Automated visualization of rule-based models
Tapia, Jose-Juan; Faeder, James R.
2017-01-01
Frameworks such as BioNetGen, Kappa and Simmune use “reaction rules” to specify biochemical interactions compactly, where each rule specifies a mechanism such as binding or phosphorylation and its structural requirements. Current rule-based models of signaling pathways have tens to hundreds of rules, and these numbers are expected to increase as more molecule types and pathways are added. Visual representations are critical for conveying rule-based models, but current approaches to show rules and interactions between rules scale poorly with model size. Also, inferring design motifs that emerge from biochemical interactions is an open problem, so current approaches to visualize model architecture rely on manual interpretation of the model. Here, we present three new visualization tools that constitute an automated visualization framework for rule-based models: (i) a compact rule visualization that efficiently displays each rule, (ii) the atom-rule graph that conveys regulatory interactions in the model as a bipartite network, and (iii) a tunable compression pipeline that incorporates expert knowledge and produces compact diagrams of model architecture when applied to the atom-rule graph. The compressed graphs convey network motifs and architectural features useful for understanding both small and large rule-based models, as we show by application to specific examples. Our tools also produce more readable diagrams than current approaches, as we show by comparing visualizations of 27 published models using standard graph metrics. We provide an implementation in the open source and freely available BioNetGen framework, but the underlying methods are general and can be applied to rule-based models from the Kappa and Simmune frameworks also. We expect that these tools will promote communication and analysis of rule-based models and their eventual integration into comprehensive whole-cell models. PMID:29131816
RuleMonkey: software for stochastic simulation of rule-based models
2010-01-01
Background The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems. Results Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods. Conclusions RuleMonkey enables the simulation of rule-based models for which the underlying reaction networks are large. It is typically faster than DYNSTOC for benchmark problems that we have examined. RuleMonkey is freely available as a stand-alone application http://public.tgen.org/rulemonkey. It is also available as a simulation engine within GetBonNie, a web-based environment for building, analyzing and sharing rule-based models. PMID:20673321
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil
2016-03-15
Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. The annotation ontology for rule-based models can be found at http://purl.org/rbm/rbmo The krdf tool and associated executable examples are available at http://purl.org/rbm/rbmo/krdf anil.wipat@newcastle.ac.uk or vdanos@inf.ed.ac.uk. © The Author 2015. Published by Oxford University Press.
NASA Technical Reports Server (NTRS)
Nieten, Joseph L.; Seraphine, Kathleen M.
1991-01-01
Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.
Extending rule-based methods to model molecular geometry and 3D model resolution.
Hoard, Brittany; Jacobson, Bruna; Manavi, Kasra; Tapia, Lydia
2016-08-01
Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models quantify the variation in aggregate size that results from differences in molecular geometry and from model resolution.
A logical model of cooperating rule-based systems
NASA Technical Reports Server (NTRS)
Bailin, Sidney C.; Moore, John M.; Hilberg, Robert H.; Murphy, Elizabeth D.; Bahder, Shari A.
1989-01-01
A model is developed to assist in the planning, specification, development, and verification of space information systems involving distributed rule-based systems. The model is based on an analysis of possible uses of rule-based systems in control centers. This analysis is summarized as a data-flow model for a hypothetical intelligent control center. From this data-flow model, the logical model of cooperating rule-based systems is extracted. This model consists of four layers of increasing capability: (1) communicating agents, (2) belief-sharing knowledge sources, (3) goal-sharing interest areas, and (4) task-sharing job roles.
Models of Quantitative Estimations: Rule-Based and Exemplar-Based Processes Compared
ERIC Educational Resources Information Center
von Helversen, Bettina; Rieskamp, Jorg
2009-01-01
The cognitive processes underlying quantitative estimations vary. Past research has identified task-contingent changes between rule-based and exemplar-based processes (P. Juslin, L. Karlsson, & H. Olsson, 2008). B. von Helversen and J. Rieskamp (2008), however, proposed a simple rule-based model--the mapping model--that outperformed the…
A two-stage stochastic rule-based model to determine pre-assembly buffer content
NASA Astrophysics Data System (ADS)
Gunay, Elif Elcin; Kula, Ufuk
2018-01-01
This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decides the spare vehicle quantities, where the second stage model recovers the scrambled sequence respect to pre-defined rules. The problem is solved by sample average approximation (SAA) algorithm. We conduct a numerical study to compare the solutions of heuristic model with optimal ones and provide following insights: (i) as the mismatch between paint entrance and scheduled sequence decreases, the rule-based heuristic model recovers the scrambled sequence as good as the optimal resequencing model, (ii) the rule-based model is more sensitive to the mismatch between the paint entrance and scheduled sequences for recovering the scrambled sequence, (iii) as the defect rate increases, the difference in recovery effectiveness between rule-based heuristic and optimal solutions increases, (iv) as buffer capacity increases, the recovery effectiveness of the optimization model outperforms heuristic model, (v) as expected the rule-based model holds more inventory than the optimization model.
Association Rule-based Predictive Model for Machine Failure in Industrial Internet of Things
NASA Astrophysics Data System (ADS)
Kwon, Jung-Hyok; Lee, Sol-Bee; Park, Jaehoon; Kim, Eui-Jik
2017-09-01
This paper proposes an association rule-based predictive model for machine failure in industrial Internet of things (IIoT), which can accurately predict the machine failure in real manufacturing environment by investigating the relationship between the cause and type of machine failure. To develop the predictive model, we consider three major steps: 1) binarization, 2) rule creation, 3) visualization. The binarization step translates item values in a dataset into one or zero, then the rule creation step creates association rules as IF-THEN structures using the Lattice model and Apriori algorithm. Finally, the created rules are visualized in various ways for users’ understanding. An experimental implementation was conducted using R Studio version 3.3.2. The results show that the proposed predictive model realistically predicts machine failure based on association rules.
Significance testing of rules in rule-based models of human problem solving
NASA Technical Reports Server (NTRS)
Lewis, C. M.; Hammer, J. M.
1986-01-01
Rule-based models of human problem solving have typically not been tested for statistical significance. Three methods of testing rules - analysis of variance, randomization, and contingency tables - are presented. Advantages and disadvantages of the methods are also described.
A hybrid learning method for constructing compact rule-based fuzzy models.
Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W
2013-12-01
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
Rules based process window OPC
NASA Astrophysics Data System (ADS)
O'Brien, Sean; Soper, Robert; Best, Shane; Mason, Mark
2008-03-01
As a preliminary step towards Model-Based Process Window OPC we have analyzed the impact of correcting post-OPC layouts using rules based methods. Image processing on the Brion Tachyon was used to identify sites where the OPC model/recipe failed to generate an acceptable solution. A set of rules for 65nm active and poly were generated by classifying these failure sites. The rules were based upon segment runlengths, figure spaces, and adjacent figure widths. 2.1 million sites for active were corrected in a small chip (comparing the pre and post rules based operations), and 59 million were found at poly. Tachyon analysis of the final reticle layout found weak margin sites distinct from those sites repaired by rules-based corrections. For the active layer more than 75% of the sites corrected by rules would have printed without a defect indicating that most rulesbased cleanups degrade the lithographic pattern. Some sites were missed by the rules based cleanups due to either bugs in the DRC software or gaps in the rules table. In the end dramatic changes to the reticle prevented catastrophic lithography errors, but this method is far too blunt. A more subtle model-based procedure is needed changing only those sites which have unsatisfactory lithographic margin.
Movement rules for individual-based models of stream fish
Steven F. Railsback; Roland H. Lamberson; Bret C. Harvey; Walter E. Duffy
1999-01-01
Abstract - Spatially explicit individual-based models (IBMs) use movement rules to determine when an animal departs its current location and to determine its movement destination; these rules are therefore critical to accurate simulations. Movement rules typically define some measure of how an individual's expected fitness varies among locations, under the...
One Giant Leap for Categorizers: One Small Step for Categorization Theory
Smith, J. David; Ell, Shawn W.
2015-01-01
We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so. PMID:26332587
Connecting clinical and actuarial prediction with rule-based methods.
Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H
2015-06-01
Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (c) 2015 APA, all rights reserved).
Investigation of model-based physical design restrictions (Invited Paper)
NASA Astrophysics Data System (ADS)
Lucas, Kevin; Baron, Stanislas; Belledent, Jerome; Boone, Robert; Borjon, Amandine; Couderc, Christophe; Patterson, Kyle; Riviere-Cazaux, Lionel; Rody, Yves; Sundermann, Frank; Toublan, Olivier; Trouiller, Yorick; Urbani, Jean-Christophe; Wimmer, Karl
2005-05-01
As lithography and other patterning processes become more complex and more non-linear with each generation, the task of physical design rules necessarily increases in complexity also. The goal of the physical design rules is to define the boundary between the physical layout structures which will yield well from those which will not. This is essentially a rule-based pre-silicon guarantee of layout correctness. However the rapid increase in design rule requirement complexity has created logistical problems for both the design and process functions. Therefore, similar to the semiconductor industry's transition from rule-based to model-based optical proximity correction (OPC) due to increased patterning complexity, opportunities for improving physical design restrictions by implementing model-based physical design methods are evident. In this paper we analyze the possible need and applications for model-based physical design restrictions (MBPDR). We first analyze the traditional design rule evolution, development and usage methodologies for semiconductor manufacturers. Next we discuss examples of specific design rule challenges requiring new solution methods in the patterning regime of low K1 lithography and highly complex RET. We then evaluate possible working strategies for MBPDR in the process development and product design flows, including examples of recent model-based pre-silicon verification techniques. Finally we summarize with a proposed flow and key considerations for MBPDR implementation.
Chylek, Lily A.; Harris, Leonard A.; Tung, Chang-Shung; Faeder, James R.; Lopez, Carlos F.
2013-01-01
Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and post-translational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation). PMID:24123887
The research of selection model based on LOD in multi-scale display of electronic map
NASA Astrophysics Data System (ADS)
Zhang, Jinming; You, Xiong; Liu, Yingzhen
2008-10-01
This paper proposes a selection model based on LOD to aid the display of electronic map. The ratio of display scale to map scale is regarded as a LOD operator. The categorization rule, classification rule, elementary rule and spatial geometry character rule of LOD operator setting are also concluded.
Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems
Stover, Lori J.; Nair, Niketh S.; Faeder, James R.
2014-01-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269
Exact hybrid particle/population simulation of rule-based models of biochemical systems.
Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R
2014-04-01
Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.
GraDit: graph-based data repair algorithm for multiple data edits rule violations
NASA Astrophysics Data System (ADS)
Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.
2018-03-01
Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
Hybrid modeling of nitrate fate in large catchments using fuzzy-rules
NASA Astrophysics Data System (ADS)
van der Heijden, Sven; Haberlandt, Uwe
2010-05-01
Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without problem, while the module assembly does not have to be modified. Apart from the concept of hybrid metamodeling first results are presented for the fuzzy-module for nitrate passage through the unsaturated zone.
Research on complex 3D tree modeling based on L-system
NASA Astrophysics Data System (ADS)
Gang, Chen; Bin, Chen; Yuming, Liu; Hui, Li
2018-03-01
L-system as a fractal iterative system could simulate complex geometric patterns. Based on the field observation data of trees and knowledge of forestry experts, this paper extracted modeling constraint rules and obtained an L-system rules set. Using the self-developed L-system modeling software the L-system rule set was parsed to generate complex tree 3d models.The results showed that the geometrical modeling method based on l-system could be used to describe the morphological structure of complex trees and generate 3D tree models.
Hofman, Abe D.; Visser, Ingmar; Jansen, Brenda R. J.; van der Maas, Han L. J.
2015-01-01
We propose and test three statistical models for the analysis of children’s responses to the balance scale task, a seminal task to study proportional reasoning. We use a latent class modelling approach to formulate a rule-based latent class model (RB LCM) following from a rule-based perspective on proportional reasoning and a new statistical model, the Weighted Sum Model, following from an information-integration approach. Moreover, a hybrid LCM using item covariates is proposed, combining aspects of both a rule-based and information-integration perspective. These models are applied to two different datasets, a standard paper-and-pencil test dataset (N = 779), and a dataset collected within an online learning environment that included direct feedback, time-pressure, and a reward system (N = 808). For the paper-and-pencil dataset the RB LCM resulted in the best fit, whereas for the online dataset the hybrid LCM provided the best fit. The standard paper-and-pencil dataset yielded more evidence for distinct solution rules than the online data set in which quantitative item characteristics are more prominent in determining responses. These results shed new light on the discussion on sequential rule-based and information-integration perspectives of cognitive development. PMID:26505905
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.
Rule-based modeling with Virtual Cell
Schaff, James C.; Vasilescu, Dan; Moraru, Ion I.; Loew, Leslie M.; Blinov, Michael L.
2016-01-01
Summary: Rule-based modeling is invaluable when the number of possible species and reactions in a model become too large to allow convenient manual specification. The popular rule-based software tools BioNetGen and NFSim provide powerful modeling and simulation capabilities at the cost of learning a complex scripting language which is used to specify these models. Here, we introduce a modeling tool that combines new graphical rule-based model specification with existing simulation engines in a seamless way within the familiar Virtual Cell (VCell) modeling environment. A mathematical model can be built integrating explicit reaction networks with reaction rules. In addition to offering a large choice of ODE and stochastic solvers, a model can be simulated using a network free approach through the NFSim simulation engine. Availability and implementation: Available as VCell (versions 6.0 and later) at the Virtual Cell web site (http://vcell.org/). The application installs and runs on all major platforms and does not require registration for use on the user’s computer. Tutorials are available at the Virtual Cell website and Help is provided within the software. Source code is available at Sourceforge. Contact: vcell_support@uchc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27497444
NASA Astrophysics Data System (ADS)
Seoud, Ahmed; Kim, Juhwan; Ma, Yuansheng; Jayaram, Srividya; Hong, Le; Chae, Gyu-Yeol; Lee, Jeong-Woo; Park, Dae-Jin; Yune, Hyoung-Soon; Oh, Se-Young; Park, Chan-Ha
2018-03-01
Sub-resolution assist feature (SRAF) insertion techniques have been effectively used for a long time now to increase process latitude in the lithography patterning process. Rule-based SRAF and model-based SRAF are complementary solutions, and each has its own benefits, depending on the objectives of applications and the criticality of the impact on manufacturing yield, efficiency, and productivity. Rule-based SRAF provides superior geometric output consistency and faster runtime performance, but the associated recipe development time can be of concern. Model-based SRAF provides better coverage for more complicated pattern structures in terms of shapes and sizes, with considerably less time required for recipe development, although consistency and performance may be impacted. In this paper, we introduce a new model-assisted template extraction (MATE) SRAF solution, which employs decision tree learning in a model-based solution to provide the benefits of both rule-based and model-based SRAF insertion approaches. The MATE solution is designed to automate the creation of rules/templates for SRAF insertion, and is based on the SRAF placement predicted by model-based solutions. The MATE SRAF recipe provides optimum lithographic quality in relation to various manufacturing aspects in a very short time, compared to traditional methods of rule optimization. Experiments were done using memory device pattern layouts to compare the MATE solution to existing model-based SRAF and pixelated SRAF approaches, based on lithographic process window quality, runtime performance, and geometric output consistency.
A Bayesian model averaging method for the derivation of reservoir operating rules
NASA Astrophysics Data System (ADS)
Zhang, Jingwen; Liu, Pan; Wang, Hao; Lei, Xiaohui; Zhou, Yanlai
2015-09-01
Because the intrinsic dynamics among optimal decision making, inflow processes and reservoir characteristics are complex, functional forms of reservoir operating rules are always determined subjectively. As a result, the uncertainty of selecting form and/or model involved in reservoir operating rules must be analyzed and evaluated. In this study, we analyze the uncertainty of reservoir operating rules using the Bayesian model averaging (BMA) model. Three popular operating rules, namely piecewise linear regression, surface fitting and a least-squares support vector machine, are established based on the optimal deterministic reservoir operation. These individual models provide three-member decisions for the BMA combination, enabling the 90% release interval to be estimated by the Markov Chain Monte Carlo simulation. A case study of China's the Baise reservoir shows that: (1) the optimal deterministic reservoir operation, superior to any reservoir operating rules, is used as the samples to derive the rules; (2) the least-squares support vector machine model is more effective than both piecewise linear regression and surface fitting; (3) BMA outperforms any individual model of operating rules based on the optimal trajectories. It is revealed that the proposed model can reduce the uncertainty of operating rules, which is of great potential benefit in evaluating the confidence interval of decisions.
Simulation of large-scale rule-based models
Colvin, Joshua; Monine, Michael I.; Faeder, James R.; Hlavacek, William S.; Von Hoff, Daniel D.; Posner, Richard G.
2009-01-01
Motivation: Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. Results: DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein–protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of StochSim. DYNSTOC differs from StochSim by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. Availability: DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at http://public.tgen.org/dynstoc/. Contact: dynstoc@tgen.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19213740
Predicting Mycobacterium tuberculosis Complex Clades Using Knowledge-Based Bayesian Networks
Bennett, Kristin P.
2014-01-01
We develop a novel approach for incorporating expert rules into Bayesian networks for classification of Mycobacterium tuberculosis complex (MTBC) clades. The proposed knowledge-based Bayesian network (KBBN) treats sets of expert rules as prior distributions on the classes. Unlike prior knowledge-based support vector machine approaches which require rules expressed as polyhedral sets, KBBN directly incorporates the rules without any modification. KBBN uses data to refine rule-based classifiers when the rule set is incomplete or ambiguous. We develop a predictive KBBN model for 69 MTBC clades found in the SITVIT international collection. We validate the approach using two testbeds that model knowledge of the MTBC obtained from two different experts and large DNA fingerprint databases to predict MTBC genetic clades and sublineages. These models represent strains of MTBC using high-throughput biomarkers called spacer oligonucleotide types (spoligotypes), since these are routinely gathered from MTBC isolates of tuberculosis (TB) patients. Results show that incorporating rules into problems can drastically increase classification accuracy if data alone are insufficient. The SITVIT KBBN is publicly available for use on the World Wide Web. PMID:24864238
NASA Astrophysics Data System (ADS)
Jun, Jinhyuck; Park, Minwoo; Park, Chanha; Yang, Hyunjo; Yim, Donggyu; Do, Munhoe; Lee, Dongchan; Kim, Taehoon; Choi, Junghoe; Luk-Pat, Gerard; Miloslavsky, Alex
2015-03-01
As the industry pushes to ever more complex illumination schemes to increase resolution for next generation memory and logic circuits, sub-resolution assist feature (SRAF) placement requirements become increasingly severe. Therefore device manufacturers are evaluating improvements in SRAF placement algorithms which do not sacrifice main feature (MF) patterning capability. There are known-well several methods to generate SRAF such as Rule based Assist Features (RBAF), Model Based Assist Features (MBAF) and Hybrid Assisted Features combining features of the different algorithms using both RBAF and MBAF. Rule Based Assist Features (RBAF) continue to be deployed, even with the availability of Model Based Assist Features (MBAF) and Inverse Lithography Technology (ILT). Certainly for the 3x nm node, and even at the 2x nm nodes and lower, RBAF is used because it demands less run time and provides better consistency. Since RBAF is needed now and in the future, what is also needed is a faster method to create the AF rule tables. The current method typically involves making masks and printing wafers that contain several experiments, varying the main feature configurations, AF configurations, dose conditions, and defocus conditions - this is a time consuming and expensive process. In addition, as the technology node shrinks, wafer process changes and source shape redesigns occur more frequently, escalating the cost of rule table creation. Furthermore, as the demand on process margin escalates, there is a greater need for multiple rule tables: each tailored to a specific set of main-feature configurations. Model Assisted Rule Tables(MART) creates a set of test patterns, and evaluates the simulated CD at nominal conditions, defocused conditions and off-dose conditions. It also uses lithographic simulation to evaluate the likelihood of AF printing. It then analyzes the simulation data to automatically create AF rule tables. It means that analysis results display the cost of different AF configurations as the space grows between a pair of main features. In summary, model based rule tables method is able to make it much easier to create rule tables, leading to faster rule-table creation and a lower barrier to the creation of more rule tables.
1991-02-01
3 2.2 Hybrid Rule/Fact Schemas .............................................................. 3 3 THE LIMITATIONS OF RULE BASED KNOWLEDGE...or hybrid rule/fact schemas. 2 UNCLASSIFIED .WA UNCLASSIFIED ERL-0520-RR 2.1 Propositional Logic The simplest form of production-rules are based upon...requirements which may lead to poor system performance. 2.2 Hybrid Rule/Fact Schemas Hybrid rule/fact relationships (also known as Predicate Calculus ) have
A fuzzy hill-climbing algorithm for the development of a compact associative classifier
NASA Astrophysics Data System (ADS)
Mitra, Soumyaroop; Lam, Sarah S.
2012-02-01
Classification, a data mining technique, has widespread applications including medical diagnosis, targeted marketing, and others. Knowledge discovery from databases in the form of association rules is one of the important data mining tasks. An integrated approach, classification based on association rules, has drawn the attention of the data mining community over the last decade. While attention has been mainly focused on increasing classifier accuracies, not much efforts have been devoted towards building interpretable and less complex models. This paper discusses the development of a compact associative classification model using a hill-climbing approach and fuzzy sets. The proposed methodology builds the rule-base by selecting rules which contribute towards increasing training accuracy, thus balancing classification accuracy with the number of classification association rules. The results indicated that the proposed associative classification model can achieve competitive accuracies on benchmark datasets with continuous attributes and lend better interpretability, when compared with other rule-based systems.
Modeling for (physical) biologists: an introduction to the rule-based approach
Chylek, Lily A; Harris, Leonard A; Faeder, James R; Hlavacek, William S
2015-01-01
Models that capture the chemical kinetics of cellular regulatory networks can be specified in terms of rules for biomolecular interactions. A rule defines a generalized reaction, meaning a reaction that permits multiple reactants, each capable of participating in a characteristic transformation and each possessing certain, specified properties, which may be local, such as the state of a particular site or domain of a protein. In other words, a rule defines a transformation and the properties that reactants must possess to participate in the transformation. A rule also provides a rate law. A rule-based approach to modeling enables consideration of mechanistic details at the level of functional sites of biomolecules and provides a facile and visual means for constructing computational models, which can be analyzed to study how system-level behaviors emerge from component interactions. PMID:26178138
Infrared small target detection based on Danger Theory
NASA Astrophysics Data System (ADS)
Lan, Jinhui; Yang, Xiao
2009-11-01
To solve the problem that traditional method can't detect the small objects whose local SNR is less than 2 in IR images, a Danger Theory-based model to detect infrared small target is presented in this paper. First, on the analog with immunology, the definition is given, in this paper, to such terms as dangerous signal, antigens, APC, antibodies. Besides, matching rule between antigen and antibody is improved. Prior to training the detection model and detecting the targets, the IR images are processed utilizing adaptive smooth filter to decrease the stochastic noise. Then at the training process, deleting rule, generating rule, crossover rule and the mutation rule are established after a large number of experiments in order to realize immediate convergence and obtain good antibodies. The Danger Theory-based model is built after the training process, and this model can detect the target whose local SNR is only 1.5.
Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules
NASA Astrophysics Data System (ADS)
Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.
Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.
An XML-Based Manipulation and Query Language for Rule-Based Information
NASA Astrophysics Data System (ADS)
Mansour, Essam; Höpfner, Hagen
Rules are utilized to assist in the monitoring process that is required in activities, such as disease management and customer relationship management. These rules are specified according to the application best practices. Most of research efforts emphasize on the specification and execution of these rules. Few research efforts focus on managing these rules as one object that has a management life-cycle. This paper presents our manipulation and query language that is developed to facilitate the maintenance of this object during its life-cycle and to query the information contained in this object. This language is based on an XML-based model. Furthermore, we evaluate the model and language using a prototype system applied to a clinical case study.
Developing a Learning Progression for Number Sense Based on the Rule Space Model in China
ERIC Educational Resources Information Center
Chen, Fu; Yan, Yue; Xin, Tao
2017-01-01
The current study focuses on developing the learning progression of number sense for primary school students, and it applies a cognitive diagnostic model, the rule space model, to data analysis. The rule space model analysis firstly extracted nine cognitive attributes and their hierarchy model from the analysis of previous research and the…
Engineers' Non-Scientific Models in Technology Education
ERIC Educational Resources Information Center
Norstrom, Per
2013-01-01
Engineers commonly use rules, theories and models that lack scientific justification. Examples include rules of thumb based on experience, but also models based on obsolete science or folk theories. Centrifugal forces, heat and cold as substances, and sucking vacuum all belong to the latter group. These models contradict scientific knowledge, but…
Developing a modular architecture for creation of rule-based clinical diagnostic criteria.
Hong, Na; Pathak, Jyotishman; Chute, Christopher G; Jiang, Guoqian
2016-01-01
With recent advances in computerized patient records system, there is an urgent need for producing computable and standards-based clinical diagnostic criteria. Notably, constructing rule-based clinical diagnosis criteria has become one of the goals in the International Classification of Diseases (ICD)-11 revision. However, few studies have been done in building a unified architecture to support the need for diagnostic criteria computerization. In this study, we present a modular architecture for enabling the creation of rule-based clinical diagnostic criteria leveraging Semantic Web technologies. The architecture consists of two modules: an authoring module that utilizes a standards-based information model and a translation module that leverages Semantic Web Rule Language (SWRL). In a prototype implementation, we created a diagnostic criteria upper ontology (DCUO) that integrates ICD-11 content model with the Quality Data Model (QDM). Using the DCUO, we developed a transformation tool that converts QDM-based diagnostic criteria into Semantic Web Rule Language (SWRL) representation. We evaluated the domain coverage of the upper ontology model using randomly selected diagnostic criteria from broad domains (n = 20). We also tested the transformation algorithms using 6 QDM templates for ontology population and 15 QDM-based criteria data for rule generation. As the results, the first draft of DCUO contains 14 root classes, 21 subclasses, 6 object properties and 1 data property. Investigation Findings, and Signs and Symptoms are the two most commonly used element types. All 6 HQMF templates are successfully parsed and populated into their corresponding domain specific ontologies and 14 rules (93.3 %) passed the rule validation. Our efforts in developing and prototyping a modular architecture provide useful insight into how to build a scalable solution to support diagnostic criteria representation and computerization.
An Intelligent Decision Support System for Workforce Forecast
2011-01-01
ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models
Das, Saptarshi; Pan, Indranil; Das, Shantanu; Gupta, Amitava
2012-03-01
Genetic algorithm (GA) has been used in this study for a new approach of suboptimal model reduction in the Nyquist plane and optimal time domain tuning of proportional-integral-derivative (PID) and fractional-order (FO) PI(λ)D(μ) controllers. Simulation studies show that the new Nyquist-based model reduction technique outperforms the conventional H(2)-norm-based reduced parameter modeling technique. With the tuned controller parameters and reduced-order model parameter dataset, optimum tuning rules have been developed with a test-bench of higher-order processes via genetic programming (GP). The GP performs a symbolic regression on the reduced process parameters to evolve a tuning rule which provides the best analytical expression to map the data. The tuning rules are developed for a minimum time domain integral performance index described by a weighted sum of error index and controller effort. From the reported Pareto optimal front of the GP-based optimal rule extraction technique, a trade-off can be made between the complexity of the tuning formulae and the control performance. The efficacy of the single-gene and multi-gene GP-based tuning rules has been compared with the original GA-based control performance for the PID and PI(λ)D(μ) controllers, handling four different classes of representative higher-order processes. These rules are very useful for process control engineers, as they inherit the power of the GA-based tuning methodology, but can be easily calculated without the requirement for running the computationally intensive GA every time. Three-dimensional plots of the required variation in PID/fractional-order PID (FOPID) controller parameters with reduced process parameters have been shown as a guideline for the operator. Parametric robustness of the reported GP-based tuning rules has also been shown with credible simulation examples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Yang, Jin; Hlavacek, William S.
2011-01-01
Rule-based models, which are typically formulated to represent cell signaling systems, can now be simulated via various network-free simulation methods. In a network-free method, reaction rates are calculated for rules that characterize molecular interactions, and these rule rates, which each correspond to the cumulative rate of all reactions implied by a rule, are used to perform a stochastic simulation of reaction kinetics. Network-free methods, which can be viewed as generalizations of Gillespie’s method, are so named because these methods do not require that a list of individual reactions implied by a set of rules be explicitly generated, which is a requirement of other methods for simulating rule-based models. This requirement is impractical for rule sets that imply large reaction networks (i.e., long lists of individual reactions), as reaction network generation is expensive. Here, we compare the network-free simulation methods implemented in RuleMonkey and NFsim, general-purpose software tools for simulating rule-based models encoded in the BioNetGen language. The method implemented in NFsim uses rejection sampling to correct overestimates of rule rates, which introduces null events (i.e., time steps that do not change the state of the system being simulated). The method implemented in RuleMonkey uses iterative updates to track rule rates exactly, which avoids null events. To ensure a fair comparison of the two methods, we developed implementations of the rejection and rejection-free methods specific to a particular class of kinetic models for multivalent ligand-receptor interactions. These implementations were written with the intention of making them as much alike as possible, minimizing the contribution of irrelevant coding differences to efficiency differences. Simulation results show that performance of the rejection method is equal to or better than that of the rejection-free method over wide parameter ranges. However, when parameter values are such that ligand-induced aggregation of receptors yields a large connected receptor cluster, the rejection-free method is more efficient. PMID:21832806
A Rational Analysis of Rule-Based Concept Learning
ERIC Educational Resources Information Center
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L.
2008-01-01
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry
NASA Astrophysics Data System (ADS)
Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao
2017-12-01
We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we developed 24 test items addressing the attributes of exothermic and endothermic reactions, chemical bonds and heat quantity change, reaction heat and enthalpy, thermochemical equations, and Hess's law. The test was administered to a sample base of 694 senior high school students taught in 3 schools across 2 cities. Results based on the Rule Space Model analysis indicated that (1) the test items developed by the Rule Space Model were of high psychometric quality for good analysis of difficulties, discriminations, reliabilities, and validities; (2) the Rule Space Model analysis classified the students into seven different attribute mastery patterns; and (3) the initial hypothesized learning progression was modified by the attribute mastery patterns and the learning paths to be more precise and detailed.
C code generation from Petri-net-based logic controller specification
NASA Astrophysics Data System (ADS)
Grobelny, Michał; Grobelna, Iwona; Karatkevich, Andrei
2017-08-01
The article focuses on programming of logic controllers. It is important that a programming code of a logic controller is executed flawlessly according to the primary specification. In the presented approach we generate C code for an AVR microcontroller from a rule-based logical model of a control process derived from a control interpreted Petri net. The same logical model is also used for formal verification of the specification by means of the model checking technique. The proposed rule-based logical model and formal rules of transformation ensure that the obtained implementation is consistent with the already verified specification. The approach is validated by practical experiments.
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
Promoter Sequences Prediction Using Relational Association Rule Mining
Czibula, Gabriela; Bocicor, Maria-Iuliana; Czibula, Istvan Gergely
2012-01-01
In this paper we are approaching, from a computational perspective, the problem of promoter sequences prediction, an important problem within the field of bioinformatics. As the conditions for a DNA sequence to function as a promoter are not known, machine learning based classification models are still developed to approach the problem of promoter identification in the DNA. We are proposing a classification model based on relational association rules mining. Relational association rules are a particular type of association rules and describe numerical orderings between attributes that commonly occur over a data set. Our classifier is based on the discovery of relational association rules for predicting if a DNA sequence contains or not a promoter region. An experimental evaluation of the proposed model and comparison with similar existing approaches is provided. The obtained results show that our classifier overperforms the existing techniques for identifying promoter sequences, confirming the potential of our proposal. PMID:22563233
NASA Astrophysics Data System (ADS)
Perreard, S.; Wildner, E.
1994-12-01
Many processes are controlled by experts using some kind of mental model to decide on actions and make conclusions. This model, based on heuristic knowledge, can often be represented by rules and does not have to be particularly accurate. Such is the case for the problem of conditioning high voltage RF cavities; the expert has to decide, by observing some criteria, whether to increase or to decrease the voltage and by how much. A program has been implemented which can be applied to a class of similar problems. The kernel of the program is a small rule base, which is independent of the kind of cavity. To model a specific cavity, we use fuzzy logic which is implemented as a separate routine called by the rule base, to translate from numeric to symbolic information.
Systematic reconstruction of TRANSPATH data into Cell System Markup Language
Nagasaki, Masao; Saito, Ayumu; Li, Chen; Jeong, Euna; Miyano, Satoru
2008-01-01
Background Many biological repositories store information based on experimental study of the biological processes within a cell, such as protein-protein interactions, metabolic pathways, signal transduction pathways, or regulations of transcription factors and miRNA. Unfortunately, it is difficult to directly use such information when generating simulation-based models. Thus, modeling rules for encoding biological knowledge into system-dynamics-oriented standardized formats would be very useful for fully understanding cellular dynamics at the system level. Results We selected the TRANSPATH database, a manually curated high-quality pathway database, which provides a plentiful source of cellular events in humans, mice, and rats, collected from over 31,500 publications. In this work, we have developed 16 modeling rules based on hybrid functional Petri net with extension (HFPNe), which is suitable for graphical representing and simulating biological processes. In the modeling rules, each Petri net element is incorporated with Cell System Ontology to enable semantic interoperability of models. As a formal ontology for biological pathway modeling with dynamics, CSO also defines biological terminology and corresponding icons. By combining HFPNe with the CSO features, it is possible to make TRANSPATH data to simulation-based and semantically valid models. The results are encoded into a biological pathway format, Cell System Markup Language (CSML), which eases the exchange and integration of biological data and models. Conclusion By using the 16 modeling rules, 97% of the reactions in TRANSPATH are converted into simulation-based models represented in CSML. This reconstruction demonstrates that it is possible to use our rules to generate quantitative models from static pathway descriptions. PMID:18570683
Systematic reconstruction of TRANSPATH data into cell system markup language.
Nagasaki, Masao; Saito, Ayumu; Li, Chen; Jeong, Euna; Miyano, Satoru
2008-06-23
Many biological repositories store information based on experimental study of the biological processes within a cell, such as protein-protein interactions, metabolic pathways, signal transduction pathways, or regulations of transcription factors and miRNA. Unfortunately, it is difficult to directly use such information when generating simulation-based models. Thus, modeling rules for encoding biological knowledge into system-dynamics-oriented standardized formats would be very useful for fully understanding cellular dynamics at the system level. We selected the TRANSPATH database, a manually curated high-quality pathway database, which provides a plentiful source of cellular events in humans, mice, and rats, collected from over 31,500 publications. In this work, we have developed 16 modeling rules based on hybrid functional Petri net with extension (HFPNe), which is suitable for graphical representing and simulating biological processes. In the modeling rules, each Petri net element is incorporated with Cell System Ontology to enable semantic interoperability of models. As a formal ontology for biological pathway modeling with dynamics, CSO also defines biological terminology and corresponding icons. By combining HFPNe with the CSO features, it is possible to make TRANSPATH data to simulation-based and semantically valid models. The results are encoded into a biological pathway format, Cell System Markup Language (CSML), which eases the exchange and integration of biological data and models. By using the 16 modeling rules, 97% of the reactions in TRANSPATH are converted into simulation-based models represented in CSML. This reconstruction demonstrates that it is possible to use our rules to generate quantitative models from static pathway descriptions.
Application of decision rules for empowering of Indonesian telematics services SMEs
NASA Astrophysics Data System (ADS)
Tosida, E. T.; Hairlangga, O.; Amirudin, F.; Ridwanah, M.
2018-03-01
The independence of the field of telematics became one of Indonesia's vision in 2024. One effort to achieve it can be done by empowering SMEs in the field of telematics. Empowerment carried out need a practical mechanism by utilizing data centered, including through the National Economic Census database (Susenas). Based on the Susenas can be formulated the decision rules of determining the provision of assistance for SMEs in the field of telematics. The way it did by generating the rule base through the classification technique. The CART algorithm-based decision rule model performs better than C45 and ID3 models. The high level of performance model is also in line with the regulations applied by the government. This becomes one of the strengths of research, because the resulting model is consistent with the existing conditions in Indonesia. The rules base generated from the three classification techniques show different rules. The CART technique has pattern matching with the realization of activities in The Ministry of Cooperatives and SMEs. So far, the government has difficulty in referring data related to the empowerment of SMEs telematics services. Therefore, the findings resulting from this research can be used as an alternative decision support system related to the program of empowerment of SMEs in telematics.
A Rule-Based Modeling for the Description of Flexible and Self-healing Business Processes
NASA Astrophysics Data System (ADS)
Boukhebouze, Mohamed; Amghar, Youssef; Benharkat, Aïcha-Nabila; Maamar, Zakaria
In this paper we discuss the importance of ensuring that business processes are label robust and agile at the same time robust and agile. To this end, we consider reviewing the way business processes are managed. For instance we consider offering a flexible way to model processes so that changes in regulations are handled through some self-healing mechanisms. These changes may raise exceptions at run-time if not properly reflected on these processes. To this end we propose a new rule based model that adopts the ECA rules and is built upon formal tools. The business logic of a process can be summarized with a set of rules that implement an organization’s policies. Each business rule is formalized using our ECAPE formalism (Event-Condition-Action-Post condition- post Event). This formalism allows translating a process into a graph of rules that is analyzed in terms of reliably and flexibility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delgoshaei, Parastoo; Austin, Mark A.; Pertzborn, Amanda J.
State-of-the-art building simulation control methods incorporate physical constraints into their mathematical models, but omit implicit constraints associated with policies of operation and dependency relationships among rules representing those constraints. To overcome these shortcomings, there is a recent trend in enabling the control strategies with inference-based rule checking capabilities. One solution is to exploit semantic web technologies in building simulation control. Such approaches provide the tools for semantic modeling of domains, and the ability to deduce new information based on the models through use of Description Logic (DL). In a step toward enabling this capability, this paper presents a cross-disciplinary data-drivenmore » control strategy for building energy management simulation that integrates semantic modeling and formal rule checking mechanisms into a Model Predictive Control (MPC) formulation. The results show that MPC provides superior levels of performance when initial conditions and inputs are derived from inference-based rules.« less
Speed-Accuracy Response Models: Scoring Rules Based on Response Time and Accuracy
ERIC Educational Resources Information Center
Maris, Gunter; van der Maas, Han
2012-01-01
Starting from an explicit scoring rule for time limit tasks incorporating both response time and accuracy, and a definite trade-off between speed and accuracy, a response model is derived. Since the scoring rule is interpreted as a sufficient statistic, the model belongs to the exponential family. The various marginal and conditional distributions…
NASA Astrophysics Data System (ADS)
Macian-Sorribes, Hector; Pulido-Velazquez, Manuel
2013-04-01
Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total water stored in the reservoirs) and the month of the year as inputs; and the demand deliveries as outputs. The developed simulation management model integrates the fuzzy-ruled system of the operation of the two main reservoirs of the basin with the corresponding mass balance equations, the physical or boundary conditions and the water allocation rules among the competing demands. Historical information on inflow time series is used as inputs to the model simulation, being trained and validated using historical information on reservoir storage level and flow in several streams of the Mijares river. This methodology provides a more flexible and close to real policies approach. The model is easy to develop and to understand due to its rule-based structure, which mimics the human way of thinking. This can improve cooperation and negotiation between managers, decision-makers and stakeholders. The approach can be also applied to analyze the historical operation of the reservoir (what we have called a reservoir operation "audit").
A Data Stream Model For Runoff Simulation In A Changing Environment
NASA Astrophysics Data System (ADS)
Yang, Q.; Shao, J.; Zhang, H.; Wang, G.
2017-12-01
Runoff simulation is of great significance for water engineering design, water disaster control, water resources planning and management in a catchment or region. A large number of methods including concept-based process-driven models and statistic-based data-driven models, have been proposed and widely used in worldwide during past decades. Most existing models assume that the relationship among runoff and its impacting factors is stationary. However, in the changing environment (e.g., climate change, human disturbance), their relationship usually evolves over time. In this study, we propose a data stream model for runoff simulation in a changing environment. Specifically, the proposed model works in three steps: learning a rule set, expansion of a rule, and simulation. The first step is to initialize a rule set. When a new observation arrives, the model will check which rule covers it and then use the rule for simulation. Meanwhile, Page-Hinckley (PH) change detection test is used to monitor the online simulation error of each rule. If a change is detected, the corresponding rule is removed from the rule set. In the second step, for each rule, if it covers more than a given number of instance, the rule is expected to expand. In the third step, a simulation model of each leaf node is learnt with a perceptron without activation function, and is updated with adding a newly incoming observation. Taking Fuxi River catchment as a case study, we applied the model to simulate the monthly runoff in the catchment. Results show that abrupt change is detected in the year of 1997 by using the Page-Hinckley change detection test method, which is consistent with the historic record of flooding. In addition, the model achieves good simulation results with the RMSE of 13.326, and outperforms many established methods. The findings demonstrated that the proposed data stream model provides a promising way to simulate runoff in a changing environment.
Spatial Rule-Based Modeling: A Method and Its Application to the Human Mitotic Kinetochore
Ibrahim, Bashar; Henze, Richard; Gruenert, Gerd; Egbert, Matthew; Huwald, Jan; Dittrich, Peter
2013-01-01
A common problem in the analysis of biological systems is the combinatorial explosion that emerges from the complexity of multi-protein assemblies. Conventional formalisms, like differential equations, Boolean networks and Bayesian networks, are unsuitable for dealing with the combinatorial explosion, because they are designed for a restricted state space with fixed dimensionality. To overcome this problem, the rule-based modeling language, BioNetGen, and the spatial extension, SRSim, have been developed. Here, we describe how to apply rule-based modeling to integrate experimental data from different sources into a single spatial simulation model and how to analyze the output of that model. The starting point for this approach can be a combination of molecular interaction data, reaction network data, proximities, binding and diffusion kinetics and molecular geometries at different levels of detail. We describe the technique and then use it to construct a model of the human mitotic inner and outer kinetochore, including the spindle assembly checkpoint signaling pathway. This allows us to demonstrate the utility of the procedure, show how a novel perspective for understanding such complex systems becomes accessible and elaborate on challenges that arise in the formulation, simulation and analysis of spatial rule-based models. PMID:24709796
Saraiva, Renata M; Bezerra, João; Perkusich, Mirko; Almeida, Hyggo; Siebra, Clauirton
2015-01-01
Recently there has been an increasing interest in applying information technology to support the diagnosis of diseases such as cancer. In this paper, we present a hybrid approach using case-based reasoning (CBR) and rule-based reasoning (RBR) to support cancer diagnosis. We used symptoms, signs, and personal information from patients as inputs to our model. To form specialized diagnoses, we used rules to define the input factors' importance according to the patient's characteristics. The model's output presents the probability of the patient having a type of cancer. To carry out this research, we had the approval of the ethics committee at Napoleão Laureano Hospital, in João Pessoa, Brazil. To define our model's cases, we collected real patient data at Napoleão Laureano Hospital. To define our model's rules and weights, we researched specialized literature and interviewed health professional. To validate our model, we used K-fold cross validation with the data collected at Napoleão Laureano Hospital. The results showed that our approach is an effective CBR system to diagnose cancer.
Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.
Pasquier, M; Quek, C; Toh, M
2001-10-01
This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.
Hierarchical graphs for rule-based modeling of biochemical systems
2011-01-01
Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models, such as the BioNetGen language (BNGL). Thus, the proposed use of hierarchical graphs should promote clarity and better understanding of rule-based models. PMID:21288338
NASA Astrophysics Data System (ADS)
Colasante, Annarita
2017-02-01
This paper presents an investigation about cooperation in a Public Good Game using an Agent Based Model calibrated on experimental data. Starting from the experiment proposed in Colasante and Russo (2016), we analyze the dynamic of cooperation in a Public Good Game where agents receive an heterogeneous income and choose both the level of contribution and the distribution rule. The starting point is the calibration and the output validation of the model using the experimental results. Once tested the goodness of fit of the Agent Based Model, we run some policy experiment in order to verify how each distribution rule, i.e. equidistribution, proportional to contribution and progressive, affects the level of contribution in the simulated model. We find out that the share of cooperators decreases over time if we exogenously set the equidistribution rule. On the contrary, the share of cooperators converges to 100 % if we impose the progressive rule. Finally, the most interesting result refers to the effect of the progressive rule. We observe that, in the case of high inequality, this rule is not able to reduce the heterogeneity of income.
Choice Rules and Accumulator Networks
2015-01-01
This article presents a preference accumulation model that can be used to implement a number of different multi-attribute heuristic choice rules, including the lexicographic rule, the majority of confirming dimensions (tallying) rule and the equal weights rule. The proposed model differs from existing accumulators in terms of attribute representation: Leakage and competition, typically applied only to preference accumulation, are also assumed to be involved in processing attribute values. This allows the model to perform a range of sophisticated attribute-wise comparisons, including comparisons that compute relative rank. The ability of a preference accumulation model composed of leaky competitive networks to mimic symbolic models of heuristic choice suggests that these 2 approaches are not incompatible, and that a unitary cognitive model of preferential choice, based on insights from both these approaches, may be feasible. PMID:28670592
Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models
2017-01-01
We describe a fully data driven model that learns to perform a retrosynthetic reaction prediction task, which is treated as a sequence-to-sequence mapping problem. The end-to-end trained model has an encoder–decoder architecture that consists of two recurrent neural networks, which has previously shown great success in solving other sequence-to-sequence prediction tasks such as machine translation. The model is trained on 50,000 experimental reaction examples from the United States patent literature, which span 10 broad reaction types that are commonly used by medicinal chemists. We find that our model performs comparably with a rule-based expert system baseline model, and also overcomes certain limitations associated with rule-based expert systems and with any machine learning approach that contains a rule-based expert system component. Our model provides an important first step toward solving the challenging problem of computational retrosynthetic analysis. PMID:29104927
ALC: automated reduction of rule-based models
Koschorreck, Markus; Gilles, Ernst Dieter
2008-01-01
Background Combinatorial complexity is a challenging problem for the modeling of cellular signal transduction since the association of a few proteins can give rise to an enormous amount of feasible protein complexes. The layer-based approach is an approximative, but accurate method for the mathematical modeling of signaling systems with inherent combinatorial complexity. The number of variables in the simulation equations is highly reduced and the resulting dynamic models show a pronounced modularity. Layer-based modeling allows for the modeling of systems not accessible previously. Results ALC (Automated Layer Construction) is a computer program that highly simplifies the building of reduced modular models, according to the layer-based approach. The model is defined using a simple but powerful rule-based syntax that supports the concepts of modularity and macrostates. ALC performs consistency checks on the model definition and provides the model output in different formats (C MEX, MATLAB, Mathematica and SBML) as ready-to-run simulation files. ALC also provides additional documentation files that simplify the publication or presentation of the models. The tool can be used offline or via a form on the ALC website. Conclusion ALC allows for a simple rule-based generation of layer-based reduced models. The model files are given in different formats as ready-to-run simulation files. PMID:18973705
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
...The United States Patent and Trademark Office (Office or USPTO) is adopting the new USPTO Rules of Professional Conduct (USPTO Rules), which are based on the American Bar Association's (ABA) Model Rules of Professional Conduct (ABA Model Rules), which were published in 1983, substantially revised in 2003 and updated through 2012. The Office has also revised the existing procedural rules governing disciplinary investigations and proceedings. These changes will enable the Office to better protect the public while also providing practitioners with substantially uniform disciplinary rules across multiple jurisdictions.
Modeling reliability measurement of interface on information system: Towards the forensic of rules
NASA Astrophysics Data System (ADS)
Nasution, M. K. M.; Sitompul, Darwin; Harahap, Marwan
2018-02-01
Today almost all machines depend on the software. As a software and hardware system depends also on the rules that are the procedures for its use. If the procedure or program can be reliably characterized by involving the concept of graph, logic, and probability, then regulatory strength can also be measured accordingly. Therefore, this paper initiates an enumeration model to measure the reliability of interfaces based on the case of information systems supported by the rules of use by the relevant agencies. An enumeration model is obtained based on software reliability calculation.
NASA Astrophysics Data System (ADS)
Hu, Yao; Quinn, Christopher J.; Cai, Ximing; Garfinkle, Noah W.
2017-11-01
For agent-based modeling, the major challenges in deriving agents' behavioral rules arise from agents' bounded rationality and data scarcity. This study proposes a "gray box" approach to address the challenge by incorporating expert domain knowledge (i.e., human intelligence) with machine learning techniques (i.e., machine intelligence). Specifically, we propose using directed information graph (DIG), boosted regression trees (BRT), and domain knowledge to infer causal factors and identify behavioral rules from data. A case study is conducted to investigate farmers' pumping behavior in the Midwest, U.S.A. Results show that four factors identified by the DIG algorithm- corn price, underlying groundwater level, monthly mean temperature and precipitation- have main causal influences on agents' decisions on monthly groundwater irrigation depth. The agent-based model is then developed based on the behavioral rules represented by three DIGs and modeled by BRTs, and coupled with a physically-based groundwater model to investigate the impacts of agents' pumping behavior on the underlying groundwater system in the context of coupled human and environmental systems.
A Cognitive Architecture for Human Performance Process Model Research
1992-11-01
individually defined, updatable world representation which is a description of the world as the operator knows it. It contains rules for decisions, an...operate it), and rules of engagement (knowledge about the operator’s expected behavior). The HPP model works in the following way. Information enters...based models depict the problem-solving processes of experts. The experts’ knowledge is represented in symbol structures, along with rules for
NASA Astrophysics Data System (ADS)
Wagh, Aditi
Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both modalities, with students who built models not incorporating slippage explanations in responses. Study 3 compares these modalities with a control using traditional activities. Pre and posttests reveal that the two modalities manifested greater facility with accessing and assembling rules than the control. The dissertation offers implications for the design of learning environments for evolutionary change, design of the two modalities based on their strengths and weaknesses, and teacher training for the same.
Advancing reservoir operation description in physically based hydrological models
NASA Astrophysics Data System (ADS)
Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo
2016-04-01
Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.
Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0
NASA Technical Reports Server (NTRS)
Schmidt, Conrad K.
2013-01-01
Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the system development process. MBSE allows for the centralization of project and system information that would otherwise be stored in extraneous locations, yielding better communication, expedited document generation and increased knowledge capture. Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large and complex systems can be modeled from conceptual design through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems (AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered in a series of conceptual and design models and documents built using the modeling tool MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS 2.0 models adhere to the specifications, patterns and profiles of the Mission Service Architecture Framework, thus leading to the use of validation rules. This paper outlines the process by which validation rules are identified, designed, implemented and tested. Ultimately, these rules provide the ability to maintain model correctness and synchronization in a simple, quick and effective manner, thus allowing the continuation of project and system progress.
Higher Education: New Models, New Rules
ERIC Educational Resources Information Center
Soares, Louis; Eaton, Judith S.; Smith, Burck
2013-01-01
The Internet enables new models. In the commercial world, for example, we have eBay, Amazon.com, and Netflix. These new models operate with a different set of rules than do traditional models. New models are emerging in higher education as well--for example, competency-based programs. In addition, courses that are being provided from outside the…
Kianmehr, Keivan; Alhajj, Reda
2008-09-01
In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.
On the effects of adaptive reservoir operating rules in hydrological physically-based models
NASA Astrophysics Data System (ADS)
Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo
2017-04-01
Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling approaches by considering different future scenarios comprising climate change projections of precipitation and temperature and projections of electricity prices. We perform this comparative assessment on the real-world water system of Lake Como catchment in the Italian Alps, which is characterized by the massive presence of artificial hydropower reservoirs heavily altering the natural hydrological regime. The results show how different behavioral model approaches affect the system representation in terms of hydropower performance, reservoirs dynamics and hydrological regime under different future scenarios.
Automated time activity classification based on global positioning system (GPS) tracking data
2011-01-01
Background Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. Methods We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Results Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data. Conclusions Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns. PMID:22082316
Automated time activity classification based on global positioning system (GPS) tracking data.
Wu, Jun; Jiang, Chengsheng; Houston, Douglas; Baker, Dean; Delfino, Ralph
2011-11-14
Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patterns. We developed and evaluated models to classify people's major time activity patterns from continuous GPS tracking data. We developed and evaluated two automated models to classify major time activity patterns (i.e., indoor, outdoor static, outdoor walking, and in-vehicle travel) based on GPS time activity data collected under free living conditions for 47 participants (N = 131 person-days) from the Harbor Communities Time Location Study (HCTLS) in 2008 and supplemental GPS data collected from three UC-Irvine research staff (N = 21 person-days) in 2010. Time activity patterns used for model development were manually classified by research staff using information from participant GPS recordings, activity logs, and follow-up interviews. We evaluated two models: (a) a rule-based model that developed user-defined rules based on time, speed, and spatial location, and (b) a random forest decision tree model. Indoor, outdoor static, outdoor walking and in-vehicle travel activities accounted for 82.7%, 6.1%, 3.2% and 7.2% of manually-classified time activities in the HCTLS dataset, respectively. The rule-based model classified indoor and in-vehicle travel periods reasonably well (Indoor: sensitivity > 91%, specificity > 80%, and precision > 96%; in-vehicle travel: sensitivity > 71%, specificity > 99%, and precision > 88%), but the performance was moderate for outdoor static and outdoor walking predictions. No striking differences in performance were observed between the rule-based and the random forest models. The random forest model was fast and easy to execute, but was likely less robust than the rule-based model under the condition of biased or poor quality training data. Our models can successfully identify indoor and in-vehicle travel points from the raw GPS data, but challenges remain in developing models to distinguish outdoor static points and walking. Accurate training data are essential in developing reliable models in classifying time-activity patterns.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-18
...The United States Patent and Trademark Office (Office or USPTO) proposes to align the USPTO's professional responsibility rules with those of most other U.S. jurisdictions by replacing the current Patent and Trademark Office Code of Professional Responsibility, adopted in 1985, based on the 1980 version of the Model Code of Professional Responsibility of the American Bar Association (``ABA''), with new USPTO Rules of Professional Conduct, which are based on the Model Rules of Professional Conduct of the ABA, which were published in 1983, substantially revised in 2003 and updated through 2011. Changes approved by the ABA House of Delegates in August 2012 have not been incorporated in these proposed rules. The Office also proposes to revise the existing procedural rules governing disciplinary investigations and proceedings.
QCD Sum Rules and Models for Generalized Parton Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anatoly Radyushkin
2004-10-01
I use QCD sum rule ideas to construct models for generalized parton distributions. To this end, the perturbative parts of QCD sum rules for the pion and nucleon electromagnetic form factors are interpreted in terms of GPDs and two models are discussed. One of them takes the double Borel transform at adjusted value of the Borel parameter as a model for nonforward parton densities, and another is based on the local duality relation. Possible ways of improving these Ansaetze are briefly discussed.
Intrusion Detection Systems with Live Knowledge System
2016-05-31
Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR, which is a machine-learning based RDR...propose novel approach that uses Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR...detection model by applying Induct RDR approach. The proposed induct RDR ( Ripple Down Rules) approach allows to acquire the phishing detection
2016-08-05
This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2017. In addition, it specifies a potentially preventable readmission measure for the Skilled Nursing Facility Value-Based Purchasing Program (SNF VBP), and implements requirements for that program, including performance standards, a scoring methodology, and a review and correction process for performance information to be made public, aimed at implementing value-based purchasing for SNFs. Additionally, this final rule includes additional polices and measures in the Skilled Nursing Facility Quality Reporting Program (SNF QRP). This final rule also responds to comments on the SNF Payment Models Research (PMR) project.
CD volume design and verification
NASA Technical Reports Server (NTRS)
Li, Y. P.; Hughes, J. S.
1993-01-01
In this paper, we describe a prototype for CD-ROM volume design and verification. This prototype allows users to create their own model of CD volumes by modifying a prototypical model. Rule-based verification of the test volumes can then be performed later on against the volume definition. This working prototype has proven the concept of model-driven rule-based design and verification for large quantity of data. The model defined for the CD-ROM volumes becomes a data model as well as an executable specification.
Li, Chen; Nagasaki, Masao; Ueno, Kazuko; Miyano, Satoru
2009-04-27
Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC) fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe) as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules - Rule I and Rule II - to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in 1986. Our simulation results suggest that: Rule I that cannot be applied with qualitative based model checking, is more reasonable than Rule II owing to the high coverage of predicted fate patterns (except for the genotype of lin-15ko; lin-12ko double mutants). More insights are also suggested. The quantitative simulation-based model checking approach is a useful means to provide us valuable biological insights and better understandings of biological systems and observation data that may be hard to capture with the qualitative one.
Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Picotte, Joshua J.; Howard, Danny; Smith, Kelcy; Nelson, Kurtis
2016-01-01
Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0–200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.
CDMBE: A Case Description Model Based on Evidence
Zhu, Jianlin; Yang, Xiaoping; Zhou, Jing
2015-01-01
By combining the advantages of argument map and Bayesian network, a case description model based on evidence (CDMBE), which is suitable to continental law system, is proposed to describe the criminal cases. The logic of the model adopts the credibility logical reason and gets evidence-based reasoning quantitatively based on evidences. In order to consist with practical inference rules, five types of relationship and a set of rules are defined to calculate the credibility of assumptions based on the credibility and supportability of the related evidences. Experiments show that the model can get users' ideas into a figure and the results calculated from CDMBE are in line with those from Bayesian model. PMID:26421006
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
Documentation Supplement for Base Case v4.10_FTransport - Updates for Final Transport Rule
View the document that describes the changes implemented as a result for the Final Cross-State Air Pollution Rule (Transport Rule) analysis in EPA’s application of the Integrated Planning Model (IPM).
Li, Yang; Li, Guoqing; Wang, Zhenhao
2015-01-01
In order to overcome the problems of poor understandability of the pattern recognition-based transient stability assessment (PRTSA) methods, a new rule extraction method based on extreme learning machine (ELM) and an improved Ant-miner (IAM) algorithm is presented in this paper. First, the basic principles of ELM and Ant-miner algorithm are respectively introduced. Then, based on the selected optimal feature subset, an example sample set is generated by the trained ELM-based PRTSA model. And finally, a set of classification rules are obtained by IAM algorithm to replace the original ELM network. The novelty of this proposal is that transient stability rules are extracted from an example sample set generated by the trained ELM-based transient stability assessment model by using IAM algorithm. The effectiveness of the proposed method is shown by the application results on the New England 39-bus power system and a practical power system--the southern power system of Hebei province.
NASA Astrophysics Data System (ADS)
Serrano, Rafael; González, Luis Carlos; Martín, Francisco Jesús
2009-11-01
Under the project SENSOR-IA which has had financial funding from the Order of Incentives to the Regional Technology Centers of the Counsil of Innovation, Science and Enterprise of Andalusia, an architecture for the optimization of a machining process in real time through rule-based expert system has been developed. The architecture consists of an acquisition system and sensor data processing engine (SATD) from an expert system (SE) rule-based which communicates with the SATD. The SE has been designed as an inference engine with an algorithm for effective action, using a modus ponens rule model of goal-oriented rules.The pilot test demonstrated that it is possible to govern in real time the machining process based on rules contained in a SE. The tests have been done with approximated rules. Future work includes an exhaustive collection of data with different tool materials and geometries in a database to extract more precise rules.
Cognitive changes in conjunctive rule-based category learning: An ERP approach.
Rabi, Rahel; Joanisse, Marc F; Zhu, Tianshu; Minda, John Paul
2018-06-25
When learning rule-based categories, sufficient cognitive resources are needed to test hypotheses, maintain the currently active rule in working memory, update rules after feedback, and to select a new rule if necessary. Prior research has demonstrated that conjunctive rules are more complex than unidimensional rules and place greater demands on executive functions like working memory. In our study, event-related potentials (ERPs) were recorded while participants performed a conjunctive rule-based category learning task with trial-by-trial feedback. In line with prior research, correct categorization responses resulted in a larger stimulus-locked late positive complex compared to incorrect responses, possibly indexing the updating of rule information in memory. Incorrect trials elicited a pronounced feedback-locked P300 elicited which suggested a disconnect between perception, and the rule-based strategy. We also examined the differential processing of stimuli that were able to be correctly classified by the suboptimal single-dimensional rule ("easy" stimuli) versus those that could only be correctly classified by the optimal, conjunctive rule ("difficult" stimuli). Among strong learners, a larger, late positive slow wave emerged for difficult compared with easy stimuli, suggesting differential processing of category items even though strong learners performed well on the conjunctive category set. Overall, the findings suggest that ERP combined with computational modelling can be used to better understand the cognitive processes involved in rule-based category learning.
Interpretable Decision Sets: A Joint Framework for Description and Prediction
Lakkaraju, Himabindu; Bach, Stephen H.; Jure, Leskovec
2016-01-01
One of the most important obstacles to deploying predictive models is the fact that humans do not understand and trust them. Knowing which variables are important in a model’s prediction and how they are combined can be very powerful in helping people understand and trust automatic decision making systems. Here we propose interpretable decision sets, a framework for building predictive models that are highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. Because each rule can be applied independently, decision sets are simple, concise, and easily interpretable. We formalize decision set learning through an objective function that simultaneously optimizes accuracy and interpretability of the rules. In particular, our approach learns short, accurate, and non-overlapping rules that cover the whole feature space and pay attention to small but important classes. Moreover, we prove that our objective is a non-monotone submodular function, which we efficiently optimize to find a near-optimal set of rules. Experiments show that interpretable decision sets are as accurate at classification as state-of-the-art machine learning techniques. They are also three times smaller on average than rule-based models learned by other methods. Finally, results of a user study show that people are able to answer multiple-choice questions about the decision boundaries of interpretable decision sets and write descriptions of classes based on them faster and more accurately than with other rule-based models that were designed for interpretability. Overall, our framework provides a new approach to interpretable machine learning that balances accuracy, interpretability, and computational efficiency. PMID:27853627
Use of an expert system data analysis manager for space shuttle main engine test evaluation
NASA Technical Reports Server (NTRS)
Abernethy, Ken
1988-01-01
The ability to articulate, collect, and automate the application of the expertise needed for the analysis of space shuttle main engine (SSME) test data would be of great benefit to NASA liquid rocket engine experts. This paper describes a project whose goal is to build a rule-based expert system which incorporates such expertise. Experiential expertise, collected directly from the experts currently involved in SSME data analysis, is used to build a rule base to identify engine anomalies similar to those analyzed previously. Additionally, an alternate method of expertise capture is being explored. This method would generate rules inductively based on calculations made using a theoretical model of the SSME's operation. The latter rules would be capable of diagnosing anomalies which may not have appeared before, but whose effects can be predicted by the theoretical model.
Criterion learning in rule-based categorization: Simulation of neural mechanism and new data
Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd
2015-01-01
In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349
Criterion learning in rule-based categorization: simulation of neural mechanism and new data.
Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd
2015-04-01
In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Haghighi, Mona; Johnson, Suzanne Bennett; Qian, Xiaoning; Lynch, Kristian F; Vehik, Kendra; Huang, Shuai
2016-08-26
Regression models are extensively used in many epidemiological studies to understand the linkage between specific outcomes of interest and their risk factors. However, regression models in general examine the average effects of the risk factors and ignore subgroups with different risk profiles. As a result, interventions are often geared towards the average member of the population, without consideration of the special health needs of different subgroups within the population. This paper demonstrates the value of using rule-based analysis methods that can identify subgroups with heterogeneous risk profiles in a population without imposing assumptions on the subgroups or method. The rules define the risk pattern of subsets of individuals by not only considering the interactions between the risk factors but also their ranges. We compared the rule-based analysis results with the results from a logistic regression model in The Environmental Determinants of Diabetes in the Young (TEDDY) study. Both methods detected a similar suite of risk factors, but the rule-based analysis was superior at detecting multiple interactions between the risk factors that characterize the subgroups. A further investigation of the particular characteristics of each subgroup may detect the special health needs of the subgroup and lead to tailored interventions.
A CLIPS-based expert system for the evaluation and selection of robots
NASA Technical Reports Server (NTRS)
Nour, Mohamed A.; Offodile, Felix O.; Madey, Gregory R.
1994-01-01
This paper describes the development of a prototype expert system for intelligent selection of robots for manufacturing operations. The paper first develops a comprehensive, three-stage process to model the robot selection problem. The decisions involved in this model easily lend themselves to an expert system application. A rule-based system, based on the selection model, is developed using the CLIPS expert system shell. Data about actual robots is used to test the performance of the prototype system. Further extensions to the rule-based system for data handling and interfacing capabilities are suggested.
Logic Analysis of Painting Modeling Rules and Avoiding Narrative Viewing
ERIC Educational Resources Information Center
Zhu, Feng; Shao, Jie
2009-01-01
Painting modeling rules are constructed based on objective representing with material substances as the main body and the construction methods and orders are mostly limited to narrative viewing and expression, which, obviously, is not the best method. Logistic thinking in virtue of modeling art could gender a more "painting-like"…
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
PRIMsrc is a novel implementation of a non-parametric bump hunting procedure, based on the Patient Rule Induction Method (PRIM), offering a unified treatment of outcome variables, including censored time-to-event (Survival), continuous (Regression) and discrete (Classification) responses. To fit the model, it uses a recursive peeling procedure with specific peeling criteria and stopping rules depending on the response. To validate the model, it provides an objective function based on prediction-error or other specific statistic, as well as two alternative cross-validation techniques, adapted to the task of decision-rule making and estimation in the three types of settings. PRIMsrc comes as an open source R package, including at this point: (i) a main function for fitting a Survival Bump Hunting model with various options allowing cross-validated model selection to control model size (#covariates) and model complexity (#peeling steps) and generation of cross-validated end-point estimates; (ii) parallel computing; (iii) various S3-generic and specific plotting functions for data visualization, diagnostic, prediction, summary and display of results. It is available on CRAN and GitHub. PMID:26798326
Using an empirical and rule-based modeling approach to map cause of disturbance in U.S
Todd A. Schroeder; Gretchen G. Moisen; Karen Schleeweis; Chris Toney; Warren B. Cohen; Zhiqiang Yang; Elizabeth A. Freeman
2015-01-01
Recently completing over a decade of research, the NASA/NACP funded North American Forest Dynamics (NAFD) project has led to several important advancements in the way U.S. forest disturbance dynamics are mapped at regional and continental scales. One major contribution has been the development of an empirical and rule-based modeling approach which addresses two of the...
Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks
Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.
2015-01-01
Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406
Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.
Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M
2015-09-01
Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.
A Pilot Study on Modeling of Diagnostic Criteria Using OWL and SWRL.
Hong, Na; Jiang, Guoqian; Pathak, Jyotishiman; Chute, Christopher G
2015-01-01
The objective of this study is to describe our efforts in a pilot study on modeling diagnostic criteria using a Semantic Web-based approach. We reused the basic framework of the ICD-11 content model and refined it into an operational model in the Web Ontology Language (OWL). The refinement is based on a bottom-up analysis method, in which we analyzed data elements (including value sets) in a collection (n=20) of randomly selected diagnostic criteria. We also performed a case study to formalize rule logic in the diagnostic criteria of metabolic syndrome using the Semantic Web Rule Language (SWRL). The results demonstrated that it is feasible to use OWL and SWRL to formalize the diagnostic criteria knowledge, and to execute the rules through reasoning.
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
Daily life activity routine discovery in hemiparetic rehabilitation patients using topic models.
Seiter, J; Derungs, A; Schuster-Amft, C; Amft, O; Tröster, G
2015-01-01
Monitoring natural behavior and activity routines of hemiparetic rehabilitation patients across the day can provide valuable progress information for therapists and patients and contribute to an optimized rehabilitation process. In particular, continuous patient monitoring could add type, frequency and duration of daily life activity routines and hence complement standard clinical scores that are assessed for particular tasks only. Machine learning methods have been applied to infer activity routines from sensor data. However, supervised methods require activity annotations to build recognition models and thus require extensive patient supervision. Discovery methods, including topic models could provide patient routine information and deal with variability in activity and movement performance across patients. Topic models have been used to discover characteristic activity routine patterns of healthy individuals using activity primitives recognized from supervised sensor data. Yet, the applicability of topic models for hemiparetic rehabilitation patients and techniques to derive activity primitives without supervision needs to be addressed. We investigate, 1) whether a topic model-based activity routine discovery framework can infer activity routines of rehabilitation patients from wearable motion sensor data. 2) We compare the performance of our topic model-based activity routine discovery using rule-based and clustering-based activity vocabulary. We analyze the activity routine discovery in a dataset recorded with 11 hemiparetic rehabilitation patients during up to ten full recording days per individual in an ambulatory daycare rehabilitation center using wearable motion sensors attached to both wrists and the non-affected thigh. We introduce and compare rule-based and clustering-based activity vocabulary to process statistical and frequency acceleration features to activity words. Activity words were used for activity routine pattern discovery using topic models based on Latent Dirichlet Allocation. Discovered activity routine patterns were then mapped to six categorized activity routines. Using the rule-based approach, activity routines could be discovered with an average accuracy of 76% across all patients. The rule-based approach outperformed clustering by 10% and showed less confusions for predicted activity routines. Topic models are suitable to discover daily life activity routines in hemiparetic rehabilitation patients without trained classifiers and activity annotations. Activity routines show characteristic patterns regarding activity primitives including body and extremity postures and movement. A patient-independent rule set can be derived. Including expert knowledge supports successful activity routine discovery over completely data-driven clustering.
Timescale analysis of rule-based biochemical reaction networks
Klinke, David J.; Finley, Stacey D.
2012-01-01
The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150
NASA Astrophysics Data System (ADS)
García-Morales, Vladimir; Manzanares, José A.; Mafe, Salvador
2017-04-01
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ . This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.
García-Morales, Vladimir; Manzanares, José A; Mafe, Salvador
2017-04-01
We present a weakly coupled map lattice model for patterning that explores the effects exerted by weakening the local dynamic rules on model biological and artificial networks composed of two-state building blocks (cells). To this end, we use two cellular automata models based on (i) a smooth majority rule (model I) and (ii) a set of rules similar to those of Conway's Game of Life (model II). The normal and abnormal cell states evolve according to local rules that are modulated by a parameter κ. This parameter quantifies the effective weakening of the prescribed rules due to the limited coupling of each cell to its neighborhood and can be experimentally controlled by appropriate external agents. The emergent spatiotemporal maps of single-cell states should be of significance for positional information processes as well as for intercellular communication in tumorigenesis, where the collective normalization of abnormal single-cell states by a predominantly normal neighborhood may be crucial.
Toward micro-scale spatial modeling of gentrification
NASA Astrophysics Data System (ADS)
O'Sullivan, David
A simple preliminary model of gentrification is presented. The model is based on an irregular cellular automaton architecture drawing on the concept of proximal space, which is well suited to the spatial externalities present in housing markets at the local scale. The rent gap hypothesis on which the model's cell transition rules are based is discussed. The model's transition rules are described in detail. Practical difficulties in configuring and initializing the model are described and its typical behavior reported. Prospects for further development of the model are discussed. The current model structure, while inadequate, is well suited to further elaboration and the incorporation of other interesting and relevant effects.
Optimal Sequential Rules for Computer-Based Instruction.
ERIC Educational Resources Information Center
Vos, Hans J.
1998-01-01
Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-12
... access to end Subscribers. Vendors impose price restraints based upon their business models. For example... revenue. Although the business models may differ, these vendors' pricing discipline is the same: they can... Substance of the Proposed Rule Change The Exchange proposes add new BX Rule 7026 (Distribution Models) to...
NASA Astrophysics Data System (ADS)
Shelef, Eitan; Hilley, George E.
2013-12-01
Flow routing across real or modeled topography determines the modeled discharge and wetness index and thus plays a central role in predicting surface lowering rate, runoff generation, likelihood of slope failure, and transition from hillslope to channel forming processes. In this contribution, we compare commonly used flow-routing rules as well as a new routing rule, to commonly used benchmarks. We also compare results for different routing rules using Airborne Laser Swath Mapping (ALSM) topography to explore the impact of different flow-routing schemes on inferring the generation of saturation overland flow and the transition between hillslope to channel forming processes, as well as on location of saturation overland flow. Finally, we examined the impact of flow-routing and slope-calculation rules on modeled topography produced by Geomorphic Transport Law (GTL)-based simulations. We found that different rules produce substantive differences in the structure of the modeled topography and flow patterns over ALSM data. Our results highlight the impact of flow-routing and slope-calculation rules on modeled topography, as well as on calculated geomorphic metrics across real landscapes. As such, studies that use a variety of routing rules to analyze and simulate topography are necessary to determine those aspects that most strongly depend on a chosen routing rule.
SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting
NASA Astrophysics Data System (ADS)
Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.
2014-12-01
Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.
Leveraging Modeling Approaches: Reaction Networks and Rules
Blinov, Michael L.; Moraru, Ion I.
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high resolution and/or high throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatio-temporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks – the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks. PMID:22161349
Leveraging modeling approaches: reaction networks and rules.
Blinov, Michael L; Moraru, Ion I
2012-01-01
We have witnessed an explosive growth in research involving mathematical models and computer simulations of intracellular molecular interactions, ranging from metabolic pathways to signaling and gene regulatory networks. Many software tools have been developed to aid in the study of such biological systems, some of which have a wealth of features for model building and visualization, and powerful capabilities for simulation and data analysis. Novel high-resolution and/or high-throughput experimental techniques have led to an abundance of qualitative and quantitative data related to the spatiotemporal distribution of molecules and complexes, their interactions kinetics, and functional modifications. Based on this information, computational biology researchers are attempting to build larger and more detailed models. However, this has proved to be a major challenge. Traditionally, modeling tools require the explicit specification of all molecular species and interactions in a model, which can quickly become a major limitation in the case of complex networks - the number of ways biomolecules can combine to form multimolecular complexes can be combinatorially large. Recently, a new breed of software tools has been created to address the problems faced when building models marked by combinatorial complexity. These have a different approach for model specification, using reaction rules and species patterns. Here we compare the traditional modeling approach with the new rule-based methods. We make a case for combining the capabilities of conventional simulation software with the unique features and flexibility of a rule-based approach in a single software platform for building models of molecular interaction networks.
Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling.
Tsipouras, Markos G; Exarchos, Themis P; Fotiadis, Dimitrios I; Kotsia, Anna P; Vakalis, Konstantinos V; Naka, Katerina K; Michalis, Lampros K
2008-07-01
A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and formulation of a crisp model; 3) transformation of the crisp set of rules into a fuzzy model; and 4) optimization of the parameters of the fuzzy model. The dataset used for the DSS generation and evaluation consists of 199 subjects, each one characterized by 19 features, including demographic and history data, as well as laboratory examinations. Tenfold cross validation is employed, and the average sensitivity and specificity obtained is 62% and 54%, respectively, using the set of rules extracted from the decision tree (first and second stages), while the average sensitivity and specificity increase to 80% and 65%, respectively, when the fuzzification and optimization stages are used. The system offers several advantages since it is automatically generated, it provides CAD diagnosis based on easily and noninvasively acquired features, and is able to provide interpretation for the decisions made.
NASA Astrophysics Data System (ADS)
Ahmad, Sabrina; Jalil, Intan Ermahani A.; Ahmad, Sharifah Sakinah Syed
2016-08-01
It is seldom technical issues which impede the process of eliciting software requirements. The involvement of multiple stakeholders usually leads to conflicts and therefore the need of conflict detection and resolution effort is crucial. This paper presents a conceptual model to further improve current efforts. Hence, this paper forwards an improved conceptual model to assist the conflict detection and resolution effort which extends the model ability and improves overall performance. The significant of the new model is to empower the automation of conflicts detection and its severity level with rule-based reasoning.
NASA Astrophysics Data System (ADS)
Skersys, Tomas; Butleris, Rimantas; Kapocius, Kestutis
2013-10-01
Approaches for the analysis and specification of business vocabularies and rules are very relevant topics in both Business Process Management and Information Systems Development disciplines. However, in common practice of Information Systems Development, the Business modeling activities still are of mostly empiric nature. In this paper, basic aspects of the approach for business vocabularies' semi-automated extraction from business process models are presented. The approach is based on novel business modeling-level OMG standards "Business Process Model and Notation" (BPMN) and "Semantics for Business Vocabularies and Business Rules" (SBVR), thus contributing to OMG's vision about Model-Driven Architecture (MDA) and to model-driven development in general.
Hierarchical graphs for better annotations of rule-based models of biochemical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Bin; Hlavacek, William
2009-01-01
In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of amore » molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.« less
NASA Astrophysics Data System (ADS)
Chang, Ya-Ting; Chang, Li-Chiu; Chang, Fi-John
2005-04-01
To bridge the gap between academic research and actual operation, we propose an intelligent control system for reservoir operation. The methodology includes two major processes, the knowledge acquired and implemented, and the inference system. In this study, a genetic algorithm (GA) and a fuzzy rule base (FRB) are used to extract knowledge based on the historical inflow data with a design objective function and on the operating rule curves respectively. The adaptive network-based fuzzy inference system (ANFIS) is then used to implement the knowledge, to create the fuzzy inference system, and then to estimate the optimal reservoir operation. To investigate its applicability and practicability, the Shihmen reservoir, Taiwan, is used as a case study. For the purpose of comparison, a simulation of the currently used M-5 operating rule curve is also performed. The results demonstrate that (1) the GA is an efficient way to search the optimal input-output patterns, (2) the FRB can extract the knowledge from the operating rule curves, and (3) the ANFIS models built on different types of knowledge can produce much better performance than the traditional M-5 curves in real-time reservoir operation. Moreover, we show that the model can be more intelligent for reservoir operation if more information (or knowledge) is involved.
Representing Micro-Macro Linkages by Actor-Based Dynamic Network Models
ERIC Educational Resources Information Center
Snijders, Tom A. B.; Steglich, Christian E. G.
2015-01-01
Stochastic actor-based models for network dynamics have the primary aim of statistical inference about processes of network change, but may be regarded as a kind of agent-based models. Similar to many other agent-based models, they are based on local rules for actor behavior. Different from many other agent-based models, by including elements of…
Otero, Fernando E B; Freitas, Alex A
2016-01-01
Most ant colony optimization (ACO) algorithms for inducing classification rules use a ACO-based procedure to create a rule in a one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-Miner[Formula: see text] algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules), i.e., the ACO search is guided by the quality of a list of rules instead of an individual rule. In this paper we propose an extension of the cAnt-Miner[Formula: see text] algorithm to discover a set of rules (unordered rules). The main motivations for this work are to improve the interpretation of individual rules by discovering a set of rules and to evaluate the impact on the predictive accuracy of the algorithm. We also propose a new measure to evaluate the interpretability of the discovered rules to mitigate the fact that the commonly used model size measure ignores how the rules are used to make a class prediction. Comparisons with state-of-the-art rule induction algorithms, support vector machines, and the cAnt-Miner[Formula: see text] producing ordered rules are also presented.
Opinion evolution based on cellular automata rules in small world networks
NASA Astrophysics Data System (ADS)
Shi, Xiao-Ming; Shi, Lun; Zhang, Jie-Fang
2010-03-01
In this paper, we apply cellular automata rules, which can be given by a truth table, to human memory. We design each memory as a tracking survey mode that keeps the most recent three opinions. Each cellular automata rule, as a personal mechanism, gives the final ruling in one time period based on the data stored in one's memory. The key focus of the paper is to research the evolution of people's attitudes to the same question. Based on a great deal of empirical observations from computer simulations, all the rules can be classified into 20 groups. We highlight the fact that the phenomenon shown by some rules belonging to the same group will be altered within several steps by other rules in different groups. It is truly amazing that, compared with the last hundreds of presidential voting in America, the eras of important events in America's history coincide with the simulation results obtained by our model.
A cellular automaton model for ship traffic flow in waterways
NASA Astrophysics Data System (ADS)
Qi, Le; Zheng, Zhongyi; Gang, Longhui
2017-04-01
With the development of marine traffic, waterways become congested and more complicated traffic phenomena in ship traffic flow are observed. It is important and necessary to build a ship traffic flow model based on cellular automata (CAs) to study the phenomena and improve marine transportation efficiency and safety. Spatial discretization rules for waterways and update rules for ship movement are two important issues that are very different from vehicle traffic. To solve these issues, a CA model for ship traffic flow, called a spatial-logical mapping (SLM) model, is presented. In this model, the spatial discretization rules are improved by adding a mapping rule. And the dynamic ship domain model is considered in the update rules to describe ships' interaction more exactly. Take the ship traffic flow in the Singapore Strait for example, some simulations were carried out and compared. The simulations show that the SLM model could avoid ship pseudo lane-change efficiently, which is caused by traditional spatial discretization rules. The ship velocity change in the SLM model is consistent with the measured data. At finally, from the fundamental diagram, the relationship between traffic ability and the lengths of ships is explored. The number of ships in the waterway declines when the proportion of large ships increases.
Dehghani Soufi, Mahsa; Samad-Soltani, Taha; Shams Vahdati, Samad; Rezaei-Hachesu, Peyman
2018-06-01
Fast and accurate patient triage for the response process is a critical first step in emergency situations. This process is often performed using a paper-based mode, which intensifies workload and difficulty, wastes time, and is at risk of human errors. This study aims to design and evaluate a decision support system (DSS) to determine the triage level. A combination of the Rule-Based Reasoning (RBR) and Fuzzy Logic Classifier (FLC) approaches were used to predict the triage level of patients according to the triage specialist's opinions and Emergency Severity Index (ESI) guidelines. RBR was applied for modeling the first to fourth decision points of the ESI algorithm. The data relating to vital signs were used as input variables and modeled using fuzzy logic. Narrative knowledge was converted to If-Then rules using XML. The extracted rules were then used to create the rule-based engine and predict the triage levels. Fourteen RBR and 27 fuzzy rules were extracted and used in the rule-based engine. The performance of the system was evaluated using three methods with real triage data. The accuracy of the clinical decision support systems (CDSSs; in the test data) was 99.44%. The evaluation of the error rate revealed that, when using the traditional method, 13.4% of the patients were miss-triaged, which is statically significant. The completeness of the documentation also improved from 76.72% to 98.5%. Designed system was effective in determining the triage level of patients and it proved helpful for nurses as they made decisions, generated nursing diagnoses based on triage guidelines. The hybrid approach can reduce triage misdiagnosis in a highly accurate manner and improve the triage outcomes. Copyright © 2018 Elsevier B.V. All rights reserved.
Model-Based Anomaly Detection for a Transparent Optical Transmission System
NASA Astrophysics Data System (ADS)
Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.
In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.
Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats
Lloyd, Kevin; Becker, Nadine; Jones, Matthew W.; Bogacz, Rafal
2012-01-01
Learning to form appropriate, task-relevant working memory representations is a complex process central to cognition. Gating models frame working memory as a collection of past observations and use reinforcement learning (RL) to solve the problem of when to update these observations. Investigation of how gating models relate to brain and behavior remains, however, at an early stage. The current study sought to explore the ability of simple RL gating models to replicate rule learning behavior in rats. Rats were trained in a maze-based spatial learning task that required animals to make trial-by-trial choices contingent upon their previous experience. Using an abstract version of this task, we tested the ability of two gating algorithms, one based on the Actor-Critic and the other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior consistent with the rats'. Both models produced rule-acquisition behavior consistent with the experimental data, though only the SARSA gating model mirrored faster learning following rule reversal. We also found that both gating models learned multiple strategies in solving the initial task, a property which highlights the multi-agent nature of such models and which is of importance in considering the neural basis of individual differences in behavior. PMID:23115551
NASA Astrophysics Data System (ADS)
Perry, Dan; Nakamoto, Mark; Verghese, Nishath; Hurat, Philippe; Rouse, Rich
2007-03-01
Model-based hotspot detection and silicon-aware parametric analysis help designers optimize their chips for yield, area and performance without the high cost of applying foundries' recommended design rules. This set of DFM/ recommended rules is primarily litho-driven, but cannot guarantee a manufacturable design without imposing overly restrictive design requirements. This rule-based methodology of making design decisions based on idealized polygons that no longer represent what is on silicon needs to be replaced. Using model-based simulation of the lithography, OPC, RET and etch effects, followed by electrical evaluation of the resulting shapes, leads to a more realistic and accurate analysis. This analysis can be used to evaluate intelligent design trade-offs and identify potential failures due to systematic manufacturing defects during the design phase. The successful DFM design methodology consists of three parts: 1. Achieve a more aggressive layout through limited usage of litho-related recommended design rules. A 10% to 15% area reduction is achieved by using more aggressive design rules. DFM/recommended design rules are used only if there is no impact on cell size. 2. Identify and fix hotspots using a model-based layout printability checker. Model-based litho and etch simulation are done at the cell level to identify hotspots. Violations of recommended rules may cause additional hotspots, which are then fixed. The resulting design is ready for step 3. 3. Improve timing accuracy with a process-aware parametric analysis tool for transistors and interconnect. Contours of diffusion, poly and metal layers are used for parametric analysis. In this paper, we show the results of this physical and electrical DFM methodology at Qualcomm. We describe how Qualcomm was able to develop more aggressive cell designs that yielded a 10% to 15% area reduction using this methodology. Model-based shape simulation was employed during library development to validate architecture choices and to optimize cell layout. At the physical verification stage, the shape simulator was run at full-chip level to identify and fix residual hotspots on interconnect layers, on poly or metal 1 due to interaction between adjacent cells, or on metal 1 due to interaction between routing (via and via cover) and cell geometry. To determine an appropriate electrical DFM solution, Qualcomm developed an experiment to examine various electrical effects. After reporting the silicon results of this experiment, which showed sizeable delay variations due to lithography-related systematic effects, we also explain how contours of diffusion, poly and metal can be used for silicon-aware parametric analysis of transistors and interconnect at the cell-, block- and chip-level.
Analysis, Simulation, and Verification of Knowledge-Based, Rule-Based, and Expert Systems
NASA Technical Reports Server (NTRS)
Hinchey, Mike; Rash, James; Erickson, John; Gracanin, Denis; Rouff, Chris
2010-01-01
Mathematically sound techniques are used to view a knowledge-based system (KBS) as a set of processes executing in parallel and being enabled in response to specific rules being fired. The set of processes can be manipulated, examined, analyzed, and used in a simulation. The tool that embodies this technology may warn developers of errors in their rules, but may also highlight rules (or sets of rules) in the system that are underspecified (or overspecified) and need to be corrected for the KBS to operate as intended. The rules embodied in a KBS specify the allowed situations, events, and/or results of the system they describe. In that sense, they provide a very abstract specification of a system. The system is implemented through the combination of the system specification together with an appropriate inference engine, independent of the algorithm used in that inference engine. Viewing the rule base as a major component of the specification, and choosing an appropriate specification notation to represent it, reveals how additional power can be derived from an approach to the knowledge-base system that involves analysis, simulation, and verification. This innovative approach requires no special knowledge of the rules, and allows a general approach where standardized analysis, verification, simulation, and model checking techniques can be applied to the KBS.
Knowledge-Based Motion Control of AN Intelligent Mobile Autonomous System
NASA Astrophysics Data System (ADS)
Isik, Can
An Intelligent Mobile Autonomous System (IMAS), which is equipped with vision and low level sensors to cope with unknown obstacles, is modeled as a hierarchy of path planning and motion control. This dissertation concentrates on the lower level of this hierarchy (Pilot) with a knowledge-based controller. The basis of a theory of knowledge-based controllers is established, using the example of the Pilot level motion control of IMAS. In this context, the knowledge-based controller with a linguistic world concept is shown to be adequate for the minimum time control of an autonomous mobile robot motion. The Pilot level motion control of IMAS is approached in the framework of production systems. The three major components of the knowledge-based control that are included here are the hierarchies of the database, the rule base and the rule evaluator. The database, which is the representation of the state of the world, is organized as a semantic network, using a concept of minimal admissible vocabulary. The hierarchy of rule base is derived from the analytical formulation of minimum-time control of IMAS motion. The procedure introduced for rule derivation, which is called analytical model verbalization, utilizes the concept of causalities to describe the system behavior. A realistic analytical system model is developed and the minimum-time motion control in an obstacle strewn environment is decomposed to a hierarchy of motion planning and control. The conditions for the validity of the hierarchical problem decomposition are established, and the consistency of operation is maintained by detecting the long term conflicting decisions of the levels of the hierarchy. The imprecision in the world description is modeled using the theory of fuzzy sets. The method developed for the choice of the rule that prescribes the minimum-time motion control among the redundant set of applicable rules is explained and the usage of fuzzy set operators is justified. Also included in the dissertation are the description of the computer simulation of Pilot within the hierarchy of IMAS control and the simulated experiments that demonstrate the theoretical work.
Derivation of optimal joint operating rules for multi-purpose multi-reservoir water-supply system
NASA Astrophysics Data System (ADS)
Tan, Qiao-feng; Wang, Xu; Wang, Hao; Wang, Chao; Lei, Xiao-hui; Xiong, Yi-song; Zhang, Wei
2017-08-01
The derivation of joint operating policy is a challenging task for a multi-purpose multi-reservoir system. This study proposed an aggregation-decomposition model to guide the joint operation of multi-purpose multi-reservoir system, including: (1) an aggregated model based on the improved hedging rule to ensure the long-term water-supply operating benefit; (2) a decomposed model to allocate the limited release to individual reservoirs for the purpose of maximizing the total profit of the facing period; and (3) a double-layer simulation-based optimization model to obtain the optimal time-varying hedging rules using the non-dominated sorting genetic algorithm II, whose objectives were to minimize maximum water deficit and maximize water supply reliability. The water-supply system of Li River in Guangxi Province, China, was selected for the case study. The results show that the operating policy proposed in this study is better than conventional operating rules and aggregated standard operating policy for both water supply and hydropower generation due to the use of hedging mechanism and effective coordination among multiple objectives.
Pilot interaction with automated airborne decision making systems
NASA Technical Reports Server (NTRS)
Rouse, W. B.; Hammer, J. M.; Mitchell, C. M.; Morris, N. M.; Lewis, C. M.; Yoon, W. C.
1985-01-01
Progress was made in the three following areas. In the rule-based modeling area, two papers related to identification and significane testing of rule-based models were presented. In the area of operator aiding, research focused on aiding operators in novel failure situations; a discrete control modeling approach to aiding PLANT operators was developed; and a set of guidelines were developed for implementing automation. In the area of flight simulator hardware and software, the hardware will be completed within two months and initial simulation software will then be integrated and tested.
Tree Branching: Leonardo da Vinci's Rule versus Biomechanical Models
Minamino, Ryoko; Tateno, Masaki
2014-01-01
This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule. PMID:24714065
Tree branching: Leonardo da Vinci's rule versus biomechanical models.
Minamino, Ryoko; Tateno, Masaki
2014-01-01
This study examined Leonardo da Vinci's rule (i.e., the sum of the cross-sectional area of all tree branches above a branching point at any height is equal to the cross-sectional area of the trunk or the branch immediately below the branching point) using simulations based on two biomechanical models: the uniform stress and elastic similarity models. Model calculations of the daughter/mother ratio (i.e., the ratio of the total cross-sectional area of the daughter branches to the cross-sectional area of the mother branch at the branching point) showed that both biomechanical models agreed with da Vinci's rule when the branching angles of daughter branches and the weights of lateral daughter branches were small; however, the models deviated from da Vinci's rule as the weights and/or the branching angles of lateral daughter branches increased. The calculated values of the two models were largely similar but differed in some ways. Field measurements of Fagus crenata and Abies homolepis also fit this trend, wherein models deviated from da Vinci's rule with increasing relative weights of lateral daughter branches. However, this deviation was small for a branching pattern in nature, where empirical measurements were taken under realistic measurement conditions; thus, da Vinci's rule did not critically contradict the biomechanical models in the case of real branching patterns, though the model calculations described the contradiction between da Vinci's rule and the biomechanical models. The field data for Fagus crenata fit the uniform stress model best, indicating that stress uniformity is the key constraint of branch morphology in Fagus crenata rather than elastic similarity or da Vinci's rule. On the other hand, mechanical constraints are not necessarily significant in the morphology of Abies homolepis branches, depending on the number of daughter branches. Rather, these branches were often in agreement with da Vinci's rule.
NASA Astrophysics Data System (ADS)
Hamedianfar, Alireza; Shafri, Helmi Zulhaidi Mohd
2016-04-01
This paper integrates decision tree-based data mining (DM) and object-based image analysis (OBIA) to provide a transferable model for the detailed characterization of urban land-cover classes using WorldView-2 (WV-2) satellite images. Many articles have been published on OBIA in recent years based on DM for different applications. However, less attention has been paid to the generation of a transferable model for characterizing detailed urban land cover features. Three subsets of WV-2 images were used in this paper to generate transferable OBIA rule-sets. Many features were explored by using a DM algorithm, which created the classification rules as a decision tree (DT) structure from the first study area. The developed DT algorithm was applied to object-based classifications in the first study area. After this process, we validated the capability and transferability of the classification rules into second and third subsets. Detailed ground truth samples were collected to assess the classification results. The first, second, and third study areas achieved 88%, 85%, and 85% overall accuracies, respectively. Results from the investigation indicate that DM was an efficient method to provide the optimal and transferable classification rules for OBIA, which accelerates the rule-sets creation stage in the OBIA classification domain.
Deduction of reservoir operating rules for application in global hydrological models
NASA Astrophysics Data System (ADS)
Coerver, Hubertus M.; Rutten, Martine M.; van de Giesen, Nick C.
2018-01-01
A big challenge in constructing global hydrological models is the inclusion of anthropogenic impacts on the water cycle, such as caused by dams. Dam operators make decisions based on experience and often uncertain information. In this study information generally available to dam operators, like inflow into the reservoir and storage levels, was used to derive fuzzy rules describing the way a reservoir is operated. Using an artificial neural network capable of mimicking fuzzy logic, called the ANFIS adaptive-network-based fuzzy inference system, fuzzy rules linking inflow and storage with reservoir release were determined for 11 reservoirs in central Asia, the US and Vietnam. By varying the input variables of the neural network, different configurations of fuzzy rules were created and tested. It was found that the release from relatively large reservoirs was significantly dependent on information concerning recent storage levels, while release from smaller reservoirs was more dependent on reservoir inflows. Subsequently, the derived rules were used to simulate reservoir release with an average Nash-Sutcliffe coefficient of 0.81.
Rands, Sean A.
2011-01-01
Functional explanations of behaviour often propose optimal strategies for organisms to follow. These ‘best’ strategies could be difficult to perform given biological constraints such as neural architecture and physiological constraints. Instead, simple heuristics or ‘rules-of-thumb’ that approximate these optimal strategies may instead be performed. From a modelling perspective, rules-of-thumb are also useful tools for considering how group behaviour is shaped by the behaviours of individuals. Using simple rules-of-thumb reduces the complexity of these models, but care needs to be taken to use rules that are biologically relevant. Here, we investigate the similarity between the outputs of a two-player dynamic foraging game (which generated optimal but complex solutions) and a computational simulation of the behaviours of the two members of a foraging pair, who instead followed a rule-of-thumb approximation of the game's output. The original game generated complex results, and we demonstrate here that the simulations following the much-simplified rules-of-thumb also generate complex results, suggesting that the rule-of-thumb was sufficient to make some of the model outcomes unpredictable. There was some agreement between both modelling techniques, but some differences arose – particularly when pair members were not identical in how they gained and lost energy. We argue that exploring how rules-of-thumb perform in comparison to their optimal counterparts is an important exercise for biologically validating the output of agent-based models of group behaviour. PMID:21765938
Rands, Sean A
2011-01-01
Functional explanations of behaviour often propose optimal strategies for organisms to follow. These 'best' strategies could be difficult to perform given biological constraints such as neural architecture and physiological constraints. Instead, simple heuristics or 'rules-of-thumb' that approximate these optimal strategies may instead be performed. From a modelling perspective, rules-of-thumb are also useful tools for considering how group behaviour is shaped by the behaviours of individuals. Using simple rules-of-thumb reduces the complexity of these models, but care needs to be taken to use rules that are biologically relevant. Here, we investigate the similarity between the outputs of a two-player dynamic foraging game (which generated optimal but complex solutions) and a computational simulation of the behaviours of the two members of a foraging pair, who instead followed a rule-of-thumb approximation of the game's output. The original game generated complex results, and we demonstrate here that the simulations following the much-simplified rules-of-thumb also generate complex results, suggesting that the rule-of-thumb was sufficient to make some of the model outcomes unpredictable. There was some agreement between both modelling techniques, but some differences arose - particularly when pair members were not identical in how they gained and lost energy. We argue that exploring how rules-of-thumb perform in comparison to their optimal counterparts is an important exercise for biologically validating the output of agent-based models of group behaviour.
Assessing the operation rules of a reservoir system based on a detailed modelling-chain
NASA Astrophysics Data System (ADS)
Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B.
2014-09-01
According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two muti-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking, to control floods, to produce hydropower and to reduce low-flow condition. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.
Assessing the operation rules of a reservoir system based on a detailed modelling chain
NASA Astrophysics Data System (ADS)
Bruwier, M.; Erpicum, S.; Pirotton, M.; Archambeau, P.; Dewals, B. J.
2015-03-01
According to available climate change scenarios for Belgium, drier summers and wetter winters are expected. In this study, we focus on two multi-purpose reservoirs located in the Vesdre catchment, which is part of the Meuse basin. The current operation rules of the reservoirs are first analysed. Next, the impacts of two climate change scenarios are assessed and enhanced operation rules are proposed to mitigate these impacts. For this purpose, an integrated model of the catchment was used. It includes a hydrological model, one-dimensional and two-dimensional hydraulic models of the river and its main tributaries, a model of the reservoir system and a flood damage model. Five performance indicators of the reservoir system have been defined, reflecting its ability to provide sufficient drinking water, to control floods, to produce hydropower and to reduce low-flow conditions. As shown by the results, enhanced operation rules may improve the drinking water potential and the low-flow augmentation while the existing operation rules are efficient for flood control and for hydropower production.
How should we build a generic open-source water management simulator?
NASA Astrophysics Data System (ADS)
Khadem, M.; Meier, P.; Rheinheimer, D. E.; Padula, S.; Matrosov, E.; Selby, P. D.; Knox, S.; Harou, J. J.
2014-12-01
Increasing water needs for agriculture, industry and cities mean effective and flexible water resource system management tools will remain in high demand. Currently many regions or countries use simulators that have been adapted over time to their unique system properties and water management rules and realities. Most regions operate with a preferred short-list of water management and planning decision support systems. Is there scope for a simulator, shared within the water management community, that could be adapted to different contexts, integrate community contributions, and connect to generic data and model management software? What role could open-source play in such a project? How could a genericuser-interface and data/model management software sustainably be attached to this model or suite of models? Finally, how could such a system effectively leverage existing model formulations, modeling technologies and software? These questions are addressed by the initial work presented here. We introduce a generic water resource simulation formulation that enables and integrates both rule-based and optimization driven technologies. We suggest how it could be linked to other sub-models allowing for detailed agent-based simulation of water management behaviours. An early formulation is applied as an example to the Thames water resource system in the UK. The model uses centralised optimisation to calculate allocations but allows for rule-based operations as well in an effort to represent observed behaviours and rules with fidelity. The model is linked through import/export commands to a generic network model platform named Hydra. Benefits and limitations of the approach are discussed and planned work and potential use cases are outlined.
Estimating tree grades for Southern Appalachian natural forest stands
Jeffrey P. Prestemon
1998-01-01
Log prices can vary significantly by grade: grade 1 logs are often several times the price per unit of grade 3 logs. Because tree grading rules derive from log grading rules, a model that predicts tree grades based on tree and stand-level variables might be useful for predicting stand values. The model could then assist in the modeling of timber supply and in economic...
Efficiency in Rule- vs. Plan-Based Movements Is Modulated by Action-Mode.
Scheib, Jean P P; Stoll, Sarah; Thürmer, J Lukas; Randerath, Jennifer
2018-01-01
The rule/plan motor cognition (RPMC) paradigm elicits visually indistinguishable motor outputs, resulting from either plan- or rule-based action-selection, using a combination of essentially interchangeable stimuli. Previous implementations of the RPMC paradigm have used pantomimed movements to compare plan- vs. rule-based action-selection. In the present work we attempt to determine the generalizability of previous RPMC findings to real object interaction by use of a grasp-to-rotate task. In the plan task, participants had to use prospective planning to achieve a comfortable post-handle rotation hand posture. The rule task used implementation intentions (if-then rules) leading to the same comfortable end-state. In Experiment A, we compare RPMC performance of 16 healthy participants in pantomime and real object conditions of the experiment, within-subjects. Higher processing efficiency of rule- vs. plan-based action-selection was supported by diffusion model analysis. Results show a significant response-time increase in the pantomime condition compared to the real object condition and a greater response-time advantage of rule-based vs. plan-based actions in the pantomime compared to the real object condition. In Experiment B, 24 healthy participants performed the real object RPMC task in a task switching vs. a blocked condition. Results indicate that plan-based action-selection leads to longer response-times and less efficient information processing than rule-based action-selection in line with previous RPMC findings derived from the pantomime action-mode. Particularly in the task switching mode, responses were faster in the rule compared to the plan task suggesting a modulating influence of cognitive load. Overall, results suggest an advantage of rule-based action-selection over plan-based action-selection; whereby differential mechanisms appear to be involved depending on the action-mode. We propose that cognitive load is a factor that modulates the advantageous effect of implementation intentions in motor cognition on different levels as illustrated by the varying speed advantages and the variation in diffusion parameters per action-mode or condition, respectively.
NASA Astrophysics Data System (ADS)
Yang, Yuchen; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro
Intertransaction association rules have been reported to be useful in many fields such as stock market prediction, but still there are not so many efficient methods to dig them out from large data sets. Furthermore, how to use and measure these more complex rules should be considered carefully. In this paper, we propose a new intertransaction class association rule mining method based on Genetic Network Programming (GNP), which has the ability to overcome some shortages of Apriori-like based intertransaction association methods. Moreover, a general classifier model for intertransaction rules is also introduced. In experiments on the real world application of stock market prediction, the method shows its efficiency and ability to obtain good results and can bring more benefits with a suitable classifier considering larger interval span.
NASA Astrophysics Data System (ADS)
Enayatifar, Rasul; Sadaei, Hossein Javedani; Abdullah, Abdul Hanan; Lee, Malrey; Isnin, Ismail Fauzi
2015-08-01
Currently, there are many studies have conducted on developing security of the digital image in order to protect such data while they are sending on the internet. This work aims to propose a new approach based on a hybrid model of the Tinkerbell chaotic map, deoxyribonucleic acid (DNA) and cellular automata (CA). DNA rules, DNA sequence XOR operator and CA rules are used simultaneously to encrypt the plain-image pixels. To determine rule number in DNA sequence and also CA, a 2-dimension Tinkerbell chaotic map is employed. Experimental results and computer simulations, both confirm that the proposed scheme not only demonstrates outstanding encryption, but also resists various typical attacks.
Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L
2015-01-01
In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.
Duff, Armin; Fibla, Marti Sanchez; Verschure, Paul F M J
2011-06-30
Intelligence depends on the ability of the brain to acquire and apply rules and representations. At the neuronal level these properties have been shown to critically depend on the prefrontal cortex. Here we present, in the context of the Distributed Adaptive Control architecture (DAC), a biologically based model for flexible control and planning based on key physiological properties of the prefrontal cortex, i.e. reward modulated sustained activity and plasticity of lateral connectivity. We test the model in a series of pertinent tasks, including multiple T-mazes and the Tower of London that are standard experimental tasks to assess flexible control and planning. We show that the model is both able to acquire and express rules that capture the properties of the task and to quickly adapt to changes. Further, we demonstrate that this biomimetic self-contained cognitive architecture generalizes to planning. In addition, we analyze the extended DAC architecture, called DAC 6, as a model that can be applied for the creation of intelligent and psychologically believable synthetic agents. Copyright © 2010 Elsevier Inc. All rights reserved.
Rule-based mechanisms of learning for intelligent adaptive flight control
NASA Technical Reports Server (NTRS)
Handelman, David A.; Stengel, Robert F.
1990-01-01
How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.
A new in silico classification model for ready biodegradability, based on molecular fragments.
Lombardo, Anna; Pizzo, Fabiola; Benfenati, Emilio; Manganaro, Alberto; Ferrari, Thomas; Gini, Giuseppina
2014-08-01
Regulations such as the European REACH (Registration, Evaluation, Authorization and restriction of Chemicals) often require chemicals to be evaluated for ready biodegradability, to assess the potential risk for environmental and human health. Because not all chemicals can be tested, there is an increasing demand for tools for quick and inexpensive biodegradability screening, such as computer-based (in silico) theoretical models. We developed an in silico model starting from a dataset of 728 chemicals with ready biodegradability data (MITI-test Ministry of International Trade and Industry). We used the novel software SARpy to automatically extract, through a structural fragmentation process, a set of substructures statistically related to ready biodegradability. Then, we analysed these substructures in order to build some general rules. The model consists of a rule-set made up of the combination of the statistically relevant fragments and of the expert-based rules. The model gives good statistical performance with 92%, 82% and 76% accuracy on the training, test and external set respectively. These results are comparable with other in silico models like BIOWIN developed by the United States Environmental Protection Agency (EPA); moreover this new model includes an easily understandable explanation. Copyright © 2014 Elsevier Ltd. All rights reserved.
A proposed technique for vehicle tracking, direction, and speed determination
NASA Astrophysics Data System (ADS)
Fisher, Paul S.; Angaye, Cleopas O.; Fisher, Howard P.
2004-12-01
A technique for recognition of vehicles in terms of direction, distance, and rate of change is presented. This represents very early work on this problem with significant hurdles still to be addressed. These are discussed in the paper. However, preliminary results also show promise for this technique for use in security and defense environments where the penetration of a perimeter is of concern. The material described herein indicates a process whereby the protection of a barrier could be augmented by computers and installed cameras assisting the individuals charged with this responsibility. The technique we employ is called Finite Inductive Sequences (FI) and is proposed as a means for eliminating data requiring storage and recognition where conventional mathematical models don"t eliminate enough and statistical models eliminate too much. FI is a simple idea and is based upon a symbol push-out technique that allows the order (inductive base) of the model to be set to an a priori value for all derived rules. The rules are obtained from exemplar data sets, and are derived by a technique called Factoring, yielding a table of rules called a Ruling. These rules can then be used in pattern recognition applications such as described in this paper.
76 FR 28821 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... exclusively through computer software-based models or applications termed under the rule as ``interactive Web... conducted through an interactive Web site in accordance with the rule.\\7\\ \\1\\ 17 CFR 275.203A-2(f). Included in rule 203A-2(f) is a limited exception to the interactive Web site requirement which allows these...
Alternative Theoretical Bases for the Study of Human Communication: The Rules Perspective.
ERIC Educational Resources Information Center
Cushman, Donald P.
Three potentially useful perspectives for the scientific development of human communication theory are the law model, the systems approach, and the rules paradigm. It is the purpose of this paper to indicate the utility of the rules perspective. For the purposes of this analysis, human communication is viewed as the successful transfer of symbolic…
Lin, Chin-Teng; Wu, Rui-Cheng; Chang, Jyh-Yeong; Liang, Sheng-Fu
2004-02-01
In this paper, a new technique for the Chinese text-to-speech (TTS) system is proposed. Our major effort focuses on the prosodic information generation. New methodologies for constructing fuzzy rules in a prosodic model simulating human's pronouncing rules are developed. The proposed Recurrent Fuzzy Neural Network (RFNN) is a multilayer recurrent neural network (RNN) which integrates a Self-cOnstructing Neural Fuzzy Inference Network (SONFIN) into a recurrent connectionist structure. The RFNN can be functionally divided into two parts. The first part adopts the SONFIN as a prosodic model to explore the relationship between high-level linguistic features and prosodic information based on fuzzy inference rules. As compared to conventional neural networks, the SONFIN can always construct itself with an economic network size in high learning speed. The second part employs a five-layer network to generate all prosodic parameters by directly using the prosodic fuzzy rules inferred from the first part as well as other important features of syllables. The TTS system combined with the proposed method can behave not only sandhi rules but also the other prosodic phenomena existing in the traditional TTS systems. Moreover, the proposed scheme can even find out some new rules about prosodic phrase structure. The performance of the proposed RFNN-based prosodic model is verified by imbedding it into a Chinese TTS system with a Chinese monosyllable database based on the time-domain pitch synchronous overlap add (TD-PSOLA) method. Our experimental results show that the proposed RFNN can generate proper prosodic parameters including pitch means, pitch shapes, maximum energy levels, syllable duration, and pause duration. Some synthetic sounds are online available for demonstration.
Colucci, E; Clark, A; Lang, C E; Pomeroy, V M
2017-12-01
Dose-optimisation studies as precursors to clinical trials are rare in stroke rehabilitation. To develop a rule-based, dose-finding design for stroke rehabilitation research. 3+3 rule-based, dose-finding study. Dose escalation/de-escalation was undertaken according to preset rules and a mathematical sequence (modified Fibonacci sequence). The target starting daily dose was 50 repetitions for the first cohort. Adherence was recorded by an electronic counter. At the end of the 2-week training period, the adherence record indicated dose tolerability (adherence to target dose) and the outcome measure indicated dose benefit (10% increase in motor function). The preset increment/decrease and checking rules were then applied to set the dose for the subsequent cohort. The process was repeated until preset stopping rules were met. Participants had a mean age of 68 (range 48 to 81) years, and were a mean of 70 (range 9 to 289) months post stroke with moderate upper limb paresis. A custom-built model of exercise-based training to enhance ability to open the paretic hand. Repetitions per minute of extension/flexion of paretic digits against resistance. Usability of the preset rules and whether the maximally tolerated dose was identifiable. Five cohorts of three participants were involved. Discernibly different doses were set for each subsequent cohort (i.e. 50, 100, 167, 251 and 209 repetitions/day). The maximally tolerated dose for the model training task was 209 repetitions/day. This dose-finding design is a feasible method for use in stroke rehabilitation research. Copyright © 2017 Chartered Society of Physiotherapy. All rights reserved.
Conceptual model of knowledge base system
NASA Astrophysics Data System (ADS)
Naykhanova, L. V.; Naykhanova, I. V.
2018-05-01
In the article, the conceptual model of the knowledge based system by the type of the production system is provided. The production system is intended for automation of problems, which solution is rigidly conditioned by the legislation. A core component of the system is a knowledge base. The knowledge base consists of a facts set, a rules set, the cognitive map and ontology. The cognitive map is developed for implementation of a control strategy, ontology - the explanation mechanism. Knowledge representation about recognition of a situation in the form of rules allows describing knowledge of the pension legislation. This approach provides the flexibility, originality and scalability of the system. In the case of changing legislation, it is necessary to change the rules set. This means that the change of the legislation would not be a big problem. The main advantage of the system is that there is an opportunity to be adapted easily to changes of the legislation.
Rule-based topology system for spatial databases to validate complex geographic datasets
NASA Astrophysics Data System (ADS)
Martinez-Llario, J.; Coll, E.; Núñez-Andrés, M.; Femenia-Ribera, C.
2017-06-01
A rule-based topology software system providing a highly flexible and fast procedure to enforce integrity in spatial relationships among datasets is presented. This improved topology rule system is built over the spatial extension Jaspa. Both projects are open source, freely available software developed by the corresponding author of this paper. Currently, there is no spatial DBMS that implements a rule-based topology engine (considering that the topology rules are designed and performed in the spatial backend). If the topology rules are applied in the frontend (as in many GIS desktop programs), ArcGIS is the most advanced solution. The system presented in this paper has several major advantages over the ArcGIS approach: it can be extended with new topology rules, it has a much wider set of rules, and it can mix feature attributes with topology rules as filters. In addition, the topology rule system can work with various DBMSs, including PostgreSQL, H2 or Oracle, and the logic is performed in the spatial backend. The proposed topology system allows users to check the complex spatial relationships among features (from one or several spatial layers) that require some complex cartographic datasets, such as the data specifications proposed by INSPIRE in Europe and the Land Administration Domain Model (LADM) for Cadastral data.
Analysis of Autopilot Behavior
NASA Technical Reports Server (NTRS)
Sherry, Lance; Polson, Peter; Feay, Mike; Palmer, Everett; Null, Cynthia H. (Technical Monitor)
1998-01-01
Aviation and cognitive science researchers have identified situations in which the pilot's expectations for behavior of autopilot avionics are not matched by the actual behavior of the avionics. These "automation surprises" have been attributed to differences between the pilot's model of the behavior of the avionics and the actual behavior encoded in the avionics software. A formal technique is described for the analysis and measurement of the behavior of the cruise pitch modes of a modern Autopilot. The analysis characterizes the behavior of the Autopilot as situation-action rules. The behavior of the cruise pitch mode logic for a contemporary modern Autopilot was found to include 177 rules, including Level Change (23), Vertical Speed (16), Altitude Capture (50), and Altitude Hold (88). These rules are determined based on the values of 62 inputs. Analysis of the rule-based model also shed light on the factors cited in the literature as contributors to "automation surprises."
C-Language Integrated Production System, Version 5.1
NASA Technical Reports Server (NTRS)
Riley, Gary; Donnell, Brian; Ly, Huyen-Anh VU; Culbert, Chris; Savely, Robert T.; Mccoy, Daniel J.; Giarratano, Joseph
1992-01-01
CLIPS 5.1 provides cohesive software tool for handling wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming provides representation of knowledge by use of heuristics. Object-oriented programming enables modeling of complex systems as modular components. Procedural programming enables CLIPS to represent knowledge in ways similar to those allowed in such languages as C, Pascal, Ada, and LISP. Working with CLIPS 5.1, one can develop expert-system software by use of rule-based programming only, object-oriented programming only, procedural programming only, or combinations of the three.
A Rule-Based Policy-Level Model of Nonsuperpower Behavior in Strategic Conflicts.
1982-12-01
a mechanism. The human mind tends to work linearly and to focus implicitly on a few variables. Experience results in subconscious models with far...which is slower. Alternatives to the current ROSIE implementation include reprogramming Scenario Agent in the C language (the language used for the Red...perception, opportunity perception, opportunity response, and assertiveness. As rules are refined, maintenance and reprogramming of the model will be required
NASA Technical Reports Server (NTRS)
Sartori, Michael A.; Passino, Kevin M.; Antsaklis, Panos J.
1992-01-01
In rule-based AI planning, expert, and learning systems, it is often the case that the left-hand-sides of the rules must be repeatedly compared to the contents of some 'working memory'. The traditional approach to solve such a 'match phase problem' for production systems is to use the Rete Match Algorithm. Here, a new technique using a multilayer perceptron, a particular artificial neural network model, is presented to solve the match phase problem for rule-based AI systems. A syntax for premise formulas (i.e., the left-hand-sides of the rules) is defined, and working memory is specified. From this, it is shown how to construct a multilayer perceptron that finds all of the rules which can be executed for the current situation in working memory. The complexity of the constructed multilayer perceptron is derived in terms of the maximum number of nodes and the required number of layers. A method for reducing the number of layers to at most three is also presented.
A rule-based approach to model checking of UML state machines
NASA Astrophysics Data System (ADS)
Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz
2016-12-01
In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.
Rule Based Category Learning in Patients with Parkinson’s Disease
Price, Amanda; Filoteo, J. Vincent; Maddox, W. Todd
2009-01-01
Measures of explicit rule-based category learning are commonly used in neuropsychological evaluation of individuals with Parkinson’s disease (PD) and the pattern of PD performance on these measures tends to be highly varied. We review the neuropsychological literature to clarify the manner in which PD affects the component processes of rule-based category learning and work to identify and resolve discrepancies within this literature. In particular, we address the manner in which PD and its common treatments affect the processes of rule generation, maintenance, shifting and selection. We then integrate the neuropsychological research with relevant neuroimaging and computational modeling evidence to clarify the neurobiological impact of PD on each process. Current evidence indicates that neurochemical changes associated with PD primarily disrupt rule shifting, and may disturb feedback-mediated learning processes that guide rule selection. Although surgical and pharmacological therapies remediate this deficit, it appears that the same treatments may contribute to impaired rule generation, maintenance and selection processes. These data emphasize the importance of distinguishing between the impact of PD and its common treatments when considering the neuropsychological profile of the disease. PMID:19428385
2016-11-04
The Medicare Access and CHIP Reauthorization Act of 2015 (MACRA) repeals the Medicare sustainable growth rate (SGR) methodology for updates to the physician fee schedule (PFS) and replaces it with a new approach to payment called the Quality Payment Program that rewards the delivery of high-quality patient care through two avenues: Advanced Alternative Payment Models (Advanced APMs) and the Merit-based Incentive Payment System (MIPS) for eligible clinicians or groups under the PFS. This final rule with comment period establishes incentives for participation in certain alternative payment models (APMs) and includes the criteria for use by the Physician-Focused Payment Model Technical Advisory Committee (PTAC) in making comments and recommendations on physician-focused payment models (PFPMs). Alternative Payment Models are payment approaches, developed in partnership with the clinician community, that provide added incentives to deliver high-quality and cost-efficient care. APMs can apply to a specific clinical condition, a care episode, or a population. This final rule with comment period also establishes the MIPS, a new program for certain Medicare-enrolled practitioners. MIPS will consolidate components of three existing programs, the Physician Quality Reporting System (PQRS), the Physician Value-based Payment Modifier (VM), and the Medicare Electronic Health Record (EHR) Incentive Program for Eligible Professionals (EPs), and will continue the focus on quality, cost, and use of certified EHR technology (CEHRT) in a cohesive program that avoids redundancies. In this final rule with comment period we have rebranded key terminology based on feedback from stakeholders, with the goal of selecting terms that will be more easily identified and understood by our stakeholders.
ERIC Educational Resources Information Center
Frenette, Micheline
Trying to change the predictive rule for the sinking and floating phenomena, students have a great difficulty in understanding density and they are insensitive to empirical counter-examples designed to challenge their own rule. The purpose of this study is to examine the process whereby students from sixth and seventh grades relinquish their…
Hierarchy-associated semantic-rule inference framework for classifying indoor scenes
NASA Astrophysics Data System (ADS)
Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei
2016-03-01
Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.
A Decision Making Methodology in Support of the Business Rules Lifecycle
NASA Technical Reports Server (NTRS)
Wild, Christopher; Rosca, Daniela
1998-01-01
The business rules that underlie an enterprise emerge as a new category of system requirements that represent decisions about how to run the business, and which are characterized by their business-orientation and their propensity for change. In this report, we introduce a decision making methodology which addresses several aspects of the business rules lifecycle: acquisition, deployment and evolution. We describe a meta-model for representing business rules in terms of an enterprise model, and also a decision support submodel for reasoning about and deriving the rules. The possibility for lifecycle automated assistance is demonstrated in terms of the automatic extraction of business rules from the decision structure. A system based on the metamodel has been implemented, including the extraction algorithm. This is the final report for Daniela Rosca's PhD fellowship. It describes the work we have done over the past year, current research and the list of publications associated with her thesis topic.
NASA Astrophysics Data System (ADS)
Duer, Stanisław; Wrzesień, Paweł; Duer, Radosław
2017-10-01
This article describes rules and conditions for making a structure (a set) of facts for an expert knowledge base of the intelligent system to diagnose Wind Power Plants' equipment. Considering particular operational conditions of a technical object, that is a set of Wind Power Plant's equipment, this is a significant issue. A structural model of Wind Power Plant's equipment is developed. Based on that, a functional - diagnostic model of Wind Power Plant's equipment is elaborated. That model is a basis for determining primary elements of the object structure, as well as for interpreting a set of diagnostic signals and their reference signals. The key content of this paper is a description of rules for building of facts on the basis of developed analytical dependence. According to facts, their dependence is described by rules for transferring of a set of pieces of diagnostic information into a specific set of facts. The article consists of four chapters that concern particular issues on the subject.
The relevance of a rules-based maize marketing policy: an experimental case study of Zambia.
Abbink, Klaus; Jayne, Thomas S; Moller, Lars C
2011-01-01
Strategic interaction between public and private actors is increasingly recognised as an important determinant of agricultural market performance in Africa and elsewhere. Trust and consultation tends to positively affect private activity while uncertainty of government behaviour impedes it. This paper reports on a laboratory experiment based on a stylised model of the Zambian maize market. The experiment facilitates a comparison between discretionary interventionism and a rules-based policy in which the government pre-commits itself to a future course of action. A simple precommitment rule can, in theory, overcome the prevailing strategic dilemma by encouraging private sector participation. Although this result is also borne out in the economic experiment, the improvement in private sector activity is surprisingly small and not statistically significant due to irrationally cautious choices by experimental governments. Encouragingly, a rules-based policy promotes a much more stable market outcome thereby substantially reducing the risk of severe food shortages. These results underscore the importance of predictable and transparent rules for the state's involvement in agricultural markets.
Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations
Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting; ...
2018-03-28
Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less
Generalizing Gillespie’s Direct Method to Enable Network-Free Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suderman, Ryan T.; Mitra, Eshan David; Lin, Yen Ting
Gillespie’s direct method for stochastic simulation of chemical kinetics is a staple of computational systems biology research. However, the algorithm requires explicit enumeration of all reactions and all chemical species that may arise in the system. In many cases, this is not feasible due to the combinatorial explosion of reactions and species in biological networks. Rule-based modeling frameworks provide a way to exactly represent networks containing such combinatorial complexity, and generalizations of Gillespie’s direct method have been developed as simulation engines for rule-based modeling languages. Here, we provide both a high-level description of the algorithms underlying the simulation engines, termedmore » network-free simulation algorithms, and how they have been applied in systems biology research. We also define a generic rule-based modeling framework and describe a number of technical details required for adapting Gillespie’s direct method for network-free simulation. Lastly, we briefly discuss potential avenues for advancing network-free simulation and the role they continue to play in modeling dynamical systems in biology.« less
A fully-online Neuro-Fuzzy model for flow forecasting in basins with limited data
NASA Astrophysics Data System (ADS)
Ashrafi, Mohammad; Chua, Lloyd Hock Chye; Quek, Chai; Qin, Xiaosheng
2017-02-01
Current state-of-the-art online neuro fuzzy models (NFMs) such as DENFIS (Dynamic Evolving Neural-Fuzzy Inference System) have been used for runoff forecasting. Online NFMs adopt a local learning approach and are able to adapt to changes continuously. The DENFIS model however requires upper/lower bound for normalization and also the number of rules increases monotonically. This requirement makes the model unsuitable for use in basins with limited data, since a priori data is required. In order to address this and other drawbacks of current online models, the Generic Self-Evolving Takagi-Sugeno-Kang (GSETSK) is adopted in this study for forecast applications in basins with limited data. GSETSK is a fully-online NFM which updates its structure and parameters based on the most recent data. The model does not require the need for historical data and adopts clustering and rule pruning techniques to generate a compact and up-to-date rule-base. GSETSK was used in two forecast applications, rainfall-runoff (a catchment in Sweden) and river routing (Lower Mekong River) forecasts. Each of these two applications was studied under two scenarios: (i) there is no prior data, and (ii) only limited data is available (1 year for the Swedish catchment and 1 season for the Mekong River). For the Swedish Basin, GSETSK model results were compared to available results from a calibrated HBV (Hydrologiska Byråns Vattenbalansavdelning) model. For the Mekong River, GSETSK results were compared against the URBS (Unified River Basin Simulator) model. Both comparisons showed that results from GSETSK are comparable with the physically based models, which were calibrated with historical data. Thus, even though GSETSK was trained with a very limited dataset in comparison with HBV or URBS, similar results were achieved. Similarly, further comparisons between GSETSK with DENFIS and the RBF (Radial Basis Function) models highlighted further advantages of GSETSK as having a rule-base (compared to opaque RBF) which is more compact, up-to-date and more easily interpretable.
Ultimate strength performance of tankers associated with industry corrosion addition practices
NASA Astrophysics Data System (ADS)
Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee
2014-09-01
In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures
Kashyap, Vipul; Morales, Alfredo; Hongsermeier, Tonya
2006-01-01
We present an approach and architecture for implementing scalable and maintainable clinical decision support at the Partners HealthCare System. The architecture integrates a business rules engine that executes declarative if-then rules stored in a rule-base referencing objects and methods in a business object model. The rules engine executes object methods by invoking services implemented on the clinical data repository. Specialized inferences that support classification of data and instances into classes are identified and an approach to implement these inferences using an OWL based ontology engine is presented. Alternative representations of these specialized inferences as if-then rules or OWL axioms are explored and their impact on the scalability and maintenance of the system is presented. Architectural alternatives for integration of clinical decision support functionality with the invoking application and the underlying clinical data repository; and their associated trade-offs are discussed and presented.
Rule-based modeling and simulations of the inner kinetochore structure.
Tschernyschkow, Sergej; Herda, Sabine; Gruenert, Gerd; Döring, Volker; Görlich, Dennis; Hofmeister, Antje; Hoischen, Christian; Dittrich, Peter; Diekmann, Stephan; Ibrahim, Bashar
2013-09-01
Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins. Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts. Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ambrosino, R; Buchanan, B G; Cooper, G F; Fine, M J
1995-01-01
Cost-effective health care is at the forefront of today's important health-related issues. A research team at the University of Pittsburgh has been interested in lowering the cost of medical care by attempting to define a subset of patients with community-acquire pneumonia for whom outpatient therapy is appropriate and safe. Sensitivity and specificity requirements for this domain make it difficult to use rule-based learning algorithms with standard measures of performance based on accuracy. This paper describes the use of misclassification costs to assist a rule-based machine-learning program in deriving a decision-support aid for choosing outpatient therapy for patients with community-acquired pneumonia.
Efficiency in Rule- vs. Plan-Based Movements Is Modulated by Action-Mode
Scheib, Jean P. P.; Stoll, Sarah; Thürmer, J. Lukas; Randerath, Jennifer
2018-01-01
The rule/plan motor cognition (RPMC) paradigm elicits visually indistinguishable motor outputs, resulting from either plan- or rule-based action-selection, using a combination of essentially interchangeable stimuli. Previous implementations of the RPMC paradigm have used pantomimed movements to compare plan- vs. rule-based action-selection. In the present work we attempt to determine the generalizability of previous RPMC findings to real object interaction by use of a grasp-to-rotate task. In the plan task, participants had to use prospective planning to achieve a comfortable post-handle rotation hand posture. The rule task used implementation intentions (if-then rules) leading to the same comfortable end-state. In Experiment A, we compare RPMC performance of 16 healthy participants in pantomime and real object conditions of the experiment, within-subjects. Higher processing efficiency of rule- vs. plan-based action-selection was supported by diffusion model analysis. Results show a significant response-time increase in the pantomime condition compared to the real object condition and a greater response-time advantage of rule-based vs. plan-based actions in the pantomime compared to the real object condition. In Experiment B, 24 healthy participants performed the real object RPMC task in a task switching vs. a blocked condition. Results indicate that plan-based action-selection leads to longer response-times and less efficient information processing than rule-based action-selection in line with previous RPMC findings derived from the pantomime action-mode. Particularly in the task switching mode, responses were faster in the rule compared to the plan task suggesting a modulating influence of cognitive load. Overall, results suggest an advantage of rule-based action-selection over plan-based action-selection; whereby differential mechanisms appear to be involved depending on the action-mode. We propose that cognitive load is a factor that modulates the advantageous effect of implementation intentions in motor cognition on different levels as illustrated by the varying speed advantages and the variation in diffusion parameters per action-mode or condition, respectively. PMID:29593612
Integrated modelling of stormwater treatment systems uptake.
Castonguay, A C; Iftekhar, M S; Urich, C; Bach, P M; Deletic, A
2018-05-24
Nature-based solutions provide a variety of benefits in growing cities, ranging from stormwater treatment to amenity provision such as aesthetics. However, the decision-making process involved in the installation of such green infrastructure is not straightforward, as much uncertainty around the location, size, costs and benefits impedes systematic decision-making. We developed a model to simulate decision rules used by local municipalities to install nature-based stormwater treatment systems, namely constructed wetlands, ponds/basins and raingardens. The model was used to test twenty-four scenarios of policy-making, by combining four asset selection, two location selection and three budget constraint decision rules. Based on the case study of a local municipality in Metropolitan Melbourne, Australia, the modelled uptake of stormwater treatment systems was compared with attributes of real-world systems for the simulation period. Results show that the actual budgeted funding is not reliable to predict systems' uptake and that policy-makers are more likely to plan expenditures based on installation costs. The model was able to replicate the cumulative treatment capacity and the location of systems. As such, it offers a novel approach to investigate the impact of using different decision rules to provide environmental services considering biophysical and economic factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
Expert system training and control based on the fuzzy relation matrix
NASA Technical Reports Server (NTRS)
Ren, Jie; Sheridan, T. B.
1991-01-01
Fuzzy knowledge, that for which the terms of reference are not crisp but overlapped, seems to characterize human expertise. This can be shown from the fact that an experienced human operator can control some complex plants better than a computer can. Proposed here is fuzzy theory to build a fuzzy expert relation matrix (FERM) from given rules or/and examples, either in linguistic terms or in numerical values to mimic human processes of perception and decision making. The knowledge base is codified in terms of many implicit fuzzy rules. Fuzzy knowledge thus codified may also be compared with explicit rules specified by a human expert. It can also provide a basis for modeling the human operator and allow comparison of what a human operator says to what he does in practice. Two experiments were performed. In the first, control of liquid in a tank, demonstrates how the FERM knowledge base is elicited and trained. The other shows how to use a FERM, build up from linguistic rules, and to control an inverted pendulum without a dynamic model.
C-Language Integrated Production System, Version 6.0
NASA Technical Reports Server (NTRS)
Riley, Gary; Donnell, Brian; Ly, Huyen-Anh Bebe; Ortiz, Chris
1995-01-01
C Language Integrated Production System (CLIPS) computer programs are specifically intended to model human expertise or other knowledge. CLIPS is designed to enable research on, and development and delivery of, artificial intelligence on conventional computers. CLIPS 6.0 provides cohesive software tool for handling wide variety of knowledge with support for three different programming paradigms: rule-based, object-oriented, and procedural. Rule-based programming: representation of knowledge as heuristics - essentially, rules of thumb that specify set of actions performed in given situation. Object-oriented programming: modeling of complex systems comprised of modular components easily reused to model other systems or create new components. Procedural-programming: representation of knowledge in ways similar to those of such languages as C, Pascal, Ada, and LISP. Version of CLIPS 6.0 for IBM PC-compatible computers requires DOS v3.3 or later and/or Windows 3.1 or later.
Constructing Agent Model for Virtual Training Systems
NASA Astrophysics Data System (ADS)
Murakami, Yohei; Sugimoto, Yuki; Ishida, Toru
Constructing highly realistic agents is essential if agents are to be employed in virtual training systems. In training for collaboration based on face-to-face interaction, the generation of emotional expressions is one key. In training for guidance based on one-to-many interaction such as direction giving for evacuations, emotional expressions must be supplemented by diverse agent behaviors to make the training realistic. To reproduce diverse behavior, we characterize agents by using a various combinations of operation rules instantiated by the user operating the agent. To accomplish this goal, we introduce a user modeling method based on participatory simulations. These simulations enable us to acquire information observed by each user in the simulation and the operating history. Using these data and the domain knowledge including known operation rules, we can generate an explanation for each behavior. Moreover, the application of hypothetical reasoning, which offers consistent selection of hypotheses, to the generation of explanations allows us to use otherwise incompatible operation rules as domain knowledge. In order to validate the proposed modeling method, we apply it to the acquisition of an evacuee's model in a fire-drill experiment. We successfully acquire a subject's model corresponding to the results of an interview with the subject.
Rule-Based Category Learning in Children: The Role of Age and Executive Functioning
Rabi, Rahel; Minda, John Paul
2014-01-01
Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658
2017-11-07
This final rule updates the home health prospective payment system (HH PPS) payment rates, including the national, standardized 60-day episode payment rates, the national per-visit rates, and the non-routine medical supply (NRS) conversion factor, effective for home health episodes of care ending on or after January 1, 2018. This rule also: Updates the HH PPS case-mix weights using the most current, complete data available at the time of rulemaking; implements the third year of a 3-year phase-in of a reduction to the national, standardized 60-day episode payment to account for estimated case-mix growth unrelated to increases in patient acuity (that is, nominal case-mix growth) between calendar year (CY) 2012 and CY 2014; and discusses our efforts to monitor the potential impacts of the rebasing adjustments that were implemented in CY 2014 through CY 2017. In addition, this rule finalizes changes to the Home Health Value-Based Purchasing (HHVBP) Model and to the Home Health Quality Reporting Program (HH QRP). We are not finalizing the implementation of the Home Health Groupings Model (HHGM) in this final rule.
NASA Astrophysics Data System (ADS)
Chen, Xinyuan; Gong, Xiaolin; Graff, Christian G.; Santana, Maira; Sturgeon, Gregory M.; Sauer, Thomas J.; Zeng, Rongping; Glick, Stephen J.; Lo, Joseph Y.
2017-03-01
While patient-based breast phantoms are realistic, they are limited by low resolution due to the image acquisition and segmentation process. The purpose of this study is to restore the high frequency components for the patient-based phantoms by adding power law noise (PLN) and breast structures generated based on mathematical models. First, 3D radial symmetric PLN with β=3 was added at the boundary between adipose and glandular tissue to connect broken tissue and create a high frequency contour of the glandular tissue. Next, selected high-frequency features from the FDA rule-based computational phantom (Cooper's ligaments, ductal network, and blood vessels) were fused into the phantom. The effects of enhancement in this study were demonstrated by 2D mammography projections and digital breast tomosynthesis (DBT) reconstruction volumes. The addition of PLN and rule-based models leads to a continuous decrease in β. The new β is 2.76, which is similar to what typically found for reconstructed DBT volumes. The new combined breast phantoms retain the realism from segmentation and gain higher resolution after restoration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobottka, Marcelo, E-mail: sobottka@mtm.ufsc.br; Hart, Andrew G., E-mail: ahart@dim.uchile.cl
Highlights: {yields} We propose a simple stochastic model to construct primitive DNA sequences. {yields} The model provide an explanation for Chargaff's second parity rule in primitive DNA sequences. {yields} The model is also used to predict a novel type of strand symmetry in primitive DNA sequences. {yields} We extend the results for bacterial DNA sequences and compare distributional properties intrinsic to the model to statistical estimates from 1049 bacterial genomes. {yields} We find out statistical evidences that the novel type of strand symmetry holds for bacterial DNA sequences. -- Abstract: Chargaff's second parity rule for short oligonucleotides states that themore » frequency of any short nucleotide sequence on a strand is approximately equal to the frequency of its reverse complement on the same strand. Recent studies have shown that, with the exception of organellar DNA, this parity rule generally holds for double-stranded DNA genomes and fails to hold for single-stranded genomes. While Chargaff's first parity rule is fully explained by the Watson-Crick pairing in the DNA double helix, a definitive explanation for the second parity rule has not yet been determined. In this work, we propose a model based on a hidden Markov process for approximating the distributional structure of primitive DNA sequences. Then, we use the model to provide another possible theoretical explanation for Chargaff's second parity rule, and to predict novel distributional aspects of bacterial DNA sequences.« less
A comprehensive probabilistic analysis model of oil pipelines network based on Bayesian network
NASA Astrophysics Data System (ADS)
Zhang, C.; Qin, T. X.; Jiang, B.; Huang, C.
2018-02-01
Oil pipelines network is one of the most important facilities of energy transportation. But oil pipelines network accident may result in serious disasters. Some analysis models for these accidents have been established mainly based on three methods, including event-tree, accident simulation and Bayesian network. Among these methods, Bayesian network is suitable for probabilistic analysis. But not all the important influencing factors are considered and the deployment rule of the factors has not been established. This paper proposed a probabilistic analysis model of oil pipelines network based on Bayesian network. Most of the important influencing factors, including the key environment condition and emergency response are considered in this model. Moreover, the paper also introduces a deployment rule for these factors. The model can be used in probabilistic analysis and sensitive analysis of oil pipelines network accident.
Ardid, Salva; Wang, Xiao-Jing
2013-12-11
A hallmark of executive control is the brain's agility to shift between different tasks depending on the behavioral rule currently in play. In this work, we propose a "tweaking hypothesis" for task switching: a weak rule signal provides a small bias that is dramatically amplified by reverberating attractor dynamics in neural circuits for stimulus categorization and action selection, leading to an all-or-none reconfiguration of sensory-motor mapping. Based on this principle, we developed a biologically realistic model with multiple modules for task switching. We found that the model quantitatively accounts for complex task switching behavior: switch cost, congruency effect, and task-response interaction; as well as monkey's single-neuron activity associated with task switching. The model yields several testable predictions, in particular, that category-selective neurons play a key role in resolving sensory-motor conflict. This work represents a neural circuit model for task switching and sheds insights in the brain mechanism of a fundamental cognitive capability.
An improved cellular automaton method to model multispecies biofilms.
Tang, Youneng; Valocchi, Albert J
2013-10-01
Biomass-spreading rules used in previous cellular automaton methods to simulate multispecies biofilm introduced extensive mixing between different biomass species or resulted in spatially discontinuous biomass concentration and distribution; this caused results based on the cellular automaton methods to deviate from experimental results and those from the more computationally intensive continuous method. To overcome the problems, we propose new biomass-spreading rules in this work: Excess biomass spreads by pushing a line of grid cells that are on the shortest path from the source grid cell to the destination grid cell, and the fractions of different biomass species in the grid cells on the path change due to the spreading. To evaluate the new rules, three two-dimensional simulation examples are used to compare the biomass distribution computed using the continuous method and three cellular automaton methods, one based on the new rules and the other two based on rules presented in two previous studies. The relationship between the biomass species is syntrophic in one example and competitive in the other two examples. Simulation results generated using the cellular automaton method based on the new rules agree much better with the continuous method than do results using the other two cellular automaton methods. The new biomass-spreading rules are no more complex to implement than the existing rules. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, Ding; Cong-cong, Yu; Chen-hui, Wu; Zheng-yi, Shu
2018-03-01
To analyse the strain localization behavior of geomaterials, the forward Euler schemes and the tangent modulus matrix are formulated based on the transversely isotropic yield criterion with non-coaxial flow rule developed by Lade, the program code is implemented based on the user subroutine (UMAT) of ABAQUS. The influence of the material principal direction on the strain localization and the bearing capacity of the structure are investigated and analyzed. Numerical results show the validity and performance of the proposed model in simulating the strain localization behavior of geostructures.
On the applicability of STDP-based learning mechanisms to spiking neuron network models
NASA Astrophysics Data System (ADS)
Sboev, A.; Vlasov, D.; Serenko, A.; Rybka, R.; Moloshnikov, I.
2016-11-01
The ways to creating practically effective method for spiking neuron networks learning, that would be appropriate for implementing in neuromorphic hardware and at the same time based on the biologically plausible plasticity rules, namely, on STDP, are discussed. The influence of the amount of correlation between input and output spike trains on the learnability by different STDP rules is evaluated. A usability of alternative combined learning schemes, involving artificial and spiking neuron models is demonstrated on the iris benchmark task and on the practical task of gender recognition.
Rasmussen's model of human behavior in laparoscopy training.
Wentink, M; Stassen, L P S; Alwayn, I; Hosman, R J A W; Stassen, H G
2003-08-01
Compared to aviation, where virtual reality (VR) training has been standardized and simulators have proven their benefits, the objectives, needs, and means of VR training in minimally invasive surgery (MIS) still have to be established. The aim of the study presented is to introduce Rasmussen's model of human behavior as a practical framework for the definition of the training objectives, needs, and means in MIS. Rasmussen distinguishes three levels of human behavior: skill-, rule-, and knowledge-based behaviour. The training needs of a laparoscopic novice can be determined by identifying the specific skill-, rule-, and knowledge-based behavior that is required for performing safe laparoscopy. Future objectives of VR laparoscopy trainers should address all three levels of behavior. Although most commercially available simulators for laparoscopy aim at training skill-based behavior, especially the training of knowledge-based behavior during complications in surgery will improve safety levels. However, the cost and complexity of a training means increases when the training objectives proceed from the training of skill-based behavior to the training of complex knowledge-based behavior. In aviation, human behavior models have been used successfully to integrate the training of skill-, rule-, and knowledge-based behavior in a full flight simulator. Understanding surgeon behavior is one of the first steps towards a future full-scale laparoscopy simulator.
A rough set-based association rule approach implemented on a brand trust evaluation model
NASA Astrophysics Data System (ADS)
Liao, Shu-Hsien; Chen, Yin-Ju
2017-09-01
In commerce, businesses use branding to differentiate their product and service offerings from those of their competitors. The brand incorporates a set of product or service features that are associated with that particular brand name and identifies the product/service segmentation in the market. This study proposes a new data mining approach, a rough set-based association rule induction, implemented on a brand trust evaluation model. In addition, it presents as one way to deal with data uncertainty to analyse ratio scale data, while creating predictive if-then rules that generalise data values to the retail region. As such, this study uses the analysis of algorithms to find alcoholic beverages brand trust recall. Finally, discussions and conclusion are presented for further managerial implications.
Bayesian learning and the psychology of rule induction
Endress, Ansgar D.
2014-01-01
In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to spell out the underlying assumptions, and to confront them with the empirical results Frank and Tenenbaum (2011) propose to simulate, as well as with novel experiments. While rule-learning is arguably well suited to rational Bayesian approaches, I show that their models are neither psychologically plausible nor ideal observer models. Further, I show that their central assumption is unfounded: humans do not always preferentially learn more specific rules, but, at least in some situations, those rules that happen to be more salient. Even when granting the unsupported assumptions, I show that all of the experiments modeled by Frank and Tenenbaum (2011) either contradict their models, or have a large number of more plausible interpretations. I provide an alternative account of the experimental data based on simple psychological mechanisms, and show that this account both describes the data better, and is easier to falsify. I conclude that, despite the recent surge in Bayesian models of cognitive phenomena, psychological phenomena are best understood by developing and testing psychological theories rather than models that can be fit to virtually any data. PMID:23454791
Evolving rule-based systems in two medical domains using genetic programming.
Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf
2004-11-01
To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.
A.I.-based real-time support for high performance aircraft operations
NASA Technical Reports Server (NTRS)
Vidal, J. J.
1985-01-01
Artificial intelligence (AI) based software and hardware concepts are applied to the handling system malfunctions during flight tests. A representation of malfunction procedure logic using Boolean normal forms are presented. The representation facilitates the automation of malfunction procedures and provides easy testing for the embedded rules. It also forms a potential basis for a parallel implementation in logic hardware. The extraction of logic control rules, from dynamic simulation and their adaptive revision after partial failure are examined. It uses a simplified 2-dimensional aircraft model with a controller that adaptively extracts control rules for directional thrust that satisfies a navigational goal without exceeding pre-established position and velocity limits. Failure recovery (rule adjusting) is examined after partial actuator failure. While this experiment was performed with primitive aircraft and mission models, it illustrates an important paradigm and provided complexity extrapolations for the proposed extraction of expertise from simulation, as discussed. The use of relaxation and inexact reasoning in expert systems was also investigated.
ERIC Educational Resources Information Center
Marsh, Herbert W.; Hau, Kit-Tai; Wen, Zhonglin
2004-01-01
Goodness-of-fit (GOF) indexes provide "rules of thumb"?recommended cutoff values for assessing fit in structural equation modeling. Hu and Bentler (1999) proposed a more rigorous approach to evaluating decision rules based on GOF indexes and, on this basis, proposed new and more stringent cutoff values for many indexes. This article discusses…
Marc-André Parisien; Dave R. Junor; Victor G. Kafka
2006-01-01
This study used a rule-based approach to prioritize locations of fuel treatments in the boreal mixedwood forest of western Canada. The burn probability (BP) in and around Prince Albert National Park in Saskatchewan was mapped using the Burn-P3 (Probability, Prediction, and Planning) model. Fuel treatment locations were determined according to three scenarios and five...
Roorda, Leo D; Green, John R; Houwink, Annemieke; Bagley, Pam J; Smith, Jane; Molenaar, Ivo W; Geurts, Alexander C
2012-06-01
To enable improved interpretation of the total score and faster scoring of the Rivermead Mobility Index (RMI) by studying item ordering or hierarchy and formulating start-and-stop rules in patients after stroke. Cohort study. Rehabilitation center in the Netherlands; stroke rehabilitation units and the community in the United Kingdom. Item hierarchy of the RMI was studied in an initial group of patients (n=620; mean age ± SD, 69.2±12.5y; 297 [48%] men; 304 [49%] left hemisphere lesion, and 269 [43%] right hemisphere lesion), and the adequacy of the item hierarchy-based start-and-stop rules was checked in a second group of patients (n=237; mean age ± SD, 60.0±11.3y; 139 [59%] men; 103 [44%] left hemisphere lesion, and 93 [39%] right hemisphere lesion) undergoing rehabilitation after stroke. Not applicable. Mokken scale analysis was used to investigate the fit of the double monotonicity model, indicating hierarchical item ordering. The percentages of patients with a difference between the RMI total score and the scores based on the start-and-stop rules were calculated to check the adequacy of these rules. The RMI had good fit of the double monotonicity model (coefficient H(T)=.87). The interpretation of the total score improved. Item hierarchy-based start-and-stop rules were formulated. The percentages of patients with a difference between the RMI total score and the score based on the recommended start-and-stop rules were 3% and 5%, respectively. Ten of the original 15 items had to be scored after applying the start-and-stop rules. Item hierarchy was established, enabling improved interpretation and faster scoring of the RMI. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Di, Nur Faraidah Muhammad; Satari, Siti Zanariah
2017-05-01
Outlier detection in linear data sets has been done vigorously but only a small amount of work has been done for outlier detection in circular data. In this study, we proposed multiple outliers detection in circular regression models based on the clustering algorithm. Clustering technique basically utilizes distance measure to define distance between various data points. Here, we introduce the similarity distance based on Euclidean distance for circular model and obtain a cluster tree using the single linkage clustering algorithm. Then, a stopping rule for the cluster tree based on the mean direction and circular standard deviation of the tree height is proposed. We classify the cluster group that exceeds the stopping rule as potential outlier. Our aim is to demonstrate the effectiveness of proposed algorithms with the similarity distances in detecting the outliers. It is found that the proposed methods are performed well and applicable for circular regression model.
Grimm, Lisa R; Maddox, W Todd
2013-11-01
Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.
Linan, Margaret K; Sottara, Davide; Freimuth, Robert R
2015-01-01
Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines.
A network model of behavioural performance in a rule learning task.
Hasselmo, Michael E; Stern, Chantal E
2018-04-19
Humans demonstrate differences in performance on cognitive rule learning tasks which could involve differences in properties of neural circuits. An example model is presented to show how gating of the spread of neural activity could underlie rule learning and the generalization of rules to previously unseen stimuli. This model uses the activity of gating units to regulate the pattern of connectivity between neurons responding to sensory input and subsequent gating units or output units. This model allows analysis of network parameters that could contribute to differences in cognitive rule learning. These network parameters include differences in the parameters of synaptic modification and presynaptic inhibition of synaptic transmission that could be regulated by neuromodulatory influences on neural circuits. Neuromodulatory receptors play an important role in cognitive function, as demonstrated by the fact that drugs that block cholinergic muscarinic receptors can cause cognitive impairments. In discussions of the links between neuromodulatory systems and biologically based traits, the issue of mechanisms through which these linkages are realized is often missing. This model demonstrates potential roles of neural circuit parameters regulated by acetylcholine in learning context-dependent rules, and demonstrates the potential contribution of variation in neural circuit properties and neuromodulatory function to individual differences in cognitive function.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).
CAMUR: Knowledge extraction from RNA-seq cancer data through equivalent classification rules.
Cestarelli, Valerio; Fiscon, Giulia; Felici, Giovanni; Bertolazzi, Paola; Weitschek, Emanuel
2016-03-01
Nowadays, knowledge extraction methods from Next Generation Sequencing data are highly requested. In this work, we focus on RNA-seq gene expression analysis and specifically on case-control studies with rule-based supervised classification algorithms that build a model able to discriminate cases from controls. State of the art algorithms compute a single classification model that contains few features (genes). On the contrary, our goal is to elicit a higher amount of knowledge by computing many classification models, and therefore to identify most of the genes related to the predicted class. We propose CAMUR, a new method that extracts multiple and equivalent classification models. CAMUR iteratively computes a rule-based classification model, calculates the power set of the genes present in the rules, iteratively eliminates those combinations from the data set, and performs again the classification procedure until a stopping criterion is verified. CAMUR includes an ad-hoc knowledge repository (database) and a querying tool.We analyze three different types of RNA-seq data sets (Breast, Head and Neck, and Stomach Cancer) from The Cancer Genome Atlas (TCGA) and we validate CAMUR and its models also on non-TCGA data. Our experimental results show the efficacy of CAMUR: we obtain several reliable equivalent classification models, from which the most frequent genes, their relationships, and the relation with a particular cancer are deduced. dmb.iasi.cnr.it/camur.php emanuel@iasi.cnr.it Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Hidden electronic rule in the “cluster-plus-glue-atom” model
Du, Jinglian; Dong, Chuang; Melnik, Roderick; Kawazoe, Yoshiyuki; Wen, Bin
2016-01-01
Electrons and their interactions are intrinsic factors to affect the structure and properties of materials. Based on the “cluster-cluster-plus-glue-atom” model, an electron counting rule for complex metallic alloys (CMAs) has been revealed in this work (i. e. the CPGAMEC rule). Our results on the cluster structure and electron concentration of CMAs with apparent cluster features, indicate that the valence electrons’ number per unit cluster formula for these CMAs are specific constants of eight-multiples and twelve-multiples. It is thus termed as specific electrons cluster formula. This CPGAMEC rule has been demonstrated as a useful guidance to direct the design of CMAs with desired properties, while its practical applications and underlying mechanism have been illustrated on the basis of CMAs’ cluster structural features. Our investigation provides an aggregate picture with intriguing electronic rule and atomic structural features of CMAs. PMID:27642002
NASA Astrophysics Data System (ADS)
Curland, Matthew; Halpin, Terry; Stirewalt, Kurt
A conceptual schema of an information system specifies the fact structures of interest as well as related business rules that are either constraints or derivation rules. Constraints restrict the possible or permitted states or state transitions, while derivation rules enable some facts to be derived from others. Graphical languages are commonly used to specify conceptual schemas, but often need to be supplemented by more expressive textual languages to capture additional business rules, as well as conceptual queries that enable conceptual models to be queried directly. This paper describes research to provide a role calculus to underpin textual languages for Object-Role Modeling (ORM), to enable business rules and queries to be formulated in a language intelligible to business users. The role-based nature of this calculus, which exploits the attribute-free nature of ORM, appears to offer significant advantages over other proposed approaches, especially in the area of semantic stability.
Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Subramanian, Rajan; Blankenhorn, Gunther
2014-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA (Registered), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base
NASA Technical Reports Server (NTRS)
Kautzmann, Frank N., III
1988-01-01
Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.
NASA Astrophysics Data System (ADS)
Seresangtakul, Pusadee; Takara, Tomio
In this paper, the distinctive tones of Thai in running speech are studied. We present rules to synthesize F0 contours of Thai tones in running speech by using the generative model of F0 contours. Along with our method, the pitch contours of Thai polysyllabic words, both disyllabic and trisyllabic words, were analyzed. The coarticulation effect of Thai tones in running speech were found. Based on the analysis of the polysyllabic words using this model, rules are derived and applied to synthesize Thai polysyllabic tone sequences. We performed listening tests to evaluate intelligibility of the rules for Thai tones generation. The average intelligibility scores became 98.8%, and 96.6% for disyllabic and trisyllabic words, respectively. From these result, the rule of the tones' generation was shown to be effective. Furthermore, we constructed the connecting rules to synthesize suprasegmental F0 contours using the trisyllable training rules' parameters. The parameters of the first, the third, and the second syllables were selected and assigned to the initial, the ending, and the remaining syllables in a sentence, respectively. Even such a simple rule, the synthesized phrases/senetences were completely identified in listening tests. The MOSs (Mean Opinion Score) was 3.50 while the original and analysis/synthesis samples were 4.82 and 3.59, respectively.
Emergence of a coherent and cohesive swarm based on mutual anticipation
Murakami, Hisashi; Niizato, Takayuki; Gunji, Yukio-Pegio
2017-01-01
Collective behavior emerging out of self-organization is one of the most striking properties of an animal group. Typically, it is hypothesized that each individual in an animal group tends to align its direction of motion with those of its neighbors. Most previous models for collective behavior assume an explicit alignment rule, by which an agent matches its velocity with that of neighbors in a certain neighborhood, to reproduce a collective order pattern by simple interactions. Recent empirical studies, however, suggest that there is no evidence for explicit matching of velocity, and that collective polarization arises from interactions other than those that follow the explicit alignment rule. We here propose a new lattice-based computational model that does not incorporate the explicit alignment rule but is based instead on mutual anticipation and asynchronous updating. Moreover, we show that this model can realize densely collective motion with high polarity. Furthermore, we focus on the behavior of a pair of individuals, and find that the turning response is drastically changed depending on the distance between two individuals rather than the relative heading, and is consistent with the empirical observations. Therefore, the present results suggest that our approach provides an alternative model for collective behavior. PMID:28406173
Using fuzzy rule-based knowledge model for optimum plating conditions search
NASA Astrophysics Data System (ADS)
Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.
2018-03-01
The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.
Weller, Daniel; Shiwakoti, Suvash; Bergholz, Peter; Grohn, Yrjo; Wiedmann, Martin
2015-01-01
Technological advancements, particularly in the field of geographic information systems (GIS), have made it possible to predict the likelihood of foodborne pathogen contamination in produce production environments using geospatial models. Yet, few studies have examined the validity and robustness of such models. This study was performed to test and refine the rules associated with a previously developed geospatial model that predicts the prevalence of Listeria monocytogenes in produce farms in New York State (NYS). Produce fields for each of four enrolled produce farms were categorized into areas of high or low predicted L. monocytogenes prevalence using rules based on a field's available water storage (AWS) and its proximity to water, impervious cover, and pastures. Drag swabs (n = 1,056) were collected from plots assigned to each risk category. Logistic regression, which tested the ability of each rule to accurately predict the prevalence of L. monocytogenes, validated the rules based on water and pasture. Samples collected near water (odds ratio [OR], 3.0) and pasture (OR, 2.9) showed a significantly increased likelihood of L. monocytogenes isolation compared to that for samples collected far from water and pasture. Generalized linear mixed models identified additional land cover factors associated with an increased likelihood of L. monocytogenes isolation, such as proximity to wetlands. These findings validated a subset of previously developed rules that predict L. monocytogenes prevalence in produce production environments. This suggests that GIS and geospatial models can be used to accurately predict L. monocytogenes prevalence on farms and can be used prospectively to minimize the risk of preharvest contamination of produce. PMID:26590280
The Role of Age and Executive Function in Auditory Category Learning
Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath
2015-01-01
Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987
Wheeler, David C.; Burstyn, Igor; Vermeulen, Roel; Yu, Kai; Shortreed, Susan M.; Pronk, Anjoeka; Stewart, Patricia A.; Colt, Joanne S.; Baris, Dalsu; Karagas, Margaret R.; Schwenn, Molly; Johnson, Alison; Silverman, Debra T.; Friesen, Melissa C.
2014-01-01
Objectives Evaluating occupational exposures in population-based case-control studies often requires exposure assessors to review each study participants' reported occupational information job-by-job to derive exposure estimates. Although such assessments likely have underlying decision rules, they usually lack transparency, are time-consuming and have uncertain reliability and validity. We aimed to identify the underlying rules to enable documentation, review, and future use of these expert-based exposure decisions. Methods Classification and regression trees (CART, predictions from a single tree) and random forests (predictions from many trees) were used to identify the underlying rules from the questionnaire responses and an expert's exposure assignments for occupational diesel exhaust exposure for several metrics: binary exposure probability and ordinal exposure probability, intensity, and frequency. Data were split into training (n=10,488 jobs), testing (n=2,247), and validation (n=2,248) data sets. Results The CART and random forest models' predictions agreed with 92–94% of the expert's binary probability assignments. For ordinal probability, intensity, and frequency metrics, the two models extracted decision rules more successfully for unexposed and highly exposed jobs (86–90% and 57–85%, respectively) than for low or medium exposed jobs (7–71%). Conclusions CART and random forest models extracted decision rules and accurately predicted an expert's exposure decisions for the majority of jobs and identified questionnaire response patterns that would require further expert review if the rules were applied to other jobs in the same or different study. This approach makes the exposure assessment process in case-control studies more transparent and creates a mechanism to efficiently replicate exposure decisions in future studies. PMID:23155187
Self-Associations Influence Task-Performance through Bayesian Inference
Bengtsson, Sara L.; Penny, Will D.
2013-01-01
The way we think about ourselves impacts greatly on our behavior. This paper describes a behavioral study and a computational model that shed new light on this important area. Participants were primed “clever” and “stupid” using a scrambled sentence task, and we measured the effect on response time and error-rate on a rule-association task. First, we observed a confirmation bias effect in that associations to being “stupid” led to a gradual decrease in performance, whereas associations to being “clever” did not. Second, we observed that the activated self-concepts selectively modified attention toward one’s performance. There was an early to late double dissociation in RTs in that primed “clever” resulted in RT increase following error responses, whereas primed “stupid” resulted in RT increase following correct responses. We propose a computational model of subjects’ behavior based on the logic of the experimental task that involves two processes; memory for rules and the integration of rules with subsequent visual cues. The model incorporates an adaptive decision threshold based on Bayes rule, whereby decision thresholds are increased if integration was inferred to be faulty. Fitting the computational model to experimental data confirmed our hypothesis that priming affects the memory process. This model explains both the confirmation bias and double dissociation effects and demonstrates that Bayesian inferential principles can be used to study the effect of self-concepts on behavior. PMID:23966937
Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan
2016-12-14
Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits.
Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan
2016-01-01
Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits. PMID:27983633
Intelligent fuzzy controller for event-driven real time systems
NASA Technical Reports Server (NTRS)
Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.
1992-01-01
Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.
An agent-based model for queue formation of powered two-wheelers in heterogeneous traffic
NASA Astrophysics Data System (ADS)
Lee, Tzu-Chang; Wong, K. I.
2016-11-01
This paper presents an agent-based model (ABM) for simulating the queue formation of powered two-wheelers (PTWs) in heterogeneous traffic at a signalized intersection. The main novelty is that the proposed interaction rule describing the position choice behavior of PTWs when queuing in heterogeneous traffic can capture the stochastic nature of the decision making process. The interaction rule is formulated as a multinomial logit model, which is calibrated by using a microscopic traffic trajectory dataset obtained from video footage. The ABM is validated against the survey data for the vehicular trajectory patterns, queuing patterns, queue lengths, and discharge rates. The results demonstrate that the proposed model is capable of replicating the observed queue formation process for heterogeneous traffic.
Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method. PMID:29420584
Guan, Hongjun; Dai, Zongli; Zhao, Aiwu; He, Jie
2018-01-01
In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.
Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model
NASA Technical Reports Server (NTRS)
Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther
2014-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.
NASA Astrophysics Data System (ADS)
Feng, Maoyuan; Liu, Pan; Guo, Shenglian; Shi, Liangsheng; Deng, Chao; Ming, Bo
2017-08-01
Operating rules have been used widely to decide reservoir operations because of their capacity for coping with uncertain inflow. However, stationary operating rules lack adaptability; thus, under changing environmental conditions, they cause inefficient reservoir operation. This paper derives adaptive operating rules based on time-varying parameters generated using the ensemble Kalman filter (EnKF). A deterministic optimization model is established to obtain optimal water releases, which are further taken as observations of the reservoir simulation model. The EnKF is formulated to update the operating rules sequentially, providing a series of time-varying parameters. To identify the index that dominates the variations of the operating rules, three hydrologic factors are selected: the reservoir inflow, ratio of future inflow to current available water, and available water. Finally, adaptive operating rules are derived by fitting the time-varying parameters with the identified dominant hydrologic factor. China's Three Gorges Reservoir was selected as a case study. Results show that (1) the EnKF has the capability of capturing the variations of the operating rules, (2) reservoir inflow is the factor that dominates the variations of the operating rules, and (3) the derived adaptive operating rules are effective in improving hydropower benefits compared with stationary operating rules. The insightful findings of this study could be used to help adapt reservoir operations to mitigate the effects of changing environmental conditions.
Decision-Making in Agent-Based Models of Migration: State of the Art and Challenges.
Klabunde, Anna; Willekens, Frans
We review agent-based models (ABM) of human migration with respect to their decision-making rules. The most prominent behavioural theories used as decision rules are the random utility theory, as implemented in the discrete choice model, and the theory of planned behaviour. We identify the critical choices that must be made in developing an ABM, namely the modelling of decision processes and social networks. We also discuss two challenges that hamper the widespread use of ABM in the study of migration and, more broadly, demography and the social sciences: (a) the choice and the operationalisation of a behavioural theory (decision-making and social interaction) and (b) the selection of empirical evidence to validate the model. We offer advice on how these challenges might be overcome.
A dual-process model of reactions to perceived stigma.
Pryor, John B; Reeder, Glenn D; Yeadon, Christopher; Hesson-McLnnis, Matthew
2004-10-01
The authors propose a theoretical model of individual psychological reactions to perceived stigma. This model suggests that 2 psychological systems may be involved in reactions to stigma across a variety of social contexts. One system is primarily reflexive, or associative, whereas the other is rule based, or reflective. This model assumes a temporal pattern of reactions to the stigmatized, such that initial reactions are governed by the reflexive system, whereas subsequent reactions or "adjustments" are governed by the rule-based system. Support for this model was found in 2 studies. Both studies examined participants' moment-by-moment approach-avoidance reactions to the stigmatized. The 1st involved participants' reactions to persons with HIV/AIDS, and the 2nd, participants' reactions to 15 different stigmatizing conditions. (c) 2004 APA, all rights reserved
Competency-Based Curriculum Development: A Pragmatic Approach
ERIC Educational Resources Information Center
Broski, David; And Others
1977-01-01
Examines the concept of competency-based education, describes an experience-based model for its development, and discusses some empirically derived rules-of-thumb for its application in allied health. (HD)
78 FR 62523 - Approval and Promulgation of Air Quality Implementation Plans; District of Columbia...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
..., regulatory structure, monitoring, modeling, legal authority, and adequate resources necessary to assure... the Agency views these as noncontroversial submittals and anticipates no adverse comments. A more... subsequent final rule based on this proposed rule. EPA will not institute a second comment period. Any...
On Inference Rules of Logic-Based Information Retrieval Systems.
ERIC Educational Resources Information Center
Chen, Patrick Shicheng
1994-01-01
Discussion of relevance and the needs of the users in information retrieval focuses on a deductive object-oriented approach and suggests eight inference rules for the deduction. Highlights include characteristics of a deductive object-oriented system, database and data modeling language, implementation, and user interface. (Contains 24…
Rule-Based Simulation of Multi-Cellular Biological Systems—A Review of Modeling Techniques
Hwang, Minki; Garbey, Marc; Berceli, Scott A.; Tran-Son-Tay, Roger
2011-01-01
Emergent behaviors of multi-cellular biological systems (MCBS) result from the behaviors of each individual cells and their interactions with other cells and with the environment. Modeling MCBS requires incorporating these complex interactions among the individual cells and the environment. Modeling approaches for MCBS can be grouped into two categories: continuum models and cell-based models. Continuum models usually take the form of partial differential equations, and the model equations provide insight into the relationship among the components in the system. Cell-based models simulate each individual cell behavior and interactions among them enabling the observation of the emergent system behavior. This review focuses on the cell-based models of MCBS, and especially, the technical aspect of the rule-based simulation method for MCBS is reviewed. How to implement the cell behaviors and the interactions with other cells and with the environment into the computational domain is discussed. The cell behaviors reviewed in this paper are division, migration, apoptosis/necrosis, and differentiation. The environmental factors such as extracellular matrix, chemicals, microvasculature, and forces are also discussed. Application examples of these cell behaviors and interactions are presented. PMID:21369345
Giraldo, Sergio I; Ramirez, Rafael
2016-01-01
Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules.
Giraldo, Sergio I.; Ramirez, Rafael
2016-01-01
Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules. PMID:28066290
A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making.
Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele
2017-01-01
Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks.
A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making
Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele
2017-01-01
Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks. PMID:28824512
Salzmann-Erikson, Martin
2017-11-01
Ward rules in psychiatric care aim to promote safety for both patients and staff. Simultaneously, ward rules are associated with increased patient violence, leading to neither a safe work environment nor a safe caring environment. Although ward rules are routinely used, few studies have explicitly accounted for their impact. To describe the process of a team development project considering ward rule issues, and to develop a working model to empower staff in their daily in-patient psychiatric nursing practices. The design of this study is explorative and descriptive. Participatory action research methodology was applied to understand ward rules. Data consists of audio-recorded group discussions, observations and field notes, together creating a data set of 556 text pages. More than 100 specific ward rules were identified. In this process, the word rules was relinquished in favor of adopting the term principles, since rules are inconsistent with a caring ideology. A linguistic transition led to the development of a framework embracing the (1) Principle of Safety, (2) Principle of Structure and (3) Principle of Interplay. The principles were linked to normative guidelines and applied ethical theories: deontology, consequentialism and ethics of care. The work model reminded staff about the principles, empowered their professional decision-making, decreased collegial conflicts because of increased acceptance for individual decisions, and, in general, improved well-being at work. Furthermore, the work model also empowered staff to find support for their decisions based on principles that are grounded in the ethics of totality.
Targeted training of the decision rule benefits rule-guided behavior in Parkinson's disease.
Ell, Shawn W
2013-12-01
The impact of Parkinson's disease (PD) on rule-guided behavior has received considerable attention in cognitive neuroscience. The majority of research has used PD as a model of dysfunction in frontostriatal networks, but very few attempts have been made to investigate the possibility of adapting common experimental techniques in an effort to identify the conditions that are most likely to facilitate successful performance. The present study investigated a targeted training paradigm designed to facilitate rule learning and application using rule-based categorization as a model task. Participants received targeted training in which there was no selective-attention demand (i.e., stimuli varied along a single, relevant dimension) or nontargeted training in which there was selective-attention demand (i.e., stimuli varied along a relevant dimension as well as an irrelevant dimension). Following training, all participants were tested on a rule-based task with selective-attention demand. During the test phase, PD patients who received targeted training performed similarly to control participants and outperformed patients who did not receive targeted training. As a preliminary test of the generalizability of the benefit of targeted training, a subset of the PD patients were tested on the Wisconsin card sorting task (WCST). PD patients who received targeted training outperformed PD patients who did not receive targeted training on several WCST performance measures. These data further characterize the contribution of frontostriatal circuitry to rule-guided behavior. Importantly, these data also suggest that PD patient impairment, on selective-attention-demanding tasks of rule-guided behavior, is not inevitable and highlight the potential benefit of targeted training.
2014-01-01
Background Providing scalable clinical decision support (CDS) across institutions that use different electronic health record (EHR) systems has been a challenge for medical informatics researchers. The lack of commonly shared EHR models and terminology bindings has been recognised as a major barrier to sharing CDS content among different organisations. The openEHR Guideline Definition Language (GDL) expresses CDS content based on openEHR archetypes and can support any clinical terminologies or natural languages. Our aim was to explore in an experimental setting the practicability of GDL and its underlying archetype formalism. A further aim was to report on the artefacts produced by this new technological approach in this particular experiment. We modelled and automatically executed compliance checking rules from clinical practice guidelines for acute stroke care. Methods We extracted rules from the European clinical practice guidelines as well as from treatment contraindications for acute stroke care and represented them using GDL. Then we executed the rules retrospectively on 49 mock patient cases to check the cases’ compliance with the guidelines, and manually validated the execution results. We used openEHR archetypes, GDL rules, the openEHR reference information model, reference terminologies and the Data Archetype Definition Language. We utilised the open-sourced GDL Editor for authoring GDL rules, the international archetype repository for reusing archetypes, the open-sourced Ocean Archetype Editor for authoring or modifying archetypes and the CDS Workbench for executing GDL rules on patient data. Results We successfully represented clinical rules about 14 out of 19 contraindications for thrombolysis and other aspects of acute stroke care with 80 GDL rules. These rules are based on 14 reused international archetypes (one of which was modified), 2 newly created archetypes and 51 terminology bindings (to three terminologies). Our manual compliance checks for 49 mock patients were a complete match versus the automated compliance results. Conclusions Shareable guideline knowledge for use in automated retrospective checking of guideline compliance may be achievable using GDL. Whether the same GDL rules can be used for at-the-point-of-care CDS remains unknown. PMID:24886468
A new pattern associative memory model for image recognition based on Hebb rules and dot product
NASA Astrophysics Data System (ADS)
Gao, Mingyue; Deng, Limiao; Wang, Yanjiang
2018-04-01
A great number of associative memory models have been proposed to realize information storage and retrieval inspired by human brain in the last few years. However, there is still much room for improvement for those models. In this paper, we extend a binary pattern associative memory model to accomplish real-world image recognition. The learning process is based on the fundamental Hebb rules and the retrieval is implemented by a normalized dot product operation. Our proposed model can not only fulfill rapid memory storage and retrieval for visual information but also have the ability on incremental learning without destroying the previous learned information. Experimental results demonstrate that our model outperforms the existing Self-Organizing Incremental Neural Network (SOINN) and Back Propagation Neuron Network (BPNN) on recognition accuracy and time efficiency.
Kotai Antibody Builder: automated high-resolution structural modeling of antibodies.
Yamashita, Kazuo; Ikeda, Kazuyoshi; Amada, Karlou; Liang, Shide; Tsuchiya, Yuko; Nakamura, Haruki; Shirai, Hiroki; Standley, Daron M
2014-11-15
Kotai Antibody Builder is a Web service for tertiary structural modeling of antibody variable regions. It consists of three main steps: hybrid template selection by sequence alignment and canonical rules, 3D rendering of alignments and CDR-H3 loop modeling. For the last step, in addition to rule-based heuristics used to build the initial model, a refinement option is available that uses fragment assembly followed by knowledge-based scoring. Using targets from the Second Antibody Modeling Assessment, we demonstrate that Kotai Antibody Builder generates models with an overall accuracy equal to that of the best-performing semi-automated predictors using expert knowledge. Kotai Antibody Builder is available at http://kotaiab.org standley@ifrec.osaka-u.ac.jp. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Modernization and multiscale databases at the U.S. geological survey
Morrison, J.L.
1992-01-01
The U.S. Geological Survey (USGS) has begun a digital cartographic modernization program. Keys to that program are the creation of a multiscale database, a feature-based file structure that is derived from a spatial data model, and a series of "templates" or rules that specify the relationships between instances of entities in reality and features in the database. The database will initially hold data collected from the USGS standard map products at scales of 1:24,000, 1:100,000, and 1:2,000,000. The spatial data model is called the digital line graph-enhanced model, and the comprehensive rule set consists of collection rules, product generation rules, and conflict resolution rules. This modernization program will affect the USGS mapmaking process because both digital and graphic products will be created from the database. In addition, non-USGS map users will have more flexibility in uses of the databases. These remarks are those of the session discussant made in response to the six papers and the keynote address given in the session. ?? 1992.
2015-11-05
This final rule will update Home Health Prospective Payment System (HH PPS) rates, including the national, standardized 60-day episode payment rates, the national per-visit rates, and the non-routine medical supply (NRS) conversion factor under the Medicare prospective payment system for home health agencies (HHAs), effective for episodes ending on or after January 1, 2016. As required by the Affordable Care Act, this rule implements the 3rd year of the 4-year phase-in of the rebasing adjustments to the HH PPS payment rates. This rule updates the HH PPS case-mix weights using the most current, complete data available at the time of rulemaking and provides a clarification regarding the use of the "initial encounter'' seventh character applicable to certain ICD-10-CM code categories. This final rule will also finalize reductions to the national, standardized 60-day episode payment rate in CY 2016, CY 2017, and CY 2018 of 0.97 percent in each year to account for estimated case-mix growth unrelated to increases in patient acuity (nominal case-mix growth) between CY 2012 and CY 2014. In addition, this rule implements a HH value-based purchasing (HHVBP) model, beginning January 1, 2016, in which all Medicare-certified HHAs in selected states will be required to participate. Finally, this rule finalizes minor changes to the home health quality reporting program and minor technical regulations text changes.
Microcomputer-based classification of environmental data in municipal areas
NASA Astrophysics Data System (ADS)
Thiergärtner, H.
1995-10-01
Multivariate data-processing methods used in mineral resource identification can be used to classify urban regions. Using elements of expert systems, geographical information systems, as well as known classification and prognosis systems, it is possible to outline a single model that consists of resistant and of temporary parts of a knowledge base including graphical input and output treatment and of resistant and temporary elements of a bank of methods and algorithms. Whereas decision rules created by experts will be stored in expert systems directly, powerful classification rules in form of resistant but latent (implicit) decision algorithms may be implemented in the suggested model. The latent functions will be transformed into temporary explicit decision rules by learning processes depending on the actual task(s), parameter set(s), pixels selection(s), and expert control(s). This takes place both at supervised and nonsupervised classification of multivariately described pixel sets representing municipal subareas. The model is outlined briefly and illustrated by results obtained in a target area covering a part of the city of Berlin (Germany).
Gene Model Annotations for Drosophila melanogaster: The Rule-Benders
Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto; Matthews, Beverley B.; St. Pierre, Susan E.; Zhou, Pinglei; Schroeder, Andrew J.; Falls, Kathleen; Emmert, David B.; Russo, Susan M.; Gelbart, William M.
2015-01-01
In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads. PMID:26109356
NASA Astrophysics Data System (ADS)
Önal, Orkun; Ozmenci, Cemre; Canadinc, Demircan
2014-09-01
A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress - equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.
NASA Astrophysics Data System (ADS)
Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.
2018-03-01
Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.
NASA Astrophysics Data System (ADS)
Lee, K. J.; Choi, Y.; Choi, H. J.; Lee, J. Y.; Lee, M. G.
2018-06-01
Finite element simulations and experiments for the split-ring test were conducted to investigate the effect of anisotropic constitutive models on the predictive capability of sheet springback. As an alternative to the commonly employed associated flow rule, a non-associated flow rule for Hill1948 yield function was implemented in the simulations. Moreover, the evolution of anisotropy with plastic deformation was efficiently modeled by identifying equivalent plastic strain-dependent anisotropic coefficients. Comparative study with different yield surfaces and elasticity models showed that the split-ring springback could be best predicted when the anisotropy in both the R value and yield stress, their evolution and variable apparent elastic modulus were taken into account in the simulations. Detailed analyses based on deformation paths superimposed on the anisotropic yield functions predicted by different constitutive models were provided to understand the complex springback response in the split-ring test.
Monitoring Agents for Assisting NASA Engineers with Shuttle Ground Processing
NASA Technical Reports Server (NTRS)
Semmel, Glenn S.; Davis, Steven R.; Leucht, Kurt W.; Rowe, Danil A.; Smith, Kevin E.; Boeloeni, Ladislau
2005-01-01
The Spaceport Processing Systems Branch at NASA Kennedy Space Center has designed, developed, and deployed a rule-based agent to monitor the Space Shuttle's ground processing telemetry stream. The NASA Engineering Shuttle Telemetry Agent increases situational awareness for system and hardware engineers during ground processing of the Shuttle's subsystems. The agent provides autonomous monitoring of the telemetry stream and automatically alerts system engineers when user defined conditions are satisfied. Efficiency and safety are improved through increased automation. Sandia National Labs' Java Expert System Shell is employed as the agent's rule engine. The shell's predicate logic lends itself well to capturing the heuristics and specifying the engineering rules within this domain. The declarative paradigm of the rule-based agent yields a highly modular and scalable design spanning multiple subsystems of the Shuttle. Several hundred monitoring rules have been written thus far with corresponding notifications sent to Shuttle engineers. This chapter discusses the rule-based telemetry agent used for Space Shuttle ground processing. We present the problem domain along with design and development considerations such as information modeling, knowledge capture, and the deployment of the product. We also present ongoing work with other condition monitoring agents.
Tan, W Katherine; Hassanpour, Saeed; Heagerty, Patrick J; Rundell, Sean D; Suri, Pradeep; Huhdanpaa, Hannu T; James, Kathryn; Carrell, David S; Langlotz, Curtis P; Organ, Nancy L; Meier, Eric N; Sherman, Karen J; Kallmes, David F; Luetmer, Patrick H; Griffith, Brent; Nerenz, David R; Jarvik, Jeffrey G
2018-03-28
To evaluate a natural language processing (NLP) system built with open-source tools for identification of lumbar spine imaging findings related to low back pain on magnetic resonance and x-ray radiology reports from four health systems. We used a limited data set (de-identified except for dates) sampled from lumbar spine imaging reports of a prospectively assembled cohort of adults. From N = 178,333 reports, we randomly selected N = 871 to form a reference-standard dataset, consisting of N = 413 x-ray reports and N = 458 MR reports. Using standardized criteria, four spine experts annotated the presence of 26 findings, where 71 reports were annotated by all four experts and 800 were each annotated by two experts. We calculated inter-rater agreement and finding prevalence from annotated data. We randomly split the annotated data into development (80%) and testing (20%) sets. We developed an NLP system from both rule-based and machine-learned models. We validated the system using accuracy metrics such as sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The multirater annotated dataset achieved inter-rater agreement of Cohen's kappa > 0.60 (substantial agreement) for 25 of 26 findings, with finding prevalence ranging from 3% to 89%. In the testing sample, rule-based and machine-learned predictions both had comparable average specificity (0.97 and 0.95, respectively). The machine-learned approach had a higher average sensitivity (0.94, compared to 0.83 for rules-based), and a higher overall AUC (0.98, compared to 0.90 for rules-based). Our NLP system performed well in identifying the 26 lumbar spine findings, as benchmarked by reference-standard annotation by medical experts. Machine-learned models provided substantial gains in model sensitivity with slight loss of specificity, and overall higher AUC. Copyright © 2018 The Association of University Radiologists. All rights reserved.
Data driven model generation based on computational intelligence
NASA Astrophysics Data System (ADS)
Gemmar, Peter; Gronz, Oliver; Faust, Christophe; Casper, Markus
2010-05-01
The simulation of discharges at a local gauge or the modeling of large scale river catchments are effectively involved in estimation and decision tasks of hydrological research and practical applications like flood prediction or water resource management. However, modeling such processes using analytical or conceptual approaches is made difficult by both complexity of process relations and heterogeneity of processes. It was shown manifold that unknown or assumed process relations can principally be described by computational methods, and that system models can automatically be derived from observed behavior or measured process data. This study describes the development of hydrological process models using computational methods including Fuzzy logic and artificial neural networks (ANN) in a comprehensive and automated manner. Methods We consider a closed concept for data driven development of hydrological models based on measured (experimental) data. The concept is centered on a Fuzzy system using rules of Takagi-Sugeno-Kang type which formulate the input-output relation in a generic structure like Ri : IFq(t) = lowAND...THENq(t+Δt) = ai0 +ai1q(t)+ai2p(t-Δti1)+ai3p(t+Δti2)+.... The rule's premise part (IF) describes process states involving available process information, e.g. actual outlet q(t) is low where low is one of several Fuzzy sets defined over variable q(t). The rule's conclusion (THEN) estimates expected outlet q(t + Δt) by a linear function over selected system variables, e.g. actual outlet q(t), previous and/or forecasted precipitation p(t ?Δtik). In case of river catchment modeling we use head gauges, tributary and upriver gauges in the conclusion part as well. In addition, we consider temperature and temporal (season) information in the premise part. By creating a set of rules R = {Ri|(i = 1,...,N)} the space of process states can be covered as concise as necessary. Model adaptation is achieved by finding on optimal set A = (aij) of conclusion parameters with respect to a defined rating function and experimental data. To find A, we use for example a linear equation solver and RMSE-function. In practical process models, the number of Fuzzy sets and the according number of rules is fairly low. Nevertheless, creating the optimal model requires some experience. Therefore, we improved this development step by methods for automatic generation of Fuzzy sets, rules, and conclusions. Basically, the model achievement depends to a great extend on the selection of the conclusion variables. It is the aim that variables having most influence on the system reaction being considered and superfluous ones being neglected. At first, we use Kohonen maps, a specialized ANN, to identify relevant input variables from the large set of available system variables. A greedy algorithm selects a comprehensive set of dominant and uncorrelated variables. Next, the premise variables are analyzed with clustering methods (e.g. Fuzzy-C-means) and Fuzzy sets are then derived from cluster centers and outlines. The rule base is automatically constructed by permutation of the Fuzzy sets of the premise variables. Finally, the conclusion parameters are calculated and the total coverage of the input space is iteratively tested with experimental data, rarely firing rules are combined and coarse coverage of sensitive process states results in refined Fuzzy sets and rules. Results The described methods were implemented and integrated in a development system for process models. A series of models has already been built e.g. for rainfall-runoff modeling or for flood prediction (up to 72 hours) in river catchments. The models required significantly less development effort and showed advanced simulation results compared to conventional models. The models can be used operationally and simulation takes only some minutes on a standard PC e.g. for a gauge forecast (up to 72 hours) for the whole Mosel (Germany) river catchment.
Music models aberrant rule decoding and reward valuation in dementia
Clark, Camilla N; Golden, Hannah L; McCallion, Oliver; Nicholas, Jennifer M; Cohen, Miriam H; Slattery, Catherine F; Paterson, Ross W; Fletcher, Phillip D; Mummery, Catherine J; Rohrer, Jonathan D; Crutch, Sebastian J; Warren, Jason D
2018-01-01
Abstract Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer’s disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved (‘finished’) or unresolved (‘unfinished’); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias. PMID:29186630
NASA Astrophysics Data System (ADS)
He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun
2015-06-01
Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.
Model Based Verification of Cyber Range Event Environments
2015-12-10
Model Based Verification of Cyber Range Event Environments Suresh K. Damodaran MIT Lincoln Laboratory 244 Wood St., Lexington, MA, USA...apply model based verification to cyber range event environment configurations, allowing for the early detection of errors in event environment...Environment Representation (CCER) ontology. We also provide an overview of a methodology to specify verification rules and the corresponding error
Faults Discovery By Using Mined Data
NASA Technical Reports Server (NTRS)
Lee, Charles
2005-01-01
Fault discovery in the complex systems consist of model based reasoning, fault tree analysis, rule based inference methods, and other approaches. Model based reasoning builds models for the systems either by mathematic formulations or by experiment model. Fault Tree Analysis shows the possible causes of a system malfunction by enumerating the suspect components and their respective failure modes that may have induced the problem. The rule based inference build the model based on the expert knowledge. Those models and methods have one thing in common; they have presumed some prior-conditions. Complex systems often use fault trees to analyze the faults. Fault diagnosis, when error occurs, is performed by engineers and analysts performing extensive examination of all data gathered during the mission. International Space Station (ISS) control center operates on the data feedback from the system and decisions are made based on threshold values by using fault trees. Since those decision-making tasks are safety critical and must be done promptly, the engineers who manually analyze the data are facing time challenge. To automate this process, this paper present an approach that uses decision trees to discover fault from data in real-time and capture the contents of fault trees as the initial state of the trees.
Fuzzy rule based estimation of agricultural diffuse pollution concentration in streams.
Singh, Raj Mohan
2008-04-01
Outflow from the agricultural fields carries diffuse pollutants like nutrients, pesticides, herbicides etc. and transports the pollutants into the nearby streams. It is a matter of serious concern for water managers and environmental researchers. The application of chemicals in the agricultural fields, and transport of these chemicals into streams are uncertain that cause complexity in reliable stream quality predictions. The chemical characteristics of applied chemical, percentage of area under the chemical application etc. are some of the main inputs that cause pollution concentration as output in streams. Each of these inputs and outputs may contain measurement errors. Fuzzy rule based model based on fuzzy sets suits to address uncertainties in inputs by incorporating overlapping membership functions for each of inputs even for limited data availability situations. In this study, the property of fuzzy sets to address the uncertainty in input-output relationship is utilized to obtain the estimate of concentrations of a herbicide, atrazine, in a stream. The data of White river basin, a part of the Mississippi river system, is used for developing the fuzzy rule based models. The performance of the developed methodology is found encouraging.
Risk Reduction and Resource Pooling on a Cooperation Task
ERIC Educational Resources Information Center
Pietras, Cynthia J.; Cherek, Don R.; Lane, Scott D.; Tcheremissine, Oleg
2006-01-01
Two experiments investigated choice in adult humans on a simulated cooperation task to evaluate a risk-reduction account of sharing based on the energy-budget rule. The energy-budget rule is an optimal foraging model that predicts risk-averse choices when net energy gains exceed energy requirements (positive energy budget) and risk-prone choices…
Rule-based interface generation on mobile devices for structured documentation.
Kock, Ann-Kristin; Andersen, Björn; Handels, Heinz; Ingenerf, Josef
2014-01-01
In many software systems to date, interactive graphical user interfaces (GUIs) are represented implicitly in the source code, together with the application logic. Hence, the re-use, development, and modification of these interfaces is often very laborious. Flexible adjustments of GUIs for various platforms and devices as well as individual user preferences are furthermore difficult to realize. These problems motivate a software-based separation of content and GUI models on the one hand, and application logic on the other. In this project, a software solution for structured reporting on mobile devices is developed. Clinical content archetypes developed in a previous project serve as the content model while the Android SDK provides the GUI model. The necessary bindings between the models are specified using the Jess Rule Language.
Automated extraction of decision rules for leptin dynamics--a rough sets approach.
Brtka, Vladimir; Stokić, Edith; Srdić, Biljana
2008-08-01
A significant area in the field of medical informatics is concerned with the learning of medical models from low-level data. The goals of inducing models from data are twofold: analysis of the structure of the models so as to gain new insight into the unknown phenomena, and development of classifiers or outcome predictors for unseen cases. In this paper, we will employ approach based on the relation of indiscernibility and rough sets theory to study certain questions concerning the design of model based on if-then rules, from low-level data including 36 parameters, one of them leptin. To generate easy to read, interpret, and inspect model, we have used ROSETTA software system. The main goal of this work is to get new insight into phenomena of leptin levels while interplaying with other risk factors in obesity.
NASA Technical Reports Server (NTRS)
Mcmanus, Shawn; Mcdaniel, Michael
1989-01-01
Planning for processing payloads was always difficult and time-consuming. With the advent of Space Station Freedom and its capability to support a myriad of complex payloads, the planning to support this ground processing maze involves thousands of man-hours of often tedious data manipulation. To provide the capability to analyze various processing schedules, an object oriented knowledge-based simulation environment called the Advanced Generic Accomodations Planning Environment (AGAPE) is being developed. Having nearly completed the baseline system, the emphasis in this paper is directed toward rule definition and its relation to model development and simulation. The focus is specifically on the methodologies implemented during knowledge acquisition, analysis, and representation within the AGAPE rule structure. A model is provided to illustrate the concepts presented. The approach demonstrates a framework for AGAPE rule development to assist expert system development.
Tuning rules for robust FOPID controllers based on multi-objective optimization with FOPDT models.
Sánchez, Helem Sabina; Padula, Fabrizio; Visioli, Antonio; Vilanova, Ramon
2017-01-01
In this paper a set of optimally balanced tuning rules for fractional-order proportional-integral-derivative controllers is proposed. The control problem of minimizing at once the integrated absolute error for both the set-point and the load disturbance responses is addressed. The control problem is stated as a multi-objective optimization problem where a first-order-plus-dead-time process model subject to a robustness, maximum sensitivity based, constraint has been considered. A set of Pareto optimal solutions is obtained for different normalized dead times and then the optimal balance between the competing objectives is obtained by choosing the Nash solution among the Pareto-optimal ones. A curve fitting procedure has then been applied in order to generate suitable tuning rules. Several simulation results show the effectiveness of the proposed approach. Copyright © 2016. Published by Elsevier Ltd.
A high-level language for rule-based modelling.
Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D
2015-01-01
Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages.
A High-Level Language for Rule-Based Modelling
Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D.
2015-01-01
Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208
Intelligent model-based diagnostics for vehicle health management
NASA Astrophysics Data System (ADS)
Luo, Jianhui; Tu, Fang; Azam, Mohammad S.; Pattipati, Krishna R.; Willett, Peter K.; Qiao, Liu; Kawamoto, Masayuki
2003-08-01
The recent advances in sensor technology, remote communication and computational capabilities, and standardized hardware/software interfaces are creating a dramatic shift in the way the health of vehicles is monitored and managed. These advances facilitate remote monitoring, diagnosis and condition-based maintenance of automotive systems. With the increased sophistication of electronic control systems in vehicles, there is a concomitant increased difficulty in the identification of the malfunction phenomena. Consequently, the current rule-based diagnostic systems are difficult to develop, validate and maintain. New intelligent model-based diagnostic methodologies that exploit the advances in sensor, telecommunications, computing and software technologies are needed. In this paper, we will investigate hybrid model-based techniques that seamlessly employ quantitative (analytical) models and graph-based dependency models for intelligent diagnosis. Automotive engineers have found quantitative simulation (e.g. MATLAB/SIMULINK) to be a vital tool in the development of advanced control systems. The hybrid method exploits this capability to improve the diagnostic system's accuracy and consistency, utilizes existing validated knowledge on rule-based methods, enables remote diagnosis, and responds to the challenges of increased system complexity. The solution is generic and has the potential for application in a wide range of systems.
Antecedents and consequences of emotional display rule perceptions.
Diefendorff, James M; Richard, Erin M
2003-04-01
Central to all theories of emotional labor is the idea that individuals follow emotional display rules that specify the appropriate expression of emotions on the job. This investigation examined antecedents and consequences of emotional display rule perceptions. Full-time working adults (N = 152) from a variety of occupations provided self-report data, and supervisors and coworkers completed measures pertaining to the focal employees. Results using structural equation modeling revealed that job-based interpersonal requirements, supervisor display rule perceptions, and employee extraversion and neuroticism were predictive of employee display rule perceptions. Employee display rule perceptions, in turn, were related to self-reported job satisfaction and coworker ratings of employees' emotional displays on the job. Finally, neuroticism had direct negative relationships with job satisfaction and coworker ratings of employees' emotional displays.
Meyer, Joseph S; Traudt, Elizabeth M; Ranville, James F
2018-01-01
In aquatic toxicology, a toxicity-prediction model is generally deemed acceptable if its predicted median lethal concentrations (LC50 values) or median effect concentrations (EC50 values) are within a factor of 2 of their paired, observed LC50 or EC50 values. However, that rule of thumb is based on results from only two studies: multiple LC50 values for the fathead minnow (Pimephales promelas) exposed to Cu in one type of exposure water, and multiple EC50 values for Daphnia magna exposed to Zn in another type of exposure water. We tested whether the factor-of-2 rule of thumb also is supported in a different dataset in which D. magna were exposed separately to Cd, Cu, Ni, or Zn. Overall, the factor-of-2 rule of thumb appeared to be a good guide to evaluating the acceptability of a toxicity model's underprediction or overprediction of observed LC50 or EC50 values in these acute toxicity tests.
Integrated Planning Model (IPM) Base Case v.4.10
Learn about EPA's IPM Base Case v.4.10, including Proposed Transport Rule results, documentation, the National Electric Energy Data System (NEEDS) database and user's guide, and run results using previous base cases.
Molecular Dynamics Evaluation of Dielectric-Constant Mixing Rules for H2O-CO2 at Geologic Conditions
Mountain, Raymond D.; Harvey, Allan H.
2015-01-01
Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H2O–CO2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range. PMID:26664009
Mountain, Raymond D; Harvey, Allan H
2015-10-01
Modeling of mineral reaction equilibria and aqueous-phase speciation of C-O-H fluids requires the dielectric constant of the fluid mixture, which is not known from experiment and is typically estimated by some rule for mixing pure-component values. In order to evaluate different proposed mixing rules, we use molecular dynamics simulation to calculate the dielectric constant of a model H 2 O-CO 2 mixture at temperatures of 700 K and 1000 K at pressures up to 3 GPa. We find that theoretically based mixing rules that depend on combining the molar polarizations of the pure fluids systematically overestimate the dielectric constant of the mixture, as would be expected for mixtures of nonpolar and strongly polar components. The commonly used semiempirical mixing rule due to Looyenga works well for this system at the lower pressures studied, but somewhat underestimates the dielectric constant at higher pressures and densities, especially at the water-rich end of the composition range.
Baker, Stuart G
2018-02-01
When using risk prediction models, an important consideration is weighing performance against the cost (monetary and harms) of ascertaining predictors. The minimum test tradeoff (MTT) for ruling out a model is the minimum number of all-predictor ascertainments per correct prediction to yield a positive overall expected utility. The MTT for ruling out an added predictor is the minimum number of added-predictor ascertainments per correct prediction to yield a positive overall expected utility. An approximation to the MTT for ruling out a model is 1/[P (H(AUC model )], where H(AUC) = AUC - {½ (1-AUC)} ½ , AUC is the area under the receiver operating characteristic (ROC) curve, and P is the probability of the predicted event in the target population. An approximation to the MTT for ruling out an added predictor is 1 /[P {(H(AUC Model:2 ) - H(AUC Model:1 )], where Model 2 includes an added predictor relative to Model 1. The latter approximation requires the Tangent Condition that the true positive rate at the point on the ROC curve with a slope of 1 is larger for Model 2 than Model 1. These approximations are suitable for back-of-the-envelope calculations. For example, in a study predicting the risk of invasive breast cancer, Model 2 adds to the predictors in Model 1 a set of 7 single nucleotide polymorphisms (SNPs). Based on the AUCs and the Tangent Condition, an MTT of 7200 was computed, which indicates that 7200 sets of SNPs are needed for every correct prediction of breast cancer to yield a positive overall expected utility. If ascertaining the SNPs costs $500, this MTT suggests that SNP ascertainment is not likely worthwhile for this risk prediction.
Experiments on individual strategy updating in iterated snowdrift game under random rematching.
Qi, Hang; Ma, Shoufeng; Jia, Ning; Wang, Guangchao
2015-03-07
How do people actually play the iterated snowdrift games, particularly under random rematching protocol is far from well explored. Two sets of laboratory experiments on snowdrift game were conducted to investigate human strategy updating rules. Four groups of subjects were modeled by experience-weighted attraction learning theory at individual-level. Three out of the four groups (75%) passed model validation. Substantial heterogeneity is observed among the players who update their strategies in four typical types, whereas rare people behave like belief-based learners even under fixed pairing. Most subjects (63.9%) adopt the reinforcement learning (or alike) rules; but, interestingly, the performance of averaged reinforcement learners suffered. It is observed that two factors seem to benefit players in competition, i.e., the sensitivity to their recent experiences and the overall consideration of forgone payoffs. Moreover, subjects with changing opponents tend to learn faster based on their own recent experience, and display more diverse strategy updating rules than they do with fixed opponent. These findings suggest that most of subjects do apply reinforcement learning alike updating rules even under random rematching, although these rules may not improve their performance. The findings help evolutionary biology researchers to understand sophisticated human behavioral strategies in social dilemmas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Developing a reversible rapid coordinate transformation model for the cylindrical projection
NASA Astrophysics Data System (ADS)
Ye, Si-jing; Yan, Tai-lai; Yue, Yan-li; Lin, Wei-yan; Li, Lin; Yao, Xiao-chuang; Mu, Qin-yun; Li, Yong-qin; Zhu, De-hai
2016-04-01
Numerical models are widely used for coordinate transformations. However, in most numerical models, polynomials are generated to approximate "true" geographic coordinates or plane coordinates, and one polynomial is hard to make simultaneously appropriate for both forward and inverse transformations. As there is a transformation rule between geographic coordinates and plane coordinates, how accurate and efficient is the calculation of the coordinate transformation if we construct polynomials to approximate the transformation rule instead of "true" coordinates? In addition, is it preferable to compare models using such polynomials with traditional numerical models with even higher exponents? Focusing on cylindrical projection, this paper reports on a grid-based rapid numerical transformation model - a linear rule approximation model (LRA-model) that constructs linear polynomials to approximate the transformation rule and uses a graticule to alleviate error propagation. Our experiments on cylindrical projection transformation between the WGS 84 Geographic Coordinate System (EPSG 4326) and the WGS 84 UTM ZONE 50N Plane Coordinate System (EPSG 32650) with simulated data demonstrate that the LRA-model exhibits high efficiency, high accuracy, and high stability; is simple and easy to use for both forward and inverse transformations; and can be applied to the transformation of a large amount of data with a requirement of high calculation efficiency. Furthermore, the LRA-model exhibits advantages in terms of calculation efficiency, accuracy and stability for coordinate transformations, compared to the widely used hyperbolic transformation model.
Moral empiricism and the bias for act-based rules.
Ayars, Alisabeth; Nichols, Shaun
2017-10-01
Previous studies on rule learning show a bias in favor of act-based rules, which prohibit intentionally producing an outcome but not merely allowing the outcome. Nichols, Kumar, Lopez, Ayars, and Chan (2016) found that exposure to a single sample violation in which an agent intentionally causes the outcome was sufficient for participants to infer that the rule was act-based. One explanation is that people have an innate bias to think rules are act-based. We suggest an alternative empiricist account: since most rules that people learn are act-based, people form an overhypothesis (Goodman, 1955) that rules are typically act-based. We report three studies that indicate that people can use information about violations to form overhypotheses about rules. In study 1, participants learned either three "consequence-based" rules that prohibited allowing an outcome or three "act-based" rules that prohibiting producing the outcome; in a subsequent learning task, we found that participants who had learned three consequence-based rules were more likely to think that the new rule prohibited allowing an outcome. In study 2, we presented participants with either 1 consequence-based rule or 3 consequence-based rules, and we found that those exposed to 3 such rules were more likely to think that a new rule was also consequence based. Thus, in both studies, it seems that learning 3 consequence-based rules generates an overhypothesis to expect new rules to be consequence-based. In a final study, we used a more subtle manipulation. We exposed participants to examples act-based or accident-based (strict liability) laws and then had them learn a novel rule. We found that participants who were exposed to the accident-based laws were more likely to think a new rule was accident-based. The fact that participants' bias for act-based rules can be shaped by evidence from other rules supports the idea that the bias for act-based rules might be acquired as an overhypothesis from the preponderance of act-based rules. Copyright © 2017 Elsevier B.V. All rights reserved.
Relaxing the rule of ten events per variable in logistic and Cox regression.
Vittinghoff, Eric; McCulloch, Charles E
2007-03-15
The rule of thumb that logistic and Cox models should be used with a minimum of 10 outcome events per predictor variable (EPV), based on two simulation studies, may be too conservative. The authors conducted a large simulation study of other influences on confidence interval coverage, type I error, relative bias, and other model performance measures. They found a range of circumstances in which coverage and bias were within acceptable levels despite less than 10 EPV, as well as other factors that were as influential as or more influential than EPV. They conclude that this rule can be relaxed, in particular for sensitivity analyses undertaken to demonstrate adequate control of confounding.
Sum rules for the uniform-background model of an atomic-sharp metal corner
NASA Astrophysics Data System (ADS)
Streitenberger, P.
1994-04-01
Analytical results are derived for the electrostatic potential of an atomic-sharp 90° metal corner in the uniform-background model. The electrostatic potential at a free jellium edge and the jellium corner, respectively, is determined exactly in terms of the energy per electron of the uniform electron gas integrated over the background density. The surface energy, the edge formation energy and the derivative of the corner formation energy with respect to the background density are given as integrals over the electrostatic potential. The present approach represents a novel approach to such sum rules, inclusive of the Budd-Vannimenus sum rules for a free jellium surface, based on general properties of linear response functions.
Atmospheric Downscaling using Genetic Programming
NASA Astrophysics Data System (ADS)
Zerenner, Tanja; Venema, Victor; Simmer, Clemens
2013-04-01
Coupling models for the different components of the Soil-Vegetation-Atmosphere-System requires up-and downscaling procedures. Subject of our work is the downscaling scheme used to derive high resolution forcing data for land-surface and subsurface models from coarser atmospheric model output. The current downscaling scheme [Schomburg et. al. 2010, 2012] combines a bi-quadratic spline interpolation, deterministic rules and autoregressive noise. For the development of the scheme, training and validation data sets have been created by carrying out high-resolution runs of the atmospheric model. The deterministic rules in this scheme are partly based on known physical relations and partly determined by an automated search for linear relationships between the high resolution fields of the atmospheric model output and high resolution data on surface characteristics. Up to now deterministic rules are available for downscaling surface pressure and partially, depending on the prevailing weather conditions, for near surface temperature and radiation. Aim of our work is to improve those rules and to find deterministic rules for the remaining variables, which require downscaling, e.g. precipitation or near surface specifc humidity. To accomplish that, we broaden the search by allowing for interdependencies between different atmospheric parameters, non-linear relations, non-local and time-lagged relations. To cope with the vast number of possible solutions, we use genetic programming, a method from machine learning, which is based on the principles of natural evolution. We are currently working with GPLAB, a Genetic Programming toolbox for Matlab. At first we have tested the GP system to retrieve the known physical rule for downscaling surface pressure, i.e. the hydrostatic equation, from our training data. We have found this to be a simple task to the GP system. Furthermore we have improved accuracy and efficiency of the GP solution by implementing constant variation and optimization as genetic operators. Next we have worked on an improvement of the downscaling rule for the two-meter-temperature. We have added an if-function with four input arguments to the function set. Since this has shown to increase bloat we have additionally modified our fitness function by including penalty terms for both the size of the solutions and the number intron nodes, i.e program parts that are never evaluated. Starting from the known downscaling rule for the two-meter temperature, which linearly exploits the orography anomalies allowed or disallowed by a certain temperature gradient, our GP system has been able to find an improvement. The rule produced by the GP clearly shows a better performance concerning the reproduced small-scale variability.
Combined Economic and Hydrologic Modeling to Support Collaborative Decision Making Processes
NASA Astrophysics Data System (ADS)
Sheer, D. P.
2008-12-01
For more than a decade, the core concept of the author's efforts in support of collaborative decision making has been a combination of hydrologic simulation and multi-objective optimization. The modeling has generally been used to support collaborative decision making processes. The OASIS model developed by HydroLogics Inc. solves a multi-objective optimization at each time step using a mixed integer linear program (MILP). The MILP can be configured to include any user defined objective, including but not limited too economic objectives. For example, an estimated marginal value for water for crops and M&I use were included in the objective function to drive trades in a model of the lower Rio Grande. The formulation of the MILP, constraints and objectives, in any time step is conditional: it changes based on the value of state variables and dynamic external forcing functions, such as rainfall, hydrology, market prices, arrival of migratory fish, water temperature, etc. It therefore acts as a dynamic short term multi-objective economic optimization for each time step. MILP is capable of solving a general problem that includes a very realistic representation of the physical system characteristics in addition to the normal multi-objective optimization objectives and constraints included in economic models. In all of these models, the short term objective function is a surrogate for achieving long term multi-objective results. The long term performance for any alternative (especially including operating strategies) is evaluated by simulation. An operating rule is the combination of conditions, parameters, constraints and objectives used to determine the formulation of the short term optimization in each time step. Heuristic wrappers for the simulation program have been developed improve the parameters of an operating rule, and are initiating research on a wrapper that will allow us to employ a genetic algorithm to improve the form of the rule (conditions, constraints, and short term objectives) as well. In the models operating rules represent different models of human behavior, and the objective of the modeling is to find rules for human behavior that perform well in terms of long term human objectives. The conceptual model used to represent human behavior incorporates economic multi-objective optimization for surrogate objectives, and rules that set those objectives based on current conditions and accounting for uncertainty, at least implicitly. The author asserts that real world operating rules follow this form and have evolved because they have been perceived as successful in the past. Thus, the modeling efforts focus on human behavior in much the same way that economic models focus on human behavior. This paper illustrates the above concepts with real world examples.
CNN-based ranking for biomedical entity normalization.
Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong
2017-10-03
Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.
Kasturirangan, Rajesh
2008-01-01
Philosophers as well lay people often think of beliefs as psychological states with dubious epistemic properties. Beliefs are conceptualized as unregulated conceptual structures, for the most part hypothetical and often fanciful or deluded. Thinking and reasoning on the other hand are seen as rational activities regulated by rules and governed by norms. Computational modeling of the mind has focused on rule-governed behavior, ultimately trying to reduce them to rules of logic. What if thinking is less like reasoning and more like believing? I argue that the classical model of thought as rational is mistaken and that thinking is fundamentally constituted by believing. This new approach forces us to re-evaluate classical epistemic concepts like "truth", "justification" etc. Furthermore, if thinking is believing, then it is not clear how thoughts can be modeled computationally. We need new mathematical ideas to model thought, ideas that are quite different from traditional logic-based mathematical structures.
NASA Astrophysics Data System (ADS)
Hadi, M. Z.; Djatna, T.; Sugiarto
2018-04-01
This paper develops a dynamic storage assignment model to solve storage assignment problem (SAP) for beverages order picking in a drive-in rack warehousing system to determine the appropriate storage location and space for each beverage products dynamically so that the performance of the system can be improved. This study constructs a graph model to represent drive-in rack storage position then combine association rules mining, class-based storage policies and an arrangement rule algorithm to determine an appropriate storage location and arrangement of the product according to dynamic orders from customers. The performance of the proposed model is measured as rule adjacency accuracy, travel distance (for picking process) and probability a product become expiry using Last Come First Serve (LCFS) queue approach. Finally, the proposed model is implemented through computer simulation and compare the performance for different storage assignment methods as well. The result indicates that the proposed model outperforms other storage assignment methods.
Proposed Clinical Decision Rules to Diagnose Acute Rhinosinusitis Among Adults in Primary Care.
Ebell, Mark H; Hansen, Jens Georg
2017-07-01
To reduce inappropriate antibiotic prescribing, we sought to develop a clinical decision rule for the diagnosis of acute rhinosinusitis and acute bacterial rhinosinusitis. Multivariate analysis and classification and regression tree (CART) analysis were used to develop clinical decision rules for the diagnosis of acute rhinosinusitis, defined using 3 different reference standards (purulent antral puncture fluid or abnormal finding on a computed tomographic (CT) scan; for acute bacterial rhinosinusitis, we used a positive bacterial culture of antral fluid). Signs, symptoms, C-reactive protein (CRP), and reference standard tests were prospectively recorded in 175 Danish patients aged 18 to 65 years seeking care for suspected acute rhinosinusitis. For each reference standard, we developed 2 clinical decision rules: a point score based on a logistic regression model and an algorithm based on a CART model. We identified low-, moderate-, and high-risk groups for acute rhinosinusitis or acute bacterial rhinosinusitis for each clinical decision rule. The point scores each had between 5 and 6 predictors, and an area under the receiver operating characteristic curve (AUROCC) between 0.721 and 0.767. For positive bacterial culture as the reference standard, low-, moderate-, and high-risk groups had a 16%, 49%, and 73% likelihood of acute bacterial rhinosinusitis, respectively. CART models had an AUROCC ranging from 0.783 to 0.827. For positive bacterial culture as the reference standard, low-, moderate-, and high-risk groups had a likelihood of acute bacterial rhinosinusitis of 6%, 31%, and 59% respectively. We have developed a series of clinical decision rules integrating signs, symptoms, and CRP to diagnose acute rhinosinusitis and acute bacterial rhinosinusitis with good accuracy. They now require prospective validation and an assessment of their effect on clinical and process outcomes. © 2017 Annals of Family Medicine, Inc.
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
40 CFR 60.1580 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the model rule? 60.1580 Section 60.1580 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines..., 1999 Use of Model Rule § 60.1580 What are the principal components of the model rule? The model rule...
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the model rule? 60.2998 Section 60.2998 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule...
Developing a semantic web model for medical differential diagnosis recommendation.
Mohammed, Osama; Benlamri, Rachid
2014-10-01
In this paper we describe a novel model for differential diagnosis designed to make recommendations by utilizing semantic web technologies. The model is a response to a number of requirements, ranging from incorporating essential clinical diagnostic semantics to the integration of data mining for the process of identifying candidate diseases that best explain a set of clinical features. We introduce two major components, which we find essential to the construction of an integral differential diagnosis recommendation model: the evidence-based recommender component and the proximity-based recommender component. Both approaches are driven by disease diagnosis ontologies designed specifically to enable the process of generating diagnostic recommendations. These ontologies are the disease symptom ontology and the patient ontology. The evidence-based diagnosis process develops dynamic rules based on standardized clinical pathways. The proximity-based component employs data mining to provide clinicians with diagnosis predictions, as well as generates new diagnosis rules from provided training datasets. This article describes the integration between these two components along with the developed diagnosis ontologies to form a novel medical differential diagnosis recommendation model. This article also provides test cases from the implementation of the overall model, which shows quite promising diagnostic recommendation results.
NASA Astrophysics Data System (ADS)
Chaubey, I.; Vema, V. K.; Sudheer, K.
2016-12-01
Site suitability evaluation of water conservation structures in water scarce rainfed agricultural areas consist of assessment of various landscape characteristics and various criterion. Many of these landscape characteristic attributes are conveyed through linguistic terms rather than precise numeric values. Fuzzy rule based system are capable of incorporating uncertainty and vagueness, when various decision making criteria expressed in linguistic terms are expressed as fuzzy rules. In this study a fuzzy rule based decision support system is developed, for optimal site selection of water harvesting technologies. Water conservation technologies like farm ponds, Check dams, Rock filled dams and percolation ponds aid in conserving water for irrigation and recharging aquifers and development of such a system will aid in improving the efficiency of the structures. Attributes and criteria involved in decision making are classified into different groups to estimate the suitability of the particular technology. The developed model is applied and tested on an Indian watershed. The input attributes are prepared in raster format in ArcGIS software and suitability of each raster cell is calculated and output is generated in the form of a thematic map showing the suitability of the cells pertaining to different technologies. The output of the developed model is compared against the already existing structures and results are satisfactory. This developed model will aid in improving the sustainability and efficiency of the watershed management programs aimed at enhancing in situ moisture content.
Newgreen, Donald F; Dufour, Sylvie; Howard, Marthe J; Landman, Kerry A
2013-10-01
We review morphogenesis of the enteric nervous system from migratory neural crest cells, and defects of this process such as Hirschsprung disease, centering on cell motility and assembly, and cell adhesion and extracellular matrix molecules, along with cell proliferation and growth factors. We then review continuum and agent-based (cellular automata) models with rules of cell movement and logistical proliferation. Both movement and proliferation at the individual cell level are modeled with stochastic components from which stereotyped outcomes emerge at the population level. These models reproduced the wave-like colonization of the intestine by enteric neural crest cells, and several new properties emerged, such as colonization by frontal expansion, which were later confirmed biologically. These models predict a surprising level of clonal heterogeneity both in terms of number and distribution of daughter cells. Biologically, migrating cells form stable chains made up of unstable cells, but this is not seen in the initial model. We outline additional rules for cell differentiation into neurons, axon extension, cell-axon and cell-cell adhesions, chemotaxis and repulsion which can reproduce chain migration. After the migration stage, the cells re-arrange as a network of ganglia. Changes in cell adhesion molecules parallel this, and we describe additional rules based on Steinberg's Differential Adhesion Hypothesis, reflecting changing levels of adhesion in neural crest cells and neurons. This was able to reproduce enteric ganglionation in a model. Mouse mutants with disturbances of enteric nervous system morphogenesis are discussed, and these suggest future refinement of the models. The modeling suggests a relatively simple set of cell behavioral rules could account for complex patterns of morphogenesis. The model has allowed the proposal that Hirschsprung disease is mostly an enteric neural crest cell proliferation defect, not a defect of cell migration. In addition, the model suggests an explanations for zonal and skip segment variants of Hirschsprung disease, and also gives a novel stochastic explanation for the observed discordancy of Hirschsprung disease in identical twins. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio; Harou, Julien J.; Andreu, Joaquin
2013-04-01
Hydrologic-economic models allow integrated analysis of water supply, demand and infrastructure management at the river basin scale. These models simultaneously analyze engineering, hydrology and economic aspects of water resources management. Two new tools have been designed to develop models within this approach: a simulation tool (SIM_GAMS), for models in which water is allocated each month based on supply priorities to competing uses and system operating rules, and an optimization tool (OPT_GAMS), in which water resources are allocated optimally following economic criteria. The characterization of the water resource network system requires a connectivity matrix representing the topology of the elements, generated using HydroPlatform. HydroPlatform, an open-source software platform for network (node-link) models, allows to store, display and export all information needed to characterize the system. Two generic non-linear models have been programmed in GAMS to use the inputs from HydroPlatform in simulation and optimization models. The simulation model allocates water resources on a monthly basis, according to different targets (demands, storage, environmental flows, hydropower production, etc.), priorities and other system operating rules (such as reservoir operating rules). The optimization model's objective function is designed so that the system meets operational targets (ranked according to priorities) each month while following system operating rules. This function is analogous to the one used in the simulation module of the DSS AQUATOOL. Each element of the system has its own contribution to the objective function through unit cost coefficients that preserve the relative priority rank and the system operating rules. The model incorporates groundwater and stream-aquifer interaction (allowing conjunctive use simulation) with a wide range of modeling options, from lumped and analytical approaches to parameter-distributed models (eigenvalue approach). Such functionality is not typically included in other water DSS. Based on the resulting water resources allocation, the model calculates operating and water scarcity costs caused by supply deficits based on economic demand functions for each demand node. The optimization model allocates the available resource over time based on economic criteria (net benefits from demand curves and cost functions), minimizing the total water scarcity and operating cost of water use. This approach provides solutions that optimize the economic efficiency (as total net benefit) in water resources management over the optimization period. Both models must be used together in water resource planning and management. The optimization model provides an initial insight on economically efficient solutions, from which different operating rules can be further developed and tested using the simulation model. The hydro-economic simulation model allows assessing economic impacts of alternative policies or operating criteria, avoiding the perfect foresight issues associated with the optimization. The tools have been applied to the Jucar river basin (Spain) in order to assess the economic results corresponding to the current modus operandi of the system and compare them with the solution from the optimization that maximizes economic efficiency. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536) and the Plan Nacional I+D+I 2008-2011 of the Spanish Ministry of Science and Innovation (CGL2009-13238-C02-01 and CGL2009-13238-C02-02).
Chen, Yen-Lin; Chiang, Hsin-Han; Yu, Chao-Wei; Chiang, Chuan-Yen; Liu, Chuan-Ming; Wang, Jenq-Haur
2012-01-01
This study develops and integrates an efficient knowledge-based system and a component-based framework to design an intelligent and flexible home health care system. The proposed knowledge-based system integrates an efficient rule-based reasoning model and flexible knowledge rules for determining efficiently and rapidly the necessary physiological and medication treatment procedures based on software modules, video camera sensors, communication devices, and physiological sensor information. This knowledge-based system offers high flexibility for improving and extending the system further to meet the monitoring demands of new patient and caregiver health care by updating the knowledge rules in the inference mechanism. All of the proposed functional components in this study are reusable, configurable, and extensible for system developers. Based on the experimental results, the proposed intelligent homecare system demonstrates that it can accomplish the extensible, customizable, and configurable demands of the ubiquitous healthcare systems to meet the different demands of patients and caregivers under various rehabilitation and nursing conditions.
Chen, Yen-Lin; Chiang, Hsin-Han; Yu, Chao-Wei; Chiang, Chuan-Yen; Liu, Chuan-Ming; Wang, Jenq-Haur
2012-01-01
This study develops and integrates an efficient knowledge-based system and a component-based framework to design an intelligent and flexible home health care system. The proposed knowledge-based system integrates an efficient rule-based reasoning model and flexible knowledge rules for determining efficiently and rapidly the necessary physiological and medication treatment procedures based on software modules, video camera sensors, communication devices, and physiological sensor information. This knowledge-based system offers high flexibility for improving and extending the system further to meet the monitoring demands of new patient and caregiver health care by updating the knowledge rules in the inference mechanism. All of the proposed functional components in this study are reusable, configurable, and extensible for system developers. Based on the experimental results, the proposed intelligent homecare system demonstrates that it can accomplish the extensible, customizable, and configurable demands of the ubiquitous healthcare systems to meet the different demands of patients and caregivers under various rehabilitation and nursing conditions. PMID:23112650
NASA Technical Reports Server (NTRS)
Brown, Robert B.
1994-01-01
A software pilot model for Space Shuttle proximity operations is developed, utilizing fuzzy logic. The model is designed to emulate a human pilot during the terminal phase of a Space Shuttle approach to the Space Station. The model uses the same sensory information available to a human pilot and is based upon existing piloting rules and techniques determined from analysis of human pilot performance. Such a model is needed to generate numerous rendezvous simulations to various Space Station assembly stages for analysis of current NASA procedures and plume impingement loads on the Space Station. The advantages of a fuzzy logic pilot model are demonstrated by comparing its performance with NASA's man-in-the-loop simulations and with a similar model based upon traditional Boolean logic. The fuzzy model is shown to respond well from a number of initial conditions, with results typical of an average human. In addition, the ability to model different individual piloting techniques and new piloting rules is demonstrated.
Extending radiative transfer models by use of Bayes rule. [in atmospheric science
NASA Technical Reports Server (NTRS)
Whitney, C.
1977-01-01
This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.
ERIC Educational Resources Information Center
Broder, Arndt; Schutz, Julia
2009-01-01
Recent reviews of recognition receiver operating characteristics (ROCs) claim that their curvilinear shape rules out threshold models of recognition. However, the shape of ROCs based on confidence ratings is not diagnostic to refute threshold models, whereas ROCs based on experimental bias manipulations are. Also, fitting predicted frequencies to…
School Funding in Ohio: From "DeRolph" to the Evidence-Based Model (EBM) and beyond
ERIC Educational Resources Information Center
Pittner, Nicholas A.; Carleton, Melissa M.; Casto, Cassandra
2010-01-01
Beginning in 1997, a series of Ohio Supreme Court decisions ruled that Ohio's school foundation-based funding system was unconstitutional. Despite judicially mandated reform directives, little change was made until recently when Ohio adopted a modified Evidence-Based Model (EBM) into its statutory funding scheme. Ohio's EBM is intended to remedy…
NASA Astrophysics Data System (ADS)
Takács, Ondřej; Kostolányová, Kateřina
2016-06-01
This paper describes the Virtual Teacher that uses a set of rules to automatically adapt the way of teaching. These rules compose of two parts: conditions on various students' properties or learning situation; conclusions that specify different adaptation parameters. The rules can be used for general adaptation of each subject or they can be specific to some subject. The rule based system of Virtual Teacher is dedicated to be used in pedagogical experiments in adaptive e-learning and is therefore designed for users without education in computer science. The Virtual Teacher was used in dissertation theses of two students, who executed two pedagogical experiments. This paper also describes the phase of simulating and modeling of the theoretically prepared adaptive process in the modeling tool, which has all the required parameters and has been created especially for the occasion. The experiments are being conducted on groups of virtual students and by using a virtual study material.
Statistical Origin of the Meyer-Neldel Rule in Amorphous Semiconductor Thin Film Transistors
NASA Astrophysics Data System (ADS)
Kikuchi, Minoru
1990-09-01
The origin of the Meyer-Neldel (MN) rule [G0{\\propto}\\exp (AEσ)] in the dc conductance of amorphous semiconductor thin-film transistors (TFT) is investigated based on the statistical model. We analyzed the temperature derivative of the band bending energy eVs(T) at the semiconductor interface as a function of Vs. It is shown that the condition for the validity of the rule, i.e., the linearity of the derivative deVs/dkT to Vs, certainly holds as a natural consequence of the interplay between the steep tail states and the low gap density of states spectrum. An expression is derived which relates the parameter A in the rule to the gap states spectrum. Model calculations show a magnitude of A in fair agreement with the experimental observations. The effects of the Fermi level position and the magnitude of the midgap density of states are also discussed.
Poisson-Based Inference for Perturbation Models in Adaptive Spelling Training
ERIC Educational Resources Information Center
Baschera, Gian-Marco; Gross, Markus
2010-01-01
We present an inference algorithm for perturbation models based on Poisson regression. The algorithm is designed to handle unclassified input with multiple errors described by independent mal-rules. This knowledge representation provides an intelligent tutoring system with local and global information about a student, such as error classification…
Combined rule extraction and feature elimination in supervised classification.
Liu, Sheng; Patel, Ronak Y; Daga, Pankaj R; Liu, Haining; Fu, Gang; Doerksen, Robert J; Chen, Yixin; Wilkins, Dawn E
2012-09-01
There are a vast number of biology related research problems involving a combination of multiple sources of data to achieve a better understanding of the underlying problems. It is important to select and interpret the most important information from these sources. Thus it will be beneficial to have a good algorithm to simultaneously extract rules and select features for better interpretation of the predictive model. We propose an efficient algorithm, Combined Rule Extraction and Feature Elimination (CRF), based on 1-norm regularized random forests. CRF simultaneously extracts a small number of rules generated by random forests and selects important features. We applied CRF to several drug activity prediction and microarray data sets. CRF is capable of producing performance comparable with state-of-the-art prediction algorithms using a small number of decision rules. Some of the decision rules are biologically significant.
An architecture for rule based system explanation
NASA Technical Reports Server (NTRS)
Fennel, T. R.; Johannes, James D.
1990-01-01
A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.
A random rule model of surface growth
NASA Astrophysics Data System (ADS)
Mello, Bernardo A.
2015-02-01
Stochastic models of surface growth are usually based on randomly choosing a substrate site to perform iterative steps, as in the etching model, Mello et al. (2001) [5]. In this paper I modify the etching model to perform sequential, instead of random, substrate scan. The randomicity is introduced not in the site selection but in the choice of the rule to be followed in each site. The change positively affects the study of dynamic and asymptotic properties, by reducing the finite size effect and the short-time anomaly and by increasing the saturation time. It also has computational benefits: better use of the cache memory and the possibility of parallel implementation.
Hoffmann, Janina A; von Helversen, Bettina; Rieskamp, Jörg
2014-12-01
Making accurate judgments is an essential skill in everyday life. Although how different memory abilities relate to categorization and judgment processes has been hotly debated, the question is far from resolved. We contribute to the solution by investigating how individual differences in memory abilities affect judgment performance in 2 tasks that induced rule-based or exemplar-based judgment strategies. In a study with 279 participants, we investigated how working memory and episodic memory affect judgment accuracy and strategy use. As predicted, participants switched strategies between tasks. Furthermore, structural equation modeling showed that the ability to solve rule-based tasks was predicted by working memory, whereas episodic memory predicted judgment accuracy in the exemplar-based task. Last, the probability of choosing an exemplar-based strategy was related to better episodic memory, but strategy selection was unrelated to working memory capacity. In sum, our results suggest that different memory abilities are essential for successfully adopting different judgment strategies. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Challenges in Requirements Engineering: A Research Agenda for Conceptual Modeling
NASA Astrophysics Data System (ADS)
March, Salvatore T.; Allen, Gove N.
Domains for which information systems are developed deal primarily with social constructions—conceptual objects and attributes created by human intentions and for human purposes. Information systems play an active role in these domains. They document the creation of new conceptual objects, record and ascribe values to their attributes, initiate actions within the domain, track activities performed, and infer conclusions based on the application of rules that govern how the domain is affected when socially-defined and identified causal events occur. Emerging applications of information technologies evaluate such business rules, learn from experience, and adapt to changes in the domain. Conceptual modeling grammars aimed at representing their system requirements must include conceptual objects, socially-defined events, and the rules pertaining to them. We identify challenges to conceptual modeling research and pose an ontology of the artificial as a step toward meeting them.
A SIMPLE CELLULAR AUTOMATON MODEL FOR HIGH-LEVEL VEGETATION DYNAMICS
We have produced a simple two-dimensional (ground-plan) cellular automata model of vegetation dynamics specifically to investigate high-level community processes. The model is probabilistic, with individual plant behavior determined by physiologically-based rules derived from a w...
NASA Technical Reports Server (NTRS)
Kim, Jonnathan H.
1995-01-01
Humans can perform many complicated tasks without explicit rules. This inherent and advantageous capability becomes a hurdle when a task is to be automated. Modern computers and numerical calculations require explicit rules and discrete numerical values. In order to bridge the gap between human knowledge and automating tools, a knowledge model is proposed. Knowledge modeling techniques are discussed and utilized to automate a labor and time intensive task of detecting anomalous bearing wear patterns in the Space Shuttle Main Engine (SSME) High Pressure Oxygen Turbopump (HPOTP).
A quantitative quantum chemical model of the Dewar-Knott color rule for cationic diarylmethanes
NASA Astrophysics Data System (ADS)
Olsen, Seth
2012-04-01
We document the quantitative manifestation of the Dewar-Knott color rule in a four-electron, three-orbital state-averaged complete active space self-consistent field (SA-CASSCF) model of a series of bridge-substituted cationic diarylmethanes. We show that the lowest excitation energies calculated using multireference perturbation theory based on the model are linearly correlated with the development of hole density in an orbital localized on the bridge, and the depletion of pair density in the same orbital. We quantitatively express the correlation in the form of a generalized Hammett equation.
Deep Reinforcement Learning of Cell Movement in the Early Stage of C. elegans Embryogenesis.
Wang, Zi; Wang, Dali; Li, Chengcheng; Xu, Yichi; Li, Husheng; Bao, Zhirong
2018-04-25
Cell movement in the early phase of C. elegans development is regulated by a highly complex process in which a set of rules and connections are formulated at distinct scales. Previous efforts have demonstrated that agent-based, multi-scale modeling systems can integrate physical and biological rules and provide new avenues to study developmental systems. However, the application of these systems to model cell movement is still challenging and requires a comprehensive understanding of regulatory networks at the right scales. Recent developments in deep learning and reinforcement learning provide an unprecedented opportunity to explore cell movement using 3D time-lapse microscopy images. We present a deep reinforcement learning approach within an agent-based modeling system to characterize cell movement in the embryonic development of C. elegans. Our modeling system captures the complexity of cell movement patterns in the embryo and overcomes the local optimization problem encountered by traditional rule-based, agent-based modeling that uses greedy algorithms. We tested our model with two real developmental processes: the anterior movement of the Cpaaa cell via intercalation and the rearrangement of the superficial left-right asymmetry. In the first case, the model results suggested that Cpaaa's intercalation is an active directional cell movement caused by the continuous effects from a longer distance (farther than the length of two adjacent cells), as opposed to a passive movement caused by neighbor cell movements. In the second case, a leader-follower mechanism well explained the collective cell movement pattern in the asymmetry rearrangement. These results showed that our approach to introduce deep reinforcement learning into agent-based modeling can test regulatory mechanisms by exploring cell migration paths in a reverse engineering perspective. This model opens new doors to explore the large datasets generated by live imaging. Source code is available at https://github.com/zwang84/drl4cellmovement. dwang7@utk.edu, baoz@mskcc.org. Supplementary data are available at Bioinformatics online.
Zhang, Haitao; Wu, Chenxue; Chen, Zewei; Liu, Zhao; Zhu, Yunhong
2017-01-01
Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules.
Wu, Chenxue; Liu, Zhao; Zhu, Yunhong
2017-01-01
Analyzing large-scale spatial-temporal k-anonymity datasets recorded in location-based service (LBS) application servers can benefit some LBS applications. However, such analyses can allow adversaries to make inference attacks that cannot be handled by spatial-temporal k-anonymity methods or other methods for protecting sensitive knowledge. In response to this challenge, first we defined a destination location prediction attack model based on privacy-sensitive sequence rules mined from large scale anonymity datasets. Then we proposed a novel on-line spatial-temporal k-anonymity method that can resist such inference attacks. Our anti-attack technique generates new anonymity datasets with awareness of privacy-sensitive sequence rules. The new datasets extend the original sequence database of anonymity datasets to hide the privacy-sensitive rules progressively. The process includes two phases: off-line analysis and on-line application. In the off-line phase, sequence rules are mined from an original sequence database of anonymity datasets, and privacy-sensitive sequence rules are developed by correlating privacy-sensitive spatial regions with spatial grid cells among the sequence rules. In the on-line phase, new anonymity datasets are generated upon LBS requests by adopting specific generalization and avoidance principles to hide the privacy-sensitive sequence rules progressively from the extended sequence anonymity datasets database. We conducted extensive experiments to test the performance of the proposed method, and to explore the influence of the parameter K value. The results demonstrated that our proposed approach is faster and more effective for hiding privacy-sensitive sequence rules in terms of hiding sensitive rules ratios to eliminate inference attacks. Our method also had fewer side effects in terms of generating new sensitive rules ratios than the traditional spatial-temporal k-anonymity method, and had basically the same side effects in terms of non-sensitive rules variation ratios with the traditional spatial-temporal k-anonymity method. Furthermore, we also found the performance variation tendency from the parameter K value, which can help achieve the goal of hiding the maximum number of original sensitive rules while generating a minimum of new sensitive rules and affecting a minimum number of non-sensitive rules. PMID:28767687
Rule based design of conceptual models for formative evaluation
NASA Technical Reports Server (NTRS)
Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen
1994-01-01
A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.
Rule based design of conceptual models for formative evaluation
NASA Technical Reports Server (NTRS)
Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen
1994-01-01
A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.
Automated detection of pain from facial expressions: a rule-based approach using AAM
NASA Astrophysics Data System (ADS)
Chen, Zhanli; Ansari, Rashid; Wilkie, Diana J.
2012-02-01
In this paper, we examine the problem of using video analysis to assess pain, an important problem especially for critically ill, non-communicative patients, and people with dementia. We propose and evaluate an automated method to detect the presence of pain manifested in patient videos using a unique and large collection of cancer patient videos captured in patient homes. The method is based on detecting pain-related facial action units defined in the Facial Action Coding System (FACS) that is widely used for objective assessment in pain analysis. In our research, a person-specific Active Appearance Model (AAM) based on Project-Out Inverse Compositional Method is trained for each patient individually for the modeling purpose. A flexible representation of the shape model is used in a rule-based method that is better suited than the more commonly used classifier-based methods for application to the cancer patient videos in which pain-related facial actions occur infrequently and more subtly. The rule-based method relies on the feature points that provide facial action cues and is extracted from the shape vertices of AAM, which have a natural correspondence to face muscular movement. In this paper, we investigate the detection of a commonly used set of pain-related action units in both the upper and lower face. Our detection results show good agreement with the results obtained by three trained FACS coders who independently reviewed and scored the action units in the cancer patient videos.
Charge carrier transport in polycrystalline organic thin film based field effect transistors
NASA Astrophysics Data System (ADS)
Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis
2016-05-01
The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.
Learning temporal rules to forecast instability in continuously monitored patients
Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. PMID:27274020
Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.
Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng
2018-04-20
Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.
LIDAR Point Cloud Data Extraction and Establishment of 3D Modeling of Buildings
NASA Astrophysics Data System (ADS)
Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan
2018-01-01
This paper takes the method of Shepard’s to deal with the original LIDAR point clouds data, and generate regular grid data DSM, filters the ground point cloud and non ground point cloud through double least square method, and obtains the rules of DSM. By using region growing method for the segmentation of DSM rules, the removal of non building point cloud, obtaining the building point cloud information. Uses the Canny operator to extract the image segmentation is needed after the edges of the building, uses Hough transform line detection to extract the edges of buildings rules of operation based on the smooth and uniform. At last, uses E3De3 software to establish the 3D model of buildings.
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
40 CFR 60.2997 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Construction On or Before December 9, 2004 Model Rule-Use of Model Rule § 60.2997 How does the model rule...
An agent-based model of dialect evolution in killer whales.
Filatova, Olga A; Miller, Patrick J O
2015-05-21
The killer whale is one of the few animal species with vocal dialects that arise from socially learned group-specific call repertoires. We describe a new agent-based model of killer whale populations and test a set of vocal-learning rules to assess which mechanisms may lead to the formation of dialect groupings observed in the wild. We tested a null model with genetic transmission and no learning, and ten models with learning rules that differ by template source (mother or matriline), variation type (random errors or innovations) and type of call change (no divergence from kin vs. divergence from kin). The null model without vocal learning did not produce the pattern of group-specific call repertoires we observe in nature. Learning from either mother alone or the entire matriline with calls changing by random errors produced a graded distribution of the call phenotype, without the discrete call types observed in nature. Introducing occasional innovation or random error proportional to matriline variance yielded more or less discrete and stable call types. A tendency to diverge from the calls of related matrilines provided fast divergence of loose call clusters. A pattern resembling the dialect diversity observed in the wild arose only when rules were applied in combinations and similar outputs could arise from different learning rules and their combinations. Our results emphasize the lack of information on quantitative features of wild killer whale dialects and reveal a set of testable questions that can draw insights into the cultural evolution of killer whale dialects. Copyright © 2015 Elsevier Ltd. All rights reserved.
When More of A Doesn't Result in More of B: Physics Experiments with a Surprising Outcome
ERIC Educational Resources Information Center
Tsakmaki, Paraskevi; Koumaras, Panagiotis
2016-01-01
Science education research has shown that students use causal reasoning, particularly the model "agent--instrument--object," to explain or predict the outcome of many natural situations. Students' reasoning seems to be based on a small set of few intuitive rules. One of these rules quantitatively correlates the outcome of an experiment…
2011-05-01
concern for the true welfare of the populace and operated in a 25 repressive and cruel manner towards them.45 Also, institutions from within the...government structure was based on a constitutional, hereditary emirate that was ruled by princes (Amirs) from the Al Sabah ruling family since the middle
Yu Wei; Michael Bevers; Erin J. Belval
2015-01-01
Initial attack dispatch rules can help shorten fire suppression response times by providing easy-to-follow recommendations based on fire weather, discovery time, location, and other factors that may influence fire behavior and the appropriate response. A new procedure is combined with a stochastic programming model and tested in this study for designing initial attack...
NASA Astrophysics Data System (ADS)
Maslova, I.; Ticlavilca, A. M.; McKee, M.
2012-12-01
There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.
Can history and exam alone reliably predict pneumonia?
Graffelman, A W; le Cessie, S; Knuistingh Neven, A; Wilemssen, F E J A; Zonderland, H M; van den Broek, P J
2007-06-01
Prediction rules based on clinical information have been developed to support the diagnosis of pneumonia and help limit the use of expensive diagnostic tests. However, these prediction rules need to be validated in the primary care setting. Adults who met our definition of lower respiratory tract infection (LRTI) were recruited for a prospective study on the causes of LRTI, between November 15, 1998 and June 1, 2001 in the Leiden region of The Netherlands. Clinical information was collected and chest radiography was performed. A literature search was also done to find prediction rules for pneumonia. 129 patients--26 with pneumonia and 103 without--were included, and 6 prediction rules were applied. Only the model with the addition of a test for C-reactive protein had a significant area under the curve of 0.69 (95% confidence interval [CI], 0.58-0.80), with a positive predictive value of 47% (95% CI, 23-71) and a negative predictive value of 84% (95% CI, 77-91). The pretest probabilities for the presence and absence of pneumonia were 20% and 80%, respectively. Models based only on clinical information do not reliably predict the presence of pneumonia. The addition of an elevated C-reactive protein level seems of little value.
Fuzzy regression modeling for tool performance prediction and degradation detection.
Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L
2010-10-01
In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.
Scaling and modeling of turbulent suspension flows
NASA Technical Reports Server (NTRS)
Chen, C. P.
1989-01-01
Scaling factors determining various aspects of particle-fluid interactions and the development of physical models to predict gas-solid turbulent suspension flow fields are discussed based on two-fluid, continua formulation. The modes of particle-fluid interactions are discussed based on the length and time scale ratio, which depends on the properties of the particles and the characteristics of the flow turbulence. For particle size smaller than or comparable with the Kolmogorov length scale and concentration low enough for neglecting direct particle-particle interaction, scaling rules can be established in various parameter ranges. The various particle-fluid interactions give rise to additional mechanisms which affect the fluid mechanics of the conveying gas phase. These extra mechanisms are incorporated into a turbulence modeling method based on the scaling rules. A multiple-scale two-phase turbulence model is developed, which gives reasonable predictions for dilute suspension flow. Much work still needs to be done to account for the poly-dispersed effects and the extension to dense suspension flows.
Fuzzy rule-based forecast of meteorological drought in western Niger
NASA Astrophysics Data System (ADS)
Abdourahamane, Zakari Seybou; Acar, Reşat
2018-01-01
Understanding the causes of rainfall anomalies in the West African Sahel to effectively predict drought events remains a challenge. The physical mechanisms that influence precipitation in this region are complex, uncertain, and imprecise in nature. Fuzzy logic techniques are renowned to be highly efficient in modeling such dynamics. This paper attempts to forecast meteorological drought in Western Niger using fuzzy rule-based modeling techniques. The 3-month scale standardized precipitation index (SPI-3) of four rainfall stations was used as predictand. Monthly data of southern oscillation index (SOI), South Atlantic sea surface temperature (SST), relative humidity (RH), and Atlantic sea level pressure (SLP), sourced from the National Oceanic and Atmosphere Administration (NOAA), were used as predictors. Fuzzy rules and membership functions were generated using fuzzy c-means clustering approach, expert decision, and literature review. For a minimum lead time of 1 month, the model has a coefficient of determination R 2 between 0.80 and 0.88, mean square error (MSE) below 0.17, and Nash-Sutcliffe efficiency (NSE) ranging between 0.79 and 0.87. The empirical frequency distributions of the predicted and the observed drought classes are equal at the 99% of confidence level based on two-sample t test. Results also revealed the discrepancy in the influence of SOI and SLP on drought occurrence at the four stations while the effect of SST and RH are space independent, being both significantly correlated (at α < 0.05 level) to the SPI-3. Moreover, the implemented fuzzy model compared to decision tree-based forecast model shows better forecast skills.
Ontology-Based Method for Fault Diagnosis of Loaders.
Xu, Feixiang; Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei
2018-02-28
This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study.
Ontology-Based Method for Fault Diagnosis of Loaders
Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei
2018-01-01
This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study. PMID:29495646
Integration of perception and reasoning in fast neural modules
NASA Technical Reports Server (NTRS)
Fritz, David G.
1989-01-01
Artificial neural systems promise to integrate symbolic and sub-symbolic processing to achieve real time control of physical systems. Two potential alternatives exist. In one, neural nets can be used to front-end expert systems. The expert systems, in turn, are developed with varying degrees of parallelism, including their implementation in neural nets. In the other, rule-based reasoning and sensor data can be integrated within a single hybrid neural system. The hybrid system reacts as a unit to provide decisions (problem solutions) based on the simultaneous evaluation of data and rules. Discussed here is a model hybrid system based on the fuzzy cognitive map (FCM). The operation of the model is illustrated with the control of a hypothetical satellite that intelligently alters its attitude in space in response to an intersecting micrometeorite shower.
Zhou, Shang-Ming; Lyons, Ronan A.; Brophy, Sinead; Gravenor, Mike B.
2012-01-01
The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data. PMID:23272108
Zhou, Shang-Ming; Lyons, Ronan A; Brophy, Sinead; Gravenor, Mike B
2012-01-01
The Takagi-Sugeno (TS) fuzzy rule system is a widely used data mining technique, and is of particular use in the identification of non-linear interactions between variables. However the number of rules increases dramatically when applied to high dimensional data sets (the curse of dimensionality). Few robust methods are available to identify important rules while removing redundant ones, and this results in limited applicability in fields such as epidemiology or bioinformatics where the interaction of many variables must be considered. Here, we develop a new parsimonious TS rule system. We propose three statistics: R, L, and ω-values, to rank the importance of each TS rule, and a forward selection procedure to construct a final model. We use our method to predict how key components of childhood deprivation combine to influence educational achievement outcome. We show that a parsimonious TS model can be constructed, based on a small subset of rules, that provides an accurate description of the relationship between deprivation indices and educational outcomes. The selected rules shed light on the synergistic relationships between the variables, and reveal that the effect of targeting specific domains of deprivation is crucially dependent on the state of the other domains. Policy decisions need to incorporate these interactions, and deprivation indices should not be considered in isolation. The TS rule system provides a basis for such decision making, and has wide applicability for the identification of non-linear interactions in complex biomedical data.
Adaptive WTA with an analog VLSI neuromorphic learning chip.
Häfliger, Philipp
2007-03-01
In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system.
Phonological Concept Learning.
Moreton, Elliott; Pater, Joe; Pertsova, Katya
2017-01-01
Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by the same models. We test GMECCS (Gradual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural Cue Model (Gluck & Bower, ) in a Maximum Entropy phonotactic-learning framework (Goldwater & Johnson, ; Hayes & Wilson, ) with a single free parameter, against the alternative hypothesis that learners seek featurally simple algebraic rules ("rule-seeking"). We study the full typology of patterns introduced by Shepard, Hovland, and Jenkins () ("SHJ"), instantiated as both phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2 found that both phonotactic and visual patterns that depended on fewer features could be more difficult than those that depended on more features, as predicted by GMECCS but not by rule-seeking. GMECCS also correctly predicted performance differences between stimulus subclasses within each pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learning) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude that similar cue-based cognitive processes are available for phonological and visual concept learning, and hence that studying either kind of learning can lead to significant insights about the other. Copyright © 2015 Cognitive Science Society, Inc.
Lung Cancer Assistant: a hybrid clinical decision support application for lung cancer care.
Sesen, M Berkan; Peake, Michael D; Banares-Alcantara, Rene; Tse, Donald; Kadir, Timor; Stanley, Roz; Gleeson, Fergus; Brady, Michael
2014-09-06
Multidisciplinary team (MDT) meetings are becoming the model of care for cancer patients worldwide. While MDTs have improved the quality of cancer care, the meetings impose substantial time pressure on the members, who generally attend several such MDTs. We describe Lung Cancer Assistant (LCA), a clinical decision support (CDS) prototype designed to assist the experts in the treatment selection decisions in the lung cancer MDTs. A novel feature of LCA is its ability to provide rule-based and probabilistic decision support within a single platform. The guideline-based CDS is based on clinical guideline rules, while the probabilistic CDS is based on a Bayesian network trained on the English Lung Cancer Audit Database (LUCADA). We assess rule-based and probabilistic recommendations based on their concordances with the treatments recorded in LUCADA. Our results reveal that the guideline rule-based recommendations perform well in simulating the recorded treatments with exact and partial concordance rates of 0.57 and 0.79, respectively. On the other hand, the exact and partial concordance rates achieved with probabilistic results are relatively poorer with 0.27 and 0.76. However, probabilistic decision support fulfils a complementary role in providing accurate survival estimations. Compared to recorded treatments, both CDS approaches promote higher resection rates and multimodality treatments.
Experiments on neural network architectures for fuzzy logic
NASA Technical Reports Server (NTRS)
Keller, James M.
1991-01-01
The use of fuzzy logic to model and manage uncertainty in a rule-based system places high computational demands on an inference engine. In an earlier paper, the authors introduced a trainable neural network structure for fuzzy logic. These networks can learn and extrapolate complex relationships between possibility distributions for the antecedents and consequents in the rules. Here, the power of these networks is further explored. The insensitivity of the output to noisy input distributions (which are likely if the clauses are generated from real data) is demonstrated as well as the ability of the networks to internalize multiple conjunctive clause and disjunctive clause rules. Since different rules with the same variables can be encoded in a single network, this approach to fuzzy logic inference provides a natural mechanism for rule conflict resolution.
Simulated Students and Classroom Use of Model-Based Intelligent Tutoring
NASA Technical Reports Server (NTRS)
Koedinger, Kenneth R.
2008-01-01
Two educational uses of models and simulations: 1) Students create models and use simulations ; and 2) Researchers create models of learners to guide development of reliably effective materials. Cognitive tutors simulate and support tutoring - data is crucial to create effective model. Pittsburgh Science of Learning Center: Resources for modeling, authoring, experimentation. Repository of data and theory. Examples of advanced modeling efforts: SimStudent learns rule-based model. Help-seeking model: Tutors metacognition. Scooter uses machine learning detectors of student engagement.
Four simple rules that are sufficient to generate the mammalian blastocyst
Nissen, Silas Boye; Perera, Marta; Gonzalez, Javier Martin; Morgani, Sophie M.; Jensen, Mogens H.; Sneppen, Kim; Brickman, Joshua M.
2017-01-01
Early mammalian development is both highly regulative and self-organizing. It involves the interplay of cell position, predetermined gene regulatory networks, and environmental interactions to generate the physical arrangement of the blastocyst with precise timing. However, this process occurs in the absence of maternal information and in the presence of transcriptional stochasticity. How does the preimplantation embryo ensure robust, reproducible development in this context? It utilizes a versatile toolbox that includes complex intracellular networks coupled to cell—cell communication, segregation by differential adhesion, and apoptosis. Here, we ask whether a minimal set of developmental rules based on this toolbox is sufficient for successful blastocyst development, and to what extent these rules can explain mutant and experimental phenotypes. We implemented experimentally reported mechanisms for polarity, cell—cell signaling, adhesion, and apoptosis as a set of developmental rules in an agent-based in silico model of physically interacting cells. We find that this model quantitatively reproduces specific mutant phenotypes and provides an explanation for the emergence of heterogeneity without requiring any initial transcriptional variation. It also suggests that a fixed time point for the cells’ competence of fibroblast growth factor (FGF)/extracellular signal—regulated kinase (ERK) sets an embryonic clock that enables certain scaling phenomena, a concept that we evaluate quantitatively by manipulating embryos in vitro. Based on these observations, we conclude that the minimal set of rules enables the embryo to experiment with stochastic gene expression and could provide the robustness necessary for the evolutionary diversification of the preimplantation gene regulatory network. PMID:28700688
NASA Astrophysics Data System (ADS)
Hu, Y.; Quinn, C.; Cai, X.
2015-12-01
One major challenge of agent-based modeling is to derive agents' behavioral rules due to behavioral uncertainty and data scarcity. This study proposes a new approach to combine a data-driven modeling based on the directed information (i.e., machine intelligence) with expert domain knowledge (i.e., human intelligence) to derive the behavioral rules of agents considering behavioral uncertainty. A directed information graph algorithm is applied to identifying the causal relationships between agents' decisions (i.e., groundwater irrigation depth) and time-series of environmental, socio-economical and institutional factors. A case study is conducted for the High Plains aquifer hydrological observatory (HO) area, U.S. Preliminary results show that four factors, corn price (CP), underlying groundwater level (GWL), monthly mean temperature (T) and precipitation (P) have causal influences on agents' decisions on groundwater irrigation depth (GWID) to various extents. Based on the similarity of the directed information graph for each agent, five clusters of graphs are further identified to represent all the agents' behaviors in the study area as shown in Figure 1. Using these five representative graphs, agents' monthly optimal groundwater pumping rates are derived through the probabilistic inference. Such data-driven relationships and probabilistic quantifications are then coupled with a physically-based groundwater model to investigate the interactions between agents' pumping behaviors and the underlying groundwater system in the context of coupled human and natural systems.
Renormalisation group corrections to neutrino mixing sum rules
NASA Astrophysics Data System (ADS)
Gehrlein, J.; Petcov, S. T.; Spinrath, M.; Titov, A. V.
2016-11-01
Neutrino mixing sum rules are common to a large class of models based on the (discrete) symmetry approach to lepton flavour. In this approach the neutrino mixing matrix U is assumed to have an underlying approximate symmetry form Ũν, which is dictated by, or associated with, the employed (discrete) symmetry. In such a setup the cosine of the Dirac CP-violating phase δ can be related to the three neutrino mixing angles in terms of a sum rule which depends on the symmetry form of Ũν. We consider five extensively discussed possible symmetry forms of Ũν: i) bimaximal (BM) and ii) tri-bimaximal (TBM) forms, the forms corresponding to iii) golden ratio type A (GRA) mixing, iv) golden ratio type B (GRB) mixing, and v) hexagonal (HG) mixing. For each of these forms we investigate the renormalisation group corrections to the sum rule predictions for δ in the cases of neutrino Majorana mass term generated by the Weinberg (dimension 5) operator added to i) the Standard Model, and ii) the minimal SUSY extension of the Standard Model.
Telerobotic control of a mobile coordinated robotic server. M.S. Thesis Annual Technical Report
NASA Technical Reports Server (NTRS)
Lee, Gordon
1993-01-01
The annual report on telerobotic control of a mobile coordinated robotic server is presented. The goal of this effort is to develop advanced control methods for flexible space manipulator systems. As such, an adaptive fuzzy logic controller was developed in which model structure as well as parameter constraints are not required for compensation. The work builds upon previous work on fuzzy logic controllers. Fuzzy logic controllers have been growing in importance in the field of automatic feedback control. Hardware controllers using fuzzy logic have become available as an alternative to the traditional PID controllers. Software has also been introduced to aid in the development of fuzzy logic rule-bases. The advantages of using fuzzy logic controllers include the ability to merge the experience and intuition of expert operators into the rule-base and that a model of the system is not required to construct the controller. A drawback of the classical fuzzy logic controller, however, is the many parameters needed to be turned off-line prior to application in the closed-loop. In this report, an adaptive fuzzy logic controller is developed requiring no system model or model structure. The rule-base is defined to approximate a state-feedback controller while a second fuzzy logic algorithm varies, on-line, parameters of the defining controller. Results indicate the approach is viable for on-line adaptive control of systems when the model is too complex or uncertain for application of other more classical control techniques.
Kinetic theory of situated agents applied to pedestrian flow in a corridor
NASA Astrophysics Data System (ADS)
Rangel-Huerta, A.; Muñoz-Meléndez, A.
2010-03-01
A situated agent-based model for simulation of pedestrian flow in a corridor is presented. In this model, pedestrians choose their paths freely and make decisions based on local criteria for solving collision conflicts. The crowd consists of multiple walking agents equipped with a function of perception as well as a competitive rule-based strategy that enables pedestrians to reach free access areas. Pedestrians in our model are autonomous entities capable of perceiving and making decisions. They apply socially accepted conventions, such as avoidance rules, as well as individual preferences such as the use of specific exit points, or the execution of eventual comfort turns resulting in spontaneous changes of walking speed. Periodic boundary conditions were considered in order to determine the density-average walking speed, and the density-average activity with respect to specific parameters: comfort angle turn and frequency of angle turn of walking agents. The main contribution of this work is an agent-based model where each pedestrian is represented as an autonomous agent. At the same time the pedestrian crowd dynamics is framed by the kinetic theory of biological systems.
Process Materialization Using Templates and Rules to Design Flexible Process Models
NASA Astrophysics Data System (ADS)
Kumar, Akhil; Yao, Wen
The main idea in this paper is to show how flexible processes can be designed by combining generic process templates and business rules. We instantiate a process by applying rules to specific case data, and running a materialization algorithm. The customized process instance is then executed in an existing workflow engine. We present an architecture and also give an algorithm for process materialization. The rules are written in a logic-based language like Prolog. Our focus is on capturing deeper process knowledge and achieving a holistic approach to robust process design that encompasses control flow, resources and data, as well as makes it easier to accommodate changes to business policy.
Unambiguous UML Composite Structures: The OMEGA2 Experience
NASA Astrophysics Data System (ADS)
Ober, Iulian; Dragomir, Iulia
Starting from version 2.0, UML introduced hierarchical composite structures, which are a very expressive way of defining complex software architectures, but which have a very loosely defined semantics in the standard. In this paper we propose a set of consistency rules that ensure UML composite structures are unambiguous and can be given a precise semantics. Our primary application of the static consistency rules defined in this paper is within the OMEGA UML profile [6], but these rules are general and applicable to other hierarchical component models based on the same concepts, such as MARTE GCM or SysML. The rule set has been formalized in OCL and is currently used in the OMEGA UML compiler.
Truncated Sum Rules and Their Use in Calculating Fundamental Limits of Nonlinear Susceptibilities
NASA Astrophysics Data System (ADS)
Kuzyk, Mark G.
Truncated sum rules have been used to calculate the fundamental limits of the nonlinear susceptibilities and the results have been consistent with all measured molecules. However, given that finite-state models appear to result in inconsistencies in the sum rules, it may seem unclear why the method works. In this paper, the assumptions inherent in the truncation process are discussed and arguments based on physical grounds are presented in support of using truncated sum rules in calculating fundamental limits. The clipped harmonic oscillator is used as an illustration of how the validity of truncation can be tested and several limiting cases are discussed as examples of the nuances inherent in the method.
When push comes to shove: Exclusion processes with nonlocal consequences
NASA Astrophysics Data System (ADS)
Almet, Axel A.; Pan, Michael; Hughes, Barry D.; Landman, Kerry A.
2015-11-01
Stochastic agent-based models are useful for modelling collective movement of biological cells. Lattice-based random walk models of interacting agents where each site can be occupied by at most one agent are called simple exclusion processes. An alternative motility mechanism to simple exclusion is formulated, in which agents are granted more freedom to move under the compromise that interactions are no longer necessarily local. This mechanism is termed shoving. A nonlinear diffusion equation is derived for a single population of shoving agents using mean-field continuum approximations. A continuum model is also derived for a multispecies problem with interacting subpopulations, which either obey the shoving rules or the simple exclusion rules. Numerical solutions of the derived partial differential equations compare well with averaged simulation results for both the single species and multispecies processes in two dimensions, while some issues arise in one dimension for the multispecies case.
The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator.
Roh, S D; Kim, S W; Cho, W S
2001-10-01
The numerical modelling and process simulation for the fault diagnosis of rotary kiln incinerator were accomplished. In the numerical modelling, two models applied to the modelling within the kiln are the combustion chamber model including the mass and energy balance equations for two combustion chambers and 3D thermal model. The combustion chamber model predicts temperature within the kiln, flue gas composition, flux and heat of combustion. Using the combustion chamber model and 3D thermal model, the production-rules for the process simulation can be obtained through interrelation analysis between control and operation variables. The process simulation of the kiln is operated with the production-rules for automatic operation. The process simulation aims to provide fundamental solutions to the problems in incineration process by introducing an online expert control system to provide an integrity in process control and management. Knowledge-based expert control systems use symbolic logic and heuristic rules to find solutions for various types of problems. It was implemented to be a hybrid intelligent expert control system by mutually connecting with the process control systems which has the capability of process diagnosis, analysis and control.
Grid occupancy estimation for environment perception based on belief functions and PCR6
NASA Astrophysics Data System (ADS)
Moras, Julien; Dezert, Jean; Pannetier, Benjamin
2015-05-01
In this contribution, we propose to improve the grid map occupancy estimation method developed so far based on belief function modeling and the classical Dempster's rule of combination. Grid map offers a useful representation of the perceived world for mobile robotics navigation. It will play a major role for the security (obstacle avoidance) of next generations of terrestrial vehicles, as well as for future autonomous navigation systems. In a grid map, the occupancy of each cell representing a small piece of the surrounding area of the robot must be estimated at first from sensors measurements (typically LIDAR, or camera), and then it must also be classified into different classes in order to get a complete and precise perception of the dynamic environment where the robot moves. So far, the estimation and the grid map updating have been done using fusion techniques based on the probabilistic framework, or on the classical belief function framework thanks to an inverse model of the sensors. Mainly because the latter offers an interesting management of uncertainties when the quality of available information is low, and when the sources of information appear as conflicting. To improve the performances of the grid map estimation, we propose in this paper to replace Dempster's rule of combination by the PCR6 rule (Proportional Conflict Redistribution rule #6) proposed in DSmT (Dezert-Smarandache) Theory. As an illustrating scenario, we consider a platform moving in dynamic area and we compare our new realistic simulation results (based on a LIDAR sensor) with those obtained by the probabilistic and the classical belief-based approaches.
Scattering property based contextual PolSAR speckle filter
NASA Astrophysics Data System (ADS)
Mullissa, Adugna G.; Tolpekin, Valentyn; Stein, Alfred
2017-12-01
Reliability of the scattering model based polarimetric SAR (PolSAR) speckle filter depends upon the accurate decomposition and classification of the scattering mechanisms. This paper presents an improved scattering property based contextual speckle filter based upon an iterative classification of the scattering mechanisms. It applies a Cloude-Pottier eigenvalue-eigenvector decomposition and a fuzzy H/α classification to determine the scattering mechanisms on a pre-estimate of the coherency matrix. The H/α classification identifies pixels with homogeneous scattering properties. A coarse pixel selection rule groups pixels that are either single bounce, double bounce or volume scatterers. A fine pixel selection rule is applied to pixels within each canonical scattering mechanism. We filter the PolSAR data and depending on the type of image scene (urban or rural) use either the coarse or fine pixel selection rule. Iterative refinement of the Wishart H/α classification reduces the speckle in the PolSAR data. Effectiveness of this new filter is demonstrated by using both simulated and real PolSAR data. It is compared with the refined Lee filter, the scattering model based filter and the non-local means filter. The study concludes that the proposed filter compares favorably with other polarimetric speckle filters in preserving polarimetric information, point scatterers and subtle features in PolSAR data.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-30
... Corporation 12 CFR Parts 324, 325 Regulatory Capital Rules: Advanced Approaches Risk-Based Capital Rule... 325 RIN 3064-AD97 Regulatory Capital Rules: Advanced Approaches Risk-Based Capital Rule; Market Risk... the agencies' current capital rules. In this NPR (Advanced Approaches and Market Risk NPR) the...
NASA Astrophysics Data System (ADS)
Li, Chang; Wang, Qing; Shi, Wenzhong; Zhao, Sisi
2018-05-01
The accuracy of earthwork calculations that compute terrain volume is critical to digital terrain analysis (DTA). The uncertainties in volume calculations (VCs) based on a DEM are primarily related to three factors: 1) model error (ME), which is caused by an adopted algorithm for a VC model, 2) discrete error (DE), which is usually caused by DEM resolution and terrain complexity, and 3) propagation error (PE), which is caused by the variables' error. Based on these factors, the uncertainty modelling and analysis of VCs based on a regular grid DEM are investigated in this paper. Especially, how to quantify the uncertainty of VCs is proposed by a confidence interval based on truncation error (TE). In the experiments, the trapezoidal double rule (TDR) and Simpson's double rule (SDR) were used to calculate volume, where the TE is the major ME, and six simulated regular grid DEMs with different terrain complexity and resolution (i.e. DE) were generated by a Gauss synthetic surface to easily obtain the theoretical true value and eliminate the interference of data errors. For PE, Monte-Carlo simulation techniques and spatial autocorrelation were used to represent DEM uncertainty. This study can enrich uncertainty modelling and analysis-related theories of geographic information science.
MOAB: a spatially explicit, individual-based expert system for creating animal foraging models
Carter, J.; Finn, John T.
1999-01-01
We describe the development, structure, and corroboration process of a simulation model of animal behavior (MOAB). MOAB can create spatially explicit, individual-based animal foraging models. Users can create or replicate heterogeneous landscape patterns, and place resources and individual animals of a goven species on that landscape to simultaneously simulate the foraging behavior of multiple species. The heuristic rules for animal behavior are maintained in a user-modifiable expert system. MOAB can be used to explore hypotheses concerning the influence of landscape patttern on animal movement and foraging behavior. A red fox (Vulpes vulpes L.) foraging and nest predation model was created to test MOAB's capabilities. Foxes were simulated for 30-day periods using both expert system and random movement rules. Home range size, territory formation and other available simulation studies. A striped skunk (Mephitis mephitis L.) model also was developed. The expert system model proved superior to stochastic in respect to territory formation, general movement patterns and home range size.
A fuzzy-theory-based behavioral model for studying pedestrian evacuation from a single-exit room
NASA Astrophysics Data System (ADS)
Fu, Libi; Song, Weiguo; Lo, Siuming
2016-08-01
Many mass events in recent years have highlighted the importance of research on pedestrian evacuation dynamics. A number of models have been developed to analyze crowd behavior under evacuation situations. However, few focus on pedestrians' decision-making with respect to uncertainty, vagueness and imprecision. In this paper, a discrete evacuation model defined on the cellular space is proposed according to the fuzzy theory which is able to describe imprecise and subjective information. Pedestrians' percept information and various characteristics are regarded as fuzzy input. Then fuzzy inference systems with rule bases, which resemble human reasoning, are established to obtain fuzzy output that decides pedestrians' movement direction. This model is tested in two scenarios, namely in a single-exit room with and without obstacles. Simulation results reproduce some classic dynamics phenomena discovered in real building evacuation situations, and are consistent with those in other models and experiments. It is hoped that this study will enrich movement rules and approaches in traditional cellular automaton models for evacuation dynamics.
Tian, Liang; Russell, Alan; Anderson, Iver
2014-01-03
Deformation processed metal–metal composites (DMMCs) are high-strength, high-electrical conductivity composites developed by severe plastic deformation of two ductile metal phases. The extraordinarily high strength of DMMCs is underestimated using the rule of mixture (or volumetric weighted average) of conventionally work-hardened metals. A dislocation-density-based, strain–gradient–plasticity model is proposed to relate the strain-gradient effect with the geometrically necessary dislocations emanating from the interface to better predict the strength of DMMCs. The model prediction was compared with our experimental findings of Cu–Nb, Cu–Ta, and Al–Ti DMMC systems to verify the applicability of the new model. The results show that this model predicts themore » strength of DMMCs better than the rule-of-mixture model. The strain-gradient effect, responsible for the exceptionally high strength of heavily cold worked DMMCs, is dominant at large deformation strain since its characteristic microstructure length is comparable with the intrinsic material length.« less
Application of a swarm-based approach for phase unwrapping
NASA Astrophysics Data System (ADS)
da S. Maciel, Lucas; Albertazzi G., Armando, Jr.
2014-07-01
An algorithm for phase unwrapping based on swarm intelligence is proposed. The novel approach is based on the emergent behavior of swarms. This behavior is the result of the interactions between independent agents following a simple set of rules and is regarded as fast, flexible and robust. The rules here were designed with two purposes. Firstly, the collective behavior must result in a reliable map of the unwrapped phase. The unwrapping reliability was evaluated by each agent during run-time, based on the quality of the neighboring pixels. In addition, the rule set must result in a behavior that focuses on wrapped regions. Stigmergy and communication rules were implemented in order to enable each agent to seek less worked areas of the image. The agents were modeled as Finite-State Machines. Based on the availability of unwrappable pixels, each agent assumed a different state in order to better adapt itself to the surroundings. The implemented rule set was able to fulfill the requirements on reliability and focused unwrapping. The unwrapped phase map was comparable to those from established methods as the agents were able to reliably evaluate each pixel quality. Also, the unwrapping behavior, being observed in real time, was able to focus on workable areas as the agents communicated in order to find less traveled regions. The results were very positive for such a new approach to the phase unwrapping problem. Finally, the authors see great potential for future developments concerning the flexibility, robustness and processing times of the swarm-based algorithm.
Robust Strategy for Rocket Engine Health Monitoring
NASA Technical Reports Server (NTRS)
Santi, L. Michael
2001-01-01
Monitoring the health of rocket engine systems is essentially a two-phase process. The acquisition phase involves sensing physical conditions at selected locations, converting physical inputs to electrical signals, conditioning the signals as appropriate to establish scale or filter interference, and recording results in a form that is easy to interpret. The inference phase involves analysis of results from the acquisition phase, comparison of analysis results to established health measures, and assessment of health indications. A variety of analytical tools may be employed in the inference phase of health monitoring. These tools can be separated into three broad categories: statistical, rule based, and model based. Statistical methods can provide excellent comparative measures of engine operating health. They require well-characterized data from an ensemble of "typical" engines, or "golden" data from a specific test assumed to define the operating norm in order to establish reliable comparative measures. Statistical methods are generally suitable for real-time health monitoring because they do not deal with the physical complexities of engine operation. The utility of statistical methods in rocket engine health monitoring is hindered by practical limits on the quantity and quality of available data. This is due to the difficulty and high cost of data acquisition, the limited number of available test engines, and the problem of simulating flight conditions in ground test facilities. In addition, statistical methods incur a penalty for disregarding flow complexity and are therefore limited in their ability to define performance shift causality. Rule based methods infer the health state of the engine system based on comparison of individual measurements or combinations of measurements with defined health norms or rules. This does not mean that rule based methods are necessarily simple. Although binary yes-no health assessment can sometimes be established by relatively simple rules, the causality assignment needed for refined health monitoring often requires an exceptionally complex rule base involving complicated logical maps. Structuring the rule system to be clear and unambiguous can be difficult, and the expert input required to maintain a large logic network and associated rule base can be prohibitive.
Programming biological models in Python using PySB.
Lopez, Carlos F; Muhlich, Jeremy L; Bachman, John A; Sorger, Peter K
2013-01-01
Mathematical equations are fundamental to modeling biological networks, but as networks get large and revisions frequent, it becomes difficult to manage equations directly or to combine previously developed models. Multiple simultaneous efforts to create graphical standards, rule-based languages, and integrated software workbenches aim to simplify biological modeling but none fully meets the need for transparent, extensible, and reusable models. In this paper we describe PySB, an approach in which models are not only created using programs, they are programs. PySB draws on programmatic modeling concepts from little b and ProMot, the rule-based languages BioNetGen and Kappa and the growing library of Python numerical tools. Central to PySB is a library of macros encoding familiar biochemical actions such as binding, catalysis, and polymerization, making it possible to use a high-level, action-oriented vocabulary to construct detailed models. As Python programs, PySB models leverage tools and practices from the open-source software community, substantially advancing our ability to distribute and manage the work of testing biochemical hypotheses. We illustrate these ideas using new and previously published models of apoptosis.
Programming biological models in Python using PySB
Lopez, Carlos F; Muhlich, Jeremy L; Bachman, John A; Sorger, Peter K
2013-01-01
Mathematical equations are fundamental to modeling biological networks, but as networks get large and revisions frequent, it becomes difficult to manage equations directly or to combine previously developed models. Multiple simultaneous efforts to create graphical standards, rule-based languages, and integrated software workbenches aim to simplify biological modeling but none fully meets the need for transparent, extensible, and reusable models. In this paper we describe PySB, an approach in which models are not only created using programs, they are programs. PySB draws on programmatic modeling concepts from little b and ProMot, the rule-based languages BioNetGen and Kappa and the growing library of Python numerical tools. Central to PySB is a library of macros encoding familiar biochemical actions such as binding, catalysis, and polymerization, making it possible to use a high-level, action-oriented vocabulary to construct detailed models. As Python programs, PySB models leverage tools and practices from the open-source software community, substantially advancing our ability to distribute and manage the work of testing biochemical hypotheses. We illustrate these ideas using new and previously published models of apoptosis. PMID:23423320
VHBuild.com: A Web-Based System for Managing Knowledge in Projects.
ERIC Educational Resources Information Center
Li, Heng; Tang, Sandy; Man, K. F.; Love, Peter E. D.
2002-01-01
Describes an intelligent Web-based construction project management system called VHBuild.com which integrates project management, knowledge management, and artificial intelligence technologies. Highlights include an information flow model; time-cost optimization based on genetic algorithms; rule-based drawing interpretation; and a case-based…
Local rules simulation of the kinetics of virus capsid self-assembly.
Schwartz, R; Shor, P W; Prevelige, P E; Berger, B
1998-12-01
A computer model is described for studying the kinetics of the self-assembly of icosahedral viral capsids. Solution of this problem is crucial to an understanding of the viral life cycle, which currently cannot be adequately addressed through laboratory techniques. The abstract simulation model employed to address this is based on the local rules theory of. Proc. Natl. Acad. Sci. USA. 91:7732-7736). It is shown that the principle of local rules, generalized with a model of kinetics and other extensions, can be used to simulate complicated problems in self-assembly. This approach allows for a computationally tractable molecular dynamics-like simulation of coat protein interactions while retaining many relevant features of capsid self-assembly. Three simple simulation experiments are presented to illustrate the use of this model. These show the dependence of growth and malformation rates on the energetics of binding interactions, the tolerance of errors in binding positions, and the concentration of subunits in the examples. These experiments demonstrate a tradeoff within the model between growth rate and fidelity of assembly for the three parameters. A detailed discussion of the computational model is also provided.
A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning
Balcarras, Matthew; Womelsdorf, Thilo
2016-01-01
Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context-specific selections to drive responses. PMID:27064794
Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.; Brown, Jesslyn F.
2015-01-01
Cheatgrass exhibits spatial and temporal phenological variability across the Great Basin as described by ecological models formed using remote sensing and other spatial data-sets. We developed a rule-based, piecewise regression-tree model trained on 99 points that used three data-sets – latitude, elevation, and start of season time based on remote sensing input data – to estimate cheatgrass beginning of spring growth (BOSG) in the northern Great Basin. The model was then applied to map the location and timing of cheatgrass spring growth for the entire area. The model was strong (R2 = 0.85) and predicted an average cheatgrass BOSG across the study area of 29 March–4 April. Of early cheatgrass BOSG areas, 65% occurred at elevations below 1452 m. The highest proportion of cheatgrass BOSG occurred between mid-April and late May. Predicted cheatgrass BOSG in this study matched well with previous Great Basin cheatgrass green-up studies.
Adaptive Critic-based Neurofuzzy Controller for the Steam Generator Water Level
NASA Astrophysics Data System (ADS)
Fakhrazari, Amin; Boroushaki, Mehrdad
2008-06-01
In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts of the fuzzy inference rules. The critic agent here has a proportional-derivative structure and the fuzzy rule base has nine rules. The proposed controller shows satisfactory transient responses, disturbance rejection and robustness to model uncertainty. Its simple design procedure and structure, nominates it as one of the suitable controller designs for the steam generator water level control in nuclear power plant industry.
Discontinuous categories affect information-integration but not rule-based category learning.
Maddox, W Todd; Filoteo, J Vincent; Lauritzen, J Scott; Connally, Emily; Hejl, Kelli D
2005-07-01
Three experiments were conducted that provide a direct examination of within-category discontinuity manipulations on the implicit, procedural-based learning and the explicit, hypothesis-testing systems proposed in F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron's (1998) competition between verbal and implicit systems model. Discontinuous categories adversely affected information-integration but not rule-based category learning. Increasing the magnitude of the discontinuity did not lead to a significant decline in performance. The distance to the bound provides a reasonable description of the generalization profile associated with the hypothesis-testing system, whereas the distance to the bound plus the distance to the trained response region provides a reasonable description of the generalization profile associated with the procedural-based learning system. These results suggest that within-category discontinuity differentially impacts information-integration but not rule-based category learning and provides information regarding the detailed processing characteristics of each category learning system. ((c) 2005 APA, all rights reserved).
Integration of Optimal Scheduling with Case-Based Planning.
1995-08-01
integrates Case-Based Reasoning (CBR) and Rule-Based Reasoning (RBR) systems. ’ Tachyon : A Constraint-Based Temporal Reasoning Model and Its...Implementation’ provides an overview of the Tachyon temporal’s reasoning system and discusses its possible applications. ’Dual-Use Applications of Tachyon : From...Force Structure Modeling to Manufacturing Scheduling’ discusses the application of Tachyon to real world problems, specifically military force deployment and manufacturing scheduling.
Rules out of Roles: Differences in Play Language and Their Developmental Significance
ERIC Educational Resources Information Center
Kim, Yongho; Kellogg, David
2007-01-01
Using a discourse analytic approach from the work of Hoey (1991) and a dual processing model from Wray (2000), this paper compares the language produced by the same classes of children when they are engaged in role-play and when they are playing rule-based games. We find that role-play tends to be richer in "frozen" pair parts, where the responses…
ERIC Educational Resources Information Center
Robertson, Amy D.; Shaffer, Peter S.
2014-01-01
On the basis of responses to written questions administered to more than one thousand introductory chemistry students, we claim that students often rotely apply memorized combustion rules instead of reasoning based on explanatory models for what happens at the molecular level during chemical reactions. In particular, many students argue that…
Sensor-based activity recognition using extended belief rule-based inference methodology.
Calzada, A; Liu, J; Nugent, C D; Wang, H; Martinez, L
2014-01-01
The recently developed extended belief rule-based inference methodology (RIMER+) recognizes the need of modeling different types of information and uncertainty that usually coexist in real environments. A home setting with sensors located in different rooms and on different appliances can be considered as a particularly relevant example of such an environment, which brings a range of challenges for sensor-based activity recognition. Although RIMER+ has been designed as a generic decision model that could be applied in a wide range of situations, this paper discusses how this methodology can be adapted to recognize human activities using binary sensors within smart environments. The evaluation of RIMER+ against other state-of-the-art classifiers in terms of accuracy, efficiency and applicability was found to be significantly relevant, specially in situations of input data incompleteness, and it demonstrates the potential of this methodology and underpins the basis to develop further research on the topic.
Analytical formulation of cellular automata rules using data models
NASA Astrophysics Data System (ADS)
Jaenisch, Holger M.; Handley, James W.
2009-05-01
We present a unique method for converting traditional cellular automata (CA) rules into analytical function form. CA rules have been successfully used for morphological image processing and volumetric shape recognition and classification. Further, the use of CA rules as analog models to the physical and biological sciences can be significantly extended if analytical (as opposed to discrete) models could be formulated. We show that such transformations are possible. We use as our example John Horton Conway's famous "Game of Life" rule set. We show that using Data Modeling, we are able to derive both polynomial and bi-spectrum models of the IF-THEN rules that yield equivalent results. Further, we demonstrate that the "Game of Life" rule set can be modeled using the multi-fluxion, yielding a closed form nth order derivative and integral. All of the demonstrated analytical forms of the CA rule are general and applicable to real-time use.
Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.
Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko
2016-01-01
Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.
A new simple /spl infin/OH neuron model as a biologically plausible principal component analyzer.
Jankovic, M V
2003-01-01
A new approach to unsupervised learning in a single-layer neural network is discussed. An algorithm for unsupervised learning based upon the Hebbian learning rule is presented. A simple neuron model is analyzed. A dynamic neural model, which contains both feed-forward and feedback connections between the input and the output, has been adopted. The, proposed learning algorithm could be more correctly named self-supervised rather than unsupervised. The solution proposed here is a modified Hebbian rule, in which the modification of the synaptic strength is proportional not to pre- and postsynaptic activity, but instead to the presynaptic and averaged value of postsynaptic activity. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence. Usually accepted additional decaying terms for the stabilization of the original Hebbian rule are avoided. Implementation of the basic Hebbian scheme would not lead to unrealistic growth of the synaptic strengths, thanks to the adopted network structure.
Realization of planning design of mechanical manufacturing system by Petri net simulation model
NASA Astrophysics Data System (ADS)
Wu, Yanfang; Wan, Xin; Shi, Weixiang
1991-09-01
Planning design is to work out a more overall long-term plan. In order to guarantee a mechanical manufacturing system (MMS) designed to obtain maximum economical benefit, it is necessary to carry out a reasonable planning design for the system. First, some principles on planning design for MMS are introduced. Problems of production scheduling and their decision rules for computer simulation are presented. Realizable method of each production scheduling decision rule in Petri net model is discussed. Second, the solution of conflict rules for conflict problems during running Petri net is given. Third, based on the Petri net model of MMS which includes part flow and tool flow, according to the principle of minimum event time advance, a computer dynamic simulation of the Petri net model, that is, a computer dynamic simulation of MMS, is realized. Finally, the simulation program is applied to a simulation exmple, so the scheme of a planning design for MMS can be evaluated effectively.
Alisa A. Wade; Kevin S. McKelvey; Michael K. Schwartz
2015-01-01
Resistance-surface-based connectivity modeling has become a widespread tool for conservation planning. The current ease with which connectivity models can be created, however, masks the numerous untested assumptions underlying both the rules that produce the resistance surface and the algorithms used to locate low-cost paths across the target landscape. Here we present...
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Rajan, Subramaniam; Blankenhorn, Gunther
2015-01-01
Several key capabilities have been identified by the aerospace community as lacking in the material/models for composite materials currently available within commercial transient dynamic finite element codes such as LS-DYNA. Some of the specific desired features that have been identified include the incorporation of both plasticity and damage within the material model, the capability of using the material model to analyze the response of both three-dimensional solid elements and two dimensional shell elements, and the ability to simulate the response of composites composed with a variety of composite architectures, including laminates, weaves and braids. In addition, a need has been expressed to have a material model that utilizes tabulated experimentally based input to define the evolution of plasticity and damage as opposed to utilizing discrete input parameters (such as modulus and strength) and analytical functions based on curve fitting. To begin to address these needs, an orthotropic macroscopic plasticity based model suitable for implementation within LS-DYNA has been developed. Specifically, the Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic plasticity model with a non-associative flow rule. The coefficients in the yield function are determined based on tabulated stress-strain curves in the various normal and shear directions, along with selected off-axis curves. Incorporating rate dependence into the yield function is achieved by using a series of tabluated input curves, each at a different constant strain rate. The non-associative flow-rule is used to compute the evolution of the effective plastic strain. Systematic procedures have been developed to determine the values of the various coefficients in the yield function and the flow rule based on the tabulated input data. An algorithm based on the radial return method has been developed to facilitate the numerical implementation of the material model. The presented paper will present in detail the development of the orthotropic plasticity model and the procedures used to obtain the required material parameters. Methods in which a combination of actual testing and selective numerical testing can be combined to yield the appropriate input data for the model will be described. A specific laminated polymer matrix composite will be examined to demonstrate the application of the model.
Research on the Dynamic Hysteresis Loop Model of the Residence Times Difference (RTD)-Fluxgate
Wang, Yanzhang; Wu, Shujun; Zhou, Zhijian; Cheng, Defu; Pang, Na; Wan, Yunxia
2013-01-01
Based on the core hysteresis features, the RTD-fluxgate core, while working, is repeatedly saturated with excitation field. When the fluxgate simulates, the accurate characteristic model of the core may provide a precise simulation result. As the shape of the ideal hysteresis loop model is fixed, it cannot accurately reflect the actual dynamic changing rules of the hysteresis loop. In order to improve the fluxgate simulation accuracy, a dynamic hysteresis loop model containing the parameters which have actual physical meanings is proposed based on the changing rule of the permeability parameter when the fluxgate is working. Compared with the ideal hysteresis loop model, this model has considered the dynamic features of the hysteresis loop, which makes the simulation results closer to the actual output. In addition, other hysteresis loops of different magnetic materials can be explained utilizing the described model for an example of amorphous magnetic material in this manuscript. The model has been validated by the output response comparison between experiment results and fitting results using the model. PMID:24002230
Preparation of name and address data for record linkage using hidden Markov models
Churches, Tim; Christen, Peter; Lim, Kim; Zhu, Justin Xi
2002-01-01
Background Record linkage refers to the process of joining records that relate to the same entity or event in one or more data collections. In the absence of a shared, unique key, record linkage involves the comparison of ensembles of partially-identifying, non-unique data items between pairs of records. Data items with variable formats, such as names and addresses, need to be transformed and normalised in order to validly carry out these comparisons. Traditionally, deterministic rule-based data processing systems have been used to carry out this pre-processing, which is commonly referred to as "standardisation". This paper describes an alternative approach to standardisation, using a combination of lexicon-based tokenisation and probabilistic hidden Markov models (HMMs). Methods HMMs were trained to standardise typical Australian name and address data drawn from a range of health data collections. The accuracy of the results was compared to that produced by rule-based systems. Results Training of HMMs was found to be quick and did not require any specialised skills. For addresses, HMMs produced equal or better standardisation accuracy than a widely-used rule-based system. However, acccuracy was worse when used with simpler name data. Possible reasons for this poorer performance are discussed. Conclusion Lexicon-based tokenisation and HMMs provide a viable and effort-effective alternative to rule-based systems for pre-processing more complex variably formatted data such as addresses. Further work is required to improve the performance of this approach with simpler data such as names. Software which implements the methods described in this paper is freely available under an open source license for other researchers to use and improve. PMID:12482326
Students' models in some topics of electricity and magnetism
NASA Astrophysics Data System (ADS)
Warnakulasooriya, Rasil
Model-based learning have been emphasized by many researchers. Furthermore, many theories have been put forward by researchers on how students reason. However, how the theories of reasoning are manifested within the context of electricity and magnetism and how to implement a model-based learning environment within such a context has not been the object of research. In this dissertation, we address the above two concerns. We probe students' reasoning, through a model-based diagnostic instrument. The instrument consists of a set of related multiple-choice questions that can be categorized as belonging to the same conceptual domain. The contextual features of a set are also kept to a minimum. We find that students' responses are tied to the models they have constructed or construct on the spot when faced with novel situations. We find that the concepts such as electric fields and electric potentials exist as mere "definitions" and do not contribute to forming a set of working models, and as such the need for the use of such concepts cannot be easily recognized. We also find that students function within a set of procedural rules. Whether these rules are extended directly from familiar situations through analogies or lead to constructing a set of new rules is constrained by the underlying models and the context of the questions. Models also either exist or are constructed in ways that lead students to overlook the common sense reality of physical phenomena. We also find that the way questions are perceived and interpreted are dependent on the underlying models and that different models exist without conflicting with each other. Based on the above findings, we argue that students' reasoning is context specific and is sensitive to the way the learning has taken place. Thus, we suggest a recontexualization process as a specific model-based learning environment to help students learn electricity and magnetism. The step-by-step guidance through a series of such related questions would then elucidate the context within which concepts are introduced, the limitations of particular representations and the ontological demands required by the subject.
Simulation Of Combat With An Expert System
NASA Technical Reports Server (NTRS)
Provenzano, J. P.
1989-01-01
Proposed expert system predicts outcomes of combat situations. Called "COBRA", combat outcome based on rules for attrition, system selects rules for mathematical modeling of losses and discrete events in combat according to previous experiences. Used with another software module known as the "Game". Game/COBRA software system, consisting of Game and COBRA modules, provides for both quantitative aspects and qualitative aspects in simulations of battles. COBRA intended for simulation of large-scale military exercises, concepts embodied in it have much broader applicability. In industrial research, knowledge-based system enables qualitative as well as quantitative simulations.
Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O
2013-03-01
Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.
Optimum use of air tankers in initial attack: selection, basing, and transfer rules
Francis E. Greulich; William G. O' Regan
1982-01-01
Fire managers face two interrelated problems in deciding the most efficient use of air tankers: where best to base them, and how best to reallocate them each day in anticipation of fire occurrence. A computerized model based on a mixed integer linear program can help in assigning air tankers throughout the fire season. The model was tested using information from...
Klement, William; Wilk, Szymon; Michalowski, Wojtek; Farion, Ken J; Osmond, Martin H; Verter, Vedat
2012-03-01
Using an automatic data-driven approach, this paper develops a prediction model that achieves more balanced performance (in terms of sensitivity and specificity) than the Canadian Assessment of Tomography for Childhood Head Injury (CATCH) rule, when predicting the need for computed tomography (CT) imaging of children after a minor head injury. CT is widely considered an effective tool for evaluating patients with minor head trauma who have potentially suffered serious intracranial injury. However, its use poses possible harmful effects, particularly for children, due to exposure to radiation. Safety concerns, along with issues of cost and practice variability, have led to calls for the development of effective methods to decide when CT imaging is needed. Clinical decision rules represent such methods and are normally derived from the analysis of large prospectively collected patient data sets. The CATCH rule was created by a group of Canadian pediatric emergency physicians to support the decision of referring children with minor head injury to CT imaging. The goal of the CATCH rule was to maximize the sensitivity of predictions of potential intracranial lesion while keeping specificity at a reasonable level. After extensive analysis of the CATCH data set, characterized by severe class imbalance, and after a thorough evaluation of several data mining methods, we derived an ensemble of multiple Naive Bayes classifiers as the prediction model for CT imaging decisions. In the first phase of the experiment we compared the proposed ensemble model to other ensemble models employing rule-, tree- and instance-based member classifiers. Our prediction model demonstrated the best performance in terms of AUC, G-mean and sensitivity measures. In the second phase, using a bootstrapping experiment similar to that reported by the CATCH investigators, we showed that the proposed ensemble model achieved a more balanced predictive performance than the CATCH rule with an average sensitivity of 82.8% and an average specificity of 74.4% (vs. 98.1% and 50.0% for the CATCH rule respectively). Automatically derived prediction models cannot replace a physician's acumen. However, they help establish reference performance indicators for the purpose of developing clinical decision rules so the trade-off between prediction sensitivity and specificity is better understood. Copyright © 2011 Elsevier B.V. All rights reserved.
te Velde, Saskia J; ChinAPaw, Mai J M; De Bourdeaudhuij, Ilse; Bere, Elling; Maes, Lea; Moreno, Luis; Jan, Nataša; Kovacs, Eva; Manios, Yannis; Brug, Johannes
2014-07-08
The family, and parents in particular, are considered the most important influencers regarding children's energy-balance related behaviours (EBRBs). When children become older and gain more behavioural autonomy regarding different behaviours, the parental influences may become less important and peer influences may gain importance. Therefore the current study aims to investigate simultaneous and interactive associations of family rules, parent and friend norms and modelling with soft drink intake, TV viewing, daily breakfast consumption and sport participation among schoolchildren across Europe. A school-based cross-sectional survey in eight countries across Europe among 10-12 year old schoolchildren. Child questionnaires were used to assess EBRBs (soft drink intake, TV viewing, breakfast consumption, sport participation), and potential determinants of these behaviours as perceived by the child, including family rules, parental and friend norms and modelling. Linear and logistic regression analyses (n = 7811) were applied to study the association of parental (norms, modelling and rules) and friend influences (norm and modelling) with the EBRBs. In addition, potential moderating effects of parental influences on the associations of friend influences with the EBRBs were studied by including interaction terms. Children reported more unfavourable friend norms and modelling regarding soft drink intake and TV viewing, while they reported more favourable friend and parental norms and modelling for breakfast consumption and physical activity. Perceived friend and parental norms and modelling were significantly positively associated with soft drink intake, breakfast consumption, physical activity (only modelling) and TV time. Across the different behaviours, ten significant interactions between parental and friend influencing variables were found and suggested a weaker association of friend norms and modelling when rules were in place. Parental and friends norm and modelling are associated with schoolchildren's energy balance-related behaviours. Having family rules or showing favourable parental modelling and norms seems to reduce the potential unfavourable associations of friends' norms and modelling with the EBRBs.
Models for Rational Number Bases
ERIC Educational Resources Information Center
Pedersen, Jean J.; Armbruster, Frank O.
1975-01-01
This article extends number bases to negative integers, then to positive rationals and finally to negative rationals. Methods and rules for operations in positive and negative rational bases greater than one or less than negative one are summarized in tables. Sample problems are explained and illustrated. (KM)
Expert system for web based collaborative CAE
NASA Astrophysics Data System (ADS)
Hou, Liang; Lin, Zusheng
2006-11-01
An expert system for web based collaborative CAE was developed based on knowledge engineering, relational database and commercial FEA (Finite element analysis) software. The architecture of the system was illustrated. In this system, the experts' experiences, theories and typical examples and other related knowledge, which will be used in the stage of pre-process in FEA, were categorized into analysis process and object knowledge. Then, the integrated knowledge model based on object-oriented method and rule based method was described. The integrated reasoning process based on CBR (case based reasoning) and rule based reasoning was presented. Finally, the analysis process of this expert system in web based CAE application was illustrated, and an analysis example of a machine tool's column was illustrated to prove the validity of the system.
Jabez Christopher, J; Khanna Nehemiah, H; Kannan, A
2015-10-01
Allergic Rhinitis is a universal common disease, especially in populated cities and urban areas. Diagnosis and treatment of Allergic Rhinitis will improve the quality of life of allergic patients. Though skin tests remain the gold standard test for diagnosis of allergic disorders, clinical experts are required for accurate interpretation of test outcomes. This work presents a clinical decision support system (CDSS) to assist junior clinicians in the diagnosis of Allergic Rhinitis. Intradermal Skin tests were performed on patients who had plausible allergic symptoms. Based on patient׳s history, 40 clinically relevant allergens were tested. 872 patients who had allergic symptoms were considered for this study. The rule based classification approach and the clinical test results were used to develop and validate the CDSS. Clinical relevance of the CDSS was compared with the Score for Allergic Rhinitis (SFAR). Tests were conducted for junior clinicians to assess their diagnostic capability in the absence of an expert. The class based Association rule generation approach provides a concise set of rules that is further validated by clinical experts. The interpretations of the experts are considered as the gold standard. The CDSS diagnoses the presence or absence of rhinitis with an accuracy of 88.31%. The allergy specialist and the junior clinicians prefer the rule based approach for its comprehendible knowledge model. The Clinical Decision Support Systems with rule based classification approach assists junior doctors and clinicians in the diagnosis of Allergic Rhinitis to make reliable decisions based on the reports of intradermal skin tests. Copyright © 2015 Elsevier Ltd. All rights reserved.
Analyses of interactions among pair-rule genes and the gap gene Krüppel in Bombyx segmentation.
Nakao, Hajime
2015-09-01
In the short-germ insect Tribolium, a pair-rule gene circuit consisting of the Tribolium homologs of even-skipped, runt, and odd-skipped (Tc-eve, Tc-run and Tc-odd, respectively) has been implicated in segment formation. To examine the application of the model to other taxa, I studied the expression and function of pair-rule genes in Bombyx mori, together with a Bombyx homolog of Krüppel (Bm-Kr), a known gap gene. Knockdown embryos of Bombyx homologs of eve, run and odd (Bm-eve, Bm-run and Bm-odd) exhibited asegmental phenotypes similar to those of Tribolium knockdowns. However, pair-rule gene interactions were similar to those of both Tribolium and Drosophila, which, different from Tribolium, shows a hierarchical segmentation mode. Additionally, the Bm-odd expression pattern shares characteristics with those of Drosophila pair-rule genes that receive upstream regulatory input. On the other hand, Bm-Kr knockdowns exhibited a large posterior segment deletion as observed in short-germ insects. However, a detailed analysis of these embryos indicated that Bm-Kr modulates expression of pair-rule genes like in Drosophila, although the mechanisms appear to be different. This suggested hierarchical interactions between Bm-Kr and pair-rule genes. Based on these results, I concluded that the pair-rule gene circuit model that describes Tribolium development is not applicable to Bombyx. Copyright © 2015 Elsevier Inc. All rights reserved.
Chavali, Arvind K; Gianchandani, Erwin P; Tung, Kenneth S; Lawrence, Michael B; Peirce, Shayn M; Papin, Jason A
2008-12-01
The immune system is comprised of numerous components that interact with one another to give rise to phenotypic behaviors that are sometimes unexpected. Agent-based modeling (ABM) and cellular automata (CA) belong to a class of discrete mathematical approaches in which autonomous entities detect local information and act over time according to logical rules. The power of this approach lies in the emergence of behavior that arises from interactions between agents, which would otherwise be impossible to know a priori. Recent work exploring the immune system with ABM and CA has revealed novel insights into immunological processes. Here, we summarize these applications to immunology and, particularly, how ABM can help formulate hypotheses that might drive further experimental investigations of disease mechanisms.
A Comparison of Computational Cognitive Models: Agent-Based Systems Versus Rule-Based Architectures
2003-03-01
Java™ How To Program , Prentice Hall, 1999. Friedman-Hill, E., Jess, The Expert System Shell for the Java Platform, Sandia National Laboratories, 2001...transition from the descriptive NDM theory to a computational model raises several questions: Who is an experienced decision maker? How do you model the...progression from being a novice to an experienced decision maker? How does the model account for previous experiences? Are there situations where
R symmetries and a heterotic MSSM
NASA Astrophysics Data System (ADS)
Kappl, Rolf; Nilles, Hans Peter; Schmitz, Matthias
2015-02-01
We employ powerful techniques based on Hilbert and Gröbner bases to analyze particle physics models derived from string theory. Individual models are shown to have a huge landscape of vacua that differ in their phenomenological properties. We explore the (discrete) symmetries of these vacua, the new R symmetry selection rules and their consequences for moduli stabilization.
Reinforcement Learning in a Nonstationary Environment: The El Farol Problem
NASA Technical Reports Server (NTRS)
Bell, Ann Maria
1999-01-01
This paper examines the performance of simple learning rules in a complex adaptive system based on a coordination problem modeled on the El Farol problem. The key features of the El Farol problem are that it typically involves a medium number of agents and that agents' pay-off functions have a discontinuous response to increased congestion. First we consider a single adaptive agent facing a stationary environment. We demonstrate that the simple learning rules proposed by Roth and Er'ev can be extremely sensitive to small changes in the initial conditions and that events early in a simulation can affect the performance of the rule over a relatively long time horizon. In contrast, a reinforcement learning rule based on standard practice in the computer science literature converges rapidly and robustly. The situation is reversed when multiple adaptive agents interact: the RE algorithms often converge rapidly to a stable average aggregate attendance despite the slow and erratic behavior of individual learners, while the CS based learners frequently over-attend in the early and intermediate terms. The symmetric mixed strategy equilibria is unstable: all three learning rules ultimately tend towards pure strategies or stabilize in the medium term at non-equilibrium probabilities of attendance. The brittleness of the algorithms in different contexts emphasize the importance of thorough and thoughtful examination of simulation-based results.
Recognizing Spoken Words: The Neighborhood Activation Model
Luce, Paul A.; Pisoni, David B.
2012-01-01
Objective A fundamental problem in the study of human spoken word recognition concerns the structural relations among the sound patterns of words in memory and the effects these relations have on spoken word recognition. In the present investigation, computational and experimental methods were employed to address a number of fundamental issues related to the representation and structural organization of spoken words in the mental lexicon and to lay the groundwork for a model of spoken word recognition. Design Using a computerized lexicon consisting of transcriptions of 20,000 words, similarity neighborhoods for each of the transcriptions were computed. Among the variables of interest in the computation of the similarity neighborhoods were: 1) the number of words occurring in a neighborhood, 2) the degree of phonetic similarity among the words, and 3) the frequencies of occurrence of the words in the language. The effects of these variables on auditory word recognition were examined in a series of behavioral experiments employing three experimental paradigms: perceptual identification of words in noise, auditory lexical decision, and auditory word naming. Results The results of each of these experiments demonstrated that the number and nature of words in a similarity neighborhood affect the speed and accuracy of word recognition. A neighborhood probability rule was developed that adequately predicted identification performance. This rule, based on Luce's (1959) choice rule, combines stimulus word intelligibility, neighborhood confusability, and frequency into a single expression. Based on this rule, a model of auditory word recognition, the neighborhood activation model, was proposed. This model describes the effects of similarity neighborhood structure on the process of discriminating among the acoustic-phonetic representations of words in memory. The results of these experiments have important implications for current conceptions of auditory word recognition in normal and hearing impaired populations of children and adults. PMID:9504270
Fire and Heat Spreading Model Based on Cellular Automata Theory
NASA Astrophysics Data System (ADS)
Samartsev, A. A.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.; Fominykh, D. S.
2018-05-01
The distinctive feature of the proposed fire and heat spreading model in premises is the reduction of the computational complexity due to the use of the theory of cellular automata with probability rules of behavior. The possibilities and prospects of using this model in practice are noted. The proposed model has a simple mechanism of integration with agent-based evacuation models. The joint use of these models could improve floor plans and reduce the time of evacuation from premises during fires.
Proof Rules for Automated Compositional Verification through Learning
NASA Technical Reports Server (NTRS)
Barringer, Howard; Giannakopoulou, Dimitra; Pasareanu, Corina S.
2003-01-01
Compositional proof systems not only enable the stepwise development of concurrent processes but also provide a basis to alleviate the state explosion problem associated with model checking. An assume-guarantee style of specification and reasoning has long been advocated to achieve compositionality. However, this style of reasoning is often non-trivial, typically requiring human input to determine appropriate assumptions. In this paper, we present novel assume- guarantee rules in the setting of finite labelled transition systems with blocking communication. We show how these rules can be applied in an iterative and fully automated fashion within a framework based on learning.
NASA Astrophysics Data System (ADS)
Lengyel, F.; Yang, P.; Rosenzweig, B.; Vorosmarty, C. J.
2012-12-01
The Northeast Regional Earth System Model (NE-RESM, NSF Award #1049181) integrates weather research and forecasting models, terrestrial and aquatic ecosystem models, a water balance/transport model, and mesoscale and energy systems input-out economic models developed by interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. NE-RESM is intended to forecast the implications of planning decisions on the region's environment, ecosystem services, energy systems and economy through the 21st century. Integration of model components and the development of cyberinfrastructure for interacting with the system is facilitated with the integrated Rule Oriented Data System (iRODS), a distributed data grid that provides archival storage with metadata facilities and a rule-based workflow engine for automating and auditing scientific workflows.
Enhancing water supply through reservoir reoperation
NASA Astrophysics Data System (ADS)
Rajagopal, S.; Sterle, K. M.; Jose, L.; Coors, S.; Pohll, G.; Singletary, L.
2017-12-01
Snowmelt is a significant contributor to water supply in western U.S. which is stored in reservoirs for use during peak summer demand. The reservoirs were built to satisfy multiple objectives, but primarily to either enhance water supply and/or for flood mitigation. The operating rules for these water supply reservoirs are based on historical assumptions of stationarity of climate, assuming peak snowmelt occurs after April 1 and hence have to let water pass through if it arrived earlier. Using the Truckee River which originates in the eastern Sierra Nevada, has seven reservoirs and is shared between California and Nevada as an example, we show enhanced water storage by altering reservoir operating rules. These results are based on a coupled hydrology (Ground-Surface water Flow, GSFLOW) and water management model (RIverware) developed for the river system. All the reservoirs in the system benefit from altering the reservoir rules, but some benefit more than others. Prosser Creek reservoir for example, historically averaged 76% of capacity, which was lowered to 46% of capacity in the future as climate warms and shifts snowmelt to earlier days of the year. This reduction in storage can be mitigated by altering the reservoir operation rules and the reservoir storage increases to 64-76% of capacity. There are limitations to altering operating rules as reservoirs operated primarily for flood control are required to maintain lower storage to absorb a flood pulse, yet using modeling we show that there are water supply benefits to adopting a more flexible rules of operation. In the future, due to changing climate we anticipate the reservoirs in the western U.S. which were typically capturing spring- summer snowmelt will have to be managed more actively as the water stored in the snowpack becomes more variable. This study presents a framework for understanding, modeling and quantifying the consequences of such a shift in hydrology and water management.
47 CFR 76.1905 - Petitions to modify encoding rules for new services within defined business models.
Code of Federal Regulations, 2010 CFR
2010-10-01
... services within defined business models. 76.1905 Section 76.1905 Telecommunication FEDERAL COMMUNICATIONS... Rules § 76.1905 Petitions to modify encoding rules for new services within defined business models. (a) The encoding rules for defined business models in § 76.1904 reflect the conventional methods for...
On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems
NASA Technical Reports Server (NTRS)
Tunstel, Edward; Jamshidi, Mo
1997-01-01
Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.
Higher-order automatic differentiation of mathematical functions
NASA Astrophysics Data System (ADS)
Charpentier, Isabelle; Dal Cappello, Claude
2015-04-01
Functions of mathematical physics such as the Bessel functions, the Chebyshev polynomials, the Gauss hypergeometric function and so forth, have practical applications in many scientific domains. On the one hand, differentiation formulas provided in reference books apply to real or complex variables. These do not account for the chain rule. On the other hand, based on the chain rule, the automatic differentiation has become a natural tool in numerical modeling. Nevertheless automatic differentiation tools do not deal with the numerous mathematical functions. This paper describes formulas and provides codes for the higher-order automatic differentiation of mathematical functions. The first method is based on Faà di Bruno's formula that generalizes the chain rule. The second one makes use of the second order differential equation they satisfy. Both methods are exemplified with the aforementioned functions.
Dixon, Matthew L.; Christoff, Kalina
2012-01-01
Cognitive control is a fundamental skill reflecting the active use of task-rules to guide behavior and suppress inappropriate automatic responses. Prior work has traditionally used paradigms in which subjects are told when to engage cognitive control. Thus, surprisingly little is known about the factors that influence individuals' initial decision of whether or not to act in a reflective, rule-based manner. To examine this, we took three classic cognitive control tasks (Stroop, Wisconsin Card Sorting Task, Go/No-Go task) and created novel ‘free-choice’ versions in which human subjects were free to select an automatic, pre-potent action, or an action requiring rule-based cognitive control, and earned varying amounts of money based on their choices. Our findings demonstrated that subjects' decision to engage cognitive control was driven by an explicit representation of monetary rewards expected to be obtained from rule-use. Subjects rarely engaged cognitive control when the expected outcome was of equal or lesser value as compared to the value of the automatic response, but frequently engaged cognitive control when it was expected to yield a larger monetary outcome. Additionally, we exploited fMRI-adaptation to show that the lateral prefrontal cortex (LPFC) represents associations between rules and expected reward outcomes. Together, these findings suggest that individuals are more likely to act in a reflective, rule-based manner when they expect that it will result in a desired outcome. Thus, choosing to exert cognitive control is not simply a matter of reason and willpower, but rather, conforms to standard mechanisms of value-based decision making. Finally, in contrast to current models of LPFC function, our results suggest that the LPFC plays a direct role in representing motivational incentives. PMID:23284730
Tadesse, Tsegaye; Brown, Jesslyn F.; Hayes, M.J.
2005-01-01
Droughts are normal climate episodes, yet they are among the most expensive natural disasters in the world. Knowledge about the timing, severity, and pattern of droughts on the landscape can be incorporated into effective planning and decision-making. In this study, we present a data mining approach to modeling vegetation stress due to drought and mapping its spatial extent during the growing season. Rule-based regression tree models were generated that identify relationships between satellite-derived vegetation conditions, climatic drought indices, and biophysical data, including land-cover type, available soil water capacity, percent of irrigated farm land, and ecological type. The data mining method builds numerical rule-based models that find relationships among the input variables. Because the models can be applied iteratively with input data from previous time periods, the method enables to provide predictions of vegetation conditions farther into the growing season based on earlier conditions. Visualizing the model outputs as mapped information (called VegPredict) provides a means to evaluate the model. We present prototype maps for the 2002 drought year for Nebraska and South Dakota and discuss potential uses for these maps.
Reverse engineering the gap gene network of Drosophila melanogaster.
Perkins, Theodore J; Jaeger, Johannes; Reinitz, John; Glass, Leon
2006-05-01
A fundamental problem in functional genomics is to determine the structure and dynamics of genetic networks based on expression data. We describe a new strategy for solving this problem and apply it to recently published data on early Drosophila melanogaster development. Our method is orders of magnitude faster than current fitting methods and allows us to fit different types of rules for expressing regulatory relationships. Specifically, we use our approach to fit models using a smooth nonlinear formalism for modeling gene regulation (gene circuits) as well as models using logical rules based on activation and repression thresholds for transcription factors. Our technique also allows us to infer regulatory relationships de novo or to test network structures suggested by the literature. We fit a series of models to test several outstanding questions about gap gene regulation, including regulation of and by hunchback and the role of autoactivation. Based on our modeling results and validation against the experimental literature, we propose a revised network structure for the gap gene system. Interestingly, some relationships in standard textbook models of gap gene regulation appear to be unnecessary for or even inconsistent with the details of gap gene expression during wild-type development.
Making sense of information in noisy networks: human communication, gossip, and distortion.
Laidre, Mark E; Lamb, Alex; Shultz, Susanne; Olsen, Megan
2013-01-21
Information from others can be unreliable. Humans nevertheless act on such information, including gossip, to make various social calculations, thus raising the question of whether individuals can sort through social information to identify what is, in fact, true. Inspired by empirical literature on people's decision-making when considering gossip, we built an agent-based simulation model to examine how well simple decision rules could make sense of information as it propagated through a network. Our simulations revealed that a minimalistic decision-rule 'Bit-wise mode' - which compared information from multiple sources and then sought a consensus majority for each component bit within the message - was consistently the most successful at converging upon the truth. This decision rule attained high relative fitness even in maximally noisy networks, composed entirely of nodes that distorted the message. The rule was also superior to other decision rules regardless of its frequency in the population. Simulations carried out with variable agent memory constraints, different numbers of observers who initiated information propagation, and a variety of network types suggested that the single most important factor in making sense of information was the number of independent sources that agents could consult. Broadly, our model suggests that despite the distortion information is subject to in the real world, it is nevertheless possible to make sense of it based on simple Darwinian computations that integrate multiple sources. Copyright © 2012 Elsevier Ltd. All rights reserved.
VIP: A knowledge-based design aid for the engineering of space systems
NASA Technical Reports Server (NTRS)
Lewis, Steven M.; Bellman, Kirstie L.
1990-01-01
The Vehicles Implementation Project (VIP), a knowledge-based design aid for the engineering of space systems is described. VIP combines qualitative knowledge in the form of rules, quantitative knowledge in the form of equations, and other mathematical modeling tools. The system allows users rapidly to develop and experiment with models of spacecraft system designs. As information becomes available to the system, appropriate equations are solved symbolically and the results are displayed. Users may browse through the system, observing dependencies and the effects of altering specific parameters. The system can also suggest approaches to the derivation of specific parameter values. In addition to providing a tool for the development of specific designs, VIP aims at increasing the user's understanding of the design process. Users may rapidly examine the sensitivity of a given parameter to others in the system and perform tradeoffs or optimizations of specific parameters. A second major goal of VIP is to integrate the existing corporate knowledge base of models and rules into a central, symbolic form.
The Space Environmental Impact System
NASA Astrophysics Data System (ADS)
Kihn, E. A.
2009-12-01
The Space Environmental Impact System (SEIS) is an operational tool for incorporating environmental data sets into DoD Modeling and Simulation (M&S) which allows for enhanced decision making regarding acquisitions, testing, operations and planning. The SEIS system creates, from the environmental archives and developed rule-base, a tool for describing the effects of the space environment on particular military systems, both historically and in real-time. The system uses data available over the web, and in particular data provided by NASA’s virtual observatory network, as well as modeled data generated specifically for this purpose. The rule base system developed to support SEIS is an open XML based model which can be extended to events from any environmental domain. This presentation will show how the SEIS tool allows users to easily and accurately evaluate the effect of space weather in terms that are meaningful to them as well as discuss the relevant standards used in its construction and go over lessons learned from fielding an operational environmental decision tool.
Fuzzy support vector machine: an efficient rule-based classification technique for microarrays.
Hajiloo, Mohsen; Rabiee, Hamid R; Anooshahpour, Mahdi
2013-01-01
The abundance of gene expression microarray data has led to the development of machine learning algorithms applicable for tackling disease diagnosis, disease prognosis, and treatment selection problems. However, these algorithms often produce classifiers with weaknesses in terms of accuracy, robustness, and interpretability. This paper introduces fuzzy support vector machine which is a learning algorithm based on combination of fuzzy classifiers and kernel machines for microarray classification. Experimental results on public leukemia, prostate, and colon cancer datasets show that fuzzy support vector machine applied in combination with filter or wrapper feature selection methods develops a robust model with higher accuracy than the conventional microarray classification models such as support vector machine, artificial neural network, decision trees, k nearest neighbors, and diagonal linear discriminant analysis. Furthermore, the interpretable rule-base inferred from fuzzy support vector machine helps extracting biological knowledge from microarray data. Fuzzy support vector machine as a new classification model with high generalization power, robustness, and good interpretability seems to be a promising tool for gene expression microarray classification.
MacGillivray, Brian H
2017-08-01
In many environmental and public health domains, heuristic methods of risk and decision analysis must be relied upon, either because problem structures are ambiguous, reliable data is lacking, or decisions are urgent. This introduces an additional source of uncertainty beyond model and measurement error - uncertainty stemming from relying on inexact inference rules. Here we identify and analyse heuristics used to prioritise risk objects, to discriminate between signal and noise, to weight evidence, to construct models, to extrapolate beyond datasets, and to make policy. Some of these heuristics are based on causal generalisations, yet can misfire when these relationships are presumed rather than tested (e.g. surrogates in clinical trials). Others are conventions designed to confer stability to decision analysis, yet which may introduce serious error when applied ritualistically (e.g. significance testing). Some heuristics can be traced back to formal justifications, but only subject to strong assumptions that are often violated in practical applications. Heuristic decision rules (e.g. feasibility rules) in principle act as surrogates for utility maximisation or distributional concerns, yet in practice may neglect costs and benefits, be based on arbitrary thresholds, and be prone to gaming. We highlight the problem of rule-entrenchment, where analytical choices that are in principle contestable are arbitrarily fixed in practice, masking uncertainty and potentially introducing bias. Strategies for making risk and decision analysis more rigorous include: formalising the assumptions and scope conditions under which heuristics should be applied; testing rather than presuming their underlying empirical or theoretical justifications; using sensitivity analysis, simulations, multiple bias analysis, and deductive systems of inference (e.g. directed acyclic graphs) to characterise rule uncertainty and refine heuristics; adopting "recovery schemes" to correct for known biases; and basing decision rules on clearly articulated values and evidence, rather than convention. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal
2017-11-01
Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.
NASA Astrophysics Data System (ADS)
Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik
2017-11-01
To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.
An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.
Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin
2015-07-01
We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule... management plan. (c) Operator training and qualification. (d) Emission limitations and operating limits. (e...
Complex Sequencing Rules of Birdsong Can be Explained by Simple Hidden Markov Processes
Katahira, Kentaro; Suzuki, Kenta; Okanoya, Kazuo; Okada, Masato
2011-01-01
Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies. PMID:21915345
Evolving optimised decision rules for intrusion detection using particle swarm paradigm
NASA Astrophysics Data System (ADS)
Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.
2012-12-01
The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.
Agent-based modeling of the interaction between CD8+ T cells and Beta cells in type 1 diabetes.
Ozturk, Mustafa Cagdas; Xu, Qian; Cinar, Ali
2018-01-01
We propose an agent-based model for the simulation of the autoimmune response in T1D. The model incorporates cell behavior from various rules derived from the current literature and is implemented on a high-performance computing system, which enables the simulation of a significant portion of the islets in the mouse pancreas. Simulation results indicate that the model is able to capture the trends that emerge during the progression of the autoimmunity. The multi-scale nature of the model enables definition of rules or equations that govern cellular or sub-cellular level phenomena and observation of the outcomes at the tissue scale. It is expected that such a model would facilitate in vivo clinical studies through rapid testing of hypotheses and planning of future experiments by providing insight into disease progression at different scales, some of which may not be obtained easily in clinical studies. Furthermore, the modular structure of the model simplifies tasks such as the addition of new cell types, and the definition or modification of different behaviors of the environment and the cells with ease.
Stochastic Dynamics Underlying Cognitive Stability and Flexibility
Ueltzhöffer, Kai; Armbruster-Genç, Diana J. N.; Fiebach, Christian J.
2015-01-01
Cognitive stability and flexibility are core functions in the successful pursuit of behavioral goals. While there is evidence for a common frontoparietal network underlying both functions and for a key role of dopamine in the modulation of flexible versus stable behavior, the exact neurocomputational mechanisms underlying those executive functions and their adaptation to environmental demands are still unclear. In this work we study the neurocomputational mechanisms underlying cue based task switching (flexibility) and distractor inhibition (stability) in a paradigm specifically designed to probe both functions. We develop a physiologically plausible, explicit model of neural networks that maintain the currently active task rule in working memory and implement the decision process. We simplify the four-choice decision network to a nonlinear drift-diffusion process that we canonically derive from a generic winner-take-all network model. By fitting our model to the behavioral data of individual subjects, we can reproduce their full behavior in terms of decisions and reaction time distributions in baseline as well as distractor inhibition and switch conditions. Furthermore, we predict the individual hemodynamic response timecourse of the rule-representing network and localize it to a frontoparietal network including the inferior frontal junction area and the intraparietal sulcus, using functional magnetic resonance imaging. This refines the understanding of task-switch-related frontoparietal brain activity as reflecting attractor-like working memory representations of task rules. Finally, we estimate the subject-specific stability of the rule-representing attractor states in terms of the minimal action associated with a transition between different rule states in the phase-space of the fitted models. This stability measure correlates with switching-specific thalamocorticostriatal activation, i.e., with a system associated with flexible working memory updating and dopaminergic modulation of cognitive flexibility. These results show that stochastic dynamical systems can implement the basic computations underlying cognitive stability and flexibility and explain neurobiological bases of individual differences. PMID:26068119
Ngo, T-D; Tran, T-D; Le, M-T; Thai, K-M
2016-09-01
The efflux pumps P-glycoprotein (P-gp) in humans and NorA in Staphylococcus aureus are of great interest for medicinal chemists because of their important roles in multidrug resistance (MDR). The high polyspecificity as well as the unavailability of high-resolution X-ray crystal structures of these transmembrane proteins lead us to combining ligand-based approaches, which in the case of this study were machine learning, perceptual mapping and pharmacophore modelling. For P-gp inhibitory activity, individual models were developed using different machine learning algorithms and subsequently combined into an ensemble model which showed a good discrimination between inhibitors and noninhibitors (acctrain-diverse = 84%; accinternal-test = 92% and accexternal-test = 100%). For ligand promiscuity between P-gp and NorA, perceptual maps and pharmacophore models were generated for the detection of rules and features. Based on these in silico tools, hit compounds for reversing MDR were discovered from the in-house and DrugBank databases through virtual screening in an attempt to restore drug sensitivity in cancer cells and bacteria.
Twisted supersymmetry: Twisted symmetry versus renormalizability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, Marija; Nikolic, Biljana; Radovanovic, Voja
We discuss a deformation of superspace based on a Hermitian twist. The twist implies a *-product that is noncommutative, Hermitian and finite when expanded in a power series of the deformation parameter. The Leibniz rule for the twisted supersymmetry transformations is deformed. A minimal deformation of the Wess-Zumino action is proposed and its renormalizability properties are discussed. There is no tadpole contribution, but the two-point function diverges. We speculate that the deformed Leibniz rule, or more generally the twisted symmetry, interferes with renormalizability properties of the model. We discuss different possibilities to render a renormalizable model.
Water-Balance Model to Simulate Historical Lake Levels for Lake Merced, California
NASA Astrophysics Data System (ADS)
Maley, M. P.; Onsoy, S.; Debroux, J.; Eagon, B.
2009-12-01
Lake Merced is a freshwater lake located in southwestern San Francisco, California. In the late 1980s and early 1990s, an extended, severe drought impacted the area that resulted in significant declines in Lake Merced lake levels that raised concerns about the long-term health of the lake. In response to these concerns, the Lake Merced Water Level Restoration Project was developed to evaluate an engineered solution to increase and maintain Lake Merced lake levels. The Lake Merced Lake-Level Model was developed to support the conceptual engineering design to restore lake levels. It is a spreadsheet-based water-balance model that performs monthly water-balance calculations based on the hydrological conceptual model. The model independently calculates each water-balance component based on available climate and hydrological data. The model objective was to develop a practical, rule-based approach for the water balance and to calibrate the model results to measured lake levels. The advantage of a rule-based approach is that once the rules are defined, they enhance the ability to then adapt the model for use in future-case simulations. The model was calibrated to historical lake levels over a 70-year period from 1939 to 2009. Calibrating the model over this long historical range tested the model over a variety of hydrological conditions including wet, normal and dry precipitation years, flood events, and periods of high and low lake levels. The historical lake level range was over 16 feet. The model calibration of historical to simulated lake levels had a residual mean of 0.02 feet and an absolute residual mean of 0.42 feet. More importantly, the model demonstrated the ability to simulate both long-term and short-term trends with a strong correlation of the magnitude for both annual and seasonal fluctuations in lake levels. The calibration results demonstrate an improved conceptual understanding of the key hydrological factors that control lake levels, reduce uncertainty in the hydrological conceptual model, and increase confidence in the model’s ability to forecast future lake conditions. The Lake Merced Lake-Level Model will help decision-makers with a straightforward, practical analysis of the major contributions to lake-level declines that can be used to support engineering, environmental and other decisions.
Kaga, Chiaki; Okochi, Mina; Tomita, Yasuyuki; Kato, Ryuji; Honda, Hiroyuki
2008-03-01
We developed a method of effective peptide screening that combines experiments and computational analysis. The method is based on the concept that screening efficiency can be enhanced from even limited data by use of a model derived from computational analysis that serves as a guide to screening and combining the model with subsequent repeated experiments. Here we focus on cell-adhesion peptides as a model application of this peptide-screening strategy. Cell-adhesion peptides were screened by use of a cell-based assay of a peptide array. Starting with the screening data obtained from a limited, random 5-mer library (643 sequences), a rule regarding structural characteristics of cell-adhesion peptides was extracted by fuzzy neural network (FNN) analysis. According to this rule, peptides with unfavored residues in certain positions that led to inefficient binding were eliminated from the random sequences. In the restricted, second random library (273 sequences), the yield of cell-adhesion peptides having an adhesion rate more than 1.5-fold to that of the basal array support was significantly high (31%) compared with the unrestricted random library (20%). In the restricted third library (50 sequences), the yield of cell-adhesion peptides increased to 84%. We conclude that a repeated cycle of experiments screening limited numbers of peptides can be assisted by the rule-extracting feature of FNN.
Earthquake hazard assessment in the Zagros Orogenic Belt of Iran using a fuzzy rule-based model
NASA Astrophysics Data System (ADS)
Farahi Ghasre Aboonasr, Sedigheh; Zamani, Ahmad; Razavipour, Fatemeh; Boostani, Reza
2017-08-01
Producing accurate seismic hazard map and predicting hazardous areas is necessary for risk mitigation strategies. In this paper, a fuzzy logic inference system is utilized to estimate the earthquake potential and seismic zoning of Zagros Orogenic Belt. In addition to the interpretability, fuzzy predictors can capture both nonlinearity and chaotic behavior of data, where the number of data is limited. In this paper, earthquake pattern in the Zagros has been assessed for the intervals of 10 and 50 years using fuzzy rule-based model. The Molchan statistical procedure has been used to show that our forecasting model is reliable. The earthquake hazard maps for this area reveal some remarkable features that cannot be observed on the conventional maps. Regarding our achievements, some areas in the southern (Bandar Abbas), southwestern (Bandar Kangan) and western (Kermanshah) parts of Iran display high earthquake severity even though they are geographically far apart.
In defense of compilation: A response to Davis' form and content in model-based reasoning
NASA Technical Reports Server (NTRS)
Keller, Richard
1990-01-01
In a recent paper entitled 'Form and Content in Model Based Reasoning', Randy Davis argues that model based reasoning research aimed at compiling task specific rules from underlying device models is mislabeled, misguided, and diversionary. Some of Davis' claims are examined and his basic conclusions are challenged about the value of compilation research to the model based reasoning community. In particular, Davis' claim is refuted that model based reasoning is exempt from the efficiency benefits provided by knowledge compilation techniques. In addition, several misconceptions are clarified about the role of representational form in compilation. It is concluded that techniques have the potential to make a substantial contribution to solving tractability problems in model based reasoning.
A detailed comparison of optimality and simplicity in perceptual decision-making
Shen, Shan; Ma, Wei Ji
2017-01-01
Two prominent ideas in the study of decision-making have been that organisms behave near-optimally, and that they use simple heuristic rules. These principles might be operating in different types of tasks, but this possibility cannot be fully investigated without a direct, rigorous comparison within a single task. Such a comparison was lacking in most previous studies, because a) the optimal decision rule was simple; b) no simple suboptimal rules were considered; c) it was unclear what was optimal, or d) a simple rule could closely approximate the optimal rule. Here, we used a perceptual decision-making task in which the optimal decision rule is well-defined and complex, and makes qualitatively distinct predictions from many simple suboptimal rules. We find that all simple rules tested fail to describe human behavior, that the optimal rule accounts well for the data, and that several complex suboptimal rules are indistinguishable from the optimal one. Moreover, we found evidence that the optimal model is close to the true model: first, the better the trial-to-trial predictions of a suboptimal model agree with those of the optimal model, the better that suboptimal model fits; second, our estimate of the Kullback-Leibler divergence between the optimal model and the true model is not significantly different from zero. When observers receive no feedback, the optimal model still describes behavior best, suggesting that sensory uncertainty is implicitly represented and taken into account. Beyond the task and models studied here, our results have implications for best practices of model comparison. PMID:27177259
Using Necessary Information to Identify Item Dependence in Passage-Based Reading Comprehension Tests
ERIC Educational Resources Information Center
Baldonado, Angela Argo; Svetina, Dubravka; Gorin, Joanna
2015-01-01
Applications of traditional unidimensional item response theory models to passage-based reading comprehension assessment data have been criticized based on potential violations of local independence. However, simple rules for determining dependency, such as including all items associated with a particular passage, may overestimate the dependency…
Analysis of habitat-selection rules using an individual-based model
Steven F. Railsback; Bret C. Harvey
2002-01-01
Abstract - Despite their promise for simulating natural complexity,individual-based models (IBMs) are rarely used for ecological research or resource management. Few IBMs have been shown to reproduce realistic patterns of behavior by individual organisms.To test our IBM of stream salmonids and draw conclusions about foraging theory,we analyzed the IBM âs ability to...
Formal analysis of imprecise system requirements with Event-B.
Le, Hong Anh; Nakajima, Shin; Truong, Ninh Thuan
2016-01-01
Formal analysis of functional properties of system requirements needs precise descriptions. However, the stakeholders sometimes describe the system with ambiguous, vague or fuzzy terms, hence formal frameworks for modeling and verifying such requirements are desirable. The Fuzzy If-Then rules have been used for imprecise requirements representation, but verifying their functional properties still needs new methods. In this paper, we propose a refinement-based modeling approach for specification and verification of such requirements. First, we introduce a representation of imprecise requirements in the set theory. Then we make use of Event-B refinement providing a set of translation rules from Fuzzy If-Then rules to Event-B notations. After that, we show how to verify both safety and eventuality properties with RODIN/Event-B. Finally, we illustrate the proposed method on the example of Crane Controller.
Chaos and the Double Function of Communication
NASA Astrophysics Data System (ADS)
Aula, P. S.
Since at least the needle model age, communication researchers have systematically sought means to explain, control and predict communication behavior between people. For many reasons, the accuracy of constructed models and the studies based upon them has not risen very high. It can be claimed that the reasons for the inaccuracy of communication models, and thus the poor predictability of everyday action, originate from the processes' innate chaos, apparent beneath their behavior. This leads to the argument that communication systems, which appear stable and have precisely identical starting points and identical operating environments, can nevertheless behave in an exceptional and completely different manner, despite the fact that their behavior is ruled or directed by the same rules or laws.
40 CFR 60.1575 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... Before August 30, 1999 Use of Model Rule § 60.1575 How does the model rule relate to the required...
Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways.
Saidi, Rabie; Boudellioua, Imane; Martin, Maria J; Solovyev, Victor
2017-01-01
It is becoming more evident that computational methods are needed for the identification and the mapping of pathways in new genomes. We introduce an automatic annotation system (ARBA4Path Association Rule-Based Annotator for Pathways) that utilizes rule mining techniques to predict metabolic pathways across wide range of prokaryotes. It was demonstrated that specific combinations of protein domains (recorded in our rules) strongly determine pathways in which proteins are involved and thus provide information that let us very accurately assign pathway membership (with precision of 0.999 and recall of 0.966) to proteins of a given prokaryotic taxon. Our system can be used to enhance the quality of automatically generated annotations as well as annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.
Expert systems for automated maintenance of a Mars oxygen production system
NASA Astrophysics Data System (ADS)
Huang, Jen-Kuang; Ho, Ming-Tsang; Ash, Robert L.
1992-08-01
Application of expert system concepts to a breadboard Mars oxygen processor unit have been studied and tested. The research was directed toward developing the methodology required to enable autonomous operation and control of these simple chemical processors at Mars. Failure detection and isolation was the key area of concern, and schemes using forward chaining, backward chaining, knowledge-based expert systems, and rule-based expert systems were examined. Tests and simulations were conducted that investigated self-health checkout, emergency shutdown, and fault detection, in addition to normal control activities. A dynamic system model was developed using the Bond-Graph technique. The dynamic model agreed well with tests involving sudden reductions in throughput. However, nonlinear effects were observed during tests that incorporated step function increases in flow variables. Computer simulations and experiments have demonstrated the feasibility of expert systems utilizing rule-based diagnosis and decision-making algorithms.
TOPICS IN THEORY OF GENERALIZED PARTON DISTRIBUTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radyushkin, Anatoly V.
Several topics in the theory of generalized parton distributions (GPDs) are reviewed. First, we give a brief overview of the basics of the theory of generalized parton distributions and their relationship with simpler phenomenological functions, viz. form factors, parton densities and distribution amplitudes. Then, we discuss recent developments in building models for GPDs that are based on the formalism of double distributions (DDs). A special attention is given to a careful analysis of the singularity structure of DDs. The DD formalism is applied to construction of a model GPDs with a singular Regge behavior. Within the developed DD-based approach, wemore » discuss the structure of GPD sum rules. It is shown that separation of DDs into the so-called ``plus'' part and the $D$-term part may be treated as a renormalization procedure for the GPD sum rules. This approach is compared with an alternative prescription based on analytic regularization.« less
Extraction of decision rules via imprecise probabilities
NASA Astrophysics Data System (ADS)
Abellán, Joaquín; López, Griselda; Garach, Laura; Castellano, Javier G.
2017-05-01
Data analysis techniques can be applied to discover important relations among features. This is the main objective of the Information Root Node Variation (IRNV) technique, a new method to extract knowledge from data via decision trees. The decision trees used by the original method were built using classic split criteria. The performance of new split criteria based on imprecise probabilities and uncertainty measures, called credal split criteria, differs significantly from the performance obtained using the classic criteria. This paper extends the IRNV method using two credal split criteria: one based on a mathematical parametric model, and other one based on a non-parametric model. The performance of the method is analyzed using a case study of traffic accident data to identify patterns related to the severity of an accident. We found that a larger number of rules is generated, significantly supplementing the information obtained using the classic split criteria.
Multi Groups Cooperation based Symbiotic Evolution for TSK-type Neuro-Fuzzy Systems Design
Cheng, Yi-Chang; Hsu, Yung-Chi
2010-01-01
In this paper, a TSK-type neuro-fuzzy system with multi groups cooperation based symbiotic evolution method (TNFS-MGCSE) is proposed. The TNFS-MGCSE is developed from symbiotic evolution. The symbiotic evolution is different from traditional GAs (genetic algorithms) that each chromosome in symbiotic evolution represents a rule of fuzzy model. The MGCSE is different from the traditional symbiotic evolution; with a population in MGCSE is divided to several groups. Each group formed by a set of chromosomes represents a fuzzy rule and cooperate with other groups to generate the better chromosomes by using the proposed cooperation based crossover strategy (CCS). In this paper, the proposed TNFS-MGCSE is used to evaluate by numerical examples (Mackey-Glass chaotic time series and sunspot number forecasting). The performance of the TNFS-MGCSE achieves excellently with other existing models in the simulations. PMID:21709856
A neurocomputational account of cognitive deficits in Parkinson’s disease
Hélie, Sébastien; Paul, Erick J.; Ashby, F. Gregory
2014-01-01
Parkinson’s disease (PD) is caused by the accelerated death of dopamine (DA) producing neurons. Numerous studies documenting cognitive deficits of PD patients have revealed impairments in a variety of tasks related to memory, learning, visuospatial skills, and attention. While there have been several studies documenting cognitive deficits of PD patients, very few computational models have been proposed. In this article, we use the COVIS model of category learning to simulate DA depletion and show that the model suffers from cognitive symptoms similar to those of human participants affected by PD. Specifically, DA depletion in COVIS produced deficits in rule-based categorization, non-linear information-integration categorization, probabilistic classification, rule maintenance, and rule switching. These were observed by simulating results from younger controls, older controls, PD patients, and severe PD patients in five well-known tasks. Differential performance among the different age groups and clinical populations was modeled simply by changing the amount of DA available in the model. This suggests that COVIS may not only be an adequate model of the simulated tasks and phenomena but also more generally of the role of DA in these tasks and phenomena. PMID:22683450
Venta, Kimberly; Baker, Erin; Fidopiastis, Cali; Stanney, Kay
2017-12-01
The purpose of this study was to investigate the potential of developing an EHR-based model of physician competency, named the Skill Deficiency Evaluation Toolkit for Eliminating Competency-loss Trends (Skill-DETECT), which presents the opportunity to use EHR-based models to inform selection of Continued Medical Education (CME) opportunities specifically targeted at maintaining proficiency. The IBM Explorys platform provided outpatient Electronic Health Records (EHRs) representing 76 physicians with over 5000 patients combined. These data were used to develop the Skill-DETECT model, a predictive hybrid model composed of a rule-based model, logistic regression model, and a thresholding model, which predicts cognitive clinical skill deficiencies in internal medicine physicians. A three-phase approach was then used to statistically validate the model performance. Subject Matter Expert (SME) panel reviews resulted in a 100% overall approval rate of the rule based model. Area under the receiver-operating characteristic curves calculated for each logistic regression curve resulted in values between 0.76 and 0.92, which indicated exceptional performance. Normality, skewness, and kurtosis were determined and confirmed that the distribution of values output from the thresholding model were unimodal and peaked, which confirmed effectiveness and generalizability. The validation has confirmed that the Skill-DETECT model has a strong ability to evaluate EHR data and support the identification of internal medicine cognitive clinical skills that are deficient or are of higher likelihood of becoming deficient and thus require remediation, which will allow both physician and medical organizations to fine tune training efforts. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, H.; Eki, Y.; Kaji, A.
1993-12-01
An expert system which can support operators of fossil power plants in creating the optimum startup schedule and executing it accurately is described. The optimum turbine speed-up and load-up pattern is obtained through an iterative manner which is based on fuzzy resonating using quantitative calculations as plant dynamics models and qualitative knowledge as schedule optimization rules with fuzziness. The rules represent relationships between stress margins and modification rates of the schedule parameters. Simulations analysis proves that the system provides quick and accurate plant startups.
Research of Uncertainty Reasoning in Pineapple Disease Identification System
NASA Astrophysics Data System (ADS)
Liu, Liqun; Fan, Haifeng
In order to deal with the uncertainty of evidences mostly existing in pineapple disease identification system, a reasoning model based on evidence credibility factor was established. The uncertainty reasoning method is discussed,including: uncertain representation of knowledge, uncertain representation of rules, uncertain representation of multi-evidences and update of reasoning rules. The reasoning can fully reflect the uncertainty in disease identification and reduce the influence of subjective factors on the accuracy of the system.
2012-01-01
Background To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. Results In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. Conclusions In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots. PMID:22409965
Otaki, Joji M
2012-03-13
To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots.
Computer-Based Linguistic Analysis.
ERIC Educational Resources Information Center
Wright, James R.
Noam Chomsky's transformational-generative grammar model may effectively be translated into an equivalent computer model. Phrase-structure rules and transformations are tested as to their validity and ordering by the computer via the process of random lexical substitution. Errors appearing in the grammar are detected and rectified, and formal…
Zheng, Xiu-Deng; Li, Cong; Yu, Jie-Ru; Wang, Shi-Chang; Fan, Song-Jia; Zhang, Bo-Yu; Tao, Yi
2017-05-07
The long-term coexistence of cooperation and defection is a common phenomenon in nature and human society. However, none of the theoretical models based on the Prisoner's Dilemma (PD) game can provide a concise theoretical model to explain what leads to the stable coexistence of cooperation and defection in the long-term even though some rules for promoting cooperation have been summarized (Nowak, 2006, Science 314, 1560-1563). Here, based on the concept of direct reciprocity, we develop an elementary model to show why stable coexistence of cooperation and defection in the PD game is possible. The basic idea behind our theoretical model is that all players in a PD game prefer a cooperator as an opponent, and our results show that considering strategies allowing opting out against defection provide a general and concise way of understanding the fundamental importance of direct reciprocity in driving the evolution of cooperation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil
2014-08-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.
Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922
Neural substrates of similarity and rule-based strategies in judgment
von Helversen, Bettina; Karlsson, Linnea; Rasch, Björn; Rieskamp, Jörg
2014-01-01
Making accurate judgments is a core human competence and a prerequisite for success in many areas of life. Plenty of evidence exists that people can employ different judgment strategies to solve identical judgment problems. In categorization, it has been demonstrated that similarity-based and rule-based strategies are associated with activity in different brain regions. Building on this research, the present work tests whether solving two identical judgment problems recruits different neural substrates depending on people's judgment strategies. Combining cognitive modeling of judgment strategies at the behavioral level with functional magnetic resonance imaging (fMRI), we compare brain activity when using two archetypal judgment strategies: a similarity-based exemplar strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should recruit areas involved in long-term memory processes to a larger extent than a heuristic strategy. In contrast, using a heuristic strategy should recruit areas involved in the application of rules to a larger extent than an exemplar-based strategy. Largely consistent with our hypotheses, we found that using an exemplar-based strategy led to relatively higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably related to retrieval and selective attention processes. In contrast, using a heuristic strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the temporal-parietal cortex associated with cognitive control and information integration. Thus, even when people solve identical judgment problems, different neural substrates can be recruited depending on the judgment strategy involved. PMID:25360099
Integration of object-oriented knowledge representation with the CLIPS rule based system
NASA Technical Reports Server (NTRS)
Logie, David S.; Kamil, Hasan
1990-01-01
The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.
Keef, Ericka; Zhang, Li Ang; Swigon, David; Urbano, Alisa; Ermentrout, G Bard; Matuszewski, Michael; Toapanta, Franklin R; Ross, Ted M; Parker, Robert S; Clermont, Gilles
2017-12-01
Immunosenescence, an age-related decline in immune function, is a major contributor to morbidity and mortality in the elderly. Older hosts exhibit a delayed onset of immunity and prolonged inflammation after an infection, leading to excess damage and a greater likelihood of death. Our study applies a rule-based model to infer which components of the immune response are most changed in an aged host. Two groups of BALB/c mice (aged 12 to 16 weeks and 72 to 76 weeks) were infected with 2 inocula: a survivable dose of 50 PFU and a lethal dose of 500 PFU. Data were measured at 10 points over 19 days in the sublethal case and at 6 points over 7 days in the lethal case, after which all mice had died. Data varied primarily in the onset of immunity, particularly the inflammatory response, which led to a 2-day delay in the clearance of the virus from older hosts in the sublethal cohort. We developed a Boolean model to describe the interactions between the virus and 21 immune components, including cells, chemokines, and cytokines, of innate and adaptive immunity. The model identifies distinct sets of rules for each age group by using Boolean operators to describe the complex series of interactions that activate and deactivate immune components. Our model accurately simulates the immune responses of mice of both ages and with both inocula included in the data (95% accurate for younger mice and 94% accurate for older mice) and shows distinct rule choices for the innate immunity arm of the model between younger and aging mice in response to influenza A virus infection. IMPORTANCE Influenza virus infection causes high morbidity and mortality rates every year, especially in the elderly. The elderly tend to have a delayed onset of many immune responses as well as prolonged inflammatory responses, leading to an overall weakened response to infection. Many of the details of immune mechanisms that change with age are currently not well understood. We present a rule-based model of the intrahost immune response to influenza virus infection. The model is fit to experimental data for young and old mice infected with influenza virus. We generated distinct sets of rules for each age group to capture the temporal differences seen in the immune responses of these mice. These rules describe a network of interactions leading to either clearance of the virus or death of the host, depending on the initial dosage of the virus. Our models clearly demonstrate differences in these two age groups, particularly in the innate immune responses. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Reinert, K. A.
The use of linear decision rules (LDR) and chance constrained programming (CCP) to optimize the performance of wind energy conversion clusters coupled to storage systems is described. Storage is modelled by LDR and output by CCP. The linear allocation rule and linear release rule prescribe the size and optimize a storage facility with a bypass. Chance constraints are introduced to explicitly treat reliability in terms of an appropriate value from an inverse cumulative distribution function. Details of deterministic programming structure and a sample problem involving a 500 kW and a 1.5 MW WECS are provided, considering an installed cost of $1/kW. Four demand patterns and three levels of reliability are analyzed for optimizing the generator choice and the storage configuration for base load and peak operating conditions. Deficiencies in ability to predict reliability and to account for serial correlations are noted in the model, which is concluded useful for narrowing WECS design options.
40 CFR 60.2565 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... of Model Rule § 60.2565 How does the model rule relate to the required elements of my State plan? Use...
40 CFR 60.2565 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... of Model Rule § 60.2565 How does the model rule relate to the required elements of my State plan? Use...
40 CFR 60.2565 - How does the model rule relate to the required elements of my State plan?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How does the model rule relate to the... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES... of Model Rule § 60.2565 How does the model rule relate to the required elements of my State plan? Use...
Learning temporal rules to forecast instability in continuously monitored patients.
Guillame-Bert, Mathieu; Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Intelligent fault management for the Space Station active thermal control system
NASA Technical Reports Server (NTRS)
Hill, Tim; Faltisco, Robert M.
1992-01-01
The Thermal Advanced Automation Project (TAAP) approach and architecture is described for automating the Space Station Freedom (SSF) Active Thermal Control System (ATCS). The baseline functionally and advanced automation techniques for Fault Detection, Isolation, and Recovery (FDIR) will be compared and contrasted. Advanced automation techniques such as rule-based systems and model-based reasoning should be utilized to efficiently control, monitor, and diagnose this extremely complex physical system. TAAP is developing advanced FDIR software for use on the SSF thermal control system. The goal of TAAP is to join Knowledge-Based System (KBS) technology, using a combination of rules and model-based reasoning, with conventional monitoring and control software in order to maximize autonomy of the ATCS. TAAP's predecessor was NASA's Thermal Expert System (TEXSYS) project which was the first large real-time expert system to use both extensive rules and model-based reasoning to control and perform FDIR on a large, complex physical system. TEXSYS showed that a method is needed for safely and inexpensively testing all possible faults of the ATCS, particularly those potentially damaging to the hardware, in order to develop a fully capable FDIR system. TAAP therefore includes the development of a high-fidelity simulation of the thermal control system. The simulation provides realistic, dynamic ATCS behavior and fault insertion capability for software testing without hardware related risks or expense. In addition, thermal engineers will gain greater confidence in the KBS FDIR software than was possible prior to this kind of simulation testing. The TAAP KBS will initially be a ground-based extension of the baseline ATCS monitoring and control software and could be migrated on-board as additional computation resources are made available.
A rule-based software test data generator
NASA Technical Reports Server (NTRS)
Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II
1991-01-01
Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.
Rule groupings: An approach towards verification of expert systems
NASA Technical Reports Server (NTRS)
Mehrotra, Mala
1991-01-01
Knowledge-based expert systems are playing an increasingly important role in NASA space and aircraft systems. However, many of NASA's software applications are life- or mission-critical and knowledge-based systems do not lend themselves to the traditional verification and validation techniques for highly reliable software. Rule-based systems lack the control abstractions found in procedural languages. Hence, it is difficult to verify or maintain such systems. Our goal is to automatically structure a rule-based system into a set of rule-groups having a well-defined interface to other rule-groups. Once a rule base is decomposed into such 'firewalled' units, studying the interactions between rules would become more tractable. Verification-aid tools can then be developed to test the behavior of each such rule-group. Furthermore, the interactions between rule-groups can be studied in a manner similar to integration testing. Such efforts will go a long way towards increasing our confidence in the expert-system software. Our research efforts address the feasibility of automating the identification of rule groups, in order to decompose the rule base into a number of meaningful units.
NASA Technical Reports Server (NTRS)
Krishnan, G. S.
1997-01-01
A cost effective model which uses the artificial intelligence techniques in the selection and approval of parts is presented. The knowledge which is acquired from the specialists for different part types are represented in a knowledge base in the form of rules and objects. The parts information is stored separately in a data base and is isolated from the knowledge base. Validation, verification and performance issues are highlighted.
Simulation of root forms using cellular automata model
NASA Astrophysics Data System (ADS)
Winarno, Nanang; Prima, Eka Cahya; Afifah, Ratih Mega Ayu
2016-02-01
This research aims to produce a simulation program for root forms using cellular automata model. Stephen Wolfram in his book entitled "A New Kind of Science" discusses the formation rules based on the statistical analysis. In accordance with Stephen Wolfram's investigation, the research will develop a basic idea of computer program using Delphi 7 programming language. To best of our knowledge, there is no previous research developing a simulation describing root forms using the cellular automata model compared to the natural root form with the presence of stone addition as the disturbance. The result shows that (1) the simulation used four rules comparing results of the program towards the natural photographs and each rule had shown different root forms; (2) the stone disturbances prevent the root growth and the multiplication of root forms had been successfully modeled. Therefore, this research had added some stones, which have size of 120 cells placed randomly in the soil. Like in nature, stones cannot be penetrated by plant roots. The result showed that it is very likely to further develop the program of simulating root forms by 50 variations.
Expert systems and simulation models; Proceedings of the Seminar, Tucson, AZ, November 18, 19, 1985
NASA Technical Reports Server (NTRS)
1986-01-01
The seminar presents papers on modeling and simulation methodology, artificial intelligence and expert systems, environments for simulation/expert system development, and methodology for simulation/expert system development. Particular attention is given to simulation modeling concepts and their representation, modular hierarchical model specification, knowledge representation, and rule-based diagnostic expert system development. Other topics include the combination of symbolic and discrete event simulation, real time inferencing, and the management of large knowledge-based simulation projects.
Designing efficient nitrous oxide sampling strategies in agroecosystems using simulation models
NASA Astrophysics Data System (ADS)
Saha, Debasish; Kemanian, Armen R.; Rau, Benjamin M.; Adler, Paul R.; Montes, Felipe
2017-04-01
Annual cumulative soil nitrous oxide (N2O) emissions calculated from discrete chamber-based flux measurements have unknown uncertainty. We used outputs from simulations obtained with an agroecosystem model to design sampling strategies that yield accurate cumulative N2O flux estimates with a known uncertainty level. Daily soil N2O fluxes were simulated for Ames, IA (corn-soybean rotation), College Station, TX (corn-vetch rotation), Fort Collins, CO (irrigated corn), and Pullman, WA (winter wheat), representing diverse agro-ecoregions of the United States. Fertilization source, rate, and timing were site-specific. These simulated fluxes surrogated daily measurements in the analysis. We ;sampled; the fluxes using a fixed interval (1-32 days) or a rule-based (decision tree-based) sampling method. Two types of decision trees were built: a high-input tree (HI) that included soil inorganic nitrogen (SIN) as a predictor variable, and a low-input tree (LI) that excluded SIN. Other predictor variables were identified with Random Forest. The decision trees were inverted to be used as rules for sampling a representative number of members from each terminal node. The uncertainty of the annual N2O flux estimation increased along with the fixed interval length. A 4- and 8-day fixed sampling interval was required at College Station and Ames, respectively, to yield ±20% accuracy in the flux estimate; a 12-day interval rendered the same accuracy at Fort Collins and Pullman. Both the HI and the LI rule-based methods provided the same accuracy as that of fixed interval method with up to a 60% reduction in sampling events, particularly at locations with greater temporal flux variability. For instance, at Ames, the HI rule-based and the fixed interval methods required 16 and 91 sampling events, respectively, to achieve the same absolute bias of 0.2 kg N ha-1 yr-1 in estimating cumulative N2O flux. These results suggest that using simulation models along with decision trees can reduce the cost and improve the accuracy of the estimations of cumulative N2O fluxes using the discrete chamber-based method.
Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.
Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H
2018-03-29
Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns
NASA Astrophysics Data System (ADS)
Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo
Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.
Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System
Mikaitis, Mantas; Pineda García, Garibaldi; Knight, James C.; Furber, Steve B.
2018-01-01
SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity—believed to be one of the main mechanisms behind learning and memory in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP) rules have already been implemented on SpiNNaker and have been shown to be capable of solving various learning tasks in real-time. However, while STDP is an important biological theory of learning, it is a form of Hebbian or unsupervised learning and therefore does not explain behaviors that depend on feedback from the environment. Instead, learning rules based on neuromodulated STDP (three-factor learning rules) have been shown to be capable of solving reinforcement learning tasks in a biologically plausible manner. In this paper we demonstrate for the first time how a model of three-factor STDP, with the third-factor representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker neuromorphic system. Using this learning rule we first show how reward and punishment signals can be delivered to a single synapse before going on to demonstrate it in a larger network which solves the credit assignment problem in a Pavlovian conditioning experiment. Because of its extra complexity, we find that our three-factor learning rule requires approximately 2× as much processing time as the existing SpiNNaker STDP learning rules. However, we show that it is still possible to run our Pavlovian conditioning model with up to 1 × 104 neurons in real-time, opening up new research opportunities for modeling behavioral learning on SpiNNaker. PMID:29535600
Sea-level rise and shoreline retreat: time to abandon the Bruun Rule
NASA Astrophysics Data System (ADS)
Cooper, J. Andrew G.; Pilkey, Orrin H.
2004-11-01
In the face of a global rise in sea level, understanding the response of the shoreline to changes in sea level is a critical scientific goal to inform policy makers and managers. A body of scientific information exists that illustrates both the complexity of the linkages between sea-level rise and shoreline response, and the comparative lack of understanding of these linkages. In spite of the lack of understanding, many appraisals have been undertaken that employ a concept known as the "Bruun Rule". This is a simple two-dimensional model of shoreline response to rising sea level. The model has seen near global application since its original formulation in 1954. The concept provided an advance in understanding of the coastal system at the time of its first publication. It has, however, been superseded by numerous subsequent findings and is now invalid. Several assumptions behind the Bruun Rule are known to be false and nowhere has the Bruun Rule been adequately proven; on the contrary several studies disprove it in the field. No universally applicable model of shoreline retreat under sea-level rise has yet been developed. Despite this, the Bruun Rule is in widespread contemporary use at a global scale both as a management tool and as a scientific concept. The persistence of this concept beyond its original assumption base is attributed to the following factors: Appeal of a simple, easy to use analytical model that is in widespread use. Difficulty of determining the relative validity of 'proofs' and 'disproofs'. Ease of application. Positive advocacy by some scientists. Application by other scientists without critical appraisal. The simple numerical expression of the model. Lack of easy alternatives. The Bruun Rule has no power for predicting shoreline behaviour under rising sea level and should be abandoned. It is a concept whose time has passed. The belief by policy makers that it offers a prediction of future shoreline position may well have stifled much-needed research into the coastal response to sea-level rise.
A modified Galam’s model for word-of-mouth information exchange
NASA Astrophysics Data System (ADS)
Ellero, Andrea; Fasano, Giovanni; Sorato, Annamaria
2009-09-01
In this paper we analyze the stochastic model proposed by Galam in [S. Galam, Modelling rumors: The no plane Pentagon French hoax case, Physica A 320 (2003), 571-580], for information spreading in a ‘word-of-mouth’ process among agents, based on a majority rule. Using the communications rules among agents defined in the above reference, we first perform simulations of the ‘word-of-mouth’ process and compare the results with the theoretical values predicted by Galam’s model. Some dissimilarities arise in particular when a small number of agents is considered. We find motivations for these dissimilarities and suggest some enhancements by introducing a new parameter dependent model. We propose a modified Galam’s scheme which is asymptotically coincident with the original model in the above reference. Furthermore, for relatively small values of the parameter, we provide a numerical experience proving that the modified model often outperforms the original one.
NASA Astrophysics Data System (ADS)
Challamel, Noël
2018-04-01
The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed-fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.
NASA Astrophysics Data System (ADS)
Fyta, Maria; Netz, Roland R.
2012-03-01
Using molecular dynamics (MD) simulations in conjunction with the SPC/E water model, we optimize ionic force-field parameters for seven different halide and alkali ions, considering a total of eight ion-pairs. Our strategy is based on simultaneous optimizing single-ion and ion-pair properties, i.e., we first fix ion-water parameters based on single-ion solvation free energies, and in a second step determine the cation-anion interaction parameters (traditionally given by mixing or combination rules) based on the Kirkwood-Buff theory without modification of the ion-water interaction parameters. In doing so, we have introduced scaling factors for the cation-anion Lennard-Jones (LJ) interaction that quantify deviations from the standard mixing rules. For the rather size-symmetric salt solutions involving bromide and chloride ions, the standard mixing rules work fine. On the other hand, for the iodide and fluoride solutions, corresponding to the largest and smallest anion considered in this work, a rescaling of the mixing rules was necessary. For iodide, the experimental activities suggest more tightly bound ion pairing than given by the standard mixing rules, which is achieved in simulations by reducing the scaling factor of the cation-anion LJ energy. For fluoride, the situation is different and the simulations show too large attraction between fluoride and cations when compared with experimental data. For NaF, the situation can be rectified by increasing the cation-anion LJ energy. For KF, it proves necessary to increase the effective cation-anion Lennard-Jones diameter. The optimization strategy outlined in this work can be easily adapted to different kinds of ions.
Reliability and performance evaluation of systems containing embedded rule-based expert systems
NASA Technical Reports Server (NTRS)
Beaton, Robert M.; Adams, Milton B.; Harrison, James V. A.
1989-01-01
A method for evaluating the reliability of real-time systems containing embedded rule-based expert systems is proposed and investigated. It is a three stage technique that addresses the impact of knowledge-base uncertainties on the performance of expert systems. In the first stage, a Markov reliability model of the system is developed which identifies the key performance parameters of the expert system. In the second stage, the evaluation method is used to determine the values of the expert system's key performance parameters. The performance parameters can be evaluated directly by using a probabilistic model of uncertainties in the knowledge-base or by using sensitivity analyses. In the third and final state, the performance parameters of the expert system are combined with performance parameters for other system components and subsystems to evaluate the reliability and performance of the complete system. The evaluation method is demonstrated in the context of a simple expert system used to supervise the performances of an FDI algorithm associated with an aircraft longitudinal flight-control system.
Buri, Luigi; Hassan, Cesare; Bersani, Gianluca; Anti, Marcello; Bianco, Maria Antonietta; Cipolletta, Livio; Di Giulio, Emilio; Di Matteo, Giovanni; Familiari, Luigi; Ficano, Leonardo; Loriga, Pietro; Morini, Sergio; Pietropaolo, Vincenzo; Zambelli, Alessandro; Grossi, Enzo; Intraligi, Marco; Buscema, Massimo
2010-06-01
Selecting patients appropriately for upper endoscopy (EGD) is crucial for efficient use of endoscopy. The objective of this study was to compare different clinical strategies and statistical methods to select patients for EGD, namely appropriateness guidelines, age and/or alarm features, and multivariate and artificial neural network (ANN) models. A nationwide, multicenter, prospective study was undertaken in which consecutive patients referred for EGD during a 1-month period were enrolled. Before EGD, the endoscopist assessed referral appropriateness according to the American Society for Gastrointestinal Endoscopy (ASGE) guidelines, also collecting clinical and demographic variables. Outcomes of the study were detection of relevant findings and new diagnosis of malignancy at EGD. The accuracy of the following clinical strategies and predictive rules was compared: (i) ASGE appropriateness guidelines (indicated vs. not indicated), (ii) simplified rule (>or=45 years or alarm features vs. <45 years without alarm features), (iii) logistic regression model, and (iv) ANN models. A total of 8,252 patients were enrolled in 57 centers. Overall, 3,803 (46%) relevant findings and 132 (1.6%) new malignancies were detected. Sensitivity, specificity, and area under the receiver-operating characteristic curve (AUC) of the simplified rule were similar to that of the ASGE guidelines for both relevant findings (82%/26%/0.55 vs. 88%/27%/0.52) and cancer (97%/22%/0.58 vs. 98%/20%/0.58). Both logistic regression and ANN models seemed to be substantially more accurate in predicting new cases of malignancy, with an AUC of 0.82 and 0.87, respectively. A simple predictive rule based on age and alarm features is similarly effective to the more complex ASGE guidelines in selecting patients for EGD. Regression and ANN models may be useful in identifying a relatively small subgroup of patients at higher risk of cancer.
76 FR 15004 - Proposed Collection; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
... computer software-based models or applications, termed under the rule as ``interactive websites.'' These... information; (c) Ways to enhance the quality, utility, and clarity of the information collected; and (d) Ways...
Accident/Mishap Investigation System
NASA Technical Reports Server (NTRS)
Keller, Richard; Wolfe, Shawn; Gawdiak, Yuri; Carvalho, Robert; Panontin, Tina; Williams, James; Sturken, Ian
2007-01-01
InvestigationOrganizer (IO) is a Web-based collaborative information system that integrates the generic functionality of a database, a document repository, a semantic hypermedia browser, and a rule-based inference system with specialized modeling and visualization functionality to support accident/mishap investigation teams. This accessible, online structure is designed to support investigators by allowing them to make explicit, shared, and meaningful links among evidence, causal models, findings, and recommendations.
A framework for the use of agent based modeling to simulate ...
Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an agent-based model (ABM) is used to simulate population distributions of longitudinal patterns of four macro activities (sleeping, eating, working, and commuting) in populations of adults over a period of one year. In this ABM, an individual is modeled as an agent whose movement through time and space is determined by a set of decision rules. The rules are based on the agent having time-varying “needs” that are satisfied by performing actions. Needs are modeled as increasing over time, and taking an action reduces the need. Need-satisfying actions include sleeping (meeting the need for rest), eating (meeting the need for food), and commuting/working (meeting the need for income). Every time an action is completed, the model determines the next action the agent will take based on the magnitude of each of the agent’s needs at that point in time. Different activities advertise their ability to satisfy various needs of the agent (such as food to eat or sleeping in a bed or on a couch). The model then chooses the activity that satisfies the greatest of the agent’s needs. When multiple actions could address a need, the model will choose the most effective of the actions (bed over the couc
van Rijn, Peter W; Ali, Usama S
2017-05-01
We compare three modelling frameworks for accuracy and speed of item responses in the context of adaptive testing. The first framework is based on modelling scores that result from a scoring rule that incorporates both accuracy and speed. The second framework is the hierarchical modelling approach developed by van der Linden (2007, Psychometrika, 72, 287) in which a regular item response model is specified for accuracy and a log-normal model for speed. The third framework is the diffusion framework in which the response is assumed to be the result of a Wiener process. Although the three frameworks differ in the relation between accuracy and speed, one commonality is that the marginal model for accuracy can be simplified to the two-parameter logistic model. We discuss both conditional and marginal estimation of model parameters. Models from all three frameworks were fitted to data from a mathematics and spelling test. Furthermore, we applied a linear and adaptive testing mode to the data off-line in order to determine differences between modelling frameworks. It was found that a model from the scoring rule framework outperformed a hierarchical model in terms of model-based reliability, but the results were mixed with respect to correlations with external measures. © 2017 The British Psychological Society.
The Danger Model Approach to the Pathogenesis of the Rheumatic Diseases
Pacheco-Tena, César; González-Chávez, Susana Aideé
2015-01-01
The danger model was proposed by Polly Matzinger as complement to the traditional self-non-self- (SNS-) model to explain the immunoreactivity. The danger model proposes a central role of the tissular cells' discomfort as an element to prime the immune response processes in opposition to the traditional SNS-model where foreignness is a prerequisite. However recent insights in the proteomics of diverse tissular cells have revealed that under stressful conditions they have a significant potential to initiate, coordinate, and perpetuate autoimmune processes, in many cases, ruling over the adaptive immune response cells; this ruling potential can also be confirmed by observations in several genetically manipulated animal models. Here, we review the pathogenesis of rheumatic diseases such as systemic lupus erythematous, rheumatoid arthritis, spondyloarthritis including ankylosing spondylitis, psoriasis, and Crohn's disease and provide realistic approaches based on the logic of the danger model. We assume that tissular dysfunction is a prerequisite for chronic autoimmunity and propose two genetically conferred hypothetical roles for the tissular cells causing the disease: (A) the Impaired cell and (B) the paranoid cell. Both roles are not mutually exclusive. Some examples in human disease and in animal models are provided based on current evidence. PMID:25973436
Estimating Snow Water Storage in North America Using CLM4, DART, and Snow Radiance Data Assimilation
NASA Technical Reports Server (NTRS)
Kwon, Yonghwan; Yang, Zong-Liang; Zhao, Long; Hoar, Timothy J.; Toure, Ally M.; Rodell, Matthew
2016-01-01
This paper addresses continental-scale snow estimates in North America using a recently developed snow radiance assimilation (RA) system. A series of RA experiments with the ensemble adjustment Kalman filter are conducted by assimilating the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) brightness temperature T(sub B) at 18.7- and 36.5-GHz vertical polarization channels. The overall RA performance in estimating snow depth for North America is improved by simultaneously updating the Community Land Model, version 4 (CLM4), snow/soil states and radiative transfer model (RTM) parameters involved in predicting T(sub B) based on their correlations with the prior T(sub B) (i.e., rule-based RA), although degradations are also observed. The RA system exhibits a more mixed performance for snow cover fraction estimates. Compared to the open-loop run (0.171m RMSE), the overall snow depth estimates are improved by 1.6% (0.168m RMSE) in the rule-based RA whereas the default RA (without a rule) results in a degradation of 3.6% (0.177mRMSE). Significant improvement of the snow depth estimates in the rule-based RA as observed for tundra snow class (11.5%, p < 0.05) and bare soil land-cover type (13.5%, p < 0.05). However, the overall improvement is not significant (p = 0.135) because snow estimates are degraded or marginally improved for other snow classes and land covers, especially the taiga snow class and forest land cover (7.1% and 7.3% degradations, respectively). The current RA system needs to be further refined to enhance snow estimates for various snow types and forested regions.
NASA Astrophysics Data System (ADS)
Du, E.; Cai, X.; Minsker, B. S.
2014-12-01
Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.
2014-01-01
Background The family, and parents in particular, are considered the most important influencers regarding children’s energy-balance related behaviours (EBRBs). When children become older and gain more behavioural autonomy regarding different behaviours, the parental influences may become less important and peer influences may gain importance. Therefore the current study aims to investigate simultaneous and interactive associations of family rules, parent and friend norms and modelling with soft drink intake, TV viewing, daily breakfast consumption and sport participation among schoolchildren across Europe. Methods A school-based cross-sectional survey in eight countries across Europe among 10–12 year old schoolchildren. Child questionnaires were used to assess EBRBs (soft drink intake, TV viewing, breakfast consumption, sport participation), and potential determinants of these behaviours as perceived by the child, including family rules, parental and friend norms and modelling. Linear and logistic regression analyses (n = 7811) were applied to study the association of parental (norms, modelling and rules) and friend influences (norm and modelling) with the EBRBs. In addition, potential moderating effects of parental influences on the associations of friend influences with the EBRBs were studied by including interaction terms. Results Children reported more unfavourable friend norms and modelling regarding soft drink intake and TV viewing, while they reported more favourable friend and parental norms and modelling for breakfast consumption and physical activity. Perceived friend and parental norms and modelling were significantly positively associated with soft drink intake, breakfast consumption, physical activity (only modelling) and TV time. Across the different behaviours, ten significant interactions between parental and friend influencing variables were found and suggested a weaker association of friend norms and modelling when rules were in place. Conclusion Parental and friends norm and modelling are associated with schoolchildren’s energy balance-related behaviours. Having family rules or showing favourable parental modelling and norms seems to reduce the potential unfavourable associations of friends’ norms and modelling with the EBRBs. PMID:25001090
Transformation of Graphical ECA Policies into Executable PonderTalk Code
NASA Astrophysics Data System (ADS)
Romeikat, Raphael; Sinsel, Markus; Bauer, Bernhard
Rules are becoming more and more important in business modeling and systems engineering and are recognized as a high-level programming paradigma. For the effective development of rules it is desired to start at a high level, e.g. with graphical rules, and to refine them into code of a particular rule language for implementation purposes later. An model-driven approach is presented in this paper to transform graphical rules into executable code in a fully automated way. The focus is on event-condition-action policies as a special rule type. These are modeled graphically and translated into the PonderTalk language. The approach may be extended to integrate other rule types and languages as well.
Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam
2016-01-01
The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and incomplete genome assembly confounded the rules-based algorithm, resulting in predictions based on gene family, rather than on knowledge of the specific variant found. Low-frequency resistance caused errors in the machine-learning algorithm because those genes were not seen or seen infrequently in the test set. We also identified an example of variability in the phenotype-based results that led to disagreement with both genotype-based methods. Genotype-based antimicrobial susceptibility testing shows great promise as a diagnostic tool, and we outline specific research goals to further refine this methodology.
Rule-based spatial modeling with diffusing, geometrically constrained molecules.
Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter
2010-06-07
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
2010-01-01
Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264
Learning accurate and interpretable models based on regularized random forests regression
2014-01-01
Background Many biology related research works combine data from multiple sources in an effort to understand the underlying problems. It is important to find and interpret the most important information from these sources. Thus it will be beneficial to have an effective algorithm that can simultaneously extract decision rules and select critical features for good interpretation while preserving the prediction performance. Methods In this study, we focus on regression problems for biological data where target outcomes are continuous. In general, models constructed from linear regression approaches are relatively easy to interpret. However, many practical biological applications are nonlinear in essence where we can hardly find a direct linear relationship between input and output. Nonlinear regression techniques can reveal nonlinear relationship of data, but are generally hard for human to interpret. We propose a rule based regression algorithm that uses 1-norm regularized random forests. The proposed approach simultaneously extracts a small number of rules from generated random forests and eliminates unimportant features. Results We tested the approach on some biological data sets. The proposed approach is able to construct a significantly smaller set of regression rules using a subset of attributes while achieving prediction performance comparable to that of random forests regression. Conclusion It demonstrates high potential in aiding prediction and interpretation of nonlinear relationships of the subject being studied. PMID:25350120
Learning general phonological rules from distributional information: a computational model.
Calamaro, Shira; Jarosz, Gaja
2015-04-01
Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.
Evolution of Collective Behaviour in an Artificial World Using Linguistic Fuzzy Rule-Based Systems
Lebar Bajec, Iztok
2017-01-01
Collective behaviour is a fascinating and easily observable phenomenon, attractive to a wide range of researchers. In biology, computational models have been extensively used to investigate various properties of collective behaviour, such as: transfer of information across the group, benefits of grouping (defence against predation, foraging), group decision-making process, and group behaviour types. The question ‘why,’ however remains largely unanswered. Here the interest goes into which pressures led to the evolution of such behaviour, and evolutionary computational models have already been used to test various biological hypotheses. Most of these models use genetic algorithms to tune the parameters of previously presented non-evolutionary models, but very few attempt to evolve collective behaviour from scratch. Of these last, the successful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three classes of behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of behaviour. PMID:28045964
Evolution of Collective Behaviour in an Artificial World Using Linguistic Fuzzy Rule-Based Systems.
Demšar, Jure; Lebar Bajec, Iztok
2017-01-01
Collective behaviour is a fascinating and easily observable phenomenon, attractive to a wide range of researchers. In biology, computational models have been extensively used to investigate various properties of collective behaviour, such as: transfer of information across the group, benefits of grouping (defence against predation, foraging), group decision-making process, and group behaviour types. The question 'why,' however remains largely unanswered. Here the interest goes into which pressures led to the evolution of such behaviour, and evolutionary computational models have already been used to test various biological hypotheses. Most of these models use genetic algorithms to tune the parameters of previously presented non-evolutionary models, but very few attempt to evolve collective behaviour from scratch. Of these last, the successful attempts display clumping or swarming behaviour. Empirical evidence suggests that in fish schools there exist three classes of behaviour; swarming, milling and polarized. In this paper we present a novel, artificial life-like evolutionary model, where individual agents are governed by linguistic fuzzy rule-based systems, which is capable of evolving all three classes of behaviour.
Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.
Cole, Steve W; Galic, Zoran; Zack, Jerome A
2003-09-22
Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus
17 CFR 248.2 - Model privacy form: rule of construction.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Model privacy form: rule of... Safeguarding Personal Information § 248.2 Model privacy form: rule of construction. (a) Model privacy form. Use of the model privacy form in Appendix A to Subpart A of this part, consistent with the instructions...
A Model for Evidence Accumulation in the Lexical Decision Task
ERIC Educational Resources Information Center
Wagenmakers, Eric-Jan; Steyvers, Mark; Raaijmakers, Jeroen G. W.; Shiffrin, Richard M.; van Rijn, Hedderik; Zeelenberg, Rene
2004-01-01
We present a new model for lexical decision, REM-LD, that is based on REM theory (e.g., Shiffrin & Steyvers, 1997). REM-LD uses a principled (i.e., Bayes' rule) decision process that simultaneously considers the diagnosticity of the evidence for the 'WORD' response and the 'NONWORD' response. The model calculates the odds ratio that the presented…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hummel, K.E.
1987-12-01
Expert systems are artificial intelligence programs that solve problems requiring large amounts of heuristic knowledge, based on years of experience and tradition. Production systems are domain-independent tools that support the development of rule-based expert systems. This document describes a general purpose production system known as HERB. This system was developed to support the programming of expert systems using hierarchically structured rule bases. HERB encourages the partitioning of rules into multiple rule bases and supports the use of multiple conflict resolution strategies. Multiple rule bases can also be placed on a system stack and simultaneously searched during each interpreter cycle. Bothmore » backward and forward chaining rules are supported by HERB. The condition portion of each rule can contain both patterns, which are matched with facts in a data base, and LISP expressions, which are explicitly evaluated in the LISP environment. Properties of objects can also be stored in the HERB data base and referenced within the scope of each rule. This document serves both as an introduction to the principles of LISP-based production systems and as a user's manual for the HERB system. 6 refs., 17 figs.« less
NASA Astrophysics Data System (ADS)
Azmi, Abdul Luky Shofi'ul; Prabandari, Dyah Lusiana; Hakim, Muhammad Lintang Islami
2017-03-01
Even though conversion of oil based fuel (Bahan Bakar Minyak) into gas fuel (Bahan Bakar Gas) for transportation (both land and sea) is one of the priority programs of the government of Indonesia, rules that have been established merely basic rules of gas fuel usage license for transportation, without discussing position of gas fuel related to oil based fuel in detail. This paper focus on possible strategic behavior of the key players in the oil-gas fuel conversion game, who will be impacted by the position of gas fuel as complement or substitution of oil based fuel. These players include industry of oil based fuel, industry of gas fuel, and the government. Modeling is made based on two different conditions: government plays a passive role and government plays an active role in legislating additional rules that may benefit industry of gas fuel. Results obtained under a passive government is that industry of oil based fuel need to accommodate the presence of industry of gas fuel, and industry of gas fuel does not kill/ eliminate the oil based fuel, or gas fuel serves as a complement. While in an active government, the industry of oil based fuel need to increase its negotiation spending in the first phase so that the additional rule that benefitting industry of gas fuel would not be legislated, while industry of gas fuel chooses to indifferent; however, in the last stage, gas fuel turned to be competitive or choose its role to be substitution.
Modeling of autocatalytic hydrolysis of adefovir dipivoxil in solid formulations.
Dong, Ying; Zhang, Yan; Xiang, Bingren; Deng, Haishan; Wu, Jingfang
2011-04-01
The stability and hydrolysis kinetics of a phosphate prodrug, adefovir dipivoxil, in solid formulations were studied. The stability relationship between five solid formulations was explored. An autocatalytic mechanism for hydrolysis could be proposed according to the kinetic behavior which fits the Prout-Tompkins model well. For the classical kinetic models could hardly describe and predict the hydrolysis kinetics of adefovir dipivoxil in solid formulations accurately when the temperature is high, a feedforward multilayer perceptron (MLP) neural network was constructed to model the hydrolysis kinetics. The build-in approaches in Weka, such as lazy classifiers and rule-based learners (IBk, KStar, DecisionTable and M5Rules), were used to verify the performance of MLP. The predictability of the models was evaluated by 10-fold cross-validation and an external test set. It reveals that MLP should be of general applicability proposing an alternative efficient way to model and predict autocatalytic hydrolysis kinetics for phosphate prodrugs.
Carr, Andrew R; Paholpak, Pongsatorn; Daianu, Madelaine; Fong, Sylvia S; Mather, Michelle; Jimenez, Elvira E; Thompson, Paul; Mendez, Mario F
2015-11-01
Behavioral changes in dementia, especially behavioral variant frontotemporal dementia (bvFTD), may result in alterations in moral reasoning. Investigators have not clarified whether these alterations reflect differential impairment of care-based vs. rule-based moral behavior. This study investigated 18 bvFTD patients, 22 early onset Alzheimer's disease (eAD) patients, and 20 healthy age-matched controls on care-based and rule-based items from the Moral Behavioral Inventory and the Social Norms Questionnaire, neuropsychological measures, and magnetic resonance imaging (MRI) regions of interest. There were significant group differences with the bvFTD patients rating care-based morality transgressions less severely than the eAD group and rule-based moral behavioral transgressions more severely than controls. Across groups, higher care-based morality ratings correlated with phonemic fluency on neuropsychological tests, whereas higher rule-based morality ratings correlated with increased difficulty set-shifting and learning new rules to tasks. On neuroimaging, severe care-based reasoning correlated with cortical volume in right anterior temporal lobe, and rule-based reasoning correlated with decreased cortical volume in the right orbitofrontal cortex. Together, these findings suggest that frontotemporal disease decreases care-based morality and facilitates rule-based morality possibly from disturbed contextual abstraction and set-shifting. Future research can examine whether frontal lobe disorders and bvFTD result in a shift from empathic morality to the strong adherence to conventional rules. Published by Elsevier Ltd.
Carr, Andrew R.; Paholpak, Pongsatorn; Daianu, Madelaine; Fong, Sylvia S.; Mather, Michelle; Jimenez, Elvira E.; Thompson, Paul; Mendez, Mario F.
2015-01-01
Behavioral changes in dementia, especially behavioral variant frontotemporal dementia (bvFTD), may result in alterations in moral reasoning. Investigators have not clarified whether these alterations reflect differential impairment of care-based vs. rule-based moral behavior. This study investigated 18 bvFTD patients, 22 early onset Alzheimer’s disease (eAD) patients, and 20 healthy age-matched controls on care-based and rule-based items from the Moral Behavioral Inventory and the Social Norms Questionnaire, neuropsychological measures, and magnetic resonance imaging (MRI) regions of interest. There were significant group differences with the bvFTD patients rating care-based morality transgressions less severely than the eAD group and rule-based moral behavioral transgressions more severely than controls. Across groups, higher care-based morality ratings correlated with phonemic fluency on neuropsychological tests, whereas higher rule-based morality ratings correlated with increased difficulty set-shifting and learning new rules to tasks. On neuroimaging, severe care-based reasoning correlated with cortical volume in right anterior temporal lobe, and rule-based reasoning correlated with decreased cortical volume in the right orbitofrontal cortex. Together, these findings suggest that frontotemporal disease decreases care-based morality and facilitates rule-based morality possibly from disturbed contextual abstraction and set-shifting. Future research can examine whether frontal lobe disorders and bvFTD result in a shift from empathic morality to the strong adherence to conventional rules. PMID:26432341
A Swarm Optimization approach for clinical knowledge mining.
Christopher, J Jabez; Nehemiah, H Khanna; Kannan, A
2015-10-01
Rule-based classification is a typical data mining task that is being used in several medical diagnosis and decision support systems. The rules stored in the rule base have an impact on classification efficiency. Rule sets that are extracted with data mining tools and techniques are optimized using heuristic or meta-heuristic approaches in order to improve the quality of the rule base. In this work, a meta-heuristic approach called Wind-driven Swarm Optimization (WSO) is used. The uniqueness of this work lies in the biological inspiration that underlies the algorithm. WSO uses Jval, a new metric, to evaluate the efficiency of a rule-based classifier. Rules are extracted from decision trees. WSO is used to obtain different permutations and combinations of rules whereby the optimal ruleset that satisfies the requirement of the developer is used for predicting the test data. The performance of various extensions of decision trees, namely, RIPPER, PART, FURIA and Decision Tables are analyzed. The efficiency of WSO is also compared with the traditional Particle Swarm Optimization. Experiments were carried out with six benchmark medical datasets. The traditional C4.5 algorithm yields 62.89% accuracy with 43 rules for liver disorders dataset where as WSO yields 64.60% with 19 rules. For Heart disease dataset, C4.5 is 68.64% accurate with 98 rules where as WSO is 77.8% accurate with 34 rules. The normalized standard deviation for accuracy of PSO and WSO are 0.5921 and 0.5846 respectively. WSO provides accurate and concise rulesets. PSO yields results similar to that of WSO but the novelty of WSO lies in its biological motivation and it is customization for rule base optimization. The trade-off between the prediction accuracy and the size of the rule base is optimized during the design and development of rule-based clinical decision support system. The efficiency of a decision support system relies on the content of the rule base and classification accuracy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
L. Linsen; B.J. Karis; E.G. McPherson; B. Hamann
2005-01-01
In computer graphics, models describing the fractal branching structure of trees typically exploit the modularity of tree structures. The models are based on local production rules, which are applied iteratively and simultaneously to create a complex branching system. The objective is to generate three-dimensional scenes of often many realistic- looking and non-...
Variable-Length Computerized Adaptive Testing Based on Cognitive Diagnosis Models
ERIC Educational Resources Information Center
Hsu, Chia-Ling; Wang, Wen-Chung; Chen, Shu-Ying
2013-01-01
Interest in developing computerized adaptive testing (CAT) under cognitive diagnosis models (CDMs) has increased recently. CAT algorithms that use a fixed-length termination rule frequently lead to different degrees of measurement precision for different examinees. Fixed precision, in which the examinees receive the same degree of measurement…
Applying an Employee-Motivation Model to Prevent Student Plagiarism.
ERIC Educational Resources Information Center
Malouff, John M.; Sims, Randi L.
1996-01-01
A model based on Vroom's expectancy theory of employee motivation posits that instructors can prevent plagiarism by ensuring that students understand the rules of ethical writing, expect assignments to be manageable and have personal benefits, and expect plagiarism to be difficult and have important personal costs. (SK)
Object-oriented fault tree models applied to system diagnosis
NASA Technical Reports Server (NTRS)
Iverson, David L.; Patterson-Hine, F. A.
1990-01-01
When a diagnosis system is used in a dynamic environment, such as the distributed computer system planned for use on Space Station Freedom, it must execute quickly and its knowledge base must be easily updated. Representing system knowledge as object-oriented augmented fault trees provides both features. The diagnosis system described here is based on the failure cause identification process of the diagnostic system described by Narayanan and Viswanadham. Their system has been enhanced in this implementation by replacing the knowledge base of if-then rules with an object-oriented fault tree representation. This allows the system to perform its task much faster and facilitates dynamic updating of the knowledge base in a changing diagnosis environment. Accessing the information contained in the objects is more efficient than performing a lookup operation on an indexed rule base. Additionally, the object-oriented fault trees can be easily updated to represent current system status. This paper describes the fault tree representation, the diagnosis algorithm extensions, and an example application of this system. Comparisons are made between the object-oriented fault tree knowledge structure solution and one implementation of a rule-based solution. Plans for future work on this system are also discussed.
Fuzzy model-based fault detection and diagnosis for a pilot heat exchanger
NASA Astrophysics Data System (ADS)
Habbi, Hacene; Kidouche, Madjid; Kinnaert, Michel; Zelmat, Mimoun
2011-04-01
This article addresses the design and real-time implementation of a fuzzy model-based fault detection and diagnosis (FDD) system for a pilot co-current heat exchanger. The design method is based on a three-step procedure which involves the identification of data-driven fuzzy rule-based models, the design of a fuzzy residual generator and the evaluation of the residuals for fault diagnosis using statistical tests. The fuzzy FDD mechanism has been implemented and validated on the real co-current heat exchanger, and has been proven to be efficient in detecting and isolating process, sensor and actuator faults.
NASA Technical Reports Server (NTRS)
Zeigler, Bernard P.
1989-01-01
It is shown how systems can be advantageously represented as discrete-event models by using DEVS (discrete-event system specification), a set-theoretic formalism. Such DEVS models provide a basis for the design of event-based logic control. In this control paradigm, the controller expects to receive confirming sensor responses to its control commands within definite time windows determined by its DEVS model of the system under control. The event-based contral paradigm is applied in advanced robotic and intelligent automation, showing how classical process control can be readily interfaced with rule-based symbolic reasoning systems.
H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus.
Ali, Rahman; Hussain, Jamil; Siddiqi, Muhammad Hameed; Hussain, Maqbool; Lee, Sungyoung
2015-07-03
Diabetes is a chronic disease characterized by high blood glucose level that results either from a deficiency of insulin produced by the body, or the body's resistance to the effects of insulin. Accurate and precise reasoning and prediction models greatly help physicians to improve diagnosis, prognosis and treatment procedures of different diseases. Though numerous models have been proposed to solve issues of diagnosis and management of diabetes, they have the following drawbacks: (1) restricted one type of diabetes; (2) lack understandability and explanatory power of the techniques and decision; (3) limited either to prediction purpose or management over the structured contents; and (4) lack competence for dimensionality and vagueness of patient's data. To overcome these issues, this paper proposes a novel hybrid rough set reasoning model (H2RM) that resolves problems of inaccurate prediction and management of type-1 diabetes mellitus (T1DM) and type-2 diabetes mellitus (T2DM). For verification of the proposed model, experimental data from fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data is transformed into structured format and then used for mining prediction rules. Rough set theory (RST) based techniques and algorithms are used to mine the prediction rules. During the online execution phase of the model, these rules are used to predict T1DM and T2DM for new patients. Furthermore, the proposed model assists physicians to manage diabetes using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis techniques are used to manage diabetic observations. Experimental results demonstrate that the proposed model outperforms the existing methods with 95.9% average and balanced accuracies.
H2RM: A Hybrid Rough Set Reasoning Model for Prediction and Management of Diabetes Mellitus
Ali, Rahman; Hussain, Jamil; Siddiqi, Muhammad Hameed; Hussain, Maqbool; Lee, Sungyoung
2015-01-01
Diabetes is a chronic disease characterized by high blood glucose level that results either from a deficiency of insulin produced by the body, or the body’s resistance to the effects of insulin. Accurate and precise reasoning and prediction models greatly help physicians to improve diagnosis, prognosis and treatment procedures of different diseases. Though numerous models have been proposed to solve issues of diagnosis and management of diabetes, they have the following drawbacks: (1) restricted one type of diabetes; (2) lack understandability and explanatory power of the techniques and decision; (3) limited either to prediction purpose or management over the structured contents; and (4) lack competence for dimensionality and vagueness of patient’s data. To overcome these issues, this paper proposes a novel hybrid rough set reasoning model (H2RM) that resolves problems of inaccurate prediction and management of type-1 diabetes mellitus (T1DM) and type-2 diabetes mellitus (T2DM). For verification of the proposed model, experimental data from fifty patients, acquired from a local hospital in semi-structured format, is used. First, the data is transformed into structured format and then used for mining prediction rules. Rough set theory (RST) based techniques and algorithms are used to mine the prediction rules. During the online execution phase of the model, these rules are used to predict T1DM and T2DM for new patients. Furthermore, the proposed model assists physicians to manage diabetes using knowledge extracted from online diabetes guidelines. Correlation-based trend analysis techniques are used to manage diabetic observations. Experimental results demonstrate that the proposed model outperforms the existing methods with 95.9% average and balanced accuracies. PMID:26151207
This is the revised version of the Interim Final Consolidated Enforcement Response and Penalty Policy for the Pre-Renovation Education Rule; Renovation, Repair and Painting Rule; and Lead-Based Paint Activities Rule.
Stability of INFIT and OUTFIT Compared to Simulated Estimates in Applied Setting.
Hodge, Kari J; Morgan, Grant B
Residual-based fit statistics are commonly used as an indication of the extent to which the item response data fit the Rash model. Fit statistic estimates are influenced by sample size and rules-of thumb estimates may result in incorrect conclusions about the extent to which the model fits the data. Estimates obtained in this analysis were compared to 250 simulated data sets to examine the stability of the estimates. All INFIT estimates were within the rule-of-thumb range of 0.7 to 1.3. However, only 82% of the INFIT estimates fell within the 2.5th and 97.5th percentile of the simulated item's INFIT distributions using this 95% confidence-like interval. This is a 18 percentage point difference in items that were classified as acceptable. Fourty-eight percent of OUTFIT estimates fell within the 0.7 to 1.3 rule- of-thumb range. Whereas 34% of OUTFIT estimates fell within the 2.5th and 97.5th percentile of the simulated item's OUTFIT distributions. This is a 13 percentage point difference in items that were classified as acceptable. When using the rule-of- thumb ranges for fit estimates the magnitude of misfit was smaller than with the 95% confidence interval of the simulated distribution. The findings indicate that the use of confidence intervals as critical values for fit statistics leads to different model data fit conclusions than traditional rule of thumb critical values.