by coupling dye-sensitized TiO2 nanocrystals to a decaheme protein, MtrC from Shewanella oneidensis MR-1, where the 10 hemes of MtrC form a ≈7-nm-long molecular wire between the TiO2 and the underlying electrode. The system is assembled by forming a densely packed MtrC film on an ultra-flat gold electrode, followed by the adsorption of approximately 7 nm TiO2 nanocrystals that are modified with a phosphonated bipyridine Ru(II) dye (RuP). The step-by-step construction of the MtrC/TiO2 system is monitored with (photo)electrochemistry, quartz-crystal microbalance with dissipation (QCM-D), and atomic force microscopy (AFM). Photocurrents are dependent on the redox state of the MtrC, confirming that electrons are transferred from the TiO2 nanocrystals to the surface via the MtrC conduit. In other words, in these TiO2/MtrC hybrid photodiodes, MtrC traps the conduction-band electrons from TiO2 before transferring them to the electrode, creating a photobioelectrochemical system in which a redox protein is used to mimic the efficient charge separation found in biological photosystems. PMID:26180522

  7. Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore–Catalyst Assembly

    DOE PAGES

    Sherman, Benjamin D.; Xie, Yan; Sheridan, Matthew V.; ...

    2016-12-09

    The preparation and characterization of new Ru(II) polypyridyl-based chromophore–catalyst assemblies, [(4,4'-PO3H2-bpy)2Ru(4-Mebpy-4'-epic)Ru(bda)(pic)]2+ (1, bpy = 2,2'-bipyridine; 4-Mebpy-4'-epic = 4-(4-methylbipyridin-4'-yl-ethyl)-pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate; pic = 4-picoline), and [(bpy)2Ru(4-Mebpy-4'-epic)Ru(bda)(pic)]2+ (1') are described, as is the application of 1 in a dye-sensitized photoelectrosynthesis cell (DSPEC) for solar water splitting. Furthermore, on SnO2/TiO2 core–shell electrodes in a DSPEC configuration with a Pt cathode, the chromophore–catalyst assembly undergoes light-driven water oxidation at pH 5.7 in a 0.1 M acetate buffer, 0.5 M in NaClO4. We observed photocurrents of ~0.85 mA cm–2, with illumination by a 100 mW cm–2 white light source, after 30 s under amore » 0.1 V vs Ag/AgCl applied bias with a faradaic efficiency for O2 production of 74% measured over a 5 min illumination period.« less

  8. Electrochemiluminescent monomers for solid support syntheses of Ru(II)-PNA bioconjugates: multimodal biosensing tools with enhanced duplex stability.

    PubMed

    Joshi, Tanmaya; Barbante, Gregory J; Francis, Paul S; Hogan, Conor F; Bond, Alan M; Gasser, Gilles; Spiccia, Leone

    2012-03-05

    The feasibility of devising a solid support mediated approach to multimodal Ru(II)-peptide nucleic acid (PNA) oligomers is explored. Three Ru(II)-PNA-like monomers, [Ru(bpy)(2)(Cpp-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(Cpp-L-PNA-OH)](2+) (M2), and [Ru(dppz)(2)(Cpp-L-PNA-OH)](2+) (M3) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine, Cpp-L-PNA-OH = [2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[6-(2-(pyridin-2yl)pyrimidine-4-carboxamido)hexanoyl]-glycine), have been synthesized as building blocks for Ru(II)-PNA oligomers and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, electrochemistry and elemental analysis. As a proof of principle, M1 was incorporated on the solid phase within the PNA sequences H-g-c-a-a-t-a-a-a-a-Lys-NH(2) (PNA1) and H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH(2) (PNA4) to give PNA2 (H-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)) and PNA3 (H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)), respectively. The two Ru(II)-PNA oligomers, PNA2 and PNA3, displayed a metal to ligand charge transfer (MLCT) transition band centered around 445 nm and an emission maximum at about 680 nm following 450 nm excitation in aqueous solutions (10 mM PBS, pH 7.4). The absorption and emission response of the duplexes formed with the cDNA strand (DNA: 5'-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3') showed no major variations, suggesting that the electronic properties of the Ru(II) complexes are largely unaffected by hybridization. The thermal stability of the PNA·DNA duplexes, as evaluated from UV melting experiments, is enhanced compared to the corresponding nonmetalated duplexes. The melting temperature (T(m)) was almost 8 °C higher for PNA2·DNA duplex, and 4 °C for PNA3·DNA duplex, with the stabilization attributed to the electrostatic interaction between the cationic residues (Ru(II) unit and positively charged lysine/arginine) and the polyanionic DNA backbone. In presence of tripropylamine (TPA) as co-reactant, PNA2, PNA3, PNA2

  9. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.

    PubMed

    Sarkar, Biprajit; Patra, Srikanta; Fiedler, Jan; Sunoj, Raghavan B; Janardanan, Deepa; Lahiri, Goutam Kumar; Kaim, Wolfgang

    2008-03-19

    Electron-rich Ru(acac)2 (acac- = 2,4-pentanedionato) binds to the pi electron-deficient bis-chelate ligands L, L = 2,2'-azobispyridine (abpy) or azobis(5-chloropyrimidine) (abcp), with considerable transfer of negative charge. The compounds studied, (abpy)Ru(acac)2 (1), meso-(mu-abpy)[Ru(acac)2]2 (2), rac-(mu-abpy)[Ru(acac)2]2 (3), and (mu-abcp)[Ru(acac)2]2 (4), were calculated by DFT to assess the degree of this metal-to-ligand electron shift. The calculated and experimental structures of 2 and 3 both yield about 1.35 A for the length of the central N-N bond which suggests a monoanion character of the bridging ligand. The NBO analysis confirms this interpretation, and TD-DFT calculations reproduce the observed intense long-wavelength absorptions. While mononuclear 1 is calculated with a lower net ruthenium-to-abpy charge shift as illustrated by the computed 1.30 A for d(N-N), compound 4 with the stronger pi accepting abcp bridge is calculated with a slightly lengthened N-N distance relative to that of 2. The formulation of the dinuclear systems with monoanionic bridging ligands implies an obviously valence-averaged Ru(III)Ru(II) mixed-valent state for the neutral molecules. Mixed valency in conjunction with an anion radical bridging ligand had been discussed before in the discussion of MLCT excited states of symmetrically dinuclear coordination compounds. Whereas 1 still exhibits a conventional electrochemical and spectroelectrochemical behavior with metal centered oxidation and two ligand-based one-electron reduction waves, the two one-electron oxidation and two one-electron reduction processes for each of the dinuclear compounds Ru2.5(L*-)Ru2.5 reveal more unusual features via EPR and UV-vis-NIR spectroelectrochemistry. In spite of intense near-infrared absorptions, the EPR results show that the first reduction leads to Ru(II)(L*-)Ru(II) species, with an increased metal contribution for system 4*-. The second reduction to Ru(II)(L2-)Ru(II) causes the

  10. Design strategies to improve the sensitivity of photoactive metal carbonyl complexes (photoCORMs) to visible light and their potential as CO-donors to biological targets.

    PubMed

    Chakraborty, Indranil; Carrington, Samantha J; Mascharak, Pradip K

    2014-08-19

    The recent surprising discovery of the beneficial effects of carbon monoxide (CO) in mammalian physiology has drawn attention toward site-specific delivery of CO to biological targets. To avoid difficulties in handling of this noxious gas in hospital settings, researchers have focused their attention on metal carbonyl complexes as CO-releasing molecules (CORMs). Because further control of such CO delivery through light-triggering can be achieved with photoactive metal carbonyl complexes (photoCORMs), we and other groups have attempted to isolate such complexes in the past few years. Typical metal carbonyl complexes release CO when exposed to UV light, a fact that often deters their use in biological systems. From the very beginning, our effort therefore was directed toward identifying design principles that could lead to photoCORMs that release CO upon illumination with low-power (5-15 mW/cm(2)) visible and near-IR light. In our work, we have utilized Mn(I), Re(I), and Ru(II) centers (all d(6) ground state configuration) to ensure overall stability of the carbonyl complexes. We also hypothesized that transfer of electron density from the electron-rich metal centers to π* MOs of the ligand frame via strong metal-to-ligand charge transfer (MLCT) transitions in the visible/near-IR region would weaken metal-CO back-bonding and promote rapid CO photorelease. This expectation has been realized in a series of carbonyl complexes derived from a variety of designed ligands and smart choice of ligand/coligand combinations. Several principles have emerged from our systematic approach to the design of principal ligands and the choice of auxiliary ligands (in addition to the number of CO) in synthesizing these photoCORMs. In each case, density functional theory (DFT) and time-dependent DFT (TDDFT) study afforded insight into the dependence of the CO photorelease from a particular photoCORM on the wavelength of light. Results of these theoretical studies indicate that extended

  11. Electronic and Photophysical Properties of [Re (L)(CO)3(phen)](+) and [Ru(L)2(bpy)2](2+) (L = imidazole), Building Units for Long-Range Electron Transfer in Modified Blue Copper Proteins.

    PubMed

    Fumanal, Maria; Daniel, Chantal

    2016-09-08

    The electronic, optical, and photophysical properties of [Re(im)(CO)3(phen)](+) and [Ru(bpy)2(im)2](2+) (im = imidazole; phen = 1,10-phenanthroline; bpy = 2,2'-bipyridine) in water, including spin-orbit coupling (SOC) effects, were studied by means of density functional theory (DFT) and time-dependent DFT. The main features of the visible experimental absorption spectra of both molecules are well-reproduced. Whereas the theoretical spectrum of the Re(I) complex is characterized by one metal-to-ligand charge transfer (MLCTphen) state of low intensity at 394 nm and a strongly absorbing MLCTphen state calculated at 370 nm, the spectrum of the Ru(II) complex presents a high density of singlet MLCTbpy excited states with significant oscillator strengths that contribute to the two broad bands centered at 490 and 340 nm. The absorption spectrum of [Re(im) (CO)3(phen)](+) is perturbed by SOC with non-negligible mixing between the low-lying triplet and singlet absorbing states, while SOC has no effect on the absorption spectrum of [Ru(bpy)2(im)2](2+). A detailed structural investigation of the two lowest singlet and four lowest triplet excited states of the Re(I) complex point to MLCTphen (S1, S2, T1, T2) and intra-ligand ILphen (T3) localized spin-densities characterized by small contractions from both Re-N and phen CC central bonds in the MLCT states and nearly no deformation in the IL state. A mechanism of luminescent decay of [Re(im) (CO)3(phen)](+) is proposed on the basis of the calculated energy minima and wavelengths of emission for the interpretation of the three frequency/time-scale signals put in evidence by ultrafast experiments. The long-lived emissive properties of [Ru(bpy)2(im)2](2+) are analyzed on the basis of the relative energies of the two lowest (3)MLCTbpy and metal-centered (3)MC excited states. The minimum corresponding to the (3)MC spin density shows a significant structural rearrangement with an increase of the Ru-N bond distance of 0.33 Å and a

  12. Role of configurational gating in intracomplex electron transfer from cytochrome c to the radical cation in cytochrome c peroxidase.

    PubMed

    Mei, H; Wang, K; Peffer, N; Weatherly, G; Cohen, D S; Miller, M; Pielak, G; Durham, B; Millett, F

    1999-05-25

    Electron transfer within complexes of cytochrome c (Cc) and cytochrome c peroxidase (CcP) was studied to determine whether the reactions are gated by fluctuations in configuration. Electron transfer in the physiological complex of yeast Cc (yCc) and CcP was studied using the Ru-39-Cc derivative, in which the H39C/C102T variant of yeast iso-1-cytochrome c is labeled at the single cysteine residue on the back surface with trisbipyridylruthenium(II). Laser excitation of the 1:1 Ru-39-Cc-CcP compound I complex at low ionic strength results in rapid electron transfer from RuII to heme c FeIII, followed by electron transfer from heme c FeII to the Trp-191 indolyl radical cation with a rate constant keta of 2 x 10(6) s-1 at 20 degrees C. keta is not changed by increasing the viscosity up to 40 cP with glycerol and is independent of temperature. These results suggest that this reaction is not gated by fluctuations in the configuration of the complex, but may represent the elementary electron transfer step. The value of keta is consistent with the efficient pathway for electron transfer in the crystalline yCc-CcP complex, which has a distance of 16 A between the edge of heme c and the Trp-191 indole [Pelletier, H., and Kraut, J. (1992) Science 258, 1748-1755]. Electron transfer in the complex of horse Cc (hCc) and CcP was examined using Ru-27-Cc, in which hCc is labeled with trisbipyridylruthenium(II) at Lys-27. Laser excitation of the Ru-27-Cc-CcP complex results in electron transfer from RuII to heme c FeII with a rate constant k1 of 2.3 x 10(7) s-1, followed by oxidation of the Trp-191 indole to a radical cation by RuIII with a rate constant k3 of 7 x 10(6) s-1. The cycle is completed by electron transfer from heme c FeII to the Trp-191 radical cation with a rate constant k4 of 6.1 x 10(4) s-1. The rate constant k4 decreases to 3.4 x 10(3) s-1 as the viscosity is increased to 84 cP, but the rate constants k1 and k3 remain the same. The results are consistent with a

  13. μ-2,3,5,6-Tetra­kis(pyridin-2-yl)pyrazine-bis­[(2,2′:6′,2′′-terpyridine)­ruthenium(II)] tetra­kis­(hexa­fluoridophosphate) acetonitrile tetra­solvate

    PubMed Central

    Jude, Hershel; Scott, Brian L.; Rocha, Reginaldo C.

    2013-01-01

    In the title compound [Ru2(C15H11N3)2(C24H16N6)](PF6)4·4CH3CN, two of the counter-ions and one of the solvent mol­ecules are disordered with occupancies for the major components between 0.57 (2) and 0.64 (1). The structure of the dinuclear tetracation exhibits significant distortion from planarity in the bridging 2,3,5,6-tetra­kis­(pyridin-2-yl)pyrazine (tppz) ligand, which has a saddle-like geometry with an average dihedral angle of 42.96 (18)° between adjacent pyridine rings. The metal–ligand coordination environment is nearly equivalent for the two RuII atoms, which have a distorted octa­hedral geometry due to the restricted bite angle [157.57 (13)–159.28 (12)°] of their two mer-arranged tridendate ligands [2,2′:6′,2′′-terpyridine (tpy) and tppz] orthogonal to each other. At the peripheral tpy ligands, the average Ru—N bond distance is 2.072 (4) Å for the outer N atoms trans to each other (Nouter) and 1.984 (1) Å for the central N atoms (Ncentral). At the bridging tppz ligand, the average metal–ligand distances are significantly shorter [2.058 (4) Å for Ru—Nouter and 1.965 (1) Å for Ru—Ncentral] as a result of both the geometric constraints and the stronger π-acceptor ability of the pyrazine-centered bridge. The dihedral angle between the two tpy planes is 27.11 (6)°. The intra­molecular linear distance between the two Ru atoms is 6.6102 (7) Å. PMID:23424426

  14. (4′-Ethynyl-2,2′:6′,2′′-terpyridine)(2,2′:6′,2′′-terpyridine)­ruthenium(II) bis­(hexa­fluoridophosphate) acetonitrile disolvate

    PubMed Central

    Chen, Weizhong; Rein, Francisca N.; Scott, Brian L.; Rocha, Reginaldo C.

    2013-01-01

    The title heteroleptic bis­-terpyridine complex, [Ru(C15H11N3)(C17H11N3)](PF6)2·2CH3CN, crystallized from an acetonitrile solution as a salt containing two hexa­fluoridophosphate counter-ions and two acetonitrile solvent mol­ecules. The RuII atom has a distorted octa­hedral geometry due to the restricted bite angle [157.7 (3)°] of the two mer-arranged N,N′,N′′-tridendate ligands, viz. 2,2′:6′,2′′-terpyridine (tpy) and 4′-ethynyl-2,2′:6′,2′′-terpyridine (tpy′), which are essentially perpendicular to each other, with a dihedral angle of 87.75 (12)° between their terpyridyl planes. The rod-like acetyl­ene group lies in the same plane as its adjacent terpyridyl moiety, with a maximum deviation of only 0.071 (11) Å from coplanarity with the pyridine rings. The mean Ru—N bond length involving the outer N atoms trans to each other is 2.069 (6) Å at tpy and 2.070 (6) Å at tpy′. The Ru—N bond length involving the central N atom is 1.964 (6) Å at tpy and 1.967 (6) Å at tpy′. Two of the three counter anions were refined as half-occupied. PMID:23424425

  15. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell

    DOE PAGES

    Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; ...

    2015-04-27

    A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO2/TiO2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO3H2)2bpy)2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH2)]4+ ([RuaII-RubII-OH2]4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al2O3 or TiO2 overlayers. Illumination of the resulting fluorine-doped tin oxide (FTO)|SnO2/TiO2|-[RuaII-RubII-OH2]4+(Al2O3 or TiO2) photoanodes in photoelectrochemical cells with a Pt cathode andmore » a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H2 and O2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO2/TiO2 core/shell compared with nanoITO/TiO2 with the same assembly results in photocurrent enhancements of ~5. In conclusion, systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm2 with 445-nm, ~90-mW/cm2 illumination in a phosphate buffer at pH 7.« less

  16. Discovery of new antagonists aimed at discriminating UII and URP-mediated biological activities: insight into UII and URP receptor activation

    PubMed Central

    Chatenet, D; Létourneau, M; Nguyen, QT; Doan, ND; Dupuis, J; Fournier, A

    2013-01-01

    Background and Purpose Recent evidence suggested that urotensin II (UII) and its paralog peptide UII-related peptide (URP) might exert common but also divergent physiological actions. Unfortunately, none of the existing antagonists were designed to discriminate specific UII- or URP-associated actions, and our understanding, on how these two endogenous peptides can trigger different, but also common responses, is limited. Experimental Approach Ex vivo rat and monkey aortic ring contraction as well as dissociation kinetics studies using transfected CHO cells expressing the human urotensin (UT) receptors were used in this study. Key Results Ex vivo rat and monkey aortic ring contraction studies revealed the propensity of [Pep4]URP to decrease the maximal response of human UII (hUII) without any significant change in potency, whereas no effect was noticeable on the URP-induced vasoconstriction. Dissociation experiments demonstrated the ability of [Pep4]URP to increase the dissociation rate of hUII, but not URP. Surprisingly, URP, an equipotent UII paralog, was also able to accelerate the dissociation rate of membrane-bound 125I-hUII, whereas hUII had no noticeable effect on URP dissociation kinetics. Further experiments suggested that an interaction between the glutamic residue at position 1 of hUII and the UT receptor seems to be critical to induce conformational changes associated with agonistic activation. Finally, we demonstrated that the N-terminal domain of the rat UII isoform was able to act as a specific antagonist of the URP-associated actions. Conclusion Such compounds, that is [Pep4]URP and rUII(1–7), should prove to be useful as new pharmacological tools to decipher the specific role of UII and URP in vitro but also in vivo. PMID:22994258

  17. Update on the urotensinergic system: new trends in receptor localization, activation, and drug design

    PubMed Central

    Chatenet, David; Nguyen, Thi-Tuyet M.; Létourneau, Myriam; Fournier, Alain

    2012-01-01

    The urotensinergic system plays central roles in the physiological regulation of major mammalian organ systems, including the cardiovascular system. As a matter of fact, this system has been linked to numerous pathophysiological states including atherosclerosis, heart failure, hypertension, diabetes as well as psychological, and neurological disorders. The delineation of the (patho)physiological roles of the urotensinergic system has been hampered by the absence of potent and selective antagonists for the urotensin II-receptor (UT). Thus, a more precise definition of the molecular functioning of the urotensinergic system, in normal conditions as well as in a pathological state is still critically needed. The recent discovery of nuclear UT within cardiomyocytes has highlighted the cellular complexity of this system and suggested that UT-associated biological responses are not only initiated at the cell surface but may result from the integration of extracellular and intracellular signaling pathways. Thus, such nuclear-localized receptors, regulating distinct signaling pathways, may represent new therapeutic targets. With the recent observation that urotensin II (UII) and urotensin II-related peptide (URP) exert different biological effects and the postulate that they could also have distinct pathophysiological roles in hypertension, it appears crucial to reassess the recognition process involving UII and URP with UT, and to push forward the development of new analogs of the UT system aimed at discriminating UII- and URP-mediated biological activities. The recent development of such compounds, i.e. urocontrin A and rUII(1–7), is certainly useful to decipher the specific roles of UII and URP in vitro and in vivo. Altogether, these studies, which provide important information regarding the pharmacology of the urotensinergic system and the conformational requirements for binding and activation, will ultimately lead to the development of potent and selective drugs

  18. Sensitization of nanocrystalline TiO2 anchored with pendant catechol functionality using a new tetracyanato ruthenium(II) polypyridyl complex.

    PubMed

    Kar, Prasenjit; Verma, Sandeep; Sen, Anik; Das, Amitava; Ganguly, Bishwajit; Ghosh, Hirendra Nath

    2010-05-03

    We have synthesized a new photoactive ruthenium(II) complex having a pendant catechol functionality (K(2)[Ru(CN)(4)(L)] (1) (L is 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) for studying the dynamics of the interfacial electron transfer between nanoparticulate TiO(2) and the photoexcited states of this Ru(II) complex using femtosecond transient absorption spectroscopy. Steady-state absorption and emission studies revealed that the complex 1 showed a strong solvatochromic behavior in solvents or solvent mixtures of varying polarity. Our steady-state absorption studies further revealed that 1 is bound to TiO(2) surfaces through the catechol functionality, though 1 has two different types of functionalities (catecholate and cyanato) for binding to TiO(2) surfaces. The longer wavelength absorption band tail for 1, bound to TiO(2) through the proposed catecholate functionality, could also be explained on the basis of the DFT calculations. Dynamics of the interfacial electron transfer between 1 and TiO(2) nanoparticles was investigated by studying kinetics at various wavelengths in the visible and near-infrared region. Electron injection to the conduction band of the nanoparticulate TiO(2) was confirmed by detection of the conduction band electron in TiO(2) ([e(-)](TiO(2))(CB)) and cation radical of the adsorbed dye (1(*+)) in real time as monitored by transient absorption spectroscopy. A single exponential and pulse-width limited (<100 fs) electron injection was observed. Back electron transfer dynamics was determined by monitoring the decay kinetics of 1(*+) and [e(-)](TiO(2))(CB). This is the first report on ultrafast ET dynamics on TiO(2) nanoparticle surface using a solvatochromic sensitizer molecule.

  19. Effects of electrical and optical properties of thickness condition of ZnO nanorod array layer for efficient electrochemical luminescence cell device

    NASA Astrophysics Data System (ADS)

    Choi, Hye Su; Chansri, Pakpoom; Sung, Youl Moon

    2016-02-01

    In this paper, we report on electrochemical luminescence (ECL) cells with a ZnO nanorod (ZNR) layer. The investigated ECL cells were composed of F-doped SnO2 (FTO) glass/Ru(II)/ZNRs/FTO glass, which used a ZNR layer as an electrode and the Ru(II) complex [Ru(bpy)32+] as a light-emitting material. The ECL cells were fabricated by changing the thickness of ZNRs from 5 to 12.5 µm. The luminescence property of the ECL cells was strongly affected by the variation in the thickness of the ZNR layer. The threshold voltage for the light emission from the ECL cells was 2 V for 10 µm thick ZNRs, which was lower than that of the thickness of the ECL cells without a ZNR layer. Also, the intensity of luminance from the ECL cells with ZNRs was much higher than that from the ECL cells without ZNRs at the same operating voltage. The efficiency of the ECL cells without ZNRs measured at 3 V was 0.0049 lm/W, while those of the ECL cells with ZNRs were 0.0121, 0.0157, 0.0354, and 0.024 lm/W for the ZNRs layer thicknesses 5, 7.5, 10, and 12.5 µm, respectively. However, the peak light intensity at the wavelength was 623 nm which had not affected the all ZNRs thicknesses. The best lifetime of the ECL cells with these thicknesses was 40 min for ZNRs 10 µm. The use of the ZNR layer in the ECL cells significantly improves the luminescence performance.

  20. Photoexcited states of biruthenium(II) compounds bridged by 2,2 prime -bis(2-pyridyl)bibenzimidazole or 1,2-bis(2-(2-pyridyl)benzimidazolyl)ethane

    SciTech Connect

    Ohno, Takeshi; Nozaki, Koichi ); Haga, Masaaki )

    1992-02-19

    Charge-transfer (CT) excited states of RuL{sub 2}(L{prime}-L{prime}){sup 2+} and RuL{sub 2}(L{prime}-L{prime}){sup 4+} have been studied by means of emission and transient absorption (TA) spectroscopy at 77-300 K. The bridging ligand (L{prime}-L{prime}) is either 2,2{prime}-bis(2-pyridyl)benzimidazole (bpbimH{sub 2}) or 1,2-bis(2-(2-pyridyl)benzimidazolyl)ethane (dpbime) and L is 2,2{prime}-bipyridine (bpy), 4,4{prime}-dimethyl-2,2{prime}-bipyridine (dmbpy), or 1,10-phenanthroline (phen). Transient absorption (TA) spectra of the ruthenium(II) compounds subjected to laser excitation, whose molar extinction coefficients were determined, are deconvoluted to {pi}-{pi}* bands of L and L{prime}-L{prime} coordinating to Ru(III), L (or L{prime}-L{prime})-to-Ru(III) CT bands, and a {pi}-{pi}* band of (L{prime}-L{prime}){sup {center dot}-} (or L{sup {center dot}-}) by comparison with the absorption spectra of the oxidized compounds (RuL{sub 2}(L{prime}-L{prime}){sup 3+}). The degree of electron population on the ligand decreases in the order bpbimH{sub 2} > bpy {approximately} phen > dpbime > dmbpy in the excited CT states, while there is no discernible difference in the reduction potential between bpbimH{sub 2} (or dpbime) and bpy coordinating to Ru(II). The excitation efficiency of the metal sites in (Ru(bpy){sub 2}){sub 2}(dpbime){sup 4+} is lower than 50% when the laser power was large enough to excite more than 80% of the mononuclear compounds. The low excitation efficiency of the former is ascribed to rapid intramolecular annihilation of the excited states.

  1. Characterization of the fluid and solid components of cyanogel systems during the gelation process

    NASA Astrophysics Data System (ADS)

    Fortmeyer, Ivy Camille

    The work in this thesis concerns the sol-gel transformation in cyanogel systems comprised of d8 square planar chlorometalates (M=Pd(II), Pt(II)) and d6 octahedral hexacyanometalates (M=Fe(II), Co(III), Ru(II)). The body of this thesis is split into two chapters. The first chapter examines the physical changes in the solvent phase of the sol-gel network, and the second focuses on the polymer backbone of the gel. Studies on the water component of cyanogel systems during the gelation process were carried out with a variety of in situ spectroscopic techniques. The use of high resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) to identify and characterize different water environments was explored, but was ultimately found to disrupt gelation. Standard solution-phase 1H NMR proved sufficient for calculation and qualitative modeling of spin-spin and spin-lattice relaxations, providing distinct spectral markers of the gelation point and subsequent aging process. Vibrational spectroscopy was used to explore the hydrogen bonding environment of the water during gelation. The kinetics of polymerization of the cyanogel backbone was explored using both in situ and ex situ techniques. Data collected by 13C NMR and 195Pt NMR primarily demonstrated first order kinetics, implying a dissociative substitution mechanism at the chlorometalate center. Rate constants for gelation in the presence of various added monopotassium and nitrate salts were calculated. Added chloride was found to significantly slow gelation and was further explored using NMR and vibrational spectroscopy. A mechanism was proposed for the polymerization taking into account the dissociative substitution and the bridging geometries implied by 13C NMR.

  2. Ruthenium(II) bis(terpyridine) electron transfer complexes with alkynyl-ferrocenyl bridges: synthesis, structures, and electrochemical and spectroscopic studies.

    PubMed

    Wu, Kai-Qiang; Guo, Jian; Yan, Jian-Feng; Xie, Li-Li; Xu, Feng-Bo; Bai, Sha; Nockemann, Peter; Yuan, Yao-Feng

    2012-08-28

    Two novel alkynyl-bridged symmetric bis-tridentate ligands 1,2-bis(1'-[4'-(2,2':6',2''-terpyridinyl)]ferrocenyl)ethyne (3a; tpy-Fc-C[triple bond]C-Fc-tpy; Fc = ferrocenyl; tpy = terpyridyl) and 1,4-bis(1'-[4'-(2,2':6',2''-terpyridinyl)]ferrocenyl)-1,3-butadiyne (3b; tpy-Fc-C[triple bond]C-C[triple bond]C-Fc-tpy) and their Ru(2+) complexes 6a and 6b have been synthesized and characterized by cyclic voltammetry, UV-vis and luminescence spectroscopy, and in the case of 3b by single-crystal X-ray diffraction. Cyclic voltammograms of both compounds, 3a and 3b, display two severely overlapping ferrocene-based oxidative peaks with only one reductive peak. The redox behavior of 6a and 6b is dominated by the Ru(2+)/Ru(3+) redox couple (E(1/2) from 1.33 to 1.34 V), the Fe(2+)/Fe(3+) redox couples (E(1/2) from 0.46 to 0.80 V), and the tpy/tpy(-)/tpy(2-) redox couples (E(1/2) from -1.19 to -1.48 V). The UV-vis spectra of 6a and 6b show absorption bands assigned to the (1)[(d(π)(Fe))(6)] → (1)[(d(π)(Fe))(5)(π*(tpy)(Ru))(1)] MMLCT transition at ~555 nm. Complexes and are luminescent in H(2)O-CH(3)CN (4 : 1, v/v) solution at room temperature, and 6b exhibits the strongest luminescence intensity (λ(max)(em): 710 nm, Φ(em): 2.28 × 10(-4), τ: 358 ns) relative to analogous ferrocene-based bis(terpyridine) Ru(II) complexes reported so far.

  3. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell

    PubMed Central

    Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; Brennaman, M. Kyle; Meyer, Thomas J.

    2015-01-01

    A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO2/TiO2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO3H2)2bpy)2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH2)]4+ ([RuaII-RubII-OH2]4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al2O3 or TiO2 overlayers. Illumination of the resulting fluorine-doped tin oxide (FTO)|SnO2/TiO2|-[RuaII-RubII-OH2]4+(Al2O3 or TiO2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H2 and O2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO2/TiO2 core/shell compared with nanoITO/TiO2 with the same assembly results in photocurrent enhancements of ∼5. Systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm2 with 445-nm, ∼90-mW/cm2 illumination in a phosphate buffer at pH 7. PMID:25918426

  4. Influence of solvent on the spectroscopic properties of cyano complexes of ruthenium(II)

    SciTech Connect

    Timpson, C.J.; Meyer, J.M.; Bignozzi, C.A.; Sullivan, P.B.; Kober, E.M.

    1996-02-22

    Specific solute-solvent interactions are known to play an important role in optical and thermal electron transfer involving transition-metal complexes. These interactions can influence both spectroscopic energies and redox potentials in a significant way. Their existence has been documented in the literature, and qualitative models have been proposed, but they have yet to be examined quantitatively. Literature examples include mixed cyano-pyridyl complexes of Fe(II) and Ru(II) where specific interactions occur with the cyanide ligands. We extend that work here and report the effect of solvent on absorption, emission, and Ru{sup III/II} reduction potentials in the series cis-[Ru(bpy){sub 2}(py)(CN)]{sup +}, cis-Ru(bpy){sub 2}(CN){sub 2}, [Ru(tpy)(CN){sub 3}]{sup -}, [Ru(bpy)(CN){sub 4}]{sup 2-}, and [Ru(MQ{sup +})(CN){sub 5}]{sup 2-}, where there is a sequential increase in the number of cyanide ligands. The goals were to obtain systematic data on specific solvent effects in these complexes, to analyze the effects, and to develop models to explain them. UV-visible spectra, emission spectra, and Ru{sup III/II} reduction potentials have been measured. The shifts in the metal-to-ligand charge transfer (MLCT) absorption (E{sub abs}) or emission (E{sub em}) band energies with solvent increase linearly with the number of cyano ligands and correlate well with the Gutmann `acceptor number` of the solvent. 32 refs., 8 figs., 4 tabs.

  5. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: Synthesis, structure, electrochemistry and DFT calculations

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Mansi, Ahmad; Abdel-Rahman, Obadah S.; Hammoudeh, Ayman; Warad, Ismail

    2015-01-01

    The novel azoimine ligand, Phsbnd NHsbnd Ndbnd C(COCH3)sbnd NHPh(Ctbnd CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1 = Phsbnd Ndbnd Nsbnd C(COCH3)dbnd Nsbnd Ph(COCH3) and an enol (L2 = Phsbnd Ndbnd Nsbnd C(COCH3)dbnd Nsbnd PhC(OH)dbnd CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y = L1 (1) and Y = L2 (2), bpy is 2.2‧-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D 1H NMR, 13C NMR, (DEPT-135), (DEPT-90), 2D 1H-1H and 13C-1H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe0/+) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT).

  6. cis-Bis(2,2'-bipyridine-κ(2)N,N')bis-(pyridin-4-amine-κN(1))ruthenium(II) bis-(hexa-fluoridophosphate) acetonitrile monosolvate.

    PubMed

    Camilo, Mariana R; Martins, Felipe T; Malta, Valéria R S; Ellena, Javier; Carlos, Rose M

    2013-02-01

    In the title complex, [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](PF(6))(2)·CH(3)CN, the Ru(II) atom is bonded to two α-diimine ligands, viz. 2,2'-bipyridine, in a cis configuration and to two 4-amino-pyridine (4Apy) ligands in the expected distorted octa-hedral configuration. The compound is isostructural with [Ru(C(10)H(8)N(2))(2)(C(5)H(6)N(2))(2)](ClO(4))(2)·CH(3)CN [Duan et al. (1999 ▶). J. Coord. Chem.46, 301-312] and both structures are stabilized by classical hydrogen bonds between 4Apy ligands as donors and counter-ions and acetonitrile solvent mol-ecules as acceptors. Indeed, N-H⋯F inter-actions give rise to an inter-molecularly locked assembly of two centrosymmetric complex mol-ecules and two PF(6) (-) counter-ions, which can be considered as the building units of both crystal architectures. The building blocks are connected to one another through hydrogen bonds between 4Apy and the connecting pieces made up of two centrosymmetric motifs with PF(6) (-) ions and acetonitrile mol-ecules, giving rise to ribbons running parallel to [011]. 2(1)-Screw-axis-related complex mol-ecules and PF(6) (-) counter-ions alternate in helical chains formed along the a axis by means of these contacts.

  7. Combining very large quadratic and cubic nonlinear optical responses in extended, tris-chelate metallochromophores with six pi-conjugated pyridinium substituents.

    PubMed

    Coe, Benjamin J; Fielden, John; Foxon, Simon P; Brunschwig, Bruce S; Asselberghs, Inge; Clays, Koen; Samoc, Anna; Samoc, Marek

    2010-03-17

    We describe a series of nine new complex salts in which electron-rich Ru(II) or Fe(II) centers are connected via pi-conjugated bridges to six electron-accepting N-methyl-/N-arylpyridinium groups. This work builds upon our previous preliminary studies (Coe , B. J. J. Am. Chem. Soc. 2005, 127, 13399-13410; J. Phys. Chem. A 2007, 111, 472-478), with the aims of achieving greatly enhanced NLO properties and also combining large quadratic and cubic effects in potentially redox-switchable molecules. Characterization has involved various techniques, including electronic absorption spectroscopy and cyclic voltammetry. The complexes display intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) bands, and their pi --> pi* intraligand charge-transfer (ILCT) absorptions in the near-UV region show molar extinction coefficients as high as ca. 3.5 x 10(5) M(-1) cm(-1). Molecular quadratic nonlinear optical (NLO) responses beta have been determined by using hyper-Rayleigh scattering at 800 and 1064 nm and also via Stark (electroabsorption) spectroscopic studies. The directly and indirectly derived beta values are very large, with the Stark-based static first hyperpolarizabilities beta(0) reaching as high as ca. 10(-27) esu, and generally increase on extending the pi-conjugation and enhancing the electron-accepting strength of the ligands. Cubic NLO properties have also been measured by using the Z-scan technique, revealing relatively high two-photon absorption cross sections of up to 2500 GM at 750 nm.

  8. Metal-drug synergy: new ruthenium(II) complexes of ketoconazole are highly active against Leishmania major and Trypanosoma cruzi and nontoxic to human or murine normal cells.

    PubMed

    Iniguez, Eva; Sánchez, Antonio; Vasquez, Miguel A; Martínez, Alberto; Olivas, Joanna; Sattler, Aaron; Sánchez-Delgado, Roberto A; Maldonado, Rosa A

    2013-10-01

    In our ongoing search for new metal-based chemotherapeutic agents against leishmaniasis and Chagas disease, six new ruthenium-ketoconazole (KTZ) complexes have been synthesized and characterized, including two octahedral coordination complexes-cis,fac-[Ru(II)Cl2(DMSO)3(KTZ)] (1) and cis-[Ru(II)Cl2(bipy)(DMSO)(KTZ)] (2) (where DMSO is dimethyl sulfoxide and bipy is 2,2'-bipyridine)-and four organometallic compounds-[Ru(II)(η(6)-p-cymene)Cl2(KTZ)] (3), [Ru(II)(η(6)-p-cymene)(en)(KTZ)][BF4]2 (4), [Ru(II)(η(6)-p-cymene)(bipy)(KTZ)][BF4]2 (5), and [Ru(II)(η(6)-p-cymene)(acac)(KTZ)][BF4] (6) (where en is ethylenediamine and acac is acetylacetonate); the crystal structure of 3 is described. The central hypothesis of our work is that combining a bioactive compound such as KTZ and a metal in a single molecule results in a synergy that can translate into improved activity and/or selectivity against parasites. In agreement with this hypothesis, complexation of KTZ with Ru(II) in compounds 3-5 produces a marked enhancement of the activity toward promastigotes and intracellular amastigotes of Leishmania major, when compared with uncomplexed KTZ, or with similar ruthenium compounds not containing KTZ. Importantly, the selective toxicity of compounds 3-5 toward the leishmania parasites, in relation to human fibroblasts and osteoblasts or murine macrophages, is also superior to the selective toxicities of the individual constituents of the drug. When tested against Trypanosoma cruzi epimastigotes, some of the organometallic complexes displayed activity and selectivity comparable to those of free KTZ. A dual-target mechanism is suggested to account for the antiparasitic properties of these complexes.

  9. pH luminescence switching, dihydrogen phosphate sensing, and cellular uptake of a heterobimetallic ruthenium(II)-rhenium(I) complex.

    PubMed

    Zheng, Ze-Bao; Wu, Yong-Quan; Wang, Ke-Zhi; Li, Fuyou

    2014-02-28

    A new heterobimetallic ruthenium(II)-rhenium(I) complex of [Ru(bpy)2(HL)Re(CO)3Cl](ClO4)2·6H2O (RuHLRe) {bpy = 2,2'-bipyridine and HL = 2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesised and characterised by elemental analysis, proton nuclear magnetic resonance spectroscopy, and mass spectrometry. The ground- and excited-state acid-base properties of RuHLRe were studied using UV-Vis absorption spectrophotometric and spectrofluorimetric titrations in a 100 : 1 (v/v) Britton-Robinson buffer-CH3CN solution combined with luminescence lifetime measurements. The complex exhibited two-step separate protonation-deprotonation processes in both the ground and excited states. The complex acted as pH-induced "off-on-off" luminescence switches (I(on)/I(off) = 31.0 and 14.6), with one of the switching actions being driven by pH variations over the physiological pH range (5.3-8.0). Importantly, cellular imaging and cytotoxicity experiments demonstrated that RuHLRe rapidly and selectively illuminated the membrane of HeLa cells over fixed cells and exhibited reduced cytotoxicity at the imaging concentration compared to the Re(I)-free parent Ru(II) complex. In addition, RuHLRe acted as an efficient "turn on" emission sensor for H2PO4(-) and "turn off" emission sensor for F(-) and OAc(-).

  10. Ruthenium-Ruthenium-Bonded [Bis{corrolato-ruthenium(III)}](n) (n=0, +1, -1) Complexes: Model Compounds for the Photosynthetic Special Pair.

    PubMed

    Sinha, Woormileela; Sommer, Michael G; Hettmanczyk, Lara; Patra, Bratati; Filippou, Vasileios; Sarkar, Biprajit; Kar, Sanjib

    2017-02-16

    We present herein the synthesis of three new bis(corrolato-ruthenium(III)) complexes containing unsupported Ru-Ru bonds and their characterization in different redox states. The (1) H NMR spectra of the bis(corrolato-ruthenium(III)) complexes displayed "normal" chemical shifts and the compounds proved to be EPR-silent. Crystallographic characterization of the dimers indicated Ru-Ru distances of 2.175 Å, consistent with a triple bond between the two ruthenium centers. All of the synthesized complexes undergo two successive reversible oxidations and a single reversible reduction. A combination of UV/Vis/NIR/EPR spectroelectrochemical studies and DFT calculations established the redox state distributions in these ruthenium-ruthenium-bonded dimers. Whereas reduction of the dimers is metal-based and leads to metal-metal-bonded mixed-valent Ru(II) -Ru(III) species, one-electron oxidation largely retains the Ru(III) -Ru(III) situation with the generation of metal-bound corrolato radicals. The present study thus concerns the first UV/Vis/NIR/EPR spectroelectrochemical characterization and DFT calculations of ruthenium-ruthenium-bonded rotationally ordered corrole dimers. The mean plane separation between the two corrole units in these dimers is around 3.543 Å, which is in close agreement to that in the "special pair" in chlorophyll. Oxidation of these ruthenium-ruthenium-bonded dimers gives rise to two new electronic absorption bands in the NIR region (similar to those of the special pair), which have apparently not been mentioned/observed in earlier reports on ruthenium-ruthenium-bonded corrole dimers. These bands mainly originate from inter-corrole transitions.

  11. Highly sensitive and selective difunctional ruthenium(II) complex-based chemosensor for dihydrogen phosphate anion and ferrous cation.

    PubMed

    Zheng, Ze-Bao; Duan, Zhi-Ming; Ma, Ying-Ying; Wang, Ke-Zhi

    2013-03-04

    The anion-interaction properties of a Ru(II) complex of [Ru(bpy)2(Htppip)](ClO4)2·H2O·DMF (RuL) {bpy =2,2'-bipyridine and Htppip =2-(4-(2,6-di(pyridin-2-yl)pyridin-4-yl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline} were thoroughly investigated in CH3CN and CH3CN/H2O (50:1, v/v) solutions by UV-visible absorption, emission, and (1)H NMR spectra. These analyses revealed that RuL acts as an efficient "turn on" emission sensor for H2PO4(-), and a "turn off" sensor for F(-) and OAc(-); in addition, RuL exhibited slightly disturbed emission spectra in the presence of the other anions studied (Cl(-), Br(-), I(-), NO3(-), and ClO4(-)). The cation-sensing properties of RuL were also studied in both neat CH3CN and aqueous 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer (pH = 7.2)/CH3CN (71/1, v/v) solutions. RuL was found to exhibit a colorimetric sensing ability that was highly selective for Fe(2+), as evidenced by an obvious color change from pale yellow to light red-purple to the naked eye over the other cations studied (Na(+), Mg(2+), Ba(2+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Ag(+)). To obtain insights into the possible binding modes and the sensing mechanisms, (1)H NMR spectral analysis, luminescence lifetime measurements, and density functional theoretical calculations were also performed.

  12. Photophysical properties of [Ru(2,2‧-bipyridine)3]2+ encapsulated within the Uio-66 zirconium based metal organic framework

    NASA Astrophysics Data System (ADS)

    Larsen, Randy W.; Wojtas, Lukasz

    2017-03-01

    The ability to encapsulate photo-active guest molecules within the pores of metal organic frameworks (MOFs) affords the opportunity to develop robust photocatalysts as well as solar energy conversion systems. An important criteria for such systems is stability of the new materials towards moisture, high temperatures, etc which preclude the use of many MOF frameworks. Here, the ability to encapsulate [Ru(II)(2,2‧-bipyridine)3]2+([Ru(bpy)3]2+) into the cavities of the zirconium based MOF Uio-66 as well as the photophysical properties of the complex are reported. The X-ray powder diffraction data of the orange Uio-66 powder are consistent with the formation of Uio-66 in the presence of [Ru(bpy)3]2+. The steady state emission exhibits a significant bathochromic shift from 603 nm in ethanol to 610 nm in Uio-66. The corresponding emission decay of the encapsulated [Ru(bpy)3]2+ complex is biexponential with a fast component of 128 ns and a slower component of 1176 ns (20 deg C). The slow component is consistent with encapsulation of [Ru(bpy)3]2+ into cavities with restricted volume that prevents the population of a triplet ligand field transition that is anti-bonding with respect to the Ru-N bonds. The origin of the fast component is unclear but may involve interactions of the [Ru(bpy)3]2+ encapsulated within large cavities formed through missing ligand defect sites within the Uio-66 materials. Co-encapsulated quenchers contained within these larger cavities gives rise to the reduced lifetimes of the [Ru(bpy)3]2+ complexes.

  13. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents.

    PubMed

    Liu, Jiangping; Chen, Yu; Li, Guanying; Zhang, Pingyu; Jin, Chengzhi; Zeng, Leli; Ji, Liangnian; Chao, Hui

    2015-07-01

    Clinical acceptance of photodynamic therapy is currently hindered by poor depth efficacy and inefficient activation of the cell death machinery in cancer cells during treatment. To address these issues, photoactivation using two-photon absorption (TPA) is currently being examined. Mitochondria-targeted therapy represents a promising approach to target tumors selectively and may overcome the resistance in current anticancer therapies. Herein, four ruthenium(II) polypyridyl complexes (RuL1-RuL4) have been designed and developed to act as mitochondria-targeted two-photon photodynamic anticancer agents. These complexes exhibit very high singlet oxygen quantum yields in methanol (0.74-0.81), significant TPA cross sections (124-198 GM), remarkable mitochondrial accumulation, and deep penetration depth. Thus, RuL1-RuL4 were utilized as one-photon and two-photon absorbing photosensitizers in both monolayer cells and 3D multicellular spheroids (MCSs). These Ru(II) complexes were almost nontoxic towards cells and 3D MCSs in the dark and generate sufficient singlet oxygen under one- and two-photon irradiation to trigger cell death. Remarkably, RuL4 exhibited an IC50 value as low as 9.6 μM in one-photon PDT (λirr = 450 nm, 12 J cm(-2)) and 1.9 μM in two-photon PDT (λirr = 830 nm, 800 J cm(-2)) of 3D MCSs; moreover, RuL4 is an order of magnitude more toxic than cisplatin in the latter test system. The combination of mitochondria-targeting and two-photon activation provides a valuable paradigm to develop ruthenium(II) complexes for PDT applications.

  14. Structure and spectroscopic properties of ruthenium(II) bipyridyl N-benzoyl-N'-(1,10-phenanthrolin-5-Yl)-thiourea

    SciTech Connect

    Tan, Siew San; Kassim, Mohammad B.

    2015-09-25

    Ruthenium bipyridyl incorporating phenanthroline with thiourea molecules, [Ru(bpy){sub 2}(Phen-BT)](PF{sub 6}){sub 2}], has been synthesized and characterized by spectroscopic and electrochemical techniques. The infrared spectra of the complex shows the characteristics stretching frequencies for N-H at 3646 and 3585 cm{sup −1}, ν(C-N){sub phen} 1426 cm{sup −1}, ν(C=O) 1675 cm{sup −1}, ν(C=S) 1246 cm{sup −1}, ν(C-H){sub aromatic} 3353-3086 cm{sup −1}, ν(C-N){sub aliphatic} 1169-1026 cm{sup −1}, ν(C-H){sub bend} 764 cm{sup −1} and ν(PF{sub 6}{sup −}){sub free} 842 cm{sup −1}. The complex reveals two π→π* absorption bands at 237 (ε=26,302) and 286 nm (ε=36,848), which were assigned to the phenanthroline and bipyridyl moieties, respectively. A slightly broad and low energy band in the UV-vis spectrum at 450 nm (ε=7,209) of the complex was assigned to a MLCT transition. Besides, the complex also exhibits an emission band at 615 nm that arises from an excitation with a 440 nm light energy. The cyclic voltammetry of the complex shows an oxidation potential at +1.305 V vs. SCE that corresponds to the formal oxidation of Ru(II) to Ru(III)

  15. Chromo- and Fluorogenic Organometallic Sensors

    NASA Astrophysics Data System (ADS)

    Fletcher, Nicholas C.; Lagunas, M. Cristina

    Compounds that change their absorption and/or emission properties in the presence of a target ion or molecule have been studied for many years as the basis for optical sensing. Within this group of compounds, a variety of organometallic complexes have been proposed for the detection of a wide range of analytes such as cations (including H+), anions, gases (e.g. O2, SO2, organic vapours), small organic molecules, and large biomolecules (e.g. proteins, DNA). This chapter focuses on work reported within the last few years in the area of organometallic sensors. Some of the most extensively studied systems incorporate metal moieties with intense long-lived metal-to-ligand charge transfer (MLCT) excited states as the reporter or indicator unit, such as fac-tricarbonyl Re(I) complexes, cyclometallated Ir(III) species, and diimine Ru(II) or Os(II) derivatives. Other commonly used organometallic sensors are based on Pt-alkynyls and ferrocene fragments. To these reporters, an appropriate recognition or analyte-binding unit is usually attached so that a detectable modification on the colour and/or the emission of the complex occurs upon binding of the analyte. Examples of recognition sites include macrocycles for the binding of cations, H-bonding units selective to specific anions, and DNA intercalating fragments. A different approach is used for the detection of some gases or vapours, where the sensor's response is associated with changes in the crystal packing of the complex on absorption of the gas, or to direct coordination of the analyte to the metal centre.

  16. Chemical amplification methods for the sequential determination of trace amounts of ruthenium by titrimetric and spectrophotometric procedures.

    PubMed

    El-Shahawi, M S; Barakat, S A

    1995-11-01

    Two simple, inexpensive and rapid iodometric and spectrophotometric procedures were developed for trace amount determination of ruthenium. The proposed methods were based on the oxidation of ruthenium(II or III) with sodium periodate at pH 2.4-3.6, masking the excess periodate with sodium molybdate. The released iodate was then allowed to react with KI at pH 3, with subsequent determination of the released iodine spectrophotometry as triiodide at 350 nm or iodometry with 0.005 M sodium thiosulphate. This procedure offers an 18- and 15-fold amplification per Ru(II) or Ru(III) ion, respectively. Alternatively, the produced iodine was extracted with CHCl(3), shaken with an aqueous solution of sodium sulphite and the produced iodide ion was then allowed to react with bromine (or sodium periodate). The released iodate was subsequently determined by iodometry or spectrophotometry after addition of KI. The bromine and sodium periodate oxidation procedures offered 90- and 360-fold amplification per ruthenium(III) ion, and 108- and 432-fold amplification per ruthenium(II) ion. Ruthenium(IV) content was determined by these procedures after prior reduction to Ru(III) with sulphurous acid. The binary mixtures Ru(II)-Ru(III); Ru(III)-Ru(IV) and Ru(II)-Ru(IV) in aqueous solution at concentration 0.05 mug ml(-1) were successfully analyzed by the developed procedures. The utility of the proposed methods for the analysis of ruthenium in its complexes was demonstrated. Natural seawater and seawater spiked with ruthenium were analyzed satisfactorily.

  17. Atom transfer radical polymerization preparation and photophysical properties of polypyridylruthenium derivatized polystyrenes.

    PubMed

    Fang, Zhen; Ito, Akitaka; Keinan, Shahar; Chen, Zuofeng; Watson, Zoe; Rochette, Jason; Kanai, Yosuke; Taylor, Darlene; Schanze, Kirk S; Meyer, Thomas J

    2013-08-05

    A ruthenium containing polymer featuring a short carbonyl-amino-methylene linker has been prepared by atom transfer radical polymerization (ATRP). The polymer was derived from ATRP of the N-hydroxysuccinimide (NHS) derivative of p-vinylbenzoic acid, followed by an amide coupling reaction of the NHS-polystyrene with Ru(II) complexes derivatized with aminomethyl groups (i.e., [Ru(bpy)2(CH3-bpy-CH2NH2)](2+) where bpy is 2,2'-bipyridine, and CH3-bpy-CH2NH2 is 4-methyl-4'-aminomethyl-2,2'-bipyridine). The Ru-functionalized polymer structure was confirmed by using nuclear magnetic resonance and infrared spectroscopy, and the results suggest that a high loading ratio of polypyridylruthenium chromophores on the polystyrene backbone was achieved. The photophysical properties of the polymer were characterized in solution and in rigid ethylene glycol glasses. In solution, emission quantum yield and lifetime studies reveal that the polymer's metal-to-ligand charge transfer (MLCT) excited states are quenched relative to a model Ru complex chromophore. In rigid media, the MLCT-ground state band gap and lifetime are both increased relative to solution with time-resolved emission measurements revealing fast energy transfer hopping within the polymer. Molecular dynamics studies of the polymer synthesized here as well as similar model systems with various spatial arrangements of the pendant Ru complex chromophores suggest that the carbonyl-amino-methylene linker probed in our target polymer provides shorter Ru-Ru nearest-neighbor distances leading to an increased Ru*-Ru energy hopping rate, compared to those with longer linkers in counterpart polymers.

  18. Novel ruthenium(II) cyclopentadienyl thiosemicarbazone compounds with antiproliferative activity on pathogenic trypanosomatid parasites.

    PubMed

    Fernández, Mariana; Arce, Esteban Rodríguez; Sarniguet, Cynthia; Morais, Tânia S; Tomaz, Ana Isabel; Azar, Claudio Olea; Figueroa, Roberto; Diego Maya, J; Medeiros, Andrea; Comini, Marcelo; Helena Garcia, M; Otero, Lucía; Gambino, Dinorah

    2015-12-01

    Searching for new prospective antitrypanosomal agents, three novel Ru(II)-cyclopentadienyl compounds, [Ru(η(5)-C5H5)(PPh3)L], with HL=bioactive 5-nitrofuryl containing thiosemicarbazones were synthesized and characterized in the solid state and in solution. The compounds were evaluated in vitro on the blood circulating trypomastigote form of Trypanosoma cruzi (Dm28c strain), the infective form of Trypanosoma brucei brucei (strain 427) and on J774 murine macrophages and human-derived EA.hy926 endothelial cells. The compounds were active against both parasites with IC50 values in the micromolar or submicromolar range. Interestingly, they are much more active on T. cruzi than previously developed Ru(II) classical and organometallic compounds with the same bioactive ligands. The new compounds showed moderate to very good selectivity towards the parasites in respect to mammalian cells. The global results point at [RuCp(PPh3)L2] (L2=N-methyl derivative of 5-nitrofuryl containing thiosemicarbazone and Cp=cyclopentadienyl) as the most promising compound for further developments (IC50T. cruzi=0.41μM; IC50T. brucei brucei=3.5μM). Moreover, this compound shows excellent selectivity towards T. cruzi (SI>49) and good selectivity towards T. brucei brucei (SI>6). In order to get insight into the mechanism of antiparasitic action, the intracellular free radical production capacity of the new compounds was assessed by ESR. DMPO (5,5-dimethyl-1-pirroline-N-oxide) spin adducts related to the bioreduction of the complexes and to redox cycling processes were characterized. In addition, DNA competitive binding studies with ethidium bromide by fluorescence measurements showed that the compounds interact with this biomolecule.

  19. Evaluation of a new biocompatible poly(N-(morpholino ethyl methacrylate)-based copolymer for the delivery of ruthenium oligonucleotides, targeting HPV16 E6 oncogene.

    PubMed

    Reschner, Anca; Shim, Yong Ho; Dubois, Philippe; Delvenne, Philippe; Evrard, Brigitte; Marcélis, Lionel; Moucheron, Cécile; Kirsch-De Mesmaeker, Andrée; Defrancq, Eric; Raes, Martine; Piette, Jacques; Collard, Laurence; Piel, Géraldine

    2013-08-01

    This study investigates the use of a new biocompatible block copolymer poly(2-(dimethylamino)ethyl methacrylate-N-(morpholino)ethyl methacrylate (PDMAEMA-b-PMEMA) for the delivery of a particular antisense oligonucleotide targeting E6 gene from human papilloma virus. This antisense oligonucleotide was derivatized with a polyazaaromatic Ru(II) complex which, under visible illumination, is able to produce an irreversible crosslink with the complementary targeted sequence. The purpose of this study is to determine whether by the use of a suitable transfection agent, it is possible to increase the efficiency of the antisense oligonucleotide targeting E6 gene, named Ru-P-4. In a recent study, we showed that Oligofectamine transfected Ru-P-4 antisense oligonucleotide failed to inhibit efficiently the growth of cervical cancer cell line SiHa, contrarily to the Ru-P-6 antisense oligonucleotide, another sequence also targeting the E6 gene. The ability of PDMAEMA-b-PMEMA to form polyplexes with optimal physicochemical characteristics was investigated first. Then the ability of the PDMAEMA-b-PMEMA/Ru-P-4 antisense oligonucleotide polyplexes to transfect two keratinocyte cell lines (SiHa and HaCat) and the capacity of polyplexes to inhibit HPV16+ cervical cancer cell growth was evaluated. PDMAEMA-b-PMEMA base polyplexes at the optimal molar ratio of polymer nitrogen atoms to DNA phosphates (N/P), were able to deliver Ru-P-4 antisense oligonucleotide and to induce a higher growth inhibition in human cervical cancer SiHa cells, compared to other formulations based on Oligofectamine.

  20. Dinuclear ruthenium complexes display loop isomer selectivity to c-MYC DNA G-quadriplex and exhibit anti-tumour activity.

    PubMed

    Zheng, Chuping; Liu, Yanan; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Liu, Jie

    2016-03-01

    G-quadruplex DNA, especially the cellular-myelocytomatosis viral oncogene (c-MYC) is closely associated with cell-cycle regulation, proliferation of tumour cells. In this work, the interaction between the c-MYC and two dinuclear Ru(II) complexes [(bpy)2Ru(bpibp)Ru(bpy)2](ClO4)4 (compound 1) and [(phen)2Ru(bpibp)Ru(phen)2](ClO4)4 (compound 2) have been studied. The data from UV-Visible, PCR-stop and Fluorescence resonance energy transfer (FRET) showed that two complexes can stabilize the structure of G-quadruplex in the c-MYC promoter and targeting the G-quadruplex loop isomers. Interestingly, the complex 2 has a greater effect on the 1:2:1 and 2:1:1 loop isomers while the 1 prefers to the 1:2:1 isomers. The mechanism studies revealed that complexes can induce apoptosis in HepG2 cells by generating ROS metabolites, triggering mitochondrial membrane potential loss and down-regulation of P-Akt (Akt also known as protein kinase B), P-p44/42 MAP kinase protein (P-p44/42), and c-MYC. Taken together, these results suggested that the two dinuclear complexes may both be candidates as anti-tumour agents as they may reduce the c-MYC gene expression. {bpibp: 4, 4'-bis (1, 10-phenanthroline-[5, 6-d] imidazole-2-yl)-biphenyl, bpy: 2,2-bipyridine, phen: 1,10-phenanthroline}.

  1. Transition metal complexes of the novel hexadentate ligand 1,4-bis(di(N-methylimidazol-2-yl)methyl)phthalazine.

    PubMed

    Roggan, Stefan; Limberg, Christian; Knispel, Christina; Tilley, T Don

    2011-04-28

    The novel polydentate ligand 1,4-bis(di(N-methylimidazol-2-yl)methyl)phthalazine, bimptz, has been synthesized and its coordination chemistry was investigated. Bimptz is neutral and contains a central phthalazine unit, to which two di-(N-methylimidazol-2-yl)methyl groups are attached in the 1,4-positions. This ligand therefore provides up to 6 donor sites for coordination to metal ions. A series of metal complexes of bimptz was prepared and their molecular structures were determined by X-ray diffraction. Upon reaction of bimptz with two equivalents of MnCl(2)·4H(2)O, CoCl(2)·6H(2)O and [Ru(dmso)(4)Cl(2)], the dinuclear complexes [Mn(2)(bimptz)(µ-Cl)(2)Cl(2)] (1), [Co(2)(bimptz)(CH(3)OH)(2)(µ-Cl)(2)](PF(6))(2) (3) and [Ru(2)(bimptz)(dmso)(2)(µ-Cl)(2)](PF(6))(2) (4), respectively, were isolated. The latter were found to have similar solid state structures with octahedrally coordinated metal centers bridged by the phthalazine unit and two chloro ligands. The cobalt and ruthenium complexes 3 and 4 were isolated as PF(6)(-) salts and contain neutral methanol and dmso ligands, respectively, at the terminal coordination sites of the metal centres. The mononuclear ruthenium complex [Ru(Hbimptz)(2)](PF(6))(4) (6) was obtained from the reaction of two equivalents bimptz with [Ru(dmso)(4)Cl(2)]. In complex 6, three donor sites per ligand molecule are used for coordination of the Ru(ii) center. In each bimptz ligand, one of the remaining, dangling N-methylimidazole rings is protonated and forms a hydrogen bond with the unprotonated N-methylimidazole ring of the other bimptz ligand.

  2. Poly(lactic acid) nanoparticles of the lead anticancer ruthenium compound KP1019 and its surfactant-mediated activation.

    PubMed

    Fischer, Britta; Heffeter, Petra; Kryeziu, Kushtrim; Gille, Lars; Meier, Samuel M; Berger, Walter; Kowol, Christian R; Keppler, Bernhard K

    2014-01-21

    Nanoparticle formulations offer besides the advantage of passive drug targeting also the opportunity to increase the stability of drugs. KP1019 is a lead ruthenium(III) compound which has been successfully tested in a clinical phase I trial. However, it is characterized by low stability in aqueous solution especially at physiological pH. To overcome this limitation, poly(lactic acid) (PLA) nanoparticles of KP1019 with two different surfactants (Pluronic F68 and Tween 80) were prepared by a single oil-in-water (o/w) emulsion. Cytotoxicity measurements comparing different aged Tween 80 nanoparticles revealed that the color change from brown to green was associated with an up to 20 fold increased activity compared to "free" KP1019. Further investigations suggested that this is based on the formation of enhanced intracellular reactive oxygen species levels. Additional studies revealed that the origin of the green color is a reaction between KP1019 and Tween 80. Kinetic studies of this reaction mixture using UV-Vis, ESI-MS and ESR spectroscopy indicated on the one hand a coordination of Tween 80 to KP1019, and on the other hand, the color change was found to correlate with a reduction of the Ru(III) center by the surfactant. Together, the results provide a first experimental approach to stabilize a biologically active Ru(II) species of KP1019 in aqueous solution, which probably can be also used to selectively generate this activated species in the tumor tissue via delivery of KP1019 using Tween 80 nanoparticles.

  3. Photoinduced charge, ion & energy transfer processes at transition-metal coordination compounds anchored to mesoporous, nanocrystalline metal-oxide thin films

    NASA Astrophysics Data System (ADS)

    Ardo, Shane

    spectroscopy can be employed to monitor lateral self-exchange energy- and hole-transfer reactions across the sensitized TiO2 surface. Under conditions of poor excited-state injection, support for Ru*/II self exchange was obtained, while subsequent to electron injection, the resulting RuIII state of the sensitizer was often capable of RuIII/II self-exchange reactions. The kinetics for many processes associated with mesoporous, nanocrystalline TiO2 thin films can be modeled by a stretched-exponential function, which possesses an underlying distribution of rate constants. In Chapter 5, we provide the first implementation of an Arrhenius analysis for the temperature dependence of these distributions.

  4. Precision targeted ruthenium(ii) luminophores; highly effective probes for cell imaging by stimulated emission depletion (STED) microscopy† †Electronic supplementary information (ESI) available: Detailed synthesis and characterisation of metal complexes and peptides. See DOI: 10.1039/c6sc02588a Click here for additional data file.

    PubMed Central

    Byrne, Aisling; Burke, Christopher S.

    2016-01-01

    Fluorescence microscopy has undergone a dramatic evolution over the past two decades with development of super-resolution far-field microscopy methods that break the light diffraction limited resolution of conventional microscopy, offering unprecedented opportunity to interrogate cellular processes at the nanoscale. However, these methods make special demands of the luminescent agents used for contrast and development of probes suited to super-resolution fluorescent methods is still relatively in its infancy. In spite of their many photophysical advantages, metal complex luminophores have not yet been considered as probes in this regard, where to date, only organic fluorophores have been applied. Here, we report the first examples of metal complex luminophores applied as probes for use in stimulated emission depletion (STED) microscopy. Exemplified with endoplasmic reticulum and nuclear targeting complexes we demonstrate that luminescent Ru(ii) polypyridyl complexes can, through signal peptide targeting, be precisely and selectively delivered to key cell organelles without the need for membrane permeabilization, to give high quality STED images of these organelles. Detailed features of the tubular ER structure are revealed and in the case of the nuclear targeting probe we exploit the molecular light switch properties of a dipyrido[3,2-a:2′,3′-c]phenazine containing complex which emits only on DNA/RNA binding to give outstanding STED contrast and resolution of the chromosomes within the nucleus. Comparing performance with a member of the AlexaFluor family commonly recommended for STED, we find that the performance of the ruthenium complexes is superior across both CW and gated STED microscopy methods in terms of image resolution and photostability. The large Stokes shifts of the Ru probes permit excellent matching of the stimulating depletion laser with their emission whilst avoiding anti-Stokes excitation. Their long lifetimes make them particularly amenable to

  5. Multifunctional DNA interactions of Ru-Pt mixed metal supramolecular complexes with substituted terpyridine ligands.

    PubMed

    Jain, Avijita; Wang, Jing; Mashack, Emily R; Winkel, Brenda S J; Brewer, Karen J

    2009-10-05

    The coupling of a light absorbing unit to a bioactive site allows for the development of supramolecules with multifunctional interactions with DNA. A series of mixed metal supramolecular complexes that couple a DNA-binding cis-Pt(II)Cl(2) center to a ruthenium chromophore via a polyazine bridging ligand have been prepared, and their DNA interactions have been studied, [(TL)RuCl(dpp)PtCl(2)](PF(6)) (TL = tpy (2,2':6',2''-terpyridine), MePhtpy (4'-(4-methylphenyl)-2,2':6',2''-terpyridine), or (t)Bu(3)tpy (4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridine and dpp = 2,3-bis(2-pyridyl)pyrazine). This series provides for unique tridentate coordinated Ru(II) systems to photocleave DNA with preassociation with the DNA target via coordination of the Pt(II) center. Electronic absorption spectroscopy of the complexes displays intense ligand-based pi-->pi* transitions in the UV region and metal to ligand charge transfer (MLCT) transitions in the visible region. The Ru(dpi)-->dpp(pi*) MLCT transitions occur at 545 nm, red-shifted relative to the 520 nm maxima for the monometallic synthons, [(TL)RuCl(dpp)](PF(6)). The title RuPt complexes display reversible Ru(II/III) oxidative couples at 1.10, 1.10, and 1.01 V vs Ag/AgCl for TL = tpy, MePhtpy, and (t)Bu(3)tpy, respectively. The TL(0/-) reduction occurred at -1.43, -1.44, and -1.59 V vs Ag/AgCl for TL = tpy, MePhtpy, and (t)Bu(3)tpy, respectively. These complexes display a dpp(0/-) couple (-0.50 -0.55, and -0.59 V) significantly shifted to positive potential relative to their monometallic synthons (-1.15, -1.16, and -1.22 V), consistent with the bridging coordination of the dpp ligand. Coupling of (TL)Ru(II)Cl(BL) subunit to a cis-Pt(II)Cl(2) site provides for the application of photochemically inactive Ru(II)(tpy)-based chromophores in DNA photocleavage applications. The [(TL)RuCl(dpp)PtCl(2)](+) complexes display covalent binding to DNA and photocleavage upon irradiation with visible light modulated by TL identity. The redox

  6. (2,2′-Bi­pyridine)­chlorido­[diethyl (2,2′:6′,2′′-terpyridin-4-yl)phospho­nate]ruthenium(II) hexa­fluorido­phosphate aceto­nitrile/water solvate

    PubMed Central

    Chen, Weizhong; Rein, Francisca N.; Scott, Brian L.; Rocha, Reginaldo C.

    2013-01-01

    The cationic complex in the title compound, [RuCl(C10H8N2)(C19H20N3O3P)]PF6·0.83CH3CN·0.17H2O, is a water-oxidation precatalyst functionalized for TiO2 attachment via terpyridine phospho­nate. The The RuII atom in the complex has a distorted octa­hedral geometry due to the restricted bite angle [159.50 (18)°] of the terpyridyl ligand. The dihedral angle between the least-squares planes of the terpyridyl and bipyridyl moieties is 86.04 (14)°. The mean Ru—N bond length for bi­pyridine is 2.064 (5) Å, with the bond opposite to Ru—Cl being 0.068 Å shorter. For the substituted terpyridine, the mean Ru—N distance involving the outer N atoms trans to each other is 2.057 (6) Å, whereas the bond length involving the central N atom is 1.944 (5) Å. The Ru—Cl distance is 2.4073 (15) Å. The P atom of the phospho­nate group lies in the same plane as its adjacent pyridyl ring, with the ordinary character of the bond between P and Ctpy [1.801 (6) Å] allowing for free rotation of the terpyridine substituent around the P—Ctpy axis. The aceto­nitrile solvent mol­ecule was refined to be disordered with two water mol­ecules; occupancies for the acetontrile and water mol­ecules were 0.831 (9) and 0.169 (9), respectively. Also disordered was the PF6 − counter-ion (over three positions) and one of the eth­oxy substituents (with two positions). The crystal structure shows significant intra- and inter­molecular H⋯X contacts, especially some involving the Cl− ligand. PMID:24427002

  7. Concerted Proton-Electron Transfer in a Ruthenium Terpyridyl-Benzoate System with a Large Separation between the Redox and Basic Sites

    PubMed Central

    Manner, Virginia W.; Mayer, James M.

    2009-01-01

    In order to understand how the separation between the electron and proton-accepting sites affects proton-coupled electron transfer (PCET) reactivity, we have prepared ruthenium complexes with 4′-(4-carboxyphenyl)terpyridine ligands, and studied reactivity with hydrogen atom donors (H-X). RuII(pydic)(tpy-PhCOOH) (RuIIPhCOOH), was synthesized in one pot from [(p-cymene)RuCl2]2, sodium 4′-(4-carboxyphenyl)-2,2′:6′,2″-terpyridine ([Na+]tpy-PhCOO−), and disodium pyridine-2,6-dicarboxylate (Na2pydic). RuIIPhCOOH plus nBu4NOH in DMF yields the deprotonated Ru(II) complex, nBu4N[RuII(pydic)(tpy-PhCOO)] (RuIIPhCOO−). The Ru(III) complex (RuIIIPhCOO) has been isolated by one-electron oxidation of RuIIPhCOO− with triarylaminium radical cations (NAr3•+). The bond dissociation free energy (BDFE) of the O–H bond in RuIIPhCOOH is calculated from pKa and E1/2 measurements as 87 kcal mol-1, making RuIIIPhCOO a strong hydrogen atom acceptor. There are 10 bonds and ca. 11.2 Å separating the metal from the carboxylate basic site in RuIIIPhCOO. Even with this separation, RuIIIPhCOO oxidizes the hydrogen atom donor TEMPOH (BDFE = 66.5 kcal mol-1, ΔG°rxn = -21 kcal mol-1) by removal of an electron and a proton to form RuIIPhCOOH and TEMPO radical in a concerted proton-electron transfer (CPET) process. The second order rate constant for this reaction is (1.1 ± 0.1) × 105 M-1 s-1 with kH/kD = 2.1 ± 0.2, similar to the observed kinetics in an analogous system without the phenyl spacer, RuIII(pydic)(tpy-COO) (RuIIICOO−). In contrast, hydrogen transfer from 2,6-di-tert-butyl-p-methoxyphenol [tBu2(OMe)ArOH] to RuIIIPhCOO is several orders of magnitude slower than the analogous reaction with RuIIICOO. PMID:19569636

  8. Characterization of low energy charge transfer transitions in (terpyridine)(bipyridine)ruthenium(II) complexes and their cyanide-bridged bi- and tri-metallic analogues.

    PubMed

    Tsai, Chia-Nung; Allard, Marco M; Lord, Richard L; Luo, Dao-Wen; Chen, Yuan-Jang; Schlegel, H Bernhard; Endicott, John F

    2011-12-05

    The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2''-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation

  9. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: Synthesis, characterisation, and mechanistic studies

    PubMed Central

    Cropek, Donald M.; Metz, Anja; Müller, Astrid M.; Gray, Harry B.; Horne, Toyketa; Horton, Dorothy C.; Poluektov, Oleg; Tiede, David M.; Weber, Ralph T.; Jarrett, William L.; Phillips, Joshua D.

    2012-01-01

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2′-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl3·xH2O to produce [Ru(pbt)2Cl2] ·0.25CH3COCH3, 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3 in order to produce [Ru(pbt)2(phendione)](PF6)2·4H2O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)2(L-pyr)](PF6)2·9.5H2O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF2)2(H2O)2] (where dmgBF2 = difluorboryldimethylglyoximate) in order to produce the mixed-metal binuclear complex, [Ru(pbt)2(L-pyr)Co(dmgBF2)2(H2O)](PF6)2·11H2O·1.5CH3COCH3, 6. [Ru(Me2bpy)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 7 (where Me2bpy = 1,10-phenanthroline, 4,4′-dimethyl-2,2′-bipyridine) and [Ru(phen)2(L-pyr)Co(dmgBF2)2(OH2)](PF6)2, 8 were also synthesised. All complexes were characterized by elemental analysis, UV-visible absorption, 11B, 19F, and 59Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H2 gas in the presence of H+ ions. A proposed mechanism for the generation of hydrogen is presented. PMID:23001132

  10. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell

    SciTech Connect

    Alibabaei, Leila; Sherman, Benjamin D.; Norris, Michael R.; Brennaman, M. Kyle; Meyer, Thomas J.

    2015-04-27

    A hybrid strategy for solar water splitting is exploited here based on a dye-sensitized photoelectrosynthesis cell (DSPEC) with a mesoporous SnO2/TiO2 core/shell nanostructured electrode derivatized with a surface-bound Ru(II) polypyridyl-based chromophore–catalyst assembly. The assembly, [(4,4’-(PO3H2)2bpy)2Ru(4-Mebpy-4’-bimpy)Ru(tpy)(OH2)]4+ ([RuaII-RubII-OH2]4+, combines both a light absorber and a water oxidation catalyst in a single molecule. It was attached to the TiO2 shell by phosphonate-surface oxide binding. The oxide-bound assembly was further stabilized on the surface by atomic layer deposition (ALD) of either Al2O3 or TiO2 overlayers. Illumination of the resulting fluorine-doped tin oxide (FTO)|SnO2/TiO2|-[RuaII-RubII-OH2]4+(Al2O3 or TiO2) photoanodes in photoelectrochemical cells with a Pt cathode and a small applied bias resulted in visible-light water splitting as shown by direct measurements of both evolved H2 and O2. The performance of the resulting DSPECs varies with shell thickness and the nature and extent of the oxide overlayer. Use of the SnO2/TiO2 core/shell compared with nanoITO/TiO2 with the same assembly results in photocurrent enhancements of ~5. In conclusion, systematic variations in shell thickness and ALD overlayer lead to photocurrent densities as high as 1.97 mA/cm2 with 445-nm, ~90-mW/cm2 illumination in a phosphate buffer at pH 7.

  11. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.

    PubMed

    Laurenczy, Gábor

    2011-01-01

    Carbon dioxide and the carbonates, the available natural C1 sources, can be easily hydrogenated into formic acid and formates in water; the rate of this reduction strongly depends on the pH of the solution. This reaction is catalysed by ruthenium(II) pre-catalyst complexes with a large variety of water-soluble phosphine ligands; high conversions and turnover numbers have been realised. Although ruthenium(II) is predominant in these reactions, the iron(II) - tris[(2-diphenylphosphino)-ethyl]phosphine (PP3) complex is also active, showing a new perspective to use abundant and inexpensive iron-based compounds in the CO2 reduction. In the catalytic hydrogenation cycles the in situ formed metal hydride complexes play a key role, their structures with several other intermediates have been proven by multinuclear NMR spectroscopy. In the other hand safe and convenient hydrogen storage and supply is the fundamental question for the further development of the hydrogen economy; and carbon dioxide has been recognised to be a viable H2 vector. Formic acid--containing 4.4 weight % of H2, that is 53 g hydrogen per litre--is suitable for H2 storage; we have shown that in aqueous solutions it can be selectively decomposed into CO-free (CO < 10 ppm) CO2 and H2. The reaction takes place under mild experimental conditions and it is able to generate high pressure H2 (up to 600 bar). The cleavage of HCOOH is catalysed by several hydrophilic Ru(II) phosphine complexes (meta-trisulfonated triphenylphosphine, mTPPTS, being the most efficient one), either in homogeneous systems or as immobilised catalysts. We have also shown that the iron(II)--hydrido tris[(2-diphenylphosphino)ethyl]phosphine complex catalyses with an exceptionally high rate and efficiency (turnover frequency, TOF = 9425 h(-1)mol(-1); turnover number, TON = 92400) the formic acid cleavage, in environmentally friendly propylene carbonate solution, opening the way to use cheap, non-noble metal based catalysts for this

  12. Crystal structures and DFT calculations of new chlorido-dimethylsulfoxide-M(III) (M = Ir, Ru, Rh) complexes with the N-pyrazolyl pyrimidine donor ligand: kinetic vs. thermodynamic isomers.

    PubMed

    Cánaves, María M; Cabra, María I; Bauzá, Antonio; Cañellas, Pablo; Sánchez, Kika; Orvay, Francisca; García-Raso, Angel; Fiol, Juan J; Terrón, Angel; Barceló-Oliver, Miquel; Ballester, Pablo; Mata, Ignasi; Molins, Elies; Hussain, Firasat; Frontera, Antonio

    2014-05-07

    New chlorido-dimethylsulfoxide-iridium(III), ruthenium(III) and rhodium(III) complexes with the 2-(1H-pyrazol-1-yl)-pyrimidine (pyrapyr) ligand (OC-6-N1)-[Rh(III)Cl3(DMSO-κS)(pyrapyr)] (1a, N = 3 and 1b, N = 4); (OC-6-N1)-[Ru(III)Cl3(DMSO-κS)(pyrapyr)] (2a, N = 3 and 2b, N = 4) and (OC-6-N1)-[Ir(III)Cl3(DMSO-κS)(pyrapyr)] (3a, N = 3 and 3b, N = 4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction studies (1a, 1b, 2a, 2b, a disordered crystal 3a/3b and a cocrystal 3a·3b). In all cases, the metal centers show octahedral geometry coordinated to three chloride ligands and one S coordinated dimethylsulfoxide (DMSO-κS). The coordination sphere of the metal is completed by the pyrapyr molecule. Two different coordination modes are observed: (i) the DMSO-κS is opposite to the pyrimidinic N atom (IUPAC nomenclature is OC-6-31 denoted herein as trans); (ii) DMSO-κS is opposite to the pyrazolic N atom (IUPAC nomenclature is OC-6-41 denoted as cis). For Rh(III) the kinetic product (cis) yields the thermodynamic (trans) upon heating a solution of the kinetic product and both isomers have been X-ray characterized. Conversely for Ru(III), both kinetic and thermodynamic complexes have been obtained by using different procedures. Both isomers have been characterized by X-ray crystallography and the kinetic product does not yield the thermodynamic upon heating a solution of the former. Furthermore, the Ir(III) behaves differently, since both isomers are energetically equivalent and both isomers co-crystallize in the solid state. The kinetic/thermodynamic mechanism that yields the different isomers has been studied by using theoretical DFT calculations for each metal. Finally, two Ru(II) complexes (OC-6-N1)-[Ru(II)Cl2(DMSO-κS)2(pyrapyr)] (1a, N = 3 and 4b, N = 4) are also described and X-ray characterized. They were obtained as minor products during the synthesis of 2a.

  13. Unprecedented coordination modes and demetalation pathways for unbridged polyenyl ligands. Ruthenium eta1,eta4-cycloheptadienyl complexes from allyl/alkyne cycloaddition.

    PubMed

    Older, Christina M; McDonald, Robert; Stryker, Jeffrey M

    2005-10-19

    . Thus, reactions with excess iodine afford bridged tricyclic cyclopropane-containing lactones or substituted cycloheptatrienes in good but sometimes variable yields, depending on the substrate and specific reaction conditions. The ruthenium in these reactions is returned in high yield as the interesting cationic mu-triiodo pseudodimer of (eta6-hexamethylbenzene)ruthenium, which is obtained as a triiodide salt. This Ru(III) complex, along with several representative Ru(II) cyclization products, has been characterized in the solid state by X-ray crystallography.

  14. Crystal structure of (2,11-di-aza-[3.3](2,6)pyridino-phane-κ (4) N,N',N'',N''')(1,6,7,12-tetra-aza-perylene-κ (2) N (1),N (12))ruthenium(II) bis-(hexa-fluorido-phosphate) aceto-nitrile 1.422-solvate.

    PubMed

    Brietzke, Thomas; Rottke, Falko Otto; Kelling, Alexandra; Schilde, Uwe; Holdt, Hans-Jürgen

    2014-10-01

    In the title compound, [Ru(C14H16N4)(C16H8N4)](PF6)2·1.422CH3CN, discrete dimers of complex cations, [Ru(L-N4H2)tape](2+) are formed {L-N4H2 = 2,11-di-aza-[3.3](2,6)pyridino-phane; tape = 1,6,7,12-tetra-aza-perylene}, held together by π-π stacking inter-actions via the tape ligand moieties with a centroid-centroid distance of 3.49 (2) Å, assisted by hydrogen bonds between the non-coordinating tape ligand α,α'-di-imine unit and the amine proton of a 2,11-di-aza-[3.3](2,6)-pyridino-phane ligand of the opposite complex cation. The combination of these inter-actions leads to an unusual nearly face-to-face π-π stacking mode. Additional weak C-H⋯N, C-H⋯F, N-H⋯F and P-F⋯π-ring (tape, py) (with F⋯centroid distances of 2.925-3.984 Å) inter-actions are found, leading to a three-dimensional architecture. The Ru(II) atom is coordinated in a distorted octa-hedral geometry, particularly manifested by the Namine-Ru-Namine angle of 153.79 (10)°. The counter-charge is provided by two hexa-fluorido-phosphate anions and the asymmetric unit is completed by aceto-nitrile solvent mol-ecules of crystallization. Disorder was observed for both the hexa-fluorido-phosphate anions as well as the aceto-nitrile solvate mol-ecules, with occupancies for the major moieties of 0.801 (6) for one of the PF6 anions, and a shared occupancy of 0.9215 (17) for the second PF6 anion and a partially occupied aceto-nitrile mol-ecule. A second CH3CN mol-ecule is fully occupied, but 1:1 disordered across a crystallographic inversion center.

  15. Synthesis and photophysical properties of mono(2,2{prime},2{double_prime}-terpyridine) complexes of ruthenium(II)

    SciTech Connect

    Coe, B.J.; Thompson, D.W.; Culbertson, C.T.

    1995-06-21

    A series of [Ru(tpy)(X)(Y)(Z)]{sup n+} complexes have been synthesized (tpy = 2,2{prime},2{double_prime}-terpyridine: X = triphenylphosphine (PPh{sub 3}); trans Y = Z = trifluoroacetate (CF{sub 3}CO{sub 2}{sup {minus}}), n = 0(1); trans Y=Z=4-ethylpyridine (4-Etpy), n = 2 (2); trans Y = Z = 4(dimethylamino)pyridine (DMAP), n = 2 (3); Y = 4-Etpy, Z = chloride (Cl{sup {minus}}), n = 1 (4); cis Y = Z = 4-Etpy, n = 2(5); X = Cl{sup {minus}}; trans Y = Z = 4-Etpy, n = 1 (6); X = Y = Z = 4-Etpy, n = 2 (7)) and isolated as their PF{sub 6}{sup {minus}} salts. UV-visible spectroscopic and electrochemical studies have been conducted and photochemical and photophysical properties of representative examples determined. Emission, absorption, and electrochemical properties depend on the nonchromophoric ligands and the coordination geometry. The complexes investigated emit in 4:1 (v/v) EtOH/MeOH glasses at 77 K and have lifetimes which range from 1.1 to 11.0 {mu}s depending on the ancillary ligands. Through a combination of emission spectral fitting and resonance Raman measurements on [Ru(tpy){sub 2}](PF{sub 6}){sub 2}, the acceptor characteristics of tpy as a chromophoric ligand have been analyzed. At room temperature the Ru(II) mono-tpy complexes are short-lived, weak emitters. Emission quantum yields and lifetimes for [Ru(tpy)(4-Etpy){sub 3}](PF{sub 6}){sub 2}(7) and [Ru(tpy){sub 2}](PF{sub 6}){sub 2} in 4:1 (v/v) EtOH/MeOH are strongly temperature dependent from T=90-270 K. These results are consistent with the existence of low-lying dd states which are responsible for the short excited state lifetimes at room temperature and the appearance of ligand-loss photochemistry for 7.

  16. Development of an efficient and durable photocatalytic system for hydride reduction of an NAD(P)+ model compound using a ruthenium(II) complex based on mechanistic studies.

    PubMed

    Matsubara, Yasuo; Koga, Kichitaro; Kobayashi, Atsuo; Konno, Hideo; Sakamoto, Kazuhiko; Morimoto, Tatsuki; Ishitani, Osamu

    2010-08-04

    The mechanism of photocatalytic reduction of 1-benzylnicotinamidium cation (BNA(+)) to the 1,4-dihydro form (1,4-BNAH) using [Ru(tpy)(bpy)(L)](2+) (Ru-L(2+), where tpy = 2,2':6',2''-terpyridine, bpy = 2,2'-bipyridine, and L = pyridine and MeCN) as a photocatalyst and NEt(3) as a reductant has been clarified. On the basis of this mechanistic study, an efficient and durable photocatalytic system for selective hydride reduction of an NAD(P)(+) model compound has been developed. The photocatalytic reaction is initiated by the formation of [Ru(tpy)(bpy)(NEt(3))](2+) (Ru-NEt(3)(2+)) via the photochemical ligand substitution of Ru-L(2+). For this reason, the production rate of 1,4-BNAH using [Ru(tpy)(bpy)(MeCN)](2+) (Ru-MeCN(2+)) as a photocatalyst, from which the quantum yield of photoelimination of the MeCN ligand is greater than that of the pyridine ligand from [Ru(tpy)(bpy)(pyridine)](2+) (Ru-py(2+)), was faster than that using Ru-py(2+), especially in the first stage of the photocatalytic reduction. The photoexcitation of Ru-NEt(3)(2+) yields [Ru(tpy)(bpy)H](+) (Ru-H(+)), which reacts with BNA(+) to give 1:1 adduct [Ru(tpy)(bpy)(1,4-BNAH)](2+) (Ru-BNAH(2+)). In the presence of excess NEt(3) in the reaction solution, a deprotonation of the carbamoyl group in Ru-BNAH(2+) proceeds rapidly, mainly forming [Ru(tpy)(bpy)(1,4-BNAH-H(+))](+) (Ru-(BNAH-H(+))(+)). Although photocleavage of the adduct yields 1,4-BNAH and the cycle is completed by the re-coordination of a NEt(3) molecule to the Ru(II) center, this process competes with hydride abstraction from Ru-(BNAH-H(+))(+) by BNA(+) giving 1,4-BNAH and [Ru(tpy)(bpy)(BNA(+)-H(+))](2+). This adduct was observed as the major complex in the reaction solution after the photocatalysis was depressed and is a dead-end product because of its stability. Based on the information about the reaction mechanism and the deactivation process, we have successfully developed a new photocatalytic system using Ru-MeCN(2+) with 2 M of NEt(3) as

  17. Thermodynamic and kinetic hydricity of ruthenium(II) hydride complexes.

    PubMed

    Matsubara, Yasuo; Fujita, Etsuko; Doherty, Mark D; Muckerman, James T; Creutz, Carol

    2012-09-26

    Despite the fundamental importance of the hydricity of a transition metal hydride (ΔG(H–)°(MH) for the reaction M–H → M+ + H–) in a range of reactions important in catalysis and solar energy storage, ours (J. Am. Chem. Soc.2009, 131, 2794) are the only values reported for water solvent, and there has been no basis for comparison of these with the wider range already determined for acetonitrile solvent, in particular. Accordingly, we have used a variety of approaches to determine hydricity values in acetonitrile of Ru(II) hydride complexes previously studied in water. For [Ru(η(6)-C6Me6)(bpy)H]+ (bpy = 2,2′-bipyridine), we used a thermodynamic cycle based on evaluation of the acidity of [Ru(η(6)-C6Me6)(bpy)H]+ pKa = 22.5 ± 0.1 and the [Ru(η(6)-C6Me6)(bpy)(NCCH3)(1/0)](2+/0) electrochemical potential (−1.22 V vs Fc+/Fc). For [Ru(tpy)(bpy)H]+ (tpy = 2,2′:6′,2″-terpyridine) we utilized organic hydride ion acceptors (A+) of characterized hydricity derived from imidazolium cations and pyridinium cations, and determined K for the hydride transfer reaction, S + MH+ + A+ → M(S)2+ + AH (S = CD3CN, MH+ = [Ru(tpy)(bpy)H]+), by 1H NMR measurements. Equilibration of initially 7 mM solutions was slow--on the time scale of a day or more. When E°(H+/H–) is taken as 79.6 kcal/mol vs Fc+/Fc as a reference, the hydricities of [Ru(η(6)-C6Me6)(bpy)H]+ and [Ru(tpy)(bpy)H]+ were estimated as 54 ± 2 and 39 ± 3 kcal/mol, respectively, in acetonitrile to be compared with the values 31 and 22 kcal/mol, respectively, found for aqueous media. The pKa estimated for [Ru(tpy)(bpy)H]+ in acetonitrile is 32 ± 3. UV–vis spectroscopic studies of [Ru(η(6)-C6Me6)(bpy)]0 and [Ru(tpy)(bpy)]0 indicate that they contain reduced bpy and tpy ligands, respectively. These conclusions are supported by DFT electronic structure results. Comparison of the hydricity values for acetonitrile and water reveals a flattening or compression of the hydricity range upon transferring the

  18. Systematic manipulation of the light-harvesting properties for tridentate cyclometalated ruthenium(II) complexes.

    PubMed

    Koivisto, Bryan D; Robson, Kiyoshi C D; Berlinguette, Curtis P

    2009-10-19

    The response of the metal-to-ligand charge-transfer (MLCT) band to variability in terminal substituents within a related set of tridentate polypyridyl and cyclometalated Ru(II) complexes is reported. These complexes are formulated as [Ru(tpy-R(1))(tpy-R(2))](PF(6))(2) (1-6; tpy = 2,2':6',2''-terpyridine; R(1) = -H, -2-furyl, or -OMe; R(2) = -H, -2-furyl, or -CO(2)H) and [Ru(tpy-R(2))(dpb-R(1))]PF(6) (7-10; Hdpb = 1,3-di(pyridin-2-yl)benzene; R(2) = -H or -2-furyl; R(1) = -H or -OMe). Absorption spectra for the [Ru(tpy-R(1))(tpy-R(2))](2+) series highlight the sensitivity of the MLCT band to the indicated substituents at the 4' position of one or both tpy ligands (e.g., a bathochromic shift up to 24 nm coupled with a 2-fold increase in absorption intensity). Similar observations are made for the [Ru(tpy-R(2))(dpb-R(1))](+) series, where a single Ru-N dative bond is replaced by a Ru-C sigma-bond to form a cyclometalated complex. The reduced symmetry at the metal center within this series results in a broadening of the lowest-energy MLCT band, while an additional set of transitions at higher energies emerges that involves an excited state localized on the cyclometalating ligand. These MLCT transitions collectively render a broad absorption envelope of substantial intensity at wavelengths longer than ca. 525 nm. Optimal results are obtained for compound 10 (R(1) = -OMe; R(2) = -2-furyl), where a strong electron-donating group is situated para to the Ru-C bond (lambda(max) = 523 nm; epsilon = 2.6 x 10(4) M(-1) cm(-1)). This approach imparts substantial polarization within the molecule, which should benefit excited-state electron-transfer reactions for photosensitizing applications (e.g., dye-sensitized solar cells). Spectroscopic data are corroborated by electrochemical and TD-DFT measurements for all compounds.

  19. Tunable Electrochemical and Catalytic Features of BIAN- and BIAO-Derived Ruthenium Complexes.

    PubMed

    Hazari, Arijit Singha; Das, Ankita; Ray, Ritwika; Agarwala, Hemlata; Maji, Somnath; Mobin, Shaikh M; Lahiri, Goutam Kumar

    2015-05-18

    This article deals with a class of ruthenium-BIAN-derived complexes, [Ru(II)(tpm)(R-BIAN)Cl]ClO4 (tpm = tris(1-pyrazolyl)methane, R-BIAN = bis(arylimino)acenaphthene, R = 4-OMe ([1a]ClO4), 4-F ([1b]ClO4), 4-Cl ([1c]ClO4), 4-NO2 ([1d]ClO4)) and [Ru(II)(tpm)(OMe-BIAN)H2O](2+) ([3a](ClO4)2). The R-BIAN framework with R = H, however, leads to the selective formation of partially hydrolyzed BIAO ([N-(phenyl)imino]acenapthenone)-derived complex [Ru(II)(tpm)(BIAO)Cl]ClO4 ([2]ClO4). The redox-sensitive bond parameters involving -N═C-C═N- or -N═C-C═O of BIAN or BIAO in the crystals of representative [1a]ClO4, [3a](PF6)2, or [2]ClO4 establish its unreduced form. The chloro derivatives 1a(+)-1d(+) and 2(+) exhibit one oxidation and successive reduction processes in CH3CN within the potential limit of ±2.0 V versus SCE, and the redox potentials follow the order 1a(+) < 1b(+) < 1c(+) < 1d(+) ≈ 2(+). The electronic structural aspects of 1a(n)-1d(n) and 2(n) (n = +2, +1, 0, -1, -2, -3) have been assessed by UV-vis and EPR spectroelectrochemistry, DFT-calculated MO compositions, and Mulliken spin density distributions in paramagnetic intermediate states which reveal metal-based (Ru(II) → Ru(III)) oxidation and primarily BIAN- or BIAO-based successive reduction processes. The aqua complex 3a(2+) undergoes two proton-coupled redox processes at 0.56 and 0.85 V versus SCE in phosphate buffer (pH 7) corresponding to {Ru(II)-H2O}/{Ru(III)-OH} and {Ru(III)-OH}/{Ru(IV)═O}, respectively. The chloro (1a(+)-1d(+)) and aqua (3a(2+)) derivatives are found to be equally active in functioning as efficient precatalysts toward the epoxidation of a wide variety of alkenes in the presence of PhI(OAc)2 as oxidant in CH2Cl2 at 298 K, though the analogous 2(+) remains virtually inactive. The detailed experimental analysis with the representative precatalyst 1a(+) suggests the involvement of the active {Ru(IV)═O} species in the catalytic cycle, and the reaction proceeds through the

  20. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response

    NASA Astrophysics Data System (ADS)

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-01

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between the

  1. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response.

    PubMed

    Tsukerblat, Boris; Palii, Andrew; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(ii) + 2Ru(iii)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between

  2. New ruthenium nitrosyl pincer complexes bearing an O2 ligand. Mono-oxygen transfer.

    PubMed

    Fogler, Eran; Efremenko, Irena; Gargir, Moti; Leitus, Gregory; Diskin-Posner, Yael; Ben-David, Yehoshoa; Martin, Jan M L; Milstein, David

    2015-03-02

    We report on Ru((II))(μ(2)-O2) nitrosyl pincer complexes that can return to their original Ru(0) state by reaction with mono-oxygen scavengers. Potential intermediates were calculated by density functional theory (DFT) and a mechanism is proposed, revealing a new type of metal-ligand cooperation consisting of activation of the O2 moiety by both the metal center and the NO ligand. Reaction of the Ru(0) nitrosyl complex 1 with O2 quantitatively yielded the crystallographically characterized Ru((II)) (μ(2)-O2) nitrosyl complex 2. Reaction of 2 with the mono-oxygen scavengers phosphines or CO gave the Ru(0) complex 1 and phosphine oxides, or the carbonyl complex 3 (1 trapped by CO) and CO2, respectively. Reaction of 2 with 1 equiv of phosphine at room temperature or -40 °C resulted in immediate formation of half an equivalent of 1 and 1 equiv of phosphine oxide, while half an equivalent of 2 remained unchanged. Overnight reaction at room temperature of 2 with excess CO (≥3 equiv) resulted in 3 and CO2 gas as the only products. Reaction of 1 with 1 equiv of mono-oxygen source (dioxirane) at -78 °C yielded the Ru((II))(μ(2)-O2) complex 2. Similarly, reaction of the Ru(0) dearomatized complex 4 with O2 led to the crystallographicaly characterized Ru((II))(μ(2)-O2) complex 5. Further reaction of 5 with mono-oxygen scavengers (phosphines or CO) led to the Ru(0) complex 4 and phosphine oxides or complex 6 (4 trapped by CO) and CO2. When instead only 1 equiv of 5 was reacted with 1 equiv of phosphine at room temperature, immediate formation of half an equivalent of 4 and 1 equiv of phosphine oxide took place, while half an equivalent of 5 remained unchanged. When 5 reacted with an excess of CO (≥3 equiv), complex 6 and CO2 gas were the only products obtained. DFT studies indicate a new mode of metal-ligand cooperation involving the nitrosyl ligand in the oxygen transfer process.

  3. Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response

    SciTech Connect

    Tsukerblat, Boris E-mail: andrew.palii@uv.es; Palii, Andrew E-mail: andrew.palii@uv.es; Clemente-Juan, Juan Modesto; Coronado, Eugenio

    2015-10-07

    Our interest in this article is prompted by the vibronic problem of charge polarized states in the four-dot molecular quantum cellular automata (mQCA), a paradigm for nanoelectronics, in which binary information is encoded in charge configuration of the mQCA cell. Here, we report the evaluation of the electronic levels and adiabatic potentials of mixed-valence (MV) tetra-ruthenium (2Ru(II) + 2Ru(III)) derivatives (assembled as two coupled Creutz-Taube complexes) for which molecular implementations of quantum cellular automata (QCA) was proposed. The cell based on this molecule includes two holes shared among four spinless sites and correspondingly we employ the model which takes into account the two relevant electron transfer processes (through the side and through the diagonal of the square) as well as the difference in Coulomb energies for different instant positions of localization of the hole pair. The combined Jahn-Teller (JT) and pseudo JT vibronic coupling is treated within the conventional Piepho-Krauzs-Schatz model adapted to a bi-electronic MV species with the square-planar topology. The adiabatic potentials are evaluated for the low lying Coulomb levels in which the antipodal sites are occupied, the case just actual for utilization in mQCA. The conditions for the vibronic self-trapping in spin-singlet and spin-triplet states are revealed in terms of the two actual transfer pathways parameters and the strength of the vibronic coupling. Spin related effects in degrees of the localization which are found for spin-singlet and spin-triplet states are discussed. The polarization of the cell is evaluated and we demonstrate how the partial delocalization caused by the joint action of the vibronic coupling and electron transfer processes influences polarization of a four-dot cell. The results obtained within the adiabatic approach are compared with those based on the numerical solution of the dynamic vibronic problem. Finally, the Coulomb interaction between

  4. Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer

    DOE PAGES

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2016-06-18

    Here, the kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, FeIV(H2O)5O2+ (hereafter FeIVaqO2+), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN)32+ (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS–/ABTS2–, phenothiazines, CoII(dmgBF2)2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generated ligand-modified products. FeIVaqO2+ oxidizes even Ce(III) (E0 in 1 M HClO4 = 1.7more » V) with a rate constant greater than 104 M–1 s–1. In 0.10 M aqueous HClO4 at 25 °C, the reactions of Os(phen)32+ (k = 2.5 × 105 M–1 s–1), IrCl63– (1.6 × 106), ABTS2– (4.7 × 107), and Fe(cp)(C5H4CH2OH) (6.4 × 107) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen)32+ and of ferrocenes remained unchanged in the acidity range 0.05 < [H+] < 0.10 M, ruling out prior protonation of FeIVaqO2+ and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k22 + E0Fe/0.059) = 17.2 ± 0.8, where k22 and E0Fe are the self-exchange rate constant and reduction potential, respectively, for the FeIVaqO2+/FeIIIaqO+ couple. Comparison with literature work suggests k22 < 10–5 M–1 s–1 and thus E0(FeIVaqO2+/FeIIIaqO+) > 1.3 V. For proton-coupled electron transfer, the reduction potential is estimated at E0 (FeIVaqO2+, H+/FeIIIaqOH2+) ≥ 1.95 V.« less

  5. Synthesis, characterization and anticancer effect of the ruthenium (II) polypyridyl complexes on HepG2 cells.

    PubMed

    Wan, Dan; Lai, Shang-Hai; Yang, Hui-Hui; Tang, Bing; Zhang, Cheng; Yin, Hui; Zeng, Chuan-Chuan; Liu, Yun-Jun

    2016-12-01

    As one of the major cell regulated center, mitochondria are closely associated with cell proliferation, apoptosis of tumor cell. In this work, four new ruthenium (II) polypyridyl complexes [Ru(bpy)2(FTTP)](ClO4)2 (1) (FTTP=11-(3-fluoro-naphthalen-2-yloxy)-4,5,9,14-tetraaza-benzo[b]triphenylene, bpy=2,2'-bipyridine), [Ru(phen)2(FTTP)](ClO4)2 (2) (phen=1,10-phenanthroline), [Ru(bpy)2(PTTP)](ClO4)2 (3) (PTTP=2-phenoxy-1,4,8,9-tetraazatriphenylene) and [Ru(phen)2(PTTP)](ClO4)2 (4) were synthesized and characterized by elemental analysis, ESI-MS, (1)H NMR and (13)C NMR. The cytotoxic activity, ability of inhibiting cell invasion, cell cycle arrest and apoptosis-inducing mechanism of these Ru(II) complexes have been investigated in detail by MTT (3-(4,5-dimethylthiazole)-2,5-diphenyltetrazolium bromide) method, invasion assay, comet assay as well as western blotting techniques. Notably, complexes 1-4 displayed high cytotoxic activity against liver carcinoma HepG2 cells and the IC50 values of complexes 1-4 against HepG2 cells are 10.4±1.2, 9.3±0.6, 29.1±1.5 and 5.6±1.2μM, respectively. The comet assay showed that the complexes can induce DNA damage. The acridine orange (AO) and ethidium bromide (EB) staining method indicated that the complexes can cause apoptosis in HepG2 cells. Further studies showed that complexes 1-4 caused cell cycle arrest at G0/G1 phase and induced HepG2 cells apoptosis through a ROS-mediated mitochondrial dysfunction pathway, which involved an increase in the levels of reactive oxygen species (ROS), a decrease in the mitochondrial membrane potential, activation of caspases and Bcl-2 family proteins.

  6. Optical Properties of Iridium(III) Cyclometalates: Excited State Interaction with Small Molecules and Dynamics of Light-Harvesting Materials

    NASA Astrophysics Data System (ADS)

    Schwartz, Kyle Robert

    The research presented in this thesis concerns the use and understanding of luminescent Ir(III) cyclometalates. Areas of research involve the design, synthesis, and characterization of novel luminescent Ir(III) cyclometalates, including photophysical investigation of their phosphorescent excited states using steady-state and time resolved absorption/luminescence spectroscopies. This broad research description may be further separated into two subareas: study of excited state interaction with small molecules and excited-state dynamics of metal-organic light harvesting dyads. Interaction of Ir(III) cyclometalates with the small molecule carbon dioxide (CO2) is the subject of Chapter One. Most optical detection schemes previously developed for CO2 use indirect detection methods, which rely upon measuring changes in pH brought about by hydrolysis of CO 2 on of CO2 were accomplished through development of a system where hydrazine, a simple amino ligand, when coupled into the coordination sphere of an Ir(III) cyclometalate reacts with CO2. The result of this reaction provides a shift in the luminescence wavelength, a previously unobserved optical response for CO2 detection. Chapter Two investigates phosphorescent excited states and their ability to function as triplet sensitizers for the generation of singlet oxygen ( 1O2) and luminescent probes for molecular oxygen (O 2) concentration. Interaction of phosphorescent excited states with O2 results in energy transfer from the luminescent probe to O 2, quenching the phosphorescent excited state. Energy transfer also generates the reactive oxygen species (ROS) 1O2. We have used this duality to develop an analytical methodology to follow the serendipitously discovered photoreactivity of 1O2 with common organic solvent dimethyl sulfoxide (DMSO) using the luminescence profile of Ir(III) and Ru(II) phosphors. In Chapter Three a detailed study involving the design, synthesis, and characterization of the electrochemical and

  7. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.

    PubMed

    Reiser, Oliver

    2016-09-20

    Visible-light photoredox catalysis offers exciting opportunities to achieve challenging carbon-carbon bond formations under mild and ecologically benign conditions. Desired features of photoredox catalysts are photostability, long excited-state lifetimes, strong absorption in the visible region, and high reduction or oxidation potentials to achieve electron transfer to substrates, thus generating radicals that can undergo synthetic organic transformations. These requirements are met in a convincing way by Ru(II)(phenanthroline)3- and Ir(III)(phenylpyridine)3-type complexes and, as a low-cost alternative, by organic dyes that offer a metal-free catalyst but suffer in general from lower photostability. Cu(I)(phenanthroline)2 complexes have been recognized for more than 30 years as photoresponsive compounds with highly negative Cu(I)* → Cu(II) oxidation potentials, but nevertheless, they have not been widely considered as suitable photoredox catalysts, mainly because their excited lifetimes are shorter by a factor of 5 to 10 compared with Ru(II) and Ir(III) complexes, their absorption in the visible region is weak, and their low Cu(II) → Cu(I) reduction potentials might impede the closure of a catalytic cycle for a given process. Contrasting again with Ru(II)L3 and Ir(III)L3 complexes, Cu(I)L2 assemblies undergo more rapid ligand exchange in solution, thus potentially reducing the concentration of the photoactive species. Focusing on atom transfer radical addition (ATRA) reactions and related processes, we highlight recent developments that show the utility of Cu(I)(phenanthroline)2 complexes as photoredox catalysts, demonstrating that despite their short excited-state lifetimes and weak absorption such complexes are efficient at low catalyst loadings. Moreover, some of the inherent disadvantages stated above can even be turned to advantages: (1) the low Cu(II) → Cu(I) reduction potential might efficiently promote reactions via a radical chain pathway, and (2

  8. Low molecular weight compounds with transition metals as free radical scavengers and novel therapeutic agents.

    PubMed

    Bencini, Andrea; Failli, Paola; Valtancoli, Barbara; Bani, Daniele

    2010-07-01

    Molecules able to modulate the levels of endogenous free radicals, such as reactive oxygen species (ROS) and nitric oxide (NO), are of pivotal interest for pharmacological and pharmaceutical sciences because of their potential therapeutic relevance. In fact, ROS and NO, which are normal products of cell metabolism, may play a dual beneficial/deleterious role, depending on local concentration and mode of generation. As such, they have been identified as key pathogenic factors for many inflammatory, vascular dysfunctional and degenerative disorders, including atherosclerosis, hypertension, cardiovascular and neurodegenerative diseases, cancer, diabetes mellitus, and ageing. Therefore, the identification and characterization of novel antioxidant/free radical scavenger molecules may expand the current therapeutic implements for the treatment and prevention of the above diseases. In this perspective, low molecular weight complexes of transition metals with organic scaffolds are viewed and investigated as promising pharmaceutical agents. These complexes take advantage of the known principles of inorganic chemistry, i.e. the ability of transition metals, Fe(II), Co(II), Mn(II) and Ru(II), to bind to and react with NO and/or ROS, to counterbalance excessive endogenous free radical generation in biological systems. Among NO scavengers, representative examples are iron complexes with dithiocarbamates or ruthenium compounds with polyamine-polycarboxylate scaffolds; on the other hand, manganese-based molecules appear effective as ROS scavengers. Of note, Mn(II)-containing molecules, currently under study as ROS scavengers, have major functional similarities to Mn-superoxide dismutase (SOD), a Mn-containing enzyme acting as potent endogenous anti-oxidant. In this article, we briefly summarize the state-of-the-art concerning the chemical and biological properties of transition metal ion complexes with low molecular weight synthetic ligands as ROS/NO scavengers provided with

  9. Spectroscopic, Electrochemical and Computational Characterisation of Ru Species Involved in Catalytic Water Oxidation: Evidence for a [Ru(V) (O)(Py2 (Me) tacn)] Intermediate.

    PubMed

    Casadevall, Carla; Codolà, Zoel; Costas, Miquel; Lloret-Fillol, Julio

    2016-07-11

    A new family of ruthenium complexes based on the N-pentadentate ligand Py2 (Me) tacn (N-methyl-N',N''-bis(2-picolyl)-1,4,7-triazacyclononane) has been synthesised and its catalytic activity has been studied in the water-oxidation (WO) reaction. We have used chemical oxidants (ceric ammonium nitrate and NaIO4 ) to generate the WO intermediates [Ru(II) (OH2 )(Py2 (Me) tacn)](2+) , [Ru(III) (OH2 )(Py2 (Me) tacn)](3+) , [Ru(III) (OH)(Py2 (Me) tacn)](2+) and [Ru(IV) (O)(Py2 (Me) tacn)](2+) , which have been characterised spectroscopically. Their relative redox and pH stability in water has been studied by using UV/Vis and NMR spectroscopies, HRMS and spectroelectrochemistry. [Ru(IV) (O)(Py2 (Me) tacn)](2+) has a long half-life (>48 h) in water. The catalytic cycle of WO has been elucidated by using kinetic, spectroscopic, (18) O-labelling and theoretical studies, and the conclusion is that the rate-determining step is a single-site water nucleophilic attack on a metal-oxo species. Moreover, [Ru(IV) (O)(Py2 (Me) tacn)](2+) is proposed to be the resting state under catalytic conditions. By monitoring Ce(IV) consumption, we found that the O2 evolution rate is redox-controlled and independent of the initial concentration of Ce(IV) . Based on these facts, we propose herein that [Ru(IV) (O)(Py2 (Me) tacn)](2+) is oxidised to [Ru(V) (O)(Py2 (Me) tacn)](2+) prior to attack by a water molecule to give [Ru(III) (OOH)(Py2 (Me) tacn)](2+) . Finally, it is shown that the difference in WO reactivity between the homologous iron and ruthenium [M(OH2 )(Py2 (Me) tacn)](2+) (M=Ru, Fe) complexes is due to the difference in the redox stability of the key M(V) (O) intermediate. These results contribute to a better understanding of the WO mechanism and the differences between iron and ruthenium complexes in WO reactions.

  10. Red electroluminescence of ruthenium sensitizer functionalized by sulfonate anchoring groups.

    PubMed

    Shahroosvand, Hashem; Abbasi, Parisa; Mohajerani, Ezeddin; Janghouri, Mohammad

    2014-06-28

    We have synthesized five novel Ru(ii) phenanthroline complexes with an additional aryl sulfonate ligating substituent at the 5-position [Ru(L)(bpy)2](BF4)2 (1), [Ru(L)(bpy)(SCN)2] (2), [Ru(L)3](BF4)2 (3), [Ru(L)2(bpy)](BF4)2 (4) and [Ru(L)(BPhen)(SCN)2] (5) (where L = 6-one-[1,10]phenanthroline-5-ylamino)-3-hydroxynaphthalene 1-sulfonic, bpy = 2,2'-bipyridine, BPhen = 4,7-diphenyl-1,10-phenanthroline), as both photosensitizers for oxide semiconductor solar cells (DSSCs) and light emitting diodes (LEDs). The absorption and emission maxima of these complexes red shifted upon extending the conjugation of the phenanthroline ligand. Ru phenanthroline complexes exhibit broad metal to ligand charge transfer-centered electroluminescence (EL) with a maximum near 580 nm. Our results indicated that a particular structure (2) can be considered as both DSSC and OLED devices. The efficiency of the LED performance can be tuned by using a range of ligands. Device (2) has a luminance of 550 cd m(-2) and maximum efficiency of 0.9 cd A(-1) at 18 V, which are the highest values among the five devices. The turn-on voltage of this device is approximately 5 V. The role of auxiliary ligands in the photophysical properties of Ru complexes was investigated by DFT calculation. We have also studied photovoltaic properties of dye-sensitized nanocrystalline semiconductor solar cells based on Ru phenanthroline complexes and an iodine redox electrolyte. A solar energy to electricity conversion efficiency (η) of 0.67% was obtained for Ru complex (2) under standard AM 1.5 irradiation with a short-circuit photocurrent density (Jsc) of 2.46 mA cm(-2), an open-circuit photovoltage (Voc) of 0.6 V, and a fill factor (ff) of 40%, which are all among the highest values for ruthenium sulfonated anchoring groups reported so far. Monochromatic incident photon to current conversion efficiency was 23% at 475 nm. Photovoltaic studies clearly indicated dyes with two SCN substituents yielded a higher Jsc for the

  11. Resolution of electrogenic steps coupled to conversion of cytochrome c oxidase from the peroxy to the ferryl-oxo state.

    PubMed

    Siletsky, S; Kaulen, A D; Konstantinov, A A

    1999-04-13

    Charge translocation across the membrane coupled to transfer of the third electron in the reaction cycle of bovine cytochrome c oxidase (COX) has been studied. Flash-induced reduction of the peroxy intermediate (P) to the ferryl-oxo state (F) by tris-bipyridyl complex of Ru(II) in liposome-reconstituted COX is coupled to several phases of membrane potential generation that have been time-resolved with the use of an electrometric technique applied earlier in the studies of the ferryl-oxo-to-oxidized (F --> O) transition of the enzyme [Zaslavsky, D., et al. (1993) FEBS Lett. 336, 389-393]. As in the case of the F --> O transition, the electric response associated with photoreduction of P to F includes a rapid KCN-insensitive electrogenic phase with a tau of 40-50 microseconds (reduction of heme a by CuA) and a multiphasic slower part; this part is cyanide-sensitive and is assigned to vectorial transfer of protons coupled to reduction of oxygen intermediate in the binuclear center. The net KCN-sensitive phase of the response is approximately 4-fold more electrogenic than the rapid phase, which is similar to the characteristics of the F --> O electrogenic transition and is consistent with net transmembrane translocation of two protons per electron, including vectorial movement of both "chemical" and "pumped" protons. The protonic part of the P --> F electric response is faster than in the F --> O transition and can be deconvoluted into three exponential phases with tau values varying for different samples in the range of 0.25-0.33, 1-1.5, and 6-7.5 ms at pH 8. Of these three phases, the 1-1.5 ms component is the major one contributing 50-60%. The P --> F conversion induced by single electron photoreduction of the peroxy state as studied in this work is several times slower than the P --> F transition resolved during oxidation of the fully reduced oxidase by molecular oxygen. The role of the CuB redox state in controlling the rate of P --> F conversion of heme a3 is

  12. A novel ruthenium(II)-cobaloxime supramolecular complex for photocatalytic H2 evolution: synthesis, characterisation and mechanistic studies.

    PubMed

    Cropek, Donald M; Metz, Anja; Müller, Astrid M; Gray, Harry B; Horne, Toyketa; Horton, Dorothy C; Poluektov, Oleg; Tiede, David M; Weber, Ralph T; Jarrett, William L; Phillips, Joshua D; Holder, Alvin A

    2012-11-14

    We report the synthesis and characterization of novel mixed-metal binuclear ruthenium(II)-cobalt(II) photocatalysts for hydrogen evolution in acidic acetonitrile. First, 2-(2'-pyridyl)benzothiazole (pbt), 1, was reacted with RuCl(3)·xH(2)O to produce [Ru(pbt)(2)Cl(2)]·0.25CH(3)COCH(3), 2, which was then reacted with 1,10-phenanthroline-5,6-dione (phendione), 3, in order to produce [Ru(pbt)(2)(phendione)](PF(6))(2)·4H(2)O, 4. Compound 4 was then reacted with 4-pyridinecarboxaldehyde in order to produce [Ru(pbt)(2)(L-pyr)](PF(6))(2)·9.5H(2)O, 5 (where L-pyr = (4-pyridine)oxazolo[4,5-f]phenanthroline). Compound 5 was then reacted with [Co(dmgBF(2))(2)(H(2)O)(2)] (where dmgBF(2) = difluoroboryldimethylglyoximato) in order to produce the mixed-metal binuclear complex, [Ru(pbt)(2)(L-pyr)Co(dmgBF(2))(2)(H(2)O)](PF(6))(2)·11H(2)O·1.5CH(3)COCH(3), 6. [Ru(Me(2)bpy)(2)(L-pyr)Co(dmgBF(2))(2)(OH(2))](PF(6))(2), 7 (where Me(2)bpy = 1,10-phenanthroline, 4,4'-dimethyl-2,2'-bipyridine) and [Ru(phen)(2)(L-pyr)Co(dmgBF(2))(2)(OH(2))](PF(6))(2), 8 were also synthesised. All complexes were characterized by elemental analysis, ESI MS, HRMS, UV-visible absorption, (11)B, (19)F, and (59)Co NMR, ESR spectroscopy, and cyclic voltammetry, where appropriate. Photocatalytic studies carried out in acidified acetonitrile demonstrated constant hydrogen generation longer than a 42 hour period as detected by gas chromatography. Time resolved spectroscopic measurements were performed on compound 6, which proved an intramolecular electron transfer from an excited Ru(II) metal centre to the Co(II) metal centre via the bridging L-pyr ligand. This resulted in the formation of a cobalt(I)-containing species that is essential for the production of H(2) gas in the presence of H(+) ions. A proposed mechanism for the generation of hydrogen is presented.

  13. Variable Doping Induces Mechanism Swapping in Electrogenerated Chemiluminescence of Ru(bpy)3(2+) Core-Shell Silica Nanoparticles.

    PubMed

    Valenti, Giovanni; Rampazzo, Enrico; Bonacchi, Sara; Petrizza, Luca; Marcaccio, Massimo; Montalti, Marco; Prodi, Luca; Paolucci, Francesco

    2016-12-14

    The impact of nanotechnology on analytical science is hardly overlooked. In the search for ever-increasing sensitivity in biomedical sensors, nanoparticles have been playing a unique role as, for instance, ultrabright labels, and unravelling the intimate mechanisms which govern their functioning is mandatory for the design of ultrasentitive devices. Herein, we investigated the mechanism of electrogenerated chemiluminescence (ECL) in a family of core-shell silica-PEG nanoparticles (DDSNs), variously doped with a Ru(bpy)3(2+) triethoxysilane derivative, and displaying homogeneous morphological, hydrodynamic, and photophysical properties. ECL experiments, performed in the presence of 2-(dibutylamino)ethanol (DBAE) as coreactant, showed two parallel mechanisms of ECL generation: one mechanism (I) which involves exclusively the radicals deriving from the coreactant oxidation and a second one (II) involving also the direct anodic oxidation of the Ru(II) moieties. The latter mechanism includes electron (hole) hopping between neighboring redox centers as evidenced in our previous studies and supported by a theoretical model we have recently proposed. Quite unexpectedly, however, we found that the efficiency of the two mechanisms varies in opposite directions within the DDSNs series, with mechanism I or mechanism II prevailing at low and high doping levels, respectively. Since mechanism II has an intrinsically lower efficiency, the ECL emission intensity was also found to grow linearly with doping only at relatively low doping levels while it deviates negatively at higher ones. As the ζ-potential of DDSNs increases with the doping level from negative to slightly positive values, as a likely consequence of the accumulating cationic charge within the silica core, we attributed the observed change in the ECL generation mechanism along the DDSN series to a modulation of the electrostatic and hydrophobic/hydrophilic interactions between the DDSNs and the radical cationic

  14. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  15. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity.

    PubMed

    Betanzos-Lara, Soledad; Novakova, Olga; Deeth, Robert J; Pizarro, Ana M; Clarkson, Guy J; Liskova, Barbora; Brabec, Viktor; Sadler, Peter J; Habtemariam, Abraha

    2012-10-01

    The synthesis and characterization of complexes [(η(6)-arene)Ru(N,N')X][PF(6)], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N' is 2,2'-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)I][PF(6)] and [(η(6)-etb)Ru(bpm)Cl][PF(6)]. Complexes in which N,N' is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The Ru(II) arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-p-cym)Ru(bpm)Br][PF(6)], [(η(6)-p-cym)Ru(bpm)I][PF(6)], [(η(6)-bip)Ru(bpm)Cl][PF(6)], [(η(6)-bip)Ru(bpm)Br][PF(6)] and [(η(6)-bip)Ru(bpm)I][PF(6)] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK (a)* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)], [(η(6)-hmb)Ru(bpm)Cl](+), [(η(6)-ind)Ru(bpm)Cl](+), [(η(6)-thn)Ru(bpm)Cl](+), [(η(6)-p-cym)Ru(phen)Cl](+) and [(η(6)-p-cym)Ru(bathophen)Cl](+) in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η(6)-p-cym)Ru(bpm)(9-EtG-N7)][PF(6)](2) shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η(6)-p-cym)Ru(bpm)Cl][PF(6)] and [(η(6)-p

  16. Transition Metal Catalyzed Hydroarylation of Multiple Bonds: Exploration of Second Generation Ruthenium Catalysts and Extension to Copper Systems

    SciTech Connect

    T. Brent Gunnoe

    2011-02-17

    , which has provided a comprehensive understanding of the impact of steric and electronic parameters of 'L' on the catalytic hydroarylation of olefins. (3) We have completed and published a detailed mechanistic study of stoichiometric aromatic C-H activation by TpRu(L)(NCMe)Ph (L = CO or PMe{sub 3}). These efforts have probed the impact of functionality para to the site of C-H activation for benzene substrates and have allowed us to develop a detailed model of the transition state for the C-H activation process. These results have led us to conclude that the C-H bond cleavage occurs by a {sigma}-bond metathesis process in which the C-H transfer is best viewed as an intramolecular proton transfer. (4) We have completed studies of Ru complexes possessing the N-heterocyclic carbene IMes (IMes = 1,3-bis-(2,4,6-trimethylphenyl)imidazol-2-ylidene). One of these systems is a unique four-coordinate Ru(II) complex that catalyzes the oxidative hydrophenylation of ethylene (in low yields) to produce styrene and ethane (utilizing ethylene as the hydrogen acceptor) as well as the hydrogenation of olefins, aldehydes and ketones. These results provide a map for the preparation of catalysts that are selective for oxidative olefin hydroarylation. (5) The ability of TpRu(PMe{sub 3})(NCMe)R systems to activate sp{sup 3} C-H bonds has been demonstrated including extension to subsequent C-C bond forming steps. These results open the door to the development of catalysts for the functionalization of more inert C-H bonds. (6) We have discovered that Pt(II) complexes supported by simple nitrogen-based ligands serve as catalysts for the hydroarylation of olefins. Given the extensive studies of Pt-based catalytic C-H activation, we believe these results will provide an entry point into an array of possible catalysts for hydrocarbon functionalization.

  17. Metal-organometallic polymers and frameworks derived from facially metalated arylcarboxylates

    NASA Astrophysics Data System (ADS)

    Kumalah Robinson, Sayon A.

    The interest in coordination polymers, also known as metal-organic frameworks, has risen drastically over the past 2 decades. In this time, the field has matured and given rise to a diverse range of crystalline structures possessing various functionalities. Coordination polymers are typically formed from the self assembly of metal ions which serve as nodes and organic ligands which act as bridges. By the careful selection of the organic ligand and the metal ion, the overall physical properties of the material may be tuned. In this work, the use of organometallic bridging ligands are explored using facially metalated aryl carboxylates ligands to synthesize metal-organometallic frameworks (MOMFs). Therefore, with the aim of synthesizing [CpM]+-functionalized (M = FeII, RuII; Cp = cyclopentadienyl) coordination polymers and metal organic frameworks, various [CpFe]+and [CpRu] + functionalized aryl carboxylates were synthesized and characterized. In particular, the [CpFe]+-functionalized benzoic, terephthalic and trimesic acids as well as the [CpRu]+-functionalized terephthalic acid were made. Using the [CpFe]+ complexes of the benzoic and terephthalic acid as bridging ligands, a number of 1D and 2D coordination polymers were synthesized. For instance, the reaction of [CpFe]+-functionalized benzoic acid with CdCl2 yielded the 1D chain of [Cd(benzoate)Cl 2]˙H2O whilst the reaction of [CpFe]+-functionalized terephthalic acid with Cu(NO3)2˙6H2O yielded a 2D square grid sheet. Using the [CpFe]+-functionalized terephthalic acid, a series of polymorphic, 3D metal-organometallic frameworks of the general formula [M3(terephthalate)4(mu-H2O)2(H 2O)2][NO3]2˙xsolvent (M = Co II, NiII ; solvent = EtOH, DMF, H2O) were synthesized and fully characterized. The polymorphic nature of these frameworks may be attributed to the different orientations that the [CpFe]+ moiety may adapt within the cavities in the 3D frameworks. The selectivity of the desolvated forms of the polymorphs for

  18. Electron transfer reactivity of the aqueous iron(IV)–oxo complex. Outer-sphere vs proton-coupled electron transfer

    SciTech Connect

    Bataineh, Hajem; Pestovsky, Oleg; Bakac, Andreja

    2016-06-18

    Here, the kinetics of oxidation of organic and inorganic reductants by aqueous iron(IV) ions, FeIV(H2O)5O2+ (hereafter FeIVaqO2+), are reported. The substrates examined include several water-soluble ferrocenes, hexachloroiridate(III), polypyridyl complexes M(NN)32+ (M = Os, Fe and Ru; NN = phenanthroline, bipyridine and derivatives), HABTS–/ABTS2–, phenothiazines, CoII(dmgBF2)2, macrocyclic nickel(II) complexes, and aqueous cerium(III). Most of the reductants were oxidized cleanly to the corresponding one-electron oxidation products, with the exception of phenothiazines which produced the corresponding oxides in a single-step reaction, and polypyridyl complexes of Fe(II) and Ru(II) that generated ligand-modified products. FeIVaqO2+ oxidizes even Ce(III) (E0 in 1 M HClO4 = 1.7 V) with a rate constant greater than 104 M–1 s–1. In 0.10 M aqueous HClO4 at 25 °C, the reactions of Os(phen)32+ (k = 2.5 × 105 M–1 s–1), IrCl63– (1.6 × 106), ABTS2– (4.7 × 107), and Fe(cp)(C5H4CH2OH) (6.4 × 107) appear to take place by outer sphere electron transfer (OSET). The rate constants for the oxidation of Os(phen)32+ and of ferrocenes remained unchanged in the acidity range 0.05 < [H+] < 0.10 M, ruling out prior protonation of FeIVaqO2+ and further supporting the OSET assignment. A fit to Marcus cross-relation yielded a composite parameter (log k22 + E0Fe/0.059) = 17.2 ± 0.8, where k22 and E0Fe are the self-exchange rate constant and reduction potential