Sample records for rule based classifier

  1. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  2. Discovering Fine-grained Sentiment in Suicide Notes

    PubMed Central

    Wang, Wenbo; Chen, Lu; Tan, Ming; Wang, Shaojun; Sheth, Amit P.

    2012-01-01

    This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams. PMID:22879770

  3. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based rule set generation

    PubMed Central

    2014-01-01

    Introduction Discrimination of rheumatoid arthritis (RA) patients from patients with other inflammatory or degenerative joint diseases or healthy individuals purely on the basis of genes differentially expressed in high-throughput data has proven very difficult. Thus, the present study sought to achieve such discrimination by employing a novel unbiased approach using rule-based classifiers. Methods Three multi-center genome-wide transcriptomic data sets (Affymetrix HG-U133 A/B) from a total of 79 individuals, including 20 healthy controls (control group - CG), as well as 26 osteoarthritis (OA) and 33 RA patients, were used to infer rule-based classifiers to discriminate the disease groups. The rules were ranked with respect to Kiendl’s statistical relevance index, and the resulting rule set was optimized by pruning. The rule sets were inferred separately from data of one of three centers and applied to the two remaining centers for validation. All rules from the optimized rule sets of all centers were used to analyze their biological relevance applying the software Pathway Studio. Results The optimized rule sets for the three centers contained a total of 29, 20, and 8 rules (including 10, 8, and 4 rules for ‘RA’), respectively. The mean sensitivity for the prediction of RA based on six center-to-center tests was 96% (range 90% to 100%), that for OA 86% (range 40% to 100%). The mean specificity for RA prediction was 94% (range 80% to 100%), that for OA 96% (range 83.3% to 100%). The average overall accuracy of the three different rule-based classifiers was 91% (range 80% to 100%). Unbiased analyses by Pathway Studio of the gene sets obtained by discrimination of RA from OA and CG with rule-based classifiers resulted in the identification of the pathogenetically and/or therapeutically relevant interferon-gamma and GM-CSF pathways. Conclusion First-time application of rule-based classifiers for the discrimination of RA resulted in high performance, with means for all assessment parameters close to or higher than 90%. In addition, this unbiased, new approach resulted in the identification not only of pathways known to be critical to RA, but also of novel molecules such as serine/threonine kinase 10. PMID:24690414

  4. Fusion of classifiers for REIS-based detection of suspicious breast lesions

    NASA Astrophysics Data System (ADS)

    Lederman, Dror; Wang, Xingwei; Zheng, Bin; Sumkin, Jules H.; Tublin, Mitchell; Gur, David

    2011-03-01

    After developing a multi-probe resonance-frequency electrical impedance spectroscopy (REIS) system aimed at detecting women with breast abnormalities that may indicate a developing breast cancer, we have been conducting a prospective clinical study to explore the feasibility of applying this REIS system to classify younger women (< 50 years old) into two groups of "higher-than-average risk" and "average risk" of having or developing breast cancer. The system comprises one central probe placed in contact with the nipple, and six additional probes uniformly distributed along an outside circle to be placed in contact with six points on the outer breast skin surface. In this preliminary study, we selected an initial set of 174 examinations on participants that have completed REIS examinations and have clinical status verification. Among these, 66 examinations were recommended for biopsy due to findings of a highly suspicious breast lesion ("positives"), and 108 were determined as negative during imaging based procedures ("negatives"). A set of REIS-based features, extracted using a mirror-matched approach, was computed and fed into five machine learning classifiers. A genetic algorithm was used to select an optimal subset of features for each of the five classifiers. Three fusion rules, namely sum rule, weighted sum rule and weighted median rule, were used to combine the results of the classifiers. Performance evaluation was performed using a leave-one-case-out cross-validation method. The results indicated that REIS may provide a new technology to identify younger women with higher than average risk of having or developing breast cancer. Furthermore, it was shown that fusion rule, such as a weighted median fusion rule and a weighted sum fusion rule may improve performance as compared with the highest performing single classifier.

  5. Evolving fuzzy rules in a learning classifier system

    NASA Technical Reports Server (NTRS)

    Valenzuela-Rendon, Manuel

    1993-01-01

    The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers (FLC's) and learning classifier systems (LCS's). It brings together the expressive powers of fuzzy logic as it has been applied in fuzzy controllers to express relations between continuous variables, and the ability of LCS's to evolve co-adapted sets of rules. The goal of the FCS is to develop a rule-based system capable of learning in a reinforcement regime, and that can potentially be used for process control.

  6. Equating an expert system to a classifier in order to evaluate the expert system

    NASA Technical Reports Server (NTRS)

    Odell, Patrick L.

    1989-01-01

    A strategy to evaluate an expert system is formulated. The strategy proposed is based on finding an equivalent classifier to an expert system and evaluate that classifier with respect to an optimal classifier, a Bayes classifier. Here it is shown that for the rules considered an equivalent classifier exists. Also, a brief consideration of meta and meta-meta rules is included. Also, a taxonomy of expert systems is presented and an assertion made that an equivalent classifier exists for each type of expert system in the taxonomy with associated sets of underlying assumptions.

  7. AVNM: A Voting based Novel Mathematical Rule for Image Classification.

    PubMed

    Vidyarthi, Ankit; Mittal, Namita

    2016-12-01

    In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Automated time activity classification based on global positioning system (GPS) tracking data

    PubMed Central

    2011-01-01

    Background Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. Methods We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Results Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data. Conclusions Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns. PMID:22082316

  9. Automated time activity classification based on global positioning system (GPS) tracking data.

    PubMed

    Wu, Jun; Jiang, Chengsheng; Houston, Douglas; Baker, Dean; Delfino, Ralph

    2011-11-14

    Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data. Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns.

  10. A fuzzy hill-climbing algorithm for the development of a compact associative classifier

    NASA Astrophysics Data System (ADS)

    Mitra, Soumyaroop; Lam, Sarah S.

    2012-02-01

    Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.

  11. Designing boosting ensemble of relational fuzzy systems.

    PubMed

    Scherer, Rafał

    2010-10-01

    A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.

  12. Intertransaction Class Association Rule Mining Based on Genetic Network Programming and Its Application to Stock Market Prediction

    NASA Astrophysics Data System (ADS)

    Yang, Yuchen; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    Intertransaction association rules have been reported to be useful in many fields such as stock market prediction, but still there are not so many efficient methods to dig them out from large data sets. Furthermore, how to use and measure these more complex rules should be considered carefully. In this paper, we propose a new intertransaction class association rule mining method based on Genetic Network Programming (GNP), which has the ability to overcome some shortages of Apriori-like based intertransaction association methods. Moreover, a general classifier model for intertransaction rules is also introduced. In experiments on the real world application of stock market prediction, the method shows its efficiency and ability to obtain good results and can bring more benefits with a suitable classifier considering larger interval span.

  13. Cognitive changes in conjunctive rule-based category learning: An ERP approach.

    PubMed

    Rabi, Rahel; Joanisse, Marc F; Zhu, Tianshu; Minda, John Paul

    2018-06-25

    When learning rule-based categories, sufficient cognitive resources are needed to test hypotheses, maintain the currently active rule in working memory, update rules after feedback, and to select a new rule if necessary. Prior research has demonstrated that conjunctive rules are more complex than unidimensional rules and place greater demands on executive functions like working memory. In our study, event-related potentials (ERPs) were recorded while participants performed a conjunctive rule-based category learning task with trial-by-trial feedback. In line with prior research, correct categorization responses resulted in a larger stimulus-locked late positive complex compared to incorrect responses, possibly indexing the updating of rule information in memory. Incorrect trials elicited a pronounced feedback-locked P300 elicited which suggested a disconnect between perception, and the rule-based strategy. We also examined the differential processing of stimuli that were able to be correctly classified by the suboptimal single-dimensional rule ("easy" stimuli) versus those that could only be correctly classified by the optimal, conjunctive rule ("difficult" stimuli). Among strong learners, a larger, late positive slow wave emerged for difficult compared with easy stimuli, suggesting differential processing of category items even though strong learners performed well on the conjunctive category set. Overall, the findings suggest that ERP combined with computational modelling can be used to better understand the cognitive processes involved in rule-based category learning.

  14. Promoter Sequences Prediction Using Relational Association Rule Mining

    PubMed Central

    Czibula, Gabriela; Bocicor, Maria-Iuliana; Czibula, Istvan Gergely

    2012-01-01

    In this paper we are approaching, from a computational perspective, the problem of promoter sequences prediction, an important problem within the field of bioinformatics. As the conditions for a DNA sequence to function as a promoter are not known, machine learning based classification models are still developed to approach the problem of promoter identification in the DNA. We are proposing a classification model based on relational association rules mining. Relational association rules are a particular type of association rules and describe numerical orderings between attributes that commonly occur over a data set. Our classifier is based on the discovery of relational association rules for predicting if a DNA sequence contains or not a promoter region. An experimental evaluation of the proposed model and comparison with similar existing approaches is provided. The obtained results show that our classifier overperforms the existing techniques for identifying promoter sequences, confirming the potential of our proposal. PMID:22563233

  15. Comparative analysis of expert and machine-learning methods for classification of body cavity effusions in companion animals.

    PubMed

    Hotz, Christine S; Templeton, Steven J; Christopher, Mary M

    2005-03-01

    A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.

  16. Challenges for Rule Systems on the Web

    NASA Astrophysics Data System (ADS)

    Hu, Yuh-Jong; Yeh, Ching-Long; Laun, Wolfgang

    The RuleML Challenge started in 2007 with the objective of inspiring the issues of implementation for management, integration, interoperation and interchange of rules in an open distributed environment, such as the Web. Rules are usually classified as three types: deductive rules, normative rules, and reactive rules. The reactive rules are further classified as ECA rules and production rules. The study of combination rule and ontology is traced back to an earlier active rule system for relational and object-oriented (OO) databases. Recently, this issue has become one of the most important research problems in the Semantic Web. Once we consider a computer executable policy as a declarative set of rules and ontologies that guides the behavior of entities within a system, we have a flexible way to implement real world policies without rewriting the computer code, as we did before. Fortunately, we have de facto rule markup languages, such as RuleML or RIF to achieve the portability and interchange of rules for different rule systems. Otherwise, executing real-life rule-based applications on the Web is almost impossible. Several commercial or open source rule engines are available for the rule-based applications. However, we still need a standard rule language and benchmark for not only to compare the rule systems but also to measure the progress in the field. Finally, a number of real-life rule-based use cases will be investigated to demonstrate the applicability of current rule systems on the Web.

  17. Analyzing Large Gene Expression and Methylation Data Profiles Using StatBicRM: Statistical Biclustering-Based Rule Mining

    PubMed Central

    Maulik, Ujjwal; Mallik, Saurav; Mukhopadhyay, Anirban; Bandyopadhyay, Sanghamitra

    2015-01-01

    Microarray and beadchip are two most efficient techniques for measuring gene expression and methylation data in bioinformatics. Biclustering deals with the simultaneous clustering of genes and samples. In this article, we propose a computational rule mining framework, StatBicRM (i.e., statistical biclustering-based rule mining) to identify special type of rules and potential biomarkers using integrated approaches of statistical and binary inclusion-maximal biclustering techniques from the biological datasets. At first, a novel statistical strategy has been utilized to eliminate the insignificant/low-significant/redundant genes in such way that significance level must satisfy the data distribution property (viz., either normal distribution or non-normal distribution). The data is then discretized and post-discretized, consecutively. Thereafter, the biclustering technique is applied to identify maximal frequent closed homogeneous itemsets. Corresponding special type of rules are then extracted from the selected itemsets. Our proposed rule mining method performs better than the other rule mining algorithms as it generates maximal frequent closed homogeneous itemsets instead of frequent itemsets. Thus, it saves elapsed time, and can work on big dataset. Pathway and Gene Ontology analyses are conducted on the genes of the evolved rules using David database. Frequency analysis of the genes appearing in the evolved rules is performed to determine potential biomarkers. Furthermore, we also classify the data to know how much the evolved rules are able to describe accurately the remaining test (unknown) data. Subsequently, we also compare the average classification accuracy, and other related factors with other rule-based classifiers. Statistical significance tests are also performed for verifying the statistical relevance of the comparative results. Here, each of the other rule mining methods or rule-based classifiers is also starting with the same post-discretized data-matrix. Finally, we have also included the integrated analysis of gene expression and methylation for determining epigenetic effect (viz., effect of methylation) on gene expression level. PMID:25830807

  18. Analyzing large gene expression and methylation data profiles using StatBicRM: statistical biclustering-based rule mining.

    PubMed

    Maulik, Ujjwal; Mallik, Saurav; Mukhopadhyay, Anirban; Bandyopadhyay, Sanghamitra

    2015-01-01

    Microarray and beadchip are two most efficient techniques for measuring gene expression and methylation data in bioinformatics. Biclustering deals with the simultaneous clustering of genes and samples. In this article, we propose a computational rule mining framework, StatBicRM (i.e., statistical biclustering-based rule mining) to identify special type of rules and potential biomarkers using integrated approaches of statistical and binary inclusion-maximal biclustering techniques from the biological datasets. At first, a novel statistical strategy has been utilized to eliminate the insignificant/low-significant/redundant genes in such way that significance level must satisfy the data distribution property (viz., either normal distribution or non-normal distribution). The data is then discretized and post-discretized, consecutively. Thereafter, the biclustering technique is applied to identify maximal frequent closed homogeneous itemsets. Corresponding special type of rules are then extracted from the selected itemsets. Our proposed rule mining method performs better than the other rule mining algorithms as it generates maximal frequent closed homogeneous itemsets instead of frequent itemsets. Thus, it saves elapsed time, and can work on big dataset. Pathway and Gene Ontology analyses are conducted on the genes of the evolved rules using David database. Frequency analysis of the genes appearing in the evolved rules is performed to determine potential biomarkers. Furthermore, we also classify the data to know how much the evolved rules are able to describe accurately the remaining test (unknown) data. Subsequently, we also compare the average classification accuracy, and other related factors with other rule-based classifiers. Statistical significance tests are also performed for verifying the statistical relevance of the comparative results. Here, each of the other rule mining methods or rule-based classifiers is also starting with the same post-discretized data-matrix. Finally, we have also included the integrated analysis of gene expression and methylation for determining epigenetic effect (viz., effect of methylation) on gene expression level.

  19. Hierarchy-associated semantic-rule inference framework for classifying indoor scenes

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei

    2016-03-01

    Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.

  20. System Diagnostic Builder - A rule generation tool for expert systems that do intelligent data evaluation. [applied to Shuttle Mission Simulator

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph; Burke, Roger

    1993-01-01

    Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.

  1. st-Alphabets: On the Feasibility in the Explicit Use of Extended Relational Alphabets in Classifier Systems

    NASA Astrophysics Data System (ADS)

    Toledo-Suárez, Carlos D.

    It is proposed a way of increasing the cardinality of an alphabet used to write rules in a learning classifier system that extends the idea of relational schemata. Theoretical justifications regarding the possible reduction in the amount of rules for the solution of problems such extended alphabets (st-alphabets) imply are shown. It is shown that when expressed as bipolar neural networks, the matching process of rules over st-alphabets strongly resembles a gene expression mechanism applied to a system over {0,1,#}. In spite of the apparent drawbacks the explicit use of such relational alphabets would imply, their successful implementation in an information gain based classifier system (IGCS) is presented.

  2. Association algorithm to mine the rules that govern enzyme definition and to classify protein sequences.

    PubMed

    Chiu, Shih-Hau; Chen, Chien-Chi; Yuan, Gwo-Fang; Lin, Thy-Hou

    2006-06-15

    The number of sequences compiled in many genome projects is growing exponentially, but most of them have not been characterized experimentally. An automatic annotation scheme must be in an urgent need to reduce the gap between the amount of new sequences produced and reliable functional annotation. This work proposes rules for automatically classifying the fungus genes. The approach involves elucidating the enzyme classifying rule that is hidden in UniProt protein knowledgebase and then applying it for classification. The association algorithm, Apriori, is utilized to mine the relationship between the enzyme class and significant InterPro entries. The candidate rules are evaluated for their classificatory capacity. There were five datasets collected from the Swiss-Prot for establishing the annotation rules. These were treated as the training sets. The TrEMBL entries were treated as the testing set. A correct enzyme classification rate of 70% was obtained for the prokaryote datasets and a similar rate of about 80% was obtained for the eukaryote datasets. The fungus training dataset which lacks an enzyme class description was also used to evaluate the fungus candidate rules. A total of 88 out of 5085 test entries were matched with the fungus rule set. These were otherwise poorly annotated using their functional descriptions. The feasibility of using the method presented here to classify enzyme classes based on the enzyme domain rules is evident. The rules may be also employed by the protein annotators in manual annotation or implemented in an automatic annotation flowchart.

  3. Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex

    PubMed Central

    Cole, Michael W.; Etzel, Joset A.; Zacks, Jeffrey M.; Schneider, Walter; Braver, Todd S.

    2011-01-01

    Flexible, adaptive behavior is thought to rely on abstract rule representations within lateral prefrontal cortex (LPFC), yet it remains unclear how these representations provide such flexibility. We recently demonstrated that humans can learn complex novel tasks in seconds. Here we hypothesized that this impressive mental flexibility may be possible due to rapid transfer of practiced rule representations within LPFC to novel task contexts. We tested this hypothesis using functional MRI and multivariate pattern analysis, classifying LPFC activity patterns across 64 tasks. Classifiers trained to identify abstract rules based on practiced task activity patterns successfully generalized to novel tasks. This suggests humans can transfer practiced rule representations within LPFC to rapidly learn new tasks, facilitating cognitive performance in novel circumstances. PMID:22125519

  4. How to select combination operators for fuzzy expert systems using CRI

    NASA Technical Reports Server (NTRS)

    Turksen, I. B.; Tian, Y.

    1992-01-01

    A method to select combination operators for fuzzy expert systems using the Compositional Rule of Inference (CRI) is proposed. First, fuzzy inference processes based on CRI are classified into three categories in terms of their inference results: the Expansion Type Inference, the Reduction Type Inference, and Other Type Inferences. Further, implication operators under Sup-T composition are classified as the Expansion Type Operator, the Reduction Type Operator, and the Other Type Operators. Finally, the combination of rules or their consequences is investigated for inference processes based on CRI.

  5. Association algorithm to mine the rules that govern enzyme definition and to classify protein sequences

    PubMed Central

    Chiu, Shih-Hau; Chen, Chien-Chi; Yuan, Gwo-Fang; Lin, Thy-Hou

    2006-01-01

    Background The number of sequences compiled in many genome projects is growing exponentially, but most of them have not been characterized experimentally. An automatic annotation scheme must be in an urgent need to reduce the gap between the amount of new sequences produced and reliable functional annotation. This work proposes rules for automatically classifying the fungus genes. The approach involves elucidating the enzyme classifying rule that is hidden in UniProt protein knowledgebase and then applying it for classification. The association algorithm, Apriori, is utilized to mine the relationship between the enzyme class and significant InterPro entries. The candidate rules are evaluated for their classificatory capacity. Results There were five datasets collected from the Swiss-Prot for establishing the annotation rules. These were treated as the training sets. The TrEMBL entries were treated as the testing set. A correct enzyme classification rate of 70% was obtained for the prokaryote datasets and a similar rate of about 80% was obtained for the eukaryote datasets. The fungus training dataset which lacks an enzyme class description was also used to evaluate the fungus candidate rules. A total of 88 out of 5085 test entries were matched with the fungus rule set. These were otherwise poorly annotated using their functional descriptions. Conclusion The feasibility of using the method presented here to classify enzyme classes based on the enzyme domain rules is evident. The rules may be also employed by the protein annotators in manual annotation or implemented in an automatic annotation flowchart. PMID:16776838

  6. ChemStable: a web server for rule-embedded naïve Bayesian learning approach to predict compound stability.

    PubMed

    Liu, Zhihong; Zheng, Minghao; Yan, Xin; Gu, Qiong; Gasteiger, Johann; Tijhuis, Johan; Maas, Peter; Li, Jiabo; Xu, Jun

    2014-09-01

    Predicting compound chemical stability is important because unstable compounds can lead to either false positive or to false negative conclusions in bioassays. Experimental data (COMDECOM) measured from DMSO/H2O solutions stored at 50 °C for 105 days were used to predicted stability by applying rule-embedded naïve Bayesian learning, based upon atom center fragment (ACF) features. To build the naïve Bayesian classifier, we derived ACF features from 9,746 compounds in the COMDECOM dataset. By recursively applying naïve Bayesian learning from the data set, each ACF is assigned with an expected stable probability (p(s)) and an unstable probability (p(uns)). 13,340 ACFs, together with their p(s) and p(uns) data, were stored in a knowledge base for use by the Bayesian classifier. For a given compound, its ACFs were derived from its structure connection table with the same protocol used to drive ACFs from the training data. Then, the Bayesian classifier assigned p(s) and p(uns) values to the compound ACFs by a structural pattern recognition algorithm, which was implemented in-house. Compound instability is calculated, with Bayes' theorem, based upon the p(s) and p(uns) values of the compound ACFs. We were able to achieve performance with an AUC value of 84% and a tenfold cross validation accuracy of 76.5%. To reduce false negatives, a rule-based approach has been embedded in the classifier. The rule-based module allows the program to improve its predictivity by expanding its compound instability knowledge base, thus further reducing the possibility of false negatives. To our knowledge, this is the first in silico prediction service for the prediction of the stabilities of organic compounds.

  7. Do Americans Have a Preference for Rule-Based Classification?

    ERIC Educational Resources Information Center

    Murphy, Gregory L.; Bosch, David A.; Kim, ShinWoo

    2017-01-01

    Six experiments investigated variables predicted to influence subjects' tendency to classify items by a single property ("rule-based" responding) instead of overall similarity, following the paradigm of Norenzayan et al. (2002, "Cognitive Science"), who found that European Americans tended to give more "logical"…

  8. System diagnostic builder: a rule-generation tool for expert systems that do intelligent data evaluation

    NASA Astrophysics Data System (ADS)

    Nieten, Joseph L.; Burke, Roger

    1993-03-01

    The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.

  9. Symbolic rule-based classification of lung cancer stages from free-text pathology reports.

    PubMed

    Nguyen, Anthony N; Lawley, Michael J; Hansen, David P; Bowman, Rayleen V; Clarke, Belinda E; Duhig, Edwina E; Colquist, Shoni

    2010-01-01

    To classify automatically lung tumor-node-metastases (TNM) cancer stages from free-text pathology reports using symbolic rule-based classification. By exploiting report substructure and the symbolic manipulation of systematized nomenclature of medicine-clinical terms (SNOMED CT) concepts in reports, statements in free text can be evaluated for relevance against factors relating to the staging guidelines. Post-coordinated SNOMED CT expressions based on templates were defined and populated by concepts in reports, and tested for subsumption by staging factors. The subsumption results were used to build logic according to the staging guidelines to calculate the TNM stage. The accuracy measure and confusion matrices were used to evaluate the TNM stages classified by the symbolic rule-based system. The system was evaluated against a database of multidisciplinary team staging decisions and a machine learning-based text classification system using support vector machines. Overall accuracy on a corpus of pathology reports for 718 lung cancer patients against a database of pathological TNM staging decisions were 72%, 78%, and 94% for T, N, and M staging, respectively. The system's performance was also comparable to support vector machine classification approaches. A system to classify lung TNM stages from free-text pathology reports was developed, and it was verified that the symbolic rule-based approach using SNOMED CT can be used for the extraction of key lung cancer characteristics from free-text reports. Future work will investigate the applicability of using the proposed methodology for extracting other cancer characteristics and types.

  10. A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

    NASA Astrophysics Data System (ADS)

    Zhang, Ce; Pan, Xin; Li, Huapeng; Gardiner, Andy; Sargent, Isabel; Hare, Jonathon; Atkinson, Peter M.

    2018-06-01

    The contextual-based convolutional neural network (CNN) with deep architecture and pixel-based multilayer perceptron (MLP) with shallow structure are well-recognized neural network algorithms, representing the state-of-the-art deep learning method and the classical non-parametric machine learning approach, respectively. The two algorithms, which have very different behaviours, were integrated in a concise and effective way using a rule-based decision fusion approach for the classification of very fine spatial resolution (VFSR) remotely sensed imagery. The decision fusion rules, designed primarily based on the classification confidence of the CNN, reflect the generally complementary patterns of the individual classifiers. In consequence, the proposed ensemble classifier MLP-CNN harvests the complementary results acquired from the CNN based on deep spatial feature representation and from the MLP based on spectral discrimination. Meanwhile, limitations of the CNN due to the adoption of convolutional filters such as the uncertainty in object boundary partition and loss of useful fine spatial resolution detail were compensated. The effectiveness of the ensemble MLP-CNN classifier was tested in both urban and rural areas using aerial photography together with an additional satellite sensor dataset. The MLP-CNN classifier achieved promising performance, consistently outperforming the pixel-based MLP, spectral and textural-based MLP, and the contextual-based CNN in terms of classification accuracy. This research paves the way to effectively address the complicated problem of VFSR image classification.

  11. Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients

    PubMed Central

    2013-01-01

    Background Neuroblastoma is the most common pediatric solid tumor. About fifty percent of high risk patients die despite treatment making the exploration of new and more effective strategies for improving stratification mandatory. Hypoxia is a condition of low oxygen tension occurring in poorly vascularized areas of the tumor associated with poor prognosis. We had previously defined a robust gene expression signature measuring the hypoxic component of neuroblastoma tumors (NB-hypo) which is a molecular risk factor. We wanted to develop a prognostic classifier of neuroblastoma patients' outcome blending existing knowledge on clinical and molecular risk factors with the prognostic NB-hypo signature. Furthermore, we were interested in classifiers outputting explicit rules that could be easily translated into the clinical setting. Results Shadow Clustering (SC) technique, which leads to final models called Logic Learning Machine (LLM), exhibits a good accuracy and promises to fulfill the aims of the work. We utilized this algorithm to classify NB-patients on the bases of the following risk factors: Age at diagnosis, INSS stage, MYCN amplification and NB-hypo. The algorithm generated explicit classification rules in good agreement with existing clinical knowledge. Through an iterative procedure we identified and removed from the dataset those examples which caused instability in the rules. This workflow generated a stable classifier very accurate in predicting good and poor outcome patients. The good performance of the classifier was validated in an independent dataset. NB-hypo was an important component of the rules with a strength similar to that of tumor staging. Conclusions The novelty of our work is to identify stability, explicit rules and blending of molecular and clinical risk factors as the key features to generate classification rules for NB patients to be conveyed to the clinic and to be used to design new therapies. We derived, through LLM, a set of four stable rules identifying a new class of poor outcome patients that could benefit from new therapies potentially targeting tumor hypoxia or its consequences. PMID:23815266

  12. Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients.

    PubMed

    Cangelosi, Davide; Blengio, Fabiola; Versteeg, Rogier; Eggert, Angelika; Garaventa, Alberto; Gambini, Claudio; Conte, Massimo; Eva, Alessandra; Muselli, Marco; Varesio, Luigi

    2013-01-01

    Neuroblastoma is the most common pediatric solid tumor. About fifty percent of high risk patients die despite treatment making the exploration of new and more effective strategies for improving stratification mandatory. Hypoxia is a condition of low oxygen tension occurring in poorly vascularized areas of the tumor associated with poor prognosis. We had previously defined a robust gene expression signature measuring the hypoxic component of neuroblastoma tumors (NB-hypo) which is a molecular risk factor. We wanted to develop a prognostic classifier of neuroblastoma patients' outcome blending existing knowledge on clinical and molecular risk factors with the prognostic NB-hypo signature. Furthermore, we were interested in classifiers outputting explicit rules that could be easily translated into the clinical setting. Shadow Clustering (SC) technique, which leads to final models called Logic Learning Machine (LLM), exhibits a good accuracy and promises to fulfill the aims of the work. We utilized this algorithm to classify NB-patients on the bases of the following risk factors: Age at diagnosis, INSS stage, MYCN amplification and NB-hypo. The algorithm generated explicit classification rules in good agreement with existing clinical knowledge. Through an iterative procedure we identified and removed from the dataset those examples which caused instability in the rules. This workflow generated a stable classifier very accurate in predicting good and poor outcome patients. The good performance of the classifier was validated in an independent dataset. NB-hypo was an important component of the rules with a strength similar to that of tumor staging. The novelty of our work is to identify stability, explicit rules and blending of molecular and clinical risk factors as the key features to generate classification rules for NB patients to be conveyed to the clinic and to be used to design new therapies. We derived, through LLM, a set of four stable rules identifying a new class of poor outcome patients that could benefit from new therapies potentially targeting tumor hypoxia or its consequences.

  13. Multi-objective evolutionary algorithms for fuzzy classification in survival prediction.

    PubMed

    Jiménez, Fernando; Sánchez, Gracia; Juárez, José M

    2014-03-01

    This paper presents a novel rule-based fuzzy classification methodology for survival/mortality prediction in severe burnt patients. Due to the ethical aspects involved in this medical scenario, physicians tend not to accept a computer-based evaluation unless they understand why and how such a recommendation is given. Therefore, any fuzzy classifier model must be both accurate and interpretable. The proposed methodology is a three-step process: (1) multi-objective constrained optimization of a patient's data set, using Pareto-based elitist multi-objective evolutionary algorithms to maximize accuracy and minimize the complexity (number of rules) of classifiers, subject to interpretability constraints; this step produces a set of alternative (Pareto) classifiers; (2) linguistic labeling, which assigns a linguistic label to each fuzzy set of the classifiers; this step is essential to the interpretability of the classifiers; (3) decision making, whereby a classifier is chosen, if it is satisfactory, according to the preferences of the decision maker. If no classifier is satisfactory for the decision maker, the process starts again in step (1) with a different input parameter set. The performance of three multi-objective evolutionary algorithms, niched pre-selection multi-objective algorithm, elitist Pareto-based multi-objective evolutionary algorithm for diversity reinforcement (ENORA) and the non-dominated sorting genetic algorithm (NSGA-II), was tested using a patient's data set from an intensive care burn unit and a standard machine learning data set from an standard machine learning repository. The results are compared using the hypervolume multi-objective metric. Besides, the results have been compared with other non-evolutionary techniques and validated with a multi-objective cross-validation technique. Our proposal improves the classification rate obtained by other non-evolutionary techniques (decision trees, artificial neural networks, Naive Bayes, and case-based reasoning) obtaining with ENORA a classification rate of 0.9298, specificity of 0.9385, and sensitivity of 0.9364, with 14.2 interpretable fuzzy rules on average. Our proposal improves the accuracy and interpretability of the classifiers, compared with other non-evolutionary techniques. We also conclude that ENORA outperforms niched pre-selection and NSGA-II algorithms. Moreover, given that our multi-objective evolutionary methodology is non-combinational based on real parameter optimization, the time cost is significantly reduced compared with other evolutionary approaches existing in literature based on combinational optimization. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Recognition of medication information from discharge summaries using ensembles of classifiers.

    PubMed

    Doan, Son; Collier, Nigel; Xu, Hua; Pham, Hoang Duy; Tu, Minh Phuong

    2012-05-07

    Extraction of clinical information such as medications or problems from clinical text is an important task of clinical natural language processing (NLP). Rule-based methods are often used in clinical NLP systems because they are easy to adapt and customize. Recently, supervised machine learning methods have proven to be effective in clinical NLP as well. However, combining different classifiers to further improve the performance of clinical entity recognition systems has not been investigated extensively. Combining classifiers into an ensemble classifier presents both challenges and opportunities to improve performance in such NLP tasks. We investigated ensemble classifiers that used different voting strategies to combine outputs from three individual classifiers: a rule-based system, a support vector machine (SVM) based system, and a conditional random field (CRF) based system. Three voting methods were proposed and evaluated using the annotated data sets from the 2009 i2b2 NLP challenge: simple majority, local SVM-based voting, and local CRF-based voting. Evaluation on 268 manually annotated discharge summaries from the i2b2 challenge showed that the local CRF-based voting method achieved the best F-score of 90.84% (94.11% Precision, 87.81% Recall) for 10-fold cross-validation. We then compared our systems with the first-ranked system in the challenge by using the same training and test sets. Our system based on majority voting achieved a better F-score of 89.65% (93.91% Precision, 85.76% Recall) than the previously reported F-score of 89.19% (93.78% Precision, 85.03% Recall) by the first-ranked system in the challenge. Our experimental results using the 2009 i2b2 challenge datasets showed that ensemble classifiers that combine individual classifiers into a voting system could achieve better performance than a single classifier in recognizing medication information from clinical text. It suggests that simple strategies that can be easily implemented such as majority voting could have the potential to significantly improve clinical entity recognition.

  15. Examining change detection approaches for tropical mangrove monitoring

    USGS Publications Warehouse

    Myint, Soe W.; Franklin, Janet; Buenemann, Michaela; Kim, Won; Giri, Chandra

    2014-01-01

    This study evaluated the effectiveness of different band combinations and classifiers (unsupervised, supervised, object-oriented nearest neighbor, and object-oriented decision rule) for quantifying mangrove forest change using multitemporal Landsat data. A discriminant analysis using spectra of different vegetation types determined that bands 2 (0.52 to 0.6 μm), 5 (1.55 to 1.75 μm), and 7 (2.08 to 2.35 μm) were the most effective bands for differentiating mangrove forests from surrounding land cover types. A ranking of thirty-six change maps, produced by comparing the classification accuracy of twelve change detection approaches, was used. The object-based Nearest Neighbor classifier produced the highest mean overall accuracy (84 percent) regardless of band combinations. The automated decision rule-based approach (mean overall accuracy of 88 percent) as well as a composite of bands 2, 5, and 7 used with the unsupervised classifier and the same composite or all band difference with the object-oriented Nearest Neighbor classifier were the most effective approaches.

  16. Evaluating Machine Learning Classifiers for Hybrid Network Intrusion Detection Systems

    DTIC Science & Technology

    2015-03-26

    7 VRT Vulnerability Research Team...and the Talos (formerly the Vulnerability Research Team ( VRT )) [7] 7 ruleset libraries are the two leading rulesets in use. Both libraries offer paid...rule sets to load for the signature-based IDS. Snort is selected as the IDS engine using the “ VRT and ET No/GPL” rule set. The total rule count in the

  17. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  18. Automatic construction of a recurrent neural network based classifier for vehicle passage detection

    NASA Astrophysics Data System (ADS)

    Burnaev, Evgeny; Koptelov, Ivan; Novikov, German; Khanipov, Timur

    2017-03-01

    Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.

  19. Decision-Tree, Rule-Based, and Random Forest Classification of High-Resolution Multispectral Imagery for Wetland Mapping and Inventory

    EPA Science Inventory

    Efforts are increasingly being made to classify the world’s wetland resources, an important ecosystem and habitat that is diminishing in abundance. There are multiple remote sensing classification methods, including a suite of nonparametric classifiers such as decision-tree...

  20. Discrimination-Aware Classifiers for Student Performance Prediction

    ERIC Educational Resources Information Center

    Luo, Ling; Koprinska, Irena; Liu, Wei

    2015-01-01

    In this paper we consider discrimination-aware classification of educational data. Mining and using rules that distinguish groups of students based on sensitive attributes such as gender and nationality may lead to discrimination. It is desirable to keep the sensitive attributes during the training of a classifier to avoid information loss but…

  1. Classification Based on Pruning and Double Covered Rule Sets for the Internet of Things Applications

    PubMed Central

    Zhou, Zhongmei; Wang, Weiping

    2014-01-01

    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy. PMID:24511304

  2. Classification based on pruning and double covered rule sets for the internet of things applications.

    PubMed

    Li, Shasha; Zhou, Zhongmei; Wang, Weiping

    2014-01-01

    The Internet of things (IOT) is a hot issue in recent years. It accumulates large amounts of data by IOT users, which is a great challenge to mining useful knowledge from IOT. Classification is an effective strategy which can predict the need of users in IOT. However, many traditional rule-based classifiers cannot guarantee that all instances can be covered by at least two classification rules. Thus, these algorithms cannot achieve high accuracy in some datasets. In this paper, we propose a new rule-based classification, CDCR-P (Classification based on the Pruning and Double Covered Rule sets). CDCR-P can induce two different rule sets A and B. Every instance in training set can be covered by at least one rule not only in rule set A, but also in rule set B. In order to improve the quality of rule set B, we take measure to prune the length of rules in rule set B. Our experimental results indicate that, CDCR-P not only is feasible, but also it can achieve high accuracy.

  3. Soft computing-based terrain visual sensing and data fusion for unmanned ground robotic systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2006-05-01

    In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.

  4. Abandon the dead donor rule or change the definition of death?

    PubMed

    Veatch, Robert M

    2004-09-01

    Research by Siminoff and colleagues reveals that many lay people in Ohio classify legally living persons in irreversible coma or persistent vegetative state (PVS) as dead that additional respondents, although classifying such patients as living, would be willing to procure organs from them. This paper analyzes possible implications of these findings for public policy. A majority would procure organs from those in irreversible coma or in PVS. Two strategies for legitimizing such procurement are suggested. One strategy would be to make exceptions to the dead donor rule permitting procurement from those in PVS or at least those who are in irreversible coma while continuing to classify them as living. Another strategy would be to further amend the definition of death to classify one or both groups as deceased, thus permitting procurement without violation of the dead donor rule. Permitting exceptions to the dead donor rule would require substantial changes in law--such as authorizing procuring surgeons to end the lives of patients by means of organ procurement--and would weaken societal prohibitions on killing. The paper suggests that it would be easier and less controversial to further amend the definition of death to classify those in irreversible coma and PVS as dead. Incorporation of a conscience clause to permit those whose religious or philosophical convictions support whole-brain or cardiac-based death pronouncement would avoid violating their beliefs while causing no more than minimal social problems. The paper questions whether those who would support an exception to the dead donor rule in these cases and those who would support a further amendment to the definition of death could reach agreement to adopt a public policy permitting organ procurement of those in irreversible coma or PVS when proper consent is obtained.

  5. Ensemble Classifiers for Predicting HIV-1 Resistance from Three Rule-Based Genotypic Resistance Interpretation Systems.

    PubMed

    Raposo, Letícia M; Nobre, Flavio F

    2017-08-30

    Resistance to antiretrovirals (ARVs) is a major problem faced by HIV-infected individuals. Different rule-based algorithms were developed to infer HIV-1 susceptibility to antiretrovirals from genotypic data. However, there is discordance between them, resulting in difficulties for clinical decisions about which treatment to use. Here, we developed ensemble classifiers integrating three interpretation algorithms: Agence Nationale de Recherche sur le SIDA (ANRS), Rega, and the genotypic resistance interpretation system from Stanford HIV Drug Resistance Database (HIVdb). Three approaches were applied to develop a classifier with a single resistance profile: stacked generalization, a simple plurality vote scheme and the selection of the interpretation system with the best performance. The strategies were compared with the Friedman's test and the performance of the classifiers was evaluated using the F-measure, sensitivity and specificity values. We found that the three strategies had similar performances for the selected antiretrovirals. For some cases, the stacking technique with naïve Bayes as the learning algorithm showed a statistically superior F-measure. This study demonstrates that ensemble classifiers can be an alternative tool for clinical decision-making since they provide a single resistance profile from the most commonly used resistance interpretation systems.

  6. Mobile robots traversability awareness based on terrain visual sensory data fusion

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2007-04-01

    In this paper, we have presented methods that significantly improve the robot awareness of its terrain traversability conditions. The terrain traversability awareness is achieved by association of terrain image appearances from different poses and fusion of extracted information from multimodality imaging and range sensor data for localization and clustering environment landmarks. Initially, we describe methods for extraction of salient features of the terrain for the purpose of landmarks registration from two or more images taken from different via points along the trajectory path of the robot. The method of image registration is applied as a means of overlaying (two or more) of the same terrain scene at different viewpoints. The registration geometrically aligns salient landmarks of two images (the reference and sensed images). A Similarity matching techniques is proposed for matching the terrain salient landmarks. Secondly, we present three terrain classifier models based on rule-based, supervised neural network, and fuzzy logic for classification of terrain condition under uncertainty and mapping the robot's terrain perception to apt traversability measures. This paper addresses the technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain spatial and textural cues.

  7. Rules based process window OPC

    NASA Astrophysics Data System (ADS)

    O'Brien, Sean; Soper, Robert; Best, Shane; Mason, Mark

    2008-03-01

    As a preliminary step towards Model-Based Process Window OPC we have analyzed the impact of correcting post-OPC layouts using rules based methods. Image processing on the Brion Tachyon was used to identify sites where the OPC model/recipe failed to generate an acceptable solution. A set of rules for 65nm active and poly were generated by classifying these failure sites. The rules were based upon segment runlengths, figure spaces, and adjacent figure widths. 2.1 million sites for active were corrected in a small chip (comparing the pre and post rules based operations), and 59 million were found at poly. Tachyon analysis of the final reticle layout found weak margin sites distinct from those sites repaired by rules-based corrections. For the active layer more than 75% of the sites corrected by rules would have printed without a defect indicating that most rulesbased cleanups degrade the lithographic pattern. Some sites were missed by the rules based cleanups due to either bugs in the DRC software or gaps in the rules table. In the end dramatic changes to the reticle prevented catastrophic lithography errors, but this method is far too blunt. A more subtle model-based procedure is needed changing only those sites which have unsatisfactory lithographic margin.

  8. Visual terrain mapping for traversable path planning of mobile robots

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Amrani, Rachida; Tunstel, Edward W.

    2004-10-01

    In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.

  9. Disambiguating ambiguous biomedical terms in biomedical narrative text: an unsupervised method.

    PubMed

    Liu, H; Lussier, Y A; Friedman, C

    2001-08-01

    With the growing use of Natural Language Processing (NLP) techniques for information extraction and concept indexing in the biomedical domain, a method that quickly and efficiently assigns the correct sense of an ambiguous biomedical term in a given context is needed concurrently. The current status of word sense disambiguation (WSD) in the biomedical domain is that handcrafted rules are used based on contextual material. The disadvantages of this approach are (i) generating WSD rules manually is a time-consuming and tedious task, (ii) maintenance of rule sets becomes increasingly difficult over time, and (iii) handcrafted rules are often incomplete and perform poorly in new domains comprised of specialized vocabularies and different genres of text. This paper presents a two-phase unsupervised method to build a WSD classifier for an ambiguous biomedical term W. The first phase automatically creates a sense-tagged corpus for W, and the second phase derives a classifier for W using the derived sense-tagged corpus as a training set. A formative experiment was performed, which demonstrated that classifiers trained on the derived sense-tagged corpora achieved an overall accuracy of about 97%, with greater than 90% accuracy for each individual ambiguous term.

  10. Generating Concise Rules for Human Motion Retrieval

    NASA Astrophysics Data System (ADS)

    Mukai, Tomohiko; Wakisaka, Ken-Ichi; Kuriyama, Shigeru

    This paper proposes a method for retrieving human motion data with concise retrieval rules based on the spatio-temporal features of motion appearance. Our method first converts motion clip into a form of clausal language that represents geometrical relations between body parts and their temporal relationship. A retrieval rule is then learned from the set of manually classified examples using inductive logic programming (ILP). ILP automatically discovers the essential rule in the same clausal form with a user-defined hypothesis-testing procedure. All motions are indexed using this clausal language, and the desired clips are retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable performance and the rule can be intuitively edited in the same language form. Consequently, our method enables efficient and flexible search from a large dataset with simple query language.

  11. Intelligent query by humming system based on score level fusion of multiple classifiers

    NASA Astrophysics Data System (ADS)

    Pyo Nam, Gi; Thu Trang Luong, Thi; Ha Nam, Hyun; Ryoung Park, Kang; Park, Sung-Joo

    2011-12-01

    Recently, the necessity for content-based music retrieval that can return results even if a user does not know information such as the title or singer has increased. Query-by-humming (QBH) systems have been introduced to address this need, as they allow the user to simply hum snatches of the tune to find the right song. Even though there have been many studies on QBH, few have combined multiple classifiers based on various fusion methods. Here we propose a new QBH system based on the score level fusion of multiple classifiers. This research is novel in the following three respects: three local classifiers [quantized binary (QB) code-based linear scaling (LS), pitch-based dynamic time warping (DTW), and LS] are employed; local maximum and minimum point-based LS and pitch distribution feature-based LS are used as global classifiers; and the combination of local and global classifiers based on the score level fusion by the PRODUCT rule is used to achieve enhanced matching accuracy. Experimental results with the 2006 MIREX QBSH and 2009 MIR-QBSH corpus databases show that the performance of the proposed method is better than that of single classifier and other fusion methods.

  12. Accurate crop classification using hierarchical genetic fuzzy rule-based systems

    NASA Astrophysics Data System (ADS)

    Topaloglou, Charalampos A.; Mylonas, Stelios K.; Stavrakoudis, Dimitris G.; Mastorocostas, Paris A.; Theocharis, John B.

    2014-10-01

    This paper investigates the effectiveness of an advanced classification system for accurate crop classification using very high resolution (VHR) satellite imagery. Specifically, a recently proposed genetic fuzzy rule-based classification system (GFRBCS) is employed, namely, the Hierarchical Rule-based Linguistic Classifier (HiRLiC). HiRLiC's model comprises a small set of simple IF-THEN fuzzy rules, easily interpretable by humans. One of its most important attributes is that its learning algorithm requires minimum user interaction, since the most important learning parameters affecting the classification accuracy are determined by the learning algorithm automatically. HiRLiC is applied in a challenging crop classification task, using a SPOT5 satellite image over an intensively cultivated area in a lake-wetland ecosystem in northern Greece. A rich set of higher-order spectral and textural features is derived from the initial bands of the (pan-sharpened) image, resulting in an input space comprising 119 features. The experimental analysis proves that HiRLiC compares favorably to other interpretable classifiers of the literature, both in terms of structural complexity and classification accuracy. Its testing accuracy was very close to that obtained by complex state-of-the-art classification systems, such as the support vector machines (SVM) and random forest (RF) classifiers. Nevertheless, visual inspection of the derived classification maps shows that HiRLiC is characterized by higher generalization properties, providing more homogeneous classifications that the competitors. Moreover, the runtime requirements for producing the thematic map was orders of magnitude lower than the respective for the competitors.

  13. Detecting borderline infection in an automated monitoring system for healthcare-associated infection using fuzzy logic.

    PubMed

    de Bruin, Jeroen S; Adlassnig, Klaus-Peter; Blacky, Alexander; Koller, Walter

    2016-05-01

    Many electronic infection detection systems employ dichotomous classification methods, classifying patient data as pathological or normal with respect to one or several types of infection. An electronic monitoring and surveillance system for healthcare-associated infections (HAIs) known as Moni-ICU is being operated at the intensive care units (ICUs) of the Vienna General Hospital (VGH) in Austria. Instead of classifying patient data as pathological or normal, Moni-ICU introduces a third borderline class. Patient data classified as borderline with respect to an infection-related clinical concept or HAI surveillance definition signify that the data nearly or partly fulfill the definition for the respective concept or HAI, and are therefore neither fully pathological nor fully normal. Using fuzzy sets and propositional fuzzy rules, we calculated how frequently patient data are classified as normal, borderline, or pathological with respect to infection-related clinical concepts and HAI definitions. In dichotomous classification methods, borderline classification results would be confounded by normal. Therefore, we also assessed whether the constructed fuzzy sets and rules employed by Moni-ICU classified patient data too often or too infrequently as borderline instead of normal. Electronic surveillance data were collected from adult patients (aged 18 years or older) at ten ICUs of the VGH. All adult patients admitted to these ICUs over a two-year period were reviewed. In all 5099 patient stays (4120 patients) comprising 49,394 patient days were evaluated. For classification, a part of Moni-ICU's knowledge base comprising fuzzy sets and rules for ten infection-related clinical concepts and four top-level HAI definitions was employed. Fuzzy sets were used for the classification of concepts directly related to patient data; fuzzy rules were employed for the classification of more abstract clinical concepts, and for top-level HAI surveillance definitions. Data for each clinical concept and HAI definition were classified as either normal, borderline, or pathological. For the assessment of fuzzy sets and rules, we compared how often a borderline value for a fuzzy set or rule would result in a borderline value versus a normal value for its associated HAI definition(s). The statistical significance of these comparisons was expressed in p-values calculated with Fisher's exact test. The results showed that, for clinical concepts represented by fuzzy sets, 1-17% of the data were classified as borderline. The number was substantially higher (20-81%) for fuzzy rules representing more abstract clinical concepts. A small body of data were found to be in the borderline range for the four top-level HAI definitions (0.02-2.35%). Seven of ten fuzzy sets and rules were associated significantly more often with borderline values than with normal values for their respective HAI definition(s) (p<0.001). The study showed that Moni-ICU was effective in classifying patient data as borderline for infection-related concepts and top-level HAI surveillance definitions. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Classification of hadith into positive suggestion, negative suggestion, and information

    NASA Astrophysics Data System (ADS)

    Faraby, Said Al; Riviera Rachmawati Jasin, Eliza; Kusumaningrum, Andina; Adiwijaya

    2018-03-01

    As one of the Muslim life guidelines, based on the meaning of its sentence(s), a hadith can be viewed as a suggestion for doing something, or a suggestion for not doing something, or just information without any suggestion. In this paper, we tried to classify the Bahasa translation of hadith into the three categories using machine learning approach. We tried stemming and stopword removal in preprocessing, and TF-IDF of unigram, bigram, and trigram as the extracted features. As the classifier, we compared between SVM and Neural Network. Since the categories are new, so in order to compare the results of the previous pipelines, we created a baseline classifier using simple rule-based string matching technique. The rule-based algorithm conditions on the occurrence of words such as “janganlah, sholatlah, and so on” to determine the category. The baseline method achieved F1-Score of 0.69, while the best F1-Score from the machine learning approach was 0.88, and it was produced by SVM model with the linear kernel.

  15. Combining classifiers using their receiver operating characteristics and maximum likelihood estimation.

    PubMed

    Haker, Steven; Wells, William M; Warfield, Simon K; Talos, Ion-Florin; Bhagwat, Jui G; Goldberg-Zimring, Daniel; Mian, Asim; Ohno-Machado, Lucila; Zou, Kelly H

    2005-01-01

    In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial. Standard strategies are based on learning classifier combination functions from data. We describe a simple strategy to combine results from classifiers that have not been applied to a common data set, and therefore can not undergo this type of joint training. The strategy, which assumes conditional independence of classifiers, is based on the calculation of a combined Receiver Operating Characteristic (ROC) curve, using maximum likelihood analysis to determine a combination rule for each ROC operating point. We offer some insights into the use of ROC analysis in the field of medical imaging.

  16. Combining Classifiers Using Their Receiver Operating Characteristics and Maximum Likelihood Estimation*

    PubMed Central

    Haker, Steven; Wells, William M.; Warfield, Simon K.; Talos, Ion-Florin; Bhagwat, Jui G.; Goldberg-Zimring, Daniel; Mian, Asim; Ohno-Machado, Lucila; Zou, Kelly H.

    2010-01-01

    In any medical domain, it is common to have more than one test (classifier) to diagnose a disease. In image analysis, for example, there is often more than one reader or more than one algorithm applied to a certain data set. Combining of classifiers is often helpful, but determining the way in which classifiers should be combined is not trivial. Standard strategies are based on learning classifier combination functions from data. We describe a simple strategy to combine results from classifiers that have not been applied to a common data set, and therefore can not undergo this type of joint training. The strategy, which assumes conditional independence of classifiers, is based on the calculation of a combined Receiver Operating Characteristic (ROC) curve, using maximum likelihood analysis to determine a combination rule for each ROC operating point. We offer some insights into the use of ROC analysis in the field of medical imaging. PMID:16685884

  17. Palmprint authentication using multiple classifiers

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Zhang, David

    2004-08-01

    This paper investigates the performance improvement for palmprint authentication using multiple classifiers. The proposed methods on personal authentication using palmprints can be divided into three categories; appearance- , line -, and texture-based. A combination of these approaches can be used to achieve higher performance. We propose to simultaneously extract palmprint features from PCA, Line detectors and Gabor-filters and combine their corresponding matching scores. This paper also investigates the comparative performance of simple combination rules and the hybrid fusion strategy to achieve performance improvement. Our experimental results on the database of 100 users demonstrate the usefulness of such approach over those based on individual classifiers.

  18. Dynamic cluster generation for a fuzzy classifier with ellipsoidal regions.

    PubMed

    Abe, S

    1998-01-01

    In this paper, we discuss a fuzzy classifier with ellipsoidal regions that dynamically generates clusters. First, for the data belonging to a class we define a fuzzy rule with an ellipsoidal region. Namely, using the training data for each class, we calculate the center and the covariance matrix of the ellipsoidal region for the class. Then we tune the fuzzy rules, i.e., the slopes of the membership functions, successively until there is no improvement in the recognition rate of the training data. Then if the number of the data belonging to a class that are misclassified into another class exceeds a prescribed number, we define a new cluster to which those data belong and the associated fuzzy rule. Then we tune the newly defined fuzzy rules in the similar way as stated above, fixing the already obtained fuzzy rules. We iterate generation of clusters and tuning of the newly generated fuzzy rules until the number of the data belonging to a class that are misclassified into another class does not exceed the prescribed number. We evaluate our method using thyroid data, Japanese Hiragana data of vehicle license plates, and blood cell data. By dynamic cluster generation, the generalization ability of the classifier is improved and the recognition rate of the fuzzy classifier for the test data is the best among the neural network classifiers and other fuzzy classifiers if there are no discrete input variables.

  19. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2001-01-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  20. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2000-12-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  1. Opinion evolution based on cellular automata rules in small world networks

    NASA Astrophysics Data System (ADS)

    Shi, Xiao-Ming; Shi, Lun; Zhang, Jie-Fang

    2010-03-01

    In this paper, we apply cellular automata rules, which can be given by a truth table, to human memory. We design each memory as a tracking survey mode that keeps the most recent three opinions. Each cellular automata rule, as a personal mechanism, gives the final ruling in one time period based on the data stored in one's memory. The key focus of the paper is to research the evolution of people's attitudes to the same question. Based on a great deal of empirical observations from computer simulations, all the rules can be classified into 20 groups. We highlight the fact that the phenomenon shown by some rules belonging to the same group will be altered within several steps by other rules in different groups. It is truly amazing that, compared with the last hundreds of presidential voting in America, the eras of important events in America's history coincide with the simulation results obtained by our model.

  2. Classification of the Gabon SAR Mosaic Using a Wavelet Based Rule Classifier

    NASA Technical Reports Server (NTRS)

    Simard, Marc; Saatchi, Sasan; DeGrandi, Gianfranco

    2000-01-01

    A method is developed for semi-automated classification of SAR images of the tropical forest. Information is extracted using the wavelet transform (WT). The transform allows for extraction of structural information in the image as a function of scale. In order to classify the SAR image, a Desicion Tree Classifier is used. The method of pruning is used to optimize classification rate versus tree size. The results give explicit insight on the type of information useful for a given class.

  3. Transfer of Rule-Based Expertise through a Tutorial Dialogue

    DTIC Science & Technology

    1979-09-01

    be causing the infection (.2) [RULE633]. {The student asks, "Does the patient have a fever ?") " FEBRILE MYCIN never needed to inquire about whether...remaining clauses, some we classified most as restrictions, and the one or two that remained constituted the key factor(s) of the rule. The " petechial ...Infection is bacterial, KEY-FACTORt 4) Petechial is one of the types of rash which the patient has, RESTRICTIONS 5) Purpuric is not one of the types

  4. Ontology based decision system for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Trabelsi Ben Ameur, Soumaya; Cloppet, Florence; Wendling, Laurent; Sellami, Dorra

    2018-04-01

    In this paper, we focus on analysis and diagnosis of breast masses inspired by expert concepts and rules. Accordingly, a Bag of Words is built based on the ontology of breast cancer diagnosis, accurately described in the Breast Imaging Reporting and Data System. To fill the gap between low level knowledge and expert concepts, a semantic annotation is developed using a machine learning tool. Then, breast masses are classified into benign or malignant according to expert rules implicitly modeled with a set of classifiers (KNN, ANN, SVM and Decision Tree). This semantic context of analysis offers a frame where we can include external factors and other meta-knowledge such as patient risk factors as well as exploiting more than one modality. Based on MRI and DECEDM modalities, our developed system leads a recognition rate of 99.7% with Decision Tree where an improvement of 24.7 % is obtained owing to semantic analysis.

  5. Predicting Mycobacterium tuberculosis Complex Clades Using Knowledge-Based Bayesian Networks

    PubMed Central

    Bennett, Kristin P.

    2014-01-01

    We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web. PMID:24864238

  6. CARSVM: a class association rule-based classification framework and its application to gene expression data.

    PubMed

    Kianmehr, Keivan; Alhajj, Reda

    2008-09-01

    In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.

  7. Research on classified real-time flood forecasting framework based on K-means cluster and rough set.

    PubMed

    Xu, Wei; Peng, Yong

    2015-01-01

    This research presents a new classified real-time flood forecasting framework. In this framework, historical floods are classified by a K-means cluster according to the spatial and temporal distribution of precipitation, the time variance of precipitation intensity and other hydrological factors. Based on the classified results, a rough set is used to extract the identification rules for real-time flood forecasting. Then, the parameters of different categories within the conceptual hydrological model are calibrated using a genetic algorithm. In real-time forecasting, the corresponding category of parameters is selected for flood forecasting according to the obtained flood information. This research tests the new classified framework on Guanyinge Reservoir and compares the framework with the traditional flood forecasting method. It finds that the performance of the new classified framework is significantly better in terms of accuracy. Furthermore, the framework can be considered in a catchment with fewer historical floods.

  8. Ontology-based classification of remote sensing images using spectral rules

    NASA Astrophysics Data System (ADS)

    Andrés, Samuel; Arvor, Damien; Mougenot, Isabelle; Libourel, Thérèse; Durieux, Laurent

    2017-05-01

    Earth Observation data is of great interest for a wide spectrum of scientific domain applications. An enhanced access to remote sensing images for "domain" experts thus represents a great advance since it allows users to interpret remote sensing images based on their domain expert knowledge. However, such an advantage can also turn into a major limitation if this knowledge is not formalized, and thus is difficult for it to be shared with and understood by other users. In this context, knowledge representation techniques such as ontologies should play a major role in the future of remote sensing applications. We implemented an ontology-based prototype to automatically classify Landsat images based on explicit spectral rules. The ontology is designed in a very modular way in order to achieve a generic and versatile representation of concepts we think of utmost importance in remote sensing. The prototype was tested on four subsets of Landsat images and the results confirmed the potential of ontologies to formalize expert knowledge and classify remote sensing images.

  9. Recognition of pornographic web pages by classifying texts and images.

    PubMed

    Hu, Weiming; Wu, Ou; Chen, Zhouyao; Fu, Zhouyu; Maybank, Steve

    2007-06-01

    With the rapid development of the World Wide Web, people benefit more and more from the sharing of information. However, Web pages with obscene, harmful, or illegal content can be easily accessed. It is important to recognize such unsuitable, offensive, or pornographic Web pages. In this paper, a novel framework for recognizing pornographic Web pages is described. A C4.5 decision tree is used to divide Web pages, according to content representations, into continuous text pages, discrete text pages, and image pages. These three categories of Web pages are handled, respectively, by a continuous text classifier, a discrete text classifier, and an algorithm that fuses the results from the image classifier and the discrete text classifier. In the continuous text classifier, statistical and semantic features are used to recognize pornographic texts. In the discrete text classifier, the naive Bayes rule is used to calculate the probability that a discrete text is pornographic. In the image classifier, the object's contour-based features are extracted to recognize pornographic images. In the text and image fusion algorithm, the Bayes theory is used to combine the recognition results from images and texts. Experimental results demonstrate that the continuous text classifier outperforms the traditional keyword-statistics-based classifier, the contour-based image classifier outperforms the traditional skin-region-based image classifier, the results obtained by our fusion algorithm outperform those by either of the individual classifiers, and our framework can be adapted to different categories of Web pages.

  10. Using Fuzzy Gaussian Inference and Genetic Programming to Classify 3D Human Motions

    NASA Astrophysics Data System (ADS)

    Khoury, Mehdi; Liu, Honghai

    This research introduces and builds on the concept of Fuzzy Gaussian Inference (FGI) (Khoury and Liu in Proceedings of UKCI, 2008 and IEEE Workshop on Robotic Intelligence in Informationally Structured Space (RiiSS 2009), 2009) as a novel way to build Fuzzy Membership Functions that map to hidden Probability Distributions underlying human motions. This method is now combined with a Genetic Programming Fuzzy rule-based system in order to classify boxing moves from natural human Motion Capture data. In this experiment, FGI alone is able to recognise seven different boxing stances simultaneously with an accuracy superior to a GMM-based classifier. Results seem to indicate that adding an evolutionary Fuzzy Inference Engine on top of FGI improves the accuracy of the classifier in a consistent way.

  11. Occupational injury and illness recording and reporting requirements--NAICS update and reporting revisions. Final rule.

    PubMed

    2014-09-18

    OSHA is issuing a final rule to update the appendix to its Injury and Illness Recording and Reporting regulation. The appendix contains a list of industries that are partially exempt from requirements to keep records of work-related injuries and illnesses due to relatively low occupational injury and illness rates. The updated appendix is based on more recent injury and illness data and lists industry groups classified by the North American Industry Classification System (NAICS). The current appendix lists industries classified by Standard Industrial Classification (SIC). The final rule also revises the requirements for reporting work-related fatality, injury, and illness information to OSHA. The current regulation requires employers to report work-related fatalities and in-patient hospitalizations of three or more employees within eight hours of the event. The final rule retains the requirement for employers to report work-related fatalities to OSHA within eight hours of the event but amends the regulation to require employers to report all work-related in-patient hospitalizations, as well as amputations and losses of an eye, to OSHA within 24 hours of the event.

  12. A Framework of Simple Event Detection in Surveillance Video

    NASA Astrophysics Data System (ADS)

    Xu, Weiguang; Zhang, Yafei; Lu, Jianjiang; Tian, Yulong; Wang, Jiabao

    Video surveillance is playing more and more important role in people's social life. Real-time alerting of threaten events and searching interesting content in stored large scale video footage needs human operator to pay full attention on monitor for long time. The labor intensive mode has limit the effectiveness and efficiency of the system. A framework of simple event detection is presented advance the automation of video surveillance. An improved inner key point matching approach is used to compensate motion of background in real-time; frame difference are used to detect foreground; HOG based classifiers are used to classify foreground object into people and car; mean-shift is used to tracking the recognized objects. Events are detected based on predefined rules. The maturity of the algorithms guarantee the robustness of the framework, and the improved approach and the easily checked rules enable the framework to work in real-time. Future works to be done are also discussed.

  13. Classified one-step high-radix signed-digit arithmetic units

    NASA Astrophysics Data System (ADS)

    Cherri, Abdallah K.

    1998-08-01

    High-radix number systems enable higher information storage density, less complexity, fewer system components, and fewer cascaded gates and operations. A simple one-step fully parallel high-radix signed-digit arithmetic is proposed for parallel optical computing based on new joint spatial encodings. This reduces hardware requirements and improves throughput by reducing the space-bandwidth produce needed. The high-radix signed-digit arithmetic operations are based on classifying the neighboring input digit pairs into various groups to reduce the computation rules. A new joint spatial encoding technique is developed to present both the operands and the computation rules. This technique increases the spatial bandwidth product of the spatial light modulators of the system. An optical implementation of the proposed high-radix signed-digit arithmetic operations is also presented. It is shown that our one-step trinary signed-digit and quaternary signed-digit arithmetic units are much simpler and better than all previously reported high-radix signed-digit techniques.

  14. Belief Function Based Decision Fusion for Decentralized Target Classification in Wireless Sensor Networks

    PubMed Central

    Zhang, Wenyu; Zhang, Zhenjiang

    2015-01-01

    Decision fusion in sensor networks enables sensors to improve classification accuracy while reducing the energy consumption and bandwidth demand for data transmission. In this paper, we focus on the decentralized multi-class classification fusion problem in wireless sensor networks (WSNs) and a new simple but effective decision fusion rule based on belief function theory is proposed. Unlike existing belief function based decision fusion schemes, the proposed approach is compatible with any type of classifier because the basic belief assignments (BBAs) of each sensor are constructed on the basis of the classifier’s training output confusion matrix and real-time observations. We also derive explicit global BBA in the fusion center under Dempster’s combinational rule, making the decision making operation in the fusion center greatly simplified. Also, sending the whole BBA structure to the fusion center is avoided. Experimental results demonstrate that the proposed fusion rule has better performance in fusion accuracy compared with the naïve Bayes rule and weighted majority voting rule. PMID:26295399

  15. Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.

    PubMed

    Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi

    2013-01-01

    The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.

  16. A Swarm Optimization approach for clinical knowledge mining.

    PubMed

    Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A

    2015-10-01

    Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. 10 CFR 824.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY...) any applicable rule, regulation or order under the Act relating to the security or safeguarding of Restricted Data or other classified information, shall be subject to a civil penalty not to exceed $100,000...

  18. Argumentation Based Joint Learning: A Novel Ensemble Learning Approach

    PubMed Central

    Xu, Junyi; Yao, Li; Li, Le

    2015-01-01

    Recently, ensemble learning methods have been widely used to improve classification performance in machine learning. In this paper, we present a novel ensemble learning method: argumentation based multi-agent joint learning (AMAJL), which integrates ideas from multi-agent argumentation, ensemble learning, and association rule mining. In AMAJL, argumentation technology is introduced as an ensemble strategy to integrate multiple base classifiers and generate a high performance ensemble classifier. We design an argumentation framework named Arena as a communication platform for knowledge integration. Through argumentation based joint learning, high quality individual knowledge can be extracted, and thus a refined global knowledge base can be generated and used independently for classification. We perform numerous experiments on multiple public datasets using AMAJL and other benchmark methods. The results demonstrate that our method can effectively extract high quality knowledge for ensemble classifier and improve the performance of classification. PMID:25966359

  19. Designing and Implementation of a Heart Failure Telemonitoring System

    PubMed Central

    Safdari, Reza; Jafarpour, Maryam; Mokhtaran, Mehrshad; Naderi, Nasim

    2017-01-01

    Introduction: The aim of this study was to identify patients at-risk, enhancing self-care management of HF patients at home and reduce the disease exacerbations and readmissions. Method: In this research according to standard heart failure guidelines and Semi-structured interviews with 10 heart failure Specialists, a draft heart failure rule set for alerts and patient instructions was developed. Eventually, the clinical champion of the project vetted the rule set. Also we designed a transactional system to enhance monitoring and follow up of CHF patients. With this system, CHF patients are required to measure their physiological measurements (vital signs and body weight) every day and to submit their symptoms using the app. additionally, based on their data, they will receive customized notifications and motivation messages to classify risk of disease exacerbation. The architecture of system comprised of six major components: 1) a patient data collection suite including a mobile app and website; 2) Data Receiver; 3) Database; 4) a Specialists expert Panel; 5) Rule engine classifier; 6) Notifier engine. Results: This system has implemented in Iran for the first time and we are currently in the testing phase with 10 patients to evaluate the technical performance of our system. The developed expert system generates alerts and instructions based on the patient’s data and the notify engine notifies responsible nurses and physicians and sometimes patients. Detailed analysis of those results will be reported in a future report. Conclusion: This study is based on the design of a telemonitoring system for heart failure self-care that intents to overcome the gap that occurs when patients discharge from the hospital and tries to accurate requirement of readmission. A rule set for classifying and resulting automated alerts and patient instructions for heart failure telemonitoring was developed. It also facilitates daily communication among patients and heart failure clinicians so any deterioration in health could be identified immediately. PMID:29114106

  20. Designing and Implementation of a Heart Failure Telemonitoring System.

    PubMed

    Safdari, Reza; Jafarpour, Maryam; Mokhtaran, Mehrshad; Naderi, Nasim

    2017-09-01

    The aim of this study was to identify patients at-risk, enhancing self-care management of HF patients at home and reduce the disease exacerbations and readmissions. In this research according to standard heart failure guidelines and Semi-structured interviews with 10 heart failure Specialists, a draft heart failure rule set for alerts and patient instructions was developed. Eventually, the clinical champion of the project vetted the rule set. Also we designed a transactional system to enhance monitoring and follow up of CHF patients. With this system, CHF patients are required to measure their physiological measurements (vital signs and body weight) every day and to submit their symptoms using the app. additionally, based on their data, they will receive customized notifications and motivation messages to classify risk of disease exacerbation. The architecture of system comprised of six major components: 1) a patient data collection suite including a mobile app and website; 2) Data Receiver; 3) Database; 4) a Specialists expert Panel; 5) Rule engine classifier; 6) Notifier engine. This system has implemented in Iran for the first time and we are currently in the testing phase with 10 patients to evaluate the technical performance of our system. The developed expert system generates alerts and instructions based on the patient's data and the notify engine notifies responsible nurses and physicians and sometimes patients. Detailed analysis of those results will be reported in a future report. This study is based on the design of a telemonitoring system for heart failure self-care that intents to overcome the gap that occurs when patients discharge from the hospital and tries to accurate requirement of readmission. A rule set for classifying and resulting automated alerts and patient instructions for heart failure telemonitoring was developed. It also facilitates daily communication among patients and heart failure clinicians so any deterioration in health could be identified immediately.

  1. Identifying Suicide Ideation and Suicidal Attempts in a Psychiatric Clinical Research Database using Natural Language Processing.

    PubMed

    Fernandes, Andrea C; Dutta, Rina; Velupillai, Sumithra; Sanyal, Jyoti; Stewart, Robert; Chandran, David

    2018-05-09

    Research into suicide prevention has been hampered by methodological limitations such as low sample size and recall bias. Recently, Natural Language Processing (NLP) strategies have been used with Electronic Health Records to increase information extraction from free text notes as well as structured fields concerning suicidality and this allows access to much larger cohorts than previously possible. This paper presents two novel NLP approaches - a rule-based approach to classify the presence of suicide ideation and a hybrid machine learning and rule-based approach to identify suicide attempts in a psychiatric clinical database. Good performance of the two classifiers in the evaluation study suggest they can be used to accurately detect mentions of suicide ideation and attempt within free-text documents in this psychiatric database. The novelty of the two approaches lies in the malleability of each classifier if a need to refine performance, or meet alternate classification requirements arises. The algorithms can also be adapted to fit infrastructures of other clinical datasets given sufficient clinical recording practice knowledge, without dependency on medical codes or additional data extraction of known risk factors to predict suicidal behaviour.

  2. Empirical Development of an MMPI Subscale for the Assessment of Combat-Related Posttraumatic Stress Disorder.

    ERIC Educational Resources Information Center

    Keane, Terence M.; And Others

    1984-01-01

    Developed empirically based criteria for use of the Minnesota Multiphasic Personality Inventory (MMPI) to aid in the assessment and diagnosis of Posttraumatic Stress Disorder (PTSD) in patients (N=200). Analysis based on an empircally derived decision rule correctly classified 74 percent of the patients in each group. (LLL)

  3. A universal hybrid decision tree classifier design for human activity classification.

    PubMed

    Chien, Chieh; Pottie, Gregory J

    2012-01-01

    A system that reliably classifies daily life activities can contribute to more effective and economical treatments for patients with chronic conditions or undergoing rehabilitative therapy. We propose a universal hybrid decision tree classifier for this purpose. The tree classifier can flexibly implement different decision rules at its internal nodes, and can be adapted from a population-based model when supplemented by training data for individuals. The system was tested using seven subjects each monitored by 14 triaxial accelerometers. Each subject performed fourteen different activities typical of daily life. Using leave-one-out cross validation, our decision tree produced average classification accuracies of 89.9%. In contrast, the MATLAB personalized tree classifiers using Gini's diversity index as the split criterion followed by optimally tuning the thresholds for each subject yielded 69.2%.

  4. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.

  5. Semantic Classification of Diseases in Discharge Summaries Using a Context-aware Rule-based Classifier

    PubMed Central

    Solt, Illés; Tikk, Domonkos; Gál, Viktor; Kardkovács, Zsolt T.

    2009-01-01

    Objective Automated and disease-specific classification of textual clinical discharge summaries is of great importance in human life science, as it helps physicians to make medical studies by providing statistically relevant data for analysis. This can be further facilitated if, at the labeling of discharge summaries, semantic labels are also extracted from text, such as whether a given disease is present, absent, questionable in a patient, or is unmentioned in the document. The authors present a classification technique that successfully solves the semantic classification task. Design The authors introduce a context-aware rule-based semantic classification technique for use on clinical discharge summaries. The classification is performed in subsequent steps. First, some misleading parts are removed from the text; then the text is partitioned into positive, negative, and uncertain context segments, then a sequence of binary classifiers is applied to assign the appropriate semantic labels. Measurement For evaluation the authors used the documents of the i2b2 Obesity Challenge and adopted its evaluation measures: F1-macro and F1-micro for measurements. Results On the two subtasks of the Obesity Challenge (textual and intuitive classification) the system performed very well, and achieved a F1-macro = 0.80 for the textual and F1-macro = 0.67 for the intuitive tasks, and obtained second place at the textual and first place at the intuitive subtasks of the challenge. Conclusions The authors show in the paper that a simple rule-based classifier can tackle the semantic classification task more successfully than machine learning techniques, if the training data are limited and some semantic labels are very sparse. PMID:19390101

  6. Histogram Curve Matching Approaches for Object-based Image Classification of Land Cover and Land Use

    PubMed Central

    Toure, Sory I.; Stow, Douglas A.; Weeks, John R.; Kumar, Sunil

    2013-01-01

    The classification of image-objects is usually done using parametric statistical measures of central tendency and/or dispersion (e.g., mean or standard deviation). The objectives of this study were to analyze digital number histograms of image objects and evaluate classifications measures exploiting characteristic signatures of such histograms. Two histograms matching classifiers were evaluated and compared to the standard nearest neighbor to mean classifier. An ADS40 airborne multispectral image of San Diego, California was used for assessing the utility of curve matching classifiers in a geographic object-based image analysis (GEOBIA) approach. The classifications were performed with data sets having 0.5 m, 2.5 m, and 5 m spatial resolutions. Results show that histograms are reliable features for characterizing classes. Also, both histogram matching classifiers consistently performed better than the one based on the standard nearest neighbor to mean rule. The highest classification accuracies were produced with images having 2.5 m spatial resolution. PMID:24403648

  7. The Hpp Rule with Memory and the Density Classification Task

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón

    This article considers an extension to the standard framework of cellular automata by implementing memory capability in cells. It is shown that the important block HPP rule behaves as an excellent classifier of the density in the initial configuration when applied to cells endowed with pondered memory of their previous states. If the weighing is made so that the most recent state values are assigning the highest weights, the HPP rule surpasses the performance of the best two-dimensional density classifiers reported in the literature.

  8. Evolving rule-based systems in two medical domains using genetic programming.

    PubMed

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf

    2004-11-01

    To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.

  9. Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry

    NASA Astrophysics Data System (ADS)

    Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao

    2017-12-01

    We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we developed 24 test items addressing the attributes of exothermic and endothermic reactions, chemical bonds and heat quantity change, reaction heat and enthalpy, thermochemical equations, and Hess's law. The test was administered to a sample base of 694 senior high school students taught in 3 schools across 2 cities. Results based on the Rule Space Model analysis indicated that (1) the test items developed by the Rule Space Model were of high psychometric quality for good analysis of difficulties, discriminations, reliabilities, and validities; (2) the Rule Space Model analysis classified the students into seven different attribute mastery patterns; and (3) the initial hypothesized learning progression was modified by the attribute mastery patterns and the learning paths to be more precise and detailed.

  10. Mapping Fuels on the Okanogan and Wenatchee National Forests

    Treesearch

    Crystal L. Raymond; Lara-Karena B. Kellogg; Donald McKenzie

    2006-01-01

    Resource managers need spatially explicit fuels data to manage fire hazard and evaluate the ecological effects of wildland fires and fuel treatments. For this study, fuels were mapped on the Okanogan and Wenatchee National Forests (OWNF) using a rule-based method and the Fuels Characteristic Classification System (FCCS). The FCCS classifies fuels based on their...

  11. Textual and visual content-based anti-phishing: a Bayesian approach.

    PubMed

    Zhang, Haijun; Liu, Gang; Chow, Tommy W S; Liu, Wenyin

    2011-10-01

    A novel framework using a Bayesian approach for content-based phishing web page detection is presented. Our model takes into account textual and visual contents to measure the similarity between the protected web page and suspicious web pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are introduced. An outstanding feature of this paper is the exploration of a Bayesian model to estimate the matching threshold. This is required in the classifier for determining the class of the web page and identifying whether the web page is phishing or not. In the text classifier, the naive Bayes rule is used to calculate the probability that a web page is phishing. In the image classifier, the earth mover's distance is employed to measure the visual similarity, and our Bayesian model is designed to determine the threshold. In the data fusion algorithm, the Bayes theory is used to synthesize the classification results from textual and visual content. The effectiveness of our proposed approach was examined in a large-scale dataset collected from real phishing cases. Experimental results demonstrated that the text classifier and the image classifier we designed deliver promising results, the fusion algorithm outperforms either of the individual classifiers, and our model can be adapted to different phishing cases. © 2011 IEEE

  12. Simple Rules, Not So Simple: The Use of International Ovarian Tumor Analysis (IOTA) Terminology and Simple Rules in Inexperienced Hands in a Prospective Multicenter Cohort Study.

    PubMed

    Meys, Evelyne; Rutten, Iris; Kruitwagen, Roy; Slangen, Brigitte; Lambrechts, Sandrina; Mertens, Helen; Nolting, Ernst; Boskamp, Dieuwke; Van Gorp, Toon

    2017-12-01

     To analyze how well untrained examiners - without experience in the use of International Ovarian Tumor Analysis (IOTA) terminology or simple ultrasound-based rules (simple rules) - are able to apply IOTA terminology and simple rules and to assess the level of agreement between non-experts and an expert.  This prospective multicenter cohort study enrolled women with ovarian masses. Ultrasound was performed by non-expert examiners and an expert. Ultrasound features were recorded using IOTA nomenclature, and used for classifying the mass by simple rules. Interobserver agreement was evaluated with Fleiss' kappa and percentage agreement between observers.  50 consecutive women were included. We observed 46 discrepancies in the description of ovarian masses when non-experts utilized IOTA terminology. Tumor type was misclassified often (n = 22), resulting in poor interobserver agreement between the non-experts and the expert (kappa = 0.39, 95 %-CI 0.244 - 0.529, percentage of agreement = 52.0 %). Misinterpretation of simple rules by non-experts was observed 57 times, resulting in an erroneous diagnosis in 15 patients (30 %). The agreement for classifying the mass as benign, malignant or inconclusive by simple rules was only moderate between the non-experts and the expert (kappa = 0.50, 95 %-CI 0.300 - 0.704, percentage of agreement = 70.0 %). The level of agreement for all 10 simple rules features varied greatly (kappa index range: -0.08 - 0.74, percentage of agreement 66 - 94 %).  Although simple rules are useful to distinguish benign from malignant adnexal masses, they are not that simple for untrained examiners. Training with both IOTA terminology and simple rules is necessary before simple rules can be introduced into guidelines and daily clinical practice. © Georg Thieme Verlag KG Stuttgart · New York.

  13. A Distributed Fuzzy Associative Classifier for Big Data.

    PubMed

    Segatori, Armando; Bechini, Alessio; Ducange, Pietro; Marcelloni, Francesco

    2017-09-19

    Fuzzy associative classification has not been widely analyzed in the literature, although associative classifiers (ACs) have proved to be very effective in different real domain applications. The main reason is that learning fuzzy ACs is a very heavy task, especially when dealing with large datasets. To overcome this drawback, in this paper, we propose an efficient distributed fuzzy associative classification approach based on the MapReduce paradigm. The approach exploits a novel distributed discretizer based on fuzzy entropy for efficiently generating fuzzy partitions of the attributes. Then, a set of candidate fuzzy association rules is generated by employing a distributed fuzzy extension of the well-known FP-Growth algorithm. Finally, this set is pruned by using three purposely adapted types of pruning. We implemented our approach on the popular Hadoop framework. Hadoop allows distributing storage and processing of very large data sets on computer clusters built from commodity hardware. We have performed an extensive experimentation and a detailed analysis of the results using six very large datasets with up to 11,000,000 instances. We have also experimented different types of reasoning methods. Focusing on accuracy, model complexity, computation time, and scalability, we compare the results achieved by our approach with those obtained by two distributed nonfuzzy ACs recently proposed in the literature. We highlight that, although the accuracies result to be comparable, the complexity, evaluated in terms of number of rules, of the classifiers generated by the fuzzy distributed approach is lower than the one of the nonfuzzy classifiers.

  14. Music models aberrant rule decoding and reward valuation in dementia

    PubMed Central

    Clark, Camilla N; Golden, Hannah L; McCallion, Oliver; Nicholas, Jennifer M; Cohen, Miriam H; Slattery, Catherine F; Paterson, Ross W; Fletcher, Phillip D; Mummery, Catherine J; Rohrer, Jonathan D; Crutch, Sebastian J; Warren, Jason D

    2018-01-01

    Abstract Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer’s disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved (‘finished’) or unresolved (‘unfinished’); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias. PMID:29186630

  15. Method and system for analyzing and classifying electronic information

    DOEpatents

    McGaffey, Robert W.; Bell, Michael Allen; Kortman, Peter J.; Wilson, Charles H.

    2003-04-29

    A data analysis and classification system that reads the electronic information, analyzes the electronic information according to a user-defined set of logical rules, and returns a classification result. The data analysis and classification system may accept any form of computer-readable electronic information. The system creates a hash table wherein each entry of the hash table contains a concept corresponding to a word or phrase which the system has previously encountered. The system creates an object model based on the user-defined logical associations, used for reviewing each concept contained in the electronic information in order to determine whether the electronic information is classified. The data analysis and classification system extracts each concept in turn from the electronic information, locates it in the hash table, and propagates it through the object model. In the event that the system can not find the electronic information token in the hash table, that token is added to a missing terms list. If any rule is satisfied during propagation of the concept through the object model, the electronic information is classified.

  16. Clinical decision rules, spinal pain classification and prediction of treatment outcome: A discussion of recent reports in the rehabilitation literature

    PubMed Central

    2012-01-01

    Clinical decision rules are an increasingly common presence in the biomedical literature and represent one strategy of enhancing clinical-decision making with the goal of improving the efficiency and effectiveness of healthcare delivery. In the context of rehabilitation research, clinical decision rules have been predominantly aimed at classifying patients by predicting their treatment response to specific therapies. Traditionally, recommendations for developing clinical decision rules propose a multistep process (derivation, validation, impact analysis) using defined methodology. Research efforts aimed at developing a “diagnosis-based clinical decision rule” have departed from this convention. Recent publications in this line of research have used the modified terminology “diagnosis-based clinical decision guide.” Modifications to terminology and methodology surrounding clinical decision rules can make it more difficult for clinicians to recognize the level of evidence associated with a decision rule and understand how this evidence should be implemented to inform patient care. We provide a brief overview of clinical decision rule development in the context of the rehabilitation literature and two specific papers recently published in Chiropractic and Manual Therapies. PMID:22726639

  17. Optimal number of features as a function of sample size for various classification rules.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R

    2005-04-15

    Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.

  18. A comparison of rule-based and machine learning approaches for classifying patient portal messages.

    PubMed

    Cronin, Robert M; Fabbri, Daniel; Denny, Joshua C; Rosenbloom, S Trent; Jackson, Gretchen Purcell

    2017-09-01

    Secure messaging through patient portals is an increasingly popular way that consumers interact with healthcare providers. The increasing burden of secure messaging can affect clinic staffing and workflows. Manual management of portal messages is costly and time consuming. Automated classification of portal messages could potentially expedite message triage and delivery of care. We developed automated patient portal message classifiers with rule-based and machine learning techniques using bag of words and natural language processing (NLP) approaches. To evaluate classifier performance, we used a gold standard of 3253 portal messages manually categorized using a taxonomy of communication types (i.e., main categories of informational, medical, logistical, social, and other communications, and subcategories including prescriptions, appointments, problems, tests, follow-up, contact information, and acknowledgement). We evaluated our classifiers' accuracies in identifying individual communication types within portal messages with area under the receiver-operator curve (AUC). Portal messages often contain more than one type of communication. To predict all communication types within single messages, we used the Jaccard Index. We extracted the variables of importance for the random forest classifiers. The best performing approaches to classification for the major communication types were: logistic regression for medical communications (AUC: 0.899); basic (rule-based) for informational communications (AUC: 0.842); and random forests for social communications and logistical communications (AUCs: 0.875 and 0.925, respectively). The best performing classification approach of classifiers for individual communication subtypes was random forests for Logistical-Contact Information (AUC: 0.963). The Jaccard Indices by approach were: basic classifier, Jaccard Index: 0.674; Naïve Bayes, Jaccard Index: 0.799; random forests, Jaccard Index: 0.859; and logistic regression, Jaccard Index: 0.861. For medical communications, the most predictive variables were NLP concepts (e.g., Temporal_Concept, which maps to 'morning', 'evening' and Idea_or_Concept which maps to 'appointment' and 'refill'). For logistical communications, the most predictive variables contained similar numbers of NLP variables and words (e.g., Telephone mapping to 'phone', 'insurance'). For social and informational communications, the most predictive variables were words (e.g., social: 'thanks', 'much', informational: 'question', 'mean'). This study applies automated classification methods to the content of patient portal messages and evaluates the application of NLP techniques on consumer communications in patient portal messages. We demonstrated that random forest and logistic regression approaches accurately classified the content of portal messages, although the best approach to classification varied by communication type. Words were the most predictive variables for classification of most communication types, although NLP variables were most predictive for medical communication types. As adoption of patient portals increases, automated techniques could assist in understanding and managing growing volumes of messages. Further work is needed to improve classification performance to potentially support message triage and answering. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. AdaBoost-based algorithm for network intrusion detection.

    PubMed

    Hu, Weiming; Hu, Wei; Maybank, Steve

    2008-04-01

    Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.

  20. Local Subspace Classifier with Transform-Invariance for Image Classification

    NASA Astrophysics Data System (ADS)

    Hotta, Seiji

    A family of linear subspace classifiers called local subspace classifier (LSC) outperforms the k-nearest neighbor rule (kNN) and conventional subspace classifiers in handwritten digit classification. However, LSC suffers very high sensitivity to image transformations because it uses projection and the Euclidean distances for classification. In this paper, I present a combination of a local subspace classifier (LSC) and a tangent distance (TD) for improving accuracy of handwritten digit recognition. In this classification rule, we can deal with transform-invariance easily because we are able to use tangent vectors for approximation of transformations. However, we cannot use tangent vectors in other type of images such as color images. Hence, kernel LSC (KLSC) is proposed for incorporating transform-invariance into LSC via kernel mapping. The performance of the proposed methods is verified with the experiments on handwritten digit and color image classification.

  1. Predicting the need for CT imaging in children with minor head injury using an ensemble of Naive Bayes classifiers.

    PubMed

    Klement, William; Wilk, Szymon; Michalowski, Wojtek; Farion, Ken J; Osmond, Martin H; Verter, Vedat

    2012-03-01

    Using an automatic data-driven approach, this paper develops a prediction model that achieves more balanced performance (in terms of sensitivity and specificity) than the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) rule, when predicting the need for computed tomography (CT) imaging of children after a minor head injury. CT is widely considered an effective tool for evaluating patients with minor head trauma who have potentially suffered serious intracranial injury. However, its use poses possible harmful effects, particularly for children, due to exposure to radiation. Safety concerns, along with issues of cost and practice variability, have led to calls for the development of effective methods to decide when CT imaging is needed. Clinical decision rules represent such methods and are normally derived from the analysis of large prospectively collected patient data sets. The CATCH rule was created by a group of Canadian pediatric emergency physicians to support the decision of referring children with minor head injury to CT imaging. The goal of the CATCH rule was to maximize the sensitivity of predictions of potential intracranial lesion while keeping specificity at a reasonable level. After extensive analysis of the CATCH data set, characterized by severe class imbalance, and after a thorough evaluation of several data mining methods, we derived an ensemble of multiple Naive Bayes classifiers as the prediction model for CT imaging decisions. In the first phase of the experiment we compared the proposed ensemble model to other ensemble models employing rule-, tree- and instance-based member classifiers. Our prediction model demonstrated the best performance in terms of AUC, G-mean and sensitivity measures. In the second phase, using a bootstrapping experiment similar to that reported by the CATCH investigators, we showed that the proposed ensemble model achieved a more balanced predictive performance than the CATCH rule with an average sensitivity of 82.8% and an average specificity of 74.4% (vs. 98.1% and 50.0% for the CATCH rule respectively). Automatically derived prediction models cannot replace a physician's acumen. However, they help establish reference performance indicators for the purpose of developing clinical decision rules so the trade-off between prediction sensitivity and specificity is better understood. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. System diagnostic builder

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Burke, Roger

    1992-01-01

    The System Diagnostic Builder (SDB) is an automated software verification and validation tool using state-of-the-art Artificial Intelligence (AI) technologies. The SDB is used extensively by project BURKE at NASA-JSC as one component of a software re-engineering toolkit. The SDB is applicable to any government or commercial organization which performs verification and validation tasks. The SDB has an X-window interface, which allows the user to 'train' a set of rules for use in a rule-based evaluator. The interface has a window that allows the user to plot up to five data parameters (attributes) at a time. Using these plots and a mouse, the user can identify and classify a particular behavior of the subject software. Once the user has identified the general behavior patterns of the software, he can train a set of rules to represent his knowledge of that behavior. The training process builds rules and fuzzy sets to use in the evaluator. The fuzzy sets classify those data points not clearly identified as a particular classification. Once an initial set of rules is trained, each additional data set given to the SDB will be used by a machine learning mechanism to refine the rules and fuzzy sets. This is a passive process and, therefore, it does not require any additional operator time. The evaluation component of the SDB can be used to validate a single software system using some number of different data sets, such as a simulator. Moreover, it can be used to validate software systems which have been re-engineered from one language and design methodology to a totally new implementation.

  3. Area Determination of Diabetic Foot Ulcer Images Using a Cascaded Two-Stage SVM-Based Classification.

    PubMed

    Wang, Lei; Pedersen, Peder C; Agu, Emmanuel; Strong, Diane M; Tulu, Bengisu

    2017-09-01

    The standard chronic wound assessment method based on visual examination is potentially inaccurate and also represents a significant clinical workload. Hence, computer-based systems providing quantitative wound assessment may be valuable for accurately monitoring wound healing status, with the wound area the best suited for automated analysis. Here, we present a novel approach, using support vector machines (SVM) to determine the wound boundaries on foot ulcer images captured with an image capture box, which provides controlled lighting and range. After superpixel segmentation, a cascaded two-stage classifier operates as follows: in the first stage, a set of k binary SVM classifiers are trained and applied to different subsets of the entire training images dataset, and incorrectly classified instances are collected. In the second stage, another binary SVM classifier is trained on the incorrectly classified set. We extracted various color and texture descriptors from superpixels that are used as input for each stage in the classifier training. Specifically, color and bag-of-word representations of local dense scale invariant feature transformation features are descriptors for ruling out irrelevant regions, and color and wavelet-based features are descriptors for distinguishing healthy tissue from wound regions. Finally, the detected wound boundary is refined by applying the conditional random field method. We have implemented the wound classification on a Nexus 5 smartphone platform, except for training which was done offline. Results are compared with other classifiers and show that our approach provides high global performance rates (average sensitivity = 73.3%, specificity = 94.6%) and is sufficiently efficient for a smartphone-based image analysis.

  4. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data.

    PubMed

    Yang, Yang; Niehaus, Katherine E; Walker, Timothy M; Iqbal, Zamin; Walker, A Sarah; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W; Smith, E Grace; Zhu, Tingting; Clifton, David A

    2018-05-15

    Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymorphisms is sufficient to cause resistance, which yields low sensitivity for resistance classification. Given the availability of DNA sequencing data from MTB, we developed machine learning models for a cohort of 1839 UK bacterial isolates to classify MTB resistance against eight anti-TB drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, ciprofloxacin, moxifloxacin, ofloxacin, streptomycin) and to classify multi-drug resistance. Compared to previous rules-based approach, the sensitivities from the best-performing models increased by 2-4% for isoniazid, rifampicin and ethambutol to 97% (P < 0.01), respectively; for ciprofloxacin and multi-drug resistant TB, they increased to 96%. For moxifloxacin and ofloxacin, sensitivities increased by 12 and 15% from 83 and 81% based on existing known resistance alleles to 95% and 96% (P < 0.01), respectively. Particularly, our models improved sensitivities compared to the previous rules-based approach by 15 and 24% to 84 and 87% for pyrazinamide and streptomycin (P < 0.01), respectively. The best-performing models increase the area-under-the-ROC curve by 10% for pyrazinamide and streptomycin (P < 0.01), and 4-8% for other drugs (P < 0.01). The details of source code are provided at http://www.robots.ox.ac.uk/~davidc/code.php. david.clifton@eng.ox.ac.uk. Supplementary data are available at Bioinformatics online.

  5. A NAIVE BAYES SOURCE CLASSIFIER FOR X-RAY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broos, Patrick S.; Getman, Konstantin V.; Townsley, Leisa K.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) provides a sensitive X-ray survey of a nearby starburst region over >1 deg{sup 2} in extent. Thousands of faint X-ray sources are found, many concentrated into rich young stellar clusters. However, significant contamination from unrelated Galactic and extragalactic sources is present in the X-ray catalog. We describe the use of a naive Bayes classifier to assign membership probabilities to individual sources, based on source location, X-ray properties, and visual/infrared properties. For the particular membership decision rule adopted, 75% of CCCP sources are classified as members, 11% are classified as contaminants, and 14% remain unclassified.more » The resulting sample of stars likely to be Carina members is used in several other studies, which appear in this special issue devoted to the CCCP.« less

  6. A two-step automatic sleep stage classification method with dubious range detection.

    PubMed

    Sousa, Teresa; Cruz, Aniana; Khalighi, Sirvan; Pires, Gabriel; Nunes, Urbano

    2015-04-01

    The limitations of the current systems of automatic sleep stage classification (ASSC) are essentially related to the similarities between epochs from different sleep stages and the subjects' variability. Several studies have already identified the situations with the highest likelihood of misclassification in sleep scoring. Here, we took advantage of such information to develop an ASSC system based on knowledge of subjects' variability of some indicators that characterize sleep stages and on the American Academy of Sleep Medicine (AASM) rules. An ASSC system consisting of a two-step classifier is proposed. In the first step, epochs are classified using support vector machines (SVMs) spread into different nodes of a decision tree. In the post-processing step, the epochs suspected of misclassification (dubious classification) are tagged, and a new classification is suggested. Identification and correction are based on the AASM rules, and on misclassifications most commonly found/reported in automatic sleep staging. Six electroencephalographic and two electrooculographic channels were used to classify wake, non-rapid eye movement (NREM) sleep--N1, N2 and N3, and rapid eye movement (REM) sleep. The proposed system was tested in a dataset of 14 clinical polysomnographic records of subjects suspected of apnea disorders. Wake and REM epochs not falling in the dubious range, are classified with accuracy levels compatible with the requirements for clinical applications. The suggested correction assigned to the epochs that are tagged as dubious enhances the global results of all sleep stages. This approach provides reliable sleep staging results for non-dubious epochs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Stability of INFIT and OUTFIT Compared to Simulated Estimates in Applied Setting.

    PubMed

    Hodge, Kari J; Morgan, Grant B

    Residual-based fit statistics are commonly used as an indication of the extent to which the item response data fit the Rash model. Fit statistic estimates are influenced by sample size and rules-of thumb estimates may result in incorrect conclusions about the extent to which the model fits the data. Estimates obtained in this analysis were compared to 250 simulated data sets to examine the stability of the estimates. All INFIT estimates were within the rule-of-thumb range of 0.7 to 1.3. However, only 82% of the INFIT estimates fell within the 2.5th and 97.5th percentile of the simulated item's INFIT distributions using this 95% confidence-like interval. This is a 18 percentage point difference in items that were classified as acceptable. Fourty-eight percent of OUTFIT estimates fell within the 0.7 to 1.3 rule- of-thumb range. Whereas 34% of OUTFIT estimates fell within the 2.5th and 97.5th percentile of the simulated item's OUTFIT distributions. This is a 13 percentage point difference in items that were classified as acceptable. When using the rule-of- thumb ranges for fit estimates the magnitude of misfit was smaller than with the 95% confidence interval of the simulated distribution. The findings indicate that the use of confidence intervals as critical values for fit statistics leads to different model data fit conclusions than traditional rule of thumb critical values.

  8. Cellular-automata-based learning network for pattern recognition

    NASA Astrophysics Data System (ADS)

    Tzionas, Panagiotis G.; Tsalides, Phillippos G.; Thanailakis, Adonios

    1991-11-01

    Most classification techniques either adopt an approach based directly on the statistical characteristics of the pattern classes involved, or they transform the patterns in a feature space and try to separate the point clusters in this space. An alternative approach based on memory networks has been presented, its novelty being that it can be implemented in parallel and it utilizes direct features of the patterns rather than statistical characteristics. This study presents a new approach for pattern classification using pseudo 2-D binary cellular automata (CA). This approach resembles the memory network classifier in the sense that it is based on an adaptive knowledge based formed during a training phase, and also in the fact that both methods utilize pattern features that are directly available. The main advantage of this approach is that the sensitivity of the pattern classifier can be controlled. The proposed pattern classifier has been designed using 1.5 micrometers design rules for an N-well CMOS process. Layout has been achieved using SOLO 1400. Binary pseudo 2-D hybrid additive CA (HACA) is described in the second section of this paper. The third section describes the operation of the pattern classifier and the fourth section presents some possible applications. The VLSI implementation of the pattern classifier is presented in the fifth section and, finally, the sixth section draws conclusions from the results obtained.

  9. Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  10. 10 CFR 824.7 - Final notice of violation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... whether the person violated or is continuing to violate a classified information security requirement. (b... classified information security requirement, the Director may issue to the person a final notice of violation... DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION...

  11. 10 CFR 824.7 - Final notice of violation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... whether the person violated or is continuing to violate a classified information security requirement. (b... classified information security requirement, the Director may issue to the person a final notice of violation... DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION...

  12. Decoding of Human Movements Based on Deep Brain Local Field Potentials Using Ensemble Neural Networks

    PubMed Central

    2017-01-01

    Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson's disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about 0.729 ± 0.16 for decoding movement from the resting state and about 0.671 ± 0.14 for decoding left and right visually cued movements. PMID:29201041

  13. Decision support system for triage management: A hybrid approach using rule-based reasoning and fuzzy logic.

    PubMed

    Dehghani Soufi, Mahsa; Samad-Soltani, Taha; Shams Vahdati, Samad; Rezaei-Hachesu, Peyman

    2018-06-01

    Fast and accurate patient triage for the response process is a critical first step in emergency situations. This process is often performed using a paper-based mode, which intensifies workload and difficulty, wastes time, and is at risk of human errors. This study aims to design and evaluate a decision support system (DSS) to determine the triage level. A combination of the Rule-Based Reasoning (RBR) and Fuzzy Logic Classifier (FLC) approaches were used to predict the triage level of patients according to the triage specialist's opinions and Emergency Severity Index (ESI) guidelines. RBR was applied for modeling the first to fourth decision points of the ESI algorithm. The data relating to vital signs were used as input variables and modeled using fuzzy logic. Narrative knowledge was converted to If-Then rules using XML. The extracted rules were then used to create the rule-based engine and predict the triage levels. Fourteen RBR and 27 fuzzy rules were extracted and used in the rule-based engine. The performance of the system was evaluated using three methods with real triage data. The accuracy of the clinical decision support systems (CDSSs; in the test data) was 99.44%. The evaluation of the error rate revealed that, when using the traditional method, 13.4% of the patients were miss-triaged, which is statically significant. The completeness of the documentation also improved from 76.72% to 98.5%. Designed system was effective in determining the triage level of patients and it proved helpful for nurses as they made decisions, generated nursing diagnoses based on triage guidelines. The hybrid approach can reduce triage misdiagnosis in a highly accurate manner and improve the triage outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Using SAR Interferograms and Coherence Images for Object-Based Delineation of Unstable Slopes

    NASA Astrophysics Data System (ADS)

    Friedl, Barbara; Holbling, Daniel

    2015-05-01

    This study uses synthetic aperture radar (SAR) interferometric products for the semi-automated identification and delineation of unstable slopes and active landslides. Single-pair interferograms and coherence images are therefore segmented and classified in an object-based image analysis (OBIA) framework. The rule-based classification approach has been applied to landslide-prone areas located in Taiwan and Southern Germany. The semi-automatically obtained results were validated against landslide polygons derived from manual interpretation.

  15. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  16. Finger vein identification using fuzzy-based k-nearest centroid neighbor classifier

    NASA Astrophysics Data System (ADS)

    Rosdi, Bakhtiar Affendi; Jaafar, Haryati; Ramli, Dzati Athiar

    2015-02-01

    In this paper, a new approach for personal identification using finger vein image is presented. Finger vein is an emerging type of biometrics that attracts attention of researchers in biometrics area. As compared to other biometric traits such as face, fingerprint and iris, finger vein is more secured and hard to counterfeit since the features are inside the human body. So far, most of the researchers focus on how to extract robust features from the captured vein images. Not much research was conducted on the classification of the extracted features. In this paper, a new classifier called fuzzy-based k-nearest centroid neighbor (FkNCN) is applied to classify the finger vein image. The proposed FkNCN employs a surrounding rule to obtain the k-nearest centroid neighbors based on the spatial distributions of the training images and their distance to the test image. Then, the fuzzy membership function is utilized to assign the test image to the class which is frequently represented by the k-nearest centroid neighbors. Experimental evaluation using our own database which was collected from 492 fingers shows that the proposed FkNCN has better performance than the k-nearest neighbor, k-nearest-centroid neighbor and fuzzy-based-k-nearest neighbor classifiers. This shows that the proposed classifier is able to identify the finger vein image effectively.

  17. Sound Classification in Hearing Aids Inspired by Auditory Scene Analysis

    NASA Astrophysics Data System (ADS)

    Büchler, Michael; Allegro, Silvia; Launer, Stefan; Dillier, Norbert

    2005-12-01

    A sound classification system for the automatic recognition of the acoustic environment in a hearing aid is discussed. The system distinguishes the four sound classes "clean speech," "speech in noise," "noise," and "music." A number of features that are inspired by auditory scene analysis are extracted from the sound signal. These features describe amplitude modulations, spectral profile, harmonicity, amplitude onsets, and rhythm. They are evaluated together with different pattern classifiers. Simple classifiers, such as rule-based and minimum-distance classifiers, are compared with more complex approaches, such as Bayes classifier, neural network, and hidden Markov model. Sounds from a large database are employed for both training and testing of the system. The achieved recognition rates are very high except for the class "speech in noise." Problems arise in the classification of compressed pop music, strongly reverberated speech, and tonal or fluctuating noises.

  18. Multiclass Classification by Adaptive Network of Dendritic Neurons with Binary Synapses Using Structural Plasticity

    PubMed Central

    Hussain, Shaista; Basu, Arindam

    2016-01-01

    The development of power-efficient neuromorphic devices presents the challenge of designing spike pattern classification algorithms which can be implemented on low-precision hardware and can also achieve state-of-the-art performance. In our pursuit of meeting this challenge, we present a pattern classification model which uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic processing to achieve high classification accuracy. A rate-based structural learning rule for multiclass classification is proposed which modifies a connectivity matrix of binary synaptic connections by choosing the best “k” out of “d” inputs to make connections on every dendritic branch (k < < d). Because learning only modifies connectivity, the model is well suited for implementation in neuromorphic systems using address-event representation (AER). We develop an ensemble method which combines several dendritic classifiers to achieve enhanced generalization over individual classifiers. We have two major findings: (1) Our results demonstrate that an ensemble created with classifiers comprising moderate number of dendrites performs better than both ensembles of perceptrons and of complex dendritic trees. (2) In order to determine the moderate number of dendrites required for a specific classification problem, a two-step solution is proposed. First, an adaptive approach is proposed which scales the relative size of the dendritic trees of neurons for each class. It works by progressively adding dendrites with fixed number of synapses to the network, thereby allocating synaptic resources as per the complexity of the given problem. As a second step, theoretical capacity calculations are used to convert each neuronal dendritic tree to its optimal topology where dendrites of each class are assigned different number of synapses. The performance of the model is evaluated on classification of handwritten digits from the benchmark MNIST dataset and compared with other spike classifiers. We show that our system can achieve classification accuracy within 1 − 2% of other reported spike-based classifiers while using much less synaptic resources (only 7%) compared to that used by other methods. Further, an ensemble classifier created with adaptively learned sizes can attain accuracy of 96.4% which is at par with the best reported performance of spike-based classifiers. Moreover, the proposed method achieves this by using about 20% of the synapses used by other spike algorithms. We also present results of applying our algorithm to classify the MNIST-DVS dataset collected from a real spike-based image sensor and show results comparable to the best reported ones (88.1% accuracy). For VLSI implementations, we show that the reduced synaptic memory can save upto 4X area compared to conventional crossbar topologies. Finally, we also present a biologically realistic spike-based version for calculating the correlations required by the structural learning rule and demonstrate the correspondence between the rate-based and spike-based methods of learning. PMID:27065782

  19. 18 CFR 3a.71 - Accountability for classified material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Accountability for classified material. 3a.71 Section 3a.71 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Accountability for Classified...

  20. 18 CFR 3a.71 - Accountability for classified material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Accountability for classified material. 3a.71 Section 3a.71 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Accountability for Classified...

  1. 18 CFR 3a.71 - Accountability for classified material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Accountability for classified material. 3a.71 Section 3a.71 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Accountability for Classified...

  2. 18 CFR 3a.71 - Accountability for classified material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Accountability for classified material. 3a.71 Section 3a.71 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Accountability for Classified...

  3. Developing an International Register of Clinical Prediction Rules for Use in Primary Care: A Descriptive Analysis

    PubMed Central

    Keogh, Claire; Wallace, Emma; O’Brien, Kirsty K.; Galvin, Rose; Smith, Susan M.; Lewis, Cliona; Cummins, Anthony; Cousins, Grainne; Dimitrov, Borislav D.; Fahey, Tom

    2014-01-01

    PURPOSE We describe the methodology used to create a register of clinical prediction rules relevant to primary care. We also summarize the rules included in the register according to various characteristics. METHODS To identify relevant articles, we searched the MEDLINE database (PubMed) for the years 1980 to 2009 and supplemented the results with searches of secondary sources (books on clinical prediction rules) and personal resources (eg, experts in the field). The rules described in relevant articles were classified according to their clinical domain, the stage of development, and the clinical setting in which they were studied. RESULTS Our search identified clinical prediction rules reported between 1965 and 2009. The largest share of rules (37.2%) were retrieved from PubMed. The number of published rules increased substantially over the study decades. We included 745 articles in the register; many contained more than 1 clinical prediction rule study (eg, both a derivation study and a validation study), resulting in 989 individual studies. In all, 434 unique rules had gone through derivation; however, only 54.8% had been validated and merely 2.8% had undergone analysis of their impact on either the process or outcome of clinical care. The rules most commonly pertained to cardiovascular disease, respiratory, and musculoskeletal conditions. They had most often been studied in the primary care or emergency department settings. CONCLUSIONS Many clinical prediction rules have been derived, but only about half have been validated and few have been assessed for clinical impact. This lack of thorough evaluation for many rules makes it difficult to retrieve and identify those that are ready for use at the point of patient care. We plan to develop an international web-based register of clinical prediction rules and computer-based clinical decision support systems. PMID:25024245

  4. The relationship of Asperger's syndrome to autism: a preliminary EEG coherence study.

    PubMed

    Duffy, Frank H; Shankardass, Aditi; McAnulty, Gloria B; Als, Heidelise

    2013-07-31

    It has long been debated whether Asperger's Syndrome (ASP) should be considered part of the Autism Spectrum Disorders (ASD) or whether it constitutes a unique entity. The Diagnostic and Statistical Manual, fourth edition (DSM-IV) differentiated ASP from high functioning autism. However, the new DSM-5 umbrellas ASP within ASD, thus eliminating the ASP diagnosis. To date, no clear biomarkers have reliably distinguished ASP and ASD populations. This study uses EEG coherence, a measure of brain connectivity, to explore possible neurophysiological differences between ASP and ASD. Voluminous coherence data derived from all possible electrode pairs and frequencies were previously reduced by principal components analysis (PCA) to produce a smaller number of unbiased, data-driven coherence factors. In a previous study, these factors significantly and reliably differentiated neurotypical controls from ASD subjects by discriminant function analysis (DFA). These previous DFA rules are now applied to an ASP population to determine if ASP subjects classify as control or ASD subjects. Additionally, a new set of coherence based DFA rules are used to determine whether ASP and ASD subjects can be differentiated from each other. Using prior EEG coherence based DFA rules that successfully classified subjects as either controls or ASD, 96.2% of ASP subjects are classified as ASD. However, when ASP subjects are directly compared to ASD subjects using new DFA rules, 92.3% ASP subjects are identified as separate from the ASD population. By contrast, five randomly selected subsamples of ASD subjects fail to reach significance when compared to the remaining ASD populations. When represented by the discriminant variable, both the ASD and ASD populations are normally distributed. Within a control-ASD dichotomy, an ASP population falls closer to ASD than controls. However, when compared directly with ASD, an ASP population is distinctly separate. The ASP population appears to constitute a neurophysiologically identifiable, normally distributed entity within the higher functioning tail of the ASD population distribution. These results must be replicated with a larger sample given their potentially immense clinical, emotional and financial implications for affected individuals, their families and their caregivers.

  5. The relationship of Asperger’s syndrome to autism: a preliminary EEG coherence study

    PubMed Central

    2013-01-01

    Background It has long been debated whether Asperger’s Syndrome (ASP) should be considered part of the Autism Spectrum Disorders (ASD) or whether it constitutes a unique entity. The Diagnostic and Statistical Manual, fourth edition (DSM-IV) differentiated ASP from high functioning autism. However, the new DSM-5 umbrellas ASP within ASD, thus eliminating the ASP diagnosis. To date, no clear biomarkers have reliably distinguished ASP and ASD populations. This study uses EEG coherence, a measure of brain connectivity, to explore possible neurophysiological differences between ASP and ASD. Methods Voluminous coherence data derived from all possible electrode pairs and frequencies were previously reduced by principal components analysis (PCA) to produce a smaller number of unbiased, data-driven coherence factors. In a previous study, these factors significantly and reliably differentiated neurotypical controls from ASD subjects by discriminant function analysis (DFA). These previous DFA rules are now applied to an ASP population to determine if ASP subjects classify as control or ASD subjects. Additionally, a new set of coherence based DFA rules are used to determine whether ASP and ASD subjects can be differentiated from each other. Results Using prior EEG coherence based DFA rules that successfully classified subjects as either controls or ASD, 96.2% of ASP subjects are classified as ASD. However, when ASP subjects are directly compared to ASD subjects using new DFA rules, 92.3% ASP subjects are identified as separate from the ASD population. By contrast, five randomly selected subsamples of ASD subjects fail to reach significance when compared to the remaining ASD populations. When represented by the discriminant variable, both the ASD and ASD populations are normally distributed. Conclusions Within a control-ASD dichotomy, an ASP population falls closer to ASD than controls. However, when compared directly with ASD, an ASP population is distinctly separate. The ASP population appears to constitute a neurophysiologically identifiable, normally distributed entity within the higher functioning tail of the ASD population distribution. These results must be replicated with a larger sample given their potentially immense clinical, emotional and financial implications for affected individuals, their families and their caregivers. PMID:23902729

  6. Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas

    NASA Astrophysics Data System (ADS)

    Ni, H.; Lin, X. G.; Zhang, J. X.

    2017-09-01

    A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.

  7. Towards exaggerated emphysema stereotypes

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sørensen, L.; Lauze, F.; Igel, C.; Loog, M.; Feragen, A.; de Bruijne, M.; Nielsen, M.

    2012-03-01

    Classification is widely used in the context of medical image analysis and in order to illustrate the mechanism of a classifier, we introduce the notion of an exaggerated image stereotype based on training data and trained classifier. The stereotype of some image class of interest should emphasize/exaggerate the characteristic patterns in an image class and visualize the information the employed classifier relies on. This is useful for gaining insight into the classification and serves for comparison with the biological models of disease. In this work, we build exaggerated image stereotypes by optimizing an objective function which consists of a discriminative term based on the classification accuracy, and a generative term based on the class distributions. A gradient descent method based on iterated conditional modes (ICM) is employed for optimization. We use this idea with Fisher's linear discriminant rule and assume a multivariate normal distribution for samples within a class. The proposed framework is applied to computed tomography (CT) images of lung tissue with emphysema. The synthesized stereotypes illustrate the exaggerated patterns of lung tissue with emphysema, which is underpinned by three different quantitative evaluation methods.

  8. [Prediction of the efficacy of the non-medicamental treatment with the use of the ensemble of classifiers].

    PubMed

    Zaĭtsev, A A; Khodashinskiĭ, I A; Plotnikov, O O

    2011-01-01

    The importance to have the most efficacious tools and methods for the prevention and treatment of various diseases and rehabilitation of the patients dictates the necessity of search for new means of optimal correction of individual reserves of the organism. One of the approaches to addressing this problem is simulation of prognostication of curative effects of non-medicamental therapy. It is proposed to choose the therapeutic program using an ensemble of classifiers. Two types of them are considered, one based on the solution trees, the other based on the fuzzy rule basis. The software was developed that ensures high accuracy of th e prognosis of the efficiency of the two programs of the spa and resort treatment.

  9. Machine learning for classifying tuberculosis drug-resistance from DNA sequencing data

    PubMed Central

    Yang, Yang; Niehaus, Katherine E; Walker, Timothy M; Iqbal, Zamin; Walker, A Sarah; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W; Smith, E Grace; Zhu, Tingting; Clifton, David A

    2018-01-01

    Abstract Motivation Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymorphisms is sufficient to cause resistance, which yields low sensitivity for resistance classification. Summary Given the availability of DNA sequencing data from MTB, we developed machine learning models for a cohort of 1839 UK bacterial isolates to classify MTB resistance against eight anti-TB drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, ciprofloxacin, moxifloxacin, ofloxacin, streptomycin) and to classify multi-drug resistance. Results Compared to previous rules-based approach, the sensitivities from the best-performing models increased by 2-4% for isoniazid, rifampicin and ethambutol to 97% (P < 0.01), respectively; for ciprofloxacin and multi-drug resistant TB, they increased to 96%. For moxifloxacin and ofloxacin, sensitivities increased by 12 and 15% from 83 and 81% based on existing known resistance alleles to 95% and 96% (P < 0.01), respectively. Particularly, our models improved sensitivities compared to the previous rules-based approach by 15 and 24% to 84 and 87% for pyrazinamide and streptomycin (P < 0.01), respectively. The best-performing models increase the area-under-the-ROC curve by 10% for pyrazinamide and streptomycin (P < 0.01), and 4–8% for other drugs (P < 0.01). Availability and implementation The details of source code are provided at http://www.robots.ox.ac.uk/~davidc/code.php. Contact david.clifton@eng.ox.ac.uk Supplementary information Supplementary data are available at Bioinformatics online. PMID:29240876

  10. A Machine Learned Classifier That Uses Gene Expression Data to Accurately Predict Estrogen Receptor Status

    PubMed Central

    Bastani, Meysam; Vos, Larissa; Asgarian, Nasimeh; Deschenes, Jean; Graham, Kathryn; Mackey, John; Greiner, Russell

    2013-01-01

    Background Selecting the appropriate treatment for breast cancer requires accurately determining the estrogen receptor (ER) status of the tumor. However, the standard for determining this status, immunohistochemical analysis of formalin-fixed paraffin embedded samples, suffers from numerous technical and reproducibility issues. Assessment of ER-status based on RNA expression can provide more objective, quantitative and reproducible test results. Methods To learn a parsimonious RNA-based classifier of hormone receptor status, we applied a machine learning tool to a training dataset of gene expression microarray data obtained from 176 frozen breast tumors, whose ER-status was determined by applying ASCO-CAP guidelines to standardized immunohistochemical testing of formalin fixed tumor. Results This produced a three-gene classifier that can predict the ER-status of a novel tumor, with a cross-validation accuracy of 93.17±2.44%. When applied to an independent validation set and to four other public databases, some on different platforms, this classifier obtained over 90% accuracy in each. In addition, we found that this prediction rule separated the patients' recurrence-free survival curves with a hazard ratio lower than the one based on the IHC analysis of ER-status. Conclusions Our efficient and parsimonious classifier lends itself to high throughput, highly accurate and low-cost RNA-based assessments of ER-status, suitable for routine high-throughput clinical use. This analytic method provides a proof-of-principle that may be applicable to developing effective RNA-based tests for other biomarkers and conditions. PMID:24312637

  11. Combining High Spatial Resolution Optical and LIDAR Data for Object-Based Image Classification

    NASA Astrophysics Data System (ADS)

    Li, R.; Zhang, T.; Geng, R.; Wang, L.

    2018-04-01

    In order to classify high spatial resolution images more accurately, in this research, a hierarchical rule-based object-based classification framework was developed based on a high-resolution image with airborne Light Detection and Ranging (LiDAR) data. The eCognition software is employed to conduct the whole process. In detail, firstly, the FBSP optimizer (Fuzzy-based Segmentation Parameter) is used to obtain the optimal scale parameters for different land cover types. Then, using the segmented regions as basic units, the classification rules for various land cover types are established according to the spectral, morphological and texture features extracted from the optical images, and the height feature from LiDAR respectively. Thirdly, the object classification results are evaluated by using the confusion matrix, overall accuracy and Kappa coefficients. As a result, a method using the combination of an aerial image and the airborne Lidar data shows higher accuracy.

  12. Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Tax, D. M. J.; Duin, R. P. W.; Javaherian, A.; de Groot, P.

    2008-11-01

    Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA). In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP) and support vector classifier (SVC) are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.

  13. A Comparison of Rule-Based, K-Nearest Neighbor, and Neural Net Classifiers for Automated

    Treesearch

    Tai-Hoon Cho; Richard W. Conners; Philip A. Araman

    1991-01-01

    Over the last few years the authors have been involved in research aimed at developing a machine vision system for locating and identifying surface defects on materials. The particular problem being studied involves locating surface defects on hardwood lumber in a species independent manner. Obviously, the accurate location and identification of defects is of paramount...

  14. Neural Network Classifiers to Grade Parts Based on Surface Defects with Spatial Dependencies

    Treesearch

    Daniel L. Schmoldt

    1995-01-01

    In many manufacturing situations, production parts must be assigned a qualitative grade, rather than only accepted or rejected. When this is done, spatial relationships between defect areas can be a critical factor in making grade assignments. In the case of grading hardwood lumber, for instance, there exists a highly complex set of grading rules which incorporate...

  15. Multi-factorial analysis of class prediction error: estimating optimal number of biomarkers for various classification rules.

    PubMed

    Khondoker, Mizanur R; Bachmann, Till T; Mewissen, Muriel; Dickinson, Paul; Dobrzelecki, Bartosz; Campbell, Colin J; Mount, Andrew R; Walton, Anthony J; Crain, Jason; Schulze, Holger; Giraud, Gerard; Ross, Alan J; Ciani, Ilenia; Ember, Stuart W J; Tlili, Chaker; Terry, Jonathan G; Grant, Eilidh; McDonnell, Nicola; Ghazal, Peter

    2010-12-01

    Machine learning and statistical model based classifiers have increasingly been used with more complex and high dimensional biological data obtained from high-throughput technologies. Understanding the impact of various factors associated with large and complex microarray datasets on the predictive performance of classifiers is computationally intensive, under investigated, yet vital in determining the optimal number of biomarkers for various classification purposes aimed towards improved detection, diagnosis, and therapeutic monitoring of diseases. We investigate the impact of microarray based data characteristics on the predictive performance for various classification rules using simulation studies. Our investigation using Random Forest, Support Vector Machines, Linear Discriminant Analysis and k-Nearest Neighbour shows that the predictive performance of classifiers is strongly influenced by training set size, biological and technical variability, replication, fold change and correlation between biomarkers. Optimal number of biomarkers for a classification problem should therefore be estimated taking account of the impact of all these factors. A database of average generalization errors is built for various combinations of these factors. The database of generalization errors can be used for estimating the optimal number of biomarkers for given levels of predictive accuracy as a function of these factors. Examples show that curves from actual biological data resemble that of simulated data with corresponding levels of data characteristics. An R package optBiomarker implementing the method is freely available for academic use from the Comprehensive R Archive Network (http://www.cran.r-project.org/web/packages/optBiomarker/).

  16. 19 CFR 10.453 - Treatment of textile and apparel sets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Free Trade Agreement Rules of Origin § 10.453 Treatment of textile and apparel sets. Notwithstanding the specific rules specified in General Note 26(n), HTSUS, textile and apparel goods classifiable as goods put up in sets for retail sale as provided for in General Rule of Interpretation 3, HTSUS, will...

  17. Shibboleth: An Automated Foreign Accent Identification Program

    ERIC Educational Resources Information Center

    Frost, Wende

    2013-01-01

    The speech of non-native (L2) speakers of a language contains phonological rules that differentiate them from native speakers. These phonological rules characterize or distinguish accents in an L2. The Shibboleth program creates combinatorial rule-sets to describe the phonological pattern of these accents and classifies L2 speakers into their…

  18. 19 CFR 10.771 - Textile or apparel goods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Agreement Rules of Origin § 10.771 Textile or apparel goods. (a) De minimis. Except as provided in paragraph... specific rules specified in General Note 27(h), HTSUS, textile or apparel goods classifiable as goods put up in sets for retail sale as provided for in General Rule of Interpretation 3, HTSUS, will not be...

  19. Uses and misuses of Bayes' rule and Bayesian classifiers in cybersecurity

    NASA Astrophysics Data System (ADS)

    Bard, Gregory V.

    2017-12-01

    This paper will discuss the applications of Bayes' Rule and Bayesian Classifiers in Cybersecurity. While the most elementary form of Bayes' rule occurs in undergraduate coursework, there are more complicated forms as well. As an extended example, Bayesian spam filtering is explored, and is in many ways the most triumphant accomplishment of Bayesian reasoning in computer science, as nearly everyone with an email address has a spam folder. Bayesian Classifiers have also been responsible significant cybersecurity research results; yet, because they are not part of the standard curriculum, few in the mathematics or information-technology communities have seen the exact definitions, requirements, and proofs that comprise the subject. Moreover, numerous errors have been made by researchers (described in this paper), due to some mathematical misunderstandings dealing with conditional independence, or other badly chosen assumptions. Finally, to provide instructors and researchers with real-world examples, 25 published cybersecurity papers that use Bayesian reasoning are given, with 2-4 sentence summaries of the focus and contributions of each paper.

  20. Mining association rule based on the diseases population for recommendation of medicine need

    NASA Astrophysics Data System (ADS)

    Harahap, M.; Husein, A. M.; Aisyah, S.; Lubis, F. R.; Wijaya, B. A.

    2018-04-01

    Selection of medicines that is inappropriate will lead to an empty result at medicines, this has an impact on medical services and economic value in hospital. The importance of an appropriate medicine selection process requires an automated way to select need based on the development of the patient's illness. In this study, we analyzed patient prescriptions to identify the relationship between the disease and the medicine used by the physician in treating the patient's illness. The analytical framework includes: (1) patient prescription data collection, (2) applying k-means clustering to classify the top 10 diseases, (3) applying Apriori algorithm to find association rules based on support, confidence and lift value. The results of the tests of patient prescription datasets in 2015-2016, the application of the k-means algorithm for the clustering of 10 dominant diseases significantly affects the value of trust and support of all association rules on the Apriori algorithm making it more consistent with finding association rules of disease and related medicine. The value of support, confidence and the lift value of disease and related medicine can be used as recommendations for appropriate medicine selection. Based on the conditions of disease progressions of the hospital, there is so more optimal medicine procurement.

  1. Computer-aided classification of optical images for diagnosis of osteoarthritis in the finger joints.

    PubMed

    Zhang, Jiang; Wang, James Z; Yuan, Zhen; Sobel, Eric S; Jiang, Huabei

    2011-01-01

    This study presents a computer-aided classification method to distinguish osteoarthritis finger joints from healthy ones based on the functional images captured by x-ray guided diffuse optical tomography. Three imaging features, joint space width, optical absorption, and scattering coefficients, are employed to train a Least Squares Support Vector Machine (LS-SVM) classifier for osteoarthritis classification. The 10-fold validation results show that all osteoarthritis joints are clearly identified and all healthy joints are ruled out by the LS-SVM classifier. The best sensitivity, specificity, and overall accuracy of the classification by experienced technicians based on manual calculation of optical properties and visual examination of optical images are only 85%, 93%, and 90%, respectively. Therefore, our LS-SVM based computer-aided classification is a considerably improved method for osteoarthritis diagnosis.

  2. Use of Attribute Driven Incremental Discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients.

    PubMed

    Cangelosi, Davide; Muselli, Marco; Parodi, Stefano; Blengio, Fabiola; Becherini, Pamela; Versteeg, Rogier; Conte, Massimo; Varesio, Luigi

    2014-01-01

    Cancer patient's outcome is written, in part, in the gene expression profile of the tumor. We previously identified a 62-probe sets signature (NB-hypo) to identify tissue hypoxia in neuroblastoma tumors and showed that NB-hypo stratified neuroblastoma patients in good and poor outcome 1. It was important to develop a prognostic classifier to cluster patients into risk groups benefiting of defined therapeutic approaches. Novel classification and data discretization approaches can be instrumental for the generation of accurate predictors and robust tools for clinical decision support. We explored the application to gene expression data of Rulex, a novel software suite including the Attribute Driven Incremental Discretization technique for transforming continuous variables into simplified discrete ones and the Logic Learning Machine model for intelligible rule generation. We applied Rulex components to the problem of predicting the outcome of neuroblastoma patients on the bases of 62 probe sets NB-hypo gene expression signature. The resulting classifier consisted in 9 rules utilizing mainly two conditions of the relative expression of 11 probe sets. These rules were very effective predictors, as shown in an independent validation set, demonstrating the validity of the LLM algorithm applied to microarray data and patients' classification. The LLM performed as efficiently as Prediction Analysis of Microarray and Support Vector Machine, and outperformed other learning algorithms such as C4.5. Rulex carried out a feature selection by selecting a new signature (NB-hypo-II) of 11 probe sets that turned out to be the most relevant in predicting outcome among the 62 of the NB-hypo signature. Rules are easily interpretable as they involve only few conditions. Our findings provided evidence that the application of Rulex to the expression values of NB-hypo signature created a set of accurate, high quality, consistent and interpretable rules for the prediction of neuroblastoma patients' outcome. We identified the Rulex weighted classification as a flexible tool that can support clinical decisions. For these reasons, we consider Rulex to be a useful tool for cancer classification from microarray gene expression data.

  3. A Novel Feature Level Fusion for Heart Rate Variability Classification Using Correntropy and Cauchy-Schwarz Divergence.

    PubMed

    Goshvarpour, Ateke; Goshvarpour, Atefeh

    2018-04-30

    Heart rate variability (HRV) analysis has become a widely used tool for monitoring pathological and psychological states in medical applications. In a typical classification problem, information fusion is a process whereby the effective combination of the data can achieve a more accurate system. The purpose of this article was to provide an accurate algorithm for classifying HRV signals in various psychological states. Therefore, a novel feature level fusion approach was proposed. First, using the theory of information, two similarity indicators of the signal were extracted, including correntropy and Cauchy-Schwarz divergence. Applying probabilistic neural network (PNN) and k-nearest neighbor (kNN), the performance of each index in the classification of meditators and non-meditators HRV signals was appraised. Then, three fusion rules, including division, product, and weighted sum rules were used to combine the information of both similarity measures. For the first time, we propose an algorithm to define the weights of each feature based on the statistical p-values. The performance of HRV classification using combined features was compared with the non-combined features. Totally, the accuracy of 100% was obtained for discriminating all states. The results showed the strong ability and proficiency of division and weighted sum rules in the improvement of the classifier accuracies.

  4. Probabilistic combination of static and dynamic gait features for verification

    NASA Astrophysics Data System (ADS)

    Bazin, Alex I.; Nixon, Mark S.

    2005-03-01

    This paper describes a novel probabilistic framework for biometric identification and data fusion. Based on intra and inter-class variation extracted from training data, posterior probabilities describing the similarity between two feature vectors may be directly calculated from the data using the logistic function and Bayes rule. Using a large publicly available database we show the two imbalanced gait modalities may be fused using this framework. All fusion methods tested provide an improvement over the best modality, with the weighted sum rule giving the best performance, hence showing that highly imbalanced classifiers may be fused in a probabilistic setting; improving not only the performance, but also generalized application capability.

  5. Prediction of recombinant protein overexpression in Escherichia coli using a machine learning based model (RPOLP).

    PubMed

    Habibi, Narjeskhatoon; Norouzi, Alireza; Mohd Hashim, Siti Z; Shamsir, Mohd Shahir; Samian, Razip

    2015-11-01

    Recombinant protein overexpression, an important biotechnological process, is ruled by complex biological rules which are mostly unknown, is in need of an intelligent algorithm so as to avoid resource-intensive lab-based trial and error experiments in order to determine the expression level of the recombinant protein. The purpose of this study is to propose a predictive model to estimate the level of recombinant protein overexpression for the first time in the literature using a machine learning approach based on the sequence, expression vector, and expression host. The expression host was confined to Escherichia coli which is the most popular bacterial host to overexpress recombinant proteins. To provide a handle to the problem, the overexpression level was categorized as low, medium and high. A set of features which were likely to affect the overexpression level was generated based on the known facts (e.g. gene length) and knowledge gathered from related literature. Then, a representative sub-set of features generated in the previous objective was determined using feature selection techniques. Finally a predictive model was developed using random forest classifier which was able to adequately classify the multi-class imbalanced small dataset constructed. The result showed that the predictive model provided a promising accuracy of 80% on average, in estimating the overexpression level of a recombinant protein. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The effect of different distance measures in detecting outliers using clustering-based algorithm for circular regression model

    NASA Astrophysics Data System (ADS)

    Di, Nur Faraidah Muhammad; Satari, Siti Zanariah

    2017-05-01

    Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.

  7. Sensor-based activity recognition using extended belief rule-based inference methodology.

    PubMed

    Calzada, A; Liu, J; Nugent, C D; Wang, H; Martinez, L

    2014-01-01

    The recently developed extended belief rule-based inference methodology (RIMER+) recognizes the need of modeling different types of information and uncertainty that usually coexist in real environments. A home setting with sensors located in different rooms and on different appliances can be considered as a particularly relevant example of such an environment, which brings a range of challenges for sensor-based activity recognition. Although RIMER+ has been designed as a generic decision model that could be applied in a wide range of situations, this paper discusses how this methodology can be adapted to recognize human activities using binary sensors within smart environments. The evaluation of RIMER+ against other state-of-the-art classifiers in terms of accuracy, efficiency and applicability was found to be significantly relevant, specially in situations of input data incompleteness, and it demonstrates the potential of this methodology and underpins the basis to develop further research on the topic.

  8. Structural analysis of online handwritten mathematical symbols based on support vector machines

    NASA Astrophysics Data System (ADS)

    Simistira, Foteini; Papavassiliou, Vassilis; Katsouros, Vassilis; Carayannis, George

    2013-01-01

    Mathematical expression recognition is still a very challenging task for the research community mainly because of the two-dimensional (2d) structure of mathematical expressions (MEs). In this paper, we present a novel approach for the structural analysis between two on-line handwritten mathematical symbols of a ME, based on spatial features of the symbols. We introduce six features to represent the spatial affinity of the symbols and compare two multi-class classification methods that employ support vector machines (SVMs): one based on the "one-against-one" technique and one based on the "one-against-all", in identifying the relation between a pair of symbols (i.e. subscript, numerator, etc). A dataset containing 1906 spatial relations derived from the Competition on Recognition of Online Handwritten Mathematical Expressions (CROHME) 2012 training dataset is constructed to evaluate the classifiers and compare them with the rule-based classifier of the ILSP-1 system participated in the contest. The experimental results give an overall mean error rate of 2.61% for the "one-against-one" SVM approach, 6.57% for the "one-against-all" SVM technique and 12.31% error rate for the ILSP-1 classifier.

  9. Anomaly and signature filtering improve classifier performance for detection of suspicious access to EHRs.

    PubMed

    Kim, Jihoon; Grillo, Janice M; Boxwala, Aziz A; Jiang, Xiaoqian; Mandelbaum, Rose B; Patel, Bhakti A; Mikels, Debra; Vinterbo, Staal A; Ohno-Machado, Lucila

    2011-01-01

    Our objective is to facilitate semi-automated detection of suspicious access to EHRs. Previously we have shown that a machine learning method can play a role in identifying potentially inappropriate access to EHRs. However, the problem of sampling informative instances to build a classifier still remained. We developed an integrated filtering method leveraging both anomaly detection based on symbolic clustering and signature detection, a rule-based technique. We applied the integrated filtering to 25.5 million access records in an intervention arm, and compared this with 8.6 million access records in a control arm where no filtering was applied. On the training set with cross-validation, the AUC was 0.960 in the control arm and 0.998 in the intervention arm. The difference in false negative rates on the independent test set was significant, P=1.6×10(-6). Our study suggests that utilization of integrated filtering strategies to facilitate the construction of classifiers can be helpful.

  10. Anomaly and Signature Filtering Improve Classifier Performance For Detection Of Suspicious Access To EHRs

    PubMed Central

    Kim, Jihoon; Grillo, Janice M; Boxwala, Aziz A; Jiang, Xiaoqian; Mandelbaum, Rose B; Patel, Bhakti A; Mikels, Debra; Vinterbo, Staal A; Ohno-Machado, Lucila

    2011-01-01

    Our objective is to facilitate semi-automated detection of suspicious access to EHRs. Previously we have shown that a machine learning method can play a role in identifying potentially inappropriate access to EHRs. However, the problem of sampling informative instances to build a classifier still remained. We developed an integrated filtering method leveraging both anomaly detection based on symbolic clustering and signature detection, a rule-based technique. We applied the integrated filtering to 25.5 million access records in an intervention arm, and compared this with 8.6 million access records in a control arm where no filtering was applied. On the training set with cross-validation, the AUC was 0.960 in the control arm and 0.998 in the intervention arm. The difference in false negative rates on the independent test set was significant, P=1.6×10−6. Our study suggests that utilization of integrated filtering strategies to facilitate the construction of classifiers can be helpful. PMID:22195129

  11. 19 CFR 10.605 - Goods classifiable as goods put up in sets.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Central America-United States Free Trade Agreement Rules of Origin § 10.605 Goods classifiable as goods... 19 Customs Duties 1 2010-04-01 2010-04-01 false Goods classifiable as goods put up in sets. 10.605 Section 10.605 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY...

  12. Classification of document page images based on visual similarity of layout structures

    NASA Astrophysics Data System (ADS)

    Shin, Christian K.; Doermann, David S.

    1999-12-01

    Searching for documents by their type or genre is a natural way to enhance the effectiveness of document retrieval. The layout of a document contains a significant amount of information that can be used to classify a document's type in the absence of domain specific models. A document type or genre can be defined by the user based primarily on layout structure. Our classification approach is based on 'visual similarity' of the layout structure by building a supervised classifier, given examples of the class. We use image features, such as the percentages of tex and non-text (graphics, image, table, and ruling) content regions, column structures, variations in the point size of fonts, the density of content area, and various statistics on features of connected components which can be derived from class samples without class knowledge. In order to obtain class labels for training samples, we conducted a user relevance test where subjects ranked UW-I document images with respect to the 12 representative images. We implemented our classification scheme using the OC1, a decision tree classifier, and report our findings.

  13. 26 CFR 301.7701(i)-4 - Special rules for certain entities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Special rules for certain entities. 301.7701(i... rules for certain entities. (a) States and municipalities—(1) In general. Regardless of whether an entity satisfies any of the requirements of section 7701(i)(2)(A), an entity is not classified as a...

  14. Assimilation of a knowledge base and physical models to reduce errors in passive-microwave classifications of sea ice

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Key, J.

    1992-01-01

    An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.

  15. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery.

    PubMed

    Belgiu, Mariana; Dr Guţ, Lucian; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  16. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    PubMed Central

    Belgiu, Mariana; Drǎguţ, Lucian; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules. PMID:24623959

  17. Microcomputer-based classification of environmental data in municipal areas

    NASA Astrophysics Data System (ADS)

    Thiergärtner, H.

    1995-10-01

    Multivariate data-processing methods used in mineral resource identification can be used to classify urban regions. Using elements of expert systems, geographical information systems, as well as known classification and prognosis systems, it is possible to outline a single model that consists of resistant and of temporary parts of a knowledge base including graphical input and output treatment and of resistant and temporary elements of a bank of methods and algorithms. Whereas decision rules created by experts will be stored in expert systems directly, powerful classification rules in form of resistant but latent (implicit) decision algorithms may be implemented in the suggested model. The latent functions will be transformed into temporary explicit decision rules by learning processes depending on the actual task(s), parameter set(s), pixels selection(s), and expert control(s). This takes place both at supervised and nonsupervised classification of multivariately described pixel sets representing municipal subareas. The model is outlined briefly and illustrated by results obtained in a target area covering a part of the city of Berlin (Germany).

  18. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighbourhoods using WorldView-2 imagery

    NASA Astrophysics Data System (ADS)

    Belgiu, Mariana; ǎguţ, Lucian, , Dr; Strobl, Josef

    2014-01-01

    The increasing availability of high resolution imagery has triggered the need for automated image analysis techniques, with reduced human intervention and reproducible analysis procedures. The knowledge gained in the past might be of use to achieving this goal, if systematically organized into libraries which would guide the image analysis procedure. In this study we aimed at evaluating the variability of digital classifications carried out by three experts who were all assigned the same interpretation task. Besides the three classifications performed by independent operators, we developed an additional rule-based classification that relied on the image classifications best practices found in the literature, and used it as a surrogate for libraries of object characteristics. The results showed statistically significant differences among all operators who classified the same reference imagery. The classifications carried out by the experts achieved satisfactory results when transferred to another area for extracting the same classes of interest, without modification of the developed rules.

  19. Classifying the Indication for Colonoscopy Procedures: A Comparison of NLP Approaches in a Diverse National Healthcare System.

    PubMed

    Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L

    2015-01-01

    In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.

  20. A Novel Locally Linear KNN Method With Applications to Visual Recognition.

    PubMed

    Liu, Qingfeng; Liu, Chengjun

    2017-09-01

    A locally linear K Nearest Neighbor (LLK) method is presented in this paper with applications to robust visual recognition. Specifically, the concept of an ideal representation is first presented, which improves upon the traditional sparse representation in many ways. The objective function based on a host of criteria for sparsity, locality, and reconstruction is then optimized to derive a novel representation, which is an approximation to the ideal representation. The novel representation is further processed by two classifiers, namely, an LLK-based classifier and a locally linear nearest mean-based classifier, for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Additional new theoretical analysis is presented, such as the nonnegative constraint, the group regularization, and the computational efficiency of the proposed LLK method. New methods such as a shifted power transformation for improving reliability, a coefficients' truncating method for enhancing generalization, and an improved marginal Fisher analysis method for feature extraction are proposed to further improve visual recognition performance. Extensive experiments are implemented to evaluate the proposed LLK method for robust visual recognition. In particular, eight representative data sets are applied for assessing the performance of the LLK method for various visual recognition applications, such as action recognition, scene recognition, object recognition, and face recognition.

  1. Inferring the Limit Behavior of Some Elementary Cellular Automata

    NASA Astrophysics Data System (ADS)

    Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.

    Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.

  2. Limitations of three-dimensional power Doppler angiography in preoperative evaluation of ovarian tumors.

    PubMed

    Silvestre, Liliane; Martins, Wellington P; Candido-Dos-Reis, Francisco J

    2015-07-29

    This study describes the accuracy of three-dimensional power Doppler (3D-PD) angiography as secondary method for differential diagnosis of ovarian tumors. Seventy-five women scheduled for surgical removal of adnexal masses were assessed by transvaginal ultrasound. Ovarian tumors were classified by IOTA simple rules and two three-dimensional blocks were recorded. In a second step analyses, a 4 cm(3) spherical sample was obtained from the highest vascularized solid area of each stored block. Vascularization index (VI), flow index (FI) and vascularization-flow index (VFI) were calculated. The repeatability was assessed by concordance correlation coefficient (CCC) and limits of agreement (LoA), and diagnostic accuracy by area under ROC curve. IOTA simple rules classified 26 cases as benign, nine as inconclusive and 40 as malignant. There were eight false positive and no false negative. Among the masses classified as inconclusive or malignant by IOTA simple rules, the CCCs were 0.91 for VI, 0.70 for FI, and 0.86 for VFI. The areas under ROC curve were 0.82 for VI, 0.67 for FI and 0.81 for VFI. 3D-PD angiography presented considerable intraobserver variability and low accuracy for identifying false positive results of IOTA simple rules.

  3. Effect of separate sampling on classification accuracy.

    PubMed

    Shahrokh Esfahani, Mohammad; Dougherty, Edward R

    2014-01-15

    Measurements are commonly taken from two phenotypes to build a classifier, where the number of data points from each class is predetermined, not random. In this 'separate sampling' scenario, the data cannot be used to estimate the class prior probabilities. Moreover, predetermined class sizes can severely degrade classifier performance, even for large samples. We employ simulations using both synthetic and real data to show the detrimental effect of separate sampling on a variety of classification rules. We establish propositions related to the effect on the expected classifier error owing to a sampling ratio different from the population class ratio. From these we derive a sample-based minimax sampling ratio and provide an algorithm for approximating it from the data. We also extend to arbitrary distributions the classical population-based Anderson linear discriminant analysis minimax sampling ratio derived from the discriminant form of the Bayes classifier. All the codes for synthetic data and real data examples are written in MATLAB. A function called mmratio, whose output is an approximation of the minimax sampling ratio of a given dataset, is also written in MATLAB. All the codes are available at: http://gsp.tamu.edu/Publications/supplementary/shahrokh13b.

  4. Comparison of Hybrid Classifiers for Crop Classification Using Normalized Difference Vegetation Index Time Series: A Case Study for Major Crops in North Xinjiang, China

    PubMed Central

    Hao, Pengyu; Wang, Li; Niu, Zheng

    2015-01-01

    A range of single classifiers have been proposed to classify crop types using time series vegetation indices, and hybrid classifiers are used to improve discriminatory power. Traditional fusion rules use the product of multi-single classifiers, but that strategy cannot integrate the classification output of machine learning classifiers. In this research, the performance of two hybrid strategies, multiple voting (M-voting) and probabilistic fusion (P-fusion), for crop classification using NDVI time series were tested with different training sample sizes at both pixel and object levels, and two representative counties in north Xinjiang were selected as study area. The single classifiers employed in this research included Random Forest (RF), Support Vector Machine (SVM), and See 5 (C 5.0). The results indicated that classification performance improved (increased the mean overall accuracy by 5%~10%, and reduced standard deviation of overall accuracy by around 1%) substantially with the training sample number, and when the training sample size was small (50 or 100 training samples), hybrid classifiers substantially outperformed single classifiers with higher mean overall accuracy (1%~2%). However, when abundant training samples (4,000) were employed, single classifiers could achieve good classification accuracy, and all classifiers obtained similar performances. Additionally, although object-based classification did not improve accuracy, it resulted in greater visual appeal, especially in study areas with a heterogeneous cropping pattern. PMID:26360597

  5. A novel underwater dam crack detection and classification approach based on sonar images

    PubMed Central

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments. PMID:28640925

  6. A novel underwater dam crack detection and classification approach based on sonar images.

    PubMed

    Shi, Pengfei; Fan, Xinnan; Ni, Jianjun; Khan, Zubair; Li, Min

    2017-01-01

    Underwater dam crack detection and classification based on sonar images is a challenging task because underwater environments are complex and because cracks are quite random and diverse in nature. Furthermore, obtainable sonar images are of low resolution. To address these problems, a novel underwater dam crack detection and classification approach based on sonar imagery is proposed. First, the sonar images are divided into image blocks. Second, a clustering analysis of a 3-D feature space is used to obtain the crack fragments. Third, the crack fragments are connected using an improved tensor voting method. Fourth, a minimum spanning tree is used to obtain the crack curve. Finally, an improved evidence theory combined with fuzzy rule reasoning is proposed to classify the cracks. Experimental results show that the proposed approach is able to detect underwater dam cracks and classify them accurately and effectively under complex underwater environments.

  7. 78 FR 69286 - Facility Security Clearance and Safeguarding of National Security Information and Restricted Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    ... Clearance and Safeguarding of National Security Information and Restricted Data AGENCY: Nuclear Regulatory... Executive Order 13526, Classified National Security Information. In addition, this direct final rule allowed... licensees (or their designees) to conduct classified [[Page 69287

  8. Prediction of cancer class with majority voting genetic programming classifier using gene expression data.

    PubMed

    Paul, Topon Kumar; Iba, Hitoshi

    2009-01-01

    In order to get a better understanding of different types of cancers and to find the possible biomarkers for diseases, recently, many researchers are analyzing the gene expression data using various machine learning techniques. However, due to a very small number of training samples compared to the huge number of genes and class imbalance, most of these methods suffer from overfitting. In this paper, we present a majority voting genetic programming classifier (MVGPC) for the classification of microarray data. Instead of a single rule or a single set of rules, we evolve multiple rules with genetic programming (GP) and then apply those rules to test samples to determine their labels with majority voting technique. By performing experiments on four different public cancer data sets, including multiclass data sets, we have found that the test accuracies of MVGPC are better than those of other methods, including AdaBoost with GP. Moreover, some of the more frequently occurring genes in the classification rules are known to be associated with the types of cancers being studied in this paper.

  9. A neural learning classifier system with self-adaptive constructivism for mobile robot control.

    PubMed

    Hurst, Jacob; Bull, Larry

    2006-01-01

    For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.

  10. A personalized health-monitoring system for elderly by combining rules and case-based reasoning.

    PubMed

    Ahmed, Mobyen Uddin

    2015-01-01

    Health-monitoring system for elderly in home environment is a promising solution to provide efficient medical services that increasingly interest by the researchers within this area. It is often more challenging when the system is self-served and functioning as personalized provision. This paper proposed a personalized self-served health-monitoring system for elderly in home environment by combining general rules with a case-based reasoning approach. Here, the system generates feedback, recommendation and alarm in a personalized manner based on elderly's medical information and health parameters such as blood pressure, blood glucose, weight, activity, pulse, etc. A set of general rules has used to classify individual health parameters. The case-based reasoning approach is used to combine all different health parameters, which generates an overall classification of health condition. According to the evaluation result considering 323 cases and k=2 i.e., top 2 most similar retrieved cases, the sensitivity, specificity and overall accuracy are achieved as 90%, 97% and 96% respectively. The preliminary result of the system is acceptable since the feedback; recommendation and alarm messages are personalized and differ from the general messages. Thus, this approach could be possibly adapted for other situations in personalized elderly monitoring.

  11. Multistrategy learning: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domingos, P.

    1996-12-31

    Two of the most popular approaches to induction are instance-based learning (IBL) and rule generation. Their strengths and weaknesses are largely complementary. IBL methods are able to identify small details in the instance space, but have trouble with attributes that are relevant in some parts of the space but not others. Conversely, rule induction methods may overlook small exception regions, but are able to select different attributes in different parts of the instance space. The two methods have been unified in the RISE algorithm. RISE views instances as maximally specific rules, forms more general rules by gradually clustering instances ofmore » the same class, and classifies a test example by letting the nearest rule win. This approach potentially combines the advantages of rule induction and IBL, and has indeed been observed to be more accurate than each on a large number of bench-mark datasets. However, it is important to determine if this performance is indeed due to the hypothesized advantages, and to define the situations in which RISE`s bias will and will not be preferable to those of the individual approaches. This abstract reports experiments to this end in artificial domains.« less

  12. Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use

    USGS Publications Warehouse

    Wu, S.-S.; Qiu, X.; Usery, E.L.; Wang, L.

    2009-01-01

    Detailed urban land use data are important to government officials, researchers, and businesspeople for a variety of purposes. This article presents an approach to classifying detailed urban land use based on geometrical, textural, and contextual information of land parcels. An area of 6 by 14 km in Austin, Texas, with land parcel boundaries delineated by the Travis Central Appraisal District of Travis County, Texas, is tested for the approach. We derive fifty parcel attributes from relevant geographic information system (GIS) and remote sensing data and use them to discriminate among nine urban land uses: single family, multifamily, commercial, office, industrial, civic, open space, transportation, and undeveloped. Half of the 33,025 parcels in the study area are used as training data for land use classification and the other half are used as testing data for accuracy assessment. The best result with a decision tree classification algorithm has an overall accuracy of 96 percent and a kappa coefficient of 0.78, and two naive, baseline models based on the majority rule and the spatial autocorrelation rule have overall accuracy of 89 percent and 79 percent, respectively. The algorithm is relatively good at classifying single-family, multifamily, commercial, open space, and undeveloped land uses and relatively poor at classifying office, industrial, civic, and transportation land uses. The most important attributes for land use classification are the geometrical attributes, particularly those related to building areas. Next are the contextual attributes, particularly those relevant to the spatial relationship between buildings, then the textural attributes, particularly the semivariance texture statistic from 0.61-m resolution images.

  13. Multiscale corner detection and classification using local properties and semantic patterns

    NASA Astrophysics Data System (ADS)

    Gallo, Giovanni; Giuoco, Alessandro L.

    2002-05-01

    A new technique to detect, localize and classify corners in digital closed curves is proposed. The technique is based on correct estimation of support regions for each point. We compute multiscale curvature to detect and to localize corners. As a further step, with the aid of some local features, it's possible to classify corners into seven distinct types. Classification is performed using a set of rules, which describe corners according to preset semantic patterns. Compared with existing techniques, the proposed approach inscribes itself into the family of algorithms that try to explain the curve, instead of simple labeling. Moreover, our technique works in manner similar to what is believed are typical mechanisms of human perception.

  14. Fact Sheet: Final Rule Determining Widespread use of Onboard Refueling Vapor Recovery and Waiver of Stage Two Requirements

    EPA Pesticide Factsheets

    Read the May 2012 factsheet on the rule that waived the requirement that current and former ozone nonattainment areas classifiedSerious and above, implement Stage II vapor recovery systems on gasoline pumps.

  15. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, P.; Beaudet, P.

    1980-01-01

    The classification of large dimensional data sets arising from the merging of remote sensing data with more traditional forms of ancillary data is considered. Decision tree classification, a popular approach to the problem, is characterized by the property that samples are subjected to a sequence of decision rules before they are assigned to a unique class. An automated technique for effective decision tree design which relies only on apriori statistics is presented. This procedure utilizes a set of two dimensional canonical transforms and Bayes table look-up decision rules. An optimal design at each node is derived based on the associated decision table. A procedure for computing the global probability of correct classfication is also provided. An example is given in which class statistics obtained from an actual LANDSAT scene are used as input to the program. The resulting decision tree design has an associated probability of correct classification of .76 compared to the theoretically optimum .79 probability of correct classification associated with a full dimensional Bayes classifier. Recommendations for future research are included.

  16. Dialog detection in narrative video by shot and face analysis

    NASA Astrophysics Data System (ADS)

    Kroon, B.; Nesvadba, J.; Hanjalic, A.

    2007-01-01

    The proliferation of captured personal and broadcast content in personal consumer archives necessitates comfortable access to stored audiovisual content. Intuitive retrieval and navigation solutions require however a semantic level that cannot be reached by generic multimedia content analysis alone. A fusion with film grammar rules can help to boost the reliability significantly. The current paper describes the fusion of low-level content analysis cues including face parameters and inter-shot similarities to segment commercial content into film grammar rule-based entities and subsequently classify those sequences into so-called shot reverse shots, i.e. dialog sequences. Moreover shot reverse shot specific mid-level cues are analyzed augmenting the shot reverse shot information with dialog specific descriptions.

  17. A brief history and technical review of the expert system research

    NASA Astrophysics Data System (ADS)

    Tan, Haocheng

    2017-09-01

    The expert system is a computer system that emulates the decision-making ability of a human expert, which aims to solve complex problems by reasoning knowledge. It is an important branch of artificial intelligence. In this paper, firstly, we briefly introduce the development and basic structure of the expert system. Then, from the perspective of the enabling technology, we classify the current expert systems and elaborate four expert systems: The Rule-Based Expert System, the Framework-Based Expert System, the Fuzzy Logic-Based Expert System and the Expert System Based on Neural Network.

  18. Mapping Land Cover Types in Amazon Basin Using 1km JERS-1 Mosaic

    NASA Technical Reports Server (NTRS)

    Saatchi, Sassan S.; Nelson, Bruce; Podest, Erika; Holt, John

    2000-01-01

    In this paper, the 100 meter JERS-1 Amazon mosaic image was used in a new classifier to generate a I km resolution land cover map. The inputs to the classifier were 1 km resolution mean backscatter and seven first order texture measures derived from the 100 m data by using a 10 x 10 independent sampling window. The classification approach included two interdependent stages: 1) a supervised maximum a posteriori Bayesian approach to classify the mean backscatter image into 5 general land cover categories of forest, savannah, inundated, white sand, and anthropogenic vegetation classes, and 2) a texture measure decision rule approach to further discriminate subcategory classes based on taxonomic information and biomass levels. Fourteen classes were successfully separated at 1 km scale. The results were verified by examining the accuracy of the approach by comparison with the IBGE and the AVHRR 1 km resolution land cover maps.

  19. Automated extraction of decision rules for leptin dynamics--a rough sets approach.

    PubMed

    Brtka, Vladimir; Stokić, Edith; Srdić, Biljana

    2008-08-01

    A significant area in the field of medical informatics is concerned with the learning of medical models from low-level data. The goals of inducing models from data are twofold: analysis of the structure of the models so as to gain new insight into the unknown phenomena, and development of classifiers or outcome predictors for unseen cases. In this paper, we will employ approach based on the relation of indiscernibility and rough sets theory to study certain questions concerning the design of model based on if-then rules, from low-level data including 36 parameters, one of them leptin. To generate easy to read, interpret, and inspect model, we have used ROSETTA software system. The main goal of this work is to get new insight into phenomena of leptin levels while interplaying with other risk factors in obesity.

  20. Building gene expression profile classifiers with a simple and efficient rejection option in R.

    PubMed

    Benso, Alfredo; Di Carlo, Stefano; Politano, Gianfranco; Savino, Alessandro; Hafeezurrehman, Hafeez

    2011-01-01

    The collection of gene expression profiles from DNA microarrays and their analysis with pattern recognition algorithms is a powerful technology applied to several biological problems. Common pattern recognition systems classify samples assigning them to a set of known classes. However, in a clinical diagnostics setup, novel and unknown classes (new pathologies) may appear and one must be able to reject those samples that do not fit the trained model. The problem of implementing a rejection option in a multi-class classifier has not been widely addressed in the statistical literature. Gene expression profiles represent a critical case study since they suffer from the curse of dimensionality problem that negatively reflects on the reliability of both traditional rejection models and also more recent approaches such as one-class classifiers. This paper presents a set of empirical decision rules that can be used to implement a rejection option in a set of multi-class classifiers widely used for the analysis of gene expression profiles. In particular, we focus on the classifiers implemented in the R Language and Environment for Statistical Computing (R for short in the remaining of this paper). The main contribution of the proposed rules is their simplicity, which enables an easy integration with available data analysis environments. Since in the definition of a rejection model tuning of the involved parameters is often a complex and delicate task, in this paper we exploit an evolutionary strategy to automate this process. This allows the final user to maximize the rejection accuracy with minimum manual intervention. This paper shows how the use of simple decision rules can be used to help the use of complex machine learning algorithms in real experimental setups. The proposed approach is almost completely automated and therefore a good candidate for being integrated in data analysis flows in labs where the machine learning expertise required to tune traditional classifiers might not be available.

  1. 10 CFR 824.12 - Conduct of the hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.12 Conduct of the hearing. (a) DOE shall make a transcript of the hearing; (b... unauthorized disclosure of classified information or any other information protected from public disclosure by...

  2. 10 CFR 824.4 - Civil penalties.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Civil penalties. 824.4 Section 824.4 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.4 Civil penalties. (a) Any person who violates a classified information protection...

  3. 10 CFR 824.4 - Civil penalties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Civil penalties. 824.4 Section 824.4 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.4 Civil penalties. (a) Any person who violates a classified information protection...

  4. 10 CFR 824.4 - Civil penalties.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Civil penalties. 824.4 Section 824.4 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.4 Civil penalties. (a) Any person who violates a classified information protection...

  5. 10 CFR 824.4 - Civil penalties.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Civil penalties. 824.4 Section 824.4 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.4 Civil penalties. (a) Any person who violates a classified information protection...

  6. 7 CFR 29.3119 - Rule 16.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Rule 16. 29.3119 Section 29.3119 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... from the major color shall be classified as “mixed” and designated by the color symbol “M.” ...

  7. 7 CFR 29.1122 - Rule 16.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Rule 16. 29.1122 Section 29.1122 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... major color shall be classified as mixed color and designated by the color symbol “KM”. Any lot of...

  8. 7 CFR 29.3119 - Rule 16.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Rule 16. 29.3119 Section 29.3119 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... from the major color shall be classified as “mixed” and designated by the color symbol “M.” ...

  9. 7 CFR 29.1122 - Rule 16.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Rule 16. 29.1122 Section 29.1122 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... major color shall be classified as mixed color and designated by the color symbol “KM”. Any lot of...

  10. 10 CFR 824.1 - Purpose and scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Purpose and scope. 824.1 Section 824.1 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... Act relating to the security or safeguarding of Restricted Data or other classified information, shall...

  11. 18 CFR 3a.23 - Review of classified material for declassification purposes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Review of classified material for declassification purposes. 3a.23 Section 3a.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION...

  12. 18 CFR 3a.12 - Authority to classify official information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Authority to classify official information. 3a.12 Section 3a.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  13. 18 CFR 3a.12 - Authority to classify official information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Authority to classify official information. 3a.12 Section 3a.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  14. 18 CFR 3a.23 - Review of classified material for declassification purposes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Review of classified material for declassification purposes. 3a.23 Section 3a.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION...

  15. 18 CFR 3a.23 - Review of classified material for declassification purposes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Review of classified material for declassification purposes. 3a.23 Section 3a.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION...

  16. 18 CFR 3a.12 - Authority to classify official information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Authority to classify official information. 3a.12 Section 3a.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  17. 18 CFR 3a.12 - Authority to classify official information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Authority to classify official information. 3a.12 Section 3a.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  18. 18 CFR 3a.23 - Review of classified material for declassification purposes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Review of classified material for declassification purposes. 3a.23 Section 3a.23 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION...

  19. Hyperspherical Symmetry of Hydrogenic Orbitals and Recoupling Coefficients among Alternative Bases

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Cavalli, Simonetta; Coletti, Cecilia

    1998-04-01

    Fock's representation of momentum space hydrogenic orbitals in terms of harmonics on the hypersphere S3 of a four-dimensional space is extended to classify alternative bases. These orbitals are of interest for Sturmian expansions of use in atomic and molecular structure calculations and for the description of atoms in fields. Because of the correspondence between the S3 manifold and the SU\\(2\\) group, new sum rules are established which are of relevance for the connection, not only among hydrogen atom orbitals in different bases, but also among the usual vector coupling coefficients and rotation matrix elements.

  20. Decision net, directed graph, and neural net processing of imaging spectrometer data

    NASA Technical Reports Server (NTRS)

    Casasent, David; Liu, Shiaw-Dong; Yoneyama, Hideyuki; Barnard, Etienne

    1989-01-01

    A decision-net solution involving a novel hierarchical classifier and a set of multiple directed graphs, as well as a neural-net solution, are respectively presented for large-class problem and mixture problem treatments of imaging spectrometer data. The clustering method for hierarchical classifier design, when used with multiple directed graphs, yields an efficient decision net. New directed-graph rules for reducing local maxima as well as the number of perturbations required, and the new starting-node rules for extending the reachability and reducing the search time of the graphs, are noted to yield superior results, as indicated by an illustrative 500-class imaging spectrometer problem.

  1. Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy.

    PubMed

    Dutra, I; Nassif, H; Page, D; Shavlik, J; Strigel, R M; Wu, Y; Elezaby, M E; Burnside, E

    2011-01-01

    In this work we show that combining physician rules and machine learned rules may improve the performance of a classifier that predicts whether a breast cancer is missed on percutaneous, image-guided breast core needle biopsy (subsequently referred to as "breast core biopsy"). Specifically, we show how advice in the form of logical rules, derived by a sub-specialty, i.e. fellowship trained breast radiologists (subsequently referred to as "our physicians") can guide the search in an inductive logic programming system, and improve the performance of a learned classifier. Our dataset of 890 consecutive benign breast core biopsy results along with corresponding mammographic findings contains 94 cases that were deemed non-definitive by a multidisciplinary panel of physicians, from which 15 were upgraded to malignant disease at surgery. Our goal is to predict upgrade prospectively and avoid surgery in women who do not have breast cancer. Our results, some of which trended toward significance, show evidence that inductive logic programming may produce better results for this task than traditional propositional algorithms with default parameters. Moreover, we show that adding knowledge from our physicians into the learning process may improve the performance of the learned classifier trained only on data.

  2. Normalization of relative and incomplete temporal expressions in clinical narratives.

    PubMed

    Sun, Weiyi; Rumshisky, Anna; Uzuner, Ozlem

    2015-09-01

    To improve the normalization of relative and incomplete temporal expressions (RI-TIMEXes) in clinical narratives. We analyzed the RI-TIMEXes in temporally annotated corpora and propose two hypotheses regarding the normalization of RI-TIMEXes in the clinical narrative domain: the anchor point hypothesis and the anchor relation hypothesis. We annotated the RI-TIMEXes in three corpora to study the characteristics of RI-TMEXes in different domains. This informed the design of our RI-TIMEX normalization system for the clinical domain, which consists of an anchor point classifier, an anchor relation classifier, and a rule-based RI-TIMEX text span parser. We experimented with different feature sets and performed an error analysis for each system component. The annotation confirmed the hypotheses that we can simplify the RI-TIMEXes normalization task using two multi-label classifiers. Our system achieves anchor point classification, anchor relation classification, and rule-based parsing accuracy of 74.68%, 87.71%, and 57.2% (82.09% under relaxed matching criteria), respectively, on the held-out test set of the 2012 i2b2 temporal relation challenge. Experiments with feature sets reveal some interesting findings, such as: the verbal tense feature does not inform the anchor relation classification in clinical narratives as much as the tokens near the RI-TIMEX. Error analysis showed that underrepresented anchor point and anchor relation classes are difficult to detect. We formulate the RI-TIMEX normalization problem as a pair of multi-label classification problems. Considering only RI-TIMEX extraction and normalization, the system achieves statistically significant improvement over the RI-TIMEX results of the best systems in the 2012 i2b2 challenge. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. MixDroid: A multi-features and multi-classifiers bagging system for Android malware detection

    NASA Astrophysics Data System (ADS)

    Huang, Weiqing; Hou, Erhang; Zheng, Liang; Feng, Weimiao

    2018-05-01

    In the past decade, Android platform has rapidly taken over the mobile market for its superior convenience and open source characteristics. However, with the popularity of Android, malwares targeting on Android devices are increasing rapidly, while the conventional rule-based and expert-experienced approaches are no longer able to handle such explosive growth. In this paper, combining with the theory of natural language processing and machine learning, we not only implement the basic feature extraction of permission application features, but also propose two innovative schemes of feature extraction: Dalvik opcode features and malicious code image, and implement an automatic Android malware detection system MixDroid which is based on multi-features and multi-classifiers. According to our experiment results on 20,000 Android applications, detection accuracy of MixDroid is 98.1%, which proves our schemes' effectiveness in Android malware detection.

  4. Democratic Governance and the Rule of Law: Lessons from Colombia

    DTIC Science & Technology

    2009-12-01

    DEMOCRATIC GOVERNANCE AND THE RULE OF LAW: LESSONS FROM COLOMBIA Gabriel Marcella December 2009 The views expressed in this report are those of the... Government . Authors of Strategic Studies Institute (SSI) publications enjoy full academic freedom, provided they do not disclose classified information...DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Democratic Governance and the Rule of Law: Lessons from Colombia 5a. CONTRACT NUMBER

  5. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement

    PubMed Central

    Cao, Xiaoguang; Wang, Peng; Meng, Cai; Gong, Guoping; Liu, Miaoming; Qi, Jun

    2018-01-01

    In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment. PMID:29494524

  6. Region Based CNN for Foreign Object Debris Detection on Airfield Pavement.

    PubMed

    Cao, Xiaoguang; Wang, Peng; Meng, Cai; Bai, Xiangzhi; Gong, Guoping; Liu, Miaoming; Qi, Jun

    2018-03-01

    In this paper, a novel algorithm based on convolutional neural network (CNN) is proposed to detect foreign object debris (FOD) based on optical imaging sensors. It contains two modules, the improved region proposal network (RPN) and spatial transformer network (STN) based CNN classifier. In the improved RPN, some extra select rules are designed and deployed to generate high quality candidates with fewer numbers. Moreover, the efficiency of CNN detector is significantly improved by introducing STN layer. Compared to faster R-CNN and single shot multiBox detector (SSD), the proposed algorithm achieves better result for FOD detection on airfield pavement in the experiment.

  7. Automatic detection of osteoporosis based on hybrid genetic swarm fuzzy classifier approaches

    PubMed Central

    Kavitha, Muthu Subash; Ganesh Kumar, Pugalendhi; Park, Soon-Yong; Huh, Kyung-Hoe; Heo, Min-Suk; Kurita, Takio; Asano, Akira; An, Seo-Yong

    2016-01-01

    Objectives: This study proposed a new automated screening system based on a hybrid genetic swarm fuzzy (GSF) classifier using digital dental panoramic radiographs to diagnose females with a low bone mineral density (BMD) or osteoporosis. Methods: The geometrical attributes of both the mandibular cortical bone and trabecular bone were acquired using previously developed software. Designing an automated system for osteoporosis screening involved partitioning of the input attributes to generate an initial membership function (MF) and a rule set (RS), classification using a fuzzy inference system and optimization of the generated MF and RS using the genetic swarm algorithm. Fivefold cross-validation (5-FCV) was used to estimate the classification accuracy of the hybrid GSF classifier. The performance of the hybrid GSF classifier has been further compared with that of individual genetic algorithm and particle swarm optimization fuzzy classifiers. Results: Proposed hybrid GSF classifier in identifying low BMD or osteoporosis at the lumbar spine and femoral neck BMD was evaluated. The sensitivity, specificity and accuracy of the hybrid GSF with optimized MF and RS in identifying females with a low BMD were 95.3%, 94.7% and 96.01%, respectively, at the lumbar spine and 99.1%, 98.4% and 98.9%, respectively, at the femoral neck BMD. The diagnostic performance of the proposed system with femoral neck BMD was 0.986 with a confidence interval of 0.942–0.998. The highest mean accuracy using 5-FCV was 97.9% with femoral neck BMD. Conclusions: The combination of high accuracy along with its interpretation ability makes this proposed automatic system using hybrid GSF classifier capable of identifying a large proportion of undetected low BMD or osteoporosis at its early stage. PMID:27186991

  8. Online breakage detection of multitooth tools using classifier ensembles for imbalanced data

    NASA Astrophysics Data System (ADS)

    Bustillo, Andrés; Rodríguez, Juan J.

    2014-12-01

    Cutting tool breakage detection is an important task, due to its economic impact on mass production lines in the automobile industry. This task presents a central limitation: real data-sets are extremely imbalanced because breakage occurs in very few cases compared with normal operation of the cutting process. In this paper, we present an analysis of different data-mining techniques applied to the detection of insert breakage in multitooth tools. The analysis applies only one experimental variable: the electrical power consumption of the tool drive. This restriction profiles real industrial conditions more accurately than other physical variables, such as acoustic or vibration signals, which are not so easily measured. Many efforts have been made to design a method that is able to identify breakages with a high degree of reliability within a short period of time. The solution is based on classifier ensembles for imbalanced data-sets. Classifier ensembles are combinations of classifiers, which in many situations are more accurate than individual classifiers. Six different base classifiers are tested: Decision Trees, Rules, Naïve Bayes, Nearest Neighbour, Multilayer Perceptrons and Logistic Regression. Three different balancing strategies are tested with each of the classifier ensembles and compared to their performance with the original data-set: Synthetic Minority Over-Sampling Technique (SMOTE), undersampling and a combination of SMOTE and undersampling. To identify the most suitable data-mining solution, Receiver Operating Characteristics (ROC) graph and Recall-precision graph are generated and discussed. The performance of logistic regression ensembles on the balanced data-set using the combination of SMOTE and undersampling turned out to be the most suitable technique. Finally a comparison using industrial performance measures is presented, which concludes that this technique is also more suited to this industrial problem than the other techniques presented in the bibliography.

  9. Rule extraction from minimal neural networks for credit card screening.

    PubMed

    Setiono, Rudy; Baesens, Bart; Mues, Christophe

    2011-08-01

    While feedforward neural networks have been widely accepted as effective tools for solving classification problems, the issue of finding the best network architecture remains unresolved, particularly so in real-world problem settings. We address this issue in the context of credit card screening, where it is important to not only find a neural network with good predictive performance but also one that facilitates a clear explanation of how it produces its predictions. We show that minimal neural networks with as few as one hidden unit provide good predictive accuracy, while having the added advantage of making it easier to generate concise and comprehensible classification rules for the user. To further reduce model size, a novel approach is suggested in which network connections from the input units to this hidden unit are removed by a very straightaway pruning procedure. In terms of predictive accuracy, both the minimized neural networks and the rule sets generated from them are shown to compare favorably with other neural network based classifiers. The rules generated from the minimized neural networks are concise and thus easier to validate in a real-life setting.

  10. 18 CFR 3a.61 - Storage and custody of classified information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Storage and custody of classified information. 3a.61 Section 3a.61 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Storage and Custody...

  11. 18 CFR 3a.61 - Storage and custody of classified information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Storage and custody of classified information. 3a.61 Section 3a.61 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Storage and Custody...

  12. 18 CFR 3a.61 - Storage and custody of classified information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Storage and custody of classified information. 3a.61 Section 3a.61 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Storage and Custody...

  13. 18 CFR 3a.61 - Storage and custody of classified information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Storage and custody of classified information. 3a.61 Section 3a.61 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Storage and Custody...

  14. Unsupervised classification of cirrhotic livers using MRI data

    NASA Astrophysics Data System (ADS)

    Lee, Gobert; Kanematsu, Masayuki; Kato, Hiroki; Kondo, Hiroshi; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Hoshi, Hiroaki

    2008-03-01

    Cirrhosis of the liver is a chronic disease. It is characterized by the presence of widespread nodules and fibrosis in the liver which results in characteristic texture patterns. Computerized analysis of hepatic texture patterns is usually based on regions-of-interest (ROIs). However, not all ROIs are typical representatives of the disease stage of the liver from which the ROIs originated. This leads to uncertainties in the ROI labels (diseased or non-diseased). On the other hand, supervised classifiers are commonly used in determining the assignment rule. This presents a problem as the training of a supervised classifier requires the correct labels of the ROIs. The main purpose of this paper is to investigate the use of an unsupervised classifier, the k-means clustering, in classifying ROI based data. In addition, a procedure for generating a receiver operating characteristic (ROC) curve depicting the classification performance of k-means clustering is also reported. Hepatic MRI images of 44 patients (16 cirrhotic; 28 non-cirrhotic) are used in this study. The MRI data are derived from gadolinium-enhanced equilibrium phase images. For each patient, 10 ROIs selected by an experienced radiologist and 7 texture features measured on each ROI are included in the MRI data. Results of the k-means classifier are depicted using an ROC curve. The area under the curve (AUC) has a value of 0.704. This is slightly lower than but comparable to that of LDA and ANN classifiers which have values 0.781 and 0.801, respectively. Methods in constructing ROC curve in relation to k-means clustering have not been previously reported in the literature.

  15. Multicenter Evaluation of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction With High-Sensitivity Cardiac Troponin T.

    PubMed

    Mueller, Christian; Giannitsis, Evangelos; Christ, Michael; Ordóñez-Llanos, Jorge; deFilippi, Christopher; McCord, James; Body, Richard; Panteghini, Mauro; Jernberg, Tomas; Plebani, Mario; Verschuren, Franck; French, John; Christenson, Robert; Weiser, Silvia; Bendig, Garnet; Dilba, Peter; Lindahl, Bertil

    2016-07-01

    We aim to prospectively validate the diagnostic accuracy of the recently developed 0-h/1-h algorithm, using high-sensitivity cardiac troponin T (hs-cTnT) for the early rule-out and rule-in of acute myocardial infarction. We enrolled patients presenting with suspected acute myocardial infarction and recent (<6 hours) onset of symptoms to the emergency department in a global multicenter diagnostic study. Hs-cTnT (Roche Diagnostics) and sensitive cardiac troponin I (Siemens Healthcare) were measured at presentation and after 1 hour, 2 hours, and 4 to 14 hours in a central laboratory. Patient triage according to the predefined hs-cTnT 0-hour/1-hour algorithm (hs-cTnT below 12 ng/L and Δ1 hour below 3 ng/L to rule out; hs-cTnT at least 52 ng/L or Δ1 hour at least 5 ng/L to rule in; remaining patients to the "observational zone") was compared against a centrally adjudicated final diagnosis by 2 independent cardiologists (reference standard). The final diagnosis was based on all available information, including coronary angiography and echocardiography results, follow-up data, and serial measurements of sensitive cardiac troponin I, whereas adjudicators remained blinded to hs-cTnT. Among 1,282 patients enrolled, acute myocardial infarction was the final diagnosis for 213 (16.6%) patients. Applying the hs-cTnT 0-hour/1-hour algorithm, 813 (63.4%) patients were classified as rule out, 184 (14.4%) were classified as rule in, and 285 (22.2%) were triaged to the observational zone. This resulted in a negative predictive value and sensitivity for acute myocardial infarction of 99.1% (95% confidence interval [CI] 98.2% to 99.7%) and 96.7% (95% CI 93.4% to 98.7%) in the rule-out zone (7 patients with false-negative results), a positive predictive value and specificity for acute myocardial infarction of 77.2% (95% CI 70.4% to 83.0%) and 96.1% (95% CI 94.7% to 97.2%) in the rule-in zone, and a prevalence of acute myocardial infarction of 22.5% in the observational zone. The hs-cTnT 0-hour/1-hour algorithm performs well for early rule-out and rule-in of acute myocardial infarction. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  16. Estimation of the diagnostic threshold accounting for decision costs and sampling uncertainty.

    PubMed

    Skaltsa, Konstantina; Jover, Lluís; Carrasco, Josep Lluís

    2010-10-01

    Medical diagnostic tests are used to classify subjects as non-diseased or diseased. The classification rule usually consists of classifying subjects using the values of a continuous marker that is dichotomised by means of a threshold. Here, the optimum threshold estimate is found by minimising a cost function that accounts for both decision costs and sampling uncertainty. The cost function is optimised either analytically in a normal distribution setting or empirically in a free-distribution setting when the underlying probability distributions of diseased and non-diseased subjects are unknown. Inference of the threshold estimates is based on approximate analytically standard errors and bootstrap-based approaches. The performance of the proposed methodology is assessed by means of a simulation study, and the sample size required for a given confidence interval precision and sample size ratio is also calculated. Finally, a case example based on previously published data concerning the diagnosis of Alzheimer's patients is provided in order to illustrate the procedure.

  17. TSCA Chemical Data Reporting Fact Sheet: Articles

    EPA Pesticide Factsheets

    This fact sheet provides guidance on classifying articles under the Toxic Substances Control Act (TSCA) and determining the applicability of EPA’s articles exclusion policy for purposes of the Chemical Data Reporting (CDR) rule. The primary goal of this document is to help the regulated community comply with the requirements of the CDR rule.

  18. Diagnosis of Cognitive Errors by Statistical Pattern Recognition Methods.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi K.; Tatsuoka, Maurice M.

    The rule space model permits measurement of cognitive skill acquisition, diagnosis of cognitive errors, and detection of the strengths and weaknesses of knowledge possessed by individuals. Two ways to classify an individual into his or her most plausible latent state of knowledge include: (1) hypothesis testing--Bayes' decision rules for minimum…

  19. Unifying hydrotropy under Gibbs phase rule.

    PubMed

    Shimizu, Seishi; Matubayasi, Nobuyuki

    2017-09-13

    The task of elucidating the mechanism of solubility enhancement using hydrotropes has been hampered by the wide variety of phase behaviour that hydrotropes can exhibit, encompassing near-ideal aqueous solution, self-association, micelle formation, and micro-emulsions. Instead of taking a field guide or encyclopedic approach to classify hydrotropes into different molecular classes, we take a rational approach aiming at constructing a unified theory of hydrotropy based upon the first principles of statistical thermodynamics. Achieving this aim can be facilitated by the two key concepts: (1) the Gibbs phase rule as the basis of classifying the hydrotropes in terms of the degrees of freedom and the number of variables to modulate the solvation free energy; (2) the Kirkwood-Buff integrals to quantify the interactions between the species and their relative contributions to the process of solubilization. We demonstrate that the application of the two key concepts can in principle be used to distinguish the different molecular scenarios at work under apparently similar solubility curves observed from experiments. In addition, a generalization of our previous approach to solutes beyond dilution reveals the unified mechanism of hydrotropy, driven by a strong solute-hydrotrope interaction which overcomes the apparent per-hydrotrope inefficiency due to hydrotrope self-clustering.

  20. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies

    PubMed Central

    Mahon, Jeffrey L.; Beam, Craig A.; Marcovina, Santica M.; Boulware, David C.; Palmer, Jerry P.; Winter, William E.; Skyler, Jay S.; Krischer, Jeffrey P.

    2018-01-01

    Background Detection of below-threshold first-phase insulin release or FPIR (1 + 3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. Methods One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. Results The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; p < 0.05). Conclusions An insulin IEMA for FPIR in subjects at risk for type 1 diabetes accurately determined below- and above-threshold FPIRs in 2/3 of tests relative to the current standard of the insulin RIA, but could not reliably classify the remaining FPIRs. TrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. PMID:21843518

  1. Power System Transient Stability Based on Data Mining Theory

    NASA Astrophysics Data System (ADS)

    Cui, Zhen; Shi, Jia; Wu, Runsheng; Lu, Dan; Cui, Mingde

    2018-01-01

    In order to study the stability of power system, a power system transient stability based on data mining theory is designed. By introducing association rules analysis in data mining theory, an association classification method for transient stability assessment is presented. A mathematical model of transient stability assessment based on data mining technology is established. Meanwhile, combining rule reasoning with classification prediction, the method of association classification is proposed to perform transient stability assessment. The transient stability index is used to identify the samples that cannot be correctly classified in association classification. Then, according to the critical stability of each sample, the time domain simulation method is used to determine the state, so as to ensure the accuracy of the final results. The results show that this stability assessment system can improve the speed of operation under the premise that the analysis result is completely correct, and the improved algorithm can find out the inherent relation between the change of power system operation mode and the change of transient stability degree.

  2. Grid occupancy estimation for environment perception based on belief functions and PCR6

    NASA Astrophysics Data System (ADS)

    Moras, Julien; Dezert, Jean; Pannetier, Benjamin

    2015-05-01

    In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster's rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster's rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.

  3. Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone

    NASA Astrophysics Data System (ADS)

    Rampun, Andrik; Zheng, Ling; Malcolm, Paul; Tiddeman, Bernie; Zwiggelaar, Reyer

    2016-07-01

    In this paper we propose a prostate cancer computer-aided diagnosis (CAD) system and suggest a set of discriminant texture descriptors extracted from T2-weighted MRI data which can be used as a good basis for a multimodality system. For this purpose, 215 texture descriptors were extracted and eleven different classifiers were employed to achieve the best possible results. The proposed method was tested based on 418 T2-weighted MR images taken from 45 patients and evaluated using 9-fold cross validation with five patients in each fold. The results demonstrated comparable results to existing CAD systems using multimodality MRI. We achieved an area under the receiver operating curve (A z ) values equal to 90.0%+/- 7.6% , 89.5%+/- 8.9% , 87.9%+/- 9.3% and 87.4%+/- 9.2% for Bayesian networks, ADTree, random forest and multilayer perceptron classifiers, respectively, while a meta-voting classifier using average probability as a combination rule achieved 92.7%+/- 7.4% .

  4. A Modified Decision Tree Algorithm Based on Genetic Algorithm for Mobile User Classification Problem

    PubMed Central

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity. PMID:24688389

  5. Learning ensemble classifiers for diabetic retinopathy assessment.

    PubMed

    Saleh, Emran; Błaszczyński, Jerzy; Moreno, Antonio; Valls, Aida; Romero-Aroca, Pedro; de la Riva-Fernández, Sofia; Słowiński, Roman

    2018-04-01

    Diabetic retinopathy is one of the most common comorbidities of diabetes. Unfortunately, the recommended annual screening of the eye fundus of diabetic patients is too resource-consuming. Therefore, it is necessary to develop tools that may help doctors to determine the risk of each patient to attain this condition, so that patients with a low risk may be screened less frequently and the use of resources can be improved. This paper explores the use of two kinds of ensemble classifiers learned from data: fuzzy random forest and dominance-based rough set balanced rule ensemble. These classifiers use a small set of attributes which represent main risk factors to determine whether a patient is in risk of developing diabetic retinopathy. The levels of specificity and sensitivity obtained in the presented study are over 80%. This study is thus a first successful step towards the construction of a personalized decision support system that could help physicians in daily clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 43 CFR 2091.7 - Segregation and opening of lands classified for a specific use.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Segregation and opening of lands classified for a specific use. 2091.7 Section 2091.7 Public Lands: Interior Regulations Relating to Public...) SPECIAL LAWS AND RULES Segregation and Opening of Lands § 2091.7 Segregation and opening of lands...

  7. Validation of Autism Spectrum Disorder Diagnoses in Large Healthcare Systems with Electronic Medical Records

    ERIC Educational Resources Information Center

    Coleman, Karen J.; Lutsky, Marta A.; Yau, Vincent; Qian, Yinge; Pomichowski, Magdalena E.; Crawford, Phillip M.; Lynch, Frances L.; Madden, Jeanne M.; Owen-Smith, Ashli; Pearson, John A.; Pearson, Kathryn A.; Rusinak, Donna; Quinn, Virginia P.; Croen, Lisa A.

    2015-01-01

    To identify factors associated with valid Autism Spectrum Disorder (ASD) diagnoses from electronic sources in large healthcare systems. We examined 1,272 charts from ASD diagnosed youth <18 years old. Expert reviewers classified diagnoses as confirmed, probable, possible, ruled out, or not enough information. A total of 845 were classified with…

  8. An Analysis Pipeline with Statistical and Visualization-Guided Knowledge Discovery for Michigan-Style Learning Classifier Systems

    PubMed Central

    Urbanowicz, Ryan J.; Granizo-Mackenzie, Ambrose; Moore, Jason H.

    2014-01-01

    Michigan-style learning classifier systems (M-LCSs) represent an adaptive and powerful class of evolutionary algorithms which distribute the learned solution over a sizable population of rules. However their application to complex real world data mining problems, such as genetic association studies, has been limited. Traditional knowledge discovery strategies for M-LCS rule populations involve sorting and manual rule inspection. While this approach may be sufficient for simpler problems, the confounding influence of noise and the need to discriminate between predictive and non-predictive attributes calls for additional strategies. Additionally, tests of significance must be adapted to M-LCS analyses in order to make them a viable option within fields that require such analyses to assess confidence. In this work we introduce an M-LCS analysis pipeline that combines uniquely applied visualizations with objective statistical evaluation for the identification of predictive attributes, and reliable rule generalizations in noisy single-step data mining problems. This work considers an alternative paradigm for knowledge discovery in M-LCSs, shifting the focus from individual rules to a global, population-wide perspective. We demonstrate the efficacy of this pipeline applied to the identification of epistasis (i.e., attribute interaction) and heterogeneity in noisy simulated genetic association data. PMID:25431544

  9. 32 CFR 324.7 - Exemption rules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exemption rule, claimed by the Defense Finance and Accounting Service under authority of 5 U.S.C. 552a(k)(1... for classified records. Any record in a system of records maintained by the Defense Finance and Accounting Service which falls within the provisions of 5 U.S.C. 552a(k)(1) may be exempt from the following...

  10. External Validation of the PECARN Head Trauma Prediction Rules in Japan.

    PubMed

    Ide, Kentaro; Uematsu, Satoko; Tetsuhara, Kenichi; Yoshimura, Satoshi; Kato, Takahiro; Kobayashi, Tohru

    2017-03-01

    The Pediatric Emergency Care Applied Research Network (PECARN) head trauma prediction rules are used to assist computed tomography (CT) decision-making for children with minor head trauma. Although the PECARN rules have been validated in North America and Europe, they have not yet been validated in Asia. In Japan, there are no clinical decision rules for children with minor head trauma. The rate of head CT for children with minor head trauma in Japan is high since CT is widely accessible across the country. The objective of this study was to evaluate the diagnostic accuracy of the PECARN rules for identifying clinically important traumatic brain injuries (ciTBI) in children with minor head trauma in Japan. We conducted a retrospective cohort study at a tertiary care pediatric hospital in Japan (30,000 patients/year). We enrolled all children younger than 18 years with minor head trauma (Glasgow Coma Scale ≥ 14) who presented to the emergency department within 24 hours of their injury between January and December 2013. We retrospectively classified the children into three risk categories according to the PECARN rules. The PECARN rules were considered negative when children were classified into the very-low-risk category. The primary outcome was considered positive when a child had ciTBI defined as head injury resulting in death, neurosurgery, intubation for > 24 hours, or hospital admission ≥ 2 nights with evidence of TBI on CT. Among 2,208 children included in the study, 24 (1.1%) had ciTBI. Sensitivities and specificities of the PECARN rules to predict ciTBI were 85.7% (12/14; 95% confidence interval [CI] = 57.2 to 98.2) and 73.5% (572/778; 95% CI = 70.3 to 76.6), respectively, for children < 2 years old, and 100% (10/10; 95% CI = 58.7 to 100) and 73.5% (1033/1406; 95% CI = 71.0 to 75.7) for children ≥ 2 years old, respectively. There were 10 cases of physically abused children < 2 years old, and six (60%) of them had ciTBI. Also, two cases of physically abused children with ciTBI were classified as very low risk. If we did not include physically abused children, the sensitivity of the PECARN rule for children < 2 years old improved from 85.7% to 100% (8/8). The PECARN rules were less sensitive for physically abused children, although the rules showed excellent applicability for the cohort without physical abuse. Thoughtful consideration may be needed for cases of nonaccidental trauma. Further prospective studies are required to verify the applicability of the PECARN rules for children with minor head trauma in Japan. © 2016 by the Society for Academic Emergency Medicine.

  11. Performance of probabilistic method to detect duplicate individual case safety reports.

    PubMed

    Tregunno, Philip Michael; Fink, Dorthe Bech; Fernandez-Fernandez, Cristina; Lázaro-Bengoa, Edurne; Norén, G Niklas

    2014-04-01

    Individual case reports of suspected harm from medicines are fundamental for signal detection in postmarketing surveillance. Their effective analysis requires reliable data and one challenge is report duplication. These are multiple unlinked records describing the same suspected adverse drug reaction (ADR) in a particular patient. They distort statistical screening and can mislead clinical assessment. Many organisations rely on rule-based detection, but probabilistic record matching is an alternative. The aim of this study was to evaluate probabilistic record matching for duplicate detection, and to characterise the main sources of duplicate reports within each data set. vigiMatch™, a published probabilistic record matching algorithm, was applied to the WHO global individual case safety reports database, VigiBase(®), for reports submitted between 2000 and 2010. Reported drugs, ADRs, patient age, sex, country of origin, and date of onset were considered in the matching. Suspected duplicates for the UK, Denmark, and Spain were reviewed and classified by the respective national centre. This included evaluation to determine whether confirmed duplicates had already been identified by in-house, rule-based screening. Furthermore, each confirmed duplicate was classified with respect to the likely source of duplication. For each country, the proportions of suspected duplicates classified as confirmed duplicates, likely duplicates, otherwise related, and unrelated were obtained. The proportions of confirmed or likely duplicates that were not previously known by the national organisation were determined, and variations in the rates of suspected duplicates across subsets of reports were characterised. Overall, 2.5 % of the reports with sufficient information to be evaluated by vigiMatch were classified as suspected duplicates. The rates for the three countries considered in this study were 1.4 % (UK), 1.0 % (Denmark), and 0.7 % (Spain). Higher rates of suspected duplicates were observed for literature reports (11 %) and reports with fatal outcome (5 %), whereas a lower rate was observed for reports from consumers and non-health professionals (0.5 %). The predictive value for confirmed or likely duplicates among reports flagged as suspected duplicates by vigiMatch ranged from 86 % for the UK, to 64 % for Denmark and 33 % for Spain. The proportions of confirmed duplicates that were previously unknown to national centres ranged from 89 % for Spain, to 60 % for the UK and 38 % for Denmark, despite in-house duplicate detection processes in routine use. The proportion of unrelated cases among suspected duplicates were below 10 % for each national centre in the study. Probabilistic record matching, as implemented in vigiMatch, achieved good predictive value for confirmed or likely duplicates in each data source. Most of the false positives corresponded to otherwise related reports; less than 10 % were altogether unrelated. A substantial proportion of the correctly identified duplicates had not previously been detected by national centre activity. On one hand, vigiMatch highlighted duplicates that had been missed by rule-based methods, and on the other hand its lower total number of suspected duplicates to review improved the accuracy of manual review.

  12. Mapping urban impervious surface using object-based image analysis with WorldView-3 satellite imagery

    NASA Astrophysics Data System (ADS)

    Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk

    2017-10-01

    Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.

  13. Mapping Phonetic Features for Voice-Driven Sound Synthesis

    NASA Astrophysics Data System (ADS)

    Janer, Jordi; Maestre, Esteban

    In applications where the human voice controls the synthesis of musical instruments sounds, phonetics convey musical information that might be related to the sound of the imitated musical instrument. Our initial hypothesis is that phonetics are user- and instrument-dependent, but they remain constant for a single subject and instrument. We propose a user-adapted system, where mappings from voice features to synthesis parameters depend on how subjects sing musical articulations, i.e. note to note transitions. The system consists of two components. First, a voice signal segmentation module that automatically determines note-to-note transitions. Second, a classifier that determines the type of musical articulation for each transition based on a set of phonetic features. For validating our hypothesis, we run an experiment where subjects imitated real instrument recordings with their voice. Performance recordings consisted of short phrases of saxophone and violin performed in three grades of musical articulation labeled as: staccato, normal, legato. The results of a supervised training classifier (user-dependent) are compared to a classifier based on heuristic rules (user-independent). Finally, from the previous results we show how to control the articulation in a sample-concatenation synthesizer by selecting the most appropriate samples.

  14. Error-associated behaviors and error rates for robotic geology

    NASA Technical Reports Server (NTRS)

    Anderson, Robert C.; Thomas, Geb; Wagner, Jacob; Glasgow, Justin

    2004-01-01

    This study explores human error as a function of the decision-making process. One of many models for human decision-making is Rasmussen's decision ladder [9]. The decision ladder identifies the multiple tasks and states of knowledge involved in decision-making. The tasks and states of knowledge can be classified by the level of cognitive effort required to make the decision, leading to the skill, rule, and knowledge taxonomy (Rasmussen, 1987). Skill based decisions require the least cognitive effort and knowledge based decisions require the greatest cognitive effort. Errors can occur at any of the cognitive levels.

  15. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors.

    PubMed

    Wu, Minglin; Zhang, Sheng; Dong, Yuhan

    2016-10-20

    In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution) and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden) can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects.

  16. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors

    PubMed Central

    Wu, Minglin; Zhang, Sheng; Dong, Yuhan

    2016-01-01

    In this article, a novel driving behavior recognition system based on a specific physical model and motion sensory data is developed to promote traffic safety. Based on the theory of rigid body kinematics, we build a specific physical model to reveal the data change rule during the vehicle moving process. In this work, we adopt a nine-axis motion sensor including a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer, and apply a Kalman filter for noise elimination and an adaptive time window for data extraction. Based on the feature extraction guided by the built physical model, various classifiers are accomplished to recognize different driving behaviors. Leveraging the system, normal driving behaviors (such as accelerating, braking, lane changing and turning with caution) and aggressive driving behaviors (such as accelerating, braking, lane changing and turning with a sudden) can be classified with a high accuracy of 93.25%. Compared with traditional driving behavior recognition methods using machine learning only, the proposed system possesses a solid theoretical basis, performs better and has good prospects. PMID:27775625

  17. A Fuzzy Rule Based Decision Support System for Identifying Location of Water Harvesting Technologies in Rainfed Agricultural Regions

    NASA Astrophysics Data System (ADS)

    Chaubey, I.; Vema, V. K.; Sudheer, K.

    2016-12-01

    Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.

  18. Automated Classification of Phonological Errors in Aphasic Language

    PubMed Central

    Ahuja, Sanjeev B.; Reggia, James A.; Berndt, Rita S.

    1984-01-01

    Using heuristically-guided state space search, a prototype program has been developed to simulate and classify phonemic errors occurring in the speech of neurologically-impaired patients. Simulations are based on an interchangeable rule/operator set of elementary errors which represent a theory of phonemic processing faults. This work introduces and evaluates a novel approach to error simulation and classification, it provides a prototype simulation tool for neurolinguistic research, and it forms the initial phase of a larger research effort involving computer modelling of neurolinguistic processes.

  19. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.

    PubMed

    Kar, Subrata; Majumder, D Dutta

    2017-08-01

    Investigation of brain cancer can detect the abnormal growth of tissue in the brain using computed tomography (CT) scans and magnetic resonance (MR) images of patients. The proposed method classifies brain cancer on shape-based feature extraction as either benign or malignant. The authors used input variables such as shape distance (SD) and shape similarity measure (SSM) in fuzzy tools, and used fuzzy rules to evaluate the risk status as an output variable. We presented a classifier neural network system (NNS), namely Levenberg-Marquardt (LM), which is a feed-forward back-propagation learning algorithm used to train the NN for the status of brain cancer, if any, and which achieved satisfactory performance with 100% accuracy. The proposed methodology is divided into three phases. First, we find the region of interest (ROI) in the brain to detect the tumors using CT and MR images. Second, we extract the shape-based features, like SD and SSM, and grade the brain tumors as benign or malignant with the concept of SD function and SSM as shape-based parameters. Third, we classify the brain cancers using neuro-fuzzy tools. In this experiment, we used a 16-sample database with SSM (μ) values and classified the benignancy or malignancy of the brain tumor lesions using the neuro-fuzzy system (NFS). We have developed a fuzzy expert system (FES) and NFS for early detection of brain cancer from CT and MR images. In this experiment, shape-based features, such as SD and SSM, were extracted from the ROI of brain tumor lesions. These shape-based features were considered as input variables and, using fuzzy rules, we were able to evaluate brain cancer risk values for each case. We used an NNS with LM, a feed-forward back-propagation learning algorithm, as a classifier for the diagnosis of brain cancer and achieved satisfactory performance with 100% accuracy. The proposed network was trained with MR image datasets of 16 cases. The 16 cases were fed to the ANN with 2 input neurons, one hidden layer of 10 neurons and 2 output neurons. Of the 16-sample database, 10 datasets for training, 3 datasets for validation, and 3 datasets for testing were used in the ANN classification system. From the SSM (µ) confusion matrix, the number of output datasets of true positive, false positive, true negative and false negative was 6, 0, 10, and 0, respectively. The sensitivity, specificity and accuracy were each equal to 100%. The method of diagnosing brain cancer presented in this study is a successful model to assist doctors in the screening and treatment of brain cancer patients. The presented FES successfully identified the presence of brain cancer in CT and MR images using the extracted shape-based features and the use of NFS for the identification of brain cancer in the early stages. From the analysis and diagnosis of the disease, the doctors can decide the stage of cancer and take the necessary steps for more accurate treatment. Here, we have presented an investigation and comparison study of the shape-based feature extraction method with the use of NFS for classifying brain tumors as showing normal or abnormal patterns. The results have proved that the shape-based features with the use of NFS can achieve a satisfactory performance with 100% accuracy. We intend to extend this methodology for the early detection of cancer in other regions such as the prostate region and human cervix.

  20. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  1. CardioClassifier: disease- and gene-specific computational decision support for clinical genome interpretation.

    PubMed

    Whiffin, Nicola; Walsh, Roddy; Govind, Risha; Edwards, Matthew; Ahmad, Mian; Zhang, Xiaolei; Tayal, Upasana; Buchan, Rachel; Midwinter, William; Wilk, Alicja E; Najgebauer, Hanna; Francis, Catherine; Wilkinson, Sam; Monk, Thomas; Brett, Laura; O'Regan, Declan P; Prasad, Sanjay K; Morris-Rosendahl, Deborah J; Barton, Paul J R; Edwards, Elizabeth; Ware, James S; Cook, Stuart A

    2018-01-25

    PurposeInternationally adopted variant interpretation guidelines from the American College of Medical Genetics and Genomics (ACMG) are generic and require disease-specific refinement. Here we developed CardioClassifier (http://www.cardioclassifier.org), a semiautomated decision-support tool for inherited cardiac conditions (ICCs).MethodsCardioClassifier integrates data retrieved from multiple sources with user-input case-specific information, through an interactive interface, to support variant interpretation. Combining disease- and gene-specific knowledge with variant observations in large cohorts of cases and controls, we refined 14 computational ACMG criteria and created three ICC-specific rules.ResultsWe benchmarked CardioClassifier on 57 expertly curated variants and show full retrieval of all computational data, concordantly activating 87.3% of rules. A generic annotation tool identified fewer than half as many clinically actionable variants (64/219 vs. 156/219, Fisher's P = 1.1  ×  10 -18 ), with important false positives, illustrating the critical importance of disease and gene-specific annotations. CardioClassifier identified putatively disease-causing variants in 33.7% of 327 cardiomyopathy cases, comparable with leading ICC laboratories. Through addition of manually curated data, variants found in over 40% of cardiomyopathy cases are fully annotated, without requiring additional user-input data.ConclusionCardioClassifier is an ICC-specific decision-support tool that integrates expertly curated computational annotations with case-specific data to generate fast, reproducible, and interactive variant pathogenicity reports, according to best practice guidelines.GENETICS in MEDICINE advance online publication, 25 January 2018; doi:10.1038/gim.2017.258.

  2. Evaluation of IOTA Simple Ultrasound Rules to Distinguish Benign and Malignant Ovarian Tumours.

    PubMed

    Garg, Sugandha; Kaur, Amarjit; Mohi, Jaswinder Kaur; Sibia, Preet Kanwal; Kaur, Navkiran

    2017-08-01

    IOTA stands for International Ovarian Tumour Analysis group. Ovarian cancer is one of the common cancers in women and is diagnosed at later stage in majority. The limiting factor for early diagnosis is lack of standardized terms and procedures in gynaecological sonography. Introduction of IOTA rules has provided some consistency in defining morphological features of ovarian masses through a standardized examination technique. To evaluate the efficacy of IOTA simple ultrasound rules in distinguishing benign and malignant ovarian tumours and establishing their use as a tool in early diagnosis of ovarian malignancy. A hospital based case control prospective study was conducted. Patients with suspected ovarian pathology were evaluated using IOTA ultrasound rules and designated as benign or malignant. Findings were correlated with histopathological findings. Collected data was statistically analysed using chi-square test and kappa statistical method. Out of initial 55 patients, 50 patients were included in the final analysis who underwent surgery. IOTA simple rules were applicable in 45 out of these 50 patients (90%). The sensitivity for the detection of malignancy in cases where IOTA simple rules were applicable was 91.66% and the specificity was 84.84%. Accuracy was 86.66%. Classifying inconclusive cases as malignant, the sensitivity and specificity was 93% and 80% respectively. High level of agreement was found between USG and histopathological diagnosis with Kappa value as 0.323. IOTA simple ultrasound rules were highly sensitive and specific in predicting ovarian malignancy preoperatively yet being reproducible, easy to train and use.

  3. Automatic learning of rules. A practical example of using artificial intelligence to improve computer-based detection of myocardial infarction and left ventricular hypertrophy in the 12-lead ECG.

    PubMed

    Kaiser, W; Faber, T S; Findeis, M

    1996-01-01

    The authors developed a computer program that detects myocardial infarction (MI) and left ventricular hypertrophy (LVH) in two steps: (1) by extracting parameter values from a 10-second, 12-lead electrocardiogram, and (2) by classifying the extracted parameter values with rule sets. Every disease has its dedicated set of rules. Hence, there are separate rule sets for anterior MI, inferior MI, and LVH. If at least one rule is satisfied, the disease is said to be detected. The computer program automatically develops these rule sets. A database (learning set) of healthy subjects and patients with MI, LVH, and mixed MI+LVH was used. After defining the rule type, initial limits, and expected quality of the rules (positive predictive value, minimum number of patients), the program creates a set of rules by varying the limits. The general rule type is defined as: disease = lim1l < p1 < or = lim1u and lim2l < p2 < or = lim2u and ... limnl < pn < or = limnu. When defining the rule types, only the parameters (p1 ... pn) that are known as clinical electrocardiographic criteria (amplitudes [mV] of Q, R, and T waves and ST-segment; duration [ms] of Q wave; frontal angle [degrees]) were used. This allowed for submitting the learned rule sets to an independent investigator for medical verification. It also allowed the creation of explanatory texts with the rules. These advantages are not offered by the neurons of a neural network. The learned rules were checked against a test set and the following results were obtained: MI: sensitivity 76.2%, positive predictive value 98.6%; LVH: sensitivity 72.3%, positive predictive value 90.9%. The specificity ratings for MI are better than 98%; for LVH, better than 90%.

  4. A Comparison Study of Rule Space Method and Neural Network Model for Classifying Individuals and an Application.

    ERIC Educational Resources Information Center

    Hayashi, Atsuhiro

    Both the Rule Space Method (RSM) and the Neural Network Model (NNM) are techniques of statistical pattern recognition and classification approaches developed for applications from different fields. RSM was developed in the domain of educational statistics. It started from the use of an incidence matrix Q that characterizes the underlying cognitive…

  5. Automated detection of pain from facial expressions: a rule-based approach using AAM

    NASA Astrophysics Data System (ADS)

    Chen, Zhanli; Ansari, Rashid; Wilkie, Diana J.

    2012-02-01

    In this paper, we examine the problem of using video analysis to assess pain, an important problem especially for critically ill, non-communicative patients, and people with dementia. We propose and evaluate an automated method to detect the presence of pain manifested in patient videos using a unique and large collection of cancer patient videos captured in patient homes. The method is based on detecting pain-related facial action units defined in the Facial Action Coding System (FACS) that is widely used for objective assessment in pain analysis. In our research, a person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional Method is trained for each patient individually for the modeling purpose. A flexible representation of the shape model is used in a rule-based method that is better suited than the more commonly used classifier-based methods for application to the cancer patient videos in which pain-related facial actions occur infrequently and more subtly. The rule-based method relies on the feature points that provide facial action cues and is extracted from the shape vertices of AAM, which have a natural correspondence to face muscular movement. In this paper, we investigate the detection of a commonly used set of pain-related action units in both the upper and lower face. Our detection results show good agreement with the results obtained by three trained FACS coders who independently reviewed and scored the action units in the cancer patient videos.

  6. An automated approach to the design of decision tree classifiers

    NASA Technical Reports Server (NTRS)

    Argentiero, P.; Chin, R.; Beaudet, P.

    1982-01-01

    An automated technique is presented for designing effective decision tree classifiers predicated only on a priori class statistics. The procedure relies on linear feature extractions and Bayes table look-up decision rules. Associated error matrices are computed and utilized to provide an optimal design of the decision tree at each so-called 'node'. A by-product of this procedure is a simple algorithm for computing the global probability of correct classification assuming the statistical independence of the decision rules. Attention is given to a more precise definition of decision tree classification, the mathematical details on the technique for automated decision tree design, and an example of a simple application of the procedure using class statistics acquired from an actual Landsat scene.

  7. Efficient quantitative assessment of facial paralysis using iris segmentation and active contour-based key points detection with hybrid classifier.

    PubMed

    Barbosa, Jocelyn; Lee, Kyubum; Lee, Sunwon; Lodhi, Bilal; Cho, Jae-Gu; Seo, Woo-Keun; Kang, Jaewoo

    2016-03-12

    Facial palsy or paralysis (FP) is a symptom that loses voluntary muscles movement in one side of the human face, which could be very devastating in the part of the patients. Traditional methods are solely dependent to clinician's judgment and therefore time consuming and subjective in nature. Hence, a quantitative assessment system becomes apparently invaluable for physicians to begin the rehabilitation process; and to produce a reliable and robust method is challenging and still underway. We introduce a novel approach for a quantitative assessment of facial paralysis that tackles classification problem for FP type and degree of severity. Specifically, a novel method of quantitative assessment is presented: an algorithm that extracts the human iris and detects facial landmarks; and a hybrid approach combining the rule-based and machine learning algorithm to analyze and prognosticate facial paralysis using the captured images. A method combining the optimized Daugman's algorithm and Localized Active Contour (LAC) model is proposed to efficiently extract the iris and facial landmark or key points. To improve the performance of LAC, appropriate parameters of initial evolving curve for facial features' segmentation are automatically selected. The symmetry score is measured by the ratio between features extracted from the two sides of the face. Hybrid classifiers (i.e. rule-based with regularized logistic regression) were employed for discriminating healthy and unhealthy subjects, FP type classification, and for facial paralysis grading based on House-Brackmann (H-B) scale. Quantitative analysis was performed to evaluate the performance of the proposed approach. Experiments show that the proposed method demonstrates its efficiency. Facial movement feature extraction on facial images based on iris segmentation and LAC-based key point detection along with a hybrid classifier provides a more efficient way of addressing classification problem on facial palsy type and degree of severity. Combining iris segmentation and key point-based method has several merits that are essential for our real application. Aside from the facial key points, iris segmentation provides significant contribution as it describes the changes of the iris exposure while performing some facial expressions. It reveals the significant difference between the healthy side and the severe palsy side when raising eyebrows with both eyes directed upward, and can model the typical changes in the iris region.

  8. Cellular automata rule characterization and classification using texture descriptors

    NASA Astrophysics Data System (ADS)

    Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.

    2018-05-01

    The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.

  9. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies.

    PubMed

    Mahon, Jeffrey L; Beam, Craig A; Marcovina, Santica M; Boulware, David C; Palmer, Jerry P; Winter, William E; Skyler, Jay S; Krischer, Jeffrey P

    2011-11-20

    Detection of below-threshold first-phase insulin release or FPIR (1+3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; p<0.05). An insulin IEMA for FPIR in subjects at risk for type 1 diabetes accurately determined below- and above-threshold FPIRs in 2/3 of tests relative to the current standard of the insulin RIA, but could not reliably classify the remaining FPIRs. TrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Feature Selection for Classification of Polar Regions Using a Fuzzy Expert System

    NASA Technical Reports Server (NTRS)

    Penaloza, Mauel A.; Welch, Ronald M.

    1996-01-01

    Labeling, feature selection, and the choice of classifier are critical elements for classification of scenes and for image understanding. This study examines several methods for feature selection in polar regions, including the list, of a fuzzy logic-based expert system for further refinement of a set of selected features. Six Advanced Very High Resolution Radiometer (AVHRR) Local Area Coverage (LAC) arctic scenes are classified into nine classes: water, snow / ice, ice cloud, land, thin stratus, stratus over water, cumulus over water, textured snow over water, and snow-covered mountains. Sixty-seven spectral and textural features are computed and analyzed by the feature selection algorithms. The divergence, histogram analysis, and discriminant analysis approaches are intercompared for their effectiveness in feature selection. The fuzzy expert system method is used not only to determine the effectiveness of each approach in classifying polar scenes, but also to further reduce the features into a more optimal set. For each selection method,features are ranked from best to worst, and the best half of the features are selected. Then, rules using these selected features are defined. The results of running the fuzzy expert system with these rules show that the divergence method produces the best set features, not only does it produce the highest classification accuracy, but also it has the lowest computation requirements. A reduction of the set of features produced by the divergence method using the fuzzy expert system results in an overall classification accuracy of over 95 %. However, this increase of accuracy has a high computation cost.

  11. Classification of a set of vectors using self-organizing map- and rule-based technique

    NASA Astrophysics Data System (ADS)

    Ae, Tadashi; Okaniwa, Kaishirou; Nosaka, Kenzaburou

    2005-02-01

    There exist various objects, such as pictures, music, texts, etc., around our environment. We have a view for these objects by looking, reading or listening. Our view is concerned with our behaviors deeply, and is very important to understand our behaviors. We have a view for an object, and decide the next action (data selection, etc.) with our view. Such a series of actions constructs a sequence. Therefore, we propose a method which acquires a view as a vector from several words for a view, and apply the vector to sequence generation. We focus on sequences of the data of which a user selects from a multimedia database containing pictures, music, movie, etc... These data cannot be stereotyped because user's view for them changes by each user. Therefore, we represent the structure of the multimedia database as the vector representing user's view and the stereotyped vector, and acquire sequences containing the structure as elements. Such a vector can be classified by SOM (Self-Organizing Map). Hidden Markov Model (HMM) is a method to generate sequences. Therefore, we use HMM of which a state corresponds to the representative vector of user's view, and acquire sequences containing the change of user's view. We call it Vector-state Markov Model (VMM). We introduce the rough set theory as a rule-base technique, which plays a role of classifying the sets of data such as the sets of "Tour".

  12. De-identification of clinical notes via recurrent neural network and conditional random field.

    PubMed

    Liu, Zengjian; Tang, Buzhou; Wang, Xiaolong; Chen, Qingcai

    2017-11-01

    De-identification, identifying information from data, such as protected health information (PHI) present in clinical data, is a critical step to enable data to be shared or published. The 2016 Centers of Excellence in Genomic Science (CEGS) Neuropsychiatric Genome-scale and RDOC Individualized Domains (N-GRID) clinical natural language processing (NLP) challenge contains a de-identification track in de-identifying electronic medical records (EMRs) (i.e., track 1). The challenge organizers provide 1000 annotated mental health records for this track, 600 out of which are used as a training set and 400 as a test set. We develop a hybrid system for the de-identification task on the training set. Firstly, four individual subsystems, that is, a subsystem based on bidirectional LSTM (long-short term memory, a variant of recurrent neural network), a subsystem-based on bidirectional LSTM with features, a subsystem based on conditional random field (CRF) and a rule-based subsystem, are used to identify PHI instances. Then, an ensemble learning-based classifiers is deployed to combine all PHI instances predicted by above three machine learning-based subsystems. Finally, the results of the ensemble learning-based classifier and the rule-based subsystem are merged together. Experiments conducted on the official test set show that our system achieves the highest micro F1-scores of 93.07%, 91.43% and 95.23% under the "token", "strict" and "binary token" criteria respectively, ranking first in the 2016 CEGS N-GRID NLP challenge. In addition, on the dataset of 2014 i2b2 NLP challenge, our system achieves the highest micro F1-scores of 96.98%, 95.11% and 98.28% under the "token", "strict" and "binary token" criteria respectively, outperforming other state-of-the-art systems. All these experiments prove the effectiveness of our proposed method. Copyright © 2017. Published by Elsevier Inc.

  13. Counting conformal correlators

    NASA Astrophysics Data System (ADS)

    Kravchuk, Petr; Simmons-Duffin, David

    2018-02-01

    We introduce simple group-theoretic techniques for classifying conformallyinvariant tensor structures. With them, we classify tensor structures of general n-point functions of non-conserved operators, and n ≥ 4-point functions of general conserved currents, with or without permutation symmetries, and in any spacetime dimension d. Our techniques are useful for bootstrap applications. The rules we derive simultaneously count tensor structures for flat-space scattering amplitudes in d + 1 dimensions.

  14. Leukocyte Recognition Using EM-Algorithm

    NASA Astrophysics Data System (ADS)

    Colunga, Mario Chirinos; Siordia, Oscar Sánchez; Maybank, Stephen J.

    This document describes a method for classifying images of blood cells. Three different classes of cells are used: Band Neutrophils, Eosinophils and Lymphocytes. The image pattern is projected down to a lower dimensional sub space using PCA; the probability density function for each class is modeled with a Gaussian mixture using the EM-Algorithm. A new cell image is classified using the maximum a posteriori decision rule.

  15. Semantic Segmentation of Building Elements Using Point Cloud Hashing

    NASA Astrophysics Data System (ADS)

    Chizhova, M.; Gurianov, A.; Hess, M.; Luhmann, T.; Brunn, A.; Stilla, U.

    2018-05-01

    For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).

  16. ICE System: Interruptible control expert system. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Vezina, James M.

    1990-01-01

    The Interruptible Control Expert (ICE) System is based on an architecture designed to provide a strong foundation for real-time production rule expert systems. Three principles are adopted to guide the development of ICE. A practical delivery platform must be provided, no specialized hardware can be used to solve deficiencies in the software design. Knowledge of the environment and the rule-base is exploited to improve the performance of a delivered system. The third principle of ICE is to respond to the most critical event, at the expense of the more trivial tasks. Minimal time is spent on classifying the potential importance of environmental events with the majority of the time used for finding the responses. A feature of the system, derived from all three principles, is the lack of working memory. By using a priori information, a fixed amount of memory can be specified for the hardware platform. The absence of working memory removes the dangers of garbage collection during the continuous operation of the controller.

  17. Event Driven Messaging with Role-Based Subscriptions

    NASA Technical Reports Server (NTRS)

    Bui, Tung; Bui, Bach; Malhotra, Shantanu; Chen, Fannie; Kim, rachel; Allen, Christopher; Luong, Ivy; Chang, George; Zendejas, Silvino; Sadaqathulla, Syed

    2009-01-01

    Event Driven Messaging with Role-Based Subscriptions (EDM-RBS) is a framework integrated into the Service Management Database (SMDB) to allow for role-based and subscription-based delivery of synchronous and asynchronous messages over JMS (Java Messaging Service), SMTP (Simple Mail Transfer Protocol), or SMS (Short Messaging Service). This allows for 24/7 operation with users in all parts of the world. The software classifies messages by triggering data type, application source, owner of data triggering event (mission), classification, sub-classification and various other secondary classifying tags. Messages are routed to applications or users based on subscription rules using a combination of the above message attributes. This program provides a framework for identifying connected users and their applications for targeted delivery of messages over JMS to the client applications the user is logged into. EDMRBS provides the ability to send notifications over e-mail or pager rather than having to rely on a live human to do it. It is implemented as an Oracle application that uses Oracle relational database management system intrinsic functions. It is configurable to use Oracle AQ JMS API or an external JMS provider for messaging. It fully integrates into the event-logging framework of SMDB (Subnet Management Database).

  18. Multicenter study for optimal categorization of extramural tumor deposits for colorectal cancer staging.

    PubMed

    Ueno, Hideki; Mochizuki, Hidetaka; Shirouzu, Kazuo; Kusumi, Takaya; Yamada, Kazutaka; Ikegami, Masahiro; Kawachi, Hiroshi; Kameoka, Shingo; Ohkura, Yasuo; Masaki, Tadahiko; Kushima, Ryoji; Takahashi, Keiichi; Ajioka, Yoichi; Hase, Kazuo; Ochiai, Atsushi; Wada, Ryo; Iwaya, Keiichi; Nakamura, Takahiro; Sugihara, Kenichi

    2012-04-01

    This study aimed to determine the optimal categorization of extramural tumor deposits lacking residual lymph node (LN) structure (EX) in colorectal cancer staging. The TNM classification system categorizes EX on the basis of their contour characteristics (the contour rule). We conducted a multicenter, retrospective, pathological review of 1716 patients with stage I to III curatively resected colorectal cancer who were treated at 11 institutions (1994-1998). In addition, 2242 patients from 9 institutions (1999-2003) were enrolled as a second cohort for validating results. EX were classified as isolated foci confined to vascular or perineural spaces (ie, lymphatic, venous, or perineural invasion) or as tumor nodules (ND). N- and T-staging systems employing different categories for staging were compared in terms of their prognostic power. In addition, the diagnoses of extramural, discontinuously spreading lesions made by 11 observers from different institutions were assessed for interobserver agreement. EX were observed in 18.2% of patients in the first cohort. The method of categorization of EX in tumor staging has a stronger impact on N than T staging. The N-staging system in which all ND types were classified as N factor (the ND rule) could more effectively stratify the survival outcome than the contour rule (Akaike information criterion, 3040.8 vs 3059.5; the Harrell C-index, 0.7255 vs 0.7103). EX were observed in 16.9% of patients in the second cohort. Statistically, the ND rule was more informative than the contour rule for N staging. The Fleiss kappa coefficient for distinguishing LN metastases from EX (0.74) was lower than expected for complete agreement, and it decreased further to 0.51 when calculated for the judgment of ND with smooth contours. Classifying all ND types as N factors irrespective of contours can simplify the tumor staging system by enhancing diagnostic objectivity, resulting in improved prognostic accuracy.

  19. Introducing a Simple Equation to Express Oxidation States as an Alternative to Using Rules Associated with Words Alone

    ERIC Educational Resources Information Center

    Minkiewicz, Piotr; Darewicz, Malgorzata; Iwaniak, Anna

    2018-01-01

    A simple equation to calculate the oxidation states (oxidation numbers) of individual atoms in molecules and ions may be introduced instead of rules associated with words alone. The equation includes two of three categories of bonds, classified as proposed by Goodstein: number of bonds with more electronegative atoms and number of bonds with less…

  20. Detecting falls with wearable sensors using machine learning techniques.

    PubMed

    Özdemir, Ahmet Turan; Barshan, Billur

    2014-06-18

    Falls are a serious public health problem and possibly life threatening for people in fall risk groups. We develop an automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions. Each unit comprises three tri-axial devices (accelerometer, gyroscope, and magnetometer/compass). Fourteen volunteers perform a standardized set of movements including 20 voluntary falls and 16 activities of daily living (ADLs), resulting in a large dataset with 2520 trials. To reduce the computational complexity of training and testing the classifiers, we focus on the raw data for each sensor in a 4 s time window around the point of peak total acceleration of the waist sensor, and then perform feature extraction and reduction. Most earlier studies on fall detection employ rule-based approaches that rely on simple thresholding of the sensor outputs. We successfully distinguish falls from ADLs using six machine learning techniques (classifiers): the k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural networks (ANNs). We compare the performance and the computational complexity of the classifiers and achieve the best results with the k-NN classifier and LSM, with sensitivity, specificity, and accuracy all above 99%. These classifiers also have acceptable computational requirements for training and testing. Our approach would be applicable in real-world scenarios where data records of indeterminate length, containing multiple activities in sequence, are recorded.

  1. Object-based locust habitat mapping using high-resolution multispectral satellite data in the southern Aral Sea basin

    NASA Astrophysics Data System (ADS)

    Navratil, Peter; Wilps, Hans

    2013-01-01

    Three different object-based image classification techniques are applied to high-resolution satellite data for the mapping of the habitats of Asian migratory locust (Locusta migratoria migratoria) in the southern Aral Sea basin, Uzbekistan. A set of panchromatic and multispectral Système Pour l'Observation de la Terre-5 satellite images was spectrally enhanced by normalized difference vegetation index and tasseled cap transformation and segmented into image objects, which were then classified by three different classification approaches: a rule-based hierarchical fuzzy threshold (HFT) classification method was compared to a supervised nearest neighbor classifier and classification tree analysis by the quick, unbiased, efficient statistical trees algorithm. Special emphasis was laid on the discrimination of locust feeding and breeding habitats due to the significance of this discrimination for practical locust control. Field data on vegetation and land cover, collected at the time of satellite image acquisition, was used to evaluate classification accuracy. The results show that a robust HFT classifier outperformed the two automated procedures by 13% overall accuracy. The classification method allowed a reliable discrimination of locust feeding and breeding habitats, which is of significant importance for the application of the resulting data for an economically and environmentally sound control of locust pests because exact spatial knowledge on the habitat types allows a more effective surveying and use of pesticides.

  2. Job Shop Scheduling Focusing on Role of Buffer

    NASA Astrophysics Data System (ADS)

    Hino, Rei; Kusumi, Tetsuya; Yoo, Jae-Kyu; Shimizu, Yoshiaki

    A scheduling problem is formulated in order to consistently manage each manufacturing resource, including machine tools, assembly robots, AGV, storehouses, material shelves, and so on. The manufacturing resources are classified into three types: producer, location, and mover. This paper focuses especially on the role of the buffer, and the differences among these types are analyzed. A unified scheduling formulation is derived from the analytical results based on the resource’s roles. Scheduling procedures based on dispatching rules are also proposed in order to numerically evaluate job shop-type production having finite buffer capacity. The influences of the capacity of bottle-necked production devices and the buffer on productivity are discussed.

  3. Proposed hybrid-classifier ensemble algorithm to map snow cover area

    NASA Astrophysics Data System (ADS)

    Nijhawan, Rahul; Raman, Balasubramanian; Das, Josodhir

    2018-01-01

    Metaclassification ensemble approach is known to improve the prediction performance of snow-covered area. The methodology adopted in this case is based on neural network along with four state-of-art machine learning algorithms: support vector machine, artificial neural networks, spectral angle mapper, K-mean clustering, and a snow index: normalized difference snow index. An AdaBoost ensemble algorithm related to decision tree for snow-cover mapping is also proposed. According to available literature, these methods have been rarely used for snow-cover mapping. Employing the above techniques, a study was conducted for Raktavarn and Chaturangi Bamak glaciers, Uttarakhand, Himalaya using multispectral Landsat 7 ETM+ (enhanced thematic mapper) image. The study also compares the results with those obtained from statistical combination methods (majority rule and belief functions) and accuracies of individual classifiers. Accuracy assessment is performed by computing the quantity and allocation disagreement, analyzing statistic measures (accuracy, precision, specificity, AUC, and sensitivity) and receiver operating characteristic curves. A total of 225 combinations of parameters for individual classifiers were trained and tested on the dataset and results were compared with the proposed approach. It was observed that the proposed methodology produced the highest classification accuracy (95.21%), close to (94.01%) that was produced by the proposed AdaBoost ensemble algorithm. From the sets of observations, it was concluded that the ensemble of classifiers produced better results compared to individual classifiers.

  4. Method for predicting enzyme-catalyzed reactions

    DOEpatents

    Hlavacek, William S.; Unkefer, Clifford J.; Mu, Fangping; Unkefer, Pat J.

    2013-03-19

    The reactivity of given metabolites is assessed using selected empirical atomic properties in the potential reaction center. Metabolic reactions are represented as biotransformation rules. These rules are generalized from the patterns in reactions. These patterns are not unique to reactants but are widely distributed among metabolites. Using a metabolite database, potential substructures are identified in the metabolites for a given biotransformation. These substructures are divided into reactants or non-reactants, depending on whether they participate in the biotransformation or not. Each potential substructure is then modeled using descriptors of the topological and electronic properties of atoms in the potential reaction center; molecular properties can also be used. A Support Vector Machine (SVM) or classifier is trained to classify a potential reactant as a true or false reactant using these properties.

  5. Harmonic wavelet packet transform for on-line system health diagnosis

    NASA Astrophysics Data System (ADS)

    Yan, Ruqiang; Gao, Robert X.

    2004-07-01

    This paper presents a new approach to on-line health diagnosis of mechanical systems, based on the wavelet packet transform. Specifically, signals acquired from vibration sensors are decomposed into sub-bands by means of the discrete harmonic wavelet packet transform (DHWPT). Based on the Fisher linear discriminant criterion, features in the selected sub-bands are then used as inputs to three classifiers (Nearest Neighbor rule-based and two Neural Network-based), for system health condition assessment. Experimental results have confirmed that, comparing to the conventional approach where statistical parameters from raw signals are used, the presented approach enabled higher signal-to-noise ratio for more effective and intelligent use of the sensory information, thus leading to more accurate system health diagnosis.

  6. Reinforcement learning of periodical gaits in locomotion robots

    NASA Astrophysics Data System (ADS)

    Svinin, Mikhail; Yamada, Kazuyaki; Ushio, S.; Ueda, Kanji

    1999-08-01

    Emergence of stable gaits in locomotion robots is studied in this paper. A classifier system, implementing an instance- based reinforcement learning scheme, is used for sensory- motor control of an eight-legged mobile robot. Important feature of the classifier system is its ability to work with the continuous sensor space. The robot does not have a prior knowledge of the environment, its own internal model, and the goal coordinates. It is only assumed that the robot can acquire stable gaits by learning how to reach a light source. During the learning process the control system, is self-organized by reinforcement signals. Reaching the light source defines a global reward. Forward motion gets a local reward, while stepping back and falling down get a local punishment. Feasibility of the proposed self-organized system is tested under simulation and experiment. The control actions are specified at the leg level. It is shown that, as learning progresses, the number of the action rules in the classifier systems is stabilized to a certain level, corresponding to the acquired gait patterns.

  7. Per-field crop classification in irrigated agricultural regions in middle Asia using random forest and support vector machine ensemble

    NASA Astrophysics Data System (ADS)

    Löw, Fabian; Schorcht, Gunther; Michel, Ulrich; Dech, Stefan; Conrad, Christopher

    2012-10-01

    Accurate crop identification and crop area estimation are important for studies on irrigated agricultural systems, yield and water demand modeling, and agrarian policy development. In this study a novel combination of Random Forest (RF) and Support Vector Machine (SVM) classifiers is presented that (i) enhances crop classification accuracy and (ii) provides spatial information on map uncertainty. The methodology was implemented over four distinct irrigated sites in Middle Asia using RapidEye time series data. The RF feature importance statistics was used as feature-selection strategy for the SVM to assess possible negative effects on classification accuracy caused by an oversized feature space. The results of the individual RF and SVM classifications were combined with rules based on posterior classification probability and estimates of classification probability entropy. SVM classification performance was increased by feature selection through RF. Further experimental results indicate that the hybrid classifier improves overall classification accuracy in comparison to the single classifiers as well as useŕs and produceŕs accuracy.

  8. Hierarchical classifier approach to physical activity recognition via wearable smartphone tri-axial accelerometer.

    PubMed

    Yusuf, Feridun; Maeder, Anthony; Basilakis, Jim

    2013-01-01

    Physical activity recognition has emerged as an active area of research which has drawn increasing interest from researchers in a variety of fields. It can support many different applications such as safety surveillance, fraud detection, and clinical management. Accelerometers have emerged as the most useful and extensive tool to capture and assess human physical activities in a continuous, unobtrusive and reliable manner. The need for objective physical activity data arises strongly in health related research. With the shift to a sedentary lifestyle, where work and leisure tend to be less physically demanding, research on the health effects of low physical activity has become a necessity. The increased availability of small, inexpensive components has led to the development of mobile devices such as smartphones, providing platforms for new opportunities in healthcare applications. In this study 3 subjects performed directed activity routines wearing a smartphone with a built in tri-axial accelerometer, attached on a belt around the waist. The data was collected to classify 11 basic physical activities such as sitting, lying, standing, walking, and the transitions in between them. A hierarchical classifier approach was utilised with Artificial Neural Networks integrated in a rule-based system, to classify the activities. Based on our evaluation, recognition accuracy of over 89.6% between subjects and over 91.5% within subject was achieved. These results show that activities such as these can be recognised with a high accuracy rate; hence the approach is promising for use in future work.

  9. A clinical decision rule to prioritize polysomnography in patients with suspected sleep apnea.

    PubMed

    Rodsutti, Julvit; Hensley, Michael; Thakkinstian, Ammarin; D'Este, Catherine; Attia, John

    2004-06-15

    To derive and validate a clinical decision rule that can help to prioritize patients who are on waiting lists for polysomnography, Prospective data collection on consecutive patients referred to a sleep center. The Newcastle Sleep Disorders Centre, University of Newcastle, NSW, Australia. Consecutive adult patients who had been scheduled for initial diagnostic polysomnography. Eight hundred and thirty-seven patients were used for derivation of the decision rule. An apnea-hypopnoea index of at least 5 was used as the cutoff point to diagnose sleep apnea. Fifteen clinical features were included in the analyses using logistic regression to construct a model from the derivation data set. Only 5 variables--age, sex, body mass index, snoring, and stopping breathing during sleep--were significantly associated with sleep apnea. A scoring scheme based on regression coefficients was developed, and the total score was trichotomized into low-, moderate-, and high-risk groups with prevalence of sleep apnea of 8%, 51%, and 82%, respectively. Color-coded tables were developed for ease of use. The clinical decision rule was validated on a separate set of 243 patients. Receiver operating characteristic analysis confirmed that the decision rule performed well, with the area under the curve being similar for both the derivation and validation sets: 0.81 and 0.79, P =.612. We conclude that this decision rule was able to accurately classify the risk of sleep apnea and will be useful for prioritizing patients with suspected sleep apnea who are on waiting lists for polysomnography.

  10. The Evolution of Sonic Ecosystems

    NASA Astrophysics Data System (ADS)

    McCormack, Jon

    This chapter describes a novel type of artistic artificial life software environment. Agents that have the ability to make and listen to sound populate a synthetic world. An evolvable, rule-based classifier system drives agent behavior. Agents compete for limited resources in a virtual environment that is influenced by the presence and movement of people observing the system. Electronic sensors create a link between the real and virtual spaces, virtual agents evolve implicitly to try to maintain the interest of the human audience, whose presence provides them with life-sustaining food.

  11. Counting supersymmetric branes

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, Axel

    2011-10-01

    Maximal supergravity solutions are revisited and classified, with particular emphasis on objects of co-dimension at most two. This class of solutions includes branes whose tension scales with xxxx. We present a group theory derivation of the counting of these objects based on the corresponding tensor hierarchies derived from E 11 and discrete T- and U-duality transformations. This provides a rationale for the wrapping rules that were recently discussed for σ ≤ 3 in the literature and extends them. Explicit supergravity solutions that give rise to co-dimension two branes are constructed and analysed.

  12. Evaluation of IOTA Simple Ultrasound Rules to Distinguish Benign and Malignant Ovarian Tumours

    PubMed Central

    Kaur, Amarjit; Mohi, Jaswinder Kaur; Sibia, Preet Kanwal; Kaur, Navkiran

    2017-01-01

    Introduction IOTA stands for International Ovarian Tumour Analysis group. Ovarian cancer is one of the common cancers in women and is diagnosed at later stage in majority. The limiting factor for early diagnosis is lack of standardized terms and procedures in gynaecological sonography. Introduction of IOTA rules has provided some consistency in defining morphological features of ovarian masses through a standardized examination technique. Aim To evaluate the efficacy of IOTA simple ultrasound rules in distinguishing benign and malignant ovarian tumours and establishing their use as a tool in early diagnosis of ovarian malignancy. Materials and Methods A hospital based case control prospective study was conducted. Patients with suspected ovarian pathology were evaluated using IOTA ultrasound rules and designated as benign or malignant. Findings were correlated with histopathological findings. Collected data was statistically analysed using chi-square test and kappa statistical method. Results Out of initial 55 patients, 50 patients were included in the final analysis who underwent surgery. IOTA simple rules were applicable in 45 out of these 50 patients (90%). The sensitivity for the detection of malignancy in cases where IOTA simple rules were applicable was 91.66% and the specificity was 84.84%. Accuracy was 86.66%. Classifying inconclusive cases as malignant, the sensitivity and specificity was 93% and 80% respectively. High level of agreement was found between USG and histopathological diagnosis with Kappa value as 0.323. Conclusion IOTA simple ultrasound rules were highly sensitive and specific in predicting ovarian malignancy preoperatively yet being reproducible, easy to train and use. PMID:28969237

  13. Proposal for Classifying the Severity of Speech Disorder Using a Fuzzy Model in Accordance with the Implicational Model of Feature Complexity

    ERIC Educational Resources Information Center

    Brancalioni, Ana Rita; Magnago, Karine Faverzani; Keske-Soares, Marcia

    2012-01-01

    The objective of this study is to create a new proposal for classifying the severity of speech disorders using a fuzzy model in accordance with a linguistic model that represents the speech acquisition of Brazilian Portuguese. The fuzzy linguistic model was run in the MATLAB software fuzzy toolbox from a set of fuzzy rules, and it encompassed…

  14. Different approaches for the texture classification of a remote sensing image bank

    NASA Astrophysics Data System (ADS)

    Durand, Philippe; Brunet, Gerard; Ghorbanzadeh, Dariush; Jaupi, Luan

    2018-04-01

    In this paper, we summarize and compare two different approaches used by the authors, to classify different natural textures. The first approach, which is simple and inexpensive in computing time, uses a data bank image and an expert system able to classify different textures from a number of rules established by discipline specialists. The second method uses the same database and a neural networks approach.

  15. Classifying environmental pollutants: Part 3. External validation of the classification system.

    PubMed

    Verhaar, H J; Solbé, J; Speksnijder, J; van Leeuwen, C J; Hermens, J L

    2000-04-01

    In order to validate a classification system for the prediction of the toxic effect concentrations of organic environmental pollutants to fish, all available fish acute toxicity data were retrieved from the ECETOC database, a database of quality-evaluated aquatic toxicity measurements created and maintained by the European Centre for the Ecotoxicology and Toxicology of Chemicals. The individual chemicals for which these data were available were classified according to the rulebase under consideration and predictions of effect concentrations or ranges of possible effect concentrations were generated. These predictions were compared to the actual toxicity data retrieved from the database. The results of this comparison show that generally, the classification system provides adequate predictions of either the aquatic toxicity (class 1) or the possible range of toxicity (other classes) of organic compounds. A slight underestimation of effect concentrations occurs for some highly water soluble, reactive chemicals with low log K(ow) values. On the other end of the scale, some compounds that are classified as belonging to a relatively toxic class appear to belong to the so-called baseline toxicity compounds. For some of these, additional classification rules are proposed. Furthermore, some groups of compounds cannot be classified, although they should be amenable to predictions. For these compounds additional research as to class membership and associated prediction rules is proposed.

  16. Correcting for bias in the selection and validation of informative diagnostic tests.

    PubMed

    Robertson, David S; Prevost, A Toby; Bowden, Jack

    2015-04-15

    When developing a new diagnostic test for a disease, there are often multiple candidate classifiers to choose from, and it is unclear if any will offer an improvement in performance compared with current technology. A two-stage design can be used to select a promising classifier (if one exists) in stage one for definitive validation in stage two. However, estimating the true properties of the chosen classifier is complicated by the first stage selection rules. In particular, the usual maximum likelihood estimator (MLE) that combines data from both stages will be biased high. Consequently, confidence intervals and p-values flowing from the MLE will also be incorrect. Building on the results of Pepe et al. (SIM 28:762-779), we derive the most efficient conditionally unbiased estimator and exact confidence intervals for a classifier's sensitivity in a two-stage design with arbitrary selection rules; the condition being that the trial proceeds to the validation stage. We apply our estimation strategy to data from a recent family history screening tool validation study by Walter et al. (BJGP 63:393-400) and are able to identify and successfully adjust for bias in the tool's estimated sensitivity to detect those at higher risk of breast cancer. © 2015 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  17. Biclustering Learning of Trading Rules.

    PubMed

    Huang, Qinghua; Wang, Ting; Tao, Dacheng; Li, Xuelong

    2015-10-01

    Technical analysis with numerous indicators and patterns has been regarded as important evidence for making trading decisions in financial markets. However, it is extremely difficult for investors to find useful trading rules based on numerous technical indicators. This paper innovatively proposes the use of biclustering mining to discover effective technical trading patterns that contain a combination of indicators from historical financial data series. This is the first attempt to use biclustering algorithm on trading data. The mined patterns are regarded as trading rules and can be classified as three trading actions (i.e., the buy, the sell, and no-action signals) with respect to the maximum support. A modified K nearest neighborhood ( K -NN) method is applied to classification of trading days in the testing period. The proposed method [called biclustering algorithm and the K nearest neighbor (BIC- K -NN)] was implemented on four historical datasets and the average performance was compared with the conventional buy-and-hold strategy and three previously reported intelligent trading systems. Experimental results demonstrate that the proposed trading system outperforms its counterparts and will be useful for investment in various financial markets.

  18. Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics

    NASA Technical Reports Server (NTRS)

    Bankert, Richard L.; Mitrescu, Cristian; Miller, Steven D.; Wade, Robert H.

    2009-01-01

    Cloud-type classification based on multispectral satellite imagery data has been widely researched and demonstrated to be useful for distinguishing a variety of classes using a wide range of methods. The research described here is a comparison of the classifier output from two very different algorithms applied to Geostationary Operational Environmental Satellite (GOES) data over the course of one year. The first algorithm employs spectral channel thresholding and additional physically based tests. The second algorithm was developed through a supervised learning method with characteristic features of expertly labeled image samples used as training data for a 1-nearest-neighbor classification. The latter's ability to identify classes is also based in physics, but those relationships are embedded implicitly within the algorithm. A pixel-to-pixel comparison analysis was done for hourly daytime scenes within a region in the northeastern Pacific Ocean. Considerable agreement was found in this analysis, with many of the mismatches or disagreements providing insight to the strengths and limitations of each classifier. Depending upon user needs, a rule-based or other postprocessing system that combines the output from the two algorithms could provide the most reliable cloud-type classification.

  19. An online sleep apnea detection method based on recurrence quantification analysis.

    PubMed

    Nguyen, Hoa Dinh; Wilkins, Brek A; Cheng, Qi; Benjamin, Bruce Allen

    2014-07-01

    This paper introduces an online sleep apnea detection method based on heart rate complexity as measured by recurrence quantification analysis (RQA) statistics of heart rate variability (HRV) data. RQA statistics can capture nonlinear dynamics of a complex cardiorespiratory system during obstructive sleep apnea. In order to obtain a more robust measurement of the nonstationarity of the cardiorespiratory system, we use different fixed amount of neighbor thresholdings for recurrence plot calculation. We integrate a feature selection algorithm based on conditional mutual information to select the most informative RQA features for classification, and hence, to speed up the real-time classification process without degrading the performance of the system. Two types of binary classifiers, i.e., support vector machine and neural network, are used to differentiate apnea from normal sleep. A soft decision fusion rule is developed to combine the results of these classifiers in order to improve the classification performance of the whole system. Experimental results show that our proposed method achieves better classification results compared with the previous recurrence analysis-based approach. We also show that our method is flexible and a strong candidate for a real efficient sleep apnea detection system.

  20. Nearest Neighbor Algorithms for Pattern Classification

    NASA Technical Reports Server (NTRS)

    Barrios, J. O.

    1972-01-01

    A solution of the discrimination problem is considered by means of the minimum distance classifier, commonly referred to as the nearest neighbor (NN) rule. The NN rule is nonparametric, or distribution free, in the sense that it does not depend on any assumptions about the underlying statistics for its application. The k-NN rule is a procedure that assigns an observation vector z to a category F if most of the k nearby observations x sub i are elements of F. The condensed nearest neighbor (CNN) rule may be used to reduce the size of the training set required categorize The Bayes risk serves merely as a reference-the limit of excellence beyond which it is not possible to go. The NN rule is bounded below by the Bayes risk and above by twice the Bayes risk.

  1. Supervised DNA Barcodes species classification: analysis, comparisons and results

    PubMed Central

    2014-01-01

    Background Specific fragments, coming from short portions of DNA (e.g., mitochondrial, nuclear, and plastid sequences), have been defined as DNA Barcode and can be used as markers for organisms of the main life kingdoms. Species classification with DNA Barcode sequences has been proven effective on different organisms. Indeed, specific gene regions have been identified as Barcode: COI in animals, rbcL and matK in plants, and ITS in fungi. The classification problem assigns an unknown specimen to a known species by analyzing its Barcode. This task has to be supported with reliable methods and algorithms. Methods In this work the efficacy of supervised machine learning methods to classify species with DNA Barcode sequences is shown. The Weka software suite, which includes a collection of supervised classification methods, is adopted to address the task of DNA Barcode analysis. Classifier families are tested on synthetic and empirical datasets belonging to the animal, fungus, and plant kingdoms. In particular, the function-based method Support Vector Machines (SVM), the rule-based RIPPER, the decision tree C4.5, and the Naïve Bayes method are considered. Additionally, the classification results are compared with respect to ad-hoc and well-established DNA Barcode classification methods. Results A software that converts the DNA Barcode FASTA sequences to the Weka format is released, to adapt different input formats and to allow the execution of the classification procedure. The analysis of results on synthetic and real datasets shows that SVM and Naïve Bayes outperform on average the other considered classifiers, although they do not provide a human interpretable classification model. Rule-based methods have slightly inferior classification performances, but deliver the species specific positions and nucleotide assignments. On synthetic data the supervised machine learning methods obtain superior classification performances with respect to the traditional DNA Barcode classification methods. On empirical data their classification performances are at a comparable level to the other methods. Conclusions The classification analysis shows that supervised machine learning methods are promising candidates for handling with success the DNA Barcoding species classification problem, obtaining excellent performances. To conclude, a powerful tool to perform species identification is now available to the DNA Barcoding community. PMID:24721333

  2. Diagnosis and treatment of acute ankle injuries: development of an evidence-based algorithm

    PubMed Central

    Polzer, Hans; Kanz, Karl Georg; Prall, Wolf Christian; Haasters, Florian; Ockert, Ben; Mutschler, Wolf; Grote, Stefan

    2011-01-01

    Acute ankle injuries are among the most common injuries in emergency departments. However, there are still no standardized examination procedures or evidence-based treatment. Therefore, the aim of this study was to systematically search the current literature, classify the evidence, and develop an algorithm for the diagnosis and treatment of acute ankle injuries. We systematically searched PubMed and the Cochrane Database for randomized controlled trials, meta-analyses, systematic reviews or, if applicable, observational studies and classified them according to their level of evidence. According to the currently available literature, the following recommendations have been formulated: i) the Ottawa Ankle/Foot Rule should be applied in order to rule out fractures; ii) physical examination is sufficient for diagnosing injuries to the lateral ligament complex; iii) classification into stable and unstable injuries is applicable and of clinical importance; iv) the squeeze-, crossed leg- and external rotation test are indicative for injuries of the syndesmosis; v) magnetic resonance imaging is recommended to verify injuries of the syndesmosis; vi) stable ankle sprains have a good prognosis while for unstable ankle sprains, conservative treatment is at least as effective as operative treatment without the related possible complications; vii) early functional treatment leads to the fastest recovery and the least rate of reinjury; viii) supervised rehabilitation reduces residual symptoms and re-injuries. Taken these recommendations into account, we present an applicable and evidence-based, step by step, decision pathway for the diagnosis and treatment of acute ankle injuries, which can be implemented in any emergency department or doctor's practice. It provides quality assurance for the patient and promotes confidence in the attending physician. PMID:22577506

  3. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    PubMed Central

    2009-01-01

    Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426

  4. Evaluation of several schemes for classification of remotely sensed data: Their parameters and performance. [Foster County, North Dakota; Grant County, Kansas; Iroquois County, Illinois, Tippecanoe County, Indiana; and Pottawattamie and Shelby Counties, Iowa

    NASA Technical Reports Server (NTRS)

    Scholz, D.; Fuhs, N.; Hixson, M.; Akiyama, T. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. Data sets for corn, soybeans, winter wheat, and spring wheat were used to evaluate the following schemes for crop identification: (1) per point Gaussian maximum classifier; (2) per point sum of normal densities classifiers; (3) per point linear classifier; (4) per point Gaussian maximum likelihood decision tree classifiers; and (5) texture sensitive per field Gaussian maximum likelihood classifier. Test site location and classifier both had significant effects on classification accuracy of small grains; classifiers did not differ significantly in overall accuracy, with the majority of the difference among classifiers being attributed to training method rather than to the classification algorithm applied. The complexity of use and computer costs for the classifiers varied significantly. A linear classification rule which assigns each pixel to the class whose mean is closest in Euclidean distance was the easiest for the analyst and cost the least per classification.

  5. Comparison of four approaches to a rock facies classification problem

    USGS Publications Warehouse

    Dubois, M.K.; Bohling, Geoffrey C.; Chakrabarti, S.

    2007-01-01

    In this study, seven classifiers based on four different approaches were tested in a rock facies classification problem: classical parametric methods using Bayes' rule, and non-parametric methods using fuzzy logic, k-nearest neighbor, and feed forward-back propagating artificial neural network. Determining the most effective classifier for geologic facies prediction in wells without cores in the Panoma gas field, in Southwest Kansas, was the objective. Study data include 3600 samples with known rock facies class (from core) with each sample having either four or five measured properties (wire-line log curves), and two derived geologic properties (geologic constraining variables). The sample set was divided into two subsets, one for training and one for testing the ability of the trained classifier to correctly assign classes. Artificial neural networks clearly outperformed all other classifiers and are effective tools for this particular classification problem. Classical parametric models were inadequate due to the nature of the predictor variables (high dimensional and not linearly correlated), and feature space of the classes (overlapping). The other non-parametric methods tested, k-nearest neighbor and fuzzy logic, would need considerable improvement to match the neural network effectiveness, but further work, possibly combining certain aspects of the three non-parametric methods, may be justified. ?? 2006 Elsevier Ltd. All rights reserved.

  6. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.

    PubMed

    Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David

    2010-01-01

    Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.

  7. Improved classification of evidence for EMF health risks.

    PubMed

    Leitgeb, Norbert

    2012-08-01

    Classifying evidence of causality between a risk factor and its potential health effect is challenging, in particular in an already emotional situation. Even the assessment of health risks by designated bodies may still depend on their composition of individuals with their background, bias, and, in worst case, their interests. This may explain opposing conclusions from the same pool of data which, consequently, may undermine credibility if not communicated properly. To overcome existing weakness in classifying and communicating evidence of health risks such as from electromagnetic fields, a new rule-based approach is presented. Developed by the German Commission on Radiological Protection (SSK), it discloses step-by-step the criteria for weighing scientific data and pools partial evidences of different scientific approaches to conclude on the overall evidence of causality between risk factor and effects. The validity of the approach is demonstrated by analyzing evidence of carcinogenicity of ionizing radiation, mobile phone use, and nocturnal exposure to visible light.

  8. Active Learning with Rationales for Identifying Operationally Significant Anomalies in Aviation

    NASA Technical Reports Server (NTRS)

    Sharma, Manali; Das, Kamalika; Bilgic, Mustafa; Matthews, Bryan; Nielsen, David Lynn; Oza, Nikunj C.

    2016-01-01

    A major focus of the commercial aviation community is discovery of unknown safety events in flight operations data. Data-driven unsupervised anomaly detection methods are better at capturing unknown safety events compared to rule-based methods which only look for known violations. However, not all statistical anomalies that are discovered by these unsupervised anomaly detection methods are operationally significant (e.g., represent a safety concern). Subject Matter Experts (SMEs) have to spend significant time reviewing these statistical anomalies individually to identify a few operationally significant ones. In this paper we propose an active learning algorithm that incorporates SME feedback in the form of rationales to build a classifier that can distinguish between uninteresting and operationally significant anomalies. Experimental evaluation on real aviation data shows that our approach improves detection of operationally significant events by as much as 75% compared to the state-of-the-art. The learnt classifier also generalizes well to additional validation data sets.

  9. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Xie Zongxia; Hu Qinghua

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less

  10. Right putamen and age are the most discriminant features to diagnose Parkinson's disease by using 123I-FP-CIT brain SPET data by using an artificial neural network classifier, a classification tree (ClT).

    PubMed

    Cascianelli, S; Tranfaglia, C; Fravolini, M L; Bianconi, F; Minestrini, M; Nuvoli, S; Tambasco, N; Dottorini, M E; Palumbo, B

    2017-01-01

    The differential diagnosis of Parkinson's disease (PD) and other conditions, such as essential tremor and drug-induced parkinsonian syndrome or normal aging brain, represents a diagnostic challenge. 123 I-FP-CIT brain SPET is able to contribute to the differential diagnosis. Semiquantitative analysis of radiopharmaceutical uptake in basal ganglia (caudate nuclei and putamina) is very useful to support the diagnostic process. An artificial neural network classifier using 123 I-FP-CIT brain SPET data, a classification tree (CIT), was applied. CIT is an automatic classifier composed of a set of logical rules, organized as a decision tree to produce an optimised threshold based classification of data to provide discriminative cut-off values. We applied a CIT to 123 I-FP-CIT brain SPET semiquantitave data, to obtain cut-off values of radiopharmaceutical uptake ratios in caudate nuclei and putamina with the aim to diagnose PD versus other conditions. We retrospectively investigated 187 patients undergoing 123 I-FP-CIT brain SPET (Millenium VG, G.E.M.S.) with semiquantitative analysis performed with Basal Ganglia (BasGan) V2 software according to EANM guidelines; among them 113 resulted affected by PD (PD group) and 74 (N group) by other non parkinsonian conditions, such as Essential Tremor and drug-induced PD. PD group included 113 subjects (60M and 53F of age: 60-81yrs) having Hoehn and Yahr score (HY): 0.5-1.5; Unified Parkinson Disease Rating Scale (UPDRS) score: 6-38; N group included 74 subjects (36M and 38 F range of age 60-80 yrs). All subjects were clinically followed for at least 6-18 months to confirm the diagnosis. To examinate data obtained by using CIT, for each of the 1,000 experiments carried out, 10% of patients were randomly selected as the CIT training set, while the remaining 90% validated the trained CIT, and the percentage of the validation data correctly classified in the two groups of patients was computed. The expected performance of an "average performance CIT" was evaluated. For CIT, the probability of correct classification in patients with PD was 84.19±11.67% (mean±SD) and in N patients 93.48±6.95%. For CIT, the first decision rule provided a value for the right putamen of 2.32±0.16. This means that patients with right putamen values <2.32 were classified as having PD. Patients with putamen values ≥2.32 underwent further analysis. They were classified as N if the right putamen uptake value was ≥3.02 or if the value for the right putamen was <3.02 and the age was ≥67.5 years. Otherwise the patients were classified as having PD. Other similar rules on the values of both caudate nuclei and left putamen could be used to refine the classification, but in our data analysis of these data did not significantly contribute to the differential diagnosis. This could be due to an increased number of more severe patients with initial prevalence of left clinical symptoms having a worsening in right putamen uptake distribution. These results show that CIT was able to accurately classify PD and non-PD patients by means of 123 I-FP-CIT brain SPET data and provided also cut-off values able to differentially diagnose these groups of patients. Right putamen uptake values resulted as the most discriminant to correctly classify our patients, probably due to a certain number of subjects with initial prevalence of left clinical symptoms. Finally, the selective evaluation of the group of subjects having putamen values ≥2.32 disclosed that age was a further important feature to classify patients for certain right putamen values.

  11. Use of Artificial Intelligence and Machine Learning Algorithms with Gene Expression Profiling to Predict Recurrent Nonmuscle Invasive Urothelial Carcinoma of the Bladder.

    PubMed

    Bartsch, Georg; Mitra, Anirban P; Mitra, Sheetal A; Almal, Arpit A; Steven, Kenneth E; Skinner, Donald G; Fry, David W; Lenehan, Peter F; Worzel, William P; Cote, Richard J

    2016-02-01

    Due to the high recurrence risk of nonmuscle invasive urothelial carcinoma it is crucial to distinguish patients at high risk from those with indolent disease. In this study we used a machine learning algorithm to identify the genes in patients with nonmuscle invasive urothelial carcinoma at initial presentation that were most predictive of recurrence. We used the genes in a molecular signature to predict recurrence risk within 5 years after transurethral resection of bladder tumor. Whole genome profiling was performed on 112 frozen nonmuscle invasive urothelial carcinoma specimens obtained at first presentation on Human WG-6 BeadChips (Illumina®). A genetic programming algorithm was applied to evolve classifier mathematical models for outcome prediction. Cross-validation based resampling and gene use frequencies were used to identify the most prognostic genes, which were combined into rules used in a voting algorithm to predict the sample target class. Key genes were validated by quantitative polymerase chain reaction. The classifier set included 21 genes that predicted recurrence. Quantitative polymerase chain reaction was done for these genes in a subset of 100 patients. A 5-gene combined rule incorporating a voting algorithm yielded 77% sensitivity and 85% specificity to predict recurrence in the training set, and 69% and 62%, respectively, in the test set. A singular 3-gene rule was constructed that predicted recurrence with 80% sensitivity and 90% specificity in the training set, and 71% and 67%, respectively, in the test set. Using primary nonmuscle invasive urothelial carcinoma from initial occurrences genetic programming identified transcripts in reproducible fashion, which were predictive of recurrence. These findings could potentially impact nonmuscle invasive urothelial carcinoma management. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Modeling of autocatalytic hydrolysis of adefovir dipivoxil in solid formulations.

    PubMed

    Dong, Ying; Zhang, Yan; Xiang, Bingren; Deng, Haishan; Wu, Jingfang

    2011-04-01

    The stability and hydrolysis kinetics of a phosphate prodrug, adefovir dipivoxil, in solid formulations were studied. The stability relationship between five solid formulations was explored. An autocatalytic mechanism for hydrolysis could be proposed according to the kinetic behavior which fits the Prout-Tompkins model well. For the classical kinetic models could hardly describe and predict the hydrolysis kinetics of adefovir dipivoxil in solid formulations accurately when the temperature is high, a feedforward multilayer perceptron (MLP) neural network was constructed to model the hydrolysis kinetics. The build-in approaches in Weka, such as lazy classifiers and rule-based learners (IBk, KStar, DecisionTable and M5Rules), were used to verify the performance of MLP. The predictability of the models was evaluated by 10-fold cross-validation and an external test set. It reveals that MLP should be of general applicability proposing an alternative efficient way to model and predict autocatalytic hydrolysis kinetics for phosphate prodrugs.

  13. Structural classification of CDR-H3 revisited: a lesson in antibody modeling.

    PubMed

    Kuroda, Daisuke; Shirai, Hiroki; Kobori, Masato; Nakamura, Haruki

    2008-11-15

    Among the six complementarity-determining regions (CDRs) in the variable domains of an antibody, the third CDR of the heavy chain (CDR-H3), which lies in the center of the antigen-binding site, plays a particularly important role in antigen recognition. CDR-H3 shows significant variability in its length, sequence, and structure. Although difficult, model building of this segment is the most critical step in antibody modeling. Since our first proposal of the "H3-rules," which classify CDR-H3 structure based on amino acid sequence, the number of experimentally determined antibody structures has increased. Here, we revise these H3-rules and propose an improved classification scheme for CDR-H3 structure modeling. In addition, we determine the common features of CDR-H3 in antibody drugs as well as discuss the concept of "antibody druggability," which can be applied as an indicator of antibody evaluation during drug discovery.

  14. Weighted Parzen Windows for Pattern Classification

    DTIC Science & Technology

    1994-05-01

    Nearest-Neighbor Rule The k-Nearest-Neighbor ( kNN ) technique is nonparametric, assuming nothing about the distribution of the data. Stated succinctly...probabilities P(wj I x) from samples." Raudys and Jain [20:255] advance this interpretation by pointing out that the kNN technique can be viewed as the...34Parzen window classifier with a hyper- rectangular window function." As with the Parzen-window technique, the kNN classifier is more accurate as the

  15. 32 CFR 2004.20 - National Industrial Security Program Operating Manual (NISPOM) [201(a)].

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phases of the contracting process. (b) As a general rule, procedures for safeguarding classified information by contractors and recommendations for changes shall be addressed through the NISPOM coordination...

  16. Lava Morphology Classification of a Fast-Spreading Ridge Using Deep-Towed Sonar Data: East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Meyer, J.; White, S.

    2005-05-01

    Classification of lava morphology on a regional scale contributes to the understanding of the distribution and extent of lava flows at a mid-ocean ridge. Seafloor classification is essential to understand the regional undersea environment at midocean ridges. In this study, the development of a classification scheme is found to identify and extract textural patterns of different lava morphologies along the East Pacific Rise using DSL-120 side-scan and ARGO camera imagery. Application of an accurate image classification technique to side-scan sonar allows us to expand upon the locally available visual ground reference data to make the first comprehensive regional maps of small-scale lava morphology present at a mid-ocean ridge. The submarine lava morphologies focused upon in this study; sheet flows, lobate flows, and pillow flows; have unique textures. Several algorithms were applied to the sonar backscatter intensity images to produce multiple textural image layers useful in distinguishing the different lava morphologies. The intensity and spatially enhanced images were then combined and applied to a hybrid classification technique. The hybrid classification involves two integrated classifiers, a rule-based expert system classifier and a machine learning classifier. The complementary capabilities of the two integrated classifiers provided a higher accuracy of regional seafloor classification compared to using either classifier alone. Once trained, the hybrid classifier can then be applied to classify neighboring images with relative ease. This classification technique has been used to map the lava morphology distribution and infer spatial variability of lava effusion rates along two segments of the East Pacific Rise, 17 deg S and 9 deg N. Future use of this technique may also be useful for attaining temporal information. Repeated documentation of morphology classification in this dynamic environment can be compared to detect regional seafloor change.

  17. Automated classification of MMPI profiles into psychotic, neurotic or personality disorder types.

    PubMed

    Hatcher, W E

    1978-03-01

    A Fortran program has been developed which can objectively classify Minnesota Multiphasic Inventory (MMPI) profiles as being psychotic, neurotic, personality disorder, or indeterminate types. The method used is a set of configural rules, 'Henrichs' rules for males'. The only input data required are K-corrected T scores, which are the end product of standard scoring techniques. To automate these rules it was necessary to rewrite them so that all decisions were the result of arithmetic comparisons or logical tests using only and, or and not. In particular, examination of the Welsh code, which many rules required, had to be stimulated by the use of several sorted arrays. The program has been carefully tested and is in the use in our computer lab.

  18. Concurrent approach for evolving compact decision rule sets

    NASA Astrophysics Data System (ADS)

    Marmelstein, Robert E.; Hammack, Lonnie P.; Lamont, Gary B.

    1999-02-01

    The induction of decision rules from data is important to many disciplines, including artificial intelligence and pattern recognition. To improve the state of the art in this area, we introduced the genetic rule and classifier construction environment (GRaCCE). It was previously shown that GRaCCE consistently evolved decision rule sets from data, which were significantly more compact than those produced by other methods (such as decision tree algorithms). The primary disadvantage of GRaCCe, however, is its relatively poor run-time execution performance. In this paper, a concurrent version of the GRaCCE architecture is introduced, which improves the efficiency of the original algorithm. A prototype of the algorithm is tested on an in- house parallel processor configuration and the results are discussed.

  19. Layout-aware text extraction from full-text PDF of scientific articles.

    PubMed

    Ramakrishnan, Cartic; Patnia, Abhishek; Hovy, Eduard; Burns, Gully Apc

    2012-05-28

    The Portable Document Format (PDF) is the most commonly used file format for online scientific publications. The absence of effective means to extract text from these PDF files in a layout-aware manner presents a significant challenge for developers of biomedical text mining or biocuration informatics systems that use published literature as an information source. In this paper we introduce the 'Layout-Aware PDF Text Extraction' (LA-PDFText) system to facilitate accurate extraction of text from PDF files of research articles for use in text mining applications. Our paper describes the construction and performance of an open source system that extracts text blocks from PDF-formatted full-text research articles and classifies them into logical units based on rules that characterize specific sections. The LA-PDFText system focuses only on the textual content of the research articles and is meant as a baseline for further experiments into more advanced extraction methods that handle multi-modal content, such as images and graphs. The system works in a three-stage process: (1) Detecting contiguous text blocks using spatial layout processing to locate and identify blocks of contiguous text, (2) Classifying text blocks into rhetorical categories using a rule-based method and (3) Stitching classified text blocks together in the correct order resulting in the extraction of text from section-wise grouped blocks. We show that our system can identify text blocks and classify them into rhetorical categories with Precision1 = 0.96% Recall = 0.89% and F1 = 0.91%. We also present an evaluation of the accuracy of the block detection algorithm used in step 2. Additionally, we have compared the accuracy of the text extracted by LA-PDFText to the text from the Open Access subset of PubMed Central. We then compared this accuracy with that of the text extracted by the PDF2Text system, 2commonly used to extract text from PDF. Finally, we discuss preliminary error analysis for our system and identify further areas of improvement. LA-PDFText is an open-source tool for accurately extracting text from full-text scientific articles. The release of the system is available at http://code.google.com/p/lapdftext/.

  20. Layout-aware text extraction from full-text PDF of scientific articles

    PubMed Central

    2012-01-01

    Background The Portable Document Format (PDF) is the most commonly used file format for online scientific publications. The absence of effective means to extract text from these PDF files in a layout-aware manner presents a significant challenge for developers of biomedical text mining or biocuration informatics systems that use published literature as an information source. In this paper we introduce the ‘Layout-Aware PDF Text Extraction’ (LA-PDFText) system to facilitate accurate extraction of text from PDF files of research articles for use in text mining applications. Results Our paper describes the construction and performance of an open source system that extracts text blocks from PDF-formatted full-text research articles and classifies them into logical units based on rules that characterize specific sections. The LA-PDFText system focuses only on the textual content of the research articles and is meant as a baseline for further experiments into more advanced extraction methods that handle multi-modal content, such as images and graphs. The system works in a three-stage process: (1) Detecting contiguous text blocks using spatial layout processing to locate and identify blocks of contiguous text, (2) Classifying text blocks into rhetorical categories using a rule-based method and (3) Stitching classified text blocks together in the correct order resulting in the extraction of text from section-wise grouped blocks. We show that our system can identify text blocks and classify them into rhetorical categories with Precision1 = 0.96% Recall = 0.89% and F1 = 0.91%. We also present an evaluation of the accuracy of the block detection algorithm used in step 2. Additionally, we have compared the accuracy of the text extracted by LA-PDFText to the text from the Open Access subset of PubMed Central. We then compared this accuracy with that of the text extracted by the PDF2Text system, 2commonly used to extract text from PDF. Finally, we discuss preliminary error analysis for our system and identify further areas of improvement. Conclusions LA-PDFText is an open-source tool for accurately extracting text from full-text scientific articles. The release of the system is available at http://code.google.com/p/lapdftext/. PMID:22640904

  1. Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models.

    PubMed

    Seiter, J; Derungs, A; Schuster-Amft, C; Amft, O; Tröster, G

    2015-01-01

    Monitoring natural behavior and activity routines of hemiparetic rehabilitation patients across the day can provide valuable progress information for therapists and patients and contribute to an optimized rehabilitation process. In particular, continuous patient monitoring could add type, frequency and duration of daily life activity routines and hence complement standard clinical scores that are assessed for particular tasks only. Machine learning methods have been applied to infer activity routines from sensor data. However, supervised methods require activity annotations to build recognition models and thus require extensive patient supervision. Discovery methods, including topic models could provide patient routine information and deal with variability in activity and movement performance across patients. Topic models have been used to discover characteristic activity routine patterns of healthy individuals using activity primitives recognized from supervised sensor data. Yet, the applicability of topic models for hemiparetic rehabilitation patients and techniques to derive activity primitives without supervision needs to be addressed. We investigate, 1) whether a topic model-based activity routine discovery framework can infer activity routines of rehabilitation patients from wearable motion sensor data. 2) We compare the performance of our topic model-based activity routine discovery using rule-based and clustering-based activity vocabulary. We analyze the activity routine discovery in a dataset recorded with 11 hemiparetic rehabilitation patients during up to ten full recording days per individual in an ambulatory daycare rehabilitation center using wearable motion sensors attached to both wrists and the non-affected thigh. We introduce and compare rule-based and clustering-based activity vocabulary to process statistical and frequency acceleration features to activity words. Activity words were used for activity routine pattern discovery using topic models based on Latent Dirichlet Allocation. Discovered activity routine patterns were then mapped to six categorized activity routines. Using the rule-based approach, activity routines could be discovered with an average accuracy of 76% across all patients. The rule-based approach outperformed clustering by 10% and showed less confusions for predicted activity routines. Topic models are suitable to discover daily life activity routines in hemiparetic rehabilitation patients without trained classifiers and activity annotations. Activity routines show characteristic patterns regarding activity primitives including body and extremity postures and movement. A patient-independent rule set can be derived. Including expert knowledge supports successful activity routine discovery over completely data-driven clustering.

  2. Mapping of High Value Crops Through AN Object-Based Svm Model Using LIDAR Data and Orthophoto in Agusan del Norte Philippines

    NASA Astrophysics Data System (ADS)

    Candare, Rudolph Joshua; Japitana, Michelle; Cubillas, James Earl; Ramirez, Cherry Bryan

    2016-06-01

    This research describes the methods involved in the mapping of different high value crops in Agusan del Norte Philippines using LiDAR. This project is part of the Phil-LiDAR 2 Program which aims to conduct a nationwide resource assessment using LiDAR. Because of the high resolution data involved, the methodology described here utilizes object-based image analysis and the use of optimal features from LiDAR data and Orthophoto. Object-based classification was primarily done by developing rule-sets in eCognition. Several features from the LiDAR data and Orthophotos were used in the development of rule-sets for classification. Generally, classes of objects can't be separated by simple thresholds from different features making it difficult to develop a rule-set. To resolve this problem, the image-objects were subjected to Support Vector Machine learning. SVMs have gained popularity because of their ability to generalize well given a limited number of training samples. However, SVMs also suffer from parameter assignment issues that can significantly affect the classification results. More specifically, the regularization parameter C in linear SVM has to be optimized through cross validation to increase the overall accuracy. After performing the segmentation in eCognition, the optimization procedure as well as the extraction of the equations of the hyper-planes was done in Matlab. The learned hyper-planes separating one class from another in the multi-dimensional feature-space can be thought of as super-features which were then used in developing the classifier rule set in eCognition. In this study, we report an overall classification accuracy of greater than 90% in different areas.

  3. Sorting Through the Safety Data Haystack: Using Machine Learning to Identify Individual Case Safety Reports in Social-Digital Media.

    PubMed

    Comfort, Shaun; Perera, Sujan; Hudson, Zoe; Dorrell, Darren; Meireis, Shawman; Nagarajan, Meenakshi; Ramakrishnan, Cartic; Fine, Jennifer

    2018-06-01

    There is increasing interest in social digital media (SDM) as a data source for pharmacovigilance activities; however, SDM is considered a low information content data source for safety data. Given that pharmacovigilance itself operates in a high-noise, lower-validity environment without objective 'gold standards' beyond process definitions, the introduction of large volumes of SDM into the pharmacovigilance workflow has the potential to exacerbate issues with limited manual resources to perform adverse event identification and processing. Recent advances in medical informatics have resulted in methods for developing programs which can assist human experts in the detection of valid individual case safety reports (ICSRs) within SDM. In this study, we developed rule-based and machine learning (ML) models for classifying ICSRs from SDM and compared their performance with that of human pharmacovigilance experts. We used a random sampling from a collection of 311,189 SDM posts that mentioned Roche products and brands in combination with common medical and scientific terms sourced from Twitter, Tumblr, Facebook, and a spectrum of news media blogs to develop and evaluate three iterations of an automated ICSR classifier. The ICSR classifier models consisted of sub-components to annotate the relevant ICSR elements and a component to make the final decision on the validity of the ICSR. Agreement with human pharmacovigilance experts was chosen as the preferred performance metric and was evaluated by calculating the Gwet AC1 statistic (gKappa). The best performing model was tested against the Roche global pharmacovigilance expert using a blind dataset and put through a time test of the full 311,189-post dataset. During this effort, the initial strict rule-based approach to ICSR classification resulted in a model with an accuracy of 65% and a gKappa of 46%. Adding an ML-based adverse event annotator improved the accuracy to 74% and gKappa to 60%. This was further improved by the addition of an additional ML ICSR detector. On a blind test set of 2500 posts, the final model demonstrated a gKappa of 78% and an accuracy of 83%. In the time test, it took the final model 48 h to complete a task that would have taken an estimated 44,000 h for human experts to perform. The results of this study indicate that an effective and scalable solution to the challenge of ICSR detection in SDM includes a workflow using an automated ML classifier to identify likely ICSRs for further human SME review.

  4. An Improvement To The k-Nearest Neighbor Classifier For ECG Database

    NASA Astrophysics Data System (ADS)

    Jaafar, Haryati; Hidayah Ramli, Nur; Nasir, Aimi Salihah Abdul

    2018-03-01

    The k nearest neighbor (kNN) is a non-parametric classifier and has been widely used for pattern classification. However, in practice, the performance of kNN often tends to fail due to the lack of information on how the samples are distributed among them. Moreover, kNN is no longer optimal when the training samples are limited. Another problem observed in kNN is regarding the weighting issues in assigning the class label before classification. Thus, to solve these limitations, a new classifier called Mahalanobis fuzzy k-nearest centroid neighbor (MFkNCN) is proposed in this study. Here, a Mahalanobis distance is applied to avoid the imbalance of samples distribition. Then, a surrounding rule is employed to obtain the nearest centroid neighbor based on the distributions of training samples and its distance to the query point. Consequently, the fuzzy membership function is employed to assign the query point to the class label which is frequently represented by the nearest centroid neighbor Experimental studies from electrocardiogram (ECG) signal is applied in this study. The classification performances are evaluated in two experimental steps i.e. different values of k and different sizes of feature dimensions. Subsequently, a comparative study of kNN, kNCN, FkNN and MFkCNN classifier is conducted to evaluate the performances of the proposed classifier. The results show that the performance of MFkNCN consistently exceeds the kNN, kNCN and FkNN with the best classification rates of 96.5%.

  5. Hierarchical Leak Detection and Localization Method in Natural Gas Pipeline Monitoring Sensor Networks

    PubMed Central

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point’s position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate. PMID:22368464

  6. Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks.

    PubMed

    Wan, Jiangwen; Yu, Yang; Wu, Yinfeng; Feng, Renjian; Yu, Ning

    2012-01-01

    In light of the problems of low recognition efficiency, high false rates and poor localization accuracy in traditional pipeline security detection technology, this paper proposes a type of hierarchical leak detection and localization method for use in natural gas pipeline monitoring sensor networks. In the signal preprocessing phase, original monitoring signals are dealt with by wavelet transform technology to extract the single mode signals as well as characteristic parameters. In the initial recognition phase, a multi-classifier model based on SVM is constructed and characteristic parameters are sent as input vectors to the multi-classifier for initial recognition. In the final decision phase, an improved evidence combination rule is designed to integrate initial recognition results for final decisions. Furthermore, a weighted average localization algorithm based on time difference of arrival is introduced for determining the leak point's position. Experimental results illustrate that this hierarchical pipeline leak detection and localization method could effectively improve the accuracy of the leak point localization and reduce the undetected rate as well as false alarm rate.

  7. Spectroscopic classification of X-ray sources in the Galactic Bulge Survey

    NASA Astrophysics Data System (ADS)

    Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.

    2017-10-01

    We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.

  8. A Survey of Colormaps in Visualization

    PubMed Central

    Zhou, Liang; Hansen, Charles D.

    2016-01-01

    Colormaps are a vital method for users to gain insights into data in a visualization. With a good choice of colormaps, users are able to acquire information in the data more effectively and efficiently. In this survey, we attempt to provide readers with a comprehensive review of colormap generation techniques and provide readers a taxonomy which is helpful for finding appropriate techniques to use for their data and applications. Specifically, we first briefly introduce the basics of color spaces including color appearance models. In the core of our paper, we survey colormap generation techniques, including the latest advances in the field by grouping these techniques into four classes: procedural methods, user-study based methods, rule-based methods, and data-driven methods; we also include a section on methods that are beyond pure data comprehension purposes. We then classify colormapping techniques into a taxonomy for readers to quickly identify the appropriate techniques they might use. Furthermore, a representative set of visualization techniques that explicitly discuss the use of colormaps is reviewed and classified based on the nature of the data in these applications. Our paper is also intended to be a reference of colormap choices for readers when they are faced with similar data and/or tasks. PMID:26513793

  9. A shape-based segmentation method for mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Dong, Zhen

    2013-07-01

    Segmentation of mobile laser point clouds of urban scenes into objects is an important step for post-processing (e.g., interpretation) of point clouds. Point clouds of urban scenes contain numerous objects with significant size variability, complex and incomplete structures, and holes or variable point densities, raising great challenges for the segmentation of mobile laser point clouds. This paper addresses these challenges by proposing a shape-based segmentation method. The proposed method first calculates the optimal neighborhood size of each point to derive the geometric features associated with it, and then classifies the point clouds according to geometric features using support vector machines (SVMs). Second, a set of rules are defined to segment the classified point clouds, and a similarity criterion for segments is proposed to overcome over-segmentation. Finally, the segmentation output is merged based on topological connectivity into a meaningful geometrical abstraction. The proposed method has been tested on point clouds of two urban scenes obtained by different mobile laser scanners. The results show that the proposed method segments large-scale mobile laser point clouds with good accuracy and computationally effective time cost, and that it segments pole-like objects particularly well.

  10. A Market-Basket Approach to Predict the Acute Aquatic Toxicity of Munitions and Energetic Materials.

    PubMed

    Burgoon, Lyle D

    2016-06-01

    An ongoing challenge in chemical production, including the production of insensitive munitions and energetics, is the ability to make predictions about potential environmental hazards early in the process. To address this challenge, a quantitative structure activity relationship model was developed to predict acute fathead minnow toxicity of insensitive munitions and energetic materials. Computational predictive toxicology models like this one may be used to identify and prioritize environmentally safer materials early in their development. The developed model is based on the Apriori market-basket/frequent itemset mining approach to identify probabilistic prediction rules using chemical atom-pairs and the lethality data for 57 compounds from a fathead minnow acute toxicity assay. Lethality data were discretized into four categories based on the Globally Harmonized System of Classification and Labelling of Chemicals. Apriori identified toxicophores for categories two and three. The model classified 32 of the 57 compounds correctly, with a fivefold cross-validation classification rate of 74 %. A structure-based surrogate approach classified the remaining 25 chemicals correctly at 48 %. This result is unsurprising as these 25 chemicals were fairly unique within the larger set.

  11. A Semantic Parsing Method for Mapping Clinical Questions to Logical Forms

    PubMed Central

    Roberts, Kirk; Patra, Braja Gopal

    2017-01-01

    This paper presents a method for converting natural language questions about structured data in the electronic health record (EHR) into logical forms. The logical forms can then subsequently be converted to EHR-dependent structured queries. The natural language processing task, known as semantic parsing, has the potential to convert questions to logical forms with extremely high precision, resulting in a system that is usable and trusted by clinicians for real-time use in clinical settings. We propose a hybrid semantic parsing method, combining rule-based methods with a machine learning-based classifier. The overall semantic parsing precision on a set of 212 questions is 95.6%. The parser’s rules furthermore allow it to “know what it does not know”, enabling the system to indicate when unknown terms prevent it from understanding the question’s full logical structure. When combined with a module for converting a logical form into an EHR-dependent query, this high-precision approach allows for a question answering system to provide a user with a single, verifiably correct answer. PMID:29854217

  12. [Research of bleeding volume and method in blood-letting acupuncture therapy based on data mining].

    PubMed

    Liu, Xin; Jia, Chun-Sheng; Wang, Jian-Ling; Du, Yu-Zhu; Zhang, Xiao-Xu; Shi, Jing; Li, Xiao-Feng; Sun, Yan-Hui; Zhang, Shen; Zhang, Xuan-Ping; Gang, Wei-Juan

    2014-03-01

    Through computer-based technology and data mining method, with treatment in cases of bloodletting acupuncture therapy in collected literature as sample data, the association rule in data mining was applied. According to self-built database platform, the data was input, arranged and summarized, and eventually required data was acquired to perform the data mining of bleeding volume and method in blood-letting acupuncture therapy, which summarized its application rules and clinical values to provide better guide for clinical practice. There were 9 kinds of blood-letting tools in the literature, in which the frequency of three-edge needle was the highest, accounting for 84.4% (1239/1468). The bleeding volume was classified into six levels, in which less volume (less than 0.1 mL) had the highest frequency (401 times). According to the results of the data mining, blood-letting acupuncture therapy was widely applied in clinical practice of acupuncture, in which use of three-edge needle and less volume (less than 0.1 mL) of blood were the most common, however, there was no central tendency in general.

  13. Deriving urban dynamic evolution rules from self-adaptive cellular automata with multi-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun

    2015-06-01

    Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.

  14. Special report on taxation. New IRS revenue procedure clarifies tax classification of limited liability companies.

    PubMed

    Schieble, M T

    1995-05-01

    Although its rules are complex, the publication of Revenue Procedure 95-10 will substantially facilitate the use of LLCs in those states with statutes that permit significant flexibility in the structuring of LLCs. Previously, the only way to assure that LLCs in those states would be classified as partnerships for income tax purposes was to obtain a private letter ruling from the IRS, often resulting in lengthy delays. The new revenue procedure should provide sufficient guidance in the vast majority of cases to allow tax counsel to determine the appropriate treatment for tax purposes without having to seek an IRS private letter ruling.

  15. Object-based forest classification to facilitate landscape-scale conservation in the Mississippi Alluvial Valley

    USGS Publications Warehouse

    Mitchell, Michael; Wilson, R. Randy; Twedt, Daniel J.; Mini, Anne E.; James, J. Dale

    2016-01-01

    The Mississippi Alluvial Valley is a floodplain along the southern extent of the Mississippi River extending from southern Missouri to the Gulf of Mexico. This area once encompassed nearly 10 million ha of floodplain forests, most of which has been converted to agriculture over the past two centuries. Conservation programs in this region revolve around protection of existing forest and reforestation of converted lands. Therefore, an accurate and up to date classification of forest cover is essential for conservation planning, including efforts that prioritize areas for conservation activities. We used object-based image analysis with Random Forest classification to quickly and accurately classify forest cover. We used Landsat band, band ratio, and band index statistics to identify and define similar objects as our training sets instead of selecting individual training points. This provided a single rule-set that was used to classify each of the 11 Landsat 5 Thematic Mapper scenes that encompassed the Mississippi Alluvial Valley. We classified 3,307,910±85,344 ha (32% of this region) as forest. Our overall classification accuracy was 96.9% with Kappa statistic of 0.96. Because this method of forest classification is rapid and accurate, assessment of forest cover can be regularly updated and progress toward forest habitat goals identified in conservation plans can be periodically evaluated.

  16. 10 CFR 824.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... disclosure pursuant to the Act and National Security Information that has been determined pursuant to... et seq.). Administrator means the Administrator of the National Nuclear Security Administration...

  17. 10 CFR 824.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... disclosure pursuant to the Act and National Security Information that has been determined pursuant to... et seq.). Administrator means the Administrator of the National Nuclear Security Administration...

  18. Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples

    NASA Astrophysics Data System (ADS)

    Muggleton, Stephen; Paes, Aline; Santos Costa, Vítor; Zaverucha, Gerson

    The game of chess has been a major testbed for research in artificial intelligence, since it requires focus on intelligent reasoning. Particularly, several challenges arise to machine learning systems when inducing a model describing legal moves of the chess, including the collection of the examples, the learning of a model correctly representing the official rules of the game, covering all the branches and restrictions of the correct moves, and the comprehensibility of such a model. Besides, the game of chess has inspired the creation of numerous variants, ranging from faster to more challenging or to regional versions of the game. The question arises if it is possible to take advantage of an initial classifier of chess as a starting point to obtain classifiers for the different variants. We approach this problem as an instance of theory revision from examples. The initial classifier of chess is inspired by a FOL theory approved by a chess expert and the examples are defined as sequences of moves within a game. Starting from a standard revision system, we argue that abduction and negation are also required to best address this problem. Experimental results show the effectiveness of our approach.

  19. Knee X-ray image analysis method for automated detection of Osteoarthritis

    PubMed Central

    Shamir, Lior; Ling, Shari M.; Scott, William W.; Bos, Angelo; Orlov, Nikita; Macura, Tomasz; Eckley, D. Mark; Ferrucci, Luigi; Goldberg, Ilya G.

    2008-01-01

    We describe a method for automated detection of radiographic Osteoarthritis (OA) in knee X-ray images. The detection is based on the Kellgren-Lawrence classification grades, which correspond to the different stages of OA severity. The classifier was built using manually classified X-rays, representing the first four KL grades (normal, doubtful, minimal and moderate). Image analysis is performed by first identifying a set of image content descriptors and image transforms that are informative for the detection of OA in the X-rays, and assigning weights to these image features using Fisher scores. Then, a simple weighted nearest neighbor rule is used in order to predict the KL grade to which a given test X-ray sample belongs. The dataset used in the experiment contained 350 X-ray images classified manually by their KL grades. Experimental results show that moderate OA (KL grade 3) and minimal OA (KL grade 2) can be differentiated from normal cases with accuracy of 91.5% and 80.4%, respectively. Doubtful OA (KL grade 1) was detected automatically with a much lower accuracy of 57%. The source code developed and used in this study is available for free download at www.openmicroscopy.org. PMID:19342330

  20. [Analysis of the characteristics of the older adults with depression using data mining decision tree analysis].

    PubMed

    Park, Myonghwa; Choi, Sora; Shin, A Mi; Koo, Chul Hoi

    2013-02-01

    The purpose of this study was to develop a prediction model for the characteristics of older adults with depression using the decision tree method. A large dataset from the 2008 Korean Elderly Survey was used and data of 14,970 elderly people were analyzed. Target variable was depression and 53 input variables were general characteristics, family & social relationship, economic status, health status, health behavior, functional status, leisure & social activity, quality of life, and living environment. Data were analyzed by decision tree analysis, a data mining technique using SPSS Window 19.0 and Clementine 12.0 programs. The decision trees were classified into five different rules to define the characteristics of older adults with depression. Classification & Regression Tree (C&RT) showed the best prediction with an accuracy of 80.81% among data mining models. Factors in the rules were life satisfaction, nutritional status, daily activity difficulty due to pain, functional limitation for basic or instrumental daily activities, number of chronic diseases and daily activity difficulty due to disease. The different rules classified by the decision tree model in this study should contribute as baseline data for discovering informative knowledge and developing interventions tailored to these individual characteristics.

  1. Identifying influenza-like illness presentation from unstructured general practice clinical narrative using a text classifier rule-based expert system versus a clinical expert.

    PubMed

    MacRae, Jayden; Love, Tom; Baker, Michael G; Dowell, Anthony; Carnachan, Matthew; Stubbe, Maria; McBain, Lynn

    2015-10-06

    We designed and validated a rule-based expert system to identify influenza like illness (ILI) from routinely recorded general practice clinical narrative to aid a larger retrospective research study into the impact of the 2009 influenza pandemic in New Zealand. Rules were assessed using pattern matching heuristics on routine clinical narrative. The system was trained using data from 623 clinical encounters and validated using a clinical expert as a gold standard against a mutually exclusive set of 901 records. We calculated a 98.2 % specificity and 90.2 % sensitivity across an ILI incidence of 12.4 % measured against clinical expert classification. Peak problem list identification of ILI by clinical coding in any month was 9.2 % of all detected ILI presentations. Our system addressed an unusual problem domain for clinical narrative classification; using notational, unstructured, clinician entered information in a community care setting. It performed well compared with other approaches and domains. It has potential applications in real-time surveillance of disease, and in assisted problem list coding for clinicians. Our system identified ILI presentation with sufficient accuracy for use at a population level in the wider research study. The peak coding of 9.2 % illustrated the need for automated coding of unstructured narrative in our study.

  2. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less

  3. Phonological reduplication in sign language: Rules rule

    PubMed Central

    Berent, Iris; Dupuis, Amanda; Brentari, Diane

    2014-01-01

    Productivity—the hallmark of linguistic competence—is typically attributed to algebraic rules that support broad generalizations. Past research on spoken language has documented such generalizations in both adults and infants. But whether algebraic rules form part of the linguistic competence of signers remains unknown. To address this question, here we gauge the generalization afforded by American Sign Language (ASL). As a case study, we examine reduplication (X→XX)—a rule that, inter alia, generates ASL nouns from verbs. If signers encode this rule, then they should freely extend it to novel syllables, including ones with features that are unattested in ASL. And since reduplicated disyllables are preferred in ASL, such a rule should favor novel reduplicated signs. Novel reduplicated signs should thus be preferred to nonreduplicative controls (in rating), and consequently, such stimuli should also be harder to classify as nonsigns (in the lexical decision task). The results of four experiments support this prediction. These findings suggest that the phonological knowledge of signers includes powerful algebraic rules. The convergence between these conclusions and previous evidence for phonological rules in spoken language suggests that the architecture of the phonological mind is partly amodal. PMID:24959158

  4. 25 CFR Appendix A to Part 276 - Principles for Determining Costs Applicable to Grants

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Classification of costs. There is no universal rule for classifying certain costs as either direct or indirect... and they are consistent with regular practices followed for other activities of the grantee. 20. Motor...

  5. 25 CFR Appendix A to Part 276 - Principles for Determining Costs Applicable to Grants

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Classification of costs. There is no universal rule for classifying certain costs as either direct or indirect... and they are consistent with regular practices followed for other activities of the grantee. 20. Motor...

  6. 25 CFR Appendix A to Part 276 - Principles for Determining Costs Applicable to Grants

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... Classification of costs. There is no universal rule for classifying certain costs as either direct or indirect... and they are consistent with regular practices followed for other activities of the grantee. 20. Motor...

  7. 25 CFR Appendix A to Part 276 - Principles for Determining Costs Applicable to Grants

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Classification of costs. There is no universal rule for classifying certain costs as either direct or indirect... and they are consistent with regular practices followed for other activities of the grantee. 20. Motor...

  8. 75 FR 35519 - Primary National Ambient Air Quality Standard for Sulfur Dioxide

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-22

    ... this final rule, additional areas could be classified as non-attainment. Certain States would then be... numerous locations and with a variety of methodological approaches (ISA, section 5.2; p. 5-5). It was...

  9. An assessment of the effectiveness of a random forest classifier for land-cover classification

    NASA Astrophysics Data System (ADS)

    Rodriguez-Galiano, V. F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P.

    2012-01-01

    Land cover monitoring using remotely sensed data requires robust classification methods which allow for the accurate mapping of complex land cover and land use categories. Random forest (RF) is a powerful machine learning classifier that is relatively unknown in land remote sensing and has not been evaluated thoroughly by the remote sensing community compared to more conventional pattern recognition techniques. Key advantages of RF include: their non-parametric nature; high classification accuracy; and capability to determine variable importance. However, the split rules for classification are unknown, therefore RF can be considered to be black box type classifier. RF provides an algorithm for estimating missing values; and flexibility to perform several types of data analysis, including regression, classification, survival analysis, and unsupervised learning. In this paper, the performance of the RF classifier for land cover classification of a complex area is explored. Evaluation was based on several criteria: mapping accuracy, sensitivity to data set size and noise. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land categories in the south of Spain. Results show that the RF algorithm yields accurate land cover classifications, with 92% overall accuracy and a Kappa index of 0.92. RF is robust to training data reduction and noise because significant differences in kappa values were only observed for data reduction and noise addition values greater than 50 and 20%, respectively. Additionally, variables that RF identified as most important for classifying land cover coincided with expectations. A McNemar test indicates an overall better performance of the random forest model over a single decision tree at the 0.00001 significance level.

  10. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles.

    PubMed

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-07-09

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.

  11. Semantic information extracting system for classification of radiological reports in radiology information system (RIS)

    NASA Astrophysics Data System (ADS)

    Shi, Liehang; Ling, Tonghui; Zhang, Jianguo

    2016-03-01

    Radiologists currently use a variety of terminologies and standards in most hospitals in China, and even there are multiple terminologies being used for different sections in one department. In this presentation, we introduce a medical semantic comprehension system (MedSCS) to extract semantic information about clinical findings and conclusion from free text radiology reports so that the reports can be classified correctly based on medical terms indexing standards such as Radlex or SONMED-CT. Our system (MedSCS) is based on both rule-based methods and statistics-based methods which improve the performance and the scalability of MedSCS. In order to evaluate the over all of the system and measure the accuracy of the outcomes, we developed computation methods to calculate the parameters of precision rate, recall rate, F-score and exact confidence interval.

  12. Fuzzy association rule mining and classification for the prediction of malaria in South Korea.

    PubMed

    Buczak, Anna L; Baugher, Benjamin; Guven, Erhan; Ramac-Thomas, Liane C; Elbert, Yevgeniy; Babin, Steven M; Lewis, Sheri H

    2015-06-18

    Malaria is the world's most prevalent vector-borne disease. Accurate prediction of malaria outbreaks may lead to public health interventions that mitigate disease morbidity and mortality. We describe an application of a method for creating prediction models utilizing Fuzzy Association Rule Mining to extract relationships between epidemiological, meteorological, climatic, and socio-economic data from Korea. These relationships are in the form of rules, from which the best set of rules is automatically chosen and forms a classifier. Two classifiers have been built and their results fused to become a malaria prediction model. Future malaria cases are predicted as Low, Medium or High, where these classes are defined as a total of 0-2, 3-16, and above 17 cases, respectively, for a region in South Korea during a two-week period. Based on user recommendations, HIGH is considered an outbreak. Model accuracy is described by Positive Predictive Value (PPV), Sensitivity, and F-score for each class, computed on test data not previously used to develop the model. For predictions made 7-8 weeks in advance, model PPV and Sensitivity are 0.842 and 0.681, respectively, for the HIGH classes. The F0.5 and F3 scores (which combine PPV and Sensitivity) are 0.804 and 0.694, respectively, for the HIGH classes. The overall FARM results (as measured by F-scores) are significantly better than those obtained by Decision Tree, Random Forest, Support Vector Machine, and Holt-Winters methods for the HIGH class. For the Medium class, Random Forest and FARM obtain comparable results, with FARM being better at F0.5, and Random Forest obtaining a higher F3. A previously described method for creating disease prediction models has been modified and extended to build models for predicting malaria. In addition, some new input variables were used, including indicators of intervention measures. The South Korea malaria prediction models predict Low, Medium or High cases 7-8 weeks in the future. This paper demonstrates that our data driven approach can be used for the prediction of different diseases.

  13. Diagnostic Accuracy of a New High-Sensitivity Troponin I Assay and Five Accelerated Diagnostic Pathways for Ruling Out Acute Myocardial Infarction and Acute Coronary Syndrome.

    PubMed

    Greenslade, Jaimi H; Carlton, Edward W; Van Hise, Christopher; Cho, Elizabeth; Hawkins, Tracey; Parsonage, William A; Tate, Jillian; Ungerer, Jacobus; Cullen, Louise

    2018-04-01

    This diagnostic accuracy study describes the performance of 5 accelerated chest pain pathways, calculated with the new Beckman's Access high-sensitivity troponin I assay. High-sensitivity troponin I was measured with presentation and 2-hour blood samples in 1,811 patients who presented to an emergency department (ED) in Australia. Patients were classified as being at low risk according to 5 rules: modified accelerated diagnostic protocol to assess patients with chest pain symptoms using troponin as the only biomarker (m-ADAPT), the Emergency Department Assessment of Chest Pain Score (EDACS) pathway, the History, ECG, Age, Risk Factors, and Troponin (HEART) pathway, the No Objective Testing Rule, and the new Vancouver Chest Pain Rule. Endpoints were 30-day acute myocardial infarction and acute coronary syndrome. Measures of diagnostic accuracy for each rule were calculated. Data included 96 patients (5.3%) with acute myocardial infarction and 139 (7.7%) with acute coronary syndrome. The new Vancouver Chest Pain Rule and No Objective Testing Rule had high sensitivity for acute myocardial infarction (100%; 95% confidence interval [CI] 96.2% to 100% for both) and acute coronary syndrome (98.6% [95% CI 94.9% to 99.8%] and 99.3% [95% CI 96.1% to 100%]). The m-ADAPT, EDACS, and HEART pathways also yielded high sensitivity for acute myocardial infarction (96.9% [95% CI 91.1% to 99.4%] for m-ADAPT and 97.9% [95% CI 92.7% to 99.7%] for EDACS and HEART), but lower sensitivity for acute coronary syndrome (≤95.0% for all). The m-ADAPT, EDACS, and HEART rules classified more patients as being at low risk (64.3%, 62.5%, and 49.8%, respectively) than the new Vancouver Chest Pain Rule and No Objective Testing Rule (28.2% and 34.5%, respectively). In this cohort with a low prevalence of acute myocardial infarction and acute coronary syndrome, using the Beckman's Access high-sensitivity troponin I assay with the new Vancouver Chest Pain Rule or No Objective Testing Rule enabled approximately one third of patients to be safely discharged after 2-hour risk stratification with no further testing. The EDACS, m-ADAPT, or HEART pathway enabled half of ED patients to be rapidly referred for objective testing. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  14. ExaCT: automatic extraction of clinical trial characteristics from journal publications

    PubMed Central

    2010-01-01

    Background Clinical trials are one of the most important sources of evidence for guiding evidence-based practice and the design of new trials. However, most of this information is available only in free text - e.g., in journal publications - which is labour intensive to process for systematic reviews, meta-analyses, and other evidence synthesis studies. This paper presents an automatic information extraction system, called ExaCT, that assists users with locating and extracting key trial characteristics (e.g., eligibility criteria, sample size, drug dosage, primary outcomes) from full-text journal articles reporting on randomized controlled trials (RCTs). Methods ExaCT consists of two parts: an information extraction (IE) engine that searches the article for text fragments that best describe the trial characteristics, and a web browser-based user interface that allows human reviewers to assess and modify the suggested selections. The IE engine uses a statistical text classifier to locate those sentences that have the highest probability of describing a trial characteristic. Then, the IE engine's second stage applies simple rules to these sentences to extract text fragments containing the target answer. The same approach is used for all 21 trial characteristics selected for this study. Results We evaluated ExaCT using 50 previously unseen articles describing RCTs. The text classifier (first stage) was able to recover 88% of relevant sentences among its top five candidates (top5 recall) with the topmost candidate being relevant in 80% of cases (top1 precision). Precision and recall of the extraction rules (second stage) were 93% and 91%, respectively. Together, the two stages of the extraction engine were able to provide (partially) correct solutions in 992 out of 1050 test tasks (94%), with a majority of these (696) representing fully correct and complete answers. Conclusions Our experiments confirmed the applicability and efficacy of ExaCT. Furthermore, they demonstrated that combining a statistical method with 'weak' extraction rules can identify a variety of study characteristics. The system is flexible and can be extended to handle other characteristics and document types (e.g., study protocols). PMID:20920176

  15. Analysis of mass spectrometry data from the secretome of an explant model of articular cartilage exposed to pro-inflammatory and anti-inflammatory stimuli using machine learning

    PubMed Central

    2013-01-01

    Background Osteoarthritis (OA) is an inflammatory disease of synovial joints involving the loss and degeneration of articular cartilage. The gold standard for evaluating cartilage loss in OA is the measurement of joint space width on standard radiographs. However, in most cases the diagnosis is made well after the onset of the disease, when the symptoms are well established. Identification of early biomarkers of OA can facilitate earlier diagnosis, improve disease monitoring and predict responses to therapeutic interventions. Methods This study describes the bioinformatic analysis of data generated from high throughput proteomics for identification of potential biomarkers of OA. The mass spectrometry data was generated using a canine explant model of articular cartilage treated with the pro-inflammatory cytokine interleukin 1 β (IL-1β). The bioinformatics analysis involved the application of machine learning and network analysis to the proteomic mass spectrometry data. A rule based machine learning technique, BioHEL, was used to create a model that classified the samples into their relevant treatment groups by identifying those proteins that separated samples into their respective groups. The proteins identified were considered to be potential biomarkers. Protein networks were also generated; from these networks, proteins pivotal to the classification were identified. Results BioHEL correctly classified eighteen out of twenty-three samples, giving a classification accuracy of 78.3% for the dataset. The dataset included the four classes of control, IL-1β, carprofen, and IL-1β and carprofen together. This exceeded the other machine learners that were used for a comparison, on the same dataset, with the exception of another rule-based method, JRip, which performed equally well. The proteins that were most frequently used in rules generated by BioHEL were found to include a number of relevant proteins including matrix metalloproteinase 3, interleukin 8 and matrix gla protein. Conclusions Using this protocol, combining an in vitro model of OA with bioinformatics analysis, a number of relevant extracellular matrix proteins were identified, thereby supporting the application of these bioinformatics tools for analysis of proteomic data from in vitro models of cartilage degradation. PMID:24330474

  16. Realtime motion planning for a mobile robot in an unknown environment using a neurofuzzy based approach

    NASA Astrophysics Data System (ADS)

    Zheng, Taixiong

    2005-12-01

    A neuro-fuzzy network based approach for robot motion in an unknown environment was proposed. In order to control the robot motion in an unknown environment, the behavior of the robot was classified into moving to the goal and avoiding obstacles. Then, according to the dynamics of the robot and the behavior character of the robot in an unknown environment, fuzzy control rules were introduced to control the robot motion. At last, a 6-layer neuro-fuzzy network was designed to merge from what the robot sensed to robot motion control. After being trained, the network may be used for robot motion control. Simulation results show that the proposed approach is effective for robot motion control in unknown environment.

  17. Automatic morphological classification of galaxy images

    PubMed Central

    Shamir, Lior

    2009-01-01

    We describe an image analysis supervised learning algorithm that can automatically classify galaxy images. The algorithm is first trained using a manually classified images of elliptical, spiral, and edge-on galaxies. A large set of image features is extracted from each image, and the most informative features are selected using Fisher scores. Test images can then be classified using a simple Weighted Nearest Neighbor rule such that the Fisher scores are used as the feature weights. Experimental results show that galaxy images from Galaxy Zoo can be classified automatically to spiral, elliptical and edge-on galaxies with accuracy of ~90% compared to classifications carried out by the author. Full compilable source code of the algorithm is available for free download, and its general-purpose nature makes it suitable for other uses that involve automatic image analysis of celestial objects. PMID:20161594

  18. Application of a Novel Diagnostic Rule in the Differential Diagnosis between Acute Gouty Arthritis and Septic Arthritis.

    PubMed

    Lee, Kwang-Hoon; Choi, Sang-Tae; Lee, Soo-Kyung; Lee, Joo-Hyun; Yoon, Bo-Young

    2015-06-01

    Septic arthritis and gout are major diseases that should be suspected in patients with acute monoarthritis. These two diseases are clinically similar and often indistinguishable without the help of synovial fluid analysis. Recently, a novel diagnostic rule for gout without synovial fluid analysis was developed and showed relevant performances. This study aimed to determine whether this diagnostic rule could perform well in distinguishing gout from septic arthritis. The diagnostic rule comprises 7 clinical and laboratory variables, each of which is given a specified score. The probability of gout is classified into 3 groups according to the sum of the scores: high (≥ 8), intermediate (> 4 to < 8) and low probability (≤ 4). In this retrospective study, we applied this diagnostic rule to 136 patients who presented as acute monoarthritis and were subsequently diagnosed as acute gout (n = 82) and septic arthritis (n = 54) based on synovial fluid analysis. The mean sum of scores of acute gout patients was significantly higher than that of those with septic arthritis (8.6 ± 0.2 vs. 3.6 ± 0.32, P < 0.001). Patients with acute gout had significantly more 'high', and less 'low' probabilities compared to those with septic arthritis (Eta[η]: 0.776). The prevalence of acute gouty arthritis, as confirmed by the presence of monosodium crystal, was 95.5% (61/64), 57.5% (19/33), and 5.1% (2/39) in high, intermediate and low probability group, respectively. The recently introduced diagnostic rule properly discriminates acute gout from septic arthritis. It may help physicians diagnose gout in cases difficult to be differentiated from septic arthritis.

  19. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.

    PubMed

    Chen, Zhenyu; Li, Jianping; Wei, Liwei

    2007-10-01

    Recently, gene expression profiling using microarray techniques has been shown as a promising tool to improve the diagnosis and treatment of cancer. Gene expression data contain high level of noise and the overwhelming number of genes relative to the number of available samples. It brings out a great challenge for machine learning and statistic techniques. Support vector machine (SVM) has been successfully used to classify gene expression data of cancer tissue. In the medical field, it is crucial to deliver the user a transparent decision process. How to explain the computed solutions and present the extracted knowledge becomes a main obstacle for SVM. A multiple kernel support vector machine (MK-SVM) scheme, consisting of feature selection, rule extraction and prediction modeling is proposed to improve the explanation capacity of SVM. In this scheme, we show that the feature selection problem can be translated into an ordinary multiple parameters learning problem. And a shrinkage approach: 1-norm based linear programming is proposed to obtain the sparse parameters and the corresponding selected features. We propose a novel rule extraction approach using the information provided by the separating hyperplane and support vectors to improve the generalization capacity and comprehensibility of rules and reduce the computational complexity. Two public gene expression datasets: leukemia dataset and colon tumor dataset are used to demonstrate the performance of this approach. Using the small number of selected genes, MK-SVM achieves encouraging classification accuracy: more than 90% for both two datasets. Moreover, very simple rules with linguist labels are extracted. The rule sets have high diagnostic power because of their good classification performance.

  20. 78 FR 43181 - Proposed collection; comment request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-19

    ... and guidance, and to assist with investigations into possible violations of NGA rules and regulations, including the possible loss or compromise of classified or protected NGA information. Affected Public... Information Collection Respondents are NGA employees, military and contractor personnel who provide personal...

  1. 77 FR 71689 - Criteria and Procedures for Determining Eligibility for Access to Classified Matter or Special...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ...); (2) tailor regulations to impose the least burden on society, consistent with obtaining regulatory... that may affect family well-being. This rule would not have any impact on the autonomy or integrity of...

  2. Ontology and medical diagnosis.

    PubMed

    Bertaud-Gounot, Valérie; Duvauferrier, Régis; Burgun, Anita

    2012-03-01

    Ontology and associated generic tools are appropriate for knowledge modeling and reasoning, but most of the time, disease definitions in existing description logic (DL) ontology are not sufficient to classify patient's characteristics under a particular disease because they do not formalize operational definitions of diseases (association of signs and symptoms=diagnostic criteria). The main objective of this study is to propose an ontological representation which takes into account the diagnostic criteria on which specific patient conditions may be classified under a specific disease. This method needs as a prerequisite a clear list of necessary and sufficient diagnostic criteria as defined for lots of diseases by learned societies. It does not include probability/uncertainty which Web Ontology Language (OWL 2.0) cannot handle. We illustrate it with spondyloarthritis (SpA). Ontology has been designed in Protégé 4.1 OWL-DL2.0. Several kinds of criteria were formalized: (1) mandatory criteria, (2) picking two criteria among several diagnostic criteria, (3) numeric criteria. Thirty real patient cases were successfully classified with the reasoner. This study shows that it is possible to represent operational definitions of diseases with OWL and successfully classify real patient cases. Representing diagnostic criteria as descriptive knowledge (instead of rules in Semantic Web Rule Language or Prolog) allows us to take advantage of tools already available for OWL. While we focused on Assessment of SpondyloArthritis international Society SpA criteria, we believe that many of the representation issues addressed here are relevant to using OWL-DL for operational definition of other diseases in ontology.

  3. EOG and EMG: two important switches in automatic sleep stage classification.

    PubMed

    Estrada, E; Nazeran, H; Barragan, J; Burk, J R; Lucas, E A; Behbehani, K

    2006-01-01

    Sleep is a natural periodic state of rest for the body, in which the eyes are usually closed and consciousness is completely or partially lost. In this investigation we used the EOG and EMG signals acquired from 10 patients undergoing overnight polysomnography with their sleep stages determined by expert sleep specialists based on RK rules. Differentiation between Stage 1, Awake and REM stages challenged a well trained neural network classifier to distinguish between classes when only EEG-derived signal features were used. To meet this challenge and improve the classification rate, extra features extracted from EOG and EMG signals were fed to the classifier. In this study, two simple feature extraction algorithms were applied to EOG and EMG signals. The statistics of the results were calculated and displayed in an easy to visualize fashion to observe tendencies for each sleep stage. Inclusion of these features show a great promise to improve the classification rate towards the target rate of 100%

  4. Stressed out and overcommitted! The relationships between time demands and family rules and parents’ and their child’s weight status

    PubMed Central

    Hearst, Mary O.; Sevcik, Sarah; Fulkerson, Jayne A.; Pasch, Keryn E.; Harnack, Lisa J.; Lytle, Leslie A.

    2013-01-01

    Objective To determine the relationship between parent time demands and presence and enforcement of family rules and parent/child dyad weight status. Methods Dyads of one child/parent per family (n=681dyads), Twin Cities, Minnesota, 2007–2008 had measured height/weight and a survey of demographics, time demands and family rules-related questions. Parent/child dyads were classified into four healthy weight/overweight categories. Multivariate linear associations were analyzed with SAS, testing for interaction by work status and family composition (p<0.10). Results In adjusted models, lack of family rules and difficulty with rule enforcement were statistically lower in dyads in which the parent/child was healthy weight compared to dyads in which the parent/child was both overweight (Difference in family rules scores=0.49, p=0.03; difference in rule enforcement scores=1.09, p=<0.01). Of parents who worked full-time, healthy weight dyads reported lower time demands than other dyads (Difference in time demands scores=1.44, p=0.01). Conclusions Family experiences of time demands and use of family rules are related to the weight status of parents and children within families. PMID:22228775

  5. Hierarchical structure for audio-video based semantic classification of sports video sequences

    NASA Astrophysics Data System (ADS)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  6. Logical-rules and the classification of integral dimensions: individual differences in the processing of arbitrary dimensions

    PubMed Central

    Blunden, Anthea G.; Wang, Tony; Griffiths, David W.; Little, Daniel R.

    2015-01-01

    A variety of converging operations demonstrate key differences between separable dimensions, which can be analyzed independently, and integral dimensions, which are processed in a non-analytic fashion. A recent investigation of response time distributions, applying a set of logical rule-based models, demonstrated that integral dimensions are pooled into a single coactive processing channel, in contrast to separable dimensions, which are processed in multiple, independent processing channels. This paper examines the claim that arbitrary dimensions created by factorially morphing four faces are processed in an integral manner. In two experiments, 16 participants completed a categorization task in which either upright or inverted morph stimuli were classified in a speeded fashion. Analyses focused on contrasting different assumptions about the psychological representation of the stimuli, perceptual and decisional separability, and the processing architecture. We report consistent individual differences which demonstrate a mixture of some observers who demonstrate coactive processing with other observers who process the dimensions in a parallel self-terminating manner. PMID:25620941

  7. Classifier fusion for VoIP attacks classification

    NASA Astrophysics Data System (ADS)

    Safarik, Jakub; Rezac, Filip

    2017-05-01

    SIP is one of the most successful protocols in the field of IP telephony communication. It establishes and manages VoIP calls. As the number of SIP implementation rises, we can expect a higher number of attacks on the communication system in the near future. This work aims at malicious SIP traffic classification. A number of various machine learning algorithms have been developed for attack classification. The paper presents a comparison of current research and the use of classifier fusion method leading to a potential decrease in classification error rate. Use of classifier combination makes a more robust solution without difficulties that may affect single algorithms. Different voting schemes, combination rules, and classifiers are discussed to improve the overall performance. All classifiers have been trained on real malicious traffic. The concept of traffic monitoring depends on the network of honeypot nodes. These honeypots run in several networks spread in different locations. Separation of honeypots allows us to gain an independent and trustworthy attack information.

  8. 7 CFR 29.2408 - Rule 17.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... percent of mixed color or variegated leaves or over 30 percent of mixed color and variegated leaves combined shall be classified as “mixed” and designated by the color symbol “M.” ...

  9. 7 CFR 29.2632 - Rule 16.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... percent of mixed color or variegated leaves or over 30 percent of mixed color and variegated leaves combined shall be classified as “mixed” and designated by the color symbol “M.” ...

  10. 7 CFR 29.2632 - Rule 16.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... percent of mixed color or variegated leaves or over 30 percent of mixed color and variegated leaves combined shall be classified as “mixed” and designated by the color symbol “M.” ...

  11. 7 CFR 29.2408 - Rule 17.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... percent of mixed color or variegated leaves or over 30 percent of mixed color and variegated leaves combined shall be classified as “mixed” and designated by the color symbol “M.” ...

  12. Modification of the Covered Areas Provision for Reformulated Gasoline - RE: Former Non-attainment Areas

    EPA Pesticide Factsheets

    This final rule will expand this provision to allow states to opt into the RFG program for areas which had been previously classified as marginal, moderate, serious, or severe for ozone, but were subsequently redesignated to attainment.

  13. 10 CFR 824.9 - Hearing Counsel.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Hearing Counsel. 824.9 Section 824.9 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... consistent with the objectives of the Act and DOE security requirements. ...

  14. 10 CFR 824.9 - Hearing Counsel.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Hearing Counsel. 824.9 Section 824.9 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... consistent with the objectives of the Act and DOE security requirements. ...

  15. 76 FR 40296 - Declassification of National Security Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... NATIONAL ARCHIVES AND RECORDS ADMINISTRATION 36 CFR Part 1260 [FDMS NARA-11-0001] RIN 3095-AB64 Declassification of National Security Information AGENCY: National Archives and Records Administration. ACTION... classified national security information in records transferred to NARA's legal custody. The rule...

  16. 40 CFR 52.329 - Rules and regulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 14, 1993, the Governor of Colorado submitted revisions to the State's nonattainment new source review... Springs, and Fort Collins moderate carbon monoxide nonattainment areas, the Greeley not classified carbon monoxide nonattainment area, and the Denver transitional ozone nonattainment area. (b) On January 14, 1993...

  17. Application of SAR remote sensing and crop modeling for operational rice crop monitoring in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.; Holecz, F.; Khan, N. I.; Barbieri, M.; Maunahan, A. A.; Gatti, L.; Quicho, E. D.; Pazhanivelan, S.; Campos-Taberner, M.; Collivignarelli, F.; Haro, J. G.; Intrman, A.; Phuong, D.; Boschetti, M.; Prasadini, P.; Busetto, L.; Minh, V. Q.; Tuan, V. Q.

    2017-12-01

    This study uses multi-temporal SAR imagery, automated image processing, rule-based classification and field observations to classify rice in multiple locations in South and South Asian countries and assimilate the information into ORYZA Crop Growth Simulation Model (CGSM) to monitor rice yield. The study demonstrates examples of operational application of this rice monitoring system in: (1) detecting drought impact on rice planting in Central Thailand and Tamil Nadu, India, (2) mapping heat stress impact on rice yield in Andhra Pradesh, India, and (3) generating historical rice yield data for districts in Red River Delta, Vietnam.

  18. Paradigms for machine learning

    NASA Technical Reports Server (NTRS)

    Schlimmer, Jeffrey C.; Langley, Pat

    1991-01-01

    Five paradigms are described for machine learning: connectionist (neural network) methods, genetic algorithms and classifier systems, empirical methods for inducing rules and decision trees, analytic learning methods, and case-based approaches. Some dimensions are considered along with these paradigms vary in their approach to learning, and the basic methods are reviewed that are used within each framework, together with open research issues. It is argued that the similarities among the paradigms are more important than their differences, and that future work should attempt to bridge the existing boundaries. Finally, some recent developments in the field of machine learning are discussed, and their impact on both research and applications is examined.

  19. Enantiomorphism and rule similarity in the astigmatism axes of fellow eyes: A population-based study.

    PubMed

    Hashemi, Hassan; Asharlous, Amir; Yekta, Abbasali; Ostadimoghaddam, Hadi; Mohebi, Masumeh; Aghamirsalim, Mohamadreza; Khabazkhoob, Mehdi

    2018-04-03

    To evaluate the relationship patterns between astigmatism axes of fellow eyes (rule similarity and symmetry) and to determine the prevalence of each pattern in the studied population. This population-based study was conducted in 2015 in Iran. All participants had tests for visual acuity, objective refraction, subjective refraction (if cooperative), and assessment of eye health at the slit-lamp. Axis symmetry was based on two different patterns: direct (equal axes) and mirror (mirror image symmetry) or enantiomorphism. Bilateral astigmatism was classified as isorule if fellow eyes had the same orientation (e.g. both eyes were with-the-rule) and as anisorule if otherwise. Of the total cases of bilateral astigmatism, 80% were isorule, and in the studied population, the prevalence of isorule and anisorule astigmatism was 14.89% and 3.53%, respectively. The prevalence of isorule increased with age (p<0.001). The prevalence of both isorule and anisorule increased at higher degrees of spherical ametropia (p<0.001). Median inter-ocular axis difference was 10° in mirror symmetry and 20° in direct symmetry with no significant difference between two genders (p>0.288). Both symmetry patterns reduced with age (p<0.001). Among cases of bilateral astigmatism, 15.5% and 19.8% had exact direct and mirror symmetry, respectively. Bilateral astigmatism is mainly isorule in the population and anisorule astigmatism is rare. The enantiomorphism is the most common pattern in the population of bilateral astigmatism. Copyright © 2018 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  20. Using Copula Distributions to Support More Accurate Imaging-Based Diagnostic Classifiers for Neuropsychiatric Disorders

    PubMed Central

    Bansal, Ravi; Hao, Xuejun; Liu, Jun; Peterson, Bradley S.

    2014-01-01

    Many investigators have tried to apply machine learning techniques to magnetic resonance images (MRIs) of the brain in order to diagnose neuropsychiatric disorders. Usually the number of brain imaging measures (such as measures of cortical thickness and measures of local surface morphology) derived from the MRIs (i.e., their dimensionality) has been large (e.g. >10) relative to the number of participants who provide the MRI data (<100). Sparse data in a high dimensional space increases the variability of the classification rules that machine learning algorithms generate, thereby limiting the validity, reproducibility, and generalizability of those classifiers. The accuracy and stability of the classifiers can improve significantly if the multivariate distributions of the imaging measures can be estimated accurately. To accurately estimate the multivariate distributions using sparse data, we propose to estimate first the univariate distributions of imaging data and then combine them using a Copula to generate more accurate estimates of their multivariate distributions. We then sample the estimated Copula distributions to generate dense sets of imaging measures and use those measures to train classifiers. We hypothesize that the dense sets of brain imaging measures will generate classifiers that are stable to variations in brain imaging measures, thereby improving the reproducibility, validity, and generalizability of diagnostic classification algorithms in imaging datasets from clinical populations. In our experiments, we used both computer-generated and real-world brain imaging datasets to assess the accuracy of multivariate Copula distributions in estimating the corresponding multivariate distributions of real-world imaging data. Our experiments showed that diagnostic classifiers generated using imaging measures sampled from the Copula were significantly more accurate and more reproducible than were the classifiers generated using either the real-world imaging measures or their multivariate Gaussian distributions. Thus, our findings demonstrate that estimated multivariate Copula distributions can generate dense sets of brain imaging measures that can in turn be used to train classifiers, and those classifiers are significantly more accurate and more reproducible than are those generated using real-world imaging measures alone. PMID:25093634

  1. Negation handling in sentiment classification using rule-based adapted from Indonesian language syntactic for Indonesian text in Twitter

    NASA Astrophysics Data System (ADS)

    Amalia, Rizkiana; Arif Bijaksana, Moch; Darmantoro, Dhinta

    2018-03-01

    The presence of the word negation is able to change the polarity of the text if it is not handled properly it will affect the performance of the sentiment classification. Negation words in Indonesian are ‘tidak’, ‘bukan’, ‘belum’ and ‘jangan’. Also, there is a conjunction word that able to reverse the actual values, as the word ‘tetapi’, or ‘tapi’. Unigram has shortcomings in dealing with the existence of negation because it treats negation word and the negated words as separate words. A general approach for negation handling in English text gives the tag ‘NEG_’ for following words after negation until the first punctuation. But this may gives the tag to un-negated, and this approach does not handle negation and conjunction in one sentences. The rule-based method to determine what words negated by adapting the rules of Indonesian language syntactic of negation to determine the scope of negation was proposed in this study. With adapting syntactic rules and tagging “NEG_” using SVM classifier with RBF kernel has better performance results than the other experiments. Considering the average F1-score value, the performance of this proposed method can be improved against baseline equal to 1.79% (baseline without negation handling) and 5% (baseline with existing negation handling) for a dataset that all tweets contain negation words. And also for the second dataset that has the various number of negation words in document tweet. It can be improved against baseline at 2.69% (without negation handling) and 3.17% (with existing negation handling).

  2. An E-liquid Flavor Wheel: A Shared Vocabulary based on Systematically Reviewing E-liquid Flavor Classifications in Literature.

    PubMed

    Krüsemann, Erna Johanna Zegerina; Boesveldt, Sanne; de Graaf, Kees; Talhout, Reinskje

    2018-05-18

    E-liquids are available in a high variety of flavors. A systematic classification of e-liquid flavors is necessary to increase comparability of research results. In the food, alcohol and fragrance industry, flavors are classified using flavor wheels. We systematically reviewed literature on flavors related to e-cigarette use, to investigate how e-liquid flavors have been classified in research, and propose an e-liquid flavor wheel to classify e-liquids based on marketing descriptions. The search was conducted in May 2017 using PubMed and Embase databases. Keywords included terms associated with e-cigarettes, flavors, liking, learning, and wanting in articles. Results were independently screened and reviewed. Flavor categories used in the articles reviewed were extracted. Searches yielded 386 unique articles of which 28 were included. Forty-three main flavor categories were reported in these articles (e.g., tobacco, menthol, mint, fruit, bakery/dessert, alcohol, nuts, spice, candy, coffee/tea, beverages, chocolate, sweet flavors, vanilla, unflavored). Flavor classifications of e-liquids in literature showed similarities and differences across studies. Our proposed e-liquid flavor wheel contains 13 main categories and 90 subcategories, which summarize flavor categories from literature to find a shared vocabulary. For classification of e-liquids using our flavor wheel, marketing descriptions should be used. We have proposed a flavor wheel for classification of e-liquids. Further research is needed to test the flavor wheels' empirical value. Consistently classifying e-liquid flavors using our flavor wheel in research (e.g., experimental, marketing, or qualitative studies) minimizes interpretation differences and increases comparability of results. We reviewed e-liquid flavors and flavor categories used in research. A large variation in the naming of flavor categories was found and e-liquid flavors were not consistently classified. We developed an e-liquid flavor wheel and provided a guideline for systematic classification of e-liquids based on marketing descriptions. Our flavor wheel summarizes e-liquid flavors and categories used in literature in order to create a shared vocabulary. Applying our flavor wheel in research on e-liquids will improve data interpretation, increase comparability across studies, and support policy makers in developing rules for regulation of e-liquid flavors.

  3. Unparalleled sample treatment throughput for proteomics workflows relying on ultrasonic energy.

    PubMed

    Jorge, Susana; Araújo, J E; Pimentel-Santos, F M; Branco, Jaime C; Santos, Hugo M; Lodeiro, Carlos; Capelo, J L

    2018-02-01

    We report on the new microplate horn ultrasonic device as a powerful tool to speed proteomics workflows with unparalleled throughput. 96 complex proteomes were digested at the same time in 4min. Variables such as ultrasonication time, ultrasonication amplitude, and protein to enzyme ratio were optimized. The "classic" method relying on overnight protein digestion (12h) and the sonoreactor-based method were also employed for comparative purposes. We found the protein digestion efficiency homogeneously distributed in the entire microplate horn surface using the following conditions: 4min sonication time and 25% amplitude. Using this approach, patients with lymphoma and myeloma were classified using principal component analysis and a 2D gel-mass spectrometry based approach. Furthermore, we demonstrate the excellent performance by using MALDI-mass spectrometry based profiling as a fast way to classify patients with rheumatoid arthritis, systemic lupus erythematosus, and ankylosing spondylitis. Finally, the speed and simplicity of this method were demonstrated by clustering 90 patients with knee osteoarthritis disease (30), with a prosthesis (30, control group) and healthy individuals (30) with no history of joint disease. Overall, the new approach allows profiling a disease in just one week while allows to match the minimalism rules as outlined by Halls. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Recognition of multiple imbalanced cancer types based on DNA microarray data using ensemble classifiers.

    PubMed

    Yu, Hualong; Hong, Shufang; Yang, Xibei; Ni, Jun; Dan, Yuanyuan; Qin, Bin

    2013-01-01

    DNA microarray technology can measure the activities of tens of thousands of genes simultaneously, which provides an efficient way to diagnose cancer at the molecular level. Although this strategy has attracted significant research attention, most studies neglect an important problem, namely, that most DNA microarray datasets are skewed, which causes traditional learning algorithms to produce inaccurate results. Some studies have considered this problem, yet they merely focus on binary-class problem. In this paper, we dealt with multiclass imbalanced classification problem, as encountered in cancer DNA microarray, by using ensemble learning. We utilized one-against-all coding strategy to transform multiclass to multiple binary classes, each of them carrying out feature subspace, which is an evolving version of random subspace that generates multiple diverse training subsets. Next, we introduced one of two different correction technologies, namely, decision threshold adjustment or random undersampling, into each training subset to alleviate the damage of class imbalance. Specifically, support vector machine was used as base classifier, and a novel voting rule called counter voting was presented for making a final decision. Experimental results on eight skewed multiclass cancer microarray datasets indicate that unlike many traditional classification approaches, our methods are insensitive to class imbalance.

  5. Short text sentiment classification based on feature extension and ensemble classifier

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhu, Xie

    2018-05-01

    With the rapid development of Internet social media, excavating the emotional tendencies of the short text information from the Internet, the acquisition of useful information has attracted the attention of researchers. At present, the commonly used can be attributed to the rule-based classification and statistical machine learning classification methods. Although micro-blog sentiment analysis has made good progress, there still exist some shortcomings such as not highly accurate enough and strong dependence from sentiment classification effect. Aiming at the characteristics of Chinese short texts, such as less information, sparse features, and diverse expressions, this paper considers expanding the original text by mining related semantic information from the reviews, forwarding and other related information. First, this paper uses Word2vec to compute word similarity to extend the feature words. And then uses an ensemble classifier composed of SVM, KNN and HMM to analyze the emotion of the short text of micro-blog. The experimental results show that the proposed method can make good use of the comment forwarding information to extend the original features. Compared with the traditional method, the accuracy, recall and F1 value obtained by this method have been improved.

  6. A system for classifying disease comorbidity status from medical discharge summaries using automated hotspot and negated concept detection.

    PubMed

    Ambert, Kyle H; Cohen, Aaron M

    2009-01-01

    OBJECTIVE Free-text clinical reports serve as an important part of patient care management and clinical documentation of patient disease and treatment status. Free-text notes are commonplace in medical practice, but remain an under-used source of information for clinical and epidemiological research, as well as personalized medicine. The authors explore the challenges associated with automatically extracting information from clinical reports using their submission to the Integrating Informatics with Biology and the Bedside (i2b2) 2008 Natural Language Processing Obesity Challenge Task. DESIGN A text mining system for classifying patient comorbidity status, based on the information contained in clinical reports. The approach of the authors incorporates a variety of automated techniques, including hot-spot filtering, negated concept identification, zero-vector filtering, weighting by inverse class-frequency, and error-correcting of output codes with linear support vector machines. MEASUREMENTS Performance was evaluated in terms of the macroaveraged F1 measure. RESULTS The automated system performed well against manual expert rule-based systems, finishing fifth in the Challenge's intuitive task, and 13(th) in the textual task. CONCLUSIONS The system demonstrates that effective comorbidity status classification by an automated system is possible.

  7. Instruction-matrix-based genetic programming.

    PubMed

    Li, Gang; Wang, Jin Feng; Lee, Kin Hong; Leung, Kwong-Sak

    2008-08-01

    In genetic programming (GP), evolving tree nodes separately would reduce the huge solution space. However, tree nodes are highly interdependent with respect to their fitness. In this paper, we propose a new GP framework, namely, instruction-matrix (IM)-based GP (IMGP), to handle their interactions. IMGP maintains an IM to evolve tree nodes and subtrees separately. IMGP extracts program trees from an IM and updates the IM with the information of the extracted program trees. As the IM actually keeps most of the information of the schemata of GP and evolves the schemata directly, IMGP is effective and efficient. Our experimental results on benchmark problems have verified that IMGP is not only better than those of canonical GP in terms of the qualities of the solutions and the number of program evaluations, but they are also better than some of the related GP algorithms. IMGP can also be used to evolve programs for classification problems. The classifiers obtained have higher classification accuracies than four other GP classification algorithms on four benchmark classification problems. The testing errors are also comparable to or better than those obtained with well-known classifiers. Furthermore, an extended version, called condition matrix for rule learning, has been used successfully to handle multiclass classification problems.

  8. Mitosis detection using generic features and an ensemble of cascade adaboosts.

    PubMed

    Tek, F Boray

    2013-01-01

    Mitosis count is one of the factors that pathologists use to assess the risk of metastasis and survival of the patients, which are affected by the breast cancer. We investigate an application of a set of generic features and an ensemble of cascade adaboosts to the automated mitosis detection. Calculation of the features rely minimally on object-level descriptions and thus require minimal segmentation. The proposed work was developed and tested on International Conference on Pattern Recognition (ICPR) 2012 mitosis detection contest data. We plotted receiver operating characteristics curves of true positive versus false positive rates; calculated recall, precision, F-measure, and region overlap ratio measures. WE TESTED OUR FEATURES WITH TWO DIFFERENT CLASSIFIER CONFIGURATIONS: 1) An ensemble of single adaboosts, 2) an ensemble of cascade adaboosts. On the ICPR 2012 mitosis detection contest evaluation, the cascade ensemble scored 54, 62.7, and 58, whereas the non-cascade version scored 68, 28.1, and 39.7 for the recall, precision, and F-measure measures, respectively. Mostly used features in the adaboost classifier rules were a shape-based feature, which counted granularity and a color-based feature, which relied on Red, Green, and Blue channel statistics. The features, which express the granular structure and color variations, are found useful for mitosis detection. The ensemble of adaboosts performs better than the individual adaboost classifiers. Moreover, the ensemble of cascaded adaboosts was better than the ensemble of single adaboosts for mitosis detection.

  9. Rule-Mining for the Early Prediction of Chronic Kidney Disease Based on Metabolomics and Multi-Source Data

    PubMed Central

    Luck, Margaux; Bertho, Gildas; Bateson, Mathilde; Karras, Alexandre; Yartseva, Anastasia; Thervet, Eric

    2016-01-01

    1H Nuclear Magnetic Resonance (NMR)-based metabolic profiling is very promising for the diagnostic of the stages of chronic kidney disease (CKD). Because of the high dimension of NMR spectra datasets and the complex mixture of metabolites in biological samples, the identification of discriminant biomarkers of a disease is challenging. None of the widely used chemometric methods in NMR metabolomics performs a local exhaustive exploration of the data. We developed a descriptive and easily understandable approach that searches for discriminant local phenomena using an original exhaustive rule-mining algorithm in order to predict two groups of patients: 1) patients having low to mild CKD stages with no renal failure and 2) patients having moderate to established CKD stages with renal failure. Our predictive algorithm explores the m-dimensional variable space to capture the local overdensities of the two groups of patients under the form of easily interpretable rules. Afterwards, a L2-penalized logistic regression on the discriminant rules was used to build predictive models of the CKD stages. We explored a complex multi-source dataset that included the clinical, demographic, clinical chemistry, renal pathology and urine metabolomic data of a cohort of 110 patients. Given this multi-source dataset and the complex nature of metabolomic data, we analyzed 1- and 2-dimensional rules in order to integrate the information carried by the interactions between the variables. The results indicated that our local algorithm is a valuable analytical method for the precise characterization of multivariate CKD stage profiles and as efficient as the classical global model using chi2 variable section with an approximately 70% of good classification level. The resulting predictive models predominantly identify urinary metabolites (such as 3-hydroxyisovalerate, carnitine, citrate, dimethylsulfone, creatinine and N-methylnicotinamide) as relevant variables indicating that CKD significantly affects the urinary metabolome. In addition, the simple knowledge of the concentration of urinary metabolites classifies the CKD stage of the patients correctly. PMID:27861591

  10. Developing a Satellite Based Automatic System for Crop Monitoring: Kenya's Great Rift Valley, A Case Study

    NASA Astrophysics Data System (ADS)

    Lucciani, Roberto; Laneve, Giovanni; Jahjah, Munzer; Mito, Collins

    2016-08-01

    The crop growth stage represents essential information for agricultural areas management. In this study we investigate the feasibility of a tool based on remotely sensed satellite (Landsat 8) imagery, capable of automatically classify crop fields and how much resolution enhancement based on pan-sharpening techniques and phenological information extraction, useful to create decision rules that allow to identify semantic class to assign to an object, can effectively support the classification process. Moreover we investigate the opportunity to extract vegetation health status information from remotely sensed assessment of the equivalent water thickness (EWT). Our case study is the Kenya's Great Rift valley, in this area a ground truth campaign was conducted during August 2015 in order to collect crop fields GPS measurements, leaf area index (LAI) and chlorophyll samples.

  11. A joint latent class model for classifying severely hemorrhaging trauma patients.

    PubMed

    Rahbar, Mohammad H; Ning, Jing; Choi, Sangbum; Piao, Jin; Hong, Chuan; Huang, Hanwen; Del Junco, Deborah J; Fox, Erin E; Rahbar, Elaheh; Holcomb, John B

    2015-10-24

    In trauma research, "massive transfusion" (MT), historically defined as receiving ≥10 units of red blood cells (RBCs) within 24 h of admission, has been routinely used as a "gold standard" for quantifying bleeding severity. Due to early in-hospital mortality, however, MT is subject to survivor bias and thus a poorly defined criterion to classify bleeding trauma patients. Using the data from a retrospective trauma transfusion study, we applied a latent-class (LC) mixture model to identify severely hemorrhaging (SH) patients. Based on the joint distribution of cumulative units of RBCs and binary survival outcome at 24 h of admission, we applied an expectation-maximization (EM) algorithm to obtain model parameters. Estimated posterior probabilities were used for patients' classification and compared with the MT rule. To evaluate predictive performance of the LC-based classification, we examined the role of six clinical variables as predictors using two separate logistic regression models. Out of 471 trauma patients, 211 (45 %) were MT, while our latent SH classifier identified only 127 (27 %) of patients as SH. The agreement between the two classification methods was 73 %. A non-ignorable portion of patients (17 out of 68, 25 %) who died within 24 h were not classified as MT but the SH group included 62 patients (91 %) who died during the same period. Our comparison of the predictive models based on MT and SH revealed significant differences between the coefficients of potential predictors of patients who may be in need of activation of the massive transfusion protocol. The traditional MT classification does not adequately reflect transfusion practices and outcomes during the trauma reception and initial resuscitation phase. Although we have demonstrated that joint latent class modeling could be used to correct for potential bias caused by misclassification of severely bleeding patients, improvement in this approach could be made in the presence of time to event data from prospective studies.

  12. Explicit area-based accuracy assessment for mangrove tree crown delineation using Geographic Object-Based Image Analysis (GEOBIA)

    NASA Astrophysics Data System (ADS)

    Kamal, Muhammad; Johansen, Kasper

    2017-10-01

    Effective mangrove management requires spatially explicit information of mangrove tree crown map as a basis for ecosystem diversity study and health assessment. Accuracy assessment is an integral part of any mapping activities to measure the effectiveness of the classification approach. In geographic object-based image analysis (GEOBIA) the assessment of the geometric accuracy (shape, symmetry and location) of the created image objects from image segmentation is required. In this study we used an explicit area-based accuracy assessment to measure the degree of similarity between the results of the classification and reference data from different aspects, including overall quality (OQ), user's accuracy (UA), producer's accuracy (PA) and overall accuracy (OA). We developed a rule set to delineate the mangrove tree crown using WorldView-2 pan-sharpened image. The reference map was obtained by visual delineation of the mangrove tree crowns boundaries form a very high-spatial resolution aerial photograph (7.5cm pixel size). Ten random points with a 10 m radius circular buffer were created to calculate the area-based accuracy assessment. The resulting circular polygons were used to clip both the classified image objects and reference map for area comparisons. In this case, the area-based accuracy assessment resulted 64% and 68% for the OQ and OA, respectively. The overall quality of the calculation results shows the class-related area accuracy; which is the area of correctly classified as tree crowns was 64% out of the total area of tree crowns. On the other hand, the overall accuracy of 68% was calculated as the percentage of all correctly classified classes (tree crowns and canopy gaps) in comparison to the total class area (an entire image). Overall, the area-based accuracy assessment was simple to implement and easy to interpret. It also shows explicitly the omission and commission error variations of object boundary delineation with colour coded polygons.

  13. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree.

    PubMed

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen-host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules.

  14. Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree

    PubMed Central

    Rabiee-Ghahfarrokhi, Behzad; Rafiei, Fariba; Niknafs, Ali Akbar; Zamani, Behzad

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNA molecules that regulate gene expression in almost all plants and animals. They play an important role in key processes, such as proliferation, apoptosis, and pathogen–host interactions. Nevertheless, the mechanisms by which miRNAs act are not fully understood. The first step toward unraveling the function of a particular miRNA is the identification of its direct targets. This step has shown to be quite challenging in animals primarily because of incomplete complementarities between miRNA and target mRNAs. In recent years, the use of machine-learning techniques has greatly increased the prediction of miRNA targets, avoiding the need for costly and time-consuming experiments to achieve miRNA targets experimentally. Among the most important machine-learning algorithms are decision trees, which classify data based on extracted rules. In the present work, we used a genetic algorithm in combination with C4.5 decision tree for prediction of miRNA targets. We applied our proposed method to a validated human datasets. We nearly achieved 93.9% accuracy of classification, which could be related to the selection of best rules. PMID:26649272

  15. An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles

    PubMed Central

    González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José

    2015-01-01

    A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199

  16. Data Clustering and Evolving Fuzzy Decision Tree for Data Base Classification Problems

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Fan, Chin-Yuan; Wang, Yen-Wen

    Data base classification suffers from two well known difficulties, i.e., the high dimensionality and non-stationary variations within the large historic data. This paper presents a hybrid classification model by integrating a case based reasoning technique, a Fuzzy Decision Tree (FDT), and Genetic Algorithms (GA) to construct a decision-making system for data classification in various data base applications. The model is major based on the idea that the historic data base can be transformed into a smaller case-base together with a group of fuzzy decision rules. As a result, the model can be more accurately respond to the current data under classifying from the inductions by these smaller cases based fuzzy decision trees. Hit rate is applied as a performance measure and the effectiveness of our proposed model is demonstrated by experimentally compared with other approaches on different data base classification applications. The average hit rate of our proposed model is the highest among others.

  17. 75 FR 11452 - New Postal Product

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    .... Ordering Paragraphs I. Introduction and Summary In Docket No. MC2008-1, the Commission found that six..., the Commission ruled that six previously unclassified services were postal services. Those six... whether these six services should be added to the MCS product lists. Instead, the Commission classified...

  18. Directions for a Community College.

    ERIC Educational Resources Information Center

    Turner, Lewis O.

    Because desired output goals should be the ruling criteria for the deployment of resources (inputs) and the selection of goal attainment strategies (processes), specific goal expectations and goal achievement evaluative methods must be determined. These output goals may be classified in two categories, quantitative (numbers of graduates, grade…

  19. Technical support for creating an artificial intelligence system for feature extraction and experimental design

    NASA Technical Reports Server (NTRS)

    Glick, B. J.

    1985-01-01

    Techniques for classifying objects into groups or clases go under many different names including, most commonly, cluster analysis. Mathematically, the general problem is to find a best mapping of objects into an index set consisting of class identifiers. When an a priori grouping of objects exists, the process of deriving the classification rules from samples of classified objects is known as discrimination. When such rules are applied to objects of unknown class, the process is denoted classification. The specific problem addressed involves the group classification of a set of objects that are each associated with a series of measurements (ratio, interval, ordinal, or nominal levels of measurement). Each measurement produces one variable in a multidimensional variable space. Cluster analysis techniques are reviewed and methods for incuding geographic location, distance measures, and spatial pattern (distribution) as parameters in clustering are examined. For the case of patterning, measures of spatial autocorrelation are discussed in terms of the kind of data (nominal, ordinal, or interval scaled) to which they may be applied.

  20. Study of deaths by suicide of homosexual prisoners in Nazi Sachsenhausen concentration camp

    PubMed Central

    Cuerda-Galindo, Esther; Krischel, Matthis; Ley, Astrid

    2017-01-01

    Living conditions in Nazi concentration camps were harsh and inhumane, leading many prisoners to commit suicide. Sachsenhausen (Oranienburg, Germany) was a concentration camp that operated from 1936 to 1945. More than 200,000 people were detained there under Nazi rule. This study analyzes deaths classified as suicides by inmates in this camp, classified as homosexuals, both according to the surviving Nazi files. This collective was especially repressed by the Nazi authorities. Data was collected from the archives of Sachsenhausen Memorial and the International Tracing Service in Bad Arolsen. Original death certificates and autopsy reports were reviewed. Until the end of World War II, there are 14 death certificates which state “suicide” as cause of death of prisoners classified as homosexuals, all of them men aged between 23 and 59 years and of various religions and social strata. Based on a population of 1,200 prisoners classified as homosexuals, this allows us to calculate a suicide rate of 1,167/100,000 (over the period of eight years) for this population, a rate 10 times higher than for global inmates (111/100,000). However, our study has several limitations: not all suicides are registered; some murders were covered-up as suicides; most documents were lost during the war or destroyed by the Nazis when leaving the camps and not much data is available from other camps to compare. We conclude that committing suicides in Sachsenhausen was a common practice, although accurate data may be impossible to obtain. PMID:28426734

  1. Study of deaths by suicide of homosexual prisoners in Nazi Sachsenhausen concentration camp.

    PubMed

    Cuerda-Galindo, Esther; López-Muñoz, Francisco; Krischel, Matthis; Ley, Astrid

    2017-01-01

    Living conditions in Nazi concentration camps were harsh and inhumane, leading many prisoners to commit suicide. Sachsenhausen (Oranienburg, Germany) was a concentration camp that operated from 1936 to 1945. More than 200,000 people were detained there under Nazi rule. This study analyzes deaths classified as suicides by inmates in this camp, classified as homosexuals, both according to the surviving Nazi files. This collective was especially repressed by the Nazi authorities. Data was collected from the archives of Sachsenhausen Memorial and the International Tracing Service in Bad Arolsen. Original death certificates and autopsy reports were reviewed. Until the end of World War II, there are 14 death certificates which state "suicide" as cause of death of prisoners classified as homosexuals, all of them men aged between 23 and 59 years and of various religions and social strata. Based on a population of 1,200 prisoners classified as homosexuals, this allows us to calculate a suicide rate of 1,167/100,000 (over the period of eight years) for this population, a rate 10 times higher than for global inmates (111/100,000). However, our study has several limitations: not all suicides are registered; some murders were covered-up as suicides; most documents were lost during the war or destroyed by the Nazis when leaving the camps and not much data is available from other camps to compare. We conclude that committing suicides in Sachsenhausen was a common practice, although accurate data may be impossible to obtain.

  2. A supervised learning rule for classification of spatiotemporal spike patterns.

    PubMed

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  3. The Zoning of Forest Fire Potential of Gulestan Province Forests Using Granular Computing and MODIS Images

    NASA Astrophysics Data System (ADS)

    Jalilzadeh Shadlouei, A.; Delavar, M. R.

    2013-09-01

    There are many vegetation in Iran. This is because of extent of Iran and its width. One of these vegetation is forest vegetation most prevalent in Northern provinces named Guilan, Mazandaran, Gulestan, Ardebil as well as East Azerbaijan. These forests are always threatened by natural forest fires so much so that there have been reports of tens of fires in recent years. Forest fires are one of the major environmental as well as economic, social and security concerns in the world causing much damages. According to climatology, forest fires are one of the important factors in the formation and dispersion of vegetation. Also, regarding the environment, forest fires cause the emission of considerable amounts of greenhouse gases, smoke and dust into the atmosphere which in turn causes the earth temperature to rise up and are unhealthy to humans, animals and vegetation. In agriculture droughts are the usual side effects of these fires. The causes of forest fires could be categorized as either Human or Natural Causes. Naturally, it is impossible to completely contain forest fires; however, areas with high potentials of fire could be designated and analysed to decrease the risk of fires. The zoning of forest fire potential is a multi-criteria problem always accompanied by inherent uncertainty like other multi-criteria problems. So far, various methods and algorithm for zoning hazardous areas via Remote Sensing (RS) and Geospatial Information System (GIS) have been offered. This paper aims at zoning forest fire potential of Gulestan Province of Iran forests utilizing Remote Sensing, Geospatial Information System, meteorological data, MODIS images and granular computing method. Granular computing is part of granular mathematical and one way of solving multi-criteria problems such forest fire potential zoning supervised by one expert or some experts , and it offers rules for classification with the least inconsistencies. On the basis of the experts' opinion, 6 determinative criterias contributing to forest fires have been designated as follows: vegetation (NDVI), slope, aspect, temperature, humidity and proximity to roadways. By applying these variables on several tentatively selected areas and formation information tables and producing granular decision tree and extraction of rules, the zoning rules (for the areas in question) were extracted. According to them the zoning of the entire area has been conducted. The zoned areas have been classified into 5 categories: high hazard, medium hazard (high), medium hazard (low), low hazard (high), low hazard (low). According to the map, the zoning of most of the areas fall into the low hazard (high) class while the least number of areas have been classified as low hazard (low). Comparing the forest fires in these regions in 2010 with the MODIS data base for forest fires, it is concluded that areas with high hazards of forest fire have been classified with a 64 percent precision. In other word 64 percent of pixels that are in high hazard classification are classified according to MODIS data base. Using this method we obtain a good range of Perception. Manager will reduce forest fire concern using precautionary proceeding on hazardous area.

  4. On-line Gibbs learning. II. Application to perceptron and multilayer networks

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Sompolinsky, H.

    1998-08-01

    In the preceding paper (``On-line Gibbs Learning. I. General Theory'') we have presented the on-line Gibbs algorithm (OLGA) and studied analytically its asymptotic convergence. In this paper we apply OLGA to on-line supervised learning in several network architectures: a single-layer perceptron, two-layer committee machine, and a winner-takes-all (WTA) classifier. The behavior of OLGA for a single-layer perceptron is studied both analytically and numerically for a variety of rules: a realizable perceptron rule, a perceptron rule corrupted by output and input noise, and a rule generated by a committee machine. The two-layer committee machine is studied numerically for the cases of learning a realizable rule as well as a rule that is corrupted by output noise. The WTA network is studied numerically for the case of a realizable rule. The asymptotic results reported in this paper agree with the predictions of the general theory of OLGA presented in paper I. In all the studied cases, OLGA converges to a set of weights that minimizes the generalization error. When the learning rate is chosen as a power law with an optimal power, OLGA converges with a power law that is the same as that of batch learning.

  5. Geometry-based ensembles: toward a structural characterization of the classification boundary.

    PubMed

    Pujol, Oriol; Masip, David

    2009-06-01

    This paper introduces a novel binary discriminative learning technique based on the approximation of the nonlinear decision boundary by a piecewise linear smooth additive model. The decision border is geometrically defined by means of the characterizing boundary points-points that belong to the optimal boundary under a certain notion of robustness. Based on these points, a set of locally robust linear classifiers is defined and assembled by means of a Tikhonov regularized optimization procedure in an additive model to create a final lambda-smooth decision rule. As a result, a very simple and robust classifier with a strong geometrical meaning and nonlinear behavior is obtained. The simplicity of the method allows its extension to cope with some of today's machine learning challenges, such as online learning, large-scale learning or parallelization, with linear computational complexity. We validate our approach on the UCI database, comparing with several state-of-the-art classification techniques. Finally, we apply our technique in online and large-scale scenarios and in six real-life computer vision and pattern recognition problems: gender recognition based on face images, intravascular ultrasound tissue classification, speed traffic sign detection, Chagas' disease myocardial damage severity detection, old musical scores clef classification, and action recognition using 3D accelerometer data from a wearable device. The results are promising and this paper opens a line of research that deserves further attention.

  6. A method for classification of multisource data using interval-valued probabilities and its application to HIRIS data

    NASA Technical Reports Server (NTRS)

    Kim, H.; Swain, P. H.

    1991-01-01

    A method of classifying multisource data in remote sensing is presented. The proposed method considers each data source as an information source providing a body of evidence, represents statistical evidence by interval-valued probabilities, and uses Dempster's rule to integrate information based on multiple data source. The method is applied to the problems of ground-cover classification of multispectral data combined with digital terrain data such as elevation, slope, and aspect. Then this method is applied to simulated 201-band High Resolution Imaging Spectrometer (HIRIS) data by dividing the dimensionally huge data source into smaller and more manageable pieces based on the global statistical correlation information. It produces higher classification accuracy than the Maximum Likelihood (ML) classification method when the Hughes phenomenon is apparent.

  7. Structural knowledge learning from maps for supervised land cover/use classification: Application to the monitoring of land cover/use maps in French Guiana

    NASA Astrophysics Data System (ADS)

    Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard

    2015-03-01

    The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.

  8. 10 CFR 824.10 - Hearing Officer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... when the ends of justice would be served; (g) Conducts the hearing in a manner which is fair and... parties; (i) Disposes of procedural requests or similar matters; (j) Requires production of documents; and...

  9. 10 CFR 824.10 - Hearing Officer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... when the ends of justice would be served; (g) Conducts the hearing in a manner which is fair and... parties; (i) Disposes of procedural requests or similar matters; (j) Requires production of documents; and...

  10. 10 CFR 824.10 - Hearing Officer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... when the ends of justice would be served; (g) Conducts the hearing in a manner which is fair and... parties; (i) Disposes of procedural requests or similar matters; (j) Requires production of documents; and...

  11. 10 CFR 824.10 - Hearing Officer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... when the ends of justice would be served; (g) Conducts the hearing in a manner which is fair and... parties; (i) Disposes of procedural requests or similar matters; (j) Requires production of documents; and...

  12. 10 CFR 824.16 - Direction to NNSA contractors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Direction to NNSA contractors. 824.16 Section 824.16 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED... the following actions that direct NNSA contractors or subcontractors. (1) Subpoenas; (2) Orders to...

  13. 10 CFR 824.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Applicability. 824.2 Section 824.2 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.2 Applicability. (a) General. These regulations apply to any person that has entered into a...

  14. 10 CFR 824.10 - Hearing Officer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Hearing Officer. 824.10 Section 824.10 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.10 Hearing Officer. The Hearing Officer: (a) Is responsible for the administrative...

  15. 10 CFR 824.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Applicability. 824.2 Section 824.2 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.2 Applicability. (a) General. These regulations apply to any person that has entered into a...

  16. 10 CFR 50.37 - Agreement limiting access to Classified Information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 50.37 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION... or the issuance of a license, construction permit, early site permit, or standard design approval, or before the Commission has adopted a final standard design certification rule under part 52 of this...

  17. 76 FR 70227 - Medicare Program; End-Stage Renal Disease Prospective Payment System and Quality Incentive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...This final rule updates and makes certain revisions to the End-Stage Renal Disease (ESRD) prospective payment system (PPS) for calendar year (CY) 2012. We are also finalizing the interim final rule with comment period published on April 6, 2011, regarding the transition budget-neutrality adjustment under the ESRD PPS,. This final rule also sets forth requirements for the ESRD quality incentive program (QIP) for payment years (PYs) 2013 and 2014. In addition, this final rule revises the ambulance fee schedule regulations to conform to statutory changes. This final rule also revises the definition of durable medical equipment (DME) by adding a 3-year minimum lifetime requirement (MLR) that must be met by an item or device in order to be considered durable for the purpose of classifying the item under the Medicare benefit category for DME. Finally, this final rule implements certain provisions of section 154 of the Medicare Improvements for Patients and Providers Act of 2008 (MIPPA) related to the durable medical equipment, prosthetics, orthotics and supplies (DMEPOS) Competitive Acquisition Program and responds to comments received on an interim final rule published January 16, 2009, that implemented these provisions of MIPPA effective April 18, 2009. (See the Table of Contents for a listing of the specific issues addressed in this final rule.)

  18. Event Recognition Based on Deep Learning in Chinese Texts

    PubMed Central

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%. PMID:27501231

  19. Event Recognition Based on Deep Learning in Chinese Texts.

    PubMed

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  20. Geriatric Fever Score: a new decision rule for geriatric care.

    PubMed

    Chung, Min-Hsien; Huang, Chien-Cheng; Vong, Si-Chon; Yang, Tzu-Meng; Chen, Kuo-Tai; Lin, Hung-Jung; Chen, Jiann-Hwa; Su, Shih-Bin; Guo, How-Ran; Hsu, Chien-Chin

    2014-01-01

    Evaluating geriatric patients with fever is time-consuming and challenging. We investigated independent mortality predictors of geriatric patients with fever and developed a prediction rule for emergency care, critical care, and geriatric care physicians to classify patients into mortality risk and disposition groups. Consecutive geriatric patients (≥65 years old) visiting the emergency department (ED) of a university-affiliated medical center between June 1 and July 21, 2010, were enrolled when they met the criteria of fever: a tympanic temperature ≥37.2°C or a baseline temperature elevated ≥1.3°C. Thirty-day mortality was the primary endpoint. Internal validation with bootstrap re-sampling was done. Three hundred thirty geriatric patients were enrolled. We found three independent mortality predictors: Leukocytosis (WBC >12,000 cells/mm3), Severe coma (GCS ≤ 8), and Thrombocytopenia (platelets <150 10(3)/mm3) (LST). After assigning weights to each predictor, we developed a Geriatric Fever Score that stratifies patients into two mortality-risk and disposition groups: low (4.0%) (95% CI: 2.3-6.9%): a general ward or treatment in the ED then discharge and high (30.3%) (95% CI: 17.4-47.3%): consider the intensive care unit. The area under the curve for the rule was 0.73. We found that the Geriatric Fever Score is a simple and rapid rule for predicting 30-day mortality and classifying mortality risk and disposition in geriatric patients with fever, although external validation should be performed to confirm its usefulness in other clinical settings. It might help preserve medical resources for patients in greater need.

  1. Student Residence Classification: Revision and Review of Regulations.

    ERIC Educational Resources Information Center

    Nussbaum, Tom; Close, Catherine

    This report proposes regulations for the implementation of California's Uniform Student Residency Act by the state's community colleges. First, background information is provided on three laws: (1) the Uniform Student Residency Act, which establishes rules for use in classifying college students as residents or non-residents; (2) legislation…

  2. The Rewards of Human Capital Competences for Young European Higher Education Graduates

    ERIC Educational Resources Information Center

    Garcia-Aracil, Adela; Mora, Jose-Gines; Vila, Luis E.

    2004-01-01

    The labour market rewards for a number of required human capital competences are analysed using a sample of young European higher education graduates. Factor analysis is applied to classify competences by jobs into eight orthogonal groups, namely participative, methodological, specialised, organisational, applying rules, physical, generic and…

  3. 10 CFR 824.13 - Initial decision.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Initial decision. 824.13 Section 824.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... other matters as justice may require. (b) The Hearing Officer shall serve all parties with the initial...

  4. 10 CFR 824.13 - Initial decision.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Initial decision. 824.13 Section 824.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... other matters as justice may require. (b) The Hearing Officer shall serve all parties with the initial...

  5. 10 CFR 824.13 - Initial decision.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Initial decision. 824.13 Section 824.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... other matters as justice may require. (b) The Hearing Officer shall serve all parties with the initial...

  6. 10 CFR 824.15 - Collection of civil penalties.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Collection of civil penalties. 824.15 Section 824.15 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.15 Collection of civil penalties. If any person fails to pay an...

  7. 10 CFR 824.6 - Preliminary notice of violation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Preliminary notice of violation. 824.6 Section 824.6 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.6 Preliminary notice of violation. (a) In order to begin a proceeding to...

  8. 10 CFR 824.13 - Initial decision.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Initial decision. 824.13 Section 824.13 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.13 Initial decision. (a) The Hearing Officer shall issue an initial decision as soon as...

  9. 10 CFR 824.14 - Special procedures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Special procedures. 824.14 Section 824.14 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.14 Special procedures. A person receiving a final notice of violation under § 824...

  10. 10 CFR 824.5 - Investigations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Investigations. 824.5 Section 824.5 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... scope, nature and extent of compliance by a person with DOE security requirements specified in § 824.4(a...

  11. 19 CFR 10.532 - Integrated Sourcing Initiative.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Integrated Sourcing Initiative. 10.532 Section 10... Trade Agreement Rules of Origin § 10.532 Integrated Sourcing Initiative. (a) For purposes of General... Sourcing Initiative if: (1) The good, in its condition as imported, is both classified in a tariff...

  12. 26 CFR 1.279-5 - Rules for application of section 279(b).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...(b)(4) (A) or (B) results in such obligation being classified as corporate acquisition indebtedness... be corporate acquisition indebtedness as of the last day of any taxable year of the issuing corporation, such obligation shall be corporate acquisition indebtedness for such taxable year and all...

  13. CORMIX1: AN EXPERT SYSTEM FOR MIXING ZONE ANALYSIS OF TOXIC AND CONVENTIONAL, SINGLE PORT AQUATIC DISCHARGES

    EPA Science Inventory

    An expert system, CORMIX1, was developed to predict the dilution and trajectory of a single buoyant discharge into an unstratified aquatic environment with and without crossflow. The system uses knowledge and inference rules obtained from hydrodynamic experts to classify and pred...

  14. 10 CFR 824.6 - Preliminary notice of violation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Preliminary notice of violation. 824.6 Section 824.6 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.6 Preliminary notice of violation. (a) In order to begin a proceeding to...

  15. 10 CFR 824.5 - Investigations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Investigations. 824.5 Section 824.5 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY... scope, nature and extent of compliance by a person with DOE security requirements specified in § 824.4(a...

  16. Trend Monitoring and Forecasting

    DTIC Science & Technology

    2015-03-11

    including breaking news, meme , and commemorative day, on the context patterns. Table 2 shows the example pattern of classifying context pattern feature...used the following rule to find the ‘ meme ’. If the trending topic contains ‘#’ AND ‘subject+verb’, then trending topic is ‘ Meme ’. Table 2 Context

  17. 46 CFR 110.10-1 - Incorporation by reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-31; 111.105-39; 111.105-40; 113.05-7; and (2) Rules for Building and Classing Mobile Offshore... Installations of Ships and Mobile and Fixed Offshore Units—Part 1: Procedures for Calculating Short-Circuit... Park, NC 27709: (1) RP 12.6, Wiring Practices for Hazardous (Classified) Locations Instrumentation Part...

  18. 7 CFR 1000.43 - General classification rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE GENERAL PROVISIONS OF FEDERAL MILK MARKETING ORDERS... milk order and shall compute separately for each pool plant, for each handler described in § 1000.9(c... purposes of classifying all milk reported by a handler pursuant to § __.30 of each Federal milk order the...

  19. 7 CFR 1000.43 - General classification rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agreements and Orders; Milk), DEPARTMENT OF AGRICULTURE GENERAL PROVISIONS OF FEDERAL MILK MARKETING ORDERS... milk order and shall compute separately for each pool plant, for each handler described in § 1000.9(c... purposes of classifying all milk reported by a handler pursuant to § __.30 of each Federal milk order the...

  20. 18 CFR 3a.41 - Access requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Access requirements. 3a.41 Section 3a.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Access to Classified Materials § 3a.41...

  1. 18 CFR 3a.41 - Access requirements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Access requirements. 3a.41 Section 3a.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Access to Classified Materials § 3a.41...

  2. 18 CFR 3a.41 - Access requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Access requirements. 3a.41 Section 3a.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Access to Classified Materials § 3a.41...

  3. 18 CFR 3a.41 - Access requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Access requirements. 3a.41 Section 3a.41 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Access to Classified Materials § 3a.41...

  4. 10 CFR 824.15 - Collection of civil penalties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Collection of civil penalties. 824.15 Section 824.15 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.15 Collection of civil penalties. If any person fails to pay an...

  5. 10 CFR 824.4 - Civil penalties.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Civil penalties. 824.4 Section 824.4 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.4 Civil penalties. Link to an amendment published at 74 FR 66033, Dec. 14, 2009. (a) Any...

  6. Construction of diagnosis system and gene regulatory networks based on microarray analysis.

    PubMed

    Hong, Chun-Fu; Chen, Ying-Chen; Chen, Wei-Chun; Tu, Keng-Chang; Tsai, Meng-Hsiun; Chan, Yung-Kuan; Yu, Shyr Shen

    2018-05-01

    A microarray analysis generally contains expression data of thousands of genes, but most of them are irrelevant to the disease of interest, making analyzing the genes concerning specific diseases complicated. Therefore, filtering out a few essential genes as well as their regulatory networks is critical, and a disease can be easily diagnosed just depending on the expression profiles of a few critical genes. In this study, a target gene screening (TGS) system, which is a microarray-based information system that integrates F-statistics, pattern recognition matching, a two-layer K-means classifier, a Parameter Detection Genetic Algorithm (PDGA), a genetic-based gene selector (GBG selector) and the association rule, was developed to screen out a small subset of genes that can discriminate malignant stages of cancers. During the first stage, F-statistic, pattern recognition matching, and a two-layer K-means classifier were applied in the system to filter out the 20 critical genes most relevant to ovarian cancer from 9600 genes, and the PDGA was used to decide the fittest values of the parameters for these critical genes. Among the 20 critical genes, 15 are associated with cancer progression. In the second stage, we further employed a GBG selector and the association rule to screen out seven target gene sets, each with only four to six genes, and each of which can precisely identify the malignancy stage of ovarian cancer based on their expression profiles. We further deduced the gene regulatory networks of the 20 critical genes by applying the Pearson correlation coefficient to evaluate the correlationship between the expression of each gene at the same stages and at different stages. Correlationships between gene pairs were calculated, and then, three regulatory networks were deduced. Their correlationships were further confirmed by the Ingenuity pathway analysis. The prognostic significances of the genes identified via regulatory networks were examined using online tools, and most represented biomarker candidates. In summary, our proposed system provides a new strategy to identify critical genes or biomarkers, as well as their regulatory networks, from microarray data. Copyright © 2018. Published by Elsevier Inc.

  7. Medication errors: definitions and classification

    PubMed Central

    Aronson, Jeffrey K

    2009-01-01

    To understand medication errors and to identify preventive strategies, we need to classify them and define the terms that describe them. The four main approaches to defining technical terms consider etymology, usage, previous definitions, and the Ramsey–Lewis method (based on an understanding of theory and practice). A medication error is ‘a failure in the treatment process that leads to, or has the potential to lead to, harm to the patient’. Prescribing faults, a subset of medication errors, should be distinguished from prescription errors. A prescribing fault is ‘a failure in the prescribing [decision-making] process that leads to, or has the potential to lead to, harm to the patient’. The converse of this, ‘balanced prescribing’ is ‘the use of a medicine that is appropriate to the patient's condition and, within the limits created by the uncertainty that attends therapeutic decisions, in a dosage regimen that optimizes the balance of benefit to harm’. This excludes all forms of prescribing faults, such as irrational, inappropriate, and ineffective prescribing, underprescribing and overprescribing. A prescription error is ‘a failure in the prescription writing process that results in a wrong instruction about one or more of the normal features of a prescription’. The ‘normal features’ include the identity of the recipient, the identity of the drug, the formulation, dose, route, timing, frequency, and duration of administration. Medication errors can be classified, invoking psychological theory, as knowledge-based mistakes, rule-based mistakes, action-based slips, and memory-based lapses. This classification informs preventive strategies. PMID:19594526

  8. Blob-level active-passive data fusion for Benthic classification

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady

    2012-06-01

    We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.

  9. Fuzzy Modelling for Human Dynamics Based on Online Social Networks

    PubMed Central

    Cuenca-Jara, Jesus; Valdes-Vela, Mercedes; Skarmeta, Antonio F.

    2017-01-01

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities. PMID:28837120

  10. Clinic expert information extraction based on domain model and block importance model.

    PubMed

    Zhang, Yuanpeng; Wang, Li; Qian, Danmin; Geng, Xingyun; Yao, Dengfu; Dong, Jiancheng

    2015-11-01

    To extract expert clinic information from the Deep Web, there are two challenges to face. The first one is to make a judgment on forms. A novel method based on a domain model, which is a tree structure constructed by the attributes of query interfaces is proposed. With this model, query interfaces can be classified to a domain and filled in with domain keywords. Another challenge is to extract information from response Web pages indexed by query interfaces. To filter the noisy information on a Web page, a block importance model is proposed, both content and spatial features are taken into account in this model. The experimental results indicate that the domain model yields a precision 4.89% higher than that of the rule-based method, whereas the block importance model yields an F1 measure 10.5% higher than that of the XPath method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fuzzy Modelling for Human Dynamics Based on Online Social Networks.

    PubMed

    Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2017-08-24

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.

  12. First comparative approach to touchscreen-based visual object-location paired-associates learning in humans (Homo sapiens) and a nonhuman primate (Microcebus murinus).

    PubMed

    Schmidtke, Daniel; Ammersdörfer, Sandra; Joly, Marine; Zimmermann, Elke

    2018-05-10

    A recent study suggests that a specific, touchscreen-based task on visual object-location paired-associates learning (PAL), the so-called Different PAL (dPAL) task, allows effective translation from animal models to humans. Here, we adapted the task to a nonhuman primate (NHP), the gray mouse lemur, and provide first evidence for the successful comparative application of the task to humans and NHPs. Young human adults reach the learning criterion after considerably less sessions (one order of magnitude) than young, adult NHPs, which is likely due to faster and voluntary rejection of ineffective learning strategies in humans and almost immediate rule generalization. At criterion, however, all human subjects solved the task by either applying a visuospatial rule or, more rarely, by memorizing all possible stimulus combinations and responding correctly based on global visual information. An error-profile analysis in humans and NHPs suggests that successful learning in NHPs is comparably based either on the formation of visuospatial associative links or on more reflexive, visually guided stimulus-response learning. The classification in the NHPs is further supported by an analysis of the individual response latencies, which are considerably higher in NHPs classified as spatial learners. Our results, therefore, support the high translational potential of the standardized, touchscreen-based dPAL task by providing first empirical and comparable evidence for two different cognitive processes underlying dPAL performance in primates. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. AUCTSP: an improved biomarker gene pair class predictor.

    PubMed

    Kagaris, Dimitri; Khamesipour, Alireza; Yiannoutsos, Constantin T

    2018-06-26

    The Top Scoring Pair (TSP) classifier, based on the concept of relative ranking reversals in the expressions of pairs of genes, has been proposed as a simple, accurate, and easily interpretable decision rule for classification and class prediction of gene expression profiles. The idea that differences in gene expression ranking are associated with presence or absence of disease is compelling and has strong biological plausibility. Nevertheless, the TSP formulation ignores significant available information which can improve classification accuracy and is vulnerable to selecting genes which do not have differential expression in the two conditions ("pivot" genes). We introduce the AUCTSP classifier as an alternative rank-based estimator of the magnitude of the ranking reversals involved in the original TSP. The proposed estimator is based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) and as such, takes into account the separation of the entire distribution of gene expression levels in gene pairs under the conditions considered, as opposed to comparing gene rankings within individual subjects as in the original TSP formulation. Through extensive simulations and case studies involving classification in ovarian, leukemia, colon, breast and prostate cancers and diffuse large b-cell lymphoma, we show the superiority of the proposed approach in terms of improving classification accuracy, avoiding overfitting and being less prone to selecting non-informative (pivot) genes. The proposed AUCTSP is a simple yet reliable and robust rank-based classifier for gene expression classification. While the AUCTSP works by the same principle as TSP, its ability to determine the top scoring gene pair based on the relative rankings of two marker genes across all subjects as opposed to each individual subject results in significant performance gains in classification accuracy. In addition, the proposed method tends to avoid selection of non-informative (pivot) genes as members of the top-scoring pair.

  14. Following the (Clinical Decision) Rules: Opportunities for Improving Safety and Resource Utilization With the Bacterial Meningitis Score.

    PubMed

    Hagedorn, Philip A; Shah, Samir S; Kirkendall, Eric S

    2016-05-01

    The Bacterial Meningitis Score accurately classifies children with cerebrospinal fluid (CSF) pleocytosis at very low risk (VLR) versus not very low risk (non-VLR) for bacterial meningitis. Most children with CSF pleocytosis detected during emergency department evaluation are hospitalized despite the high accuracy of this prediction rule and the decreasing incidence of bacterial meningitis. The lack of widespread use of this rule may contribute to unnecessary risk exposure and costs. This cross-sectional study included 1049 patients who, between January 2010 and May 2013, had suspicion for meningitis and underwent both a complete blood cell count and CSF studies during their emergency department evaluation. We then examined their hospitalizations to characterize exposure to drugs, radiologic studies, and the costs associated with their care to determine the safety and value repercussions of these VLR admissions. Primary outcomes include duration of antibiotics, exposure to drugs and radiology studies, safety events, and costs incurred during these VLR admissions. Twenty patients classified as VLR were admitted to the hospital. On average they received 35 hours of antibiotic therapy. There was 1 adverse drug event and 1 safety event. The VLR patients admitted to the hospital were exposed to risk and costs despite their low risk stratification. Systematic application of the Bacterial Meningitis Score could prevent these exposures and costs. Copyright © 2016 by the American Academy of Pediatrics

  15. Algorithms for detecting antibodies to HIV-1: results from a rural Ugandan cohort.

    PubMed

    Nunn, A J; Biryahwaho, B; Downing, R G; van der Groen, G; Ojwiya, A; Mulder, D W

    1993-08-01

    To evaluate an algorithm using two enzyme immunoassays (EIA) for anti-HIV-1 antibodies in a rural African population and to assess alternative simplified algorithms. Sera obtained from 7895 individuals in a rural population survey were tested using an algorithm based on two different EIA systems: Recombigen HIV-1 EIA and Wellcozyme HIV-1 Recombinant. Alternative algorithms were assessed using negative or confirmed positive sera. None of the 227 sera classified as unequivocably negative by the two assays were positive by Western blot. Of 192 sera unequivocably positive by both assays, four were seronegative by Western blot. The possibility of technical error cannot be ruled out in three of these. One of the alternative algorithms assessed classified all borderline or discordant assay results as negative had a specificity of 100% and a sensitivity of 98.4%. The cost of this algorithm is one-third that of the conventional algorithm. Our evaluation suggests that high specificity and sensitivity can be obtained without using Western blot and at a considerable reduction in cost.

  16. Ambiguity domain-based identification of altered gait pattern in ALS disorder

    NASA Astrophysics Data System (ADS)

    Sugavaneswaran, L.; Umapathy, K.; Krishnan, S.

    2012-08-01

    The onset of a neurological disorder, such as amyotrophic lateral sclerosis (ALS), is so subtle that the symptoms are often overlooked, thereby ruling out the option of early detection of the abnormality. In the case of ALS, over 75% of the affected individuals often experience awkwardness when using their limbs, which alters their gait, i.e. stride and swing intervals. The aim of this work is to suitably represent the non-stationary characteristics of gait (fluctuations in stride and swing intervals) in order to facilitate discrimination between normal and ALS subjects. We define a simple-yet-representative feature vector space by exploiting the ambiguity domain (AD) to achieve efficient classification between healthy and pathological gait stride interval. The stride-to-stride fluctuations and the swing intervals of 16 healthy control and 13 ALS-affected subjects were analyzed. Three features that are representative of the gait signal characteristics were extracted from the AD-space and are fed to linear discriminant analysis and neural network classifiers, respectively. Overall, maximum accuracies of 89.2% (LDA) and 100% (NN) were obtained in classifying the ALS gait.

  17. Semi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification.

    PubMed

    Zhang, Xiang; Guan, Naiyang; Jia, Zhilong; Qiu, Xiaogang; Luo, Zhigang

    2015-01-01

    Advances in DNA microarray technologies have made gene expression profiles a significant candidate in identifying different types of cancers. Traditional learning-based cancer identification methods utilize labeled samples to train a classifier, but they are inconvenient for practical application because labels are quite expensive in the clinical cancer research community. This paper proposes a semi-supervised projective non-negative matrix factorization method (Semi-PNMF) to learn an effective classifier from both labeled and unlabeled samples, thus boosting subsequent cancer classification performance. In particular, Semi-PNMF jointly learns a non-negative subspace from concatenated labeled and unlabeled samples and indicates classes by the positions of the maximum entries of their coefficients. Because Semi-PNMF incorporates statistical information from the large volume of unlabeled samples in the learned subspace, it can learn more representative subspaces and boost classification performance. We developed a multiplicative update rule (MUR) to optimize Semi-PNMF and proved its convergence. The experimental results of cancer classification for two multiclass cancer gene expression profile datasets show that Semi-PNMF outperforms the representative methods.

  18. Heterogeneous data fusion and intelligent techniques embedded in a mobile application for real-time chronic disease management.

    PubMed

    Bellos, Christos; Papadopoulos, Athanassios; Rosso, Roberto; Fotiadis, Dimitrios I

    2011-01-01

    CHRONIOUS system is an integrated platform aiming at the management of chronic disease patients. One of the most important components of the system is a Decision Support System (DSS) that has been developed in a Smart Device (SD). This component decides on patient's current health status by combining several data, which are acquired either by wearable sensors or manually inputted by the patient or retrieved from the specific database. In case no abnormal situation has been tracked, the DSS takes no action and remains deactivated until next abnormal situation pack of data are being acquired or next scheduled data being transmitted. The DSS that has been implemented is an integrated classification system with two parallel classifiers, combining an expert system (rule-based system) and a supervised classifier, such as Support Vector Machines (SVM), Random Forests, artificial Neural Networks (aNN like the Multi-Layer Perceptron), Decision Trees and Naïve Bayes. The above categorized system is useful for providing critical information about the health status of the patient.

  19. Identification of COPD patients' health status using an intelligent system in the CHRONIOUS wearable platform.

    PubMed

    Bellos, Christos C; Papadopoulos, Athanasios; Rosso, Roberto; Fotiadis, Dimitrios I

    2014-05-01

    The CHRONIOUS system offers an integrated platform aiming at the effective management and real-time assessment of the health status of the patient suffering from chronic obstructive pulmonary disease (COPD). An intelligent system is developed for the analysis and the real-time evaluation of patient's condition. A hybrid classifier has been implemented on a personal digital assistant, combining a support vector machine, a random forest, and a rule-based system to provide a more advanced categorization scheme for the early and in real-time characterization of a COPD episode. This is followed by a severity estimation algorithm which classifies the identified pathological situation in different levels and triggers an alerting mechanism to provide an informative and instructive message/advice to the patient and the clinical supervisor. The system has been validated using data collected from 30 patients that have been annotated by experts indicating 1) the severity level of the current patient's health status, and 2) the COPD disease level of the recruited patients according to the GOLD guidelines. The achieved characterization accuracy has been found 94%.

  20. Final inpatient rehabilitation PPS rule improves on proposed rule.

    PubMed

    Reynolds, M

    2001-10-01

    On August 7, 2001, the Centers for Medicare and Medicaid Services (CMS--formerly HCFA) released the final rule for a new prospective payment system (PPS) for inpatient rehabilitation services describing the process that must be used to receive payment for such services provided to Medicare beneficiaries. The process consists of five steps: First, a clinician performs assessments of the patient upon admission and at discharge. Second, the patient is classified into a case-mix group (CMG) with an assigned relative-value weight within that CMG. Third, the Federal prospective payment rate is determined by multiplying the relative-value weight by an annually updated, budget-neutral conversion factor. Fourth, the Federal prospective payment rate is adjusted to account for facility-specific factors. Finally, the facility-adjusted payment rate may be adjusted for case-specific factors. The final rule eliminates three deficiencies in the proposed rule by providing increased payment for treating any comorbidities documented prior to the second day before discharge, providing more appropriate payment for transfer cases, and minimizing the paperwork associated with patient assessment.

  1. Multi-class Mode of Action Classification of Toxic Compounds Using Logic Based Kernel Methods.

    PubMed

    Lodhi, Huma; Muggleton, Stephen; Sternberg, Mike J E

    2010-09-17

    Toxicity prediction is essential for drug design and development of effective therapeutics. In this paper we present an in silico strategy, to identify the mode of action of toxic compounds, that is based on the use of a novel logic based kernel method. The technique uses support vector machines in conjunction with the kernels constructed from first order rules induced by an Inductive Logic Programming system. It constructs multi-class models by using a divide and conquer reduction strategy that splits multi-classes into binary groups and solves each individual problem recursively hence generating an underlying decision list structure. In order to evaluate the effectiveness of the approach for chemoinformatics problems like predictive toxicology, we apply it to toxicity classification in aquatic systems. The method is used to identify and classify 442 compounds with respect to the mode of action. The experimental results show that the technique successfully classifies toxic compounds and can be useful in assessing environmental risks. Experimental comparison of the performance of the proposed multi-class scheme with the standard multi-class Inductive Logic Programming algorithm and multi-class Support Vector Machine yields statistically significant results and demonstrates the potential power and benefits of the approach in identifying compounds of various toxic mechanisms. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An ontology for Autism Spectrum Disorder (ASD) to infer ASD phenotypes from Autism Diagnostic Interview-Revised data.

    PubMed

    Mugzach, Omri; Peleg, Mor; Bagley, Steven C; Guter, Stephen J; Cook, Edwin H; Altman, Russ B

    2015-08-01

    Our goal is to create an ontology that will allow data integration and reasoning with subject data to classify subjects, and based on this classification, to infer new knowledge on Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders (NDD). We take a first step toward this goal by extending an existing autism ontology to allow automatic inference of ASD phenotypes and Diagnostic & Statistical Manual of Mental Disorders (DSM) criteria based on subjects' Autism Diagnostic Interview-Revised (ADI-R) assessment data. Knowledge regarding diagnostic instruments, ASD phenotypes and risk factors was added to augment an existing autism ontology via Ontology Web Language class definitions and semantic web rules. We developed a custom Protégé plugin for enumerating combinatorial OWL axioms to support the many-to-many relations of ADI-R items to diagnostic categories in the DSM. We utilized a reasoner to infer whether 2642 subjects, whose data was obtained from the Simons Foundation Autism Research Initiative, meet DSM-IV-TR (DSM-IV) and DSM-5 diagnostic criteria based on their ADI-R data. We extended the ontology by adding 443 classes and 632 rules that represent phenotypes, along with their synonyms, environmental risk factors, and frequency of comorbidities. Applying the rules on the data set showed that the method produced accurate results: the true positive and true negative rates for inferring autistic disorder diagnosis according to DSM-IV criteria were 1 and 0.065, respectively; the true positive rate for inferring ASD based on DSM-5 criteria was 0.94. The ontology allows automatic inference of subjects' disease phenotypes and diagnosis with high accuracy. The ontology may benefit future studies by serving as a knowledge base for ASD. In addition, by adding knowledge of related NDDs, commonalities and differences in manifestations and risk factors could be automatically inferred, contributing to the understanding of ASD pathophysiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A comprehensive review on privacy preserving data mining.

    PubMed

    Aldeen, Yousra Abdul Alsahib S; Salleh, Mazleena; Razzaque, Mohammad Abdur

    2015-01-01

    Preservation of privacy in data mining has emerged as an absolute prerequisite for exchanging confidential information in terms of data analysis, validation, and publishing. Ever-escalating internet phishing posed severe threat on widespread propagation of sensitive information over the web. Conversely, the dubious feelings and contentions mediated unwillingness of various information providers towards the reliability protection of data from disclosure often results utter rejection in data sharing or incorrect information sharing. This article provides a panoramic overview on new perspective and systematic interpretation of a list published literatures via their meticulous organization in subcategories. The fundamental notions of the existing privacy preserving data mining methods, their merits, and shortcomings are presented. The current privacy preserving data mining techniques are classified based on distortion, association rule, hide association rule, taxonomy, clustering, associative classification, outsourced data mining, distributed, and k-anonymity, where their notable advantages and disadvantages are emphasized. This careful scrutiny reveals the past development, present research challenges, future trends, the gaps and weaknesses. Further significant enhancements for more robust privacy protection and preservation are affirmed to be mandatory.

  4. From Constraints to Resolution Rules Part II : chains, braids, confluence and T&E

    NASA Astrophysics Data System (ADS)

    Berthier, Denis

    In this Part II, we apply the general theory developed in Part I to a detailed analysis of the Constraint Satisfaction Problem (CSP). We show how specific types of resolution rules can be defined. In particular, we introduce the general notions of a chain and a braid. As in Part I, these notions are illustrated in detail with the Sudoku example - a problem known to be NP-complete and which is therefore typical of a broad class of hard problems. For Sudoku, we also show how far one can go in "approximating" a CSP with a resolution theory and we give an empirical statistical analysis of how the various puzzles, corresponding to different sets of entries, can be classified along a natural scale of complexity. For any CSP, we also prove the confluence property of some Resolution Theories based on braids and we show how it can be used to define different resolution strategies. Finally, we prove that, in any CSP, braids have the same solving capacity as Trial-and-Error (T&E) with no guessing and we comment this result in the Sudoku case.

  5. Artificial Intelligence Methods Applied to Parameter Detection of Atrial Fibrillation

    NASA Astrophysics Data System (ADS)

    Arotaritei, D.; Rotariu, C.

    2015-09-01

    In this paper we present a novel method to develop an atrial fibrillation (AF) based on statistical descriptors and hybrid neuro-fuzzy and crisp system. The inference of system produce rules of type if-then-else that care extracted to construct a binary decision system: normal of atrial fibrillation. We use TPR (Turning Point Ratio), SE (Shannon Entropy) and RMSSD (Root Mean Square of Successive Differences) along with a new descriptor, Teager- Kaiser energy, in order to improve the accuracy of detection. The descriptors are calculated over a sliding window that produce very large number of vectors (massive dataset) used by classifier. The length of window is a crisp descriptor meanwhile the rest of descriptors are interval-valued type. The parameters of hybrid system are adapted using Genetic Algorithm (GA) algorithm with fitness single objective target: highest values for sensibility and sensitivity. The rules are extracted and they are part of the decision system. The proposed method was tested using the Physionet MIT-BIH Atrial Fibrillation Database and the experimental results revealed a good accuracy of AF detection in terms of sensitivity and specificity (above 90%).

  6. Representation of molecular structure using quantum topology with inductive logic programming in structure-activity relationships.

    PubMed

    Buttingsrud, Bård; Ryeng, Einar; King, Ross D; Alsberg, Bjørn K

    2006-06-01

    The requirement of aligning each individual molecule in a data set severely limits the type of molecules which can be analysed with traditional structure activity relationship (SAR) methods. A method which solves this problem by using relations between objects is inductive logic programming (ILP). Another advantage of this methodology is its ability to include background knowledge as 1st-order logic. However, previous molecular ILP representations have not been effective in describing the electronic structure of molecules. We present a more unified and comprehensive representation based on Richard Bader's quantum topological atoms in molecules (AIM) theory where critical points in the electron density are connected through a network. AIM theory provides a wealth of chemical information about individual atoms and their bond connections enabling a more flexible and chemically relevant representation. To obtain even more relevant rules with higher coverage, we apply manual postprocessing and interpretation of ILP rules. We have tested the usefulness of the new representation in SAR modelling on classifying compounds of low/high mutagenicity and on a set of factor Xa inhibitors of high and low affinity.

  7. Residential water demand model under block rate pricing: A case study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yang, Z. F.

    2009-05-01

    In many cities, the inconsistency between water supply and water demand has become a critical problem because of deteriorating water shortage and increasing water demand. Uniform price of residential water cannot promote the efficient water allocation. In China, block water price will be put into practice in the future, but the outcome of such regulation measure is unpredictable without theory support. In this paper, the residential water is classified by the volume of water usage based on economic rules and block water is considered as different kinds of goods. A model based on extended linear expenditure system (ELES) is constructed to simulate the relationship between block water price and water demand, which provide theoretical support for the decision-makers. Finally, the proposed model is used to simulate residential water demand under block rate pricing in Beijing.

  8. Assessing Local Risk of Rifampicin-Resistant Tuberculosis in KwaZulu-Natal, South Africa Using Lot Quality Assurance Sampling.

    PubMed

    Heidebrecht, Christine L; Podewils, Laura J; Pym, Alexander; Mthiyane, Thuli; Cohen, Ted

    2016-01-01

    KwaZulu-Natal (KZN) has the highest burden of notified multidrug-resistant tuberculosis (MDR TB) and extensively drug-resistant (XDR) TB cases in South Africa. A better understanding of spatial heterogeneity in the risk of drug-resistance may help to prioritize local responses. Between July 2012 and June 2013, we conducted a two-way Lot Quality Assurance Sampling (LQAS) study to classify the burden of rifampicin (RIF)-resistant TB among incident TB cases notified within the catchment areas of seven laboratories in two northern and one southern district of KZN. Decision rules for classification of areas as having either a high- or low-risk of RIF resistant TB (based on proportion of RIF resistance among all TB cases) were based on consultation with local policy makers. We classified five areas as high-risk and two as low-risk. High-risk areas were identified in both Southern and Northern districts, with the greatest proportion of RIF resistance observed in the northernmost area, the Manguzi community situated on the Mozambique border. Our study revealed heterogeneity in the risk of RIF resistant disease among incident TB cases in KZN. This study demonstrates the potential for LQAS to detect geographic heterogeneity in areas where access to drug susceptibility testing is limited.

  9. Assessing Local Risk of Rifampicin-Resistant Tuberculosis in KwaZulu-Natal, South Africa Using Lot Quality Assurance Sampling

    PubMed Central

    Heidebrecht, Christine L.; Podewils, Laura J.; Pym, Alexander; Mthiyane, Thuli; Cohen, Ted

    2016-01-01

    Background KwaZulu-Natal (KZN) has the highest burden of notified multidrug-resistant tuberculosis (MDR TB) and extensively drug-resistant (XDR) TB cases in South Africa. A better understanding of spatial heterogeneity in the risk of drug-resistance may help to prioritize local responses. Methods Between July 2012 and June 2013, we conducted a two-way Lot Quality Assurance Sampling (LQAS) study to classify the burden of rifampicin (RIF)-resistant TB among incident TB cases notified within the catchment areas of seven laboratories in two northern and one southern district of KZN. Decision rules for classification of areas as having either a high- or low-risk of RIF resistant TB (based on proportion of RIF resistance among all TB cases) were based on consultation with local policy makers. Results We classified five areas as high-risk and two as low-risk. High-risk areas were identified in both Southern and Northern districts, with the greatest proportion of RIF resistance observed in the northernmost area, the Manguzi community situated on the Mozambique border. Conclusion Our study revealed heterogeneity in the risk of RIF resistant disease among incident TB cases in KZN. This study demonstrates the potential for LQAS to detect geographic heterogeneity in areas where access to drug susceptibility testing is limited. PMID:27050561

  10. Automatic detection of suspicious behavior of pickpockets with track-based features in a shopping mall

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Baan, Jan; Burghouts, Gertjan J.; Eendebak, Pieter T.; van Huis, Jasper R.; Dijk, Judith; van Rest, Jeroen H. C.

    2014-10-01

    Proactive detection of incidents is required to decrease the cost of security incidents. This paper focusses on the automatic early detection of suspicious behavior of pickpockets with track-based features in a crowded shopping mall. Our method consists of several steps: pedestrian tracking, feature computation and pickpocket recognition. This is challenging because the environment is crowded, people move freely through areas which cannot be covered by a single camera, because the actual snatch is a subtle action, and because collaboration is complex social behavior. We carried out an experiment with more than 20 validated pickpocket incidents. We used a top-down approach to translate expert knowledge in features and rules, and a bottom-up approach to learn discriminating patterns with a classifier. The classifier was used to separate the pickpockets from normal passers-by who are shopping in the mall. We performed a cross validation to train and evaluate our system. In this paper, we describe our method, identify the most valuable features, and analyze the results that were obtained in the experiment. We estimate the quality of these features and the performance of automatic detection of (collaborating) pickpockets. The results show that many of the pickpockets can be detected at a low false alarm rate.

  11. Assessment of forward head posture in females: observational and photogrammetry methods.

    PubMed

    Salahzadeh, Zahra; Maroufi, Nader; Ahmadi, Amir; Behtash, Hamid; Razmjoo, Arash; Gohari, Mahmoud; Parnianpour, Mohamad

    2014-01-01

    There are different methods to assess forward head posture (FHP) but the accuracy and discrimination ability of these methods are not clear. Here, we want to compare three postural angles for FHP assessment and also study the discrimination accuracy of three photogrammetric methods to differentiate groups categorized based on observational method. All Seventy-eight healthy female participants (23 ± 2.63 years), were classified into three groups: moderate-severe FHP, slight FHP and non FHP based on observational postural assessment rules. Applying three photogrammetric methods - craniovertebral angle, head title angle and head position angle - to measure FHP objectively. One - way ANOVA test showed a significant difference in three categorized group's craniovertebral angle (P< 0.05, F=83.07). There was no dramatic difference in head tilt angle and head position angle methods in three groups. According to Linear Discriminate Analysis (LDA) results, the canonical discriminant function (Wilks'Lambda) was 0.311 for craniovertebral angle with 79.5% of cross-validated grouped cases correctly classified. Our results showed that, craniovertebral angle method may discriminate the females with moderate-severe and non FHP more accurate than head position angle and head tilt angle. The photogrammetric method had excellent inter and intra rater reliability to assess the head and cervical posture.

  12. A novel Bayesian framework for discriminative feature extraction in Brain-Computer Interfaces.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan

    2013-02-01

    As there has been a paradigm shift in the learning load from a human subject to a computer, machine learning has been considered as a useful tool for Brain-Computer Interfaces (BCIs). In this paper, we propose a novel Bayesian framework for discriminative feature extraction for motor imagery classification in an EEG-based BCI in which the class-discriminative frequency bands and the corresponding spatial filters are optimized by means of the probabilistic and information-theoretic approaches. In our framework, the problem of simultaneous spatiospectral filter optimization is formulated as the estimation of an unknown posterior probability density function (pdf) that represents the probability that a single-trial EEG of predefined mental tasks can be discriminated in a state. In order to estimate the posterior pdf, we propose a particle-based approximation method by extending a factored-sampling technique with a diffusion process. An information-theoretic observation model is also devised to measure discriminative power of features between classes. From the viewpoint of classifier design, the proposed method naturally allows us to construct a spectrally weighted label decision rule by linearly combining the outputs from multiple classifiers. We demonstrate the feasibility and effectiveness of the proposed method by analyzing the results and its success on three public databases.

  13. Projections of Three-Dimensional Regions

    ERIC Educational Resources Information Center

    Martinez, Felix; Rosa, De La

    2005-01-01

    When first-year calculus students are interested in studying double integrals, they can find, in standard textbooks, a detailed description of the different regions of integration. The aims of this paper are: to give a criterion to select the plane that will be projected, to classify the projections, and to give a simple rule to obtain them.…

  14. 10 CFR 824.8 - Hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Hearing. 824.8 Section 824.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.8 Hearing. (a) Any person who receives a final notice of violation under § 824.7 may request a hearing...

  15. On Classification of Modular Categories by Rank: Table A.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric C.

    2016-04-10

    The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.

  16. Legal Enforcement of Teacher Education in Great Britain

    ERIC Educational Resources Information Center

    Zorochkina, Tetiana

    2017-01-01

    The article deals with legal enforcement of teacher education in Great Britain. It has been found out that in Great Britain, the sources of education legislation are statutes and acts adopted by British government. All current statutes relating to education are classified either as public or private. Public laws contain general rules, that is,…

  17. 10 CFR 824.8 - Hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Hearing. 824.8 Section 824.8 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.8 Hearing. (a) Any person who receives a final notice of violation under § 824.7 may request a hearing...

  18. A Probabilistic Model for Diagnosing Misconceptions by a Pattern Classification Approach.

    ERIC Educational Resources Information Center

    Tatsuoka, Kikumi K.

    A probabilistic approach is introduced to classify and diagnose erroneous rules of operation resulting from a variety of misconceptions ("bugs") in a procedural domain of arithmetic. The model is contrasted with the deterministic approach which has commonly been used in the field of artificial intelligence, and the advantage of treating the…

  19. 46 CFR 110.10-1 - Incorporation by reference.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; 111.105-40; 113.05-7; and (2) Rules for Building and Classing Mobile Offshore Drilling Units, Part 4...-1; (31) IEC 61363-1 Electrical Installations of Ships and Mobile and Fixed Offshore Units—Part 1.... Box 12277, Research Triangle Park, NC 27709: (1) RP 12.6, Wiring Practices for Hazardous (Classified...

  20. 19 CFR 10.601 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the CAFTA...

  1. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  2. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  3. 19 CFR 10.601 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the CAFTA...

  4. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  5. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  6. 19 CFR 10.461 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.461... Free Trade Agreement Rules of Origin § 10.461 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  7. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  8. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  9. 19 CFR 10.539 - Retail packaging materials and containers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Retail packaging materials and containers. 10.539...-Singapore Free Trade Agreement Rules of Origin § 10.539 Retail packaging materials and containers. Packaging materials and containers in which a good is packaged for retail sale, if classified with the good for which...

  10. 19 CFR 10.601 - Retail packaging materials and containers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the CAFTA...

  11. 19 CFR 10.601 - Retail packaging materials and containers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Retail packaging materials and containers. 10.601...-Central America-United States Free Trade Agreement Rules of Origin § 10.601 Retail packaging materials and... for retail sale, if classified with the good for which preferential tariff treatment under the CAFTA...

  12. Are Your Workers Employees or Independent Contractors? Three Exercises to Help Students Accurately Classify Workers

    ERIC Educational Resources Information Center

    Lawlor, Leila G.; Willey, Susan L.

    2017-01-01

    In an undergraduate legal and ethical environment of business classes, the authors teach business students how to apply legal rules and ethical principles to problems that arise in business. Teaching the distinction between independent contractors and employees offers a rich, timely opportunity to improve students' critical thinking and…

  13. 49 CFR 240.117 - Criteria for consideration of operating rules compliance data.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... classified as “covered data” under § 225.5 of this chapter (i.e., employee injury/illness cases reportable... application of a prescription-strength medication to the employee's injury or made a written recommendation... the injury or illness; work restricted duty for one or more days when the employee instead works...

  14. A molecular topology approach to predicting pesticide pollution of groundwater

    USGS Publications Warehouse

    Worrall , Fred

    2001-01-01

    Various models have proposed methods for the discrimination of polluting and nonpolluting compounds on the basis of simple parameters, typically adsorption and degradation constants. However, such attempts are prone to site variability and measurement error to the extent that compounds cannot be reliably classified nor the chemistry of pollution extrapolated from them. Using observations of pesticide occurrence in U.S. groundwater it is possible to show that polluting from nonpolluting compounds can be distinguished purely on the basis of molecular topology. Topological parameters can be derived without measurement error or site-specific variability. A logistic regression model has been developed which explains 97% of the variation in the data, with 86% of the variation being explained by the rule that a compound will be found in groundwater if 6 < 0.55. Where 6χp is the sixth-order molecular path connectivity. One group of compounds cannot be classified by this rule and prediction requires reference to higher order connectivity parameters. The use of molecular approaches for understanding pollution at the molecular level and their application to agrochemical development and risk assessment is discussed.

  15. Fault detection and diagnosis of induction motors using motor current signature analysis and a hybrid FMM-CART model.

    PubMed

    Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan

    2012-01-01

    In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

  16. Moral empiricism and the bias for act-based rules.

    PubMed

    Ayars, Alisabeth; Nichols, Shaun

    2017-10-01

    Previous studies on rule learning show a bias in favor of act-based rules, which prohibit intentionally producing an outcome but not merely allowing the outcome. Nichols, Kumar, Lopez, Ayars, and Chan (2016) found that exposure to a single sample violation in which an agent intentionally causes the outcome was sufficient for participants to infer that the rule was act-based. One explanation is that people have an innate bias to think rules are act-based. We suggest an alternative empiricist account: since most rules that people learn are act-based, people form an overhypothesis (Goodman, 1955) that rules are typically act-based. We report three studies that indicate that people can use information about violations to form overhypotheses about rules. In study 1, participants learned either three "consequence-based" rules that prohibited allowing an outcome or three "act-based" rules that prohibiting producing the outcome; in a subsequent learning task, we found that participants who had learned three consequence-based rules were more likely to think that the new rule prohibited allowing an outcome. In study 2, we presented participants with either 1 consequence-based rule or 3 consequence-based rules, and we found that those exposed to 3 such rules were more likely to think that a new rule was also consequence based. Thus, in both studies, it seems that learning 3 consequence-based rules generates an overhypothesis to expect new rules to be consequence-based. In a final study, we used a more subtle manipulation. We exposed participants to examples act-based or accident-based (strict liability) laws and then had them learn a novel rule. We found that participants who were exposed to the accident-based laws were more likely to think a new rule was accident-based. The fact that participants' bias for act-based rules can be shaped by evidence from other rules supports the idea that the bias for act-based rules might be acquired as an overhypothesis from the preponderance of act-based rules. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Geriatric Fever Score: A New Decision Rule for Geriatric Care

    PubMed Central

    Vong, Si-Chon; Yang, Tzu-Meng; Chen, Kuo-Tai; Lin, Hung-Jung; Chen, Jiann-Hwa; Su, Shih-Bin; Guo, How-Ran; Hsu, Chien-Chin

    2014-01-01

    Background Evaluating geriatric patients with fever is time-consuming and challenging. We investigated independent mortality predictors of geriatric patients with fever and developed a prediction rule for emergency care, critical care, and geriatric care physicians to classify patients into mortality risk and disposition groups. Materials and Methods Consecutive geriatric patients (≥65 years old) visiting the emergency department (ED) of a university-affiliated medical center between June 1 and July 21, 2010, were enrolled when they met the criteria of fever: a tympanic temperature ≥37.2°C or a baseline temperature elevated ≥1.3°C. Thirty-day mortality was the primary endpoint. Internal validation with bootstrap re-sampling was done. Results Three hundred thirty geriatric patients were enrolled. We found three independent mortality predictors: Leukocytosis (WBC >12,000 cells/mm3), Severe coma (GCS ≤ 8), and Thrombocytopenia (platelets <150 103/mm3) (LST). After assigning weights to each predictor, we developed a Geriatric Fever Score that stratifies patients into two mortality-risk and disposition groups: low (4.0%) (95% CI: 2.3–6.9%): a general ward or treatment in the ED then discharge and high (30.3%) (95% CI: 17.4–47.3%): consider the intensive care unit. The area under the curve for the rule was 0.73. Conclusions We found that the Geriatric Fever Score is a simple and rapid rule for predicting 30-day mortality and classifying mortality risk and disposition in geriatric patients with fever, although external validation should be performed to confirm its usefulness in other clinical settings. It might help preserve medical resources for patients in greater need. PMID:25340811

  18. 77 FR 15847 - Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-16

    ...We are proposing to amend the regulations that govern the importation of animals and animal products to revise the conditions for the importation of live bovines and products derived from bovines with regard to bovine spongiform encephalopathy (BSE). We are proposing to base importation conditions on the inherent risk of BSE infectivity in specified commodities, as well as on the BSE risk status of the region from which the commodities originate. We are proposing to establish a system for classifying regions as to BSE risk that is consistent with the system employed by the World Organization for Animal Health (OIE), the international standard-setting organization for guidelines related to animal health. The conditions we are proposing for the importation of specified commodities are based on internationally accepted scientific literature and, except in a few instances, are consistent with guidelines set out in the OIE's Terrestrial Animal Health Code. We are also proposing to classify certain specified countries as to BSE risk and are proposing to remove BSE restrictions on the importation of cervids and camelids and products derived from such animals. We are proposing to make these amendments after conducting a thorough review of relevant scientific literature and a comprehensive evaluation of the issues and concluding that the proposed changes to the regulations would continue to guard against the introduction of BSE into the United States, while allowing the importation of additional animals and animal products into this country. In this document we are also affirming the position we took in removing the delay of applicability of certain provisions of the rule entitled ``Bovine Spongiform Encephalopathy; Minimal-Risk Regions and Importation of Commodities,'' published in the Federal Register on January 4, 2005 (70 FR 460-553). The delay of applicability was removed in a final rule entitled ``Bovine Spongiform Encephalopathy; Minimal-Risk Regions; Importation of Live Bovines and Products Derived from Bovines,'' published in the Federal Register on September 18, 2007 (72 FR 53314-53379).

  19. Learning classifier systems for single and multiple mobile robots in unstructured environments

    NASA Astrophysics Data System (ADS)

    Bay, John S.

    1995-12-01

    The learning classifier system (LCS) is a learning production system that generates behavioral rules via an underlying discovery mechanism. The LCS architecture operates similarly to a blackboard architecture; i.e., by posted-message communications. But in the LCS, the message board is wiped clean at every time interval, thereby requiring no persistent shared resource. In this paper, we adapt the LCS to the problem of mobile robot navigation in completely unstructured environments. We consider the model of the robot itself, including its sensor and actuator structures, to be part of this environment, in addition to the world-model that includes a goal and obstacles at unknown locations. This requires a robot to learn its own I/O characteristics in addition to solving its navigation problem, but results in a learning controller that is equally applicable, unaltered, in robots with a wide variety of kinematic structures and sensing capabilities. We show the effectiveness of this LCS-based controller through both simulation and experimental trials with a small robot. We then propose a new architecture, the Distributed Learning Classifier System (DLCS), which generalizes the message-passing behavior of the LCS from internal messages within a single agent to broadcast massages among multiple agents. This communications mode requires little bandwidth and is easily implemented with inexpensive, off-the-shelf hardware. The DLCS is shown to have potential application as a learning controller for multiple intelligent agents.

  20. Assessing experience in the deliberate practice of running using a fuzzy decision-support system

    PubMed Central

    Roveri, Maria Isabel; Manoel, Edison de Jesus; Onodera, Andrea Naomi; Ortega, Neli R. S.; Tessutti, Vitor Daniel; Vilela, Emerson; Evêncio, Nelson

    2017-01-01

    The judgement of skill experience and its levels is ambiguous though it is crucial for decision-making in sport sciences studies. We developed a fuzzy decision support system to classify experience of non-elite distance runners. Two Mamdani subsystems were developed based on expert running coaches’ knowledge. In the first subsystem, the linguistic variables of training frequency and volume were combined and the output defined the quality of running practice. The second subsystem yielded the level of running experience from the combination of the first subsystem output with the number of competitions and practice time. The model results were highly consistent with the judgment of three expert running coaches (r>0.88, p<0.001) and also with five other expert running coaches (r>0.86, p<0.001). From the expert’s knowledge and the fuzzy model, running experience is beyond the so-called "10-year rule" and depends not only on practice time, but on the quality of practice (training volume and frequency) and participation in competitions. The fuzzy rule-based model was very reliable, valid, deals with the marked ambiguities inherent in the judgment of experience and has potential applications in research, sports training, and clinical settings. PMID:28817655

  1. Visual Categorization of Natural Movies by Rats

    PubMed Central

    Vinken, Kasper; Vermaercke, Ben

    2014-01-01

    Visual categorization of complex, natural stimuli has been studied for some time in human and nonhuman primates. Recent interest in the rodent as a model for visual perception, including higher-level functional specialization, leads to the question of how rodents would perform on a categorization task using natural stimuli. To answer this question, rats were trained in a two-alternative forced choice task to discriminate movies containing rats from movies containing other objects and from scrambled movies (ordinate-level categorization). Subsequently, transfer to novel, previously unseen stimuli was tested, followed by a series of control probes. The results show that the animals are capable of acquiring a decision rule by abstracting common features from natural movies to generalize categorization to new stimuli. Control probes demonstrate that they did not use single low-level features, such as motion energy or (local) luminance. Significant generalization was even present with stationary snapshots from untrained movies. The variability within and between training and test stimuli, the complexity of natural movies, and the control experiments and analyses all suggest that a more high-level rule based on more complex stimulus features than local luminance-based cues was used to classify the novel stimuli. In conclusion, natural stimuli can be used to probe ordinate-level categorization in rats. PMID:25100598

  2. Biomedical image classification based on a cascade of an SVM with a reject option and subspace analysis.

    PubMed

    Lin, Dongyun; Sun, Lei; Toh, Kar-Ann; Zhang, Jing Bo; Lin, Zhiping

    2018-05-01

    Automated biomedical image classification could confront the challenges of high level noise, image blur, illumination variation and complicated geometric correspondence among various categorical biomedical patterns in practice. To handle these challenges, we propose a cascade method consisting of two stages for biomedical image classification. At stage 1, we propose a confidence score based classification rule with a reject option for a preliminary decision using the support vector machine (SVM). The testing images going through stage 1 are separated into two groups based on their confidence scores. Those testing images with sufficiently high confidence scores are classified at stage 1 while the others with low confidence scores are rejected and fed to stage 2. At stage 2, the rejected images from stage 1 are first processed by a subspace analysis technique called eigenfeature regularization and extraction (ERE), and then classified by another SVM trained in the transformed subspace learned by ERE. At both stages, images are represented based on two types of local features, i.e., SIFT and SURF, respectively. They are encoded using various bag-of-words (BoW) models to handle biomedical patterns with and without geometric correspondence, respectively. Extensive experiments are implemented to evaluate the proposed method on three benchmark real-world biomedical image datasets. The proposed method significantly outperforms several competing state-of-the-art methods in terms of classification accuracy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Point spread function based classification of regions for linear digital tomosynthesis

    NASA Astrophysics Data System (ADS)

    Israni, Kenny; Avinash, Gopal; Li, Baojun

    2007-03-01

    In digital tomosynthesis, one of the limitations is the presence of out-of-plane blur due to the limited angle acquisition. The point spread function (PSF) characterizes blur in the imaging volume, and is shift-variant in tomosynthesis. The purpose of this research is to classify the tomosynthesis imaging volume into four different categories based on PSF-driven focus criteria. We considered linear tomosynthesis geometry and simple back projection algorithm for reconstruction. The three-dimensional PSF at every pixel in the imaging volume was determined. Intensity profiles were computed for every pixel by integrating the PSF-weighted intensities contained within the line segment defined by the PSF, at each slice. Classification rules based on these intensity profiles were used to categorize image regions. At background and low-frequency pixels, the derived intensity profiles were flat curves with relatively low and high maximum intensities respectively. At in-focus pixels, the maximum intensity of the profiles coincided with the PSF-weighted intensity of the pixel. At out-of-focus pixels, the PSF-weighted intensity of the pixel was always less than the maximum intensity of the profile. We validated our method using human observer classified regions as gold standard. Based on the computed and manual classifications, the mean sensitivity and specificity of the algorithm were 77+/-8.44% and 91+/-4.13% respectively (t=-0.64, p=0.56, DF=4). Such a classification algorithm may assist in mitigating out-of-focus blur from tomosynthesis image slices.

  4. A novel behavioral model of the pasture-based dairy cow from GPS data using data mining and machine learning techniques.

    PubMed

    Williams, M L; Mac Parthaláin, N; Brewer, P; James, W P J; Rose, M T

    2016-03-01

    A better understanding of the behavior of individual grazing dairy cattle will assist in improving productivity and welfare. Global positioning systems (GPS) applied to cows could provide a means of monitoring grazing herds while overcoming the substantial efforts required for manual observation. Any model of behavioral prediction using GPS needs to be accurate and robust by accounting for inter-cow variation as well as atmospheric effects. We evaluated the performance using a series of machine learning algorithms on GPS data collected from 40 pasture-based dairy cows over 4 mo. A feature extraction step was performed on the collected raw GPS data, which resulted in 43 different attributes. The evaluated behaviors were grazing, resting, and walking. Classifier learners were built using 10 times 10-fold cross validation and tested on an independent test set. Results were evaluated using a variety of statistical significance tests across all parameters. We found that final model selection depended upon level of performance and model complexity. The classifier learner deemed most suitable for this particular problem was JRip, a rule-based learner (classification accuracy=0.85; false positive rate=0.10; F-measure=0.76; area under the receiver operating curve=0.87). This model will be used in further studies to assess the behavior and welfare of pasture-based dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. A clinical decision rule for triage of children under 5 years of age with hydrocarbon (kerosene) aspiration in developing countries.

    PubMed

    Bond, G R; Pièche, S; Sonicki, Z; Gamaluddin, H; El Guindi, M; Sakr, M; El Seddawy, A; Abouzaid, M; Youssef, A

    2008-03-01

    Unintended hydrocarbon ingestion is a common reason for pediatric hospitalization in the developing world. To derive a clinical decision rule, to identify patients likely to require a higher level facility (resource-requiring cases), that can be used at primary health care facilities with limited diagnostic and therapeutic resources. A prospective study of children 2 to 59 months old presenting to a poison treatment facility within 2 hours of oral hydrocarbon exposure. History and objective signs were recorded at admission and at 6, 12, 24 and, if present, 48 hours. Inclusion in the resource-requiring outcome group required: oxygen saturation <94%; any CNS depression; any treatment with (salbutamol); any care in the ICU; or death. 256 met the inclusion criteria and completed the study. Of these, 170 had a course requiring resources unavailable at most primary health care facilities, and 86 did not. The presence of wheezing, any alteration in consciousness (lethargy or any restlessness), or a rapid respiratory rate for age (RR >or= 50/min if age < 12 mo, >or= 40/min if age >or= 12 mo) at presentation identified 167 of 170 of these patients (sensitivity 0.98). Thirty-six of 86 patients classified as non-resource requiring were correctly identified (specificity 0.42). No combination of clinical symptoms provided better discrimination while preserving sensitivity. This study suggests a triage decision rule based on the presence of wheezing, altered consciousness, or a rapid respiratory rate within 2 hours of hydrocarbon exposure. Such a rule requires validation in other settings.

  6. Dynamical genetic programming in XCSF.

    PubMed

    Preen, Richard J; Bull, Larry

    2013-01-01

    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to artificial neural networks. This paper presents results from an investigation into using a temporally dynamic symbolic representation within the XCSF learning classifier system. In particular, dynamical arithmetic networks are used to represent the traditional condition-action production system rules to solve continuous-valued reinforcement learning problems and to perform symbolic regression, finding competitive performance with traditional genetic programming on a number of composite polynomial tasks. In addition, the network outputs are later repeatedly sampled at varying temporal intervals to perform multistep-ahead predictions of a financial time series.

  7. Medical devices; hematology and pathology devices; classification of cord blood processing system and storage container. Final rule.

    PubMed

    2007-02-01

    The Food and Drug Administration (FDA) is classifying a cord blood processing system and storage container into class II (special controls). The special control that will apply to this device is the guidance document entitled "Class II Special Controls Guidance Document: Cord Blood Processing System and Storage Container." FDA is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of this device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of the guidance document that will serve as the special control for this device.

  8. Monitoring Obstructive Sleep Apnea by means of a real-time mobile system based on the automatic extraction of sets of rules through Differential Evolution.

    PubMed

    Sannino, Giovanna; De Falco, Ivanoe; De Pietro, Giuseppe

    2014-06-01

    Real-time Obstructive Sleep Apnea (OSA) episode detection and monitoring are important for society in terms of an improvement in the health of the general population and of a reduction in mortality and healthcare costs. Currently, to diagnose OSA patients undergo PolySomnoGraphy (PSG), a complicated and invasive test to be performed in a specialized center involving many sensors and wires. Accordingly, each patient is required to stay in the same position throughout the duration of one night, thus restricting their movements. This paper proposes an easy, cheap, and portable approach for the monitoring of patients with OSA, which collects single-channel ElectroCardioGram (ECG) data only. It is easy to perform from the patient's point of view because only one wearable sensor is required, so the patient is not restricted to keeping the same position all night long, and the detection and monitoring can be carried out in any place through the use of a mobile device. Our approach is based on the automatic extraction, from a database containing information about the monitored patient, of explicit knowledge in the form of a set of IF…THEN rules containing typical parameters derived from Heart Rate Variability (HRV) analysis. The extraction is carried out off-line by means of a Differential Evolution algorithm. This set of rules can then be exploited in the real-time mobile monitoring system developed at our Laboratory: the ECG data is gathered by a wearable sensor and sent to a mobile device, where it is processed in real time. Subsequently, HRV-related parameters are computed from this data, and, if their values activate some of the rules describing the occurrence of OSA, an alarm is automatically produced. This approach has been tested on a well-known literature database of OSA patients. The numerical results show its effectiveness in terms of accuracy, sensitivity, and specificity, and the achieved sets of rules evidence the user-friendliness of the approach. Furthermore, the method is compared against other well known classifiers, and its discrimination ability is shown to be higher. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Automatic Assembly of Combined Checkingfixture for Auto-Body Components Based Onfixture Elements Libraries

    NASA Astrophysics Data System (ADS)

    Jiang, Jingtao; Sui, Rendong; Shi, Yan; Li, Furong; Hu, Caiqi

    In this paper 3-D models of combined fixture elements are designed, classified by their functions, and saved in computer as supporting elements library, jointing elements library, basic elements library, localization elements library, clamping elements library, and adjusting elements library etc. Then automatic assembly of 3-D combined checking fixture for auto-body part is presented based on modularization theory. And in virtual auto-body assembly space, Locating constraint mapping technique and assembly rule-based reasoning technique are used to calculate the position of modular elements according to localization points and clamp points of auto-body part. Auto-body part model is transformed from itself coordinate system space to virtual assembly space by homogeneous transformation matrix. Automatic assembly of different functional fixture elements and auto-body part is implemented with API function based on the second development of UG. It is proven in practice that the method in this paper is feasible and high efficiency.

  10. Granular support vector machines with association rules mining for protein homology prediction.

    PubMed

    Tang, Yuchun; Jin, Bo; Zhang, Yan-Qing

    2005-01-01

    Protein homology prediction between protein sequences is one of critical problems in computational biology. Such a complex classification problem is common in medical or biological information processing applications. How to build a model with superior generalization capability from training samples is an essential issue for mining knowledge to accurately predict/classify unseen new samples and to effectively support human experts to make correct decisions. A new learning model called granular support vector machines (GSVM) is proposed based on our previous work. GSVM systematically and formally combines the principles from statistical learning theory and granular computing theory and thus provides an interesting new mechanism to address complex classification problems. It works by building a sequence of information granules and then building support vector machines (SVM) in some of these information granules on demand. A good granulation method to find suitable granules is crucial for modeling a GSVM with good performance. In this paper, we also propose an association rules-based granulation method. For the granules induced by association rules with high enough confidence and significant support, we leave them as they are because of their high "purity" and significant effect on simplifying the classification task. For every other granule, a SVM is modeled to discriminate the corresponding data. In this way, a complex classification problem is divided into multiple smaller problems so that the learning task is simplified. The proposed algorithm, here named GSVM-AR, is compared with SVM by KDDCUP04 protein homology prediction data. The experimental results show that finding the splitting hyperplane is not a trivial task (we should be careful to select the association rules to avoid overfitting) and GSVM-AR does show significant improvement compared to building one single SVM in the whole feature space. Another advantage is that the utility of GSVM-AR is very good because it is easy to be implemented. More importantly and more interestingly, GSVM provides a new mechanism to address complex classification problems.

  11. Orographic barriers GIS-based definition of the Campania-Lucanian Apennine Range (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Cuomo, Albina; Guida, Domenico

    2010-05-01

    The presence of mountains on the land surfaces plays a central role in the space-time dynamics of the hydrological, geomorphic and ecological systems (Roe G. H., 2005). The aim of this paper is to identify, delimitate and classify the orographic relief in the Campania - Lucanian Apennine (Southern Italy) to investigate the effects of large-scale orographic and small-scale windward-leeward phenomena on distribution, frequency and duration of rainfall. The scale-dependent effects derived from the topographic relief favor the utilization of a hierarchical and multi-scale approach. The approach is based on a GIS procedure applied on Digital Elevation Model (DEM) with 20 meters cell size and derived from Regional Technical Map (CTR) of Campania region (1:5000). The DEM has been smoothed from data spikes and pits and we have then proceed to: a) Identify the three basic landforms of the relief (summit, hillslope and plain) by generalizing a previous 10-type landforms using the TPI method (Weiss A. 2001) and by simplifying the established rules of the differential geometry on topographic surface; b) Delimitate the mountain relief by modifying the method proposed by O. Z. Chaudhry and W. A. Mackaness (2008). It is based on three concepts: prominence , morphological variability and parent-child relationship. Graphical results have shown a good spatial correspondence between the digital definition of mountains and their morpho-tectonic structure derived from tectonic geomorphological studies; c) Classify, by using a set rules of spatial statistics (Cluster analysis) on geomorphometric parameters (elevation, curvature, slope, aspect, relative relief and form factor). Finally, we have recognized three prototypal orographic barriers shapes: cone, tableland and ridge, which are fundamental to improve the models of orographic rainfall in the Southern Apennines. References Chaudhry O. Z.and Mackaness W. A. (2008). Creating Mountains out of Mole Hills: Automatic Identification of Hills and Ranges Using Morphometric Analysis. Transactions in GIS. 12(5), pp. 567-589 Roe Gerard H. 2005. Orographic precipitation. Annual Review of Earth and Planetary Sciences. Vol. 33: 645-671. Weiss A., 2001. Topographic position and landform analysis. Poster Presentation. ESRI User Conference. San Diego, CA.

  12. The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification.

    PubMed

    Aiewsakun, Pakorn; Simmonds, Peter

    2018-02-20

    The International Committee on Taxonomy of Viruses (ICTV) classifies viruses into families, genera and species and provides a regulated system for their nomenclature that is universally used in virus descriptions. Virus taxonomic assignments have traditionally been based upon virus phenotypic properties such as host range, virion morphology and replication mechanisms, particularly at family level. However, gene sequence comparisons provide a clearer guide to their evolutionary relationships and provide the only information that may guide the incorporation of viruses detected in environmental (metagenomic) studies that lack any phenotypic data. The current study sought to determine whether the existing virus taxonomy could be reproduced by examination of genetic relationships through the extraction of protein-coding gene signatures and genome organisational features. We found large-scale consistency between genetic relationships and taxonomic assignments for viruses of all genome configurations and genome sizes. The analysis pipeline that we have called 'Genome Relationships Applied to Virus Taxonomy' (GRAViTy) was highly effective at reproducing the current assignments of viruses at family level as well as inter-family groupings into orders. Its ability to correctly differentiate assigned viruses from unassigned viruses, and classify them into the correct taxonomic group, was evaluated by threefold cross-validation technique. This predicted family membership of eukaryotic viruses with close to 100% accuracy and specificity potentially enabling the algorithm to predict assignments for the vast corpus of metagenomic sequences consistently with ICTV taxonomy rules. In an evaluation run of GRAViTy, over one half (460/921) of (near)-complete genome sequences from several large published metagenomic eukaryotic virus datasets were assigned to 127 novel family-level groupings. If corroborated by other analysis methods, these would potentially more than double the number of eukaryotic virus families in the ICTV taxonomy. A rapid and objective means to explore metagenomic viral diversity and make informed recommendations for their assignments at each taxonomic layer is essential. GRAViTy provides one means to make rule-based assignments at family and order levels in a manner that preserves the integrity and underlying organisational principles of the current ICTV taxonomy framework. Such methods are increasingly required as the vast virosphere is explored.

  13. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy.

    PubMed

    Nieuwenhuys, Angela; Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with 'no or minor gait deviations' (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with 'no or minor gait deviations' differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made.

  14. Statistical Parametric Mapping to Identify Differences between Consensus-Based Joint Patterns during Gait in Children with Cerebral Palsy

    PubMed Central

    Papageorgiou, Eirini; Desloovere, Kaat; Molenaers, Guy; De Laet, Tinne

    2017-01-01

    Experts recently identified 49 joint motion patterns in children with cerebral palsy during a Delphi consensus study. Pattern definitions were therefore the result of subjective expert opinion. The present study aims to provide objective, quantitative data supporting the identification of these consensus-based patterns. To do so, statistical parametric mapping was used to compare the mean kinematic waveforms of 154 trials of typically developing children (n = 56) to the mean kinematic waveforms of 1719 trials of children with cerebral palsy (n = 356), which were classified following the classification rules of the Delphi study. Three hypotheses stated that: (a) joint motion patterns with ‘no or minor gait deviations’ (n = 11 patterns) do not differ significantly from the gait pattern of typically developing children; (b) all other pathological joint motion patterns (n = 38 patterns) differ from typically developing gait and the locations of difference within the gait cycle, highlighted by statistical parametric mapping, concur with the consensus-based classification rules. (c) all joint motion patterns at the level of each joint (n = 49 patterns) differ from each other during at least one phase of the gait cycle. Results showed that: (a) ten patterns with ‘no or minor gait deviations’ differed somewhat unexpectedly from typically developing gait, but these differences were generally small (≤3°); (b) all other joint motion patterns (n = 38) differed from typically developing gait and the significant locations within the gait cycle that were indicated by the statistical analyses, coincided well with the classification rules; (c) joint motion patterns at the level of each joint significantly differed from each other, apart from two sagittal plane pelvic patterns. In addition to these results, for several joints, statistical analyses indicated other significant areas during the gait cycle that were not included in the pattern definitions of the consensus study. Based on these findings, suggestions to improve pattern definitions were made. PMID:28081229

  15. Applications of Universal Grammar (UG) in the ESL/EFL Classroom

    ERIC Educational Resources Information Center

    Kirkwold, Lorne O.

    2007-01-01

    The article proposes Stern's (1983) framework for classifying issues related to instruction in order to ascertain the relevance of Universal Grammar (UG) in the ESL/EFL classroom. Discussed in this article, particularly as UG pertains to them, are issues related to: (a) L1 transfer; (b) teaching rules and giving error correction versus presenting…

  16. 10 CFR 824.11 - Rights of the person at the hearing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Rights of the person at the hearing. 824.11 Section 824.11 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.11 Rights of the person at the hearing. The person may: (a) Testify or...

  17. 10 CFR 824.11 - Rights of the person at the hearing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Rights of the person at the hearing. 824.11 Section 824.11 Energy DEPARTMENT OF ENERGY PROCEDURAL RULES FOR THE ASSESSMENT OF CIVIL PENALTIES FOR CLASSIFIED INFORMATION SECURITY VIOLATIONS § 824.11 Rights of the person at the hearing. The person may: (a) Testify or...

  18. 76 FR 40798 - Antidrug and Alcohol Misuse Prevention Programs for Personnel Engaged in Specified Aviation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-12

    ... includes contractors and subcontractors. Contracting companies have two testing options: Option one is for... case today and as such, there are no alternatives to the final rule that could have been considered and... stations would be classified as small business under NAICS 488180, the FAA reviewed a recent study...

  19. 32 CFR 1630.17 - Class 1-O-S: Conscientious objector to all military service (separated).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 1-O-S: Conscientious objector to all... National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.17 Class 1-O-S: Conscientious... and noncombatant training and service in the Armed Forces shall be classified in Class 1-O-S unless...

  20. 32 CFR 1630.16 - Class 1-O: Conscientious objector to all military service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Class 1-O: Conscientious objector to all... SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.16 Class 1-O: Conscientious objector to all military... and service in the Armed Forces shall be classified in Class 1-O. (b) Upon the written request of the...

Top