Oosterman, Joukje M; Heringa, Sophie M; Kessels, Roy P C; Biessels, Geert Jan; Koek, Huiberdina L; Maes, Joseph H R; van den Berg, Esther
2017-04-01
Rule induction tests such as the Wisconsin Card Sorting Test require executive control processes, but also the learning and memorization of simple stimulus-response rules. In this study, we examined the contribution of diminished learning and memorization of simple rules to complex rule induction test performance in patients with amnestic mild cognitive impairment (aMCI) or Alzheimer's dementia (AD). Twenty-six aMCI patients, 39 AD patients, and 32 control participants were included. A task was used in which the memory load and the complexity of the rules were independently manipulated. This task consisted of three conditions: a simple two-rule learning condition (Condition 1), a simple four-rule learning condition (inducing an increase in memory load, Condition 2), and a complex biconditional four-rule learning condition-inducing an increase in complexity and, hence, executive control load (Condition 3). Performance of AD patients declined disproportionately when the number of simple rules that had to be memorized increased (from Condition 1 to 2). An additional increment in complexity (from Condition 2 to 3) did not, however, disproportionately affect performance of the patients. Performance of the aMCI patients did not differ from that of the control participants. In the patient group, correlation analysis showed that memory performance correlated with Condition 1 performance, whereas executive task performance correlated with Condition 2 performance. These results indicate that the reduced learning and memorization of underlying task rules explains a significant part of the diminished complex rule induction performance commonly reported in AD, although results from the correlation analysis suggest involvement of executive control functions as well. Taken together, these findings suggest that care is needed when interpreting rule induction task performance in terms of executive function deficits in these patients.
1990-11-01
Intelligence Systems," in Distributed Artifcial Intelligence , vol. II, L. Gasser and M. Huhns (eds), Pitman, London, 1989, pp. 413-430. Shaw, M. Harrow, B...IDTIC FILE COPY A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems N Michael I. Shaw...SUBTITLE 5. FUNDING NUMBERS A Distributed Problem-Solving Approach to Rule Induction: Learning in Distributed Artificial Intelligence Systems 6
Applications of Machine Learning and Rule Induction,
1995-02-15
An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic
Intrusion Detection Systems with Live Knowledge System
2016-05-31
Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR, which is a machine-learning based RDR...propose novel approach that uses Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR...detection model by applying Induct RDR approach. The proposed induct RDR ( Ripple Down Rules) approach allows to acquire the phishing detection
A Santos, Jose C; Nassif, Houssam; Page, David; Muggleton, Stephen H; E Sternberg, Michael J
2012-07-11
There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. In addition to confirming literature results, ProGolem's model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners.
NASA Astrophysics Data System (ADS)
Kotelnikov, E. V.; Milov, V. R.
2018-05-01
Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.
2012-01-01
Background There is a need for automated methods to learn general features of the interactions of a ligand class with its diverse set of protein receptors. An appropriate machine learning approach is Inductive Logic Programming (ILP), which automatically generates comprehensible rules in addition to prediction. The development of ILP systems which can learn rules of the complexity required for studies on protein structure remains a challenge. In this work we use a new ILP system, ProGolem, and demonstrate its performance on learning features of hexose-protein interactions. Results The rules induced by ProGolem detect interactions mediated by aromatics and by planar-polar residues, in addition to less common features such as the aromatic sandwich. The rules also reveal a previously unreported dependency for residues cys and leu. They also specify interactions involving aromatic and hydrogen bonding residues. This paper shows that Inductive Logic Programming implemented in ProGolem can derive rules giving structural features of protein/ligand interactions. Several of these rules are consistent with descriptions in the literature. Conclusions In addition to confirming literature results, ProGolem’s model has a 10-fold cross-validated predictive accuracy that is superior, at the 95% confidence level, to another ILP system previously used to study protein/hexose interactions and is comparable with state-of-the-art statistical learners. PMID:22783946
Bayesian Learning and the Psychology of Rule Induction
ERIC Educational Resources Information Center
Endress, Ansgar D.
2013-01-01
In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to…
Multistrategy learning: A case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domingos, P.
1996-12-31
Two of the most popular approaches to induction are instance-based learning (IBL) and rule generation. Their strengths and weaknesses are largely complementary. IBL methods are able to identify small details in the instance space, but have trouble with attributes that are relevant in some parts of the space but not others. Conversely, rule induction methods may overlook small exception regions, but are able to select different attributes in different parts of the instance space. The two methods have been unified in the RISE algorithm. RISE views instances as maximally specific rules, forms more general rules by gradually clustering instances ofmore » the same class, and classifies a test example by letting the nearest rule win. This approach potentially combines the advantages of rule induction and IBL, and has indeed been observed to be more accurate than each on a large number of bench-mark datasets. However, it is important to determine if this performance is indeed due to the hypothesized advantages, and to define the situations in which RISE`s bias will and will not be preferable to those of the individual approaches. This abstract reports experiments to this end in artificial domains.« less
ERIC Educational Resources Information Center
Lee, Seong-Soo
1982-01-01
Tenth-grade students (n=144) received training on one of three processing methods: coding-mapping (simultaneous), coding only, or decision tree (sequential). The induced simultaneous processing strategy worked optimally under rule learning, while the sequential strategy was difficult to induce and/or not optimal for rule-learning operations.…
Incremental Learning of Context Free Grammars by Parsing-Based Rule Generation and Rule Set Search
NASA Astrophysics Data System (ADS)
Nakamura, Katsuhiko; Hoshina, Akemi
This paper discusses recent improvements and extensions in Synapse system for inductive inference of context free grammars (CFGs) from sample strings. Synapse uses incremental learning, rule generation based on bottom-up parsing, and the search for rule sets. The form of production rules in the previous system is extended from Revised Chomsky Normal Form A→βγ to Extended Chomsky Normal Form, which also includes A→B, where each of β and γ is either a terminal or nonterminal symbol. From the result of bottom-up parsing, a rule generation mechanism synthesizes minimum production rules required for parsing positive samples. Instead of inductive CYK algorithm in the previous version of Synapse, the improved version uses a novel rule generation method, called ``bridging,'' which bridges the lacked part of the derivation tree for the positive string. The improved version also employs a novel search strategy, called serial search in addition to minimum rule set search. The synthesis of grammars by the serial search is faster than the minimum set search in most cases. On the other hand, the size of the generated CFGs is generally larger than that by the minimum set search, and the system can find no appropriate grammar for some CFL by the serial search. The paper shows experimental results of incremental learning of several fundamental CFGs and compares the methods of rule generation and search strategies.
Knowledge discovery with classification rules in a cardiovascular dataset.
Podgorelec, Vili; Kokol, Peter; Stiglic, Milojka Molan; Hericko, Marjan; Rozman, Ivan
2005-12-01
In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.
Induction for Radiology Patients
NASA Astrophysics Data System (ADS)
Yıldırım, Pınar; Tolun, Mehmet R.
This paper represents the implementation of an inductive learning algorithm for patients of Radiology Department in Hacettepe University hospitals to discover the relationship between patient demographics information and time that patients spend during a specific radiology exam. ILA has been used for the implementation which generates rules and the results are evaluated by evaluation metrics. According to generated rules, some patients in different age groups or birthplaces may spend more time for the same radiology exam than the others.
Automated rule-base creation via CLIPS-Induce
NASA Technical Reports Server (NTRS)
Murphy, Patrick M.
1994-01-01
Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.
Forsström, J
1992-01-01
The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data.
Integrating machine learning and physician knowledge to improve the accuracy of breast biopsy.
Dutra, I; Nassif, H; Page, D; Shavlik, J; Strigel, R M; Wu, Y; Elezaby, M E; Burnside, E
2011-01-01
In this work we show that combining physician rules and machine learned rules may improve the performance of a classifier that predicts whether a breast cancer is missed on percutaneous, image-guided breast core needle biopsy (subsequently referred to as "breast core biopsy"). Specifically, we show how advice in the form of logical rules, derived by a sub-specialty, i.e. fellowship trained breast radiologists (subsequently referred to as "our physicians") can guide the search in an inductive logic programming system, and improve the performance of a learned classifier. Our dataset of 890 consecutive benign breast core biopsy results along with corresponding mammographic findings contains 94 cases that were deemed non-definitive by a multidisciplinary panel of physicians, from which 15 were upgraded to malignant disease at surgery. Our goal is to predict upgrade prospectively and avoid surgery in women who do not have breast cancer. Our results, some of which trended toward significance, show evidence that inductive logic programming may produce better results for this task than traditional propositional algorithms with default parameters. Moreover, we show that adding knowledge from our physicians into the learning process may improve the performance of the learned classifier trained only on data.
Children's Acquisition of Conditional Logic Structure: Teachable?
ERIC Educational Resources Information Center
Lee, Seong-Soo
1985-01-01
To assess the teachability of conditional logic structure, the commonly used syllogistic conditional reasoning task was divided into three main components: (1) inductive rule learning; (2) induction of conditional language; and (3) deductive interpretation. When trained on all components, fifth and seventh graders became very competent in dealing…
Efficient Grammar Induction Algorithm with Parse Forests from Real Corpora
NASA Astrophysics Data System (ADS)
Kurihara, Kenichi; Kameya, Yoshitaka; Sato, Taisuke
The task of inducing grammar structures has received a great deal of attention. The reasons why researchers have studied are different; to use grammar induction as the first stage in building large treebanks or to make up better language models. However, grammar induction has inherent computational complexity. To overcome it, some grammar induction algorithms add new production rules incrementally. They refine the grammar while keeping their computational complexity low. In this paper, we propose a new efficient grammar induction algorithm. Although our algorithm is similar to algorithms which learn a grammar incrementally, our algorithm uses the graphical EM algorithm instead of the Inside-Outside algorithm. We report results of learning experiments in terms of learning speeds. The results show that our algorithm learns a grammar in constant time regardless of the size of the grammar. Since our algorithm decreases syntactic ambiguities in each step, our algorithm reduces required time for learning. This constant-time learning considerably affects learning time for larger grammars. We also reports results of evaluation of criteria to choose nonterminals. Our algorithm refines a grammar based on a nonterminal in each step. Since there can be several criteria to decide which nonterminal is the best, we evaluate them by learning experiments.
Hotz, Christine S; Templeton, Steven J; Christopher, Mary M
2005-03-01
A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.
The Case for Problem Solving in Second Language Learning. CLCS Occasional Paper No. 33.
ERIC Educational Resources Information Center
Bourke, James Mannes
A study undertaken in Ireland investigated the effectiveness of a second language teaching strategy that focused on grammatical problem-solving. In this approach, the problems are located within the target language system, and the problem-solving involves induction of grammatical rules and use of those rules. Learners are confronted with instances…
ERIC Educational Resources Information Center
Cerezo, Luis; Caras, Allison; Leow, Ronald P.
2016-01-01
Meta-analytic research suggests an edge of explicit over implicit instruction for the development of complex L2 grammatical structures, but the jury is still out as to which type of explicit instruction--"deductive" or "inductive," where rules are respectively provided or elicited--proves more effective. Avoiding this…
NASA Astrophysics Data System (ADS)
Nieten, Joseph L.; Burke, Roger
1993-03-01
The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.
Integrative relational machine-learning for understanding drug side-effect profiles
2013-01-01
Background Drug side effects represent a common reason for stopping drug development during clinical trials. Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development as well as the risk of discovering novel side effects in available drugs. Today, most investigations deal with isolated side effects and overlook possible redundancy and their frequent co-occurrence. Results In this work, drug annotations are collected from SIDER and DrugBank databases. Terms describing individual side effects reported in SIDER are clustered with a semantic similarity measure into term clusters (TCs). Maximal frequent itemsets are extracted from the resulting drug x TC binary table, leading to the identification of what we call side-effect profiles (SEPs). A SEP is defined as the longest combination of TCs which are shared by a significant number of drugs. Frequent SEPs are explored on the basis of integrated drug and target descriptors using two machine learning methods: decision-trees and inductive-logic programming. Although both methods yield explicit models, inductive-logic programming method performs relational learning and is able to exploit not only drug properties but also background knowledge. Learning efficiency is evaluated by cross-validation and direct testing with new molecules. Comparison of the two machine-learning methods shows that the inductive-logic-programming method displays a greater sensitivity than decision trees and successfully exploit background knowledge such as functional annotations and pathways of drug targets, thereby producing rich and expressive rules. All models and theories are available on a dedicated web site. Conclusions Side effect profiles covering significant number of drugs have been extracted from a drug ×side-effect association table. Integration of background knowledge concerning both chemical and biological spaces has been combined with a relational learning method for discovering rules which explicitly characterize drug-SEP associations. These rules are successfully used for predicting SEPs associated with new drugs. PMID:23802887
Integrative relational machine-learning for understanding drug side-effect profiles.
Bresso, Emmanuel; Grisoni, Renaud; Marchetti, Gino; Karaboga, Arnaud Sinan; Souchet, Michel; Devignes, Marie-Dominique; Smaïl-Tabbone, Malika
2013-06-26
Drug side effects represent a common reason for stopping drug development during clinical trials. Improving our ability to understand drug side effects is necessary to reduce attrition rates during drug development as well as the risk of discovering novel side effects in available drugs. Today, most investigations deal with isolated side effects and overlook possible redundancy and their frequent co-occurrence. In this work, drug annotations are collected from SIDER and DrugBank databases. Terms describing individual side effects reported in SIDER are clustered with a semantic similarity measure into term clusters (TCs). Maximal frequent itemsets are extracted from the resulting drug x TC binary table, leading to the identification of what we call side-effect profiles (SEPs). A SEP is defined as the longest combination of TCs which are shared by a significant number of drugs. Frequent SEPs are explored on the basis of integrated drug and target descriptors using two machine learning methods: decision-trees and inductive-logic programming. Although both methods yield explicit models, inductive-logic programming method performs relational learning and is able to exploit not only drug properties but also background knowledge. Learning efficiency is evaluated by cross-validation and direct testing with new molecules. Comparison of the two machine-learning methods shows that the inductive-logic-programming method displays a greater sensitivity than decision trees and successfully exploit background knowledge such as functional annotations and pathways of drug targets, thereby producing rich and expressive rules. All models and theories are available on a dedicated web site. Side effect profiles covering significant number of drugs have been extracted from a drug ×side-effect association table. Integration of background knowledge concerning both chemical and biological spaces has been combined with a relational learning method for discovering rules which explicitly characterize drug-SEP associations. These rules are successfully used for predicting SEPs associated with new drugs.
Phonological Concept Learning.
Moreton, Elliott; Pater, Joe; Pertsova, Katya
2017-01-01
Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by the same models. We test GMECCS (Gradual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural Cue Model (Gluck & Bower, ) in a Maximum Entropy phonotactic-learning framework (Goldwater & Johnson, ; Hayes & Wilson, ) with a single free parameter, against the alternative hypothesis that learners seek featurally simple algebraic rules ("rule-seeking"). We study the full typology of patterns introduced by Shepard, Hovland, and Jenkins () ("SHJ"), instantiated as both phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2 found that both phonotactic and visual patterns that depended on fewer features could be more difficult than those that depended on more features, as predicted by GMECCS but not by rule-seeking. GMECCS also correctly predicted performance differences between stimulus subclasses within each pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learning) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude that similar cue-based cognitive processes are available for phonological and visual concept learning, and hence that studying either kind of learning can lead to significant insights about the other. Copyright © 2015 Cognitive Science Society, Inc.
ERIC Educational Resources Information Center
Dawson, Colin; Gerken, LouAnn
2011-01-01
While many constraints on learning must be relatively experience-independent, past experience provides a rich source of guidance for subsequent learning. Discovering structure in some domain can inform a learner's future hypotheses about that domain. If a general property accounts for particular sub-patterns, a rational learner should not…
Learning temporal rules to forecast instability in continuously monitored patients
Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. PMID:27274020
Ruan, Hongyu; Yao, Wei-Dong
2017-01-25
Addictive drugs usurp neural plasticity mechanisms that normally serve reward-related learning and memory, primarily by evoking changes in glutamatergic synaptic strength in the mesocorticolimbic dopamine circuitry. Here, we show that repeated cocaine exposure in vivo does not alter synaptic strength in the mouse prefrontal cortex during an early period of withdrawal, but instead modifies a Hebbian quantitative synaptic learning rule by broadening the temporal window and lowers the induction threshold for spike-timing-dependent LTP (t-LTP). After repeated, but not single, daily cocaine injections, t-LTP in layer V pyramidal neurons is induced at +30 ms, a normally ineffective timing interval for t-LTP induction in saline-exposed mice. This cocaine-induced, extended-timing t-LTP lasts for ∼1 week after terminating cocaine and is accompanied by an increased susceptibility to potentiation by fewer pre-post spike pairs, indicating a reduced t-LTP induction threshold. Basal synaptic strength and the maximal attainable t-LTP magnitude remain unchanged after cocaine exposure. We further show that the cocaine facilitation of t-LTP induction is caused by sensitized D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons, which then pathologically recruits voltage-gated l-type Ca 2+ channels that synergize with GluN2A-containing NMDA receptors to drive t-LTP at extended timing. Our results illustrate a mechanism by which cocaine, acting on a key neuromodulation pathway, modifies the coincidence detection window during Hebbian plasticity to facilitate associative synaptic potentiation in prefrontal excitatory circuits. By modifying rules that govern activity-dependent synaptic plasticity, addictive drugs can derail the experience-driven neural circuit remodeling process important for executive control of reward and addiction. It is believed that addictive drugs often render an addict's brain reward system hypersensitive, leaving the individual more susceptible to relapse. We found that repeated cocaine exposure alters a Hebbian associative synaptic learning rule that governs activity-dependent synaptic plasticity in the mouse prefrontal cortex, characterized by a broader temporal window and a lower threshold for spike-timing-dependent LTP (t-LTP), a cellular form of learning and memory. This rule change is caused by cocaine-exacerbated D1-cAMP/protein kinase A dopamine signaling in pyramidal neurons that in turn pathologically recruits l-type Ca 2+ channels to facilitate coincidence detection during t-LTP induction. Our study provides novel insights on how cocaine, even with only brief exposure, may prime neural circuits for subsequent experience-dependent remodeling that may underlie certain addictive behavior. Copyright © 2017 the authors 0270-6474/17/370986-12$15.00/0.
Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
Letzkus, Johannes J; Kampa, Björn M; Stuart, Greg J
2006-10-11
Previous studies focusing on the temporal rules governing changes in synaptic strength during spike timing-dependent synaptic plasticity (STDP) have paid little attention to the fact that synaptic inputs are distributed across complex dendritic trees. During STDP, propagation of action potentials (APs) back to the site of synaptic input is thought to trigger plasticity. However, in pyramidal neurons, backpropagation of single APs is decremental, whereas high-frequency bursts lead to generation of distal dendritic calcium spikes. This raises the question whether STDP learning rules depend on synapse location and firing mode. Here, we investigate this issue at synapses between layer 2/3 and layer 5 pyramidal neurons in somatosensory cortex. We find that low-frequency pairing of single APs at positive times leads to a distance-dependent shift to long-term depression (LTD) at distal inputs. At proximal sites, this LTD could be converted to long-term potentiation (LTP) by dendritic depolarizations suprathreshold for BAC-firing or by high-frequency AP bursts. During AP bursts, we observed a progressive, distance-dependent shift in the timing requirements for induction of LTP and LTD, such that distal synapses display novel timing rules: they potentiate when inputs are activated after burst onset (negative timing) but depress when activated before burst onset (positive timing). These findings could be explained by distance-dependent differences in the underlying dendritic voltage waveforms driving NMDA receptor activation during STDP induction. Our results suggest that synapse location within the dendritic tree is a crucial determinant of STDP, and that synapses undergo plasticity according to local rather than global learning rules.
Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning
Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien
2015-01-01
Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction. PMID:26065018
Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning.
Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien
2015-01-01
Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction.
Dawson, Colin; Gerken, Louann
2011-09-01
While many constraints on learning must be relatively experience-independent, past experience provides a rich source of guidance for subsequent learning. Discovering structure in some domain can inform a learner's future hypotheses about that domain. If a general property accounts for particular sub-patterns, a rational learner should not stipulate separate explanations for each detail without additional evidence, as the general structure has "explained away" the original evidence. In a grammar-learning experiment using tone sequences, manipulating learners' prior exposure to a tone environment affects their sensitivity to the grammar-defining feature, in this case consecutive repeated tones. Grammar-learning performance is worse if context melodies are "smooth" -- when small intervals occur more than large ones -- as Smoothness is a general property accounting for a high rate of repetition. We present an idealized Bayesian model as a "best case" benchmark for learning repetition grammars. When context melodies are Smooth, the model places greater weight on the small-interval constraint, and does not learn the repetition rule as well as when context melodies are not Smooth, paralleling the human learners. These findings support an account of abstract grammar-induction in which learners rationally assess the statistical evidence for underlying structure based on a generative model of the environment. Copyright © 2010 Elsevier B.V. All rights reserved.
Bayesian learning and the psychology of rule induction
Endress, Ansgar D.
2014-01-01
In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to spell out the underlying assumptions, and to confront them with the empirical results Frank and Tenenbaum (2011) propose to simulate, as well as with novel experiments. While rule-learning is arguably well suited to rational Bayesian approaches, I show that their models are neither psychologically plausible nor ideal observer models. Further, I show that their central assumption is unfounded: humans do not always preferentially learn more specific rules, but, at least in some situations, those rules that happen to be more salient. Even when granting the unsupported assumptions, I show that all of the experiments modeled by Frank and Tenenbaum (2011) either contradict their models, or have a large number of more plausible interpretations. I provide an alternative account of the experimental data based on simple psychological mechanisms, and show that this account both describes the data better, and is easier to falsify. I conclude that, despite the recent surge in Bayesian models of cognitive phenomena, psychological phenomena are best understood by developing and testing psychological theories rather than models that can be fit to virtually any data. PMID:23454791
Learning temporal rules to forecast instability in continuously monitored patients.
Guillame-Bert, Mathieu; Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R
2017-01-01
Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Biased Feedback in Spatial Recall Yields a Violation of Delta Rule Learning
Lipinski, John; Spencer, John P.; Samuelson, Larissa K.
2010-01-01
This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4° towards the vertical axis (Towards condition) or 4° further away from the vertical axis (Away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) in the Away condition produced a stronger experience-dependent change over blocks than in the Towards condition. This violates delta rule learning. Subsequent simulations of the Dynamic Field Theory of spatial cognition provide a theoretically unified account of these results. PMID:20702881
Biased feedback in spatial recall yields a violation of delta rule learning.
Lipinski, John; Spencer, John P; Samuelson, Larissa K
2010-08-01
This study investigates whether inductive processes influencing spatial memory performance generalize to supervised learning scenarios with differential feedback. After providing a location memory response in a spatial recall task, participants received visual feedback showing the target location. In critical blocks, feedback was systematically biased either 4 degrees toward the vertical axis (toward condition) or 4 degrees farther away from the vertical axis (away condition). Results showed that the weaker teaching signal (i.e., a smaller difference between the remembered location and the feedback location) produced a stronger experience-dependent change over blocks in the away condition than in the toward condition. This violates delta rule learning. Subsequent simulations of the dynamic field theory of spatial cognition provide a theoretically unified account of these results.
Data Mining in Health and Medical Information.
ERIC Educational Resources Information Center
Bath, Peter A.
2004-01-01
Presents a literature review that covers the following topics related to data mining (DM) in health and medical information: the potential of DM in health and medicine; statistical methods; evaluation of methods; DM tools for health and medicine; inductive learning of symbolic rules; application of DM tools in diagnosis and prognosis; and…
Generating Concise Rules for Human Motion Retrieval
NASA Astrophysics Data System (ADS)
Mukai, Tomohiko; Wakisaka, Ken-Ichi; Kuriyama, Shigeru
This paper proposes a method for retrieving human motion data with concise retrieval rules based on the spatio-temporal features of motion appearance. Our method first converts motion clip into a form of clausal language that represents geometrical relations between body parts and their temporal relationship. A retrieval rule is then learned from the set of manually classified examples using inductive logic programming (ILP). ILP automatically discovers the essential rule in the same clausal form with a user-defined hypothesis-testing procedure. All motions are indexed using this clausal language, and the desired clips are retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable performance and the rule can be intuitively edited in the same language form. Consequently, our method enables efficient and flexible search from a large dataset with simple query language.
Is spacing really the “friend of induction”?
Verkoeijen, Peter P. J. L.; Bouwmeester, Samantha
2014-01-01
Inductive learning takes place when people learn a new concept or category by observing a variety of exemplars. Kornell and Bjork (2008) asked participants to learn new painting styles either by presenting different paintings of the same artist consecutively (massed presentation) or by mixing paintings of different artists (spaced presentation). In their second experiment, Kornell and Bjork (2008) showed with a final style recognition test, that spacing resulted in better inductive learning than massing. Also, by using this style recognition test, they ruled out the possibility that spacing merely resulted in a better memory for the labels of the newly learned painting styles. The findings from Kornell and Bjork’s (2008) second experiment are important because they show that the benefit of spaced learning generalizes to complex learning tasks and outcomes, and that it is not confined to rote memory learning. However, the findings from Kornell and Bjork’s (2008) second experiment have never been replicated. In the present study we performed an exact and high-powered replication of Kornell and Bjork’s (2008) second experiment with a Web-based sample. Such a replication contributes to establish the reliability of the original finding and hence to more conclusive evidence of the spacing effect in inductive learning. The findings from the present replication attempt revealed a medium-sized advantage of spacing over massing in inductive learning, which was comparable to the original effect in the experiment by Kornell and Bjork (2008). Also, the 95% confidence intervals (CI) of the effect sizes from both experiments overlapped considerably. Hence, the findings from the present replication experiment and the original experiment clearly reinforce each other. PMID:24744742
Discovering rules for protein-ligand specificity using support vector inductive logic programming.
Kelley, Lawrence A; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E
2009-09-01
Structural genomics initiatives are rapidly generating vast numbers of protein structures. Comparative modelling is also capable of producing accurate structural models for many protein sequences. However, for many of the known structures, functions are not yet determined, and in many modelling tasks, an accurate structural model does not necessarily tell us about function. Thus, there is a pressing need for high-throughput methods for determining function from structure. The spatial arrangement of key amino acids in a folded protein, on the surface or buried in clefts, is often the determinants of its biological function. A central aim of molecular biology is to understand the relationship between such substructures or surfaces and biological function, leading both to function prediction and to function design. We present a new general method for discovering the features of binding pockets that confer specificity for particular ligands. Using a recently developed machine-learning technique which couples the rule-discovery approach of inductive logic programming with the statistical learning power of support vector machines, we are able to discriminate, with high precision (90%) and recall (86%) between pockets that bind FAD and those that bind NAD on a large benchmark set given only the geometry and composition of the backbone of the binding pocket without the use of docking. In addition, we learn rules governing this specificity which can feed into protein functional design protocols. An analysis of the rules found suggests that key features of the binding pocket may be tied to conformational freedom in the ligand. The representation is sufficiently general to be applicable to any discriminatory binding problem. All programs and data sets are freely available to non-commercial users at http://www.sbg.bio.ic.ac.uk/svilp_ligand/.
Logical Differential Prediction Bayes Net, improving breast cancer diagnosis for older women.
Nassif, Houssam; Wu, Yirong; Page, David; Burnside, Elizabeth
2012-01-01
Overdiagnosis is a phenomenon in which screening identities cancer which may not go on to cause symptoms or death. Women over 65 who develop breast cancer bear the heaviest burden of overdiagnosis. This work introduces novel machine learning algorithms to improve diagnostic accuracy of breast cancer in aging populations. At the same time, we aim at minimizing unnecessary invasive procedures (thus decreasing false positives) and concomitantly addressing overdiagnosis. We develop a novel algorithm. Logical Differential Prediction Bayes Net (LDP-BN), that calculates the risk of breast disease based on mammography findings. LDP-BN uses Inductive Logic Programming (ILP) to learn relational rules, selects older-specific differentially predictive rules, and incorporates them into a Bayes Net, significantly improving its performance. In addition, LDP-BN offers valuable insight into the classification process, revealing novel older-specific rules that link mass presence to invasive, and calcification presence and lack of detectable mass to DCIS.
Reuveni, Iris; Lin, Longnian; Barkai, Edi
2018-06-15
Following training in a difficult olfactory-discrimination (OD) task rats acquire the capability to perform the task easily, with little effort. This new acquired skill, of 'learning how to learn' is termed 'rule learning'. At the single-cell level, rule learning is manifested in long-term enhancement of intrinsic neuronal excitability of piriform cortex (PC) pyramidal neurons, and in excitatory synaptic connections between these neurons to maintain cortical stability, such long-lasting increase in excitability must be accompanied by paralleled increase in inhibitory processes that would prevent hyper-excitable activation. In this review we describe the cellular and molecular mechanisms underlying complex-learning-induced long-lasting modifications in GABA A -receptors and GABA B -receptor-mediated synaptic inhibition. Subsequently we discuss how such modifications support the induction and preservation of long-term memories in the in the mammalian brain. Based on experimental results, computational analysis and modeling, we propose that rule learning is maintained by doubling the strength of synaptic inputs, excitatory as well as inhibitory, in a sub-group of neurons. This enhanced synaptic transmission, which occurs in all (or almost all) synaptic inputs onto these neurons, activates specific stored memories. At the molecular level, such rule-learning-relevant synaptic strengthening is mediated by doubling the conductance of synaptic channels, but not their numbers. This post synaptic process is controlled by a whole-cell mechanism via particular second messenger systems. This whole-cell mechanism enables memory amplification when required and memory extinction when not relevant. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Jia, Xiuqin; Liang, Peipeng; Shi, Lin; Wang, Defeng; Li, Kuncheng
2015-01-01
In neuroimaging studies, increased task complexity can lead to increased activation in task-specific regions or to activation of additional regions. How the brain adapts to increased rule complexity during inductive reasoning remains unclear. In the current study, three types of problems were created: simple rule induction (i.e., SI, with rule complexity of 1), complex rule induction (i.e., CI, with rule complexity of 2), and perceptual control. Our findings revealed that increased activations accompany increased rule complexity in the right dorsal lateral prefrontal cortex (DLPFC) and medial posterior parietal cortex (precuneus). A cognitive model predicted both the behavioral and brain imaging results. The current findings suggest that neural activity in frontal and parietal regions is modulated by rule complexity, which may shed light on the neural mechanisms of inductive reasoning. Copyright © 2014. Published by Elsevier Ltd.
Controlling false-negative errors in microarray differential expression analysis: a PRIM approach.
Cole, Steve W; Galic, Zoran; Zack, Jerome A
2003-09-22
Theoretical considerations suggest that current microarray screening algorithms may fail to detect many true differences in gene expression (Type II analytic errors). We assessed 'false negative' error rates in differential expression analyses by conventional linear statistical models (e.g. t-test), microarray-adapted variants (e.g. SAM, Cyber-T), and a novel strategy based on hold-out cross-validation. The latter approach employs the machine-learning algorithm Patient Rule Induction Method (PRIM) to infer minimum thresholds for reliable change in gene expression from Boolean conjunctions of fold-induction and raw fluorescence measurements. Monte Carlo analyses based on four empirical data sets show that conventional statistical models and their microarray-adapted variants overlook more than 50% of genes showing significant up-regulation. Conjoint PRIM prediction rules recover approximately twice as many differentially expressed transcripts while maintaining strong control over false-positive (Type I) errors. As a result, experimental replication rates increase and total analytic error rates decline. RT-PCR studies confirm that gene inductions detected by PRIM but overlooked by other methods represent true changes in mRNA levels. PRIM-based conjoint inference rules thus represent an improved strategy for high-sensitivity screening of DNA microarrays. Freestanding JAVA application at http://microarray.crump.ucla.edu/focus
Applications of rule-induction in the derivation of quantitative structure-activity relationships.
A-Razzak, M; Glen, R C
1992-08-01
Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.
Applications of rule-induction in the derivation of quantitative structure-activity relationships
NASA Astrophysics Data System (ADS)
A-Razzak, Mohammed; Glen, Robert C.
1992-08-01
Recently, methods have been developed in the field of Artificial Intelligence (AI), specifically in the expert systems area using rule-induction, designed to extract rules from data. We have applied these methods to the analysis of molecular series with the objective of generating rules which are predictive and reliable. The input to rule-induction consists of a number of examples with known outcomes (a training set) and the output is a tree-structured series of rules. Unlike most other analysis methods, the results of the analysis are in the form of simple statements which can be easily interpreted. These are readily applied to new data giving both a classification and a probability of correctness. Rule-induction has been applied to in-house generated and published QSAR datasets and the methodology, application and results of these analyses are discussed. The results imply that in some cases it would be advantageous to use rule-induction as a complementary technique in addition to conventional statistical and pattern-recognition methods.
Magnetic induction of hyperthermia by a modified self-learning fuzzy temperature controller
NASA Astrophysics Data System (ADS)
Wang, Wei-Cheng; Tai, Cheng-Chi
2017-07-01
The aim of this study involved developing a temperature controller for magnetic induction hyperthermia (MIH). A closed-loop controller was applied to track a reference model to guarantee a desired temperature response. The MIH system generated an alternating magnetic field to heat a high magnetic permeability material. This wireless induction heating had few side effects when it was extensively applied to cancer treatment. The effects of hyperthermia strongly depend on the precise control of temperature. However, during the treatment process, the control performance is degraded due to severe perturbations and parameter variations. In this study, a modified self-learning fuzzy logic controller (SLFLC) with a gain tuning mechanism was implemented to obtain high control performance in a wide range of treatment situations. This implementation was performed by appropriately altering the output scaling factor of a fuzzy inverse model to adjust the control rules. In this study, the proposed SLFLC was compared to the classical self-tuning fuzzy logic controller and fuzzy model reference learning control. Additionally, the proposed SLFLC was verified by conducting in vitro experiments with porcine liver. The experimental results indicated that the proposed controller showed greater robustness and excellent adaptability with respect to the temperature control of the MIH system.
Induction of belief decision trees from data
NASA Astrophysics Data System (ADS)
AbuDahab, Khalil; Xu, Dong-ling; Keane, John
2012-09-01
In this paper, a method for acquiring belief rule-bases by inductive inference from data is described and evaluated. Existing methods extract traditional rules inductively from data, with consequents that are believed to be either 100% true or 100% false. Belief rules can capture uncertain or incomplete knowledge using uncertain belief degrees in consequents. Instead of using singled-value consequents, each belief rule deals with a set of collectively exhaustive and mutually exclusive consequents. The proposed method extracts belief rules from data which contain uncertain or incomplete knowledge.
NASA Technical Reports Server (NTRS)
Nieten, Joseph; Burke, Roger
1993-01-01
Consideration is given to the System Diagnostic Builder (SDB), an automated knowledge acquisition tool using state-of-the-art AI technologies. The SDB employs an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert. Thus, data are captured from the subject system, classified, and used to drive the rule generation process. These rule bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The knowledge bases captured from the Shuttle Mission Simulator can be used as black box simulations by the Intelligent Computer Aided Training devices. The SDB can also be used to construct knowledge bases for the process control industry, such as chemical production or oil and gas production.
ERIC Educational Resources Information Center
Faulkner, Robert; Davidson, Jane W.; McPherson, Gary E.
2010-01-01
The use of data mining for the analysis of data collected in natural settings is increasingly recognized as a legitimate mode of enquiry. This rule-inductive paradigm is an effective means of discovering relationships within large datasets--especially in research that has limited experimental design--and for the subsequent formulation of…
Providing QoS through machine-learning-driven adaptive multimedia applications.
Ruiz, Pedro M; Botía, Juan A; Gómez-Skarmeta, Antonio
2004-06-01
We investigate the optimization of the quality of service (QoS) offered by real-time multimedia adaptive applications through machine learning algorithms. These applications are able to adapt in real time their internal settings (i.e., video sizes, audio and video codecs, among others) to the unpredictably changing capacity of the network. Traditional adaptive applications just select a set of settings to consume less than the available bandwidth. We propose a novel approach in which the selected set of settings is the one which offers a better user-perceived QoS among all those combinations which satisfy the bandwidth restrictions. We use a genetic algorithm to decide when to trigger the adaptation process depending on the network conditions (i.e., loss-rate, jitter, etc.). Additionally, the selection of the new set of settings is done according to a set of rules which model the user-perceived QoS. These rules are learned using the SLIPPER rule induction algorithm over a set of examples extracted from scores provided by real users. We will demonstrate that the proposed approach guarantees a good user-perceived QoS even when the network conditions are constantly changing.
Uncertain decision tree inductive inference
NASA Astrophysics Data System (ADS)
Zarban, L.; Jafari, S.; Fakhrahmad, S. M.
2011-10-01
Induction is the process of reasoning in which general rules are formulated based on limited observations of recurring phenomenal patterns. Decision tree learning is one of the most widely used and practical inductive methods, which represents the results in a tree scheme. Various decision tree algorithms have already been proposed such as CLS, ID3, Assistant C4.5, REPTree and Random Tree. These algorithms suffer from some major shortcomings. In this article, after discussing the main limitations of the existing methods, we introduce a new decision tree induction algorithm, which overcomes all the problems existing in its counterparts. The new method uses bit strings and maintains important information on them. This use of bit strings and logical operation on them causes high speed during the induction process. Therefore, it has several important features: it deals with inconsistencies in data, avoids overfitting and handles uncertainty. We also illustrate more advantages and the new features of the proposed method. The experimental results show the effectiveness of the method in comparison with other methods existing in the literature.
Mechanisms of rule acquisition and rule following in inductive reasoning.
Crescentini, Cristiano; Seyed-Allaei, Shima; De Pisapia, Nicola; Jovicich, Jorge; Amati, Daniele; Shallice, Tim
2011-05-25
Despite the recent interest in the neuroanatomy of inductive reasoning processes, the regional specificity within prefrontal cortex (PFC) for the different mechanisms involved in induction tasks remains to be determined. In this study, we used fMRI to investigate the contribution of PFC regions to rule acquisition (rule search and rule discovery) and rule following. Twenty-six healthy young adult participants were presented with a series of images of cards, each consisting of a set of circles numbered in sequence with one colored blue. Participants had to predict the position of the blue circle on the next card. The rules that had to be acquired pertained to the relationship among succeeding stimuli. Responses given by subjects were categorized in a series of phases either tapping rule acquisition (responses given up to and including rule discovery) or rule following (correct responses after rule acquisition). Mid-dorsolateral PFC (mid-DLPFC) was active during rule search and remained active until successful rule acquisition. By contrast, rule following was associated with activation in temporal, motor, and medial/anterior prefrontal cortex. Moreover, frontopolar cortex (FPC) was active throughout the rule acquisition and rule following phases before a rule became familiar. We attributed activation in mid-DLPFC to hypothesis generation and in FPC to integration of multiple separate inferences. The present study provides evidence that brain activation during inductive reasoning involves a complex network of frontal processes and that different subregions respond during rule acquisition and rule following phases.
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1997-01-01
The neural "learning rules" governing the induction of plasticity in the cerebellum were analyzed by recording the patterns of neural activity in awake, behaving animals during stimuli that induce a form of cerebellum-dependent learning. We recorded the simple- and complex-spike responses of a broad sample of Purkinje cells in the floccular complex during a number of stimulus conditions that induce motor learning in the vestibulo-ocular reflex (VOR). Each subclass of Purkinje cells carried essentially the same information about required changes in the gain of the VOR. The correlation of simple-spike activity in Purkinje cells with activity in vestibular pathways could guide learning during low-frequency but not high-frequency stimuli. Climbing fiber activity could guide learning during all stimuli tested but only if compared with the activity present approximately 100 msec earlier in either vestibular pathways or Purkinje cells.
NASA Astrophysics Data System (ADS)
Bayoudh, Meriam; Roux, Emmanuel; Richard, Gilles; Nock, Richard
2015-03-01
The number of satellites and sensors devoted to Earth observation has become increasingly elevated, delivering extensive data, especially images. At the same time, the access to such data and the tools needed to process them has considerably improved. In the presence of such data flow, we need automatic image interpretation methods, especially when it comes to the monitoring and prediction of environmental and societal changes in highly dynamic socio-environmental contexts. This could be accomplished via artificial intelligence. The concept described here relies on the induction of classification rules that explicitly take into account structural knowledge, using Aleph, an Inductive Logic Programming (ILP) system, combined with a multi-class classification procedure. This methodology was used to monitor changes in land cover/use of the French Guiana coastline. One hundred and fifty-eight classification rules were induced from 3 diachronic land cover/use maps including 38 classes. These rules were expressed in first order logic language, which makes them easily understandable by non-experts. A 10-fold cross-validation gave significant average values of 84.62%, 99.57% and 77.22% for classification accuracy, specificity and sensitivity, respectively. Our methodology could be beneficial to automatically classify new objects and to facilitate object-based classification procedures.
Teaching the Spin Selection Rule: An Inductive Approach
ERIC Educational Resources Information Center
Halstead, Judith A.
2013-01-01
In the group exercise described, students are guided through an inductive justification for the spin conservation selection rule ([delta]S = 0). Although the exercise only explicitly involves various states of helium, the conclusion is one of the most widely applicable selection rules for the interaction of light with matter, applying, in various…
On the inherent competition between valid and spurious inductive inferences in Boolean data
NASA Astrophysics Data System (ADS)
Andrecut, M.
Inductive inference is the process of extracting general rules from specific observations. This problem also arises in the analysis of biological networks, such as genetic regulatory networks, where the interactions are complex and the observations are incomplete. A typical task in these problems is to extract general interaction rules as combinations of Boolean covariates, that explain a measured response variable. The inductive inference process can be considered as an incompletely specified Boolean function synthesis problem. This incompleteness of the problem will also generate spurious inferences, which are a serious threat to valid inductive inference rules. Using random Boolean data as a null model, here we attempt to measure the competition between valid and spurious inductive inference rules from a given data set. We formulate two greedy search algorithms, which synthesize a given Boolean response variable in a sparse disjunct normal form, and respectively a sparse generalized algebraic normal form of the variables from the observation data, and we evaluate numerically their performance.
A novel logic-based approach for quantitative toxicology prediction.
Amini, Ata; Muggleton, Stephen H; Lodhi, Huma; Sternberg, Michael J E
2007-01-01
There is a pressing need for accurate in silico methods to predict the toxicity of molecules that are being introduced into the environment or are being developed into new pharmaceuticals. Predictive toxicology is in the realm of structure activity relationships (SAR), and many approaches have been used to derive such SAR. Previous work has shown that inductive logic programming (ILP) is a powerful approach that circumvents several major difficulties, such as molecular superposition, faced by some other SAR methods. The ILP approach reasons with chemical substructures within a relational framework and yields chemically understandable rules. Here, we report a general new approach, support vector inductive logic programming (SVILP), which extends the essentially qualitative ILP-based SAR to quantitative modeling. First, ILP is used to learn rules, the predictions of which are then used within a novel kernel to derive a support-vector generalization model. For a highly heterogeneous dataset of 576 molecules with known fathead minnow fish toxicity, the cross-validated correlation coefficients (R2CV) from a chemical descriptor method (CHEM) and SVILP are 0.52 and 0.66, respectively. The ILP, CHEM, and SVILP approaches correctly predict 55, 58, and 73%, respectively, of toxic molecules. In a set of 165 unseen molecules, the R2 values from the commercial software TOPKAT and SVILP are 0.26 and 0.57, respectively. In all calculations, SVILP showed significant improvements in comparison with the other methods. The SVILP approach has a major advantage in that it uses ILP automatically and consistently to derive rules, mostly novel, describing fragments that are toxicity alerts. The SVILP is a general machine-learning approach and has the potential of tackling many problems relevant to chemoinformatics including in silico drug design.
Predicting who will drop out of nursing courses: a machine learning exercise.
Moseley, Laurence G; Mead, Donna M
2008-05-01
The concepts of causation and prediction are different, and have different implications for practice. This distinction is applied here to studies of the problem of student attrition (although it is more widely applicable). Studies of attrition from nursing courses have tended to concentrate on causation, trying, largely unsuccessfully, to elicit what causes drop out. However, the problem may more fruitfully be cast in terms of predicting who is likely to drop out. One powerful method for attempting to make predictions is rule induction. This paper reports the use of the Answer Tree package from SPSS for that purpose. The main data set consisted of 3978 records on 528 nursing students, split into a training set and a test set. The source was standard university student records. The method obtained 84% sensitivity, 70% specificity, and 94% accuracy on previously unseen cases. The method requires large amounts of high quality data. When such data are available, rule induction offers a way to reduce attrition. It would be desirable to compare its results with those of predictions made by tutors using more informal conventional methods.
Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A.; Borst, Jelmer P.; Li, Kuncheng
2016-01-01
Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network. PMID:27193284
Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Borst, Jelmer P; Li, Kuncheng
2016-05-19
Numerical inductive reasoning refers to the process of identifying and extrapolating the rule involved in numeric materials. It is associated with calculation, and shares the common activation of the fronto-parietal regions with calculation, which suggests that numerical inductive reasoning may correspond to a general calculation process. However, compared with calculation, rule identification is critical and unique to reasoning. Previous studies have established the central role of the fronto-parietal network for relational integration during rule identification in numerical inductive reasoning. The current question of interest is whether numerical inductive reasoning exclusively corresponds to calculation or operates beyond calculation, and whether it is possible to distinguish between them based on the activity pattern in the fronto-parietal network. To directly address this issue, three types of problems were created: numerical inductive reasoning, calculation, and perceptual judgment. Our results showed that the fronto-parietal network was more active in numerical inductive reasoning which requires more exchanges between intermediate representations and long-term declarative knowledge during rule identification. These results survived even after controlling for the covariates of response time and error rate. A computational cognitive model was developed using the cognitive architecture ACT-R to account for the behavioral results and brain activity in the fronto-parietal network.
NASA Astrophysics Data System (ADS)
Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin
2017-10-01
For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.
Scaffold hopping in drug discovery using inductive logic programming.
Tsunoyama, Kazuhisa; Amini, Ata; Sternberg, Michael J E; Muggleton, Stephen H
2008-05-01
In chemoinformatics, searching for compounds which are structurally diverse and share a biological activity is called scaffold hopping. Scaffold hopping is important since it can be used to obtain alternative structures when the compound under development has unexpected side-effects. Pharmaceutical companies use scaffold hopping when they wish to circumvent prior patents for targets of interest. We propose a new method for scaffold hopping using inductive logic programming (ILP). ILP uses the observed spatial relationships between pharmacophore types in pretested active and inactive compounds and learns human-readable rules describing the diverse structures of active compounds. The ILP-based scaffold hopping method is compared to two previous algorithms (chemically advanced template search, CATS, and CATS3D) on 10 data sets with diverse scaffolds. The comparison shows that the ILP-based method is significantly better than random selection while the other two algorithms are not. In addition, the ILP-based method retrieves new active scaffolds which were not found by CATS and CATS3D. The results show that the ILP-based method is at least as good as the other methods in this study. ILP produces human-readable rules, which makes it possible to identify the three-dimensional features that lead to scaffold hopping. A minor variant of a rule learnt by ILP for scaffold hopping was subsequently found to cover an inhibitor identified by an independent study. This provides a successful result in a blind trial of the effectiveness of ILP to generate rules for scaffold hopping. We conclude that ILP provides a valuable new approach for scaffold hopping.
Occupancy schedules learning process through a data mining framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Oca, Simona; Hong, Tianzhen
Building occupancy is a paramount factor in building energy simulations. Specifically, lighting, plug loads, HVAC equipment utilization, fresh air requirements and internal heat gain or loss greatly depends on the level of occupancy within a building. Developing the appropriate methodologies to describe and reproduce the intricate network responsible for human-building interactions are needed. Extrapolation of patterns from big data streams is a powerful analysis technique which will allow for a better understanding of energy usage in buildings. A three-step data mining framework is applied to discover occupancy patterns in office spaces. First, a data set of 16 offices with 10more » minute interval occupancy data, over a two year period is mined through a decision tree model which predicts the occupancy presence. Then a rule induction algorithm is used to learn a pruned set of rules on the results from the decision tree model. Finally, a cluster analysis is employed in order to obtain consistent patterns of occupancy schedules. Furthermore, the identified occupancy rules and schedules are representative as four archetypal working profiles that can be used as input to current building energy modeling programs, such as EnergyPlus or IDA-ICE, to investigate impact of occupant presence on design, operation and energy use in office buildings.« less
Occupancy schedules learning process through a data mining framework
D'Oca, Simona; Hong, Tianzhen
2014-12-17
Building occupancy is a paramount factor in building energy simulations. Specifically, lighting, plug loads, HVAC equipment utilization, fresh air requirements and internal heat gain or loss greatly depends on the level of occupancy within a building. Developing the appropriate methodologies to describe and reproduce the intricate network responsible for human-building interactions are needed. Extrapolation of patterns from big data streams is a powerful analysis technique which will allow for a better understanding of energy usage in buildings. A three-step data mining framework is applied to discover occupancy patterns in office spaces. First, a data set of 16 offices with 10more » minute interval occupancy data, over a two year period is mined through a decision tree model which predicts the occupancy presence. Then a rule induction algorithm is used to learn a pruned set of rules on the results from the decision tree model. Finally, a cluster analysis is employed in order to obtain consistent patterns of occupancy schedules. Furthermore, the identified occupancy rules and schedules are representative as four archetypal working profiles that can be used as input to current building energy modeling programs, such as EnergyPlus or IDA-ICE, to investigate impact of occupant presence on design, operation and energy use in office buildings.« less
Beck, Stefanie; Reich, Christian; Krause, Dorothea; Ruhnke, Bjarne; Daubmann, Anne; Weimann, Jörg; Zöllner, Christian; Kubitz, Jens
2018-01-31
Beginners in residency programmes in anaesthesia are challenged because working environment is complex, and they cannot rely on experience to meet challenges. During this early stage, residents need rules and structures to guide their actions and ensure patient safety. We investigated whether self-training with an electronic audiovisual checklist app on a mobile phone would produce a long-term improvement in the safety-relevant actions during induction of general anaesthesia. During the first month of their anaesthesia residency, we randomised 26 residents to the intervention and control groups. The study was performed between August 2013 and December 2014 in two university hospitals in Germany. In addition to normal training, the residents of the intervention group trained themselves on well tolerated induction using the electronic checklist for at least 60 consecutive general anaesthesia inductions. After an initial learning phase, all residents were observed during one induction of general anaesthesia. The primary outcome was the number of safety items completed during this anaesthesia induction. Secondary outcomes were similar observations 4 and 8 weeks later. Immediately, and 4 weeks after the first learning phase, residents in the intervention group completed a significantly greater number of safety checks than residents in the control group 2.8 [95% confidence interval (CI) 0.4 to 5.1, P = 0.021, Cohen's d = 0.47] and 3.7 (95% CI 1.3 to 6.1, P = 0.003, Cohen's d = 0.61), respectively. The difference between the groups had disappeared by 8 weeks: mean difference in the number of safety checks at 8 weeks was 0.4, 95% CI -2.0 to 2.8, P = 0.736, Cohen's d = 0.07). The use of an audiovisual self-training checklists improves safety-relevant behaviour in the early stages of a residency training programme in anaesthesia.
An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.
Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David
2010-01-01
Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.
Two Undergraduate Process Modeling Courses Taught Using Inductive Learning Methods
ERIC Educational Resources Information Center
Soroush, Masoud; Weinberger, Charles B.
2010-01-01
This manuscript presents a successful application of inductive learning in process modeling. It describes two process modeling courses that use inductive learning methods such as inquiry learning and problem-based learning, among others. The courses include a novel collection of multi-disciplinary complementary process modeling examples. They were…
Empirical Analysis and Refinement of Expert System Knowledge Bases
1990-03-31
the number of hidden units and the error rates is listed in Figure 6. 3.3. Cancer Data A data qet for eva!ukting th.- Frognosis of breast cancer ...Alternative Rule Induction Methods A data set for evaluating the prognosis of breast cancer recurrence was analyzed by Michalski’s AQI5 rule induction program...AQ15 7 2 32% PVM 2 1 23% Figure 6-3: Comparative Summa-y for AQI5 and PVM on Breast Cancer Data 6.2.2. Alternative Decision Tree Induction Methods
Evolving rule-based systems in two medical domains using genetic programming.
Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf
2004-11-01
To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.
Learning to predict chemical reactions.
Kayala, Matthew A; Azencott, Chloé-Agathe; Chen, Jonathan H; Baldi, Pierre
2011-09-26
Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles, respectively, are not high throughput, are not generalizable or scalable, and lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry data set consisting of 1630 full multistep reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top-ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of nonproductive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal ( http://cdb.ics.uci.edu) under the Toolkits section.
Learning to Predict Chemical Reactions
Kayala, Matthew A.; Azencott, Chloé-Agathe; Chen, Jonathan H.
2011-01-01
Being able to predict the course of arbitrary chemical reactions is essential to the theory and applications of organic chemistry. Approaches to the reaction prediction problems can be organized around three poles corresponding to: (1) physical laws; (2) rule-based expert systems; and (3) inductive machine learning. Previous approaches at these poles respectively are not high-throughput, are not generalizable or scalable, or lack sufficient data and structure to be implemented. We propose a new approach to reaction prediction utilizing elements from each pole. Using a physically inspired conceptualization, we describe single mechanistic reactions as interactions between coarse approximations of molecular orbitals (MOs) and use topological and physicochemical attributes as descriptors. Using an existing rule-based system (Reaction Explorer), we derive a restricted chemistry dataset consisting of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps. And from machine learning, we pose identifying productive mechanistic steps as a statistical ranking, information retrieval, problem: given a set of reactants and a description of conditions, learn a ranking model over potential filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products. The machine learning implementation follows a two-stage approach, in which we first train atom level reactivity filters to prune 94.00% of non-productive reactions with a 0.01% error rate. Then, we train an ensemble of ranking models on pairs of interacting MOs to learn a relative productivity function over mechanistic steps in a given system. Without the use of explicit transformation patterns, the ensemble perfectly ranks the productive mechanism at the top 89.05% of the time, rising to 99.86% of the time when the top four are considered. Furthermore, the system is generalizable, making reasonable predictions over reactants and conditions which the rule-based expert does not handle. A web interface to the machine learning based mechanistic reaction predictor is accessible through our chemoinformatics portal (http://cdb.ics.uci.edu) under the Toolkits section. PMID:21819139
Diverse strategy-learning styles promote cooperation in evolutionary spatial prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Liu, Run-Ran; Jia, Chun-Xiao; Rong, Zhihai
2015-11-01
Observational learning and practice learning are two important learning styles and play important roles in our information acquisition. In this paper, we study a spacial evolutionary prisoner's dilemma game, where players can choose the observational learning rule or the practice learning rule when updating their strategies. In the proposed model, we use a parameter p controlling the preference of players choosing the observational learning rule, and found that there exists an optimal value of p leading to the highest cooperation level, which indicates that the cooperation can be promoted by these two learning rules collaboratively and one single learning rule is not favor the promotion of cooperation. By analysing the dynamical behavior of the system, we find that the observational learning rule can make the players residing on cooperative clusters more easily realize the bad sequence of mutual defection. However, a too high observational learning probability suppresses the players to form compact cooperative clusters. Our results highlight the importance of a strategy-updating rule, more importantly, the observational learning rule in the evolutionary cooperation.
Recommendation System Based On Association Rules For Distributed E-Learning Management Systems
NASA Astrophysics Data System (ADS)
Mihai, Gabroveanu
2015-09-01
Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.
Munkhdalai, Tsendsuren; Liu, Feifan; Yu, Hong
2018-04-25
Medication and adverse drug event (ADE) information extracted from electronic health record (EHR) notes can be a rich resource for drug safety surveillance. Existing observational studies have mainly relied on structured EHR data to obtain ADE information; however, ADEs are often buried in the EHR narratives and not recorded in structured data. To unlock ADE-related information from EHR narratives, there is a need to extract relevant entities and identify relations among them. In this study, we focus on relation identification. This study aimed to evaluate natural language processing and machine learning approaches using the expert-annotated medical entities and relations in the context of drug safety surveillance, and investigate how different learning approaches perform under different configurations. We have manually annotated 791 EHR notes with 9 named entities (eg, medication, indication, severity, and ADEs) and 7 different types of relations (eg, medication-dosage, medication-ADE, and severity-ADE). Then, we explored 3 supervised machine learning systems for relation identification: (1) a support vector machines (SVM) system, (2) an end-to-end deep neural network system, and (3) a supervised descriptive rule induction baseline system. For the neural network system, we exploited the state-of-the-art recurrent neural network (RNN) and attention models. We report the performance by macro-averaged precision, recall, and F1-score across the relation types. Our results show that the SVM model achieved the best average F1-score of 89.1% on test data, outperforming the long short-term memory (LSTM) model with attention (F1-score of 65.72%) as well as the rule induction baseline system (F1-score of 7.47%) by a large margin. The bidirectional LSTM model with attention achieved the best performance among different RNN models. With the inclusion of additional features in the LSTM model, its performance can be boosted to an average F1-score of 77.35%. It shows that classical learning models (SVM) remains advantageous over deep learning models (RNN variants) for clinical relation identification, especially for long-distance intersentential relations. However, RNNs demonstrate a great potential of significant improvement if more training data become available. Our work is an important step toward mining EHRs to improve the efficacy of drug safety surveillance. Most importantly, the annotated data used in this study will be made publicly available, which will further promote drug safety research in the community. ©Tsendsuren Munkhdalai, Feifan Liu, Hong Yu. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 25.04.2018.
Munkhdalai, Tsendsuren; Liu, Feifan
2018-01-01
Background Medication and adverse drug event (ADE) information extracted from electronic health record (EHR) notes can be a rich resource for drug safety surveillance. Existing observational studies have mainly relied on structured EHR data to obtain ADE information; however, ADEs are often buried in the EHR narratives and not recorded in structured data. Objective To unlock ADE-related information from EHR narratives, there is a need to extract relevant entities and identify relations among them. In this study, we focus on relation identification. This study aimed to evaluate natural language processing and machine learning approaches using the expert-annotated medical entities and relations in the context of drug safety surveillance, and investigate how different learning approaches perform under different configurations. Methods We have manually annotated 791 EHR notes with 9 named entities (eg, medication, indication, severity, and ADEs) and 7 different types of relations (eg, medication-dosage, medication-ADE, and severity-ADE). Then, we explored 3 supervised machine learning systems for relation identification: (1) a support vector machines (SVM) system, (2) an end-to-end deep neural network system, and (3) a supervised descriptive rule induction baseline system. For the neural network system, we exploited the state-of-the-art recurrent neural network (RNN) and attention models. We report the performance by macro-averaged precision, recall, and F1-score across the relation types. Results Our results show that the SVM model achieved the best average F1-score of 89.1% on test data, outperforming the long short-term memory (LSTM) model with attention (F1-score of 65.72%) as well as the rule induction baseline system (F1-score of 7.47%) by a large margin. The bidirectional LSTM model with attention achieved the best performance among different RNN models. With the inclusion of additional features in the LSTM model, its performance can be boosted to an average F1-score of 77.35%. Conclusions It shows that classical learning models (SVM) remains advantageous over deep learning models (RNN variants) for clinical relation identification, especially for long-distance intersentential relations. However, RNNs demonstrate a great potential of significant improvement if more training data become available. Our work is an important step toward mining EHRs to improve the efficacy of drug safety surveillance. Most importantly, the annotated data used in this study will be made publicly available, which will further promote drug safety research in the community. PMID:29695376
Developmental changes in automatic rule-learning mechanisms across early childhood.
Mueller, Jutta L; Friederici, Angela D; Männel, Claudia
2018-06-27
Infants' ability to learn complex linguistic regularities from early on has been revealed by electrophysiological studies indicating that 3-month-olds, but not adults, can automatically detect non-adjacent dependencies between syllables. While different ERP responses in adults and infants suggest that both linguistic rule learning and its link to basic auditory processing undergo developmental changes, systematic investigations of the developmental trajectories are scarce. In the present study, we assessed 2- and 4-year-olds' ERP indicators of pitch discrimination and linguistic rule learning in a syllable-based oddball design. To test for the relation between auditory discrimination and rule learning, ERP responses to pitch changes were used as predictor for potential linguistic rule-learning effects. Results revealed that 2-year-olds, but not 4-year-olds, showed ERP markers of rule learning. Although, 2-year-olds' rule learning was not dependent on differences in pitch perception, 4-year-old children demonstrated a dependency, such that those children who showed more pronounced responses to pitch changes still showed an effect of rule learning. These results narrow down the developmental decline of the ability for automatic linguistic rule learning to the age between 2 and 4 years, and, moreover, point towards a strong modification of this change by auditory processes. At an age when the ability of automatic linguistic rule learning phases out, rule learning can still be observed in children with enhanced auditory responses. The observed interrelations are plausible causes for age-of-acquisition effects and inter-individual differences in language learning. © 2018 John Wiley & Sons Ltd.
Common and dissociable neural correlates associated with component processes of inductive reasoning.
Jia, Xiuqin; Liang, Peipeng; Lu, Jie; Yang, Yanhui; Zhong, Ning; Li, Kuncheng
2011-06-15
The ability to draw numerical inductive reasoning requires two key cognitive processes, identification and extrapolation. This study aimed to identify the neural correlates of both component processes of numerical inductive reasoning using event-related fMRI. Three kinds of tasks: rule induction (RI), rule induction and application (RIA), and perceptual judgment (Jud) were solved by twenty right-handed adults. Our results found that the left superior parietal lobule (SPL) extending into the precuneus and left dorsolateral prefrontal cortex (DLPFC) were commonly recruited in the two components. It was also observed that the fronto-parietal network was more specific to identification, whereas the striatal-thalamic network was more specific to extrapolation. The findings suggest that numerical inductive reasoning is mediated by the coordination of multiple brain areas including the prefrontal, parietal, and subcortical regions, of which some are more specific to demands on only one of these two component processes, whereas others are sensitive to both. Copyright © 2011 Elsevier Inc. All rights reserved.
Rule learning in autism: the role of reward type and social context.
Jones, E J H; Webb, S J; Estes, A; Dawson, G
2013-01-01
Learning abstract rules is central to social and cognitive development. Across two experiments, we used Delayed Non-Matching to Sample tasks to characterize the longitudinal development and nature of rule-learning impairments in children with Autism Spectrum Disorder (ASD). Results showed that children with ASD consistently experienced more difficulty learning an abstract rule from a discrete physical reward than children with DD. Rule learning was facilitated by the provision of more concrete reinforcement, suggesting an underlying difficulty in forming conceptual connections. Learning abstract rules about social stimuli remained challenging through late childhood, indicating the importance of testing executive functions in both social and non-social contexts.
Techniques of Acceleration for Association Rule Induction with Pseudo Artificial Life Algorithm
NASA Astrophysics Data System (ADS)
Kanakubo, Masaaki; Hagiwara, Masafumi
Frequent patterns mining is one of the important problems in data mining. Generally, the number of potential rules grows rapidly as the size of database increases. It is therefore hard for a user to extract the association rules. To avoid such a difficulty, we propose a new method for association rule induction with pseudo artificial life approach. The proposed method is to decide whether there exists an item set which contains N or more items in two transactions. If it exists, a series of item sets which are contained in the part of transactions will be recorded. The iteration of this step contributes to the extraction of association rules. It is not necessary to calculate the huge number of candidate rules. In the evaluation test, we compared the extracted association rules using our method with the rules using other algorithms like Apriori algorithm. As a result of the evaluation using huge retail market basket data, our method is approximately 10 and 20 times faster than the Apriori algorithm and many its variants.
A theory of local learning, the learning channel, and the optimality of backpropagation.
Baldi, Pierre; Sadowski, Peter
2016-11-01
In a physical neural system, where storage and processing are intimately intertwined, the rules for adjusting the synaptic weights can only depend on variables that are available locally, such as the activity of the pre- and post-synaptic neurons, resulting in local learning rules. A systematic framework for studying the space of local learning rules is obtained by first specifying the nature of the local variables, and then the functional form that ties them together into each learning rule. Such a framework enables also the systematic discovery of new learning rules and exploration of relationships between learning rules and group symmetries. We study polynomial local learning rules stratified by their degree and analyze their behavior and capabilities in both linear and non-linear units and networks. Stacking local learning rules in deep feedforward networks leads to deep local learning. While deep local learning can learn interesting representations, it cannot learn complex input-output functions, even when targets are available for the top layer. Learning complex input-output functions requires local deep learning where target information is communicated to the deep layers through a backward learning channel. The nature of the communicated information about the targets and the structure of the learning channel partition the space of learning algorithms. For any learning algorithm, the capacity of the learning channel can be defined as the number of bits provided about the error gradient per weight, divided by the number of required operations per weight. We estimate the capacity associated with several learning algorithms and show that backpropagation outperforms them by simultaneously maximizing the information rate and minimizing the computational cost. This result is also shown to be true for recurrent networks, by unfolding them in time. The theory clarifies the concept of Hebbian learning, establishes the power and limitations of local learning rules, introduces the learning channel which enables a formal analysis of the optimality of backpropagation, and explains the sparsity of the space of learning rules discovered so far. Copyright © 2016 Elsevier Ltd. All rights reserved.
Specific impairments of rule induction in different frontal lobe subgroups.
Reverberi, Carlo; Lavaroni, Antonio; Gigli, Gian Luigi; Skrap, Miran; Shallice, Tim
2005-01-01
The neural correlates of inductive reasoning are still poorly understood. In order to explore them, we administered a revised version of the Brixton test, a rule attainment task, to a group of 40 patients with a focal frontal brain lesion of mixed aetiology and to 43 control subjects. To interpret an impairment on the test as suggesting an inductive reasoning deficit a number of alternative hypotheses need first to be considered, namely whether the Brixton impairment could be explained by: (i) a working memory deficit; (ii) a monitoring deficit; (iii) a difficulty in applying an already induced rule; (iv) greater impulsivity. The patients with left lateral (LL) frontal lesions were significantly impaired on the Brixton test; more importantly they were the only group in which none of the alternative hypotheses we explored proved able to explain the flawed performance. In sharp contrast, right lateral lesion patients did not make significantly more errors on the Brixton test than controls, but they produced three times more capture errors (a sign of impaired monitoring processes). The results were interpreted as suggesting functional dissociations between inductive reasoning, monitoring and working memory and a localisation of key processes for induction in left lateral frontal cortex and in right lateral cortex for monitoring and checking.
Rule Learning in Autism: The Role of Reward Type and Social Context
Jones, E. J. H.; Webb, S. J.; Estes, A.; Dawson, G.
2013-01-01
Learning abstract rules is central to social and cognitive development. Across two experiments, we used Delayed Non-Matching to Sample tasks to characterize the longitudinal development and nature of rule-learning impairments in children with Autism Spectrum Disorder (ASD). Results showed that children with ASD consistently experienced more difficulty learning an abstract rule from a discrete physical reward than children with DD. Rule learning was facilitated by the provision of more concrete reinforcement, suggesting an underlying difficulty in forming conceptual connections. Learning abstract rules about social stimuli remained challenging through late childhood, indicating the importance of testing executive functions in both social and non-social contexts. PMID:23311315
Learning and Tuning of Fuzzy Rules
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1997-01-01
In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.
Theory-based Bayesian models of inductive learning and reasoning.
Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles
2006-07-01
Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.
ERIC Educational Resources Information Center
Jiang, Xuan; Perkins, Kyle
2013-01-01
Bruner's constructs of learning, specifically the structure of learning, spiral curriculum, and discovery learning, in conjunction with the Cognitive Load Theory, are used to evaluate the Picture Word Inductive Model (PWIM), an inquiry-oriented inductive language arts strategy designed to teach K-6 children phonics and spelling. The PWIM reflects…
Concurrence of rule- and similarity-based mechanisms in artificial grammar learning.
Opitz, Bertram; Hofmann, Juliane
2015-03-01
A current theoretical debate regards whether rule-based or similarity-based learning prevails during artificial grammar learning (AGL). Although the majority of findings are consistent with a similarity-based account of AGL it has been argued that these results were obtained only after limited exposure to study exemplars, and performance on subsequent grammaticality judgment tests has often been barely above chance level. In three experiments the conditions were investigated under which rule- and similarity-based learning could be applied. Participants were exposed to exemplars of an artificial grammar under different (implicit and explicit) learning instructions. The analysis of receiver operating characteristics (ROC) during a final grammaticality judgment test revealed that explicit but not implicit learning led to rule knowledge. It also demonstrated that this knowledge base is built up gradually while similarity knowledge governed the initial state of learning. Together these results indicate that rule- and similarity-based mechanisms concur during AGL. Moreover, it could be speculated that two different rule processes might operate in parallel; bottom-up learning via gradual rule extraction and top-down learning via rule testing. Crucially, the latter is facilitated by performance feedback that encourages explicit hypothesis testing. Copyright © 2015 Elsevier Inc. All rights reserved.
Applying Authentic Data Analysis in Learning Earth Atmosphere
NASA Astrophysics Data System (ADS)
Johan, H.; Suhandi, A.; Samsudin, A.; Wulan, A. R.
2017-09-01
The aim of this research was to develop earth science learning material especially earth atmosphere supported by science research with authentic data analysis to enhance reasoning through. Various earth and space science phenomenon require reasoning. This research used experimental research with one group pre test-post test design. 23 pre-service physics teacher participated in this research. Essay test was conducted to get data about reason ability. Essay test was analyzed quantitatively. Observation sheet was used to capture phenomena during learning process. The results showed that student’s reasoning ability improved from unidentified and no reasoning to evidence based reasoning and inductive/deductive rule-based reasoning. Authentic data was considered using Grid Analysis Display System (GrADS). Visualization from GrADS facilitated students to correlate the concepts and bring out real condition of nature in classroom activity. It also helped student to reason the phenomena related to earth and space science concept. It can be concluded that applying authentic data analysis in learning process can help to enhance students reasoning. This study is expected to help lecture to bring out result of geoscience research in learning process and facilitate student understand concepts.
A Local Learning Rule for Independent Component Analysis
Isomura, Takuya; Toyoizumi, Taro
2016-01-01
Humans can separately recognize independent sources when they sense their superposition. This decomposition is mathematically formulated as independent component analysis (ICA). While a few biologically plausible learning rules, so-called local learning rules, have been proposed to achieve ICA, their performance varies depending on the parameters characterizing the mixed signals. Here, we propose a new learning rule that is both easy to implement and reliable. Both mathematical and numerical analyses confirm that the proposed rule outperforms other local learning rules over a wide range of parameters. Notably, unlike other rules, the proposed rule can separate independent sources without any preprocessing, even if the number of sources is unknown. The successful performance of the proposed rule is then demonstrated using natural images and movies. We discuss the implications of this finding for our understanding of neuronal information processing and its promising applications to neuromorphic engineering. PMID:27323661
NASA Astrophysics Data System (ADS)
Hoffmann, Achim; Mahidadia, Ashesh
The purpose of this chapter is to present fundamental ideas and techniques of machine learning suitable for the field of this book, i.e., for automated scientific discovery. The chapter focuses on those symbolic machine learning methods, which produce results that are suitable to be interpreted and understood by humans. This is particularly important in the context of automated scientific discovery as the scientific theories to be produced by machines are usually meant to be interpreted by humans. This chapter contains some of the most influential ideas and concepts in machine learning research to give the reader a basic insight into the field. After the introduction in Sect. 1, general ideas of how learning problems can be framed are given in Sect. 2. The section provides useful perspectives to better understand what learning algorithms actually do. Section 3 presents the Version space model which is an early learning algorithm as well as a conceptual framework, that provides important insight into the general mechanisms behind most learning algorithms. In section 4, a family of learning algorithms, the AQ family for learning classification rules is presented. The AQ family belongs to the early approaches in machine learning. The next, Sect. 5 presents the basic principles of decision tree learners. Decision tree learners belong to the most influential class of inductive learning algorithms today. Finally, a more recent group of learning systems are presented in Sect. 6, which learn relational concepts within the framework of logic programming. This is a particularly interesting group of learning systems since the framework allows also to incorporate background knowledge which may assist in generalisation. Section 7 discusses Association Rules - a technique that comes from the related field of Data mining. Section 8 presents the basic idea of the Naive Bayesian Classifier. While this is a very popular learning technique, the learning result is not well suited for human comprehension as it is essentially a large collection of probability values. In Sect. 9, we present a generic method for improving accuracy of a given learner by generatingmultiple classifiers using variations of the training data. While this works well in most cases, the resulting classifiers have significantly increased complexity and, hence, tend to destroy the human readability of the learning result that a single learner may produce. Section 10 contains a summary, mentions briefly other techniques not discussed in this chapter and presents outlook on the potential of machine learning in the future.
Striatal degeneration impairs language learning: evidence from Huntington's disease.
De Diego-Balaguer, R; Couette, M; Dolbeau, G; Dürr, A; Youssov, K; Bachoud-Lévi, A-C
2008-11-01
Although the role of the striatum in language processing is still largely unclear, a number of recent proposals have outlined its specific contribution. Different studies report evidence converging to a picture where the striatum may be involved in those aspects of rule-application requiring non-automatized behaviour. This is the main characteristic of the earliest phases of language acquisition that require the online detection of distant dependencies and the creation of syntactic categories by means of rule learning. Learning of sequences and categorization processes in non-language domains has been known to require striatal recruitment. Thus, we hypothesized that the striatum should play a prominent role in the extraction of rules in learning a language. We studied 13 pre-symptomatic gene-carriers and 22 early stage patients of Huntington's disease (pre-HD), both characterized by a progressive degeneration of the striatum and 21 late stage patients Huntington's disease (18 stage II, two stage III and one stage IV) where cortical degeneration accompanies striatal degeneration. When presented with a simplified artificial language where words and rules could be extracted, early stage Huntington's disease patients (stage I) were impaired in the learning test, demonstrating a greater impairment in rule than word learning compared to the 20 age- and education-matched controls. Huntington's disease patients at later stages were impaired both on word and rule learning. While spared in their overall performance, gene-carriers having learned a set of abstract artificial language rules were then impaired in the transfer of those rules to similar artificial language structures. The correlation analyses among several neuropsychological tests assessing executive function showed that rule learning correlated with tests requiring working memory and attentional control, while word learning correlated with a test involving episodic memory. These learning impairments significantly correlated with the bicaudate ratio. The overall results support striatal involvement in rule extraction from speech and suggest that language acquisition requires several aspects of memory and executive functions for word and rule learning.
Vadillo, Miguel A; Ortega-Castro, Nerea; Barberia, Itxaso; Baker, A G
2014-01-01
Many theories of causal learning and causal induction differ in their assumptions about how people combine the causal impact of several causes presented in compound. Some theories propose that when several causes are present, their joint causal impact is equal to the linear sum of the individual impact of each cause. However, some recent theories propose that the causal impact of several causes needs to be combined by means of a noisy-OR integration rule. In other words, the probability of the effect given several causes would be equal to the sum of the probability of the effect given each cause in isolation minus the overlap between those probabilities. In the present series of experiments, participants were given information about the causal impact of several causes and then they were asked what compounds of those causes they would prefer to use if they wanted to produce the effect. The results of these experiments suggest that participants actually use a variety of strategies, including not only the linear and the noisy-OR integration rules, but also averaging the impact of several causes.
Moral empiricism and the bias for act-based rules.
Ayars, Alisabeth; Nichols, Shaun
2017-10-01
Previous studies on rule learning show a bias in favor of act-based rules, which prohibit intentionally producing an outcome but not merely allowing the outcome. Nichols, Kumar, Lopez, Ayars, and Chan (2016) found that exposure to a single sample violation in which an agent intentionally causes the outcome was sufficient for participants to infer that the rule was act-based. One explanation is that people have an innate bias to think rules are act-based. We suggest an alternative empiricist account: since most rules that people learn are act-based, people form an overhypothesis (Goodman, 1955) that rules are typically act-based. We report three studies that indicate that people can use information about violations to form overhypotheses about rules. In study 1, participants learned either three "consequence-based" rules that prohibited allowing an outcome or three "act-based" rules that prohibiting producing the outcome; in a subsequent learning task, we found that participants who had learned three consequence-based rules were more likely to think that the new rule prohibited allowing an outcome. In study 2, we presented participants with either 1 consequence-based rule or 3 consequence-based rules, and we found that those exposed to 3 such rules were more likely to think that a new rule was also consequence based. Thus, in both studies, it seems that learning 3 consequence-based rules generates an overhypothesis to expect new rules to be consequence-based. In a final study, we used a more subtle manipulation. We exposed participants to examples act-based or accident-based (strict liability) laws and then had them learn a novel rule. We found that participants who were exposed to the accident-based laws were more likely to think a new rule was accident-based. The fact that participants' bias for act-based rules can be shaped by evidence from other rules supports the idea that the bias for act-based rules might be acquired as an overhypothesis from the preponderance of act-based rules. Copyright © 2017 Elsevier B.V. All rights reserved.
Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek
2017-05-01
This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.
Du, Bin; Cao, Bihua; He, Weiqi; Li, Fuhong
2018-01-01
The ability to learn from feedback is important for children's adaptive behavior and school learning. Feedback has two main components, informative value and valence. How to disentangle these two components and what is the developmental neural correlates of using the informative value of feedback is still an open question. In this study, 23 children (7-10 years old) and 19 adults (19-22 years old) were asked to perform a rule induction task, in which they were required to find a rule, based on the informative value of feedback. Behavioral results indicated that the likelihood of correct searching behavior under negative feedback was low for children. Event-related potentials showed that (1) the effect of valence was processed in a wide time window, particularly in the N2 component; (2) the encoding process of the informative value of negative feedback began later for children than for adults; (3) a clear P300 was observed for adults; for children, however, P300 was absent in the frontal region; and (4) children processed the informative value of feedback chiefly in the left sites during the P300 time window, whereas adults did not show this laterality. These results suggested that children were less sensitive to the informative value of negative feedback possibly because of the immature brain.
Amini, Ata; Shrimpton, Paul J; Muggleton, Stephen H; Sternberg, Michael J E
2007-12-01
Despite the increased recent use of protein-ligand and protein-protein docking in the drug discovery process due to the increases in computational power, the difficulty of accurately ranking the binding affinities of a series of ligands or a series of proteins docked to a protein receptor remains largely unsolved. This problem is of major concern in lead optimization procedures and has lead to the development of scoring functions tailored to rank the binding affinities of a series of ligands to a specific system. However, such methods can take a long time to develop and their transferability to other systems remains open to question. Here we demonstrate that given a suitable amount of background information a new approach using support vector inductive logic programming (SVILP) can be used to produce system-specific scoring functions. Inductive logic programming (ILP) learns logic-based rules for a given dataset that can be used to describe properties of each member of the set in a qualitative manner. By combining ILP with support vector machine regression, a quantitative set of rules can be obtained. SVILP has previously been used in a biological context to examine datasets containing a series of singular molecular structures and properties. Here we describe the use of SVILP to produce binding affinity predictions of a series of ligands to a particular protein. We also for the first time examine the applicability of SVILP techniques to datasets consisting of protein-ligand complexes. Our results show that SVILP performs comparably with other state-of-the-art methods on five protein-ligand systems as judged by similar cross-validated squares of their correlation coefficients. A McNemar test comparing SVILP to CoMFA and CoMSIA across the five systems indicates our method to be significantly better on one occasion. The ability to graphically display and understand the SVILP-produced rules is demonstrated and this feature of ILP can be used to derive hypothesis for future ligand design in lead optimization procedures. The approach can readily be extended to evaluate the binding affinities of a series of protein-protein complexes. (c) 2007 Wiley-Liss, Inc.
A neural model of rule generation in inductive reasoning.
Rasmussen, Daniel; Eliasmith, Chris
2011-01-01
Inductive reasoning is a fundamental and complex aspect of human intelligence. In particular, how do subjects, given a set of particular examples, generate general descriptions of the rules governing that set? We present a biologically plausible method for accomplishing this task and implement it in a spiking neuron model. We demonstrate the success of this model by applying it to the problem domain of Raven's Progressive Matrices, a widely used tool in the field of intelligence testing. The model is able to generate the rules necessary to correctly solve Raven's items, as well as recreate many of the experimental effects observed in human subjects. Copyright © 2011 Cognitive Science Society, Inc.
Criterion learning in rule-based categorization: Simulation of neural mechanism and new data
Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd
2015-01-01
In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349
Criterion learning in rule-based categorization: simulation of neural mechanism and new data.
Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd
2015-04-01
In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.
Learning abstract visual concepts via probabilistic program induction in a Language of Thought.
Overlan, Matthew C; Jacobs, Robert A; Piantadosi, Steven T
2017-11-01
The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization. Copyright © 2017 Elsevier B.V. All rights reserved.
Learning Problem-Solving Rules as Search Through a Hypothesis Space.
Lee, Hee Seung; Betts, Shawn; Anderson, John R
2016-07-01
Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem property such as computational difficulty of the rules biased the search process and so affected learning. Experiment 2 examined the impact of examples as instructional tools and found that their effectiveness was determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal directions with examples and found that both could guide search. The final experiment tried to improve learning by using more explicit verbal directions or by adding scaffolding to the example. While both manipulations improved learning, learning still took the form of a search through a hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the instruction can bias the rules participants hypothesize rather than directly be encoded into a rule; (2) participants do not have memory for past wrong hypotheses and are likely to retry them. These assumptions are realized in a Markov model that fits all the data by estimating two sets of probabilities. First, the learning condition induced one set of Start probabilities of trying various rules. Second, should this first hypothesis prove wrong, the learning condition induced a second set of Choice probabilities of considering various rules. These findings broaden our understanding of effective instruction and provide implications for instructional design. Copyright © 2015 Cognitive Science Society, Inc.
Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants.
Werchan, Denise M; Collins, Anne G E; Frank, Michael J; Amso, Dima
2016-10-05
Recent research indicates that adults and infants spontaneously create and generalize hierarchical rule sets during incidental learning. Computational models and empirical data suggest that, in adults, this process is supported by circuits linking prefrontal cortex (PFC) with striatum and their modulation by dopamine, but the neural circuits supporting this form of learning in infants are largely unknown. We used near-infrared spectroscopy to record PFC activity in 8-month-old human infants during a simple audiovisual hierarchical-rule-learning task. Behavioral results confirmed that infants adopted hierarchical rule sets to learn and generalize spoken object-label mappings across different speaker contexts. Infants had increased activity over right dorsal lateral PFC when rule sets switched from one trial to the next, a neural marker related to updating rule sets into working memory in the adult literature. Infants' eye blink rate, a possible physiological correlate of striatal dopamine activity, also increased when rule sets switched from one trial to the next. Moreover, the increase in right dorsolateral PFC activity in conjunction with eye blink rate also predicted infants' generalization ability, providing exploratory evidence for frontostriatal involvement during learning. These findings provide evidence that PFC is involved in rudimentary hierarchical rule learning in 8-month-old infants, an ability that was previously thought to emerge later in life in concert with PFC maturation. Hierarchical rule learning is a powerful learning mechanism that allows rules to be selected in a context-appropriate fashion and transferred or reused in novel contexts. Data from computational models and adults suggests that this learning mechanism is supported by dopamine-innervated interactions between prefrontal cortex (PFC) and striatum. Here, we provide evidence that PFC also supports hierarchical rule learning during infancy, challenging the current dogma that PFC is an underdeveloped brain system until adolescence. These results add new insights into the neurobiological mechanisms available to support learning and generalization in very early postnatal life, providing evidence that PFC and the frontostriatal circuitry are involved in organizing learning and behavior earlier in life than previously known. Copyright © 2016 the authors 0270-6474/16/3610314-09$15.00/0.
Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants
Werchan, Denise M.; Collins, Anne G.E.; Frank, Michael J.
2016-01-01
Recent research indicates that adults and infants spontaneously create and generalize hierarchical rule sets during incidental learning. Computational models and empirical data suggest that, in adults, this process is supported by circuits linking prefrontal cortex (PFC) with striatum and their modulation by dopamine, but the neural circuits supporting this form of learning in infants are largely unknown. We used near-infrared spectroscopy to record PFC activity in 8-month-old human infants during a simple audiovisual hierarchical-rule-learning task. Behavioral results confirmed that infants adopted hierarchical rule sets to learn and generalize spoken object–label mappings across different speaker contexts. Infants had increased activity over right dorsal lateral PFC when rule sets switched from one trial to the next, a neural marker related to updating rule sets into working memory in the adult literature. Infants' eye blink rate, a possible physiological correlate of striatal dopamine activity, also increased when rule sets switched from one trial to the next. Moreover, the increase in right dorsolateral PFC activity in conjunction with eye blink rate also predicted infants' generalization ability, providing exploratory evidence for frontostriatal involvement during learning. These findings provide evidence that PFC is involved in rudimentary hierarchical rule learning in 8-month-old infants, an ability that was previously thought to emerge later in life in concert with PFC maturation. SIGNIFICANCE STATEMENT Hierarchical rule learning is a powerful learning mechanism that allows rules to be selected in a context-appropriate fashion and transferred or reused in novel contexts. Data from computational models and adults suggests that this learning mechanism is supported by dopamine-innervated interactions between prefrontal cortex (PFC) and striatum. Here, we provide evidence that PFC also supports hierarchical rule learning during infancy, challenging the current dogma that PFC is an underdeveloped brain system until adolescence. These results add new insights into the neurobiological mechanisms available to support learning and generalization in very early postnatal life, providing evidence that PFC and the frontostriatal circuitry are involved in organizing learning and behavior earlier in life than previously known. PMID:27707968
Effect of Kolb's Learning Styles under Inductive Guided-Inquiry Learning on Learning Outcomes
ERIC Educational Resources Information Center
Sudria, Ida Bagus Nyoman; Redhana, I. Wayan; Kirna, I. Made; Aini, Diah
2018-01-01
This study aimed to examine the effect of Kolb's learning styles on chemical learning activities and achievement of reaction rate taught by inductive guided inquiry learning. The population was eleventh grade Science students of a senior secondary school having relatively good academic input based on national testing results in Bali, Indonesia.…
On the fusion of tuning parameters of fuzzy rules and neural network
NASA Astrophysics Data System (ADS)
Mamuda, Mamman; Sathasivam, Saratha
2017-08-01
Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.
NASA Astrophysics Data System (ADS)
Huang, Yin; Chen, Jianhua; Xiong, Shaojun
2009-07-01
Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.
A self-learning rule base for command following in dynamical systems
NASA Technical Reports Server (NTRS)
Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander
1992-01-01
In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.
When more is less: Feedback effects in perceptual category learning ☆
Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent
2008-01-01
Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether their response was correct or incorrect, but are not informed of the correct category assignment. With full feedback subjects are informed of the correctness of their response and are also informed of the correct category assignment. An examination of the distinct neural circuits that subserve rule-based and information-integration category learning leads to the counterintuitive prediction that full feedback should facilitate rule-based learning but should also hinder information-integration learning. This prediction was supported in the experiment reported below. The implications of these results for theories of learning are discussed. PMID:18455155
Learning general phonological rules from distributional information: a computational model.
Calamaro, Shira; Jarosz, Gaja
2015-04-01
Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.
Communicative signals support abstract rule learning by 7-month-old infants
Ferguson, Brock; Lew-Williams, Casey
2016-01-01
The mechanisms underlying the discovery of abstract rules like those found in natural language may be evolutionarily tuned to speech, according to previous research. When infants hear speech sounds, they can learn rules that govern their combination, but when they hear non-speech sounds such as sine-wave tones, they fail to do so. Here we show that infants’ rule learning is not tied to speech per se, but is instead enhanced more broadly by communicative signals. In two experiments, infants succeeded in learning and generalizing rules from tones that were introduced as if they could be used to communicate. In two control experiments, infants failed to learn the very same rules when familiarized to tones outside of a communicative exchange. These results reveal that infants’ attention to social agents and communication catalyzes a fundamental achievement of human learning. PMID:27150270
Statistical Methods in Ai: Rare Event Learning Using Associative Rules and Higher-Order Statistics
NASA Astrophysics Data System (ADS)
Iyer, V.; Shetty, S.; Iyengar, S. S.
2015-07-01
Rare event learning has not been actively researched since lately due to the unavailability of algorithms which deal with big samples. The research addresses spatio-temporal streams from multi-resolution sensors to find actionable items from a perspective of real-time algorithms. This computing framework is independent of the number of input samples, application domain, labelled or label-less streams. A sampling overlap algorithm such as Brooks-Iyengar is used for dealing with noisy sensor streams. We extend the existing noise pre-processing algorithms using Data-Cleaning trees. Pre-processing using ensemble of trees using bagging and multi-target regression showed robustness to random noise and missing data. As spatio-temporal streams are highly statistically correlated, we prove that a temporal window based sampling from sensor data streams converges after n samples using Hoeffding bounds. Which can be used for fast prediction of new samples in real-time. The Data-cleaning tree model uses a nonparametric node splitting technique, which can be learned in an iterative way which scales linearly in memory consumption for any size input stream. The improved task based ensemble extraction is compared with non-linear computation models using various SVM kernels for speed and accuracy. We show using empirical datasets the explicit rule learning computation is linear in time and is only dependent on the number of leafs present in the tree ensemble. The use of unpruned trees (t) in our proposed ensemble always yields minimum number (m) of leafs keeping pre-processing computation to n × t log m compared to N2 for Gram Matrix. We also show that the task based feature induction yields higher Qualify of Data (QoD) in the feature space compared to kernel methods using Gram Matrix.
Hochmann, Jean-Rémy; Carey, Susan; Mehler, Jacques
2018-08-01
In two experiments, we assessed whether infants are able to learn rules predicated on two abstract relations linked by negation: same and different (not same). In an anticipatory looking paradigm, the relation between successive colored geometrical shapes predicted the location where a puppet would appear next. In Experiment 1, 7-month-olds learned and generalized a rule predicated on the relation same, but not a rule predicated on the relation different. Similarly, in Experiment 2, 12-month-olds learned a rule predicated on the relation same-shape, but not a rule predicated on the relation different-shape. Comparing our data with that from previous experiments in the speech domain, we found no effect of age, modality or rule complexity. We conclude that, in the first year of life, infants already possess a representation of the abstract relation same, which serves as input to a rule. In contrast, we find no evidence that they represent the relation different. Copyright © 2018 Elsevier B.V. All rights reserved.
Rule-Based and Information-Integration Category Learning in Normal Aging
ERIC Educational Resources Information Center
Maddox, W. Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M.
2010-01-01
The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated…
One Giant Leap for Categorizers: One Small Step for Categorization Theory
Smith, J. David; Ell, Shawn W.
2015-01-01
We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so. PMID:26332587
Evidence of a Transition from Perceptual to Category Induction in 3- to 9-Year-Old Children
ERIC Educational Resources Information Center
Badger, Julia R.; Shapiro, Laura R.
2012-01-01
We examined whether inductive reasoning development is better characterized by accounts assuming an early category bias versus an early perceptual bias. We trained 264 children aged 3 to 9 years to categorize novel insects using a rule that directly pitted category membership against appearance. This was followed by an induction task with…
Dissociable roles of medial and lateral PFC in rule learning.
Cao, Bihua; Li, Wei; Li, Fuhong; Li, Hong
2016-11-01
Although the neural basis of rule learning is of great interest to cognitive neuroscientists, the pattern of transient brain activation during rule discovery remains to be investigated. In this study, we measured event-related functional magnetic resonance imaging (fMRI) during distinct phases of rule learning. Twenty-one healthy human volunteers were presented with a series of cards, each containing a clock-like display of 12 circles numbered sequentially. Participants were instructed that a fictitious animal would move from one circle to another either in a regular pattern (according to a rule hidden in consecutive trials) or randomly. Participants were then asked to judge whether a given step followed a rule. While the rule-search phase evoked more activation in the posterior lateral prefrontal cortex (LPFC), the rule-following phase caused stronger activation in the anterior medial prefrontal cortex (MPFC). Importantly, the intermediate phase, the rule-discovery phase evoked more activations in MPFC and dorsal anterior cingulate cortex (dACC) than rule search, and more activations in LPFC than rule following. Therefore, we can conclude that the medial and lateral PFC have dissociable contributions in rule learning.
The evolution of social learning rules: payoff-biased and frequency-dependent biased transmission.
Kendal, Jeremy; Giraldeau, Luc-Alain; Laland, Kevin
2009-09-21
Humans and other animals do not use social learning indiscriminately, rather, natural selection has favoured the evolution of social learning rules that make selective use of social learning to acquire relevant information in a changing environment. We present a gene-culture coevolutionary analysis of a small selection of such rules (unbiased social learning, payoff-biased social learning and frequency-dependent biased social learning, including conformism and anti-conformism) in a population of asocial learners where the environment is subject to a constant probability of change to a novel state. We define conditions under which each rule evolves to a genetically polymorphic equilibrium. We find that payoff-biased social learning may evolve under high levels of environmental variation if the fitness benefit associated with the acquired behaviour is either high or low but not of intermediate value. In contrast, both conformist and anti-conformist biases can become fixed when environment variation is low, whereupon the mean fitness in the population is higher than for a population of asocial learners. Our examination of the population dynamics reveals stable limit cycles under conformist and anti-conformist biases and some highly complex dynamics including chaos. Anti-conformists can out-compete conformists when conditions favour a low equilibrium frequency of the learned behaviour. We conclude that evolution, punctuated by the repeated successful invasion of different social learning rules, should continuously favour a reduction in the equilibrium frequency of asocial learning, and propose that, among competing social learning rules, the dominant rule will be the one that can persist with the lowest frequency of asocial learning.
Data-Driven Learning of Speech Acts Based on Corpora of DVD Subtitles
ERIC Educational Resources Information Center
Kitao, S. Kathleen; Kitao, Kenji
2013-01-01
Data-driven learning (DDL) is an inductive approach to language learning in which students study examples of authentic language and use them to find patterns of language use. This inductive approach to learning has the advantages of being learner-centered, encouraging hypothesis testing and learner autonomy, and helping develop learning skills.…
Cohen, Yaniv; Wilson, Donald A.; Barkai, Edi
2015-01-01
Learning of a complex olfactory discrimination (OD) task results in acquisition of rule learning after prolonged training. Previously, we demonstrated enhanced synaptic connectivity between the piriform cortex (PC) and its ascending and descending inputs from the olfactory bulb (OB) and orbitofrontal cortex (OFC) following OD rule learning. Here, using recordings of evoked field postsynaptic potentials in behaving animals, we examined the dynamics by which these synaptic pathways are modified during rule acquisition. We show profound differences in synaptic connectivity modulation between the 2 input sources. During rule acquisition, the ascending synaptic connectivity from the OB to the anterior and posterior PC is simultaneously enhanced. Furthermore, post-training stimulation of the OB enhanced learning rate dramatically. In sharp contrast, the synaptic input in the descending pathway from the OFC was significantly reduced until training completion. Once rule learning was established, the strength of synaptic connectivity in the 2 pathways resumed its pretraining values. We suggest that acquisition of olfactory rule learning requires a transient enhancement of ascending inputs to the PC, synchronized with a parallel decrease in the descending inputs. This combined short-lived modulation enables the PC network to reorganize in a manner that enables it to first acquire and then maintain the rule. PMID:23960200
The interaction of process and domain in prefrontal cortex during inductive reasoning
Babcock, Laura; Vallesi, Antonino
2015-01-01
Inductive reasoning is an everyday process that allows us to make sense of the world by creating rules from a series of instances. Consistent with accounts of process-based fractionations of the prefrontal cortex (PFC) along the left–right axis, inductive reasoning has been reliably localized to left PFC. However, these results may be confounded by the task domain, which is typically verbal. Indeed, some studies show that right PFC activation is seen with spatial tasks. This study used fMRI to examine the effects of process and domain on the brain regions recruited during a novel pattern discovery task. Twenty healthy young adult participants were asked to discover the rule underlying the presentation of a series of letters in varied spatial locations. The rules were either verbal (pertaining to a single semantic category) or spatial (geometric figures). Bilateral ventrolateral PFC activations were seen for the spatial domain, while the verbal domain showed only left ventrolateral PFC. A conjunction analysis revealed that the two domains recruited a common region of left ventrolateral PFC. The data support a central role of left PFC in inductive reasoning. Importantly, they also suggest that both process and domain shape the localization of reasoning in the brain. PMID:25498406
The interaction of process and domain in prefrontal cortex during inductive reasoning.
Babcock, Laura; Vallesi, Antonino
2015-01-01
Inductive reasoning is an everyday process that allows us to make sense of the world by creating rules from a series of instances. Consistent with accounts of process-based fractionations of the prefrontal cortex (PFC) along the left-right axis, inductive reasoning has been reliably localized to left PFC. However, these results may be confounded by the task domain, which is typically verbal. Indeed, some studies show that right PFC activation is seen with spatial tasks. This study used fMRI to examine the effects of process and domain on the brain regions recruited during a novel pattern discovery task. Twenty healthy young adult participants were asked to discover the rule underlying the presentation of a series of letters in varied spatial locations. The rules were either verbal (pertaining to a single semantic category) or spatial (geometric figures). Bilateral ventrolateral PFC activations were seen for the spatial domain, while the verbal domain showed only left ventrolateral PFC. A conjunction analysis revealed that the two domains recruited a common region of left ventrolateral PFC. The data support a central role of left PFC in inductive reasoning. Importantly, they also suggest that both process and domain shape the localization of reasoning in the brain. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Imada, Keita; Nakamura, Katsuhiko
This paper describes recent improvements to Synapse system for incremental learning of general context-free grammars (CFGs) and definite clause grammars (DCGs) from positive and negative sample strings. An important feature of our approach is incremental learning, which is realized by a rule generation mechanism called “bridging” based on bottom-up parsing for positive samples and the search for rule sets. The sizes of rule sets and the computation time depend on the search strategies. In addition to the global search for synthesizing minimal rule sets and serial search, another method for synthesizing semi-optimum rule sets, we incorporate beam search to the system for synthesizing semi-minimal rule sets. The paper shows several experimental results on learning CFGs and DCGs, and we analyze the sizes of rule sets and the computation time.
Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning
Ettlinger, Marc; Wong, Patrick C. M.
2016-01-01
Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085
Use of evidence in a categorization task: analytic and holistic processing modes.
Greco, Alberto; Moretti, Stefania
2017-11-01
Category learning performance can be influenced by many contextual factors, but the effects of these factors are not the same for all learners. The present study suggests that these differences can be due to the different ways evidence is used, according to two main basic modalities of processing information, analytically or holistically. In order to test the impact of the information provided, an inductive rule-based task was designed, in which feature salience and comparison informativeness between examples of two categories were manipulated during the learning phases, by introducing and progressively reducing some perceptual biases. To gather data on processing modalities, we devised the Active Feature Composition task, a production task that does not require classifying new items but reproducing them by combining features. At the end, an explicit rating task was performed, which entailed assessing the accuracy of a set of possible categorization rules. A combined analysis of the data collected with these two different tests enabled profiling participants in regard to the kind of processing modality, the structure of representations and the quality of categorial judgments. Results showed that despite the fact that the information provided was the same for all participants, those who adopted analytic processing better exploited evidence and performed more accurately, whereas with holistic processing categorization is perfectly possible but inaccurate. Finally, the cognitive implications of the proposed procedure, with regard to involved processes and representations, are discussed.
A Deep Learning Approach for Fault Diagnosis of Induction Motors in Manufacturing
NASA Astrophysics Data System (ADS)
Shao, Si-Yu; Sun, Wen-Jun; Yan, Ru-Qiang; Wang, Peng; Gao, Robert X.
2017-11-01
Extracting features from original signals is a key procedure for traditional fault diagnosis of induction motors, as it directly influences the performance of fault recognition. However, high quality features need expert knowledge and human intervention. In this paper, a deep learning approach based on deep belief networks (DBN) is developed to learn features from frequency distribution of vibration signals with the purpose of characterizing working status of induction motors. It combines feature extraction procedure with classification task together to achieve automated and intelligent fault diagnosis. The DBN model is built by stacking multiple-units of restricted Boltzmann machine (RBM), and is trained using layer-by-layer pre-training algorithm. Compared with traditional diagnostic approaches where feature extraction is needed, the presented approach has the ability of learning hierarchical representations, which are suitable for fault classification, directly from frequency distribution of the measurement data. The structure of the DBN model is investigated as the scale and depth of the DBN architecture directly affect its classification performance. Experimental study conducted on a machine fault simulator verifies the effectiveness of the deep learning approach for fault diagnosis of induction motors. This research proposes an intelligent diagnosis method for induction motor which utilizes deep learning model to automatically learn features from sensor data and realize working status recognition.
Applying machine learning classification techniques to automate sky object cataloguing
NASA Astrophysics Data System (ADS)
Fayyad, Usama M.; Doyle, Richard J.; Weir, W. Nick; Djorgovski, Stanislav
1993-08-01
We describe the application of an Artificial Intelligence machine learning techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Mt. Palomar Northern Sky Survey is nearly completed. This survey provides comprehensive coverage of the northern celestial hemisphere in the form of photographic plates. The plates are being transformed into digitized images whose quality will probably not be surpassed in the next ten to twenty years. The images are expected to contain on the order of 107 galaxies and 108 stars. Astronomers wish to determine which of these sky objects belong to various classes of galaxies and stars. Unfortunately, the size of this data set precludes analysis in an exclusively manual fashion. Our approach is to develop a software system which integrates the functions of independently developed techniques for image processing and data classification. Digitized sky images are passed through image processing routines to identify sky objects and to extract a set of features for each object. These routines are used to help select a useful set of attributes for classifying sky objects. Then GID3 (Generalized ID3) and O-B Tree, two inductive learning techniques, learns classification decision trees from examples. These classifiers will then be applied to new data. These developmnent process is highly interactive, with astronomer input playing a vital role. Astronomers refine the feature set used to construct sky object descriptions, and evaluate the performance of the automated classification technique on new data. This paper gives an overview of the machine learning techniques with an emphasis on their general applicability, describes the details of our specific application, and reports the initial encouraging results. The results indicate that our machine learning approach is well-suited to the problem. The primary benefit of the approach is increased data reduction throughput. Another benefit is consistency of classification. The classification rules which are the product of the inductive learning techniques will form an objective, examinable basis for classifying sky objects. A final, not to be underestimated benefit is that astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems based on automatically catalogued data.
Neural networks supporting switching, hypothesis testing, and rule application
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S.; Seger, Carol A.
2015-01-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example “choose the blue letter.” Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. PMID:26197092
Neural networks supporting switching, hypothesis testing, and rule application.
Liu, Zhiya; Braunlich, Kurt; Wehe, Hillary S; Seger, Carol A
2015-10-01
We identified dynamic changes in recruitment of neural connectivity networks across three phases of a flexible rule learning and set-shifting task similar to the Wisconsin Card Sort Task: switching, rule learning via hypothesis testing, and rule application. During fMRI scanning, subjects viewed pairs of stimuli that differed across four dimensions (letter, color, size, screen location), chose one stimulus, and received feedback. Subjects were informed that the correct choice was determined by a simple unidimensional rule, for example "choose the blue letter". Once each rule had been learned and correctly applied for 4-7 trials, subjects were cued via either negative feedback or visual cues to switch to learning a new rule. Task performance was divided into three phases: Switching (first trial after receiving the switch cue), hypothesis testing (subsequent trials through the last error trial), and rule application (correct responding after the rule was learned). We used both univariate analysis to characterize activity occurring within specific regions of the brain, and a multivariate method, constrained principal component analysis for fMRI (fMRI-CPCA), to investigate how distributed regions coordinate to subserve different processes. As hypothesized, switching was subserved by a limbic network including the ventral striatum, thalamus, and parahippocampal gyrus, in conjunction with cortical salience network regions including the anterior cingulate and frontoinsular cortex. Activity in the ventral striatum was associated with switching regardless of how switching was cued; visually cued shifts were associated with additional visual cortical activity. After switching, as subjects moved into the hypothesis testing phase, a broad fronto-parietal-striatal network (associated with the cognitive control, dorsal attention, and salience networks) increased in activity. This network was sensitive to rule learning speed, with greater extended activity for the slowest learning speed late in the time course of learning. As subjects shifted from hypothesis testing to rule application, activity in this network decreased and activity in the somatomotor and default mode networks increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Role of Guided Induction in Paper-Based Data-Driven Learning
ERIC Educational Resources Information Center
Smart, Jonathan
2014-01-01
This study examines the role of guided induction as an instructional approach in paper-based data-driven learning (DDL) in the context of an ESL grammar course during an intensive English program at an American public university. Specifically, it examines whether corpus-informed grammar instruction is more effective through inductive, data-driven…
Emotional Design in Multimedia Learning
ERIC Educational Resources Information Center
Um, Eunjoon; Plass, Jan L.; Hayward, Elizabeth O.; Homer, Bruce D.
2012-01-01
Can multimedia learning environments be designed to foster positive emotions that will improve learning and related affective outcomes? College students (N = 118) were randomly assigned to 4 conditions created by 2 factors related to learners' emotion: "external mood induction" (positive vs. neutral emotions) and "emotional design induction"…
Brzosko, Zuzanna; Zannone, Sara; Schultz, Wolfram
2017-01-01
Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning. DOI: http://dx.doi.org/10.7554/eLife.27756.001 PMID:28691903
An Examination of Faculty Innovativeness in Relation to Inductive Teaching and the Use of Technology
ERIC Educational Resources Information Center
Forrer, Donald A.; Wyant, Nancey A.; Gordin, Patricia C.
2014-01-01
The conceptual framework for this research describes the processes faculty use to create an online course that meets learning outcomes while creating a positive learning experience for the online student. This involves acceptance of technology to create a course structured for inductive learning in addition to traditional deductive learning. The…
Neural learning rules for the vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1998-01-01
Mechanisms for the induction of motor learning in the vestibulo-ocular reflex (VOR) were evaluated by recording the patterns of neural activity elicited in the cerebellum by a range of stimuli that induce learning. Patterns of climbing-fiber, vestibular, and Purkinje cell simple-spike signals were examined during sinusoidal head movement paired with visual image movement at stimulus frequencies from 0.5 to 10 Hz. A comparison of simple-spike and vestibular signals contained the information required to guide learning only at low stimulus frequencies, and a comparison of climbing-fiber and simple-spike signals contained the information required to guide learning only at high stimulus frequencies. Learning could be guided by comparison of climbing-fiber and vestibular signals at all stimulus frequencies tested, but only if climbing fiber responses were compared with the vestibular signals present 100 msec earlier. Computational analysis demonstrated that this conclusion is valid even if there is a broad range of vestibular signals at the site of plasticity. Simulations also indicated that the comparison of vestibular and climbing-fiber signals across the 100 msec delay must be implemented by a subcellular "eligibility" trace rather than by neural circuits that delay the vestibular inputs to the site of plasticity. The results suggest two alternative accounts of learning in the VOR. Either there are multiple mechanisms of learning that use different combinations of neural signals to drive plasticity, or there is a single mechanism tuned to climbing-fiber activity that follows activity in vestibular pathways by approximately 100 msec.
On-line Gibbs learning. II. Application to perceptron and multilayer networks
NASA Astrophysics Data System (ADS)
Kim, J. W.; Sompolinsky, H.
1998-08-01
In the preceding paper (``On-line Gibbs Learning. I. General Theory'') we have presented the on-line Gibbs algorithm (OLGA) and studied analytically its asymptotic convergence. In this paper we apply OLGA to on-line supervised learning in several network architectures: a single-layer perceptron, two-layer committee machine, and a winner-takes-all (WTA) classifier. The behavior of OLGA for a single-layer perceptron is studied both analytically and numerically for a variety of rules: a realizable perceptron rule, a perceptron rule corrupted by output and input noise, and a rule generated by a committee machine. The two-layer committee machine is studied numerically for the cases of learning a realizable rule as well as a rule that is corrupted by output noise. The WTA network is studied numerically for the case of a realizable rule. The asymptotic results reported in this paper agree with the predictions of the general theory of OLGA presented in paper I. In all the studied cases, OLGA converges to a set of weights that minimizes the generalization error. When the learning rate is chosen as a power law with an optimal power, OLGA converges with a power law that is the same as that of batch learning.
Grimm, Lisa R; Maddox, W Todd
2013-11-01
Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.
Two frameworks for integrating knowledge in induction
NASA Technical Reports Server (NTRS)
Rosenbloom, Paul S.; Hirsh, Haym; Cohen, William W.; Smith, Benjamin D.
1994-01-01
The use of knowledge in inductive learning is critical for improving the quality of the concept definitions generated, reducing the number of examples required in order to learn effective concept definitions, and reducing the computation needed to find good concept definitions. Relevant knowledge may come in many forms (such as examples, descriptions, advice, and constraints) and from many sources (such as books, teachers, databases, and scientific instruments). How to extract the relevant knowledge from this plethora of possibilities, and then to integrate it together so as to appropriately affect the induction process is perhaps the key issue at this point in inductive learning. Here the focus is on the integration part of this problem; that is, how induction algorithms can, and do, utilize a range of extracted knowledge. Preliminary work on a transformational framework for defining knowledge-intensive inductive algorithms out of relatively knowledge-free algorithms is described, as is a more tentative problems-space framework that attempts to cover all induction algorithms within a single general approach. These frameworks help to organize what is known about current knowledge-intensive induction algorithms, and to point towards new algorithms.
The Role of Age and Executive Function in Auditory Category Learning
Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath
2015-01-01
Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987
Bimodal Emotion Congruency Is Critical to Preverbal Infants' Abstract Rule Learning
ERIC Educational Resources Information Center
Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei
2016-01-01
Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of…
Discovering H-bonding rules in crystals with inductive logic programming.
Ando, Howard Y; Dehaspe, Luc; Luyten, Walter; Van Craenenbroeck, Elke; Vandecasteele, Henk; Van Meervelt, Luc
2006-01-01
In the domain of crystal engineering, various schemes have been proposed for the classification of hydrogen bonding (H-bonding) patterns observed in 3D crystal structures. In this study, the aim is to complement these schemes with rules that predict H-bonding in crystals from 2D structural information only. Modern computational power and the advances in inductive logic programming (ILP) can now provide computational chemistry with the opportunity for extracting structure-specific rules from large databases that can be incorporated into expert systems. ILP technology is here applied to H-bonding in crystals to develop a self-extracting expert system utilizing data in the Cambridge Structural Database of small molecule crystal structures. A clear increase in performance was observed when the ILP system DMax was allowed to refer to the local structural environment of the possible H-bond donor/acceptor pairs. This ability distinguishes ILP from more traditional approaches that build rules on the basis of global molecular properties.
A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning
Balcarras, Matthew; Womelsdorf, Thilo
2016-01-01
Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context-specific selections to drive responses. PMID:27064794
Learning General Phonological Rules from Distributional Information: A Computational Model
ERIC Educational Resources Information Center
Calamaro, Shira; Jarosz, Gaja
2015-01-01
Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony…
ERIC Educational Resources Information Center
Flores, Belinda Bustos; Hernandez, Arcelia; Garcia, Claudia Trevino; Claeys, Lorena
2011-01-01
This is a preliminary analysis of The Academy for Teacher Excellence (ATE) induction support provided through the Teacher Academy Induction Learning Community (TAILC). In response to current US teacher attrition rates, ATE-TAILC's primary objective is to retain teachers in the classroom and provide support to ensure they are fully prepared to meet…
Ellipsoidal fuzzy learning for smart car platoons
NASA Astrophysics Data System (ADS)
Dickerson, Julie A.; Kosko, Bart
1993-12-01
A neural-fuzzy system combined supervised and unsupervised learning to find and tune the fuzzy-rules. An additive fuzzy system approximates a function by covering its graph with fuzzy rules. A fuzzy rule patch can take the form of an ellipsoid in the input-output space. Unsupervised competitive learning found the statistics of data clusters. The covariance matrix of each synaptic quantization vector defined on ellipsoid centered at the centroid of the data cluster. Tightly clustered data gave smaller ellipsoids or more certain rules. Sparse data gave larger ellipsoids or less certain rules. Supervised learning tuned the ellipsoids to improve the approximation. The supervised neural system used gradient descent to find the ellipsoidal fuzzy patches. It locally minimized the mean-squared error of the fuzzy approximation. Hybrid ellipsoidal learning estimated the control surface for a smart car controller.
Brain-Wide Maps of "Fos" Expression during Fear Learning and Recall
ERIC Educational Resources Information Center
Cho, Jin-Hyung; Rendall, Sam D.; Gray, Jesse M.
2017-01-01
"Fos" induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which "Fos" induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide…
The Interplay of Externalizing Problems and Physical and Inductive Discipline during Childhood
ERIC Educational Resources Information Center
Choe, Daniel Ewon; Olson, Sheryl L.; Sameroff, Arnold J.
2013-01-01
Children who are physically disciplined are at elevated risk for externalizing problems. Conversely, maternal reasoning and reminding of rules, or inductive discipline, is associated with fewer child externalizing problems. Few studies have simultaneously examined bidirectional associations between these forms of discipline and child adjustment…
ERIC Educational Resources Information Center
Merrill, Paul F.; And Others
To replicate and extend the results of a previous study, this project investigated the effects of behavioral objectives and/or rules on computer-based learning task performance. The 133 subjects were randomly assigned to an example-only, objective-example, rule example, or objective-rule example group. The availability of rules and/or objectives…
When More Is Less: Feedback Effects in Perceptual Category Learning
ERIC Educational Resources Information Center
Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent
2008-01-01
Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether…
Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2013-01-01
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.
Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou
2013-01-01
A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe. PMID:24223789
Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
Gardner, Brian; Grüning, André
2016-01-01
Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.
Myths and legends in learning classification rules
NASA Technical Reports Server (NTRS)
Buntine, Wray
1990-01-01
A discussion is presented of machine learning theory on empirically learning classification rules. Six myths are proposed in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, universal learning algorithms, and interactive learning. Some of the problems raised are also addressed from a Bayesian perspective. Questions are suggested that machine learning researchers should be addressing both theoretically and experimentally.
Cognitive changes in conjunctive rule-based category learning: An ERP approach.
Rabi, Rahel; Joanisse, Marc F; Zhu, Tianshu; Minda, John Paul
2018-06-25
When learning rule-based categories, sufficient cognitive resources are needed to test hypotheses, maintain the currently active rule in working memory, update rules after feedback, and to select a new rule if necessary. Prior research has demonstrated that conjunctive rules are more complex than unidimensional rules and place greater demands on executive functions like working memory. In our study, event-related potentials (ERPs) were recorded while participants performed a conjunctive rule-based category learning task with trial-by-trial feedback. In line with prior research, correct categorization responses resulted in a larger stimulus-locked late positive complex compared to incorrect responses, possibly indexing the updating of rule information in memory. Incorrect trials elicited a pronounced feedback-locked P300 elicited which suggested a disconnect between perception, and the rule-based strategy. We also examined the differential processing of stimuli that were able to be correctly classified by the suboptimal single-dimensional rule ("easy" stimuli) versus those that could only be correctly classified by the optimal, conjunctive rule ("difficult" stimuli). Among strong learners, a larger, late positive slow wave emerged for difficult compared with easy stimuli, suggesting differential processing of category items even though strong learners performed well on the conjunctive category set. Overall, the findings suggest that ERP combined with computational modelling can be used to better understand the cognitive processes involved in rule-based category learning.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons.
Burbank, Kendra S
2015-12-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field's Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.
Mirrored STDP Implements Autoencoder Learning in a Network of Spiking Neurons
Burbank, Kendra S.
2015-01-01
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks. PMID:26633645
Learning Problem-Solving Rules as Search through a Hypothesis Space
ERIC Educational Resources Information Center
Lee, Hee Seung; Betts, Shawn; Anderson, John R.
2016-01-01
Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem…
Machine learning methods applied on dental fear and behavior management problems in children.
Klingberg, G; Sillén, R; Norén, J G
1999-08-01
The etiologies of dental fear and dental behavior management problems in children were investigated in a database of information on 2,257 Swedish children 4-6 and 9-11 years old. The analyses were performed using computerized inductive techniques within the field of artificial intelligence. The database held information regarding dental fear levels and behavior management problems, which were defined as outcomes, i.e. dependent variables. The attributes, i.e. independent variables, included data on dental health and dental treatments, information about parental dental fear, general anxiety, socioeconomic variables, etc. The data contained both numerical and discrete variables. The analyses were performed using an inductive analysis program (XpertRule Analyser, Attar Software Ltd, Lancashire, UK) that presents the results in a hierarchic diagram called a knowledge tree. The importance of the different attributes is represented by their position in this diagram. The results show that inductive methods are well suited for analyzing multifactorial and complex relationships in large data sets, and are thus a useful complement to multivariate statistical techniques. The knowledge trees for the two outcomes, dental fear and behavior management problems, were very different from each other, suggesting that the two phenomena are not equivalent. Dental fear was found to be more related to non-dental variables, whereas dental behavior management problems seemed connected to dental variables.
ERIC Educational Resources Information Center
Wilburn, Catherine; Feeney, Aidan
2008-01-01
In a recently published study, Sloutsky and Fisher [Sloutsky, V. M., & Fisher, A.V. (2004a). When development and learning decrease memory: Evidence against category-based induction in children. "Psychological Science", 15, 553-558; Sloutsky, V. M., & Fisher, A. V. (2004b). Induction and categorization in young children: A similarity-based model.…
Development, awareness and inductive selectivity.
Hayes, Brett K; Lim, Melissa
2013-05-01
Two studies examined whether adults and children could learn to make context-dependent inferences about novel stimuli and the role of awareness of context cues in such learning. Participants were trained to match probes to targets on the basis of shape or color with the relevant dimension shifting according to item context. A selective induction test then examined context-dependent responding in a more complex matching task. Awareness of the role of context was assessed using a behavioral task and explicit questions. Experiment 1 showed that after training with the procedure described by Sloutsky and Fisher (2008), only a minority of adults showed evidence of context-dependent responding in the selective induction test. Experiment 2 used a modified training protocol that promoted attention to context cues. This led to reliable selective induction in a majority of adults and a sizeable proportion of 4- to 6-year-olds. Crucially, in both age groups, selective induction was dependent on awareness of context. Hence, children as young as 4 can learn to make selective inferences about novel stimuli, but only when they are aware of the relevant context cues. These results challenge previous claims that selective induction in children is the product of implicit learning.
Eye Movement Analysis of Information Processing under Different Testing Conditions.
ERIC Educational Resources Information Center
Dillon, Ronna F.
1985-01-01
Undergraduates were given complex figural analogies items, and eye movements were observed under three types of feedback: (1) elaborate feedback; (2) subjects verbalized their thinking and application of rules; and (3) no feedback. Both feedback conditions enhanced the rule-governed information processing during inductive reasoning. (Author/GDC)
Horn-Ritzinger, Sabine; Bernhardt, Johannes; Horn, Michael; Smolle, Josef
2011-04-01
The importance of inductive instruction in medical education is increasingly growing. Little is known about the relevance of prior knowledge regarding students' inductive reasoning abilities. The purpose is to evaluate this inductive teaching method as a means of fostering higher levels of learning and to explore how individual differences in prior knowledge (high [HPK] vs. low [LPK]) contribute to students' inductive reasoning skills. Twenty-six LPK and 18 HPK students could train twice with an interactive computer-based training object to discover the underlying concept before doing the final comprehension check. Students had a median of 76.9% of correct answers in the first, 90.9% in the second training, and answered 92% of the final assessment questions correctly. More important, 86% of all students succeeded with inductive learning, among them 83% of the HPK students and 89% of the LPK students. Prior knowledge did not predict performance on overall comprehension. This inductive instructional strategy fostered students' deep approaches to learning in a time-effective way.
Students Learn by Doing: Teaching about Rules of Thumb.
ERIC Educational Resources Information Center
Cude, Brenda J.
1990-01-01
Identifies situation in which consumers are likely to substitute rules of thumb for research, reviews rules of thumb often used as substitutes, and identifies teaching activities to help students learn when substitution is appropriate. (JOW)
Mission Impossible: Learning How a Classroom Works before It's Too Late!
ERIC Educational Resources Information Center
Tattershall, Sandra
1987-01-01
The article looks at the implicit rules of classroom functioning and the importance of students learning these rules, either through osmosis or direct rule instruction, during the first few weeks of school. Speech language pathologists can help at risk students identify critical components of teacher behavior and classroom rules. (DB)
On rules of induction and the raven paradox in Bayesian confirmation theory
NASA Astrophysics Data System (ADS)
Afshar, H. M.; Sunehag, P.
2014-12-01
Confirmation theory is studying how one can confirm a universal statement like "All ravens are black". Early authors discussed how one's degree of belief in such a statement should change with new evidence and suggested various rules of induction. Nicod's Condition (NC) says that the claim that all F are G is supported by observing a previously unseen object that is both F and G. Hempel pointed out that NC implies the paradoxical conclusion that observing a white sock supports that all ravens are black. In our time, confirmation is studied by using subjective conditional probability as degrees of belief with Kolmogorov's axioms as the main rules of induction. The old rules and problems of induction are, however, still studied within the probabilistic framework. We consider a setting where the number of individuals having a particular property is given and find that NC can contradict a simpler principle, namely projectability (PJ) which says that if we observe an object with property ψ then other objects are also more likely to have property ψ. We find that intuition can side with either one depending on the situation. We suggest that a more appropriate formalization of the intuition behind NC is the weaker principle of reasoning by analogy (RA). RA says that if we see an object that is F and G and we know that another object is F, then it is more likely to also be G. Projectability might still be considered valid for relatively uninformed a priori beliefs. If one decides that a principle like projectability is valid for confirmation in an uninformed situation, it provides a test that an a priori distribution must satisfy. Hence, decreasing the arbitrariness of the choice of measure. Further, by considering background knowledge saying only how many ravens there are in the world we conclude that if someone accepts the projectability principle, an agent will not increment the belief that all ravens are black when having observed a white sock. Most Bayesian approaches have so far derived a small increment in confirmation by relying on some particular a priori measure. A conclusion rejected by common sense. We here resolve the contradiction by formally identifying the natural background knowledge considered and the inductive rule that the a priori belief should comply with in the situation at hand. The original paradox is dispelled by rejecting NC.
Myths and legends in learning classification rules
NASA Technical Reports Server (NTRS)
Buntine, Wray
1990-01-01
This paper is a discussion of machine learning theory on empirically learning classification rules. The paper proposes six myths in the machine learning community that address issues of bias, learning as search, computational learning theory, Occam's razor, 'universal' learning algorithms, and interactive learnings. Some of the problems raised are also addressed from a Bayesian perspective. The paper concludes by suggesting questions that machine learning researchers should be addressing both theoretically and experimentally.
Learning to Learn about Uncertain Feedback
ERIC Educational Resources Information Center
Faraut, Mailys C. M.; Procyk, Emmanuel; Wilson, Charles R. E.
2016-01-01
Unexpected outcomes can reflect noise in the environment or a change in the current rules. We should ignore noise but shift strategy after rule changes. How we learn to do this is unclear, but one possibility is that it relies on learning to learn in uncertain environments. We propose that acquisition of latent task structure during learning to…
A proposed technique for vehicle tracking, direction, and speed determination
NASA Astrophysics Data System (ADS)
Fisher, Paul S.; Angaye, Cleopas O.; Fisher, Howard P.
2004-12-01
A technique for recognition of vehicles in terms of direction, distance, and rate of change is presented. This represents very early work on this problem with significant hurdles still to be addressed. These are discussed in the paper. However, preliminary results also show promise for this technique for use in security and defense environments where the penetration of a perimeter is of concern. The material described herein indicates a process whereby the protection of a barrier could be augmented by computers and installed cameras assisting the individuals charged with this responsibility. The technique we employ is called Finite Inductive Sequences (FI) and is proposed as a means for eliminating data requiring storage and recognition where conventional mathematical models don"t eliminate enough and statistical models eliminate too much. FI is a simple idea and is based upon a symbol push-out technique that allows the order (inductive base) of the model to be set to an a priori value for all derived rules. The rules are obtained from exemplar data sets, and are derived by a technique called Factoring, yielding a table of rules called a Ruling. These rules can then be used in pattern recognition applications such as described in this paper.
Decoding rule search domain in the left inferior frontal gyrus
Babcock, Laura; Vallesi, Antonino
2018-01-01
Traditionally, the left hemisphere has been thought to extract mainly verbal patterns of information, but recent evidence has shown that the left Inferior Frontal Gyrus (IFG) is active during inductive reasoning in both the verbal and spatial domains. We aimed to understand whether the left IFG supports inductive reasoning in a domain-specific or domain-general fashion. To do this we used Multi-Voxel Pattern Analysis to decode the representation of domain during a rule search task. Thirteen participants were asked to extract the rule underlying streams of letters presented in different spatial locations. Each rule was either verbal (letters forming words) or spatial (positions forming geometric figures). Our results show that domain was decodable in the left prefrontal cortex, suggesting that this region represents domain-specific information, rather than processes common to the two domains. A replication study with the same participants tested two years later confirmed these findings, though the individual representations changed, providing evidence for the flexible nature of representations. This study extends our knowledge on the neural basis of goal-directed behaviors and on how information relevant for rule extraction is flexibly mapped in the prefrontal cortex. PMID:29547623
White, P A
2000-04-01
In two experiments, participants made causal judgments from contingency information for problems with different objective contingencies. After the judgment task, the participants reported how their judgments had changed following each type of contingency information. Some reported idiosyncratic tendencies--in other words, tendencies contrary to those expected under associative-learning and normative rule induction models of contingency judgment. These idiosyncratic reports tended to be better predictors of the judgments of those who made them than did the models. The results are consistent with the view that causal judgment from contingency information is made, at least in part, by deliberative use of acquired and sometimes idiosyncratic notions of evidential value, the outcomes of which tend, in aggregate, to be highly correlated with the outcomes of normative procedures.
On the determinants of the conjunction fallacy: probability versus inductive confirmation.
Tentori, Katya; Crupi, Vincenzo; Russo, Selena
2013-02-01
Major recent interpretations of the conjunction fallacy postulate that people assess the probability of a conjunction according to (non-normative) averaging rules as applied to the constituents' probabilities or represent the conjunction fallacy as an effect of random error in the judgment process. In the present contribution, we contrast such accounts with a different reading of the phenomenon based on the notion of inductive confirmation as defined by contemporary Bayesian theorists. Averaging rule hypotheses along with the random error model and many other existing proposals are shown to all imply that conjunction fallacy rates would rise as the perceived probability of the added conjunct does. By contrast, our account predicts that the conjunction fallacy depends on the added conjunct being perceived as inductively confirmed. Four studies are reported in which the judged probability versus confirmation of the added conjunct have been systematically manipulated and dissociated. The results consistently favor a confirmation-theoretic account of the conjunction fallacy against competing views. Our proposal is also discussed in connection with related issues in the study of human inductive reasoning. 2013 APA, all rights reserved
Seera, Manjeevan; Lim, Chee Peng; Ishak, Dahaman; Singh, Harapajan
2012-01-01
In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.
Attentional effects on rule extraction and consolidation from speech.
López-Barroso, Diana; Cucurell, David; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth
2016-07-01
Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowledge derived from implicit learning, which is based on prediction-based mechanisms, may become explicit. The role that attention plays in the formation of implicit and explicit knowledge of the learned material is unclear. In the present study, we investigated the role that attention plays in the acquisition of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention during learning changes the representation of the learned material after a 24h delay containing sleep. For that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial language that contained non-adjacent dependencies (rules) between words whereas different conditions were established to manipulate the amount of attention given to the rules (target and non-target conditions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of the rules occurred regardless of attention, more explicit judgments after learning showed differences in the type of learning reached under the two attention conditions. 24 hours later, indirect measures showed no further improvements during additional language exposure and explicit judgments indicated that only the information more robustly learned in the previous day, was consolidated. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Attentional effects on rule extraction and consolidation from speech
López-Barroso, Diana; Cucurell, David; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth
2016-01-01
Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowledge derived from implicit learning, which is based on prediction-based mechanisms, may become explicit. The role that attention plays in the formation of implicit and explicit knowledge of the learned material is unclear. In the present study, we investigated the role that attention plays in the acquisition of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention during learning changes the representation of the learned material after a 24 h delay containing sleep. For that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial language that contained non-adjacent dependencies (rules) between words whereas different conditions were established to manipulate the amount of attention given to the rules (target and non-target conditions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of the rules occurred regardless of attention, more explicit judgments after learning showed differences in the type of learning reached under the two attention conditions. 24 hours later, indirect measures showed no further improvements during additional language exposure and explicit judgments indicated that only the information more robustly learned in the previous day, was consolidated. PMID:27031495
Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding
Gardner, Brian; Grüning, André
2016-01-01
Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule’s error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism. PMID:27532262
The Effects of Concurrent Verbal and Visual Tasks on Category Learning
ERIC Educational Resources Information Center
Miles, Sarah J.; Minda, John Paul
2011-01-01
Current theories of category learning posit separate verbal and nonverbal learning systems. Past research suggests that the verbal system relies on verbal working memory and executive functioning and learns rule-defined categories; the nonverbal system does not rely on verbal working memory and learns non-rule-defined categories (E. M. Waldron…
Learning in the Absence of Experience-Dependent Regulation of NMDAR Composition
ERIC Educational Resources Information Center
Lebel, David; Sidhu, Nishchal; Barkai, Edi; Quinlan, Elizabeth M.
2006-01-01
Olfactory discrimination (OD) learning consists of two phases: an initial N-methyl-d-aspartate (NMDA) receptor--sensitive rule-learning phase, followed by an NMDA receptor (NMDAR)--insensitive pair-learning phase. The rule-learning phase is accompanied by changes in the composition and function of NMDARs at synapses in the piriform cortex,…
The effect of negative performance stereotypes on learning.
Rydell, Robert J; Rydell, Michael T; Boucher, Kathryn L
2010-12-01
Stereotype threat (ST) research has focused exclusively on how negative group stereotypes reduce performance. The present work examines if pejorative stereotypes about women in math inhibit their ability to learn the mathematical rules and operations necessary to solve math problems. In Experiment 1, women experiencing ST had difficulty encoding math-related information into memory and, therefore, learned fewer mathematical rules and showed poorer math performance than did controls. In Experiment 2, women experiencing ST while learning modular arithmetic (MA) performed more poorly than did controls on easy MA problems; this effect was due to reduced learning of the mathematical operations underlying MA. In Experiment 3, ST reduced women's, but not men's, ability to learn abstract mathematical rules and to transfer these rules to a second, isomorphic task. This work provides the first evidence that negative stereotypes about women in math reduce their level of mathematical learning and demonstrates that reduced learning due to stereotype threat can lead to poorer performance in negatively stereotyped domains. PsycINFO Database Record (c) 2010 APA, all rights reserved.
An inductive method for automatic generation of referring physician prefetch rules for PACS.
Okura, Yasuhiko; Matsumura, Yasushi; Harauchi, Hajime; Sukenobu, Yoshiharu; Kou, Hiroko; Kohyama, Syunsuke; Yasuda, Norihiro; Yamamoto, Yuichiro; Inamura, Kiyonari
2002-12-01
To prefetch images in a hospital-wide picture archiving and communication system (PACS), a rule must be devised to permit accurate selection of examinations in which a patient's images are stored. We developed an inductive method to compose prefetch rules from practical data which were obtained in a hospital using a decision tree algorithm. Our methods were evaluated on data acquired in Osaka University Hospital for one month. The data collected consisted of 58,617 cases of consultation reservations, 643,797 examination histories of patients, and 323,993 records of image requests in PACS. Four parameters indicating whether the images of the patient were requested or not for each consultation reservation were derived from the database. As a result, the successful selection sensitivity for consultations in which images were requested was approximately 0.8, and the specificity for excluding consultations accurately where images were not requested was approximately 0.7.
Rule Breaking in the Child Care Centre: Tensions for Children and Teachers
ERIC Educational Resources Information Center
Brennan, Margaret
2016-01-01
Research suggests that young children transgress conventional rules in every culture and society. In this article, the argument is made that rule teaching and learning provide insight into how children learn to be part of a group. The research question addressed is, "Why do some children transgress the rules if their actions risk jeopardising…
ERIC Educational Resources Information Center
Rahmatian, Rouhollah; Zarekar, Fatemeh
2016-01-01
This article defines the objective of discovering the first preferred styles of Iranian learners of French as a Foreign Language (FFL) as regards inductive or deductive learning; and secondly, the difference between gender-based learning tendencies. Considering these points as target variables, the questionnaire developed by Felder and Silverman…
Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning
NASA Astrophysics Data System (ADS)
Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.
1995-12-01
The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.
Rule-based mechanisms of learning for intelligent adaptive flight control
NASA Technical Reports Server (NTRS)
Handelman, David A.; Stengel, Robert F.
1990-01-01
How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.
Category Learning Strategies in Younger and Older Adults: Rule Abstraction and Memorization
Wahlheim, Christopher N.; McDaniel, Mark A.; Little, Jeri L.
2016-01-01
Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, both age groups had comparable frequencies of rule- and exemplar-based learners, but older adults had a higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies). Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. PMID:26950225
Induction Based on Circumscription
NASA Astrophysics Data System (ADS)
Saito, Haruka; Inoue, Katsumi
We investigate induction from the viewpoint of nonmonotonic reasoning. Induction we consider in this paper is descriptive induction. Hypotheses from descriptive induction have the weak property that they only describe rules with respect to the observations and do not realize an inductive leap. In this paper, we define a new form of descriptive induction with circumscription and the idea of explanation and show two procedures for computing it. The new descriptive induction is called circumscriptive induction. By deciding the roles of predicates in circumscription, we can intentionally minimize models of a given inductive problem. By adopting the idea of explanation, we can distinguish between background knowledge and observations. Additionally, we consider the relationship between the way of choosing the roles of predicates in computing circumscription and the property of hypotheses obtained by circumscriptive induction. It is shown that hypotheses from circumscriptive induction reflect a difference between background knowledge and observations and do not realize an inductive leap. We also investigate revision of hypotheses which is as important as generation of hypotheses. In a process of hypothesis revision, a difference between previous induction and circumscriptive induction is clearly characterised.
A Machine Learning Approach to Student Modeling.
1984-05-01
machine learning , and describe ACN, a student modeling system that incorporates this approach. This system begins with a set of overly general rules, which it uses to search a problem space until it arrives at the same answer as the student. The ACM computer program then uses the solution path it has discovered to determine positive and negative instances of its initial rules, and employs a discrimination learning mechanism to place additional conditions on these rules. The revised rules will reproduce the solution path without search, and constitute a cognitive model of
How Supervisor Experience Influences Trust, Supervision, and Trainee Learning: A Qualitative Study.
Sheu, Leslie; Kogan, Jennifer R; Hauer, Karen E
2017-09-01
Appropriate trust and supervision facilitate trainees' growth toward unsupervised practice. The authors investigated how supervisor experience influences trust, supervision, and subsequently trainee learning. In a two-phase qualitative inductive content analysis, phase one entailed reviewing 44 internal medicine resident and attending supervisor interviews from two institutions (July 2013 to September 2014) for themes on how supervisor experience influences trust and supervision. Three supervisor exemplars (early, developing, experienced) were developed and shared in phase two focus groups at a single institution, wherein 23 trainees validated the exemplars and discussed how each impacted learning (November 2015). Phase one: Four domains of trust and supervision varying with experience emerged: data, approach, perspective, clinical. Early supervisors were detail oriented and determined trust depending on task completion (data), were rule based (approach), drew on their experiences as trainees to guide supervision (perspective), and felt less confident clinically compared with more experienced supervisors (clinical). Experienced supervisors determined trust holistically (data), checked key aspects of patient care selectively and covertly (approach), reflected on individual experiences supervising (perspective), and felt comfortable managing clinical problems and gauging trainee abilities (clinical). Phase two: Trainees felt the exemplars reflected their experiences, described their preferences and learning needs shifting over time, and emphasized the importance of supervisor flexibility to match their learning needs. With experience, supervisors differ in their approach to trust and supervision. Supervisors need to trust themselves before being able to trust others. Trainees perceive these differences and seek supervision approaches that align with their learning needs.
Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil
2015-01-01
PRIMsrc is a novel implementation of a non-parametric bump hunting procedure, based on the Patient Rule Induction Method (PRIM), offering a unified treatment of outcome variables, including censored time-to-event (Survival), continuous (Regression) and discrete (Classification) responses. To fit the model, it uses a recursive peeling procedure with specific peeling criteria and stopping rules depending on the response. To validate the model, it provides an objective function based on prediction-error or other specific statistic, as well as two alternative cross-validation techniques, adapted to the task of decision-rule making and estimation in the three types of settings. PRIMsrc comes as an open source R package, including at this point: (i) a main function for fitting a Survival Bump Hunting model with various options allowing cross-validated model selection to control model size (#covariates) and model complexity (#peeling steps) and generation of cross-validated end-point estimates; (ii) parallel computing; (iii) various S3-generic and specific plotting functions for data visualization, diagnostic, prediction, summary and display of results. It is available on CRAN and GitHub. PMID:26798326
Bazhenov, Maxim; Huerta, Ramon; Smith, Brian H.
2013-01-01
Nonassociative and associative learning rules simultaneously modify neural circuits. However, it remains unclear how these forms of plasticity interact to produce conditioned responses. Here we integrate nonassociative and associative conditioning within a uniform model of olfactory learning in the honeybee. Honeybees show a fairly abrupt increase in response after a number of conditioning trials. The occurrence of this abrupt change takes many more trials after exposure to nonassociative trials than just using associative conditioning. We found that the interaction of unsupervised and supervised learning rules is critical for explaining latent inhibition phenomenon. Associative conditioning combined with the mutual inhibition between the output neurons produces an abrupt increase in performance despite smooth changes of the synaptic weights. The results show that an integrated set of learning rules implemented using fan-out connectivities together with neural inhibition can explain the broad range of experimental data on learning behaviors. PMID:23536082
The transfer of category knowledge by macaques (Macaca mulatta) and humans (Homo sapiens).
Zakrzewski, Alexandria C; Church, Barbara A; Smith, J David
2018-02-01
Cognitive psychologists distinguish implicit, procedural category learning (stimulus-response associations learned outside declarative cognition) from explicit-declarative category learning (conscious category rules). These systems are dissociated by category learning tasks with either a multidimensional, information-integration (II) solution or a unidimensional, rule-based (RB) solution. In the present experiments, humans and two monkeys learned II and RB category tasks fostering implicit and explicit learning, respectively. Then they received occasional transfer trials-never directly reinforced-drawn from untrained regions of the stimulus space. We hypothesized that implicit-procedural category learning-allied to associative learning-would transfer weakly because it is yoked to the training stimuli. This result was confirmed for humans and monkeys. We hypothesized that explicit category learning-allied to abstract category rules-would transfer robustly. This result was confirmed only for humans. That is, humans displayed explicit category knowledge that transferred flawlessly. Monkeys did not. This result illuminates the distinctive abstractness, stimulus independence, and representational portability of humans' explicit category rules. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Sleep facilitates learning a new linguistic rule
Batterink, Laura J.; Oudiette, Delphine; Reber, Paul J.; Paller, Ken A.
2014-01-01
Natural languages contain countless regularities. Extraction of these patterns is an essential component of language acquisition. Here we examined the hypothesis that memory processing during sleep contributes to this learning. We exposed participants to a hidden linguistic rule by presenting a large number of two-word phrases, each including a noun preceded by one of four novel words that functioned as an article (e.g., gi rhino). These novel words (ul, gi, ro and ne) were presented as obeying an explicit rule: two words signified that the noun referent was relatively near, and two that it was relatively far. Undisclosed to participants was the fact that the novel articles also predicted noun animacy, with two of the articles preceding animate referents and the other two preceding inanimate referents. Rule acquisition was tested implicitly using a task in which participants responded to each phrase according to whether the noun was animate or inanimate. Learning of the hidden rule was evident in slower responses to phrases that violated the rule. Responses were delayed regardless of whether rule-knowledge was consciously accessible. Brain potentials provided additional confirmation of implicit and explicit rule-knowledge. An afternoon nap was interposed between two 20-min learning sessions. Participants who obtained greater amounts of both slow-wave and rapid-eye-movement sleep showed increased sensitivity to the hidden linguistic rule in the second session. We conclude that during sleep, reactivation of linguistic information linked with the rule was instrumental for stabilizing learning. The combination of slow-wave and rapid-eye-movement sleep may synergistically facilitate the abstraction of complex patterns in linguistic input. PMID:25447376
Liang, Peipeng; Jia, Xiuqin; Taatgen, Niels A; Zhong, Ning; Li, Kuncheng
2014-08-01
Neural correlate of human inductive reasoning process is still unclear. Number series and letter series completion are two typical inductive reasoning tasks, and with a common core component of rule induction. Previous studies have demonstrated that different strategies are adopted in number series and letter series completion tasks; even the underlying rules are identical. In the present study, we examined cortical activation as a function of two different reasoning strategies for solving series completion tasks. The retrieval strategy, used in number series completion tasks, involves direct retrieving of arithmetic knowledge to get the relations between items. The procedural strategy, used in letter series completion tasks, requires counting a certain number of times to detect the relations linking two items. The two strategies require essentially the equivalent cognitive processes, but have different working memory demands (the procedural strategy incurs greater demands). The procedural strategy produced significant greater activity in areas involved in memory retrieval (dorsolateral prefrontal cortex, DLPFC) and mental representation/maintenance (posterior parietal cortex, PPC). An ACT-R model of the tasks successfully predicted behavioral performance and BOLD responses. The present findings support a general-purpose dual-process theory of inductive reasoning regarding the cognitive architecture. Copyright © 2014 Elsevier B.V. All rights reserved.
Explanation-based learning in infancy.
Baillargeon, Renée; DeJong, Gerald F
2017-10-01
In explanation-based learning (EBL), domain knowledge is leveraged in order to learn general rules from few examples. An explanation is constructed for initial exemplars and is then generalized into a candidate rule that uses only the relevant features specified in the explanation; if the rule proves accurate for a few additional exemplars, it is adopted. EBL is thus highly efficient because it combines both analytic and empirical evidence. EBL has been proposed as one of the mechanisms that help infants acquire and revise their physical rules. To evaluate this proposal, 11- and 12-month-olds (n = 260) were taught to replace their current support rule (that an object is stable when half or more of its bottom surface is supported) with a more sophisticated rule (that an object is stable when half or more of the entire object is supported). Infants saw teaching events in which asymmetrical objects were placed on a base, followed by static test displays involving a novel asymmetrical object and a novel base. When the teaching events were designed to facilitate EBL, infants learned the new rule with as few as two (12-month-olds) or three (11-month-olds) exemplars. When the teaching events were designed to impede EBL, however, infants failed to learn the rule. Together, these results demonstrate that even infants, with their limited knowledge about the world, benefit from the knowledge-based approach of EBL.
Rule Based Category Learning in Patients with Parkinson’s Disease
Price, Amanda; Filoteo, J. Vincent; Maddox, W. Todd
2009-01-01
Measures of explicit rule-based category learning are commonly used in neuropsychological evaluation of individuals with Parkinson’s disease (PD) and the pattern of PD performance on these measures tends to be highly varied. We review the neuropsychological literature to clarify the manner in which PD affects the component processes of rule-based category learning and work to identify and resolve discrepancies within this literature. In particular, we address the manner in which PD and its common treatments affect the processes of rule generation, maintenance, shifting and selection. We then integrate the neuropsychological research with relevant neuroimaging and computational modeling evidence to clarify the neurobiological impact of PD on each process. Current evidence indicates that neurochemical changes associated with PD primarily disrupt rule shifting, and may disturb feedback-mediated learning processes that guide rule selection. Although surgical and pharmacological therapies remediate this deficit, it appears that the same treatments may contribute to impaired rule generation, maintenance and selection processes. These data emphasize the importance of distinguishing between the impact of PD and its common treatments when considering the neuropsychological profile of the disease. PMID:19428385
Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry
NASA Astrophysics Data System (ADS)
Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao
2017-12-01
We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we developed 24 test items addressing the attributes of exothermic and endothermic reactions, chemical bonds and heat quantity change, reaction heat and enthalpy, thermochemical equations, and Hess's law. The test was administered to a sample base of 694 senior high school students taught in 3 schools across 2 cities. Results based on the Rule Space Model analysis indicated that (1) the test items developed by the Rule Space Model were of high psychometric quality for good analysis of difficulties, discriminations, reliabilities, and validities; (2) the Rule Space Model analysis classified the students into seven different attribute mastery patterns; and (3) the initial hypothesized learning progression was modified by the attribute mastery patterns and the learning paths to be more precise and detailed.
Input and Age-Dependent Variation in Second Language Learning: A Connectionist Account.
Janciauskas, Marius; Chang, Franklin
2017-07-26
Language learning requires linguistic input, but several studies have found that knowledge of second language (L2) rules does not seem to improve with more language exposure (e.g., Johnson & Newport, 1989). One reason for this is that previous studies did not factor out variation due to the different rules tested. To examine this issue, we reanalyzed grammaticality judgment scores in Flege, Yeni-Komshian, and Liu's (1999) study of L2 learners using rule-related predictors and found that, in addition to the overall drop in performance due to a sensitive period, L2 knowledge increased with years of input. Knowledge of different grammar rules was negatively associated with input frequency of those rules. To better understand these effects, we modeled the results using a connectionist model that was trained using Korean as a first language (L1) and then English as an L2. To explain the sensitive period in L2 learning, the model's learning rate was reduced in an age-related manner. By assigning different learning rates for syntax and lexical learning, we were able to model the difference between early and late L2 learners in input sensitivity. The model's learning mechanism allowed transfer between the L1 and L2, and this helped to explain the differences between different rules in the grammaticality judgment task. This work demonstrates that an L1 model of learning and processing can be adapted to provide an explicit account of how the input and the sensitive period interact in L2 learning. © 2017 The Authors. Cognitive Science - A Multidisciplinary Journal published by Wiley Periodicals, Inc.
Improving Predictions of Multiple Binary Models in ILP
2014-01-01
Despite the success of ILP systems in learning first-order rules from small number of examples and complexly structured data in various domains, they struggle in dealing with multiclass problems. In most cases they boil down a multiclass problem into multiple black-box binary problems following the one-versus-one or one-versus-rest binarisation techniques and learn a theory for each one. When evaluating the learned theories of multiple class problems in one-versus-rest paradigm particularly, there is a bias caused by the default rule toward the negative classes leading to an unrealistic high performance beside the lack of prediction integrity between the theories. Here we discuss the problem of using one-versus-rest binarisation technique when it comes to evaluating multiclass data and propose several methods to remedy this problem. We also illustrate the methods and highlight their link to binary tree and Formal Concept Analysis (FCA). Our methods allow learning of a simple, consistent, and reliable multiclass theory by combining the rules of the multiple one-versus-rest theories into one rule list or rule set theory. Empirical evaluation over a number of data sets shows that our proposed methods produce coherent and accurate rule models from the rules learned by the ILP system of Aleph. PMID:24696657
Refining Linear Fuzzy Rules by Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap S.; Malkani, Anil
1996-01-01
Linear fuzzy rules are increasingly being used in the development of fuzzy logic systems. Radial basis functions have also been used in the antecedents of the rules for clustering in product space which can automatically generate a set of linear fuzzy rules from an input/output data set. Manual methods are usually used in refining these rules. This paper presents a method for refining the parameters of these rules using reinforcement learning which can be applied in domains where supervised input-output data is not available and reinforcements are received only after a long sequence of actions. This is shown for a generalization of radial basis functions. The formation of fuzzy rules from data and their automatic refinement is an important step in closing the gap between the application of reinforcement learning methods in the domains where only some limited input-output data is available.
Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.
van Ginneken, Bram
2017-03-01
Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.
Ensemble learning with trees and rules: supervised, semi-supervised, unsupervised
USDA-ARS?s Scientific Manuscript database
In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for supervised and semi-supervised learning problems. We show with various examples that for high dimensional regression problems the models constructed by the post processing the rules with ...
The Utility of Implicit Learning in the Teaching of Rules
ERIC Educational Resources Information Center
Saetrevik, Bjorn; Reber, Rolf; Sannum, Petter
2006-01-01
The potential impact of implicit learning on education has been repeatedly stressed, though little research has examined this connection directly. The current paper describes two experiments that, inspired by artificial grammar learning experiments, examine the utility of implicit learning as a method for teaching atomic bonding rules to 11-12…
Minda, John P; Rabi, Rahel
2015-01-01
Considerable research on category learning has suggested that many cognitive and environmental factors can have a differential effect on the learning of rule-defined (RD) categories as opposed to the learning of non-rule-defined (NRD) categories. Prior research has also suggested that ego depletion can temporarily reduce the capacity for executive functioning and cognitive flexibility. The present study examined whether temporarily reducing participants' executive functioning via a resource depletion manipulation would differentially impact RD and NRD category learning. Participants were either asked to write a story with no restrictions (the control condition), or without using two common letters (the ego depletion condition). Participants were then asked to learn either a set of RD categories or a set of NRD categories. Resource depleted participants performed more poorly than controls on the RD task, but did not differ from controls on the NRD task, suggesting that self regulatory resources are required for successful RD category learning. These results lend support to multiple systems theories and clarify the role of self-regulatory resources within this theory.
Pavlidou, Elpis V; Williams, Joanne M
2014-07-01
We examined implicit learning in school-aged children with and without developmental dyslexia based on the proposal that implicit learning plays a significant role in mastering fluent reading. We ran two experiments with 16 typically developing children (9 to 11-years-old) and 16 age-matched children with developmental dyslexia using the artificial grammar learning (AGL) paradigm. In Experiment 1 (non-transfer task), children were trained on stimuli that followed patterns (rules) unknown to them. Subsequently, they were asked to decide from a novel set which stimuli follow the same rules (grammaticality judgments). In Experiment 2 (transfer task), training and testing stimuli differed in their superficial characteristics but followed the same rules. Again, children were asked to make grammaticality judgments. Our findings expand upon previous research by showing that children with developmental dyslexia show difficulties in implicit learning that are most likely specific to higher-order rule-like learning. These findings are discussed in relation to current theories of developmental dyslexia and of implicit learning. Copyright © 2014 Elsevier Ltd. All rights reserved.
Minda, John P.; Rabi, Rahel
2015-01-01
Considerable research on category learning has suggested that many cognitive and environmental factors can have a differential effect on the learning of rule-defined (RD) categories as opposed to the learning of non-rule-defined (NRD) categories. Prior research has also suggested that ego depletion can temporarily reduce the capacity for executive functioning and cognitive flexibility. The present study examined whether temporarily reducing participants’ executive functioning via a resource depletion manipulation would differentially impact RD and NRD category learning. Participants were either asked to write a story with no restrictions (the control condition), or without using two common letters (the ego depletion condition). Participants were then asked to learn either a set of RD categories or a set of NRD categories. Resource depleted participants performed more poorly than controls on the RD task, but did not differ from controls on the NRD task, suggesting that self regulatory resources are required for successful RD category learning. These results lend support to multiple systems theories and clarify the role of self-regulatory resources within this theory. PMID:25688220
Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems
NASA Technical Reports Server (NTRS)
Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith
1988-01-01
Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.
Learning and disrupting invariance in visual recognition with a temporal association rule
Isik, Leyla; Leibo, Joel Z.; Poggio, Tomaso
2012-01-01
Learning by temporal association rules such as Foldiak's trace rule is an attractive hypothesis that explains the development of invariance in visual recognition. Consistent with these rules, several recent experiments have shown that invariance can be broken at both the psychophysical and single cell levels. We show (1) that temporal association learning provides appropriate invariance in models of object recognition inspired by the visual cortex, (2) that we can replicate the “invariance disruption” experiments using these models with a temporal association learning rule to develop and maintain invariance, and (3) that despite dramatic single cell effects, a population of cells is very robust to these disruptions. We argue that these models account for the stability of perceptual invariance despite the underlying plasticity of the system, the variability of the visual world and expected noise in the biological mechanisms. PMID:22754523
Information from multiple modalities helps 5-month-olds learn abstract rules.
Frank, Michael C; Slemmer, Jonathan A; Marcus, Gary F; Johnson, Scott P
2009-07-01
By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli (Marcus et al., 1999), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract rules. We habituated 5-month-olds to simple abstract patterns (ABA or ABB) instantiated in coordinated looming visual shapes and speech sounds (Experiment 1), shapes alone (Experiment 2), and speech sounds accompanied by uninformative but coordinated shapes (Experiment 3). Infants showed evidence of rule learning only in the presence of the informative multimodal cues. We hypothesize that the additional evidence present in these multimodal displays was responsible for the success of younger infants in learning rules, congruent with both a Bayesian account and with the Intersensory Redundancy Hypothesis.
A fuzzy classifier system for process control
NASA Technical Reports Server (NTRS)
Karr, C. L.; Phillips, J. C.
1994-01-01
A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.
How synapses can enhance sensibility of a neural network
NASA Astrophysics Data System (ADS)
Protachevicz, P. R.; Borges, F. S.; Iarosz, K. C.; Caldas, I. L.; Baptista, M. S.; Viana, R. L.; Lameu, E. L.; Macau, E. E. N.; Batista, A. M.
2018-02-01
In this work, we study the dynamic range in a neural network modelled by cellular automaton. We consider deterministic and non-deterministic rules to simulate electrical and chemical synapses. Chemical synapses have an intrinsic time-delay and are susceptible to parameter variations guided by learning Hebbian rules of behaviour. The learning rules are related to neuroplasticity that describes change to the neural connections in the brain. Our results show that chemical synapses can abruptly enhance sensibility of the neural network, a manifestation that can become even more predominant if learning rules of evolution are applied to the chemical synapses.
ERIC Educational Resources Information Center
Pearl, Lisa; Sprouse, Jon
2013-01-01
The induction problems facing language learners have played a central role in debates about the types of learning biases that exist in the human brain. Many linguists have argued that some of the learning biases necessary to solve these language induction problems must be both innate and language-specific (i.e., the Universal Grammar (UG)…
Sleep facilitates learning a new linguistic rule.
Batterink, Laura J; Oudiette, Delphine; Reber, Paul J; Paller, Ken A
2014-12-01
Natural languages contain countless regularities. Extraction of these patterns is an essential component of language acquisition. Here we examined the hypothesis that memory processing during sleep contributes to this learning. We exposed participants to a hidden linguistic rule by presenting a large number of two-word phrases, each including a noun preceded by one of four novel words that functioned as an article (e.g., gi rhino). These novel words (ul, gi, ro and ne) were presented as obeying an explicit rule: two words signified that the noun referent was relatively near, and two that it was relatively far. Undisclosed to participants was the fact that the novel articles also predicted noun animacy, with two of the articles preceding animate referents and the other two preceding inanimate referents. Rule acquisition was tested implicitly using a task in which participants responded to each phrase according to whether the noun was animate or inanimate. Learning of the hidden rule was evident in slower responses to phrases that violated the rule. Responses were delayed regardless of whether rule-knowledge was consciously accessible. Brain potentials provided additional confirmation of implicit and explicit rule-knowledge. An afternoon nap was interposed between two 20-min learning sessions. Participants who obtained greater amounts of both slow-wave and rapid-eye-movement sleep showed increased sensitivity to the hidden linguistic rule in the second session. We conclude that during sleep, reactivation of linguistic information linked with the rule was instrumental for stabilizing learning. The combination of slow-wave and rapid-eye-movement sleep may synergistically facilitate the abstraction of complex patterns in linguistic input. Copyright © 2014 Elsevier Ltd. All rights reserved.
RuleML-Based Learning Object Interoperability on the Semantic Web
ERIC Educational Resources Information Center
Biletskiy, Yevgen; Boley, Harold; Ranganathan, Girish R.
2008-01-01
Purpose: The present paper aims to describe an approach for building the Semantic Web rules for interoperation between heterogeneous learning objects, namely course outlines from different universities, and one of the rule uses: identifying (in)compatibilities between course descriptions. Design/methodology/approach: As proof of concept, a rule…
Bimodal emotion congruency is critical to preverbal infants' abstract rule learning.
Tsui, Angeline Sin Mei; Ma, Yuen Ki; Ho, Anna; Chow, Hiu Mei; Tseng, Chia-huei
2016-05-01
Extracting general rules from specific examples is important, as we must face the same challenge displayed in various formats. Previous studies have found that bimodal presentation of grammar-like rules (e.g. ABA) enhanced 5-month-olds' capacity to acquire a rule that infants failed to learn when the rule was presented with visual presentation of the shapes alone (circle-triangle-circle) or auditory presentation of the syllables (la-ba-la) alone. However, the mechanisms and constraints for this bimodal learning facilitation are still unknown. In this study, we used audio-visual relation congruency between bimodal stimulation to disentangle possible facilitation sources. We exposed 8- to 10-month-old infants to an AAB sequence consisting of visual faces with affective expressions and/or auditory voices conveying emotions. Our results showed that infants were able to distinguish the learned AAB rule from other novel rules under bimodal stimulation when the affects in audio and visual stimuli were congruently paired (Experiments 1A and 2A). Infants failed to acquire the same rule when audio-visual stimuli were incongruently matched (Experiment 2B) and when only the visual (Experiment 1B) or the audio (Experiment 1C) stimuli were presented. Our results highlight that bimodal facilitation in infant rule learning is not only dependent on better statistical probability and redundant sensory information, but also the relational congruency of audio-visual information. A video abstract of this article can be viewed at https://m.youtube.com/watch?v=KYTyjH1k9RQ. © 2015 John Wiley & Sons Ltd.
Identification of Malicious Web Pages by Inductive Learning
NASA Astrophysics Data System (ADS)
Liu, Peishun; Wang, Xuefang
Malicious web pages are an increasing threat to current computer systems in recent years. Traditional anti-virus techniques focus typically on detection of the static signatures of Malware and are ineffective against these new threats because they cannot deal with zero-day attacks. In this paper, a novel classification method for detecting malicious web pages is presented. This method is generalization and specialization of attack pattern based on inductive learning, which can be used for updating and expanding knowledge database. The attack pattern is established from an example and generalized by inductive learning, which can be used to detect unknown attacks whose behavior is similar to the example.
Learning a New Selection Rule in Visual and Frontal Cortex.
van der Togt, Chris; Stănişor, Liviu; Pooresmaeili, Arezoo; Albantakis, Larissa; Deco, Gustavo; Roelfsema, Pieter R
2016-08-01
How do you make a decision if you do not know the rules of the game? Models of sensory decision-making suggest that choices are slow if evidence is weak, but they may only apply if the subject knows the task rules. Here, we asked how the learning of a new rule influences neuronal activity in the visual (area V1) and frontal cortex (area FEF) of monkeys. We devised a new icon-selection task. On each day, the monkeys saw 2 new icons (small pictures) and learned which one was relevant. We rewarded eye movements to a saccade target connected to the relevant icon with a curve. Neurons in visual and frontal cortex coded the monkey's choice, because the representation of the selected curve was enhanced. Learning delayed the neuronal selection signals and we uncovered the cause of this delay in V1, where learning to select the relevant icon caused an early suppression of surrounding image elements. These results demonstrate that the learning of a new rule causes a transition from fast and random decisions to a more considerate strategy that takes additional time and they reveal the contribution of visual and frontal cortex to the learning process. © The Author 2016. Published by Oxford University Press.
Learning and innovative elements of strategy adoption rules expand cooperative network topologies.
Wang, Shijun; Szalay, Máté S; Zhang, Changshui; Csermely, Peter
2008-04-09
Cooperation plays a key role in the evolution of complex systems. However, the level of cooperation extensively varies with the topology of agent networks in the widely used models of repeated games. Here we show that cooperation remains rather stable by applying the reinforcement learning strategy adoption rule, Q-learning on a variety of random, regular, small-word, scale-free and modular network models in repeated, multi-agent Prisoner's Dilemma and Hawk-Dove games. Furthermore, we found that using the above model systems other long-term learning strategy adoption rules also promote cooperation, while introducing a low level of noise (as a model of innovation) to the strategy adoption rules makes the level of cooperation less dependent on the actual network topology. Our results demonstrate that long-term learning and random elements in the strategy adoption rules, when acting together, extend the range of network topologies enabling the development of cooperation at a wider range of costs and temptations. These results suggest that a balanced duo of learning and innovation may help to preserve cooperation during the re-organization of real-world networks, and may play a prominent role in the evolution of self-organizing, complex systems.
32 CFR 1630.47 - Class 4-W: Registrant who has completed alternative service in lieu of induction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 6 2010-07-01 2010-07-01 false Class 4-W: Registrant who has completed... to National Defense SELECTIVE SERVICE SYSTEM CLASSIFICATION RULES § 1630.47 Class 4-W: Registrant who has completed alternative service in lieu of induction. In Class 4-W shall be placed any registrant...
Fuzzy – PI controller to control the velocity parameter of Induction Motor
NASA Astrophysics Data System (ADS)
Malathy, R.; Balaji, V.
2018-04-01
The major application of Induction motor includes the usage of the same in industries because of its high robustness, reliability, low cost, highefficiency and good self-starting capability. Even though it has the above mentioned advantages, it also have some limitations: (1) the standard motor is not a true constant-speed machine, itsfull-load slip varies less than 1 % (in high-horsepower motors).And (2) it is not inherently capable of providing variable-speedoperation. In order to solve the above mentioned problem smart motor controls and variable speed controllers are used. Motor applications involve non linearity features, which can be controlled by Fuzzy logic controller as it is capable of handling those features with high efficiency and it act similar to human operator. This paper presents individuality of the plant modelling. The fuzzy logic controller (FLC)trusts on a set of linguistic if-then rules, a rule-based Mamdani for closed loop Induction Motor model. Themotor model is designed and membership functions are chosenaccording to the parameters of the motor model. Simulation results contains non linearity in induction motor model. A conventional PI controller iscompared practically to fuzzy logic controller using Simulink.
Who Knows? Metacognitive Social Learning Strategies.
Heyes, Cecilia
2016-03-01
To make good use of learning from others (social learning), we need to learn from the right others; from agents who know better than we do. Research on social learning strategies (SLSs) has identified rules that focus social learning on the right agents, and has shown that the behaviour of many animals conforms to these rules. However, it has not asked what the rules are made of, that is, about the cognitive processes implementing SLSs. Here, I suggest that most SLSs depend on domain-general, sensorimotor processes. However, some SLSs have the characteristics tacitly ascribed to all of them. These metacognitive SLSs represent 'who knows' in a conscious, reportable way, and have the power to promote cultural evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Instructional Variables in Meaningful Learning of Computer Programming.
ERIC Educational Resources Information Center
Mayer, Richard E.
Some 120 undergraduate students participated in experiments to learn how novice computer programers learn to interact with the computer. Two instructional booklets were used: A "rule" booklet consisted of definitions and examples of seven modified FORTRAN statements and appropriate grammar rules; the "model" booklet was…
McDaniel, Mark A; Cahill, Michael J; Robbins, Mathew; Wiener, Chelsea
2014-04-01
We hypothesize that during training some learners may focus on acquiring the particular exemplars and responses associated with the exemplars (termed exemplar learners), whereas other learners attempt to abstract underlying regularities reflected in the particular exemplars linked to an appropriate response (termed rule learners). Supporting this distinction, after training (on a function-learning task), participants displayed an extrapolation profile reflecting either acquisition of the trained cue-criterion associations (exemplar learners) or abstraction of the function rule (rule learners; Studies 1a and 1b). Further, working memory capacity (measured by operation span [Ospan]) was associated with the tendency to rely on rule versus exemplar processes. Studies 1c and 2 examined the persistence of these learning tendencies on several categorization tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the exemplar learners performed well on a novel categorization task (transfer) after training on an abstract coherent category. These patterns suggest that in complex conceptual tasks, (a) individuals tend to either focus on exemplars during learning or on extracting some abstraction of the concept, (b) this tendency might be a relatively stable characteristic of the individual, and (c) transfer patterns are determined by that tendency.
McDaniel, Mark A.; Cahill, Michael J.; Robbins, Mathew; Wiener, Chelsea
2013-01-01
We hypothesize that during training some learners may focus on acquiring the particular exemplars and responses associated with the exemplars (termed exemplar learners), whereas other learners attempt to abstract underlying regularities reflected in the particular exemplars linked to an appropriate response (termed rule learners). Supporting this distinction, after training (on a function-learning task), participants either displayed an extrapolation profile reflecting acquisition of the trained cue-criterion associations (exemplar learners) or abstraction of the function rule (rule learners; Studies 1a and 1b). Further, working memory capacity (measured by Ospan) was associated with the tendency to rely on rule versus exemplar processes. Studies 1c and 2 examined the persistence of these learning tendencies on several categorization tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the exemplar learners performed well on a novel categorization task (transfer) after training on an abstract coherent category. These patterns suggest that in complex conceptual tasks, (a) individuals tend to either focus on exemplars during learning or on extracting some abstraction of the concept, (b) this tendency might be a relatively stable characteristic of the individual, and (c) transfer patterns are determined by that tendency. PMID:23750912
eFSM--a novel online neural-fuzzy semantic memory model.
Tung, Whye Loon; Quek, Chai
2010-01-01
Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.
Electrophysiological responses to feedback during the application of abstract rules.
Walsh, Matthew M; Anderson, John R
2013-11-01
Much research focuses on how people acquire concrete stimulus-response associations from experience; however, few neuroscientific studies have examined how people learn about and select among abstract rules. To address this issue, we recorded ERPs as participants performed an abstract rule-learning task. In each trial, they viewed a sample number and two test numbers. Participants then chose a test number using one of three abstract mathematical rules they freely selected from: greater than the sample number, less than the sample number, or equal to the sample number. No one rule was always rewarded, but some rules were rewarded more frequently than others. To maximize their earnings, participants needed to learn which rules were rewarded most frequently. All participants learned to select the best rules for repeating and novel stimulus sets that obeyed the overall reward probabilities. Participants differed, however, in the extent to which they overgeneralized those rules to repeating stimulus sets that deviated from the overall reward probabilities. The feedback-related negativity (FRN), an ERP component thought to reflect reward prediction error, paralleled behavior. The FRN was sensitive to item-specific reward probabilities in participants who detected the deviant stimulus set, and the FRN was sensitive to overall reward probabilities in participants who did not. These results show that the FRN is sensitive to the utility of abstract rules and that the individual's representation of a task's states and actions shapes behavior as well as the FRN.
Electrophysiological Responses to Feedback during the Application of Abstract Rules
Walsh, Matthew M.; Anderson, John R.
2017-01-01
Much research focuses on how people acquire concrete stimulus–response associations from experience; however, few neuroscientific studies have examined how people learn about and select among abstract rules. To address this issue, we recorded ERPs as participants performed an abstract rule-learning task. In each trial, they viewed a sample number and two test numbers. Participants then chose a test number using one of three abstract mathematical rules they freely selected from: greater than the sample number, less than the sample number, or equal to the sample number. No one rule was always rewarded, but some rules were rewarded more frequently than others. To maximize their earnings, participants needed to learn which rules were rewarded most frequently. All participants learned to select the best rules for repeating and novel stimulus sets that obeyed the overall reward probabilities. Participants differed, however, in the extent to which they overgeneralized those rules to repeating stimulus sets that deviated from the overall reward probabilities. The feedback-related negativity (FRN), an ERP component thought to reflect reward prediction error, paralleled behavior. The FRN was sensitive to item-specific reward probabilities in participants who detected the deviant stimulus set, and the FRN was sensitive to overall reward probabilities in participants who did not. These results show that the FRN is sensitive to the utility of abstract rules and that the individualʼs representation of a taskʼs states and actions shapes behavior as well as the FRN. PMID:23915052
Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System
Mikaitis, Mantas; Pineda García, Garibaldi; Knight, James C.; Furber, Steve B.
2018-01-01
SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity—believed to be one of the main mechanisms behind learning and memory in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP) rules have already been implemented on SpiNNaker and have been shown to be capable of solving various learning tasks in real-time. However, while STDP is an important biological theory of learning, it is a form of Hebbian or unsupervised learning and therefore does not explain behaviors that depend on feedback from the environment. Instead, learning rules based on neuromodulated STDP (three-factor learning rules) have been shown to be capable of solving reinforcement learning tasks in a biologically plausible manner. In this paper we demonstrate for the first time how a model of three-factor STDP, with the third-factor representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker neuromorphic system. Using this learning rule we first show how reward and punishment signals can be delivered to a single synapse before going on to demonstrate it in a larger network which solves the credit assignment problem in a Pavlovian conditioning experiment. Because of its extra complexity, we find that our three-factor learning rule requires approximately 2× as much processing time as the existing SpiNNaker STDP learning rules. However, we show that it is still possible to run our Pavlovian conditioning model with up to 1 × 104 neurons in real-time, opening up new research opportunities for modeling behavioral learning on SpiNNaker. PMID:29535600
Concreteness Fading of Algebraic Instruction: Effects on Learning
ERIC Educational Resources Information Center
Ottmar, Erin; Landy, David
2017-01-01
Learning algebra is difficult for many students in part because of an emphasis on the memorization of abstract rules. Algebraic reasoners across expertise levels often rely on perceptual-motor strategies to make these rules meaningful and memorable. However, in many cases, rules are provided as patterns to be memorized verbally, with little overt…
ERIC Educational Resources Information Center
Zhang, Zhidong
2016-01-01
This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…
Wojtusiak, Janusz; Michalski, Ryszard S; Simanivanh, Thipkesone; Baranova, Ancha V
2009-12-01
Systematic reviews and meta-analysis of published clinical datasets are important part of medical research. By combining results of multiple studies, meta-analysis is able to increase confidence in its conclusions, validate particular study results, and sometimes lead to new findings. Extensive theory has been built on how to aggregate results from multiple studies and arrive to the statistically valid conclusions. Surprisingly, very little has been done to adopt advanced machine learning methods to support meta-analysis. In this paper we describe a novel machine learning methodology that is capable of inducing accurate and easy to understand attributional rules from aggregated data. Thus, the methodology can be used to support traditional meta-analysis in systematic reviews. Most machine learning applications give primary attention to predictive accuracy of the learned knowledge, and lesser attention to its understandability. Here we employed attributional rules, the special form of rules that are relatively easy to interpret for medical experts who are not necessarily trained in statistics and meta-analysis. The methodology has been implemented and initially tested on a set of publicly available clinical data describing patients with metabolic syndrome (MS). The objective of this application was to determine rules describing combinations of clinical parameters used for metabolic syndrome diagnosis, and to develop rules for predicting whether particular patients are likely to develop secondary complications of MS. The aggregated clinical data was retrieved from 20 separate hospital cohorts that included 12 groups of patients with present liver disease symptoms and 8 control groups of healthy subjects. The total of 152 attributes were used, most of which were measured, however, in different studies. Twenty most common attributes were selected for the rule learning process. By applying the developed rule learning methodology we arrived at several different possible rulesets that can be used to predict three considered complications of MS, namely nonalcoholic fatty liver disease (NAFLD), simple steatosis (SS), and nonalcoholic steatohepatitis (NASH).
Tackling the Survey: A Learning-by-Induction Design
ERIC Educational Resources Information Center
Witte, Anne E.
2017-01-01
Free online survey tools provide a practical learning-by-induction platform for business communication instructors interested in trying out an advanced multidisciplinary survey activity coupled with an innovative teaching design. More than just building skills in marketing, survey projects marshal a wider set of thinking and doing activities that…
Inductive Learning: Does Interleaving Exemplars Affect Long-Term Retention?
ERIC Educational Resources Information Center
Zulkiply, Norehan; Burt, Jennifer S.
2013-01-01
Purpose: The present study investigated whether or not the benefits of interleaving of exemplars from several categories vary with retention interval in inductive learning. Methodology: Two experiments were conducted using paintings (Experiment 1) and textual materials (Experiment 2), and the experiments used a mixed factorial design. Forty…
The First Three Years: Experiences of Early Career Teachers
ERIC Educational Resources Information Center
Fenwick, Ashley
2011-01-01
This study considers two discourses of current relevance to national and international educators--early professional learning (EPL) and curriculum change. Induction arrangements for early career teachers (ECTs), EPL and informal learning have received considerable attention in the past few years. Changes to induction inevitably have knock-on…
Improving drivers' knowledge of road rules using digital games.
Li, Qing; Tay, Richard
2014-04-01
Although a proficient knowledge of the road rules is important to safe driving, many drivers do not retain the knowledge acquired after they have obtained their licenses. Hence, more innovative and appealing methods are needed to improve drivers' knowledge of the road rules. This study examines the effect of game based learning on drivers' knowledge acquisition and retention. We find that playing an entertaining game that is designed to impart knowledge of the road rules not only improves players' knowledge but also helps them retain such knowledge. Hence, learning by gaming appears to be a promising learning approach for driver education. Copyright © 2013 Elsevier Ltd. All rights reserved.
Category learning strategies in younger and older adults: Rule abstraction and memorization.
Wahlheim, Christopher N; McDaniel, Mark A; Little, Jeri L
2016-06-01
Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, the frequencies of rule- and exemplar-based learners were not significantly different between age groups, but there was a significantly higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies) in the older than younger adult group. Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
49 CFR 236.552 - Insulation resistance; requirement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RULES, STANDARDS, AND INSTRUCTIONS GOVERNING THE INSTALLATION... resistance between wiring and ground of continuous inductive automatic cab signal system, automatic train...
La Camera, Giancarlo; Bouret, Sebastien; Richmond, Barry J.
2018-01-01
The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established. PMID:29615854
Rule-Based Category Learning in Children: The Role of Age and Executive Functioning
Rabi, Rahel; Minda, John Paul
2014-01-01
Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658
Evolving fuzzy rules in a learning classifier system
NASA Technical Reports Server (NTRS)
Valenzuela-Rendon, Manuel
1993-01-01
The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers (FLC's) and learning classifier systems (LCS's). It brings together the expressive powers of fuzzy logic as it has been applied in fuzzy controllers to express relations between continuous variables, and the ability of LCS's to evolve co-adapted sets of rules. The goal of the FCS is to develop a rule-based system capable of learning in a reinforcement regime, and that can potentially be used for process control.
Learning and coding in biological neural networks
NASA Astrophysics Data System (ADS)
Fiete, Ila Rani
How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and theoretical results on the scalability of this rule show that learning with stochastic gradient ascent may be adequately fast to explain learning in the bird. Finally, we address the more general issue of the scalability of stochastic gradient learning on quadratic cost surfaces in linear systems, as a function of system size and task characteristics, by deriving analytical expressions for the learning curves.
ERIC Educational Resources Information Center
Yerys, Benjamin E.; Wolff, Brian C.; Moody, Eric; Pennington, Bruce F.; Hepburn, Susan L.
2012-01-01
Cognitive flexibility has been measured with inductive reasoning or explicit rule tasks in individuals with autism spectrum disorders (ASD). The "Flexible Item Selection Task" (FIST) differs from previous cognitive flexibility tasks in ASD research by giving children an abstract, ambiguous rule to switch. The ASD group (N = 22; Mean age = 8.28…
Using machine learning techniques to automate sky survey catalog generation
NASA Technical Reports Server (NTRS)
Fayyad, Usama M.; Roden, J. C.; Doyle, R. J.; Weir, Nicholas; Djorgovski, S. G.
1993-01-01
We describe the application of machine classification techniques to the development of an automated tool for the reduction of a large scientific data set. The 2nd Palomar Observatory Sky Survey provides comprehensive photographic coverage of the northern celestial hemisphere. The photographic plates are being digitized into images containing on the order of 10(exp 7) galaxies and 10(exp 8) stars. Since the size of this data set precludes manual analysis and classification of objects, our approach is to develop a software system which integrates independently developed techniques for image processing and data classification. Image processing routines are applied to identify and measure features of sky objects. Selected features are used to determine the classification of each object. GID3* and O-BTree, two inductive learning techniques, are used to automatically learn classification decision trees from examples. We describe the techniques used, the details of our specific application, and the initial encouraging results which indicate that our approach is well-suited to the problem. The benefits of the approach are increased data reduction throughput, consistency of classification, and the automated derivation of classification rules that will form an objective, examinable basis for classifying sky objects. Furthermore, astronomers will be freed from the tedium of an intensely visual task to pursue more challenging analysis and interpretation problems given automatically cataloged data.
Prefrontal Contributions to Rule-Based and Information-Integration Category Learning
ERIC Educational Resources Information Center
Schnyer, David M.; Maddox, W. Todd; Ell, Shawn; Davis, Sarah; Pacheco, Jenni; Verfaellie, Mieke
2009-01-01
Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W., Marchant, N. L., & Ivry, R. B. (2006). "Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks." "Neuropsychologia", 44(10), 1737-1751; Maddox, W. T. & Filoteo, J.…
Learning Non-Adjacent Regularities at Age 0 ; 7
ERIC Educational Resources Information Center
Gervain, Judit; Werker, Janet F.
2013-01-01
One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…
Rule-Based Category Learning in Down Syndrome
ERIC Educational Resources Information Center
Phillips, B. Allyson; Conners, Frances A.; Merrill, Edward; Klinger, Mark R.
2014-01-01
Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III (Woodcock, McGrew, & Mather, 2001). In regression-based…
A Rational Analysis of Rule-Based Concept Learning
ERIC Educational Resources Information Center
Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L.
2008-01-01
This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…
Thermodynamic efficiency of learning a rule in neural networks
NASA Astrophysics Data System (ADS)
Goldt, Sebastian; Seifert, Udo
2017-11-01
Biological systems have to build models from their sensory input data that allow them to efficiently process previously unseen inputs. Here, we study a neural network learning a binary classification rule for these inputs from examples provided by a teacher. We analyse the ability of the network to apply the rule to new inputs, that is to generalise from past experience. Using stochastic thermodynamics, we show that the thermodynamic costs of the learning process provide an upper bound on the amount of information that the network is able to learn from its teacher for both batch and online learning. This allows us to introduce a thermodynamic efficiency of learning. We analytically compute the dynamics and the efficiency of a noisy neural network performing online learning in the thermodynamic limit. In particular, we analyse three popular learning algorithms, namely Hebbian, Perceptron and AdaTron learning. Our work extends the methods of stochastic thermodynamics to a new type of learning problem and might form a suitable basis for investigating the thermodynamics of decision-making.
ERIC Educational Resources Information Center
Riggs, Anne E.; Young, Andrew G.
2016-01-01
What influences children's normative judgments of conventional rules at different points in development? The current study explored the effects of two contextual factors on children's normative reasoning: the way in which the rules were learned and whether the rules apply to the self or others. Peer dyads practiced a novel collaborative board game…
Cerebellar Deep Nuclei Involvement in Cognitive Adaptation and Automaticity
ERIC Educational Resources Information Center
Callu, Delphine; Lopez, Joelle; El Massioui, Nicole
2013-01-01
To determine the role of the interpositus nuclei of cerebellum in rule-based learning and optimization processes, we studied (1) successive transfers of an initially acquired response rule in a cross maze and (2) behavioral strategies in learning a simple response rule in a T maze in interpositus lesioned rats (neurotoxic or electrolytic lesions).…
ERIC Educational Resources Information Center
Mehra, Bharat; Allard, Suzie; Qayyum, M. Asim; Barclay-McLaughlin, Gina
2008-01-01
This article proposes five information-based Golden Rules in intercultural education that represent a holistic approach to creating learning corridors across geographically dispersed academic communities. The Golden Rules are generated through qualitative analysis, grounded theory application, reflective practice, and critical research to…
Developing a Learning Progression for Number Sense Based on the Rule Space Model in China
ERIC Educational Resources Information Center
Chen, Fu; Yan, Yue; Xin, Tao
2017-01-01
The current study focuses on developing the learning progression of number sense for primary school students, and it applies a cognitive diagnostic model, the rule space model, to data analysis. The rule space model analysis firstly extracted nine cognitive attributes and their hierarchy model from the analysis of previous research and the…
Module Six: Parallel Circuits; Basic Electricity and Electronics Individualized Learning System.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
In this module the student will learn the rules that govern the characteristics of parallel circuits; the relationships between voltage, current, resistance and power; and the results of common troubles in parallel circuits. The module is divided into four lessons: rules of voltage and current, rules for resistance and power, variational analysis,…
Beta Hebbian Learning as a New Method for Exploratory Projection Pursuit.
Quintián, Héctor; Corchado, Emilio
2017-09-01
In this research, a novel family of learning rules called Beta Hebbian Learning (BHL) is thoroughly investigated to extract information from high-dimensional datasets by projecting the data onto low-dimensional (typically two dimensional) subspaces, improving the existing exploratory methods by providing a clear representation of data's internal structure. BHL applies a family of learning rules derived from the Probability Density Function (PDF) of the residual based on the beta distribution. This family of rules may be called Hebbian in that all use a simple multiplication of the output of the neural network with some function of the residuals after feedback. The derived learning rules can be linked to an adaptive form of Exploratory Projection Pursuit and with artificial distributions, the networks perform as the theory suggests they should: the use of different learning rules derived from different PDFs allows the identification of "interesting" dimensions (as far from the Gaussian distribution as possible) in high-dimensional datasets. This novel algorithm, BHL, has been tested over seven artificial datasets to study the behavior of BHL parameters, and was later applied successfully over four real datasets, comparing its results, in terms of performance, with other well-known Exploratory and projection models such as Maximum Likelihood Hebbian Learning (MLHL), Locally-Linear Embedding (LLE), Curvilinear Component Analysis (CCA), Isomap and Neural Principal Component Analysis (Neural PCA).
Fuzzy Q-Learning for Generalization of Reinforcement Learning
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.
1996-01-01
Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.
Reward-Modulated Hebbian Plasticity as Leverage for Partially Embodied Control in Compliant Robotics
Burms, Jeroen; Caluwaerts, Ken; Dambre, Joni
2015-01-01
In embodied computation (or morphological computation), part of the complexity of motor control is offloaded to the body dynamics. We demonstrate that a simple Hebbian-like learning rule can be used to train systems with (partial) embodiment, and can be extended outside of the scope of traditional neural networks. To this end, we apply the learning rule to optimize the connection weights of recurrent neural networks with different topologies and for various tasks. We then apply this learning rule to a simulated compliant tensegrity robot by optimizing static feedback controllers that directly exploit the dynamics of the robot body. This leads to partially embodied controllers, i.e., hybrid controllers that naturally integrate the computations that are performed by the robot body into a neural network architecture. Our results demonstrate the universal applicability of reward-modulated Hebbian learning. Furthermore, they demonstrate the robustness of systems trained with the learning rule. This study strengthens our belief that compliant robots should or can be seen as computational units, instead of dumb hardware that needs a complex controller. This link between compliant robotics and neural networks is also the main reason for our search for simple universal learning rules for both neural networks and robotics. PMID:26347645
Kaiser, W; Faber, T S; Findeis, M
1996-01-01
The authors developed a computer program that detects myocardial infarction (MI) and left ventricular hypertrophy (LVH) in two steps: (1) by extracting parameter values from a 10-second, 12-lead electrocardiogram, and (2) by classifying the extracted parameter values with rule sets. Every disease has its dedicated set of rules. Hence, there are separate rule sets for anterior MI, inferior MI, and LVH. If at least one rule is satisfied, the disease is said to be detected. The computer program automatically develops these rule sets. A database (learning set) of healthy subjects and patients with MI, LVH, and mixed MI+LVH was used. After defining the rule type, initial limits, and expected quality of the rules (positive predictive value, minimum number of patients), the program creates a set of rules by varying the limits. The general rule type is defined as: disease = lim1l < p1 < or = lim1u and lim2l < p2 < or = lim2u and ... limnl < pn < or = limnu. When defining the rule types, only the parameters (p1 ... pn) that are known as clinical electrocardiographic criteria (amplitudes [mV] of Q, R, and T waves and ST-segment; duration [ms] of Q wave; frontal angle [degrees]) were used. This allowed for submitting the learned rule sets to an independent investigator for medical verification. It also allowed the creation of explanatory texts with the rules. These advantages are not offered by the neurons of a neural network. The learned rules were checked against a test set and the following results were obtained: MI: sensitivity 76.2%, positive predictive value 98.6%; LVH: sensitivity 72.3%, positive predictive value 90.9%. The specificity ratings for MI are better than 98%; for LVH, better than 90%.
ERIC Educational Resources Information Center
Adolphus, Telima; Omeodu, Doris
2016-01-01
The study investigates the effect of gender and collaborative learning approach on students' conceptual understanding of electromagnetic induction in Secondary Schools in Nigeria. Three research questions and 2 hypotheses were formulated to guide the research. The research design adopted for this study is the quasi-experimental design. In…
ERIC Educational Resources Information Center
Tural, Güner; Tarakçi, Demet
2017-01-01
Background: One of the topics students have difficulties in understanding is electromagnetic induction. Active learning methods instead of traditional learning method may be able to help facilitate students' understanding such topics more effectively. Purpose: The study investigated the effectiveness of physical models and simulations on students'…
People Mind Wander More during Massed than Spaced Inductive Learning
ERIC Educational Resources Information Center
Metcalfe, Janet; Xu, Judy
2016-01-01
This article investigates the relation between mind wandering and the spacing effect in inductive learning. Participants studied works of art by different artists grouped in blocks, where works by a particular artist were either presented all together successively (the massed condition), or interleaved with the works of other artists (the spaced…
Deane, Richard P; Murphy, Deirdre J
2015-03-11
A personal learning plan (PLP) is an approach to assist medical students maximise their learning experience within clinical rotations. The aim of this study was to investigate whether medical students who created a PLP supported by an induction meeting had an improved academic performance within an undergraduate clinical rotation. A cluster randomised controlled study was conducted over a full academic year (2012/13). The intervention was the creation of a PLP by medical students supported by an individual 'one-to-one' induction meeting between each student and a faculty member. Randomisation was by unit of rotation in which students completed the program. There were 2 clusters in the intervention group (n = 71 students) and 2 clusters in the control group (n = 72 students). Primary outcome was the overall examination score. Secondary outcomes were student attendance and student evaluation. There was no difference in overall examination score between the intervention group and control group (mean score 56.3 ± 4.8% versus 56.7 ± 5.6%, p = 0.64). The majority of students in the intervention group (n = 51/71, 85%) reported that the PLP and induction meeting enhanced their learning experience. Attendance at the induction meeting was identified as a key element. The creation of a PLP supported by an induction meeting was rated highly by students as an approach to enhance their learning experience but did not result in an improved academic performance. Further research is required to establish the role of an interim or exit meeting.
Puzzles in modern biology. V. Why are genomes overwired?
Frank, Steven A
2017-01-01
Many factors affect eukaryotic gene expression. Transcription factors, histone codes, DNA folding, and noncoding RNA modulate expression. Those factors interact in large, broadly connected regulatory control networks. An engineer following classical principles of control theory would design a simpler regulatory network. Why are genomes overwired? Neutrality or enhanced robustness may lead to the accumulation of additional factors that complicate network architecture. Dynamics progresses like a ratchet. New factors get added. Genomes adapt to the additional complexity. The newly added factors can no longer be removed without significant loss of fitness. Alternatively, highly wired genomes may be more malleable. In large networks, most genomic variants tend to have a relatively small effect on gene expression and trait values. Many small effects lead to a smooth gradient, in which traits may change steadily with respect to underlying regulatory changes. A smooth gradient may provide a continuous path from a starting point up to the highest peak of performance. A potential path of increasing performance promotes adaptability and learning. Genomes gain by the inductive process of natural selection, a trial and error learning algorithm that discovers general solutions for adapting to environmental challenge. Similarly, deeply and densely connected computational networks gain by various inductive trial and error learning procedures, in which the networks learn to reduce the errors in sequential trials. Overwiring alters the geometry of induction by smoothing the gradient along the inductive pathways of improving performance. Those overwiring benefits for induction apply to both natural biological networks and artificial deep learning networks.
A requirement for memory retrieval during and after long-term extinction learning
Ouyang, Ming; Thomas, Steven A.
2005-01-01
Current learning theories are based on the idea that learning is driven by the difference between expectations and experience (the delta rule). In extinction, one learns that certain expectations no longer apply. Here, we test the potential validity of the delta rule by manipulating memory retrieval (and thus expectations) during extinction learning. Adrenergic signaling is critical for the time-limited retrieval (but not acquisition or consolidation) of contextual fear. Using genetic and pharmacologic approaches to manipulate adrenergic signaling, we find that long-term extinction requires memory retrieval but not conditioned responding. Identical manipulations of the adrenergic system that do not affect memory retrieval do not alter extinction. The results provide substantial support for the delta rule of learning theory. In addition, the timing over which extinction is sensitive to adrenergic manipulation suggests a model whereby memory retrieval occurs during, and several hours after, extinction learning to consolidate long-term extinction memory. PMID:15947076
Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry
ERIC Educational Resources Information Center
Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao
2017-01-01
We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we…
Characterizing Rule-Based Category Learning Deficits in Patients with Parkinson's Disease
ERIC Educational Resources Information Center
Filoteo, J. Vincent; Maddox, W. Todd; Ing, A. David; Song, David D.
2007-01-01
Parkinson's disease (PD) patients and normal controls were tested in three category learning experiments to determine if previously observed rule-based category learning impairments in PD patients were due to deficits in selective attention or working memory. In Experiment 1, optimal categorization required participants to base their decision on a…
Infant Learning Is Influenced by Local Spurious Generalizations
ERIC Educational Resources Information Center
Gerken, LouAnn; Quam, Carolyn
2017-01-01
In previous work, 11-month-old infants were able to learn rules about the relation of the consonants in CVCV words from just four examples. The rules involved phonetic feature relations (same voicing or same place of articulation), and infants' learning was impeded when pairs of words allowed alternative possible generalizations (e.g. two words…
ERIC Educational Resources Information Center
Chalies, Sebastien; Escalie, Guillaume; Stefano, Bertone; Clarke, Anthony
2012-01-01
This case study sought to determine the professional development circumstances in which a preservice teacher learned rules of practice (Wittgenstein, 1996) on practicum while interacting with a cooperating teacher and university supervisor. Borrowing from a theoretical conceptualization of teacher professional development based on the postulates…
Grouin, Cyril; Zweigenbaum, Pierre
2013-01-01
In this paper, we present a comparison of two approaches to automatically de-identify medical records written in French: a rule-based system and a machine-learning based system using a conditional random fields (CRF) formalism. Both systems have been designed to process nine identifiers in a corpus of medical records in cardiology. We performed two evaluations: first, on 62 documents in cardiology, and on 10 documents in foetopathology - produced by optical character recognition (OCR) - to evaluate the robustness of our systems. We achieved a 0.843 (rule-based) and 0.883 (machine-learning) exact match overall F-measure in cardiology. While the rule-based system allowed us to achieve good results on nominative (first and last names) and numerical data (dates, phone numbers, and zip codes), the machine-learning approach performed best on more complex categories (postal addresses, hospital names, medical devices, and towns). On the foetopathology corpus, although our systems have not been designed for this corpus and despite OCR character recognition errors, we obtained promising results: a 0.681 (rule-based) and 0.638 (machine-learning) exact-match overall F-measure. This demonstrates that existing tools can be applied to process new documents of lower quality.
NASA Astrophysics Data System (ADS)
Felgaer, Pablo; Britos, Paola; García-Martínez, Ramón
A Bayesian network is a directed acyclic graph in which each node represents a variable and each arc a probabilistic dependency; they are used to provide: a compact form to represent the knowledge and flexible methods of reasoning. Obtaining it from data is a learning process that is divided in two steps: structural learning and parametric learning. In this paper we define an automatic learning method that optimizes the Bayesian networks applied to classification, using a hybrid method of learning that combines the advantages of the induction techniques of the decision trees (TDIDT-C4.5) with those of the Bayesian networks. The resulting method is applied to prediction in health domain.
Evolution of cooperation driven by incremental learning
NASA Astrophysics Data System (ADS)
Li, Pei; Duan, Haibin
2015-02-01
It has been shown that the details of microscopic rules in structured populations can have a crucial impact on the ultimate outcome in evolutionary games. So alternative formulations of strategies and their revision processes exploring how strategies are actually adopted and spread within the interaction network need to be studied. In the present work, we formulate the strategy update rule as an incremental learning process, wherein knowledge is refreshed according to one's own experience learned from the past (self-learning) and that gained from social interaction (social-learning). More precisely, we propose a continuous version of strategy update rules, by introducing the willingness to cooperate W, to better capture the flexibility of decision making behavior. Importantly, the newly gained knowledge including self-learning and social learning is weighted by the parameter ω, establishing a strategy update rule involving innovative element. Moreover, we quantify the macroscopic features of the emerging patterns to inspect the underlying mechanisms of the evolutionary process using six cluster characteristics. In order to further support our results, we examine the time evolution course for these characteristics. Our results might provide insights for understanding cooperative behaviors and have several important implications for understanding how individuals adjust their strategies under real-life conditions.
Adaptive structured dictionary learning for image fusion based on group-sparse-representation
NASA Astrophysics Data System (ADS)
Yang, Jiajie; Sun, Bin; Luo, Chengwei; Wu, Yuzhong; Xu, Limei
2018-04-01
Dictionary learning is the key process of sparse representation which is one of the most widely used image representation theories in image fusion. The existing dictionary learning method does not use the group structure information and the sparse coefficients well. In this paper, we propose a new adaptive structured dictionary learning algorithm and a l1-norm maximum fusion rule that innovatively utilizes grouped sparse coefficients to merge the images. In the dictionary learning algorithm, we do not need prior knowledge about any group structure of the dictionary. By using the characteristics of the dictionary in expressing the signal, our algorithm can automatically find the desired potential structure information that hidden in the dictionary. The fusion rule takes the physical meaning of the group structure dictionary, and makes activity-level judgement on the structure information when the images are being merged. Therefore, the fused image can retain more significant information. Comparisons have been made with several state-of-the-art dictionary learning methods and fusion rules. The experimental results demonstrate that, the dictionary learning algorithm and the fusion rule both outperform others in terms of several objective evaluation metrics.
The role of feedback contingency in perceptual category learning.
Ashby, F Gregory; Vucovich, Lauren E
2016-11-01
Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from 2 or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all 4 conditions, and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects, as well as their theoretical implications, are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
The Role of Feedback Contingency in Perceptual Category Learning
Ashby, F. Gregory; Vucovich, Lauren E.
2016-01-01
Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from two or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all four conditions and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects are discussed, as well as their theoretical implications. PMID:27149393
A network model of behavioural performance in a rule learning task.
Hasselmo, Michael E; Stern, Chantal E
2018-04-19
Humans demonstrate differences in performance on cognitive rule learning tasks which could involve differences in properties of neural circuits. An example model is presented to show how gating of the spread of neural activity could underlie rule learning and the generalization of rules to previously unseen stimuli. This model uses the activity of gating units to regulate the pattern of connectivity between neurons responding to sensory input and subsequent gating units or output units. This model allows analysis of network parameters that could contribute to differences in cognitive rule learning. These network parameters include differences in the parameters of synaptic modification and presynaptic inhibition of synaptic transmission that could be regulated by neuromodulatory influences on neural circuits. Neuromodulatory receptors play an important role in cognitive function, as demonstrated by the fact that drugs that block cholinergic muscarinic receptors can cause cognitive impairments. In discussions of the links between neuromodulatory systems and biologically based traits, the issue of mechanisms through which these linkages are realized is often missing. This model demonstrates potential roles of neural circuit parameters regulated by acetylcholine in learning context-dependent rules, and demonstrates the potential contribution of variation in neural circuit properties and neuromodulatory function to individual differences in cognitive function.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).
Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats
Lloyd, Kevin; Becker, Nadine; Jones, Matthew W.; Bogacz, Rafal
2012-01-01
Learning to form appropriate, task-relevant working memory representations is a complex process central to cognition. Gating models frame working memory as a collection of past observations and use reinforcement learning (RL) to solve the problem of when to update these observations. Investigation of how gating models relate to brain and behavior remains, however, at an early stage. The current study sought to explore the ability of simple RL gating models to replicate rule learning behavior in rats. Rats were trained in a maze-based spatial learning task that required animals to make trial-by-trial choices contingent upon their previous experience. Using an abstract version of this task, we tested the ability of two gating algorithms, one based on the Actor-Critic and the other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior consistent with the rats'. Both models produced rule-acquisition behavior consistent with the experimental data, though only the SARSA gating model mirrored faster learning following rule reversal. We also found that both gating models learned multiple strategies in solving the initial task, a property which highlights the multi-agent nature of such models and which is of importance in considering the neural basis of individual differences in behavior. PMID:23115551
Mapping of Students’ Learning Progression Based on Mental Model in Magnetic Induction Concepts
NASA Astrophysics Data System (ADS)
Hamid, R.; Pabunga, D. B.
2017-09-01
The progress of student learning in a learning process has not been fully optimally observed by the teacher. The concept being taught is judged only at the end of learning as a product of thinking, and does not assess the mental processes that occur in students’ thinking. Facilitating students’ thinking through new phenomena can reveal students’ variation in thinking as a mental model of a concept, so that students who are assimilative and or accommodative can be identified in achieving their equilibrium of thought as well as an indicator of progressiveness in the students’ thinking stages. This research data is obtained from the written documents and interviews of students who were learned about the concept of magnetic induction through Constructivist Teaching Sequences (CTS) models. The results of this study indicate that facilitating the students’ thinking processes on the concept of magnetic induction contributes to increasing the number of students thinking within the "progressive change" category, and it can be said that the progress of student learning is more progressive after their mental models were facilitated through a new phenomena by teacher.
Novelty and Inductive Generalization in Human Reinforcement Learning
Gershman, Samuel J.; Niv, Yael
2015-01-01
In reinforcement learning, a decision maker searching for the most rewarding option is often faced with the question: what is the value of an option that has never been tried before? One way to frame this question is as an inductive problem: how can I generalize my previous experience with one set of options to a novel option? We show how hierarchical Bayesian inference can be used to solve this problem, and describe an equivalence between the Bayesian model and temporal difference learning algorithms that have been proposed as models of reinforcement learning in humans and animals. According to our view, the search for the best option is guided by abstract knowledge about the relationships between different options in an environment, resulting in greater search efficiency compared to traditional reinforcement learning algorithms previously applied to human cognition. In two behavioral experiments, we test several predictions of our model, providing evidence that humans learn and exploit structured inductive knowledge to make predictions about novel options. In light of this model, we suggest a new interpretation of dopaminergic responses to novelty. PMID:25808176
ERIC Educational Resources Information Center
Simmie, Geraldine Mooney; de Paor, Cathal; Liston, Jennifer; O'Shea, John
2017-01-01
This study reports on findings from a critical literature review, from 2004 to 2014, in relation to the positioning of beginning teachers' professional learning during induction. The study uses theoretical frameworks drawn from competing discourses: an instrumental standpoint based on performativity and a dialectical standpoint based on a…
ERIC Educational Resources Information Center
Alderete, John; Tupper, Paul; Frisch, Stefan A.
2013-01-01
A significant problem in computational language learning is that of inferring the content of well-formedness constraints from input data. In this article, we approach the constraint induction problem as the gradual adjustment of subsymbolic constraints in a connectionist network. In particular, we develop a multi-layer feed-forward network that…
ERIC Educational Resources Information Center
Bianchini, Julie A.; Brenner, Mary E.
2010-01-01
We investigated how an induction program supported and constrained beginning teachers' efforts to teach science or mathematics in equitable and effective ways. We focused our investigation on the teaching and learning of equitable instructional practices; we conceived of such practices as attention to students' experiences, instruction for English…
The Advantage of Mixing Examples in Inductive Learning: A Comparison of Three Hypotheses
ERIC Educational Resources Information Center
Guzman-Munoz, Francisco Javier
2017-01-01
Mixing examples of different categories (interleaving) has been shown to promote inductive learning as compared with presenting examples of the same category together (massing). In three studies, we tested whether the advantage of interleaving is exclusively due to the mixing of examples from different categories or to the temporal gap introduced…
The Voices of Higher Education Service-Learning Directors: A Qualitative Inductive Analysis
ERIC Educational Resources Information Center
Woodard, Kelsey
2013-01-01
This research explored issues surrounding service-learning directors (SLDs) within higher education institutions, including who they are, how they became SLDs, and what they experience in the role. Qualitative data were drawn from in-depth interviews of 11 SLDs, as well as review of their vitaes. A qualitative inductive analysis was conducted in…
Does Learning to Count Involve a Semantic Induction?
ERIC Educational Resources Information Center
Davidson, Kathryn; Eng, Kortney; Barner, David
2012-01-01
We tested the hypothesis that, when children learn to correctly count sets, they make a semantic induction about the meanings of their number words. We tested the logical understanding of number words in 84 children that were classified as "cardinal-principle knowers" by the criteria set forth by Wynn (1992). Results show that these children often…
Discovering Fine-grained Sentiment in Suicide Notes
Wang, Wenbo; Chen, Lu; Tan, Ming; Wang, Shaojun; Sheth, Amit P.
2012-01-01
This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams. PMID:22879770
Carvalho, Paulo F.; Goldstone, Robert L.
2015-01-01
Inductive category learning takes place across time. As such, it is not surprising that the sequence in which information is studied has an impact in what is learned and how efficient learning is. In this paper we review research on different learning sequences and how this impacts learning. We analyze different aspects of interleaved (frequent alternation between categories during study) and blocked study (infrequent alternation between categories during study) that might explain how and when one sequence of study results in improved learning. While these different sequences of study differ in the amount of temporal spacing and temporal juxtaposition between items of different categories, these aspects do not seem to account for the majority of the results available in the literature. However, differences in the type of category being studied and the duration of the retention interval between study and test may play an important role. We conclude that there is no single aspect that is able to account for all the evidence available. Understanding learning as a process of sequential comparisons in time and how different sequences fundamentally alter the statistics of this experience offers a promising framework for understanding sequencing effects in category learning. We use this framework to present novel predictions and hypotheses for future research on sequencing effects in inductive category learning. PMID:25983699
NASA Astrophysics Data System (ADS)
Cavicchi, Elizabeth Mary
Physics is conventionally taught as a fixed curriculum which students must master. This thesis changes that: curriculum emerges from what learners try and question in experiments they invent. The thesis narrates: three adult students exploring wires, batteries and bulbs with me as teacher; nineteenth century investigations of electromagnetism; my laboratory work replicating historic instruments. In each case, learning arose through activity with materials. Evidences of this are analyzed within narratives and reflections. I used teaching-research, a method developed by Duckworth from Piaget's clinical interviewing, to research and simultaneously extend students' evolving understandings. What I learned through questioning students informed my next interactions; what they learned extended their experimenting. Similarly, I researched historical accounts interactively: improvising experiments to develop my understandings. Studying my own learning deepened my interpretations of students' learning. My students Laura, David and Jamie experimented by: soldering bulbs to wires, making series and parallel circuits, inserting resistive wire that dimmed bulbs, conducting electricity through salt water They noticed bulb brightness and battery heat, compared electricity's paths, questioned how voltage and current relate. They inferred electricity's effects manifest magnitudes of material properties. They found their experiences while learning were inseparable from what they learned. I researched investigations connected with Cavendish's leather fish, Galvani's frogs, Schweigger's wire spiraled around a compass needle, Henry's electromagnets, Faraday's induction ring, induction devices of Page, Callan, Hearder. Experimentally, I made galvanometers, electromagnets, induction rings, induction coil. I observed effects of electromagnetism, internal resistance, induced sparking. Across these investigations, learning developed with instrumental innovations; confusions were productive for further explorations. This thesis has implications for profoundly changing physics instruction. Physics education research seeks to supplant students' 'misconceptions' with correct explanations; by contrast, this thesis shows that students' original thinking provides their beginnings for moving to new understandings. Students and historic experimenters form and reform new, tentative understandings through many engagements with phenomena. As learners' questioning deepens in detail, its inclusiveness broadens. Evolving understandings are unique and consistent with nature. Wonder empowers continued learning. This thesis is a resource to inspire teachers in exploring the many possibilities within their learning, their students' learning, and physical phenomena.
Learning in Artificial Neural Systems
NASA Technical Reports Server (NTRS)
Matheus, Christopher J.; Hohensee, William E.
1987-01-01
This paper presents an overview and analysis of learning in Artificial Neural Systems (ANS's). It begins with a general introduction to neural networks and connectionist approaches to information processing. The basis for learning in ANS's is then described, and compared with classical Machine learning. While similar in some ways, ANS learning deviates from tradition in its dependence on the modification of individual weights to bring about changes in a knowledge representation distributed across connections in a network. This unique form of learning is analyzed from two aspects: the selection of an appropriate network architecture for representing the problem, and the choice of a suitable learning rule capable of reproducing the desired function within the given network. The various network architectures are classified, and then identified with explicit restrictions on the types of functions they are capable of representing. The learning rules, i.e., algorithms that specify how the network weights are modified, are similarly taxonomized, and where possible, the limitations inherent to specific classes of rules are outlined.
How Do Infants and Toddlers Learn the Rules? Family Discipline and Young Children
ERIC Educational Resources Information Center
Smith, Anne B.
2004-01-01
This paper examines the issue of how under three year-olds learn the rules of appropriate behaviour in the light of sociocultural, attachment, social learning, ecological theory and sociology of childhood theories. Discipline involves teaching children how to behave acceptably in their family and society, while physical punishment is the use of…
Cognitive Diffusion Model: Facilitating EFL Learning in an Authentic Environment
ERIC Educational Resources Information Center
Shadiev, Rustam; Hwang, Wu-Yuin; Huang, Yueh-Min; Liu, Tzu-Yu
2017-01-01
For this study, we designed learning activities in which students applied newly acquired knowledge to solve meaningful daily life problems in their local community--a real, familiar, and relevant environment for students. For example, students learned about signs and rules in class and then applied this new knowledge to create their own rules for…
A hybrid learning method for constructing compact rule-based fuzzy models.
Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W
2013-12-01
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
A neural learning classifier system with self-adaptive constructivism for mobile robot control.
Hurst, Jacob; Bull, Larry
2006-01-01
For artificial entities to achieve true autonomy and display complex lifelike behavior, they will need to exploit appropriate adaptable learning algorithms. In this context adaptability implies flexibility guided by the environment at any given time and an open-ended ability to learn appropriate behaviors. This article examines the use of constructivism-inspired mechanisms within a neural learning classifier system architecture that exploits parameter self-adaptation as an approach to realize such behavior. The system uses a rule structure in which each rule is represented by an artificial neural network. It is shown that appropriate internal rule complexity emerges during learning at a rate controlled by the learner and that the structure indicates underlying features of the task. Results are presented in simulated mazes before moving to a mobile robot platform.
75 FR 38156 - Small Business Size Standards: Waiver of the Nonmanufacturer Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... Systems (CS-MS), High Performance Liquid Chromatography (HPLC) Systems, Gas Chromatography Mass... Chromatography (HPLC) Systems, Gas Chromatography Mass Spectrometry (GC-MS) Systems, and, Inductively Coupled...
Interpretable Decision Sets: A Joint Framework for Description and Prediction
Lakkaraju, Himabindu; Bach, Stephen H.; Jure, Leskovec
2016-01-01
One of the most important obstacles to deploying predictive models is the fact that humans do not understand and trust them. Knowing which variables are important in a model’s prediction and how they are combined can be very powerful in helping people understand and trust automatic decision making systems. Here we propose interpretable decision sets, a framework for building predictive models that are highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. Because each rule can be applied independently, decision sets are simple, concise, and easily interpretable. We formalize decision set learning through an objective function that simultaneously optimizes accuracy and interpretability of the rules. In particular, our approach learns short, accurate, and non-overlapping rules that cover the whole feature space and pay attention to small but important classes. Moreover, we prove that our objective is a non-monotone submodular function, which we efficiently optimize to find a near-optimal set of rules. Experiments show that interpretable decision sets are as accurate at classification as state-of-the-art machine learning techniques. They are also three times smaller on average than rule-based models learned by other methods. Finally, results of a user study show that people are able to answer multiple-choice questions about the decision boundaries of interpretable decision sets and write descriptions of classes based on them faster and more accurately than with other rule-based models that were designed for interpretability. Overall, our framework provides a new approach to interpretable machine learning that balances accuracy, interpretability, and computational efficiency. PMID:27853627
Topic categorisation of statements in suicide notes with integrated rules and machine learning.
Kovačević, Aleksandar; Dehghan, Azad; Keane, John A; Nenadic, Goran
2012-01-01
We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of models derived by machine learning from a training dataset. The machine learning models rely on named entities, lexical, lexico-semantic and presentation features, as well as the rules that are applicable to a given statement. On a testing set of 300 suicide notes, the approach showed the overall best micro F-measure of up to 53.36%. The best precision achieved was 67.17% when only rules are used, whereas best recall of 50.57% was with integrated rules and machine learning. While some topics (eg, Sorrow, Anger, Blame) prove challenging, the performance for relatively frequent (eg, Love) and well-scoped categories (eg, Thankfulness) was comparatively higher (precision between 68% and 79%), suggesting that automated text mining approaches can be effective in topic categorisation of suicide notes.
Brain signatures of early lexical and morphological learning of a new language.
Havas, Viktória; Laine, Matti; Rodríguez Fornells, Antoni
2017-07-01
Morphology is an important part of language processing but little is known about how adult second language learners acquire morphological rules. Using a word-picture associative learning task, we have previously shown that a brief exposure to novel words with embedded morphological structure (suffix for natural gender) is enough for language learners to acquire the hidden morphological rule. Here we used this paradigm to study the brain signatures of early morphological learning in a novel language in adults. Behavioural measures indicated successful lexical (word stem) and morphological (gender suffix) learning. A day after the learning phase, event-related brain potentials registered during a recognition memory task revealed enhanced N400 and P600 components for stem and suffix violations, respectively. An additional effect observed with combined suffix and stem violations was an enhancement of an early N2 component, most probably related to conflict-detection processes. Successful morphological learning was also evident in the ERP responses to the subsequent rule-generalization task with new stems, where violation of the morphological rule was associated with an early (250-400ms) and late positivity (750-900ms). Overall, these findings tend to converge with lexical and morphosyntactic violation effects observed in L1 processing, suggesting that even after a short exposure, adult language learners can acquire both novel words and novel morphological rules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Otero, Fernando E B; Freitas, Alex A
2016-01-01
Most ant colony optimization (ACO) algorithms for inducing classification rules use a ACO-based procedure to create a rule in a one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-Miner[Formula: see text] algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules), i.e., the ACO search is guided by the quality of a list of rules instead of an individual rule. In this paper we propose an extension of the cAnt-Miner[Formula: see text] algorithm to discover a set of rules (unordered rules). The main motivations for this work are to improve the interpretation of individual rules by discovering a set of rules and to evaluate the impact on the predictive accuracy of the algorithm. We also propose a new measure to evaluate the interpretability of the discovered rules to mitigate the fact that the commonly used model size measure ignores how the rules are used to make a class prediction. Comparisons with state-of-the-art rule induction algorithms, support vector machines, and the cAnt-Miner[Formula: see text] producing ordered rules are also presented.
Stobbe, Nina; Westphal-Fitch, Gesche; Aust, Ulrike; Fitch, W. Tecumseh
2012-01-01
Artificial grammar learning (AGL) provides a useful tool for exploring rule learning strategies linked to general purpose pattern perception. To be able to directly compare performance of humans with other species with different memory capacities, we developed an AGL task in the visual domain. Presenting entire visual patterns simultaneously instead of sequentially minimizes the amount of required working memory. This approach allowed us to evaluate performance levels of two bird species, kea (Nestor notabilis) and pigeons (Columba livia), in direct comparison to human participants. After being trained to discriminate between two types of visual patterns generated by rules at different levels of computational complexity and presented on a computer screen, birds and humans received further training with a series of novel stimuli that followed the same rules, but differed in various visual features from the training stimuli. Most avian and all human subjects continued to perform well above chance during this initial generalization phase, suggesting that they were able to generalize learned rules to novel stimuli. However, detailed testing with stimuli that violated the intended rules regarding the exact number of stimulus elements indicates that neither bird species was able to successfully acquire the intended pattern rule. Our data suggest that, in contrast to humans, these birds were unable to master a simple rule above the finite-state level, even with simultaneous item presentation and despite intensive training. PMID:22688635
Learning Object-Level and Meta-Level Knowledge in Expert Systems.
1985-11-01
usually a misdiagnosed one). 1.2.2. Efficiency Consideration Learning becomes a complicated issue in a complex domain like medicine where there may... misdiagnosed cases are often due to missing rules. Therefore, we would rather view this problem as a learning problem. A strategy called "retrospective...inspection after learning" is described in Chapter 5. With this strategy, rules that can make the misdiagnosed case diagnosed correctly are first found; then
Learning and tuning fuzzy logic controllers through reinforcements.
Berenji, H R; Khedkar, P
1992-01-01
A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Mood induction effects on motor sequence learning and stop signal reaction time.
Greeley, Brian; Seidler, Rachael D
2017-01-01
The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted "U" shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual's performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.
Simple modification of Oja rule limits L1-norm of weight vector and leads to sparse connectivity.
Aparin, Vladimir
2012-03-01
This letter describes a simple modification of the Oja learning rule, which asymptotically constrains the L1-norm of an input weight vector instead of the L2-norm as in the original rule. This constraining is local as opposed to commonly used instant normalizations, which require the knowledge of all input weights of a neuron to update each one of them individually. The proposed rule converges to a weight vector that is sparser (has more zero weights) than the vector learned by the original Oja rule with or without the zero bound, which could explain the developmental synaptic pruning.
Prospective Coding by Spiking Neurons
Brea, Johanni; Gaál, Alexisz Tamás; Senn, Walter
2016-01-01
Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron’s firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ). PMID:27341100
Foraging Ecology Predicts Learning Performance in Insectivorous Bats
Clarin, Theresa M. A.; Ruczyński, Ireneusz; Page, Rachel A.
2013-01-01
Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals’ cognitive skills reflect the demands of their ecological niche. PMID:23755146
Sampling Assumptions in Inductive Generalization
ERIC Educational Resources Information Center
Navarro, Daniel J.; Dry, Matthew J.; Lee, Michael D.
2012-01-01
Inductive generalization, where people go beyond the data provided, is a basic cognitive capability, and it underpins theoretical accounts of learning, categorization, and decision making. To complete the inductive leap needed for generalization, people must make a key "sampling" assumption about how the available data were generated.…
ERIC Educational Resources Information Center
Doroudi, Shayan; Holstein, Kenneth; Aleven, Vincent; Brunskill, Emma
2015-01-01
The field of EDM has focused more on modeling student knowledge than on investigating what sequences of different activity types achieve good learning outcomes. In this paper we consider three activity types, targeting sense-making, induction and refinement, and fluency building. We investigate what mix of the three types might be most effective…
Stephens, John; Abbott-Brailey, Hilary; Pearson, Pauline
2007-08-01
The Common Learning Programme in the North East of England (CLPNE) sought to introduce interprofessional education into the practice setting for pre-registration health and social care students. Students, clinical educators/mentors, and facilitators met within groups over a period of 3 - 6 weeks to explore interprofessional working and learning together. This paper evaluates the use of a game, the Football Stadium, to stimulate participants' exploration of practice-based interprofessional working and learning at CLPNE induction sessions. Data consisting of verbal and written feedback from students and clinical educators/mentors, and field notes from facilitators covering 22 CLPNE pilot sites (February 2003 - July 2005) was supplemented by researcher observation at 12 sites. Two themes emerged from the data: the use of the Football Stadium as an "ice-breaker" at team induction and, the use of the Football Stadium as a vehicle to facilitate reflective learning. Key issues included personal identity and role within a novice--expert continuum, creating and developing the team environment and, enhancing and developing learning communities. Although recognized as requiring careful, sensitive facilitation, the Football Stadium is a simple means to present learning opportunities for interprofessional education within a non-threatening learning environment that facilitates active participation.
Assessing the uniqueness of language: Animal grammatical abilities take center stage.
Ten Cate, Carel
2017-02-01
Questions related to the uniqueness of language can only be addressed properly by referring to sound knowledge of the relevant cognitive abilities of nonhuman animals. A key question concerns the nature and extent of animal rule-learning abilities. I discuss two approaches used to assess these abilities. One is comparing the structures of animal vocalizations to linguistic ones, and another is addressing the grammatical rule- and pattern-learning abilities of animals through experiments using artificial grammars. Neither of these approaches has so far provided unambiguous evidence of advanced animal abilities. However, when we consider how animal vocalizations are analyzed, the types of stimuli and tasks that are used in artificial grammar learning experiments, the limited number of species examined, and the groups to which these belong, I argue that the currently available evidence is insufficient to arrive at firm conclusions concerning the limitations of animal grammatical abilities. As a consequence, the gap between human linguistic rule-learning abilities and those of nonhuman animals may be smaller and less clear than is currently assumed. This means that it is still an open question whether a difference in the rule-learning and rule abstraction abilities between animals and humans played the key role in the evolution of language.
Dog Is a Dog Is a Dog: Infant Rule Learning Is Not Specific to Language
ERIC Educational Resources Information Center
Saffran, Jenny R.; Pollak, Seth D.; Seibel, Rebecca L.; Shkolnik, Anna
2007-01-01
Human infants possess powerful learning mechanisms used for the acquisition of language. To what extent are these mechanisms domain specific? One well-known infant language learning mechanism is the ability to detect and generalize rule-like similarity patterns, such as ABA or ABB [Marcus, G. F., Vijayan, S., Rao, S. B., & Vishton, P. M. (1999).…
Dopamine neurons modulate pheromone responses in Drosophila courtship learning.
Keleman, Krystyna; Vrontou, Eleftheria; Krüttner, Sebastian; Yu, Jai Y; Kurtovic-Kozaric, Amina; Dickson, Barry J
2012-09-06
Learning through trial-and-error interactions allows animals to adapt innate behavioural ‘rules of thumb’ to the local environment, improving their prospects for survival and reproduction. Naive Drosophila melanogaster males, for example, court both virgin and mated females, but learn through experience to selectively suppress futile courtship towards females that have already mated. Here we show that courtship learning reflects an enhanced response to the male pheromone cis-vaccenyl acetate (cVA), which is deposited on females during mating and thus distinguishes mated females from virgins. Dissociation experiments suggest a simple learning rule in which unsuccessful courtship enhances sensitivity to cVA. The learning experience can be mimicked by artificial activation of dopaminergic neurons, and we identify a specific class of dopaminergic neuron that is critical for courtship learning. These neurons provide input to the mushroom body (MB) γ lobe, and the DopR1 dopamine receptor is required in MBγ neurons for both natural and artificial courtship learning. Our work thus reveals critical behavioural, cellular and molecular components of the learning rule by which Drosophila adjusts its innate mating strategy according to experience.
Adaptive WTA with an analog VLSI neuromorphic learning chip.
Häfliger, Philipp
2007-03-01
In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system.
NASA Technical Reports Server (NTRS)
Hruska, S. I.; Dalke, A.; Ferguson, J. J.; Lacher, R. C.
1991-01-01
Rule-based expert systems may be structurally and functionally mapped onto a special class of neural networks called expert networks. This mapping lends itself to adaptation of connectionist learning strategies for the expert networks. A parsing algorithm to translate C Language Integrated Production System (CLIPS) rules into a network of interconnected assertion and operation nodes has been developed. The translation of CLIPS rules to an expert network and back again is illustrated. Measures of uncertainty similar to those rules in MYCIN-like systems are introduced into the CLIPS system and techniques for combining and hiring nodes in the network based on rule-firing with these certainty factors in the expert system are presented. Several learning algorithms are under study which automate the process of attaching certainty factors to rules.
Deficits in Category Learning in Older Adults: Rule-Based Versus Clustering Accounts
2017-01-01
Memory research has long been one of the key areas of investigation for cognitive aging researchers but only in the last decade or so has categorization been used to understand age differences in cognition. Categorization tasks focus more heavily on the grouping and organization of items in memory, and often on the process of learning relationships through trial and error. Categorization studies allow researchers to more accurately characterize age differences in cognition: whether older adults show declines in the way in which they represent categories with simple rules or declines in representing categories by similarity to past examples. In the current study, young and older adults participated in a set of classic category learning problems, which allowed us to distinguish between three hypotheses: (a) rule-complexity: categories were represented exclusively with rules and older adults had differential difficulty when more complex rules were required, (b) rule-specific: categories could be represented either by rules or by similarity, and there were age deficits in using rules, and (c) clustering: similarity was mainly used and older adults constructed a less-detailed representation by lumping more items into fewer clusters. The ordinal levels of performance across different conditions argued against rule-complexity, as older adults showed greater deficits on less complex categories. The data also provided evidence against rule-specificity, as single-dimensional rules could not explain age declines. Instead, computational modeling of the data indicated that older adults utilized fewer conceptual clusters of items in memory than did young adults. PMID:28816474
Inductional Effects in a Halbach Magnet Motion Above Distributed Inductance
NASA Astrophysics Data System (ADS)
Tchatchoua, Yves; Conrow, Ary; Kim, Dong; Morgan, Daniel; Majewski, Walerian; Zafar, Zaeema
2013-03-01
We experimented with attempts to levitate a linear (bar) Halbach array of five 1'' Nd magnets above a linear inductive track. Next, in order to achieve a control over the relative velocity, we designed a different experiment. In it a large wheel with circumferentially positioned along its rim inducting coils rotates, while the magnet is suspended directly above the rim of the wheel on a force sensor. Faraday's Law with the Lenz's Rule is responsible for the lifting and drag forces on the magnet; the horizontal drag force is measured by another force sensor. Approximating the magnet's linear relative motion over inductors with a motion along a large circle, we may use formulas derived earlier in the literature for linear inductive levitation. We measured lift and drag forces as functions of relative velocity of the Halbach magnet and the inductive ``track,'' in an approximate agreement with the existing theory. We then vary the inductance and shape of the inductive elements to find the most beneficial choice for the lift/drag ratio at the lowest relative speed.
Ares I-X Ground Diagnostic Prototype
NASA Technical Reports Server (NTRS)
Schwabacher, Mark A.; Martin, Rodney Alexander; Waterman, Robert D.; Oostdyk, Rebecca Lynn; Ossenfort, John P.; Matthews, Bryan
2010-01-01
The automation of pre-launch diagnostics for launch vehicles offers three potential benefits: improving safety, reducing cost, and reducing launch delays. The Ares I-X Ground Diagnostic Prototype demonstrated anomaly detection, fault detection, fault isolation, and diagnostics for the Ares I-X first-stage Thrust Vector Control and for the associated ground hydraulics while the vehicle was in the Vehicle Assembly Building at Kennedy Space Center (KSC) and while it was on the launch pad. The prototype combines three existing tools. The first tool, TEAMS (Testability Engineering and Maintenance System), is a model-based tool from Qualtech Systems Inc. for fault isolation and diagnostics. The second tool, SHINE (Spacecraft Health Inference Engine), is a rule-based expert system that was developed at the NASA Jet Propulsion Laboratory. We developed SHINE rules for fault detection and mode identification, and used the outputs of SHINE as inputs to TEAMS. The third tool, IMS (Inductive Monitoring System), is an anomaly detection tool that was developed at NASA Ames Research Center. The three tools were integrated and deployed to KSC, where they were interfaced with live data. This paper describes how the prototype performed during the period of time before the launch, including accuracy and computer resource usage. The paper concludes with some of the lessons that we learned from the experience of developing and deploying the prototype.
Single neurons in prefrontal cortex encode abstract rules.
Wallis, J D; Anderson, K C; Miller, E K
2001-06-21
The ability to abstract principles or rules from direct experience allows behaviour to extend beyond specific circumstances to general situations. For example, we learn the 'rules' for restaurant dining from specific experiences and can then apply them in new restaurants. The use of such rules is thought to depend on the prefrontal cortex (PFC) because its damage often results in difficulty in following rules. Here we explore its neural basis by recording from single neurons in the PFC of monkeys trained to use two abstract rules. They were required to indicate whether two successively presented pictures were the same or different depending on which rule was currently in effect. The monkeys performed this task with new pictures, thus showing that they had learned two general principles that could be applied to stimuli that they had not yet experienced. The most prevalent neuronal activity observed in the PFC reflected the coding of these abstract rules.
The effect of sample size and disease prevalence on supervised machine learning of narrative data.
McKnight, Lawrence K.; Wilcox, Adam; Hripcsak, George
2002-01-01
This paper examines the independent effects of outcome prevalence and training sample sizes on inductive learning performance. We trained 3 inductive learning algorithms (MC4, IB, and Naïve-Bayes) on 60 simulated datasets of parsed radiology text reports labeled with 6 disease states. Data sets were constructed to define positive outcome states at 4 prevalence rates (1, 5, 10, 25, and 50%) in training set sizes of 200 and 2,000 cases. We found that the effect of outcome prevalence is significant when outcome classes drop below 10% of cases. The effect appeared independent of sample size, induction algorithm used, or class label. Work is needed to identify methods of improving classifier performance when output classes are rare. PMID:12463878
A supervised learning rule for classification of spatiotemporal spike patterns.
Lilin Guo; Zhenzhong Wang; Adjouadi, Malek
2016-08-01
This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.
Giraldo, Sergio I; Ramirez, Rafael
2016-01-01
Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules.
Giraldo, Sergio I.; Ramirez, Rafael
2016-01-01
Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules. PMID:28066290
Extract useful knowledge from agro-hydrological simulations data for decision making
NASA Astrophysics Data System (ADS)
Gascuel-odoux, C.; Bouadi, T.; Cordier, M.; Quiniou, R.
2013-12-01
In recent years, models have been developed and used to test the effect of scenarios and help stakeholders in decision making. Agro-hydrological models have guided agricultural water management by testing the effect of landscape structure and farming system changes on water quantity and quality. Such models generate a large amount of data but few are stored and are often not customized for stakeholders, so that a great amount of information is lost from the simulation process or not transformed in a usable format. A first approach, already published (Trepos et al., 2012), has been developed to identify object oriented tree patterns, that represent surface flow and pollutant pathways from plot to plot, involved in water pollution by herbicides. A simulation model (Gascuel-odoux et al., 2009) predicted herbicide transfer rate, defined as the proportion of applied herbicide that reaches water courses. The predictions were used as a set of learning examples for symbolic learning techniques to induce rules based on qualitative and quantitative attributes and explain two extreme classes in transfer rate. Two automatic symbolic learning techniques were used: the inductive logic programming approach to induce spatial tree patterns, and an attribute-value method to induce aggregated attributes of the trees. A visualization interface allows the users to identify rules explaining contamination and mitigation measures improving the current situation. A second approach has been recently developed to analyse directly the simulated data (Bouadi et al, submitted). A data warehouse called N-catch has been built to store and manage simulation data from the agro-hydrological model TNT2 (Beaujouan et al., 2002). 44 output key simulated variables are stored per plot and at a daily time step on a 50 squared km area, i.e, 8 GB of storage size. After identifying the set of multileveled dimensions integrating hierarchical structures and relationships among related dimension levels, N-Catch has been designed using the open source Business Intelligence Platform Pentaho. We show how to use online analytical processing (OLAP) to access and exploit, intuitively and quickly, the multidimensional and aggregated data from the N-Catch data warehouse. We illustrate how the data warehouse can be used to explore spatio-temporal dimensions efficiently and to discover new knowledge at multiple levels of simulation. OLAP tool can be used to synthesize environmental information and understand nitrogen emissions in water bodies by generating comparative and personalized views of historical data. This DWH is currently extended with data mining or information retrieval methods as Skyline queries to perform advanced analyses (Bouadi et al., 2012). Bouadi et al. N-Catch: A Data Warehouse for Multilevel Analysis of Simulated Nitrogen Data from an Agro-hydrological Model. Submitted. Bouadi et al., 2012) Bouadi, T., Cordier, M., and Quiniou, R. (2012). Incremental computation of skyline queries with dynamic preferences. In DEXA (1), pages 219-233. Trepos et al. 2012. Mining simulation data by rule induction to determine critical source areas of stream water pollution by herbicides. Computers and Electronics in Agriculture 86, 75-88.
Riggs, Anne E; Young, Andrew G
2016-08-01
What influences children's normative judgments of conventional rules at different points in development? The current study explored the effects of two contextual factors on children's normative reasoning: the way in which the rules were learned and whether the rules apply to the self or others. Peer dyads practiced a novel collaborative board game comprising two complementary roles. Dyads were either taught both the prescriptive (i.e., what to do) and proscriptive (i.e., what not to do) forms of the rules, taught only the prescriptive form of the rules, or created the rules themselves. Children then judged whether third parties were violating or conforming to the rules governing their own roles and their partner's roles. Early school-aged children's (6- to 7-year-olds; N = 60) normative judgments were strongest when they had been taught the rules (with or without the proscriptive form), but were more flexible for rules they created themselves. Preschool-aged children's (4- to 5-year-olds; N = 60) normative judgments, however, were strongest when they were taught both the prescriptive and proscriptive forms of the rules. Additionally, preschoolers exhibited stronger normative judgments when the rules governed their own roles rather than their partner's roles, whereas school-aged children treated all rules as equally normative. These results demonstrate that children's normative reasoning is contingent on contextual factors of the learning environment and, moreover, highlight 2 specific areas in which children's inferences about the normativity of conventions strengthen over development. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Tanaka, Takuma; Aoyagi, Toshio; Kaneko, Takeshi
2012-10-01
We propose a new principle for replicating receptive field properties of neurons in the primary visual cortex. We derive a learning rule for a feedforward network, which maintains a low firing rate for the output neurons (resulting in temporal sparseness) and allows only a small subset of the neurons in the network to fire at any given time (resulting in population sparseness). Our learning rule also sets the firing rates of the output neurons at each time step to near-maximum or near-minimum levels, resulting in neuronal reliability. The learning rule is simple enough to be written in spatially and temporally local forms. After the learning stage is performed using input image patches of natural scenes, output neurons in the model network are found to exhibit simple-cell-like receptive field properties. When the output of these simple-cell-like neurons are input to another model layer using the same learning rule, the second-layer output neurons after learning become less sensitive to the phase of gratings than the simple-cell-like input neurons. In particular, some of the second-layer output neurons become completely phase invariant, owing to the convergence of the connections from first-layer neurons with similar orientation selectivity to second-layer neurons in the model network. We examine the parameter dependencies of the receptive field properties of the model neurons after learning and discuss their biological implications. We also show that the localized learning rule is consistent with experimental results concerning neuronal plasticity and can replicate the receptive fields of simple and complex cells.
Polymeric Coating of Supporting Substrates Facilities: New Source Performance Standards (NSPS)
Learn more about the New Source Performance Standards (NSPS) rule for polymeric coating by reading the rule summary, rule history and the code of federal regulations subpart. Information on related rules is also on this page.
Málková, L; Bachevalier, J; Webster, M; Mishkin, M
2000-01-01
The ability of rhesus monkeys to master the rule for delayed nonmatching-to-sample (DNMS) has a protracted ontogenetic development, reaching adult levels of proficiency around 4 to 5 years of age (Bachevalier, 1990). To test the possibility that this slow development could be due, at least in part, to immaturity of the prefrontal component of a temporo-prefrontal circuit important for DNMS rule learning (Kowalska, Bachevalier, & Mishkin, 1991; Weinstein, Saunders, & Mishkin, 1988), monkeys with neonatal lesions of the inferior prefrontal convexity were compared on DNMS with both normal controls and animals given neonatal lesions of the medial temporal lobe. Consistent with our previous results (Bachevalier & Mishkin, 1994; Málková, Mishkin, & Bachevalier, 1995), the neonatal medial temporal lesions led to marked impairment in rule learning (as well as in recognition memory with long delays and list lengths) at both 3 months and 2 years of age. By contrast, the neonatal inferior convexity lesions yielded no impairment in rule-learning at 3 months and only a mild impairment at 2 years, a finding that also contrasts sharply with the marked effects of the same lesion made in adulthood. This pattern of sparing closely resembles the one found earlier after neonatal lesions to the cortical visual area TE (Bachevalier & Mishkin, 1994; Málková et al., 1995). The functional sparing at 3 months probably reflects the fact that the temporo-prefrontal circuit is nonfunctional at this early age, resulting in a total dependency on medial temporal contributions to rule learning. With further development, however, this circuit begins to provide a supplementary route for learning.
NASA Astrophysics Data System (ADS)
Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing
2016-10-01
Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.
Miles, Sarah J; Matsuki, Kazunaga; Minda, John Paul
2014-07-01
Category learning is often characterized as being supported by two separate learning systems. A verbal system learns rule-defined (RD) categories that can be described using a verbal rule and relies on executive functions (EFs) to learn via hypothesis testing. A nonverbal system learns non-rule-defined (NRD) categories that cannot be described by a verbal rule and uses automatic, procedural learning. The verbal system is dominant in that adults tend to use it during initial learning but may switch to the nonverbal system when the verbal system is unsuccessful. The nonverbal system has traditionally been thought to operate independently of EFs, but recent studies suggest that EFs may play a role in the nonverbal system-specifically, to facilitate the transition away from the verbal system. Accordingly, continuously interfering with EFs during the categorization process, so that EFs are never fully available to facilitate the transition, may be more detrimental to the nonverbal system than is temporary EF interference. Participants learned an NRD or an RD category while EFs were untaxed, taxed temporarily, or taxed continuously. When EFs were continuously taxed during NRD categorization, participants were less likely to use a nonverbal categorization strategy than when EFs were temporarily taxed, suggesting that when EFs were unavailable, the transition to the nonverbal system was hindered. For the verbal system, temporary and continuous interference had similar effects on categorization performance and on strategy use, illustrating that EFs play an important but different role in each of the category-learning systems.
Designing boosting ensemble of relational fuzzy systems.
Scherer, Rafał
2010-10-01
A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.
ERIC Educational Resources Information Center
Haggarty, Linda; Postlethwaite, Keith
2012-01-01
For newly qualified teachers (NQTs), the induction period of support is an important phase which has the potential to deepen learning that has already taken place in initial teacher education (ITE) as well as preparing the NQT for future learning. A particularly crucial time in the induction process is the first term of teaching, when NQTs are…
ERIC Educational Resources Information Center
McCurdy, Kathryn
2016-01-01
The past 20 years has seen a rise in the number of induction programs for beginning teachers, including those with mentoring. However, the way in which teacher education has been problematized is still calling into question the need for beginning teacher support. This dissertation study is situated in the belief that beginning teacher induction…
How to Learn the Natural Numbers: Inductive Inference and the Acquisition of Number Concepts
ERIC Educational Resources Information Center
Margolis, Eric; Laurence, Stephen
2008-01-01
Theories of number concepts often suppose that the natural numbers are acquired as children learn to count and as they draw an induction based on their interpretation of the first few count words. In a bold critique of this general approach, Rips, Asmuth, Bloomfield [Rips, L., Asmuth, J. & Bloomfield, A. (2006). Giving the boot to the bootstrap:…
Alleviating Praxis Shock: Induction Policy and Programming for Urban Music Educators
ERIC Educational Resources Information Center
Shaw, Julia T.
2018-01-01
An integral part of a teacher learning continuum ranging from preservice education to professional development for experienced educators, new teacher induction holds particular potential to effect change in urban education. Accordingly, this article offers recommendations for induction-related policy and programming capable of supporting beginning…
Module Eight: Induction; Basic Electricity and Electronics Individualized Learning System.
ERIC Educational Resources Information Center
Bureau of Naval Personnel, Washington, DC.
The module covers in greater depth electromagnetic induction, its effects, and how it is used to advantage in electrical circuits; and the physical components, called inductors, designed to take advantage of the phenomenon of electromagnetic induction. This module is divided into four lessons: electromagnetism; inductors and flux density, inducing…
Development of Category-based Induction and Semantic Knowledge
ERIC Educational Resources Information Center
Fisher, Anna V.; Godwin, Karrie E.; Matlen, Bryan J.; Unger, Layla
2015-01-01
Category-based induction is a hallmark of mature cognition; however, little is known about its origins. This study evaluated the hypothesis that category-based induction is related to semantic development. Computational studies suggest that early on there is little differentiation among concepts, but learning and development lead to increased…
ERIC Educational Resources Information Center
Taranto, Greg
2011-01-01
The purpose of this program evaluation study was to design, implement, and evaluate the effectiveness of incorporating an online learning community as part of a comprehensive new-teacher induction program. The researcher, who serves as the middle school principal and new induction coordinator for the school district, used a mixed-method approach…
Implementation of a spike-based perceptron learning rule using TiO2-x memristors.
Mostafa, Hesham; Khiat, Ali; Serb, Alexander; Mayr, Christian G; Indiveri, Giacomo; Prodromakis, Themis
2015-01-01
Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2-x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode.
Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding
Guise, Kevin G.; Shapiro, Matthew L.
2017-01-01
Summary The prefrontal cortex (PFC) is crucial for accurate memory performance when prior knowledge interferes with new learning, but the mechanisms that minimize proactive interference are unknown. To investigate these, we assessed the influence of medial PFC (mPFC) activity on spatial learning and hippocampal coding in a plus maze task that requires both structures. mPFC inactivation did not impair spatial learning or retrieval per se, but impaired the ability to follow changing spatial rules. mPFC and CA1 ensembles recorded simultaneously predicted goal choices and tracked changing rules; inactivating mPFC attenuated CA1 prospective coding. mPFC activity modified CA1 codes during learning, which in turn predicted how quickly rats adapted to subsequent rule changes. The results suggest that task rules signaled by the mPFC become incorporated into hippocampal representations and support prospective coding. By this mechanism, mPFC activity prevents interference by “teaching” the hippocampus to retrieve distinct representations of similar circumstances. PMID:28343868
Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.
Juang, C F; Lin, J Y; Lin, C T
2000-01-01
An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.
Perceptual Learning Improves Adult Amblyopic Vision Through Rule-Based Cognitive Compensation
Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong
2014-01-01
Purpose. We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Methods. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Results. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). Conclusions. The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation. PMID:24550359
Perceptual learning improves adult amblyopic vision through rule-based cognitive compensation.
Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A; Levi, Dennis M; Yu, Cong
2014-04-01
We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation.
Experimental Induction of Conservation Skills in Nigerian Schoolchildren.
ERIC Educational Resources Information Center
Onyehalu, Anthony S.
1982-01-01
Investigates the effect of the Verbal Rule Instruction Technique in facilitating the acquisition of conservation concepts. Data were collected from 247 Nigerian schoolchildren divided into three groups: verbal, nonverbal, and no-training. (Author/RH)
The Convallis Rule for Unsupervised Learning in Cortical Networks
Yger, Pierre; Harris, Kenneth D.
2013-01-01
The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plasticity termed the “Convallis rule”, mathematically derived from a principle of unsupervised learning via constrained optimization. Implementation of the rule caused a recurrent cortex-like network of simulated spiking neurons to develop rate representations of real-world speech stimuli, enabling classification by a downstream linear decoder. Applied to spike patterns used in in vitro plasticity experiments, the rule reproduced multiple results including and beyond STDP. However STDP alone produced poorer learning performance. The mathematical form of the rule is consistent with a dual coincidence detector mechanism that has been suggested by experiments in several synaptic classes of juvenile neocortex. Based on this confluence of normative, phenomenological, and mechanistic evidence, we suggest that the rule may approximate a fundamental computational principle of the neocortex. PMID:24204224
Timely Diagnostic Feedback for Database Concept Learning
ERIC Educational Resources Information Center
Lin, Jian-Wei; Lai, Yuan-Cheng; Chuang, Yuh-Shy
2013-01-01
To efficiently learn database concepts, this work adopts association rules to provide diagnostic feedback for drawing an Entity-Relationship Diagram (ERD). Using association rules and Asynchronous JavaScript and XML (AJAX) techniques, this work implements a novel Web-based Timely Diagnosis System (WTDS), which provides timely diagnostic feedback…
NASA Astrophysics Data System (ADS)
Guisasola, Jenaro; Zuza, Kristina; Almudi, José-Manuel
2013-07-01
Textbooks are a very important tool in the teaching-learning process and influence important aspects of the process. This paper presents an analysis of the chapter on electromagnetic induction and Faraday's law in 19 textbooks on general physics for first-year university courses for scientists and engineers. This analysis was based on criteria formulated from the theoretical framework of electromagnetic induction in classical physics and students' learning difficulties concerning these concepts. The aim of the work presented here is not to compare a textbook against the ideal book, but rather to try and find a series of explanations, examples, questions, etc that provide evidence on how the topic is presented in relation to the criteria above. It concludes that despite many aspects being covered properly, there are others that deserve greater attention.
Inter- and Intra-Dimensional Dependencies in Implicit Phonotactic Learning
ERIC Educational Resources Information Center
Moreton, Elliott
2012-01-01
Is phonological learning subject to the same inductive biases as learning in other domains? Previous studies of non-linguistic learning found that intra-dimensional dependencies (between two instances of the same feature) were learned more easily than inter-dimensional ones. This study compares implicit learning of intra- and inter-dimensional…
Reinforcement Learning in a Nonstationary Environment: The El Farol Problem
NASA Technical Reports Server (NTRS)
Bell, Ann Maria
1999-01-01
This paper examines the performance of simple learning rules in a complex adaptive system based on a coordination problem modeled on the El Farol problem. The key features of the El Farol problem are that it typically involves a medium number of agents and that agents' pay-off functions have a discontinuous response to increased congestion. First we consider a single adaptive agent facing a stationary environment. We demonstrate that the simple learning rules proposed by Roth and Er'ev can be extremely sensitive to small changes in the initial conditions and that events early in a simulation can affect the performance of the rule over a relatively long time horizon. In contrast, a reinforcement learning rule based on standard practice in the computer science literature converges rapidly and robustly. The situation is reversed when multiple adaptive agents interact: the RE algorithms often converge rapidly to a stable average aggregate attendance despite the slow and erratic behavior of individual learners, while the CS based learners frequently over-attend in the early and intermediate terms. The symmetric mixed strategy equilibria is unstable: all three learning rules ultimately tend towards pure strategies or stabilize in the medium term at non-equilibrium probabilities of attendance. The brittleness of the algorithms in different contexts emphasize the importance of thorough and thoughtful examination of simulation-based results.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Discontinuous categories affect information-integration but not rule-based category learning.
Maddox, W Todd; Filoteo, J Vincent; Lauritzen, J Scott; Connally, Emily; Hejl, Kelli D
2005-07-01
Three experiments were conducted that provide a direct examination of within-category discontinuity manipulations on the implicit, procedural-based learning and the explicit, hypothesis-testing systems proposed in F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron's (1998) competition between verbal and implicit systems model. Discontinuous categories adversely affected information-integration but not rule-based category learning. Increasing the magnitude of the discontinuity did not lead to a significant decline in performance. The distance to the bound provides a reasonable description of the generalization profile associated with the hypothesis-testing system, whereas the distance to the bound plus the distance to the trained response region provides a reasonable description of the generalization profile associated with the procedural-based learning system. These results suggest that within-category discontinuity differentially impacts information-integration but not rule-based category learning and provides information regarding the detailed processing characteristics of each category learning system. ((c) 2005 APA, all rights reserved).
Concurrent approach for evolving compact decision rule sets
NASA Astrophysics Data System (ADS)
Marmelstein, Robert E.; Hammack, Lonnie P.; Lamont, Gary B.
1999-02-01
The induction of decision rules from data is important to many disciplines, including artificial intelligence and pattern recognition. To improve the state of the art in this area, we introduced the genetic rule and classifier construction environment (GRaCCE). It was previously shown that GRaCCE consistently evolved decision rule sets from data, which were significantly more compact than those produced by other methods (such as decision tree algorithms). The primary disadvantage of GRaCCe, however, is its relatively poor run-time execution performance. In this paper, a concurrent version of the GRaCCE architecture is introduced, which improves the efficiency of the original algorithm. A prototype of the algorithm is tested on an in- house parallel processor configuration and the results are discussed.
Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F
2017-03-01
This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning. Copyright © 2017 Elsevier Inc. All rights reserved.
Social inference and social anxiety: evidence of a fear-congruent self-referential learning bias.
Button, Katherine S; Browning, Michael; Munafò, Marcus R; Lewis, Glyn
2012-12-01
Fears of negative evaluation characterise social anxiety, and preferential processing of fear-relevant information is implicated in maintaining symptoms. Little is known, however, about the relationship between social anxiety and the process of inferring negative evaluation. The ability to use social information to learn what others think about one, referred to here as self-referential learning, is fundamental for effective social interaction. The aim of this research was to examine whether social anxiety is associated with self-referential learning. 102 Females with either high (n = 52) or low (n = 50) self-reported social anxiety completed a novel probabilistic social learning task. Using trial and error, the task required participants to learn two self-referential rules, 'I am liked' and 'I am disliked'. Participants across the sample were better at learning the positive rule 'I am liked' than the negative rule 'I am disliked', β = -6.4, 95% CI [-8.0, -4.7], p < 0.001. This preference for learning positive self-referential information was strongest in the lowest socially anxious and was abolished in the most symptomatic participants. Relative to the low group, the high anxiety group were better at learning they were disliked and worse at learning they were liked, social anxiety by rule interaction β = 3.6; 95% CI [+0.3, +7.0], p = 0.03. The specificity of the results to self-referential processing requires further research. Healthy individuals show a robust preference for learning that they are liked relative to disliked. This positive self-referential bias is reduced in social anxiety in a way that would be expected to exacerbate anxiety symptoms. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Findlay, Kate
2006-01-01
This paper reports on a small-scale case study of five newly qualified teachers in one school. The aim of the study was to identify the context and learning factors that enable and constrain the professional growth of new teachers, and to locate the place of formal induction arrangements within the broader experiences of the first year in…
Brain-wide maps of Fos expression during fear learning and recall.
Cho, Jin-Hyung; Rendall, Sam D; Gray, Jesse M
2017-04-01
Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. © 2017 Cho et al.; Published by Cold Spring Harbor Laboratory Press.
Brain-wide maps of Fos expression during fear learning and recall
Cho, Jin-Hyung; Rendall, Sam D.; Gray, Jesse M.
2017-01-01
Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. PMID:28331016
ERIC Educational Resources Information Center
Zhang, Yujie; Terai, Asuka; Nakagawa, Masanori
2013-01-01
Inductive reasoning under risk conditions is an important thinking process not only for sciences but also in our daily life. From this viewpoint, it is very useful for language learning to construct computational models of inductive reasoning which realize the CAE for foreign languages. This study proposes the comparison of inductive reasoning…
ERIC Educational Resources Information Center
Kynigos, Chronis
1993-01-01
Used 2 12-year-old children to investigate deductive and inductive reasoning in plane geometry. A LOGO microworld was programmed to measure distances and turns relative to points on the plane. Learning environments like this may enhance formation of inductive geometrical understandings. (Contains 44 references.) (LDR)
ERIC Educational Resources Information Center
Decker, Anna-Theresia; Kunter, Mareike; Voss, Thamar
2015-01-01
This study investigates whether the quality of discourse during teacher induction classes predicts beginning teachers' reflection and beliefs about teaching and learning mathematics. In a study with repeated measurements (interval 10 months), transmissive and constructivist beliefs of 536 German teacher candidates in their 2-year induction phase…
Seeking the General Explanation: A Test of Inductive Activities for Learning and Transfer
ERIC Educational Resources Information Center
Shemwell, Jonathan T.; Chase, Catherine C.; Schwartz, Daniel L.
2015-01-01
Evaluating the relation between evidence and theory should be a central activity for science learners. Evaluation comprises both hypothetico-deductive analysis, where theory precedes evidence, and inductive synthesis, where theory emerges from evidence. There is mounting evidence that induction is an especially good way to help learners grasp the…
Acute anxiety and social inference: An experimental manipulation with 7.5% carbon dioxide inhalation
Button, Katherine S; Karwatowska, Lucy; Kounali, Daphne; Munafò, Marcus R; Attwood, Angela S
2016-01-01
Background: Positive self-bias is thought to be protective for mental health. We previously found that the degree of positive bias when learning self-referential social evaluation decreases with increasing social anxiety. It is unclear whether this reduction is driven by differences in state or trait anxiety, as both are elevated in social anxiety; therefore, we examined the effects on the state of anxiety induced by the 7.5% carbon dioxide (CO2) inhalation model of generalised anxiety disorder (GAD) on social evaluation learning. Methods: For our study, 48 (24 of female gender) healthy volunteers took two inhalations (medical air and 7.5% CO2, counterbalanced) whilst learning social rules (self-like, self-dislike, other-like and other-dislike) in an instrumental social evaluation learning task. We analysed the outcomes (number of positive responses and errors to criterion) using the random effects Poisson regression. Results: Participants made fewer and more positive responses when breathing 7.5% CO2 in the other-like and other-dislike rules, respectively (gas × condition × rule interaction p = 0.03). Individuals made fewer errors learning self-like than self-dislike, and this positive self-bias was unaffected by CO2. Breathing 7.5% CO2 increased errors, but only in the other-referential rules (gas × condition × rule interaction p = 0.003). Conclusions: Positive self-bias (i.e. fewer errors learning self-like than self-dislike) seemed robust to changes in state anxiety. In contrast, learning other-referential evaluation was impaired as state anxiety increased. This suggested that the previously observed variations in self-bias arise due to trait, rather than state, characteristics. PMID:27380750
Button, Katherine S; Karwatowska, Lucy; Kounali, Daphne; Munafò, Marcus R; Attwood, Angela S
2016-10-01
Positive self-bias is thought to be protective for mental health. We previously found that the degree of positive bias when learning self-referential social evaluation decreases with increasing social anxiety. It is unclear whether this reduction is driven by differences in state or trait anxiety, as both are elevated in social anxiety; therefore, we examined the effects on the state of anxiety induced by the 7.5% carbon dioxide (CO2) inhalation model of generalised anxiety disorder (GAD) on social evaluation learning. For our study, 48 (24 of female gender) healthy volunteers took two inhalations (medical air and 7.5% CO2, counterbalanced) whilst learning social rules (self-like, self-dislike, other-like and other-dislike) in an instrumental social evaluation learning task. We analysed the outcomes (number of positive responses and errors to criterion) using the random effects Poisson regression. Participants made fewer and more positive responses when breathing 7.5% CO2 in the other-like and other-dislike rules, respectively (gas × condition × rule interaction p = 0.03). Individuals made fewer errors learning self-like than self-dislike, and this positive self-bias was unaffected by CO2. Breathing 7.5% CO2 increased errors, but only in the other-referential rules (gas × condition × rule interaction p = 0.003). Positive self-bias (i.e. fewer errors learning self-like than self-dislike) seemed robust to changes in state anxiety. In contrast, learning other-referential evaluation was impaired as state anxiety increased. This suggested that the previously observed variations in self-bias arise due to trait, rather than state, characteristics. © The Author(s) 2016.
Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex
Cole, Michael W.; Etzel, Joset A.; Zacks, Jeffrey M.; Schneider, Walter; Braver, Todd S.
2011-01-01
Flexible, adaptive behavior is thought to rely on abstract rule representations within lateral prefrontal cortex (LPFC), yet it remains unclear how these representations provide such flexibility. We recently demonstrated that humans can learn complex novel tasks in seconds. Here we hypothesized that this impressive mental flexibility may be possible due to rapid transfer of practiced rule representations within LPFC to novel task contexts. We tested this hypothesis using functional MRI and multivariate pattern analysis, classifying LPFC activity patterns across 64 tasks. Classifiers trained to identify abstract rules based on practiced task activity patterns successfully generalized to novel tasks. This suggests humans can transfer practiced rule representations within LPFC to rapidly learn new tasks, facilitating cognitive performance in novel circumstances. PMID:22125519
Informal Learning after Organizational Change
ERIC Educational Resources Information Center
Reardon, Robert F.
2004-01-01
This inductive, qualitative study investigates how learning took place among nine experienced engineers in an industrial setting after a major reorganization. A thematic analysis of the transcripts revealed that the learning was informal and that it fell into three distinct categories: learning new workflows, learning about the chemical process,…
Hayes, Brett K; Heit, Evan
2018-05-01
Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.
Karakida, Ryo; Okada, Masato; Amari, Shun-Ichi
2016-07-01
The restricted Boltzmann machine (RBM) is an essential constituent of deep learning, but it is hard to train by using maximum likelihood (ML) learning, which minimizes the Kullback-Leibler (KL) divergence. Instead, contrastive divergence (CD) learning has been developed as an approximation of ML learning and widely used in practice. To clarify the performance of CD learning, in this paper, we analytically derive the fixed points where ML and CDn learning rules converge in two types of RBMs: one with Gaussian visible and Gaussian hidden units and the other with Gaussian visible and Bernoulli hidden units. In addition, we analyze the stability of the fixed points. As a result, we find that the stable points of CDn learning rule coincide with those of ML learning rule in a Gaussian-Gaussian RBM. We also reveal that larger principal components of the input data are extracted at the stable points. Moreover, in a Gaussian-Bernoulli RBM, we find that both ML and CDn learning can extract independent components at one of stable points. Our analysis demonstrates that the same feature components as those extracted by ML learning are extracted simply by performing CD1 learning. Expanding this study should elucidate the specific solutions obtained by CD learning in other types of RBMs or in deep networks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fletcher, Bonnie R; Calhoun, Michael E; Rapp, Peter R; Shapiro, Matthew L
2006-02-01
The immediate-early gene (IEG) Arc is transcribed after behavioral and physiological treatments that induce synaptic plasticity and is implicated in memory consolidation. The relative contributions of neuronal activity and learning-related plasticity to the behavioral induction of Arc remain to be defined. To differentiate the contributions of each, we assessed the induction of Arc transcription in rats with fornix lesions that impair hippocampal learning yet leave cortical connectivity and neuronal firing essentially intact. Arc expression was assessed after exploration of novel environments and performance of a novel water maze task during which normal rats learned the spatial location of an escape platform. During the same task, rats with fornix lesions learned to approach a visible platform but did not learn its spatial location. Rats with fornix lesions had normal baseline levels of hippocampal Arc mRNA, but unlike normal rats, expression was not increased in response to water maze training. The integrity of signaling pathways controlling Arc expression was demonstrated by stimulation of the medial perforant path, which induced normal synaptic potentiation and Arc in rats with fornix lesions. Together, the results demonstrate that Arc induction can be decoupled from behavior and is more likely to indicate the engagement of synaptic plasticity mechanisms than synaptic or neuronal activity per se. The results further imply that fornix lesions may impair memory in part by decoupling neuronal activity from signaling pathways required for long-lasting hippocampal synaptic plasticity.
Ambrosino, R; Buchanan, B G; Cooper, G F; Fine, M J
1995-01-01
Cost-effective health care is at the forefront of today's important health-related issues. A research team at the University of Pittsburgh has been interested in lowering the cost of medical care by attempting to define a subset of patients with community-acquire pneumonia for whom outpatient therapy is appropriate and safe. Sensitivity and specificity requirements for this domain make it difficult to use rule-based learning algorithms with standard measures of performance based on accuracy. This paper describes the use of misclassification costs to assist a rule-based machine-learning program in deriving a decision-support aid for choosing outpatient therapy for patients with community-acquired pneumonia.
Butts, Daniel A; Kanold, Patrick O; Shatz, Carla J
2007-01-01
Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity. PMID:17341130
Children Prefer Diverse Samples for Inductive Reasoning in the Social Domain.
Noyes, Alexander; Christie, Stella
2016-07-01
Not all samples of evidence are equally conclusive: Diverse evidence is more representative than narrow evidence. Prior research showed that children did not use sample diversity in evidence selection tasks, indiscriminately choosing diverse or narrow sets (tiger-mouse; tiger-lion) to learn about animals. This failure is not due to a general deficit of inductive reasoning, but reflects children's belief about the category and property at test. Five- to 7 year-olds' inductive reasoning (n = 65) was tested in two categories (animal, people) and properties (toy preference, biological property). As stated earlier, children ignored diverse evidence when learning about animals' biological properties. When learning about people's toy preferences, however, children selected the diverse samples, providing the most compelling evidence to date of spontaneous selection of diverse evidence. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
2012-01-01
Background To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. Results In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. Conclusions In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots. PMID:22409965
Otaki, Joji M
2012-03-13
To explain eyespot colour-pattern determination in butterfly wings, the induction model has been discussed based on colour-pattern analyses of various butterfly eyespots. However, a detailed structural analysis of eyespots that can serve as a foundation for future studies is still lacking. In this study, fundamental structural rules related to butterfly eyespots are proposed, and the induction model is elaborated in terms of the possible dynamics of morphogenic signals involved in the development of eyespots and parafocal elements (PFEs) based on colour-pattern analysis of the nymphalid butterfly Junonia almana. In a well-developed eyespot, the inner black core ring is much wider than the outer black ring; this is termed the inside-wide rule. It appears that signals are wider near the focus of the eyespot and become narrower as they expand. Although fundamental signal dynamics are likely to be based on a reaction-diffusion mechanism, they were described well mathematically as a type of simple uniformly decelerated motion in which signals associated with the outer and inner black rings of eyespots and PFEs are released at different time points, durations, intervals, and initial velocities into a two-dimensional field of fundamentally uniform or graded resistance; this produces eyespots and PFEs that are diverse in size and structure. The inside-wide rule, eyespot distortion, structural differences between small and large eyespots, and structural changes in eyespots and PFEs in response to physiological treatments were explained well using mathematical simulations. Natural colour patterns and previous experimental findings that are not easily explained by the conventional gradient model were also explained reasonably well by the formal mathematical simulations performed in this study. In a mode free from speculative molecular interactions, the present study clarifies fundamental structural rules related to butterfly eyespots, delineates a theoretical basis for the induction model, and proposes a mathematically simple mode of long-range signalling that may reflect developmental mechanisms associated with butterfly eyespots.
Experiments on individual strategy updating in iterated snowdrift game under random rematching.
Qi, Hang; Ma, Shoufeng; Jia, Ning; Wang, Guangchao
2015-03-07
How do people actually play the iterated snowdrift games, particularly under random rematching protocol is far from well explored. Two sets of laboratory experiments on snowdrift game were conducted to investigate human strategy updating rules. Four groups of subjects were modeled by experience-weighted attraction learning theory at individual-level. Three out of the four groups (75%) passed model validation. Substantial heterogeneity is observed among the players who update their strategies in four typical types, whereas rare people behave like belief-based learners even under fixed pairing. Most subjects (63.9%) adopt the reinforcement learning (or alike) rules; but, interestingly, the performance of averaged reinforcement learners suffered. It is observed that two factors seem to benefit players in competition, i.e., the sensitivity to their recent experiences and the overall consideration of forgone payoffs. Moreover, subjects with changing opponents tend to learn faster based on their own recent experience, and display more diverse strategy updating rules than they do with fixed opponent. These findings suggest that most of subjects do apply reinforcement learning alike updating rules even under random rematching, although these rules may not improve their performance. The findings help evolutionary biology researchers to understand sophisticated human behavioral strategies in social dilemmas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spacing and Induction: Application to Exemplars Presented as Auditory and Visual Text
ERIC Educational Resources Information Center
Zulkiply, Norehan; McLean, John; Burt, Jennifer S.; Bath, Debra
2012-01-01
It is an established finding that spacing repetitions generally facilitates memory for the repeated events. However, the effect of spacing of exemplars on inductive learning is not really known. Two experiments using textual material were conducted to investigate the effect of spacing on induction. Experiment 1 and 2 extended the generality of…
Code of Federal Regulations, 2011 CFR
2011-04-01
... of the transfer a partnership or fiduciary learns that a partner's or beneficiary's certification of... transfer a partnership or fiduciary learns that a corporation's statement (that an interest in the... a transfer of property in accordance with the rules of this section, then no additional tax is...
Code of Federal Regulations, 2012 CFR
2012-04-01
... of the transfer a partnership or fiduciary learns that a partner's or beneficiary's certification of... transfer a partnership or fiduciary learns that a corporation's statement (that an interest in the... a transfer of property in accordance with the rules of this section, then no additional tax is...
Code of Federal Regulations, 2014 CFR
2014-04-01
... of the transfer a partnership or fiduciary learns that a partner's or beneficiary's certification of... transfer a partnership or fiduciary learns that a corporation's statement (that an interest in the... a transfer of property in accordance with the rules of this section, then no additional tax is...
Code of Federal Regulations, 2013 CFR
2013-04-01
... of the transfer a partnership or fiduciary learns that a partner's or beneficiary's certification of... transfer a partnership or fiduciary learns that a corporation's statement (that an interest in the... a transfer of property in accordance with the rules of this section, then no additional tax is...
DOT National Transportation Integrated Search
2003-01-01
The Federal Railroad Administration (FRA) Human Factors Research and Development (R&D) Program sponsored a lessons-learned study to examine the impact of safety rules revision on safety culture, incident rates, and liability claims in the railroad in...
Binary translation using peephole translation rules
Bansal, Sorav; Aiken, Alex
2010-05-04
An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.
Aust, Ulrike; Braunöder, Elisabeth
2015-02-01
The present experiment investigated pigeons' and humans' processing styles-local or global-in an exemplar-based visual categorization task in which category membership of every stimulus had to be learned individually, and in a rule-based task in which category membership was defined by a perceptual rule. Group Intact was trained with the original pictures (providing both intact local and global information), Group Scrambled was trained with scrambled versions of the same pictures (impairing global information), and Group Blurred was trained with blurred versions (impairing local information). Subsequently, all subjects were tested for transfer to the 2 untrained presentation modes. Humans outperformed pigeons regarding learning speed and accuracy as well as transfer performance and showed good learning irrespective of group assignment, whereas the pigeons of Group Blurred needed longer to learn the training tasks than the pigeons of Groups Intact and Scrambled. Also, whereas humans generalized equally well to any novel presentation mode, pigeons' transfer from and to blurred stimuli was impaired. Both species showed faster learning and, for the most part, better transfer in the rule-based than in the exemplar-based task, but there was no evidence of the used processing mode depending on the type of task (exemplar- or rule-based). Whereas pigeons relied on local information throughout, humans did not show a preference for either processing level. Additional tests with grayscale versions of the training stimuli, with versions that were both blurred and scrambled, and with novel instances of the rule-based task confirmed and further extended these findings. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
Olde Scheper, Tjeerd V; Meredith, Rhiannon M; Mansvelder, Huibert D; van Pelt, Jaap; van Ooyen, Arjen
2017-01-01
Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized computational entities, each contributing to the global activity, not in a simply linear fashion, but in a manner that is appropriate to achieve local and global stability of the neuron and the entire dendritic structure.
Automatic inference of indexing rules for MEDLINE
Névéol, Aurélie; Shooshan, Sonya E; Claveau, Vincent
2008-01-01
Background: Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE indexers in this task is growing with the increasing number of publications being added to MEDLINE. Methods: In this paper, we describe the use and the customization of Inductive Logic Programming (ILP) to infer indexing rules that may be used to produce automatic indexing recommendations for MEDLINE indexers. Results: Our results show that this original ILP-based approach outperforms manual rules when they exist. In addition, the use of ILP rules also improves the overall performance of the Medical Text Indexer (MTI), a system producing automatic indexing recommendations for MEDLINE. Conclusion: We expect the sets of ILP rules obtained in this experiment to be integrated into MTI. PMID:19025687
Automatic inference of indexing rules for MEDLINE.
Névéol, Aurélie; Shooshan, Sonya E; Claveau, Vincent
2008-11-19
Indexing is a crucial step in any information retrieval system. In MEDLINE, a widely used database of the biomedical literature, the indexing process involves the selection of Medical Subject Headings in order to describe the subject matter of articles. The need for automatic tools to assist MEDLINE indexers in this task is growing with the increasing number of publications being added to MEDLINE. In this paper, we describe the use and the customization of Inductive Logic Programming (ILP) to infer indexing rules that may be used to produce automatic indexing recommendations for MEDLINE indexers. Our results show that this original ILP-based approach outperforms manual rules when they exist. In addition, the use of ILP rules also improves the overall performance of the Medical Text Indexer (MTI), a system producing automatic indexing recommendations for MEDLINE. We expect the sets of ILP rules obtained in this experiment to be integrated into MTI.
Flexible Vinyl and Urethane Coating and Printing: New Source Performance Standards (NSPS)
Learn about the New Source Performance Standards (NSPS) for flexible vinyl and urethane coating and printing by reading the rule summary, the rule history, the code of federal regulations subpart and related rules
Learn about the NESHAP for ethylene oxide emissions for sterilization facilities. Find the rule history information, federal register citations, legal authority, and related rules as well as a rule summary.
Ganchev, Philip; Malehorn, David; Bigbee, William L.; Gopalakrishnan, Vanathi
2013-01-01
We present a novel framework for integrative biomarker discovery from related but separate data sets created in biomarker profiling studies. The framework takes prior knowledge in the form of interpretable, modular rules, and uses them during the learning of rules on a new data set. The framework consists of two methods of transfer of knowledge from source to target data: transfer of whole rules and transfer of rule structures. We evaluated the methods on three pairs of data sets: one genomic and two proteomic. We used standard measures of classification performance and three novel measures of amount of transfer. Preliminary evaluation shows that whole-rule transfer improves classification performance over using the target data alone, especially when there is more source data than target data. It also improves performance over using the union of the data sets. PMID:21571094
Deep Logic Networks: Inserting and Extracting Knowledge From Deep Belief Networks.
Tran, Son N; d'Avila Garcez, Artur S
2018-02-01
Developments in deep learning have seen the use of layerwise unsupervised learning combined with supervised learning for fine-tuning. With this layerwise approach, a deep network can be seen as a more modular system that lends itself well to learning representations. In this paper, we investigate whether such modularity can be useful to the insertion of background knowledge into deep networks, whether it can improve learning performance when it is available, and to the extraction of knowledge from trained deep networks, and whether it can offer a better understanding of the representations learned by such networks. To this end, we use a simple symbolic language-a set of logical rules that we call confidence rules-and show that it is suitable for the representation of quantitative reasoning in deep networks. We show by knowledge extraction that confidence rules can offer a low-cost representation for layerwise networks (or restricted Boltzmann machines). We also show that layerwise extraction can produce an improvement in the accuracy of deep belief networks. Furthermore, the proposed symbolic characterization of deep networks provides a novel method for the insertion of prior knowledge and training of deep networks. With the use of this method, a deep neural-symbolic system is proposed and evaluated, with the experimental results indicating that modularity through the use of confidence rules and knowledge insertion can be beneficial to network performance.
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines
Neftci, Emre O.; Augustine, Charles; Paul, Somnath; Detorakis, Georgios
2017-01-01
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning. PMID:28680387
Event-Driven Random Back-Propagation: Enabling Neuromorphic Deep Learning Machines.
Neftci, Emre O; Augustine, Charles; Paul, Somnath; Detorakis, Georgios
2017-01-01
An ongoing challenge in neuromorphic computing is to devise general and computationally efficient models of inference and learning which are compatible with the spatial and temporal constraints of the brain. One increasingly popular and successful approach is to take inspiration from inference and learning algorithms used in deep neural networks. However, the workhorse of deep learning, the gradient descent Gradient Back Propagation (BP) rule, often relies on the immediate availability of network-wide information stored with high-precision memory during learning, and precise operations that are difficult to realize in neuromorphic hardware. Remarkably, recent work showed that exact backpropagated gradients are not essential for learning deep representations. Building on these results, we demonstrate an event-driven random BP (eRBP) rule that uses an error-modulated synaptic plasticity for learning deep representations. Using a two-compartment Leaky Integrate & Fire (I&F) neuron, the rule requires only one addition and two comparisons for each synaptic weight, making it very suitable for implementation in digital or mixed-signal neuromorphic hardware. Our results show that using eRBP, deep representations are rapidly learned, achieving classification accuracies on permutation invariant datasets comparable to those obtained in artificial neural network simulations on GPUs, while being robust to neural and synaptic state quantizations during learning.
Toward a dual-learning systems model of speech category learning
Chandrasekaran, Bharath; Koslov, Seth R.; Maddox, W. T.
2014-01-01
More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article, we describe a neurobiologically constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, unidimensional rules to more complex, reflexive, multi-dimensional rules. In a second application, we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions. PMID:25132827
Design issues for a reinforcement-based self-learning fuzzy controller
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Dauherity, Walter
1993-01-01
Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.
Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco
2018-03-01
This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.
Why learning and development can lead to poorer recognition memory.
Hayes, Brett K; Heit, Evan
2004-08-01
Current models of inductive reasoning in children and adults assume a central role for categorical knowledge. A recent paper by Sloutsky and Fisher challenges this assumption, showing that children are more likely than adults to rely on perceptual similarity as a basis for induction, and introduces a more direct method for examining the representations activated during induction. This method has the potential to constrain models of induction in novel ways, although there are still important challenges.
Novelty and Inductive Generalization in Human Reinforcement Learning.
Gershman, Samuel J; Niv, Yael
2015-07-01
In reinforcement learning (RL), a decision maker searching for the most rewarding option is often faced with the question: What is the value of an option that has never been tried before? One way to frame this question is as an inductive problem: How can I generalize my previous experience with one set of options to a novel option? We show how hierarchical Bayesian inference can be used to solve this problem, and we describe an equivalence between the Bayesian model and temporal difference learning algorithms that have been proposed as models of RL in humans and animals. According to our view, the search for the best option is guided by abstract knowledge about the relationships between different options in an environment, resulting in greater search efficiency compared to traditional RL algorithms previously applied to human cognition. In two behavioral experiments, we test several predictions of our model, providing evidence that humans learn and exploit structured inductive knowledge to make predictions about novel options. In light of this model, we suggest a new interpretation of dopaminergic responses to novelty. Copyright © 2015 Cognitive Science Society, Inc.
Learning and transfer of category knowledge in an indirect categorization task.
Helie, Sebastien; Ashby, F Gregory
2012-05-01
Knowledge representations acquired during category learning experiments are 'tuned' to the task goal. A useful paradigm to study category representations is indirect category learning. In the present article, we propose a new indirect categorization task called the "same"-"different" categorization task. The same-different categorization task is a regular same-different task, but the question asked to the participants is about the stimulus category membership instead of stimulus identity. Experiment 1 explores the possibility of indirectly learning rule-based and information-integration category structures using the new paradigm. The results suggest that there is little learning about the category structures resulting from an indirect categorization task unless the categories can be separated by a one-dimensional rule. Experiment 2 explores whether a category representation learned indirectly can be used in a direct classification task (and vice versa). The results suggest that previous categorical knowledge acquired during a direct classification task can be expressed in the same-different categorization task only when the categories can be separated by a rule that is easily verbalized. Implications of these results for categorization research are discussed.
Group learning versus local learning: Which is prefer for public cooperation?
NASA Astrophysics Data System (ADS)
Yang, Shi-Han; Song, Qi-Qing
2018-01-01
We study the evolution of cooperation in public goods games on various graphs, focusing on the effects that are brought by different kinds of strategy donors. This highlights a basic feature of a public good game, for which there exists a remarkable difference between the interactive players and the players who are imitated. A player can learn from all the groups where the player is a member or from the typically local nearest neighbors, and the results show that the group learning rules have better performance in promoting cooperation on many networks than the local learning rules. The heterogeneity of networks' degree may be an effective mechanism for harvesting the cooperation expectation in many cases, however, we find that heterogeneity does not definitely mean the high frequency of cooperators in a population under group learning rules. It was shown that cooperators always hardly evolve whenever the interaction and the replacement do not coincide for evolutionary pairwise dilemmas on graphs, while for PG games we find that breaking the symmetry is conducive to the survival of cooperators.
Learning and tuning fuzzy logic controllers through reinforcements
NASA Technical Reports Server (NTRS)
Berenji, Hamid R.; Khedkar, Pratap
1992-01-01
This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
Induction as Knowledge Integration
NASA Technical Reports Server (NTRS)
Smith, Benjamin D.; Rosenbloom, Paul S.
1996-01-01
Two key issues for induction algorithms are the accuracy of the learned hypothesis and the computational resources consumed in inducing that hypothesis. One of the most promising ways to improve performance along both dimensions is to make use of additional knowledge. Multi-strategy learning algorithms tackle this problem by employing several strategies for handling different kinds of knowledge in different ways. However, integrating knowledge into an induction algorithm can be difficult when the new knowledge differs significantly from the knowledge the algorithm already uses. In many cases the algorithm must be rewritten. This paper presents Knowledge Integration framework for Induction (KII), a KII, that provides a uniform mechanism for integrating knowledge into induction. In theory, arbitrary knowledge can be integrated with this mechanism, but in practice the knowledge representation language determines both the knowledge that can be integrated, and the costs of integration and induction. By instantiating KII with various set representations, algorithms can be generated at different trade-off points along these dimensions. One instantiation of KII, called RS-KII, is presented that can implement hybrid induction algorithms, depending on which knowledge it utilizes. RS-KII is demonstrated to implement AQ-11, as well as a hybrid algorithm that utilizes a domain theory and noisy examples. Other algorithms are also possible.
NASA Astrophysics Data System (ADS)
Balaram Atram, Dattatraya
2011-01-01
Fleming's right-hand rule and the right-flat-hand rule are generally applied for determining the direction of flow of induced emf/current in straight conductors. The right-hand-fingers rule is applied for coils only. The right-hand-thumb rule can be applied for either straight conductors or coils. Different rules have to be applied for different situations. Also, a formula for determining the direction of induced emf/current does not exist on the basis of these rules. In this article, based on Faraday's law of electromagnetic induction and Lenz's law, an 'imaginary closed circuit method' and a formula for determination of direction of induced emf/current has been proposed. The method is universal in the sense that it is applicable for conductors of any shape, for any kind of relative motion of the conductor with respect to the magnetic flux, and moreover it is applicable for the case of varying magnetic flux.
The interplay of externalizing problems and physical and inductive discipline during childhood.
Choe, Daniel Ewon; Olson, Sheryl L; Sameroff, Arnold J
2013-11-01
Children who are physically disciplined are at elevated risk for externalizing problems. Conversely, maternal reasoning and reminding of rules, or inductive discipline, is associated with fewer child externalizing problems. Few studies have simultaneously examined bidirectional associations between these forms of discipline and child adjustment using cross-informant, multimethod data. We hypothesized that less inductive and more physical discipline would predict more externalizing problems, children would have evocative effects on parenting, and high levels of either form of discipline would predict low levels of the other. In a study of 241 children-spanning ages 3, 5.5, and 10-structural equation modeling indicated that 3-year-olds with higher teacher ratings of externalizing problems received higher mother ratings of physical discipline at age 5.5. Mothers endorsing more inductive discipline at child age 3 reported less physical discipline and had children with fewer externalizing problems at age 5.5. Negative bidirectional associations emerged between physical and inductive discipline from ages 5.5 to 10. Findings suggested children's externalizing problems elicited physical discipline, and maternal inductive discipline might help prevent externalizing problems and physical discipline.
learn about the NSPS for municipal solid waste landfills by reading the rule summary, rule history, code of federal regulations text, fact sheets, background information documents, related rules and compliance information.
Inductive electronegativity scale. Iterative calculation of inductive partial charges.
Cherkasov, Artem
2003-01-01
A number of novel QSAR descriptors have been introduced on the basis of the previously elaborated models for steric and inductive effects. The developed "inductive" parameters include absolute and effective electronegativity, atomic partial charges, and local and global chemical hardness and softness. Being based on traditional inductive and steric substituent constants these 3D descriptors provide a valuable insight into intramolecular steric and electronic interactions and can find broad application in structure-activity studies. Possible interpretation of physical meaning of the inductive descriptors has been suggested by considering a neutral molecule as an electrical capacitor formed by charged atomic spheres. This approximation relates inductive chemical softness and hardness of bound atom(s) with the total area of the facings of electrical capacitor formed by the atom(s) and the rest of the molecule. The derived full electronegativity equalization scheme allows iterative calculation of inductive partial charges on the basis of atomic electronegativities, covalent radii, and intramolecular distances. A range of inductive descriptors has been computed for a variety of organic compounds. The calculated inductive charges in the studied molecules have been validated by experimental C-1s Electron Core Binding Energies and molecular dipole moments. Several semiempirical chemical rules, such as equalized electronegativity's arithmetic mean, principle of maximum hardness, and principle of hardness borrowing could be explicitly illustrated in the framework of the developed approach.
Teaching with Procedural Variation: A Chinese Way of Promoting Deep Understanding of Mathematics
ERIC Educational Resources Information Center
Lai, Mun Yee; Murray, Sara
2012-01-01
In mathematics education, there has been tension between deep learning and repetitive learning. Western educators often emphasize the need for students to construct a conceptual understanding of mathematical symbols and rules before they practise the rules (Li, 2006). On the other hand, Chinese learners tend to be oriented towards rote learning…
Analysis and Synthesis of Adaptive Neural Elements and Assemblies
1992-12-14
network, a learning rule (activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning , was...activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning, was demonstrated to support many...network, a learning rule (activity-dependent neuromodulation ), which has been proposed as a cellular mechanism for classical conditioning, was
ARI Basic Research Program FY 1999-2000
1999-06-01
visual cues, reinforcement, and instruction concerning abstract , general rules. In our future research, we plan to examine the learning of novel...Watch, • Graduate student apprenticeship program - Consortium Research Fellows Program- with the Consortium of Metropolitan Washington Universities...do learn complex rules involving different levels of abstraction when given sufficient specific examples but that they also benefit from explicit
ERIC Educational Resources Information Center
Kundey, Shannon M. A.; Strandell, Brittany; Mathis, Heather; Rowan, James D.
2010-01-01
(Hulse and Dorsky, 1977) and (Hulse and Dorsky, 1979) found that rats, like humans, learn sequences following a simple rule-based structure more quickly than those lacking a rule-based structure. Through two experiments, we explored whether two additional species--domesticated horses ("Equus callabus") and chickens ("Gallus domesticus")--would…
Quest for the Golden Rule: An Effective Social Skills Promotion and Bullying Prevention Program
ERIC Educational Resources Information Center
Rubin-Vaughan, Alice; Pepler, Debra; Brown, Steven; Craig, Wendy
2011-01-01
Everyday many students face bullying situations that they are ill equipped to manage. E-learning has recently emerged as a potentially effective tool in teaching children social skills, in addition to academic subject matter. Quest for the Golden Rule is one of the first bullying prevention e-learning programs available, designed by the…
Brain Regions Involved in the Learning and Application of Reward Rules in a Two-Deck Gambling Task
ERIC Educational Resources Information Center
Hartstra, E.; Oldenburg, J. F. E.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.
2010-01-01
Decision-making involves the ability to choose between competing actions that are associated with uncertain benefits and penalties. The Iowa Gambling Task (IGT), which mimics real-life decision-making, involves learning a reward-punishment rule over multiple trials. Patients with damage to ventromedial prefrontal cortex (VMPFC) show deficits…
Supreme Court's Patent Ruling Could Spell Trouble For Blackboard and Others
ERIC Educational Resources Information Center
Carnevale, Dan
2007-01-01
Many college officials have criticized Blackboard Inc. for its patent on its course-management system, arguing that the patent is overly broad and seems to cover the entire concept of online learning. Critics of Blackboard and other companies that have patents on learning technology are welcoming a recent Supreme Court ruling that they hope may…
ERIC Educational Resources Information Center
Hinze, Scott R.; Bunting, Michael F; Pellegrino, James W.
2009-01-01
The involvement of working memory capacity (WMC) in ruled-based cognitive skill acquisition is well-established, but the duration of its involvement and its role in learning strategy selection are less certain. Participants (N=610) learned four logic rules, their corresponding symbols, or logic gates, and the appropriate input-output combinations…
DCS-Neural-Network Program for Aircraft Control and Testing
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
2006-01-01
A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.
Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network
NASA Astrophysics Data System (ADS)
Funabashi, Masatoshi
We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.
The effects of cumulative practice on mathematics problem solving.
Mayfield, Kristin H; Chase, Philip N
2002-01-01
This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving.
Reimagining the learned intermediary rule for the new pharmaceutical marketplace.
Hall, Timothy S
2004-01-01
For the past decade, the learned intermediary rule--the rule of tort law that provides that drug manufacturers may satisfy their duty to warn of a drug's dangers by warning the prescribing physician rather than the end user of the drug--has been the subject of vigorous academic debate. That debate has been largely moot, however, as the courts have proven reluctant to make significant inroads on the protection offered by the Rule to drug manufacturers. This Article proposes a new approach to the Rule. Part I discusses the history and overwhelming adoption of the Rule pursuant to the Restatement (Second) of Torts. Part II argues that changes in the health care delivery system have resulted in a legal system that introduces market distortions by effectively immunizing the pharmaceutical industry from the legal and social consequences of its own actions. Part III then sets forth a reconceptualization of the Rule, which preserves the Rule's benefits with respect to the drug industry, the health care system, and the goals of tort law, while also strengthening the protection the tort system offers to individuals injured by prescription drugs.
The effects of cumulative practice on mathematics problem solving.
Mayfield, Kristin H; Chase, Philip N
2002-01-01
This study compared three different methods of teaching five basic algebra rules to college students. All methods used the same procedures to teach the rules and included four 50-question review sessions interspersed among the training of the individual rules. The differences among methods involved the kinds of practice provided during the four review sessions. Participants who received cumulative practice answered 50 questions covering a mix of the rules learned prior to each review session. Participants who received a simple review answered 50 questions on one previously trained rule. Participants who received extra practice answered 50 extra questions on the rule they had just learned. Tests administered after each review included new questions for applying each rule (application items) and problems that required novel combinations of the rules (problem-solving items). On the final test, the cumulative group outscored the other groups on application and problem-solving items. In addition, the cumulative group solved the problem-solving items significantly faster than the other groups. These results suggest that cumulative practice of component skills is an effective method of training problem solving. PMID:12102132
NASA Astrophysics Data System (ADS)
Cheng, Jie; Qian, Zhaogang; Irani, Keki B.; Etemad, Hossein; Elta, Michael E.
1991-03-01
To meet the ever-increasing demand of the rapidly-growing semiconductor manufacturing industry it is critical to have a comprehensive methodology integrating techniques for process optimization real-time monitoring and adaptive process control. To this end we have accomplished an integrated knowledge-based approach combining latest expert system technology machine learning method and traditional statistical process control (SPC) techniques. This knowledge-based approach is advantageous in that it makes it possible for the task of process optimization and adaptive control to be performed consistently and predictably. Furthermore this approach can be used to construct high-level and qualitative description of processes and thus make the process behavior easy to monitor predict and control. Two software packages RIST (Rule Induction and Statistical Testing) and KARSM (Knowledge Acquisition from Response Surface Methodology) have been developed and incorporated with two commercially available packages G2 (real-time expert system) and ULTRAMAX (a tool for sequential process optimization).
Hogarth, Lee; He, Zhimin; Chase, Henry W; Wills, Andy J; Troisi, Joseph; Leventhal, Adam M; Mathew, Amanda R; Hitsman, Brian
2015-09-01
Two theories explain how negative mood primes smoking behaviour. The stimulus-response (S-R) account argues that in the negative mood state, smoking is experienced as more reinforcing, establishing a direct (automatic) association between the negative mood state and smoking behaviour. By contrast, the incentive learning account argues that in the negative mood state smoking is expected to be more reinforcing, which integrates with instrumental knowledge of the response required to produce that outcome. One differential prediction is that whereas the incentive learning account anticipates that negative mood induction could augment a novel tobacco-seeking response in an extinction test, the S-R account could not explain this effect because the extinction test prevents S-R learning by omitting experience of the reinforcer. To test this, overnight-deprived daily smokers (n = 44) acquired two instrumental responses for tobacco and chocolate points, respectively, before smoking to satiety. Half then received negative mood induction to raise the expected value of tobacco, opposing satiety, whilst the remainder received positive mood induction. Finally, a choice between tobacco and chocolate was measured in extinction to test whether negative mood could augment tobacco choice, opposing satiety, in the absence of direct experience of tobacco reinforcement. Negative mood induction not only abolished the devaluation of tobacco choice, but participants with a significant increase in negative mood increased their tobacco choice in extinction, despite satiety. These findings suggest that negative mood augments drug-seeking by raising the expected value of the drug through incentive learning, rather than through automatic S-R control.
Exposure to Unsolvable Anagrams Impairs Performance on the Iowa Gambling Task
Starcke, Katrin; Agorku, Janet D.; Brand, Matthias
2017-01-01
Recent research indicates that external manipulations, such as stress or mood induction, can affect decision-making abilities. In the current study, we investigated whether the exposure to an unsolvable task affected subsequent performance on the Iowa Gambling Task. Participants were randomly assigned to a condition in which they were exposed to unsolvable anagrams (n = 20), or a condition in which they worked on solvable anagrams (n = 22). Afterwards, all participants played the Iowa Gambling Task, a prominent task that measures decision making under uncertain conditions with no explicit rules for gains and losses. In this task, it is essential to process feedback from previous decisions. The results demonstrated that participants who worked on unsolvable anagrams made more disadvantageous decisions on the Iowa Gambling Task than the other participants. In addition, a significant gender effect was observed: Males who worked on unsolvable anagrams made a more disadvantageous decisions than the other male participants. Females who worked on unsolvable anagrams also made more disadvantageous decision than the other female participants, but differences were small and not significant. We conclude that the exposure to unsolvable anagrams induced the experience of uncontrollability which can elicit stress and learned helplessness. Stress and learned helplessness might have reduced the ability to learn from the given feedback, particularly in male participants. We assume that in real life, uncontrollable challenges that last longer than a single experimental manipulation can affect decision making severely, at least in males. PMID:28642693
ERIC Educational Resources Information Center
Osman, Magda
2008-01-01
Given the privileged status claimed for active learning in a variety of domains (visuomotor learning, causal induction, problem solving, education, skill learning), the present study examines whether action-based learning is a necessary, or a sufficient, means of acquiring the relevant skills needed to perform a task typically described as…
Passive acquisition of CLIPS rules
NASA Technical Reports Server (NTRS)
Kovarik, Vincent J., Jr.
1991-01-01
The automated acquisition of knowledge by machine has not lived up to expectations, and knowledge engineering remains a human intensive task. Part of the reason for the lack of success is the difference in the cognitive focus of the expert. The expert must shift his or her focus from the subject domain to that of the representation environment. In doing so this cognitive shift introduces opportunity for errors and omissions. Presented here is work that observes the expert interact with a simulation of the domain. The system logs changes in the simulation objects and the expert's actions in response to those changes. This is followed by the application of inductive reasoning to move the domain specific rules observed to general domain rules.
Prototype learning and dissociable categorization systems in Alzheimer's disease.
Heindel, William C; Festa, Elena K; Ott, Brian R; Landy, Kelly M; Salmon, David P
2013-08-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer's disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease
Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.
2015-01-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. PMID:23751172
Machine learning with quantum relative entropy
NASA Astrophysics Data System (ADS)
Tsuda, Koji
2009-12-01
Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.
Learning and inference in a nonequilibrium Ising model with hidden nodes.
Dunn, Benjamin; Roudi, Yasser
2013-02-01
We study inference and reconstruction of couplings in a partially observed kinetic Ising model. With hidden spins, calculating the likelihood of a sequence of observed spin configurations requires performing a trace over the configurations of the hidden ones. This, as we show, can be represented as a path integral. Using this representation, we demonstrate that systematic approximate inference and learning rules can be derived using dynamical mean-field theory. Although naive mean-field theory leads to an unstable learning rule, taking into account Gaussian corrections allows learning the couplings involving hidden nodes. It also improves learning of the couplings between the observed nodes compared to when hidden nodes are ignored.
ERIC Educational Resources Information Center
Beloucif, Oihida
2017-01-01
This is a longitudinal case study of two groups of students (24 students in total) from the Foreign Languages Department of the University of Puerto Rico-Rio Piedras. This research deals with the acquisition of the French adverbial pronouns "en" and "y" through two different teaching approaches, the implicit-inductive teaching…
Side Effects of Being Blue: Influence of Sad Mood on Visual Statistical Learning
Bertels, Julie; Demoulin, Catherine; Franco, Ana; Destrebecqz, Arnaud
2013-01-01
It is well established that mood influences many cognitive processes, such as learning and executive functions. Although statistical learning is assumed to be part of our daily life, as mood does, the influence of mood on statistical learning has never been investigated before. In the present study, a sad vs. neutral mood was induced to the participants through the listening of stories while they were exposed to a stream of visual shapes made up of the repeated presentation of four triplets, namely sequences of three shapes presented in a fixed order. Given that the inter-stimulus interval was held constant within and between triplets, the only cues available for triplet segmentation were the transitional probabilities between shapes. Direct and indirect measures of learning taken either immediately or 20 minutes after the exposure/mood induction phase revealed that participants learned the statistical regularities between shapes. Interestingly, although participants from the sad and neutral groups performed similarly in these tasks, subjective measures (confidence judgments taken after each trial) revealed that participants who experienced the sad mood induction showed increased conscious access to their statistical knowledge. These effects were not modulated by the time delay between the exposure/mood induction and the test phases. These results are discussed within the scope of the robustness principle and the influence of negative affects on processing style. PMID:23555797
Stepfamily Communication Strengths: Understanding the Ties That Bind.
ERIC Educational Resources Information Center
Golish, Tamara D.
2003-01-01
Examines the communication strategies that differentiate "strong" stepfamilies from stepfamilies having more difficulty, inductively deriving a composite of stepfamily "communication strengths." Finds that in general, strong stepfamilies reported using everyday talk, more openness, spending time together as a family, communicating clear rules and…
Experiments and Demonstrations in Physics: Bar-Ilan Physics Laboratory (2nd Edition)
NASA Astrophysics Data System (ADS)
Kraftmakher, Yaakov
2014-08-01
The following sections are included: * Data-acquisition systems from PASCO * ScienceWorkshop 750 Interface and DataStudio software * 850 Universal Interface and Capstone software * Mass on spring * Torsional pendulum * Hooke's law * Characteristics of DC source * Digital storage oscilloscope * Charging and discharging a capacitor * Charge and energy stored in a capacitor * Speed of sound in air * Lissajous patterns * I-V characteristics * Light bulb * Short time intervals * Temperature measurements * Oersted's great discovery * Magnetic field measurements * Magnetic force * Magnetic braking * Curie's point I * Electric power in AC circuits * Faraday's law of induction I * Self-inductance and mutual inductance * Electromagnetic screening * LCR circuit I * Coupled LCR circuits * Probability functions * Photometric laws * Kirchhoff's rule for thermal radiation * Malus' law * Infrared radiation * Irradiance and illuminance
Compensatory processing during rule-based category learning in older adults.
Bharani, Krishna L; Paller, Ken A; Reber, Paul J; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G
2016-01-01
Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex.
An agent-based model of dialect evolution in killer whales.
Filatova, Olga A; Miller, Patrick J O
2015-05-21
The killer whale is one of the few animal species with vocal dialects that arise from socially learned group-specific call repertoires. We describe a new agent-based model of killer whale populations and test a set of vocal-learning rules to assess which mechanisms may lead to the formation of dialect groupings observed in the wild. We tested a null model with genetic transmission and no learning, and ten models with learning rules that differ by template source (mother or matriline), variation type (random errors or innovations) and type of call change (no divergence from kin vs. divergence from kin). The null model without vocal learning did not produce the pattern of group-specific call repertoires we observe in nature. Learning from either mother alone or the entire matriline with calls changing by random errors produced a graded distribution of the call phenotype, without the discrete call types observed in nature. Introducing occasional innovation or random error proportional to matriline variance yielded more or less discrete and stable call types. A tendency to diverge from the calls of related matrilines provided fast divergence of loose call clusters. A pattern resembling the dialect diversity observed in the wild arose only when rules were applied in combinations and similar outputs could arise from different learning rules and their combinations. Our results emphasize the lack of information on quantitative features of wild killer whale dialects and reveal a set of testable questions that can draw insights into the cultural evolution of killer whale dialects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Compensatory Processing During Rule-Based Category Learning in Older Adults
Bharani, Krishna L.; Paller, Ken A.; Reber, Paul J.; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G.
2016-01-01
Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex. PMID:26422522
The diversity effect of inductive reasoning under segment manipulation of complex cognition.
Chen, Antao; Li, Hong; Feng, Tingyong; Gao, Xuemei; Zhang, Zhongming; Li, Fuhong; Yang, Dong
2005-12-01
The present study proposed the idea of segment manipulation of complex cognition (SMCC), and technically made it possible the quantitative treatment and systematical manipulation on the premise diversity. The segment manipulation of complex cognition divides the previous inductive strengths judgment task into three distinct steps, attempting to particularly distinguish the psychological processes and their rules. The results in Experiment 1 showed that compared with the traditional method, the quantitative treatment and systematical manipulation of SMCC on the diversity did not change the task's nature, and remain rational and a good measurement of inductive strength judgment. The results in Experiment 2 showed that the participants' response rules in the triple-step task were expected from our proposal, and that in Step 2 the "feeling of surprise" (FOS), which seems implausible but predicted from the diversity premises, was measured, and its component might be the critical part that produced the diversity effect. The "feeling of surprise" may reflect the impact of emotion on cognition, representing a strong revision to premise probability principle of pure rational hypothesis proposed by Lo et al., and its roles in the diversity effect are worthy of further research. In this regards were discussed the mistakes that the premise probability principle makes when it takes posterity probability as prior probability.
Video Self-Modeling to Teach Classroom Rules to Two Students with Asperger's
ERIC Educational Resources Information Center
Lang, Russell; Shogren, Karrie A.; Machalicek, Wendy; Rispoli, Mandy; O'Reilly, Mark; Baker, Sonia; Regester, April
2009-01-01
Classroom rules are an integral part of classroom management. Children with Asperger's may require systematic instruction to learn classroom rules, but may be placed in classrooms in which the rules are not explicitly taught. A multiple baseline design across students with probes for maintenance after the intervention ceased was used to evaluate…
A Simple Computer-Aided Three-Dimensional Molecular Modeling for the Octant Rule
ERIC Educational Resources Information Center
Kang, Yinan; Kang, Fu-An
2011-01-01
The Moffitt-Woodward-Moscowitz-Klyne-Djerassi octant rule is one of the most successful empirical rules in organic chemistry. However, the lack of a simple effective modeling method for the octant rule in the past 50 years has posed constant difficulties for researchers, teachers, and students, particularly the young generations, to learn and…
Rules, Technique, and Practical Knowledge: A Wittgensteinian Exploration of Vocational Learning
ERIC Educational Resources Information Center
Winch, Christopher
2006-01-01
In this essay, Christopher Winch explores the relevance of Ludwig Wittgenstein's account of rule-following to vocational education with particular reference to the often-made claim that any account of an activity in terms of rule-following implies rigidity and inflexibility. He argues that most rule-following is only successful when it involves a…
NASA Astrophysics Data System (ADS)
Ducksbury, P. G.; Kennedy, C.; Lock, Z.
2003-09-01
Grammars have been used for the formal specification of programming languages, and there are a number of commercial products which now use grammars. However, these have tended to be focused mainly on flow control type applications. In this paper, we consider the potential use of picture grammars and inductive logic programming in generic image understanding applications, such as object recognition. A number of issues are considered, such as what type of grammar needs to be used, how to construct the grammar with its associated attributes, difficulties encountered with parsing grammars followed by issues of automatically learning grammars using a genetic algorithm. The concept of inductive logic programming is then introduced as a method that can overcome some of the earlier difficulties.
Changing Profile of Teachers in the Digital Age
ERIC Educational Resources Information Center
Malik, Kamna
2009-01-01
Teacher has a new role in the digital age. Call him facilitator or mentor. He is expected to help learners learn at their own pace rather than push concepts and rules onto them. Though such roles have been around for years, e-learning is forcing them in letter and spirit and changing many a rules for the teacher and the taught. Profile and…
ERIC Educational Resources Information Center
Güçler, Beste
2016-01-01
Despite the existence of extensive literature on functions, fewer studies used sociocultural views to explore the development of student learning about the concept. This study uses a discursive lens to examine whether an instructional approach that specifically attends to particular metalevel rules in the mathematical discourse on functions…
Information from Multiple Modalities Helps 5-Month-Olds Learn Abstract Rules
ERIC Educational Resources Information Center
Frank, Michael C.; Slemmer, Jonathan A.; Marcus, Gary F.; Johnson, Scott P.
2009-01-01
By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli ( Marcus et al., 1999 ), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract…
Learn about the NESHAP for inorganic arsenic from glass manufacturing plants by reading the rule summary, the rule history, the code of federal regulations text, additional resources and related rules
Fuzzy CMAC With incremental Bayesian Ying-Yang learning and dynamic rule construction.
Nguyen, M N
2010-04-01
Inspired by the philosophy of ancient Chinese Taoism, Xu's Bayesian ying-yang (BYY) learning technique performs clustering by harmonizing the training data (yang) with the solution (ying). In our previous work, the BYY learning technique was applied to a fuzzy cerebellar model articulation controller (FCMAC) to find the optimal fuzzy sets; however, this is not suitable for time series data analysis. To address this problem, we propose an incremental BYY learning technique in this paper, with the idea of sliding window and rule structure dynamic algorithms. Three contributions are made as a result of this research. First, an online expectation-maximization algorithm incorporated with the sliding window is proposed for the fuzzification phase. Second, the memory requirement is greatly reduced since the entire data set no longer needs to be obtained during the prediction process. Third, the rule structure dynamic algorithm with dynamically initializing, recruiting, and pruning rules relieves the "curse of dimensionality" problem that is inherent in the FCMAC. Because of these features, the experimental results of the benchmark data sets of currency exchange rates and Mackey-Glass show that the proposed model is more suitable for real-time streaming data analysis.
ERIC Educational Resources Information Center
Doering, Sagui Araceli
2018-01-01
In education, mentoring is pivotal in the early development and long-term success and self-directed efficacy of new teachers. With increasing acknowledgment of the importance of mentoring as the preferred means of induction support for new teachers, mentors can serve to positively impact the overall quality of teaching and learning. Yet, like the…
Wilmes, Katharina Anna; Schleimer, Jan-Hendrik; Schreiber, Susanne
2017-04-01
Inhibition is known to influence the forward-directed flow of information within neurons. However, also regulation of backward-directed signals, such as backpropagating action potentials (bAPs), can enrich the functional repertoire of local circuits. Inhibitory control of bAP spread, for example, can provide a switch for the plasticity of excitatory synapses. Although such a mechanism is possible, it requires a precise timing of inhibition to annihilate bAPs without impairment of forward-directed excitatory information flow. Here, we propose a specific learning rule for inhibitory synapses to automatically generate the correct timing to gate bAPs in pyramidal cells when embedded in a local circuit of feedforward inhibition. Based on computational modeling of multi-compartmental neurons with physiological properties, we demonstrate that a learning rule with anti-Hebbian shape can establish the required temporal precision. In contrast to classical spike-timing dependent plasticity of excitatory synapses, the proposed inhibitory learning mechanism does not necessarily require the definition of an upper bound of synaptic weights because of its tendency to self-terminate once annihilation of bAPs has been reached. Our study provides a functional context in which one of the many time-dependent learning rules that have been observed experimentally - specifically, a learning rule with anti-Hebbian shape - is assigned a relevant role for inhibitory synapses. Moreover, the described mechanism is compatible with an upregulation of excitatory plasticity by disinhibition. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Use of an expert system data analysis manager for space shuttle main engine test evaluation
NASA Technical Reports Server (NTRS)
Abernethy, Ken
1988-01-01
The ability to articulate, collect, and automate the application of the expertise needed for the analysis of space shuttle main engine (SSME) test data would be of great benefit to NASA liquid rocket engine experts. This paper describes a project whose goal is to build a rule-based expert system which incorporates such expertise. Experiential expertise, collected directly from the experts currently involved in SSME data analysis, is used to build a rule base to identify engine anomalies similar to those analyzed previously. Additionally, an alternate method of expertise capture is being explored. This method would generate rules inductively based on calculations made using a theoretical model of the SSME's operation. The latter rules would be capable of diagnosing anomalies which may not have appeared before, but whose effects can be predicted by the theoretical model.
Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C.
2017-01-01
Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs). Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages. PMID:28883801
Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C
2017-01-01
Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs) . Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages.
How children perceive fractals: Hierarchical self-similarity and cognitive development
Martins, Maurício Dias; Laaha, Sabine; Freiberger, Eva Maria; Choi, Soonja; Fitch, W. Tecumseh
2014-01-01
The ability to understand and generate hierarchical structures is a crucial component of human cognition, available in language, music, mathematics and problem solving. Recursion is a particularly useful mechanism for generating complex hierarchies by means of self-embedding rules. In the visual domain, fractals are recursive structures in which simple transformation rules generate hierarchies of infinite depth. Research on how children acquire these rules can provide valuable insight into the cognitive requirements and learning constraints of recursion. Here, we used fractals to investigate the acquisition of recursion in the visual domain, and probed for correlations with grammar comprehension and general intelligence. We compared second (n = 26) and fourth graders (n = 26) in their ability to represent two types of rules for generating hierarchical structures: Recursive rules, on the one hand, which generate new hierarchical levels; and iterative rules, on the other hand, which merely insert items within hierarchies without generating new levels. We found that the majority of fourth graders, but not second graders, were able to represent both recursive and iterative rules. This difference was partially accounted by second graders’ impairment in detecting hierarchical mistakes, and correlated with between-grade differences in grammar comprehension tasks. Empirically, recursion and iteration also differed in at least one crucial aspect: While the ability to learn recursive rules seemed to depend on the previous acquisition of simple iterative representations, the opposite was not true, i.e., children were able to acquire iterative rules before they acquired recursive representations. These results suggest that the acquisition of recursion in vision follows learning constraints similar to the acquisition of recursion in language, and that both domains share cognitive resources involved in hierarchical processing. PMID:24955884
Proceedings of the Workshop on Change of Representation and Problem Reformulation
NASA Technical Reports Server (NTRS)
Lowry, Michael R.
1992-01-01
The proceedings of the third Workshop on Change of representation and Problem Reformulation is presented. In contrast to the first two workshops, this workshop was focused on analytic or knowledge-based approaches, as opposed to statistical or empirical approaches called 'constructive induction'. The organizing committee believes that there is a potential for combining analytic and inductive approaches at a future date. However, it became apparent at the previous two workshops that the communities pursuing these different approaches are currently interested in largely non-overlapping issues. The constructive induction community has been holding its own workshops, principally in conjunction with the machine learning conference. While this workshop is more focused on analytic approaches, the organizing committee has made an effort to include more application domains. We have greatly expanded from the origins in the machine learning community. Participants in this workshop come from the full spectrum of AI application domains including planning, qualitative physics, software engineering, knowledge representation, and machine learning.
Making the Most of Education and Training: An Employer Perspective.
ERIC Educational Resources Information Center
Pollitt, David, Ed.
2002-01-01
Eleven articles focus on issues surrounding employer investment in training in Britain. Topics include employee induction, flexible lifelong learning, workplace learning partnerships, retention through training, management development, cooperation with competitors, technician career paths to management, online learning in small businesses, and…
A hierarchical structure for representing and learning fuzzy rules
NASA Technical Reports Server (NTRS)
Yager, Ronald R.
1993-01-01
Yager provides an example in which the flat representation of fuzzy if-then rules leads to unsatisfactory results. Consider a rule base consisting to two rules: if U is 12 the V is 29; if U is (10-15) the V is (25-30). If U = 12 we would get V is G where G = (25-30). The application of the defuzzification process leads to a selection of V = 27.5. Thus we see that the very specific instruction was not followed. The problem with the technique used is that the most specific information was swamped by the less specific information. In this paper we shall provide for a new structure for the representation of fuzzy if-then rules. The representational form introduced here is called a Hierarchical Prioritized Structure (HPS) representation. Most importantly in addition to overcoming the problem illustrated in the previous example this HPS representation has an inherent capability to emulate the learning of general rules and provides a reasonable accurate cognitive mapping of how human beings store information.
A Program That Acquires Language Using Positive and Negative Feedback.
ERIC Educational Resources Information Center
Brand, James
1987-01-01
Describes the language learning program "Acquire," which is a sample of grammar induction. It is a learning algorithm based on a pattern-matching scheme, using both a positive and negative network to reduce overgeneration. Language learning programs may be useful as tutorials for learning the syntax of a foreign language. (Author/LMO)
Automated Induction Of Rule-Based Neural Networks
NASA Technical Reports Server (NTRS)
Smyth, Padhraic J.; Goodman, Rodney M.
1994-01-01
Prototype expert systems implemented in software and are functionally equivalent to neural networks set up automatically and placed into operation within minutes following information-theoretic approach to automated acquisition of knowledge from large example data bases. Approach based largely on use of ITRULE computer program.
Dyson, Greg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G; Tybjaerg-Hansen, Anne; Sing, Charles F
2009-05-01
This article extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (Genet Epidemiol 31:515-527) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination, an adjustment for multiple testing and a confidence interval for the estimate of the cumulative incidence of disease in each partition. We employ the partitioning algorithm component of the Combinatorial Partitioning Method to construct combinations of predictors, permutation testing to assess the significance of each combination, theoretical arguments for incorporating a multiple testing adjustment and bootstrap resampling to produce the confidence intervals. An illustration of this revised PRIM utilizing a sample of 2,258 European male participants from the Copenhagen City Heart Study is presented that assesses the utility of genetic variants in predicting the presence of ischemic heart disease beyond the established risk factors.
Dyson, Greg; Frikke-Schmidt, Ruth; Nordestgaard, Børge G.; Tybjærg-Hansen, Anne; Sing, Charles F.
2009-01-01
This paper extends the Patient Rule-Induction Method (PRIM) for modeling cumulative incidence of disease developed by Dyson et al. (2007) to include the simultaneous consideration of non-additive combinations of predictor variables, a significance test of each combination, an adjustment for multiple testing and a confidence interval for the estimate of the cumulative incidence of disease in each partition. We employ the partitioning algorithm component of the Combinatorial Partitioning Method (CPM) to construct combinations of predictors, permutation testing to assess the significance of each combination, theoretical arguments for incorporating a multiple testing adjustment and bootstrap resampling to produce the confidence intervals. An illustration of this revised PRIM utilizing a sample of 2258 European male participants from the Copenhagen City Heart Study is presented that assesses the utility of genetic variants in predicting the presence of ischemic heart disease beyond the established risk factors. PMID:19025787
Knowledge Discovery in Variant Databases Using Inductive Logic Programming
Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D.
2013-01-01
Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/. PMID:23589683
Knowledge discovery in variant databases using inductive logic programming.
Nguyen, Hoan; Luu, Tien-Dao; Poch, Olivier; Thompson, Julie D
2013-01-01
Understanding the effects of genetic variation on the phenotype of an individual is a major goal of biomedical research, especially for the development of diagnostics and effective therapeutic solutions. In this work, we describe the use of a recent knowledge discovery from database (KDD) approach using inductive logic programming (ILP) to automatically extract knowledge about human monogenic diseases. We extracted background knowledge from MSV3d, a database of all human missense variants mapped to 3D protein structure. In this study, we identified 8,117 mutations in 805 proteins with known three-dimensional structures that were known to be involved in human monogenic disease. Our results help to improve our understanding of the relationships between structural, functional or evolutionary features and deleterious mutations. Our inferred rules can also be applied to predict the impact of any single amino acid replacement on the function of a protein. The interpretable rules are available at http://decrypthon.igbmc.fr/kd4v/.
Knowledge discovery for pancreatic cancer using inductive logic programming.
Qiu, Yushan; Shimada, Kazuaki; Hiraoka, Nobuyoshi; Maeshiro, Kensei; Ching, Wai-Ki; Aoki-Kinoshita, Kiyoko F; Furuta, Koh
2014-08-01
Pancreatic cancer is a devastating disease and predicting the status of the patients becomes an important and urgent issue. The authors explore the applicability of inductive logic programming (ILP) method in the disease and show that the accumulated clinical laboratory data can be used to predict disease characteristics, and this will contribute to the selection of therapeutic modalities of pancreatic cancer. The availability of a large amount of clinical laboratory data provides clues to aid in the knowledge discovery of diseases. In predicting the differentiation of tumour and the status of lymph node metastasis in pancreatic cancer, using the ILP model, three rules are developed that are consistent with descriptions in the literature. The rules that are identified are useful to detect the differentiation of tumour and the status of lymph node metastasis in pancreatic cancer and therefore contributed significantly to the decision of therapeutic strategies. In addition, the proposed method is compared with the other typical classification techniques and the results further confirm the superiority and merit of the proposed method.
NASA Astrophysics Data System (ADS)
Park, J.; Yoo, K.
2013-12-01
For groundwater resource conservation, it is important to accurately assess groundwater pollution sensitivity or vulnerability. In this work, we attempted to use data mining approach to assess groundwater pollution vulnerability in a TCE (trichloroethylene) contaminated Korean industrial site. The conventional DRASTIC method failed to describe TCE sensitivity data with a poor correlation with hydrogeological properties. Among the different data mining methods such as Artificial Neural Network (ANN), Multiple Logistic Regression (MLR), Case Base Reasoning (CBR), and Decision Tree (DT), the accuracy and consistency of Decision Tree (DT) was the best. According to the following tree analyses with the optimal DT model, the failure of the conventional DRASTIC method in fitting with TCE sensitivity data may be due to the use of inaccurate weight values of hydrogeological parameters for the study site. These findings provide a proof of concept that DT based data mining approach can be used in predicting and rule induction of groundwater TCE sensitivity without pre-existing information on weights of hydrogeological properties.
Proof Rules for Automated Compositional Verification through Learning
NASA Technical Reports Server (NTRS)
Barringer, Howard; Giannakopoulou, Dimitra; Pasareanu, Corina S.
2003-01-01
Compositional proof systems not only enable the stepwise development of concurrent processes but also provide a basis to alleviate the state explosion problem associated with model checking. An assume-guarantee style of specification and reasoning has long been advocated to achieve compositionality. However, this style of reasoning is often non-trivial, typically requiring human input to determine appropriate assumptions. In this paper, we present novel assume- guarantee rules in the setting of finite labelled transition systems with blocking communication. We show how these rules can be applied in an iterative and fully automated fashion within a framework based on learning.
NASA Technical Reports Server (NTRS)
Yen, John; Wang, Haojin; Daugherity, Walter C.
1992-01-01
Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.
Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.
Bono, Jacopo; Clopath, Claudia
2017-09-26
Synaptic plasticity is thought to be the principal neuronal mechanism underlying learning. Models of plastic networks typically combine point neurons with spike-timing-dependent plasticity (STDP) as the learning rule. However, a point neuron does not capture the local non-linear processing of synaptic inputs allowed for by dendrites. Furthermore, experimental evidence suggests that STDP is not the only learning rule available to neurons. By implementing biophysically realistic neuron models, we study how dendrites enable multiple synaptic plasticity mechanisms to coexist in a single cell. In these models, we compare the conditions for STDP and for synaptic strengthening by local dendritic spikes. We also explore how the connectivity between two cells is affected by these plasticity rules and by different synaptic distributions. Finally, we show that how memory retention during associative learning can be prolonged in networks of neurons by including dendrites.Synaptic plasticity is the neuronal mechanism underlying learning. Here the authors construct biophysical models of pyramidal neurons that reproduce observed plasticity gradients along the dendrite and show that dendritic spike dependent LTP which is predominant in distal sections can prolong memory retention.
Machine Learning Techniques in Optimal Design
NASA Technical Reports Server (NTRS)
Cerbone, Giuseppe
1992-01-01
Many important applications can be formalized as constrained optimization tasks. For example, we are studying the engineering domain of two-dimensional (2-D) structural design. In this task, the goal is to design a structure of minimum weight that bears a set of loads. A solution to a design problem in which there is a single load (L) and two stationary support points (S1 and S2) consists of four members, E1, E2, E3, and E4 that connect the load to the support points is discussed. In principle, optimal solutions to problems of this kind can be found by numerical optimization techniques. However, in practice [Vanderplaats, 1984] these methods are slow and they can produce different local solutions whose quality (ratio to the global optimum) varies with the choice of starting points. Hence, their applicability to real-world problems is severely restricted. To overcome these limitations, we propose to augment numerical optimization by first performing a symbolic compilation stage to produce: (a) objective functions that are faster to evaluate and that depend less on the choice of the starting point and (b) selection rules that associate problem instances to a set of recommended solutions. These goals are accomplished by successive specializations of the problem class and of the associated objective functions. In the end, this process reduces the problem to a collection of independent functions that are fast to evaluate, that can be differentiated symbolically, and that represent smaller regions of the overall search space. However, the specialization process can produce a large number of sub-problems. This is overcome by deriving inductively selection rules which associate problems to small sets of specialized independent sub-problems. Each set of candidate solutions is chosen to minimize a cost function which expresses the tradeoff between the quality of the solution that can be obtained from the sub-problem and the time it takes to produce it. The overall solution to the problem, is then obtained by solving in parallel each of the sub-problems in the set and computing the one with the minimum cost. In addition to speeding up the optimization process, our use of learning methods also relieves the expert from the burden of identifying rules that exactly pinpoint optimal candidate sub-problems. In real engineering tasks it is usually too costly to the engineers to derive such rules. Therefore, this paper also contributes to a further step towards the solution of the knowledge acquisition bottleneck [Feigenbaum, 1977] which has somewhat impaired the construction of rulebased expert systems.
Enhancing Learning Performance and Adaptability for Complex Tasks
2005-03-30
development of active learning interventions and techniques that influence the focus and quality of learner regulatory activity (Kozlowski Toney et al...what are the effects of these goal representations on learning strategies, performance, and adaptability? Can active learning inductions, that influence...and mindful process - active learning - are generally associated with improved skill acquisition and adaptability for complex tasks (Smith et al
On the applicability of STDP-based learning mechanisms to spiking neuron network models
NASA Astrophysics Data System (ADS)
Sboev, A.; Vlasov, D.; Serenko, A.; Rybka, R.; Moloshnikov, I.
2016-11-01
The ways to creating practically effective method for spiking neuron networks learning, that would be appropriate for implementing in neuromorphic hardware and at the same time based on the biologically plausible plasticity rules, namely, on STDP, are discussed. The influence of the amount of correlation between input and output spike trains on the learnability by different STDP rules is evaluated. A usability of alternative combined learning schemes, involving artificial and spiking neuron models is demonstrated on the iris benchmark task and on the practical task of gender recognition.
NASA Technical Reports Server (NTRS)
Buntine, Wray
1991-01-01
Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.
Automated discovery systems and the inductivist controversy
NASA Astrophysics Data System (ADS)
Giza, Piotr
2017-09-01
The paper explores possible influences that some developments in the field of branches of AI, called automated discovery and machine learning systems, might have upon some aspects of the old debate between Francis Bacon's inductivism and Karl Popper's falsificationism. Donald Gillies facetiously calls this controversy 'the duel of two English knights', and claims, after some analysis of historical cases of discovery, that Baconian induction had been used in science very rarely, or not at all, although he argues that the situation has changed with the advent of machine learning systems. (Some clarification of terms machine learning and automated discovery is required here. The key idea of machine learning is that, given data with associated outcomes, software can be trained to make those associations in future cases which typically amounts to inducing some rules from individual cases classified by the experts. Automated discovery (also called machine discovery) deals with uncovering new knowledge that is valuable for human beings, and its key idea is that discovery is like other intellectual tasks and that the general idea of heuristic search in problem spaces applies also to discovery tasks. However, since machine learning systems discover (very low-level) regularities in data, throughout this paper I use the generic term automated discovery for both kinds of systems. I will elaborate on this later on). Gillies's line of argument can be generalised: thanks to automated discovery systems, philosophers of science have at their disposal a new tool for empirically testing their philosophical hypotheses. Accordingly, in the paper, I will address the question, which of the two philosophical conceptions of scientific method is better vindicated in view of the successes and failures of systems developed within three major research programmes in the field: machine learning systems in the Turing tradition, normative theory of scientific discovery formulated by Herbert Simon's group and the programme called HHNT, proposed by J. Holland, K. Holyoak, R. Nisbett and P. Thagard.
Learning stage-dependent effect of M1 disruption on value-based motor decisions.
Derosiere, Gerard; Vassiliadis, Pierre; Demaret, Sophie; Zénon, Alexandre; Duque, Julie
2017-11-15
The present study aimed at characterizing the impact of M1 disruption on the implementation of implicit value information in motor decisions, at both early stages (during reinforcement learning) and late stages (after consolidation) of action value encoding. Fifty subjects performed, over three consecutive days, a task that required them to select between two finger responses according to the color (instruction) and to the shape (implicit, undisclosed rule) of an imperative signal: considering the implicit rule in addition to the instruction allowed subjects to earn more money. We investigated the functional contribution of M1 to the implementation of the implicit rule in subjects' motor decisions. Continuous theta burst stimulation (cTBS) was applied over M1 either on Day 1 or on Day 3, producing a temporary lesion either during reinforcement learning (cTBS Learning group) or after consolidation of the implicit rule, during decision-making (cTBS Decision group), respectively. Interestingly, disrupting M1 activity on Day 1 improved the reliance on the implicit rule, plausibly because M1 cTBS increased dopamine release in the putamen in an indirect way. This finding corroborates the view that cTBS may affect activity in unstimulated areas, such as the basal ganglia. Notably, this effect was short-lasting; it did not persist overnight, suggesting that the functional integrity of M1 during learning is a prerequisite for the consolidation of implicit value information to occur. Besides, cTBS over M1 did not impact the use of the implicit rule when applied on Day 3, although it did so when applied on Day 2 in a recent study where the reliance on the implicit rule declined following cTBS (Derosiere et al., 2017). Overall, these findings indicate that the human M1 is functionally involved in the consolidation and implementation of implicit value information underlying motor decisions. However, M1 contribution seems to vanish as subjects become more experienced in using the implicit value information to make their motor decisions. Copyright © 2017 Elsevier Inc. All rights reserved.
2011-07-01
supervised learning process is compared to that of Artificial Neural Network ( ANNs ), fuzzy logic rule set, and Bayesian network approaches...of both fuzzy logic systems and Artificial Neural Networks ( ANNs ). Like fuzzy logic systems, the CINet technique allows the use of human- intuitive...fuzzy rule systems [3] CINets also maintain features common to both fuzzy systems and ANNs . The technique can be be shown to possess the property
Highly scalable and robust rule learner: performance evaluation and comparison.
Kurgan, Lukasz A; Cios, Krzysztof J; Dick, Scott
2006-02-01
Business intelligence and bioinformatics applications increasingly require the mining of datasets consisting of millions of data points, or crafting real-time enterprise-level decision support systems for large corporations and drug companies. In all cases, there needs to be an underlying data mining system, and this mining system must be highly scalable. To this end, we describe a new rule learner called DataSqueezer. The learner belongs to the family of inductive supervised rule extraction algorithms. DataSqueezer is a simple, greedy, rule builder that generates a set of production rules from labeled input data. In spite of its relative simplicity, DataSqueezer is a very effective learner. The rules generated by the algorithm are compact, comprehensible, and have accuracy comparable to rules generated by other state-of-the-art rule extraction algorithms. The main advantages of DataSqueezer are very high efficiency, and missing data resistance. DataSqueezer exhibits log-linear asymptotic complexity with the number of training examples, and it is faster than other state-of-the-art rule learners. The learner is also robust to large quantities of missing data, as verified by extensive experimental comparison with the other learners. DataSqueezer is thus well suited to modern data mining and business intelligence tasks, which commonly involve huge datasets with a large fraction of missing data.
Student Teachers’ Proof Schemes on Proof Tasks Involving Inequality: Deductive or Inductive?
NASA Astrophysics Data System (ADS)
Rosyidi, A. H.; Kohar, A. W.
2018-01-01
Exploring student teachers’ proof ability is crucial as it is important for improving the quality of their learning process and help their future students learn how to construct a proof. Hence, this study aims at exploring at the proof schemes of student teachers in the beginning of their studies. Data were collected from 130 proofs resulted by 65 Indonesian student teachers on two proof tasks involving algebraic inequality. To analyse, the proofs were classified into the refined proof schemes level proposed by Lee (2016) ranging from inductive, which only provides irrelevant inferences, to deductive proofs, which consider addressing formal representation. Findings present several examples of each of Lee’s level on the student teachers’ proofs spanning from irrelevant inferences, novice use of examples or logical reasoning, strategic use examples for reasoning, deductive inferences with major and minor logical coherence, and deductive proof with informal and formal representation. Besides, it was also found that more than half of the students’ proofs coded as inductive schemes, which does not meet the requirement for doing the proof for the proof tasks examined in this study. This study suggests teacher educators in teacher colleges to reform the curriculum regarding proof learning which can accommodate the improvement of student teachers’ proving ability from inductive to deductive proof as well from informal to formal proof.
A new simple /spl infin/OH neuron model as a biologically plausible principal component analyzer.
Jankovic, M V
2003-01-01
A new approach to unsupervised learning in a single-layer neural network is discussed. An algorithm for unsupervised learning based upon the Hebbian learning rule is presented. A simple neuron model is analyzed. A dynamic neural model, which contains both feed-forward and feedback connections between the input and the output, has been adopted. The, proposed learning algorithm could be more correctly named self-supervised rather than unsupervised. The solution proposed here is a modified Hebbian rule, in which the modification of the synaptic strength is proportional not to pre- and postsynaptic activity, but instead to the presynaptic and averaged value of postsynaptic activity. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence. Usually accepted additional decaying terms for the stabilization of the original Hebbian rule are avoided. Implementation of the basic Hebbian scheme would not lead to unrealistic growth of the synaptic strengths, thanks to the adopted network structure.
Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites
Schiess, Mathieu; Urbanczik, Robert; Senn, Walter
2016-01-01
In the last decade dendrites of cortical neurons have been shown to nonlinearly combine synaptic inputs by evoking local dendritic spikes. It has been suggested that these nonlinearities raise the computational power of a single neuron, making it comparable to a 2-layer network of point neurons. But how these nonlinearities can be incorporated into the synaptic plasticity to optimally support learning remains unclear. We present a theoretically derived synaptic plasticity rule for supervised and reinforcement learning that depends on the timing of the presynaptic, the dendritic and the postsynaptic spikes. For supervised learning, the rule can be seen as a biological version of the classical error-backpropagation algorithm applied to the dendritic case. When modulated by a delayed reward signal, the same plasticity is shown to maximize the expected reward in reinforcement learning for various coding scenarios. Our framework makes specific experimental predictions and highlights the unique advantage of active dendrites for implementing powerful synaptic plasticity rules that have access to downstream information via backpropagation of action potentials. PMID:26841235
HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems.
Kim, J; Kasabov, N
1999-11-01
This paper proposes an adaptive neuro-fuzzy system, HyFIS (Hybrid neural Fuzzy Inference System), for building and optimising fuzzy models. The proposed model introduces the learning power of neural networks to fuzzy logic systems and provides linguistic meaning to the connectionist architectures. Heuristic fuzzy logic rules and input-output fuzzy membership functions can be optimally tuned from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data; and rule tuning phase using error backpropagation learning scheme for a neural fuzzy system. To illustrate the performance and applicability of the proposed neuro-fuzzy hybrid model, extensive simulation studies of nonlinear complex dynamic systems are carried out. The proposed method can be applied to an on-line incremental adaptive learning for the prediction and control of nonlinear dynamical systems. Two benchmark case studies are used to demonstrate that the proposed HyFIS system is a superior neuro-fuzzy modelling technique.
Finding Influential Users in Social Media Using Association Rule Learning
NASA Astrophysics Data System (ADS)
Erlandsson, Fredrik; Bródka, Piotr; Borg, Anton; Johnson, Henric
2016-04-01
Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.
Zanutto, B. Silvano
2017-01-01
Animals are proposed to learn the latent rules governing their environment in order to maximize their chances of survival. However, rules may change without notice, forcing animals to keep a memory of which one is currently at work. Rule switching can lead to situations in which the same stimulus/response pairing is positively and negatively rewarded in the long run, depending on variables that are not accessible to the animal. This fact raises questions on how neural systems are capable of reinforcement learning in environments where the reinforcement is inconsistent. Here we address this issue by asking about which aspects of connectivity, neural excitability and synaptic plasticity are key for a very general, stochastic spiking neural network model to solve a task in which rules change without being cued, taking the serial reversal task (SRT) as paradigm. Contrary to what could be expected, we found strong limitations for biologically plausible networks to solve the SRT. Especially, we proved that no network of neurons can learn a SRT if it is a single neural population that integrates stimuli information and at the same time is responsible of choosing the behavioural response. This limitation is independent of the number of neurons, neuronal dynamics or plasticity rules, and arises from the fact that plasticity is locally computed at each synapse, and that synaptic changes and neuronal activity are mutually dependent processes. We propose and characterize a spiking neural network model that solves the SRT, which relies on separating the functions of stimuli integration and response selection. The model suggests that experimental efforts to understand neural function should focus on the characterization of neural circuits according to their connectivity, neural dynamics, and the degree of modulation of synaptic plasticity with reward. PMID:29077735
Leeson, Verity C.; Robbins, Trevor W.; Matheson, Elizabeth; Hutton, Samuel B.; Ron, María A.; Barnes, Thomas R.E.; Joyce, Eileen M.
2009-01-01
Background The intradimensional/extradimensional (IDED) task assesses different forms of learning from feedback. Limited evidence suggests that attentional set-shifting deteriorates over time in schizophrenia. We tested this hypothesis and examined the specificity of learning impairments identified by this task. Method Two hundred sixty-two first-episode patients and 76 healthy control subjects, matched for age and premorbid IQ, were tested; 104 patients and 25 control subjects were reassessed 1 and 3 years later, and 31 patients were reassessed additionally 6 years later. Results Patients showed impaired set-shifting that correlated with current IQ and working memory, but there were no impairments when subgroups were matched on current IQ. In contrast, patients showed marked impairments in rule reversal learning that survived correction for IQ, were present in the context of intact rule abstraction, and correlated with disorganization symptoms. Patients prescribed second-generation antipsychotics were worse on set-shifting compared with first-generation, a finding not explained by demographic data, illness characteristics, or IQ. Patients and control subjects showed stable IDED performance over the first 6 years of illness, although set-shifting was inconsistent over the first year. Those with residual negative symptoms were more likely to fail the set-shifting stage at follow-up. Conclusions First-episode schizophrenia patients can learn and generalize rules but are inflexible when rules change, reflecting reduced responsiveness to negative feedback and difficulty in switching attention. Rule-reversal is a promising target for translational studies, because it is specific, clinically relevant, and might reflect orbitofrontal dysfunction. Set-shifting is related to poor function more generally but might be sensitive to medication effects and valuable for clinical trials. PMID:19576575
The seats of reason? An imaging study of deductive and inductive reasoning.
Goel, V; Gold, B; Kapur, S; Houle, S
1997-03-24
We carried out a neuroimaging study to test the neurophysiological predictions made by different cognitive models of reasoning. Ten normal volunteers performed deductive and inductive reasoning tasks while their regional cerebral blood flow pattern was recorded using [15O]H2O PET imaging. In the control condition subjects semantically comprehended sets of three sentences. In the deductive reasoning condition subjects determined whether the third sentence was entailed by the first two sentences. In the inductive reasoning condition subjects reported whether the third sentence was plausible given the first two sentences. The deduction condition resulted in activation of the left inferior frontal gyrus (Brodmann areas 45, 47). The induction condition resulted in activation of a large area comprised of the left medial frontal gyrus, the left cingulate gyrus, and the left superior frontal gyrus (Brodmann areas 8, 9, 24, 32). Induction was distinguished from deduction by the involvement of the medial aspect of the left superior frontal gyrus (Brodmann areas 8, 9). These results are consistent with cognitive models of reasoning that postulate different mechanisms for inductive and deductive reasoning and view deduction as a formal rule-based process.
The Interplay of Externalizing Problems and Physical and Inductive Discipline during Childhood
Choe, Daniel Ewon; Olson, Sheryl L.; Sameroff, Arnold J.
2013-01-01
Children who are physically disciplined are at elevated risk for externalizing problems. Conversely, maternal reasoning and reminding of rules, or inductive discipline, is associated with fewer child externalizing problems. Few studies have simultaneously examined bidirectional associations between these forms of discipline and child adjustment using cross-informant, multi-method data. We hypothesized that less inductive and more physical discipline would predict more externalizing problems, children would have evocative effects on parenting, and high levels of either form of discipline would predict low levels of the other. In a study of 241 children–spanning ages 3, 5.5, and 10–structural equation modeling indicated that 3-year-olds with higher teacher ratings of externalizing problems received higher mother ratings of physical discipline at age 5.5. Mothers endorsing more inductive discipline at child age 3 reported less physical discipline and had children with fewer externalizing problems at age 5.5. Negative bidirectional associations emerged between physical and inductive discipline from ages 5.5 to 10. Findings suggested children’s externalizing problems elicited physical discipline, and maternal inductive discipline might help prevent externalizing problems and physical discipline. PMID:23458660
Schrodt, Fabian; Kneissler, Jan; Ehrenfeld, Stephan; Butz, Martin V
2017-04-01
In line with Allen Newell's challenge to develop complete cognitive architectures, and motivated by a recent proposal for a unifying subsymbolic computational theory of cognition, we introduce the cognitive control architecture SEMLINCS. SEMLINCS models the development of an embodied cognitive agent that learns discrete production rule-like structures from its own, autonomously gathered, continuous sensorimotor experiences. Moreover, the agent uses the developing knowledge to plan and control environmental interactions in a versatile, goal-directed, and self-motivated manner. Thus, in contrast to several well-known symbolic cognitive architectures, SEMLINCS is not provided with production rules and the involved symbols, but it learns them. In this paper, the actual implementation of SEMLINCS causes learning and self-motivated, autonomous behavioral control of the game figure Mario in a clone of the computer game Super Mario Bros. Our evaluations highlight the successful development of behavioral versatility as well as the learning of suitable production rules and the involved symbols from sensorimotor experiences. Moreover, knowledge- and motivation-dependent individualizations of the agents' behavioral tendencies are shown. Finally, interaction sequences can be planned on the sensorimotor-grounded production rule level. Current limitations directly point toward the need for several further enhancements, which may be integrated into SEMLINCS in the near future. Overall, SEMLINCS may be viewed as an architecture that allows the functional and computational modeling of embodied cognitive development, whereby the current main focus lies on the development of production rules from sensorimotor experiences. Copyright © 2017 Cognitive Science Society, Inc.
Identifying Kinds of Reasoning in Collective Argumentation
ERIC Educational Resources Information Center
Conner, AnnaMarie; Singletary, Laura M.; Smith, Ryan C.; Wagner, Patty Anne; Francisco, Richard T.
2014-01-01
We combine Peirce's rule, case, and result with Toulmin's data, claim, and warrant to differentiate between deductive, inductive, abductive, and analogical reasoning within collective argumentation. In this theoretical article, we illustrate these kinds of reasoning in episodes of collective argumentation using examples from one…
Toward a Unified Theory of Human Reasoning.
ERIC Educational Resources Information Center
Sternberg, Robert J.
1986-01-01
The goal of this unified theory of human reasoning is to specify what constitutes reasoning and to characterize the psychological distinction between inductive and deductive reasoning. The theory views reasoning as the controlled and mediated application of three processes (encoding, comparison and selective combination) to inferential rules. (JAZ)
49 CFR 236.562 - Minimum rail current required.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.562 Minimum... continuous inductive automatic train stop or train control device to normal condition or to obtain a proceed...
49 CFR 236.562 - Minimum rail current required.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Rules and Instructions; Locomotives § 236.562 Minimum... continuous inductive automatic train stop or train control device to normal condition or to obtain a proceed...
A forecast-based STDP rule suitable for neuromorphic implementation.
Davies, S; Galluppi, F; Rast, A D; Furber, S B
2012-08-01
Artificial neural networks increasingly involve spiking dynamics to permit greater computational efficiency. This becomes especially attractive for on-chip implementation using dedicated neuromorphic hardware. However, both spiking neural networks and neuromorphic hardware have historically found difficulties in implementing efficient, effective learning rules. The best-known spiking neural network learning paradigm is Spike Timing Dependent Plasticity (STDP) which adjusts the strength of a connection in response to the time difference between the pre- and post-synaptic spikes. Approaches that relate learning features to the membrane potential of the post-synaptic neuron have emerged as possible alternatives to the more common STDP rule, with various implementations and approximations. Here we use a new type of neuromorphic hardware, SpiNNaker, which represents the flexible "neuromimetic" architecture, to demonstrate a new approach to this problem. Based on the standard STDP algorithm with modifications and approximations, a new rule, called STDP TTS (Time-To-Spike) relates the membrane potential with the Long Term Potentiation (LTP) part of the basic STDP rule. Meanwhile, we use the standard STDP rule for the Long Term Depression (LTD) part of the algorithm. We show that on the basis of the membrane potential it is possible to make a statistical prediction of the time needed by the neuron to reach the threshold, and therefore the LTP part of the STDP algorithm can be triggered when the neuron receives a spike. In our system these approximations allow efficient memory access, reducing the overall computational time and the memory bandwidth required. The improvements here presented are significant for real-time applications such as the ones for which the SpiNNaker system has been designed. We present simulation results that show the efficacy of this algorithm using one or more input patterns repeated over the whole time of the simulation. On-chip results show that the STDP TTS algorithm allows the neural network to adapt and detect the incoming pattern with improvements both in the reliability of, and the time required for, consistent output. Through the approximations we suggest in this paper, we introduce a learning rule that is easy to implement both in event-driven simulators and in dedicated hardware, reducing computational complexity relative to the standard STDP rule. Such a rule offers a promising solution, complementary to standard STDP evaluation algorithms, for real-time learning using spiking neural networks in time-critical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Griffiths, Thomas L.; Tenenbaum, Joshua B.
2009-01-01
Inducing causal relationships from observations is a classic problem in scientific inference, statistics, and machine learning. It is also a central part of human learning, and a task that people perform remarkably well given its notorious difficulties. People can learn causal structure in various settings, from diverse forms of data: observations…
ERIC Educational Resources Information Center
Moreton, Elliott; Pater, Joe; Pertsova, Katya
2017-01-01
Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by…
Multimedia Football Viewing: Embedded Rules, Practice, and Video Context in IVD Procedural Learning.
ERIC Educational Resources Information Center
Kim, Eunsoon; Young, Michael F.
This study investigated the effects of interactive video (IVD) instruction with embedded rules (production system rules) and practice with feedback on learners' academic achievement and perceived self efficacy in the domain of procedural knowledge for watching professional football. Subjects were 71 female volunteers from undergraduate education…
Learning the Rules: The Anatomy of Children's Relationships.
ERIC Educational Resources Information Center
Bigelow, Brian J.; Tesson, Geoffrey; Lewko, John H.
This book explores the process and characteristics of children's personal and social relationships. To determine what relationships mean to children and how children manage those relationships, a recursive interviewing technique was used with nearly a thousand children to detail children's social rules. Those rules cover a range of social issues,…
Women with Intellectual Disabilities Talk about Their Perceptions of Sex
ERIC Educational Resources Information Center
Bernert, D. J.; Ogletree, R. J.
2013-01-01
Background: Sexuality is learned through sexual socialisation that women with intellectual disabilities (IDs) understand and express. Rules of sexual engagement for these women can include barriers for their socialisation, intimate partner selection, and sexual expression. These rules can become more limiting when coupled with rules of femininity…
Learning Non-Local Dependencies
ERIC Educational Resources Information Center
Kuhn, Gustav; Dienes, Zoltan
2008-01-01
This paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. "Journal of Experimental Psychology-Learning Memory and Cognition," 31(6) 1417-1432] showed that people could…
NASA Astrophysics Data System (ADS)
Alzubaidi, Mohammad; Balasubramanian, Vineeth; Patel, Ameet; Panchanathan, Sethuraman; Black, John A., Jr.
2012-03-01
Inductive learning refers to machine learning algorithms that learn a model from a set of training data instances. Any test instance is then classified by comparing it to the learned model. When the set of training instances lend themselves well to modeling, the use of a model substantially reduces the computation cost of classification. However, some training data sets are complex, and do not lend themselves well to modeling. Transductive learning refers to machine learning algorithms that classify test instances by comparing them to all of the training instances, without creating an explicit model. This can produce better classification performance, but at a much higher computational cost. Medical images vary greatly across human populations, constituting a data set that does not lend itself well to modeling. Our previous work showed that the wide variations seen across training sets of "normal" chest radiographs make it difficult to successfully classify test radiographs with an inductive (modeling) approach, and that a transductive approach leads to much better performance in detecting atypical regions. The problem with the transductive approach is its high computational cost. This paper develops and demonstrates a novel semi-transductive framework that can address the unique challenges of atypicality detection in chest radiographs. The proposed framework combines the superior performance of transductive methods with the reduced computational cost of inductive methods. Our results show that the proposed semitransductive approach provides both effective and efficient detection of atypical regions within a set of chest radiographs previously labeled by Mayo Clinic expert thoracic radiologists.
Rapid eye movement sleep does not seem to unbind memories from their emotional context.
Deliens, Gaétane; Neu, Daniel; Peigneux, Philippe
2013-12-01
Sleep unbinds memories from their emotional learning context, protecting them from emotional interference due to a change of mood between learning and recall. According to the 'sleep to forget and sleep to remember' model, emotional unbinding takes place during rapid eye movement sleep. To test this hypothesis, we investigated emotional contextual interference effects after early versus late post-learning sleep periods, in which slow wave and rapid eye movement sleep, respectively, predominate. Participants learned a list of neutral word pairs after induction of a happy or a sad mood, then slept immediately afterwards for 3 h of early or late sleep under polysomnographic recording, in a within-subject counterbalanced design. They slept for 3 h before learning in the late sleep condition. Polysomnographic data confirmed more rapid eye movement sleep in the late than in the early sleep condition. After awakening, half the list was recalled after induction of a similar mood than during the encoding session (non-interference condition), and the other half of the list was recalled after induction of a different mood (interference condition). The results disclosed an emotional interference effect on recall both in the early and late sleep conditions, which does not corroborate the hypothesis of a rapid eye movement sleep-related protection of recent memories from emotional contextual interference. Alternatively, the contextual demodulation process initiated during the first post-learning night might need several consecutive nights of sleep to be achieved. © 2013 European Sleep Research Society.
Synchrony detection and amplification by silicon neurons with STDP synapses.
Bofill-i-petit, Adria; Murray, Alan F
2004-09-01
Spike-timing dependent synaptic plasticity (STDP) is a form of plasticity driven by precise spike-timing differences between presynaptic and postsynaptic spikes. Thus, the learning rules underlying STDP are suitable for learning neuronal temporal phenomena such as spike-timing synchrony. It is well known that weight-independent STDP creates unstable learning processes resulting in balanced bimodal weight distributions. In this paper, we present a neuromorphic analog very large scale integration (VLSI) circuit that contains a feedforward network of silicon neurons with STDP synapses. The learning rule implemented can be tuned to have a moderate level of weight dependence. This helps stabilise the learning process and still generates binary weight distributions. From on-chip learning experiments we show that the chip can detect and amplify hierarchical spike-timing synchrony structures embedded in noisy spike trains. The weight distributions of the network emerging from learning are bimodal.
ERIC Educational Resources Information Center
Carvalho, Paulo F.; Goldstone, Robert L.
2017-01-01
The sequence of study influences how we learn. Previous research has identified different sequences as potentially beneficial for learning in different contexts and with different materials. Here we investigate the mechanisms involved in inductive category learning that give rise to these sequencing effects. Across 3 experiments we show evidence…
Integrating Research on Misconceptions, Reasoning Patterns and Three Types of Learning Cycles.
ERIC Educational Resources Information Center
Lawson, Anton E.
This paper describes how the learning cycle leads students to become more skilled reasoners. The three phases of the learning cycle are described and examples and goals of each are provided. Information is also offered on the three types of learning cycles: the descriptive; the empirical-inductive; and the hypothetical-deductive. Each is described…
Matsui, Daisuke; Nakano, Shogo; Dadashipour, Mohammad; Asano, Yasuhisa
2017-08-25
Insolubility of proteins expressed in the Escherichia coli expression system hinders the progress of both basic and applied research. Insoluble proteins contain residues that decrease their solubility (aggregation hotspots). Mutating these hotspots to optimal amino acids is expected to improve protein solubility. To date, however, the identification of these hotspots has proven difficult. In this study, using a combination of approaches involving directed evolution and primary sequence analysis, we found two rules to help inductively identify hotspots: the α-helix rule, which focuses on the hydrophobicity of amino acids in the α-helix structure, and the hydropathy contradiction rule, which focuses on the difference in hydrophobicity relative to the corresponding amino acid in the consensus protein. By properly applying these two rules, we succeeded in improving the probability that expressed proteins would be soluble. Our methods should facilitate research on various insoluble proteins that were previously difficult to study due to their low solubility.
Competitive STDP Learning of Overlapping Spatial Patterns.
Krunglevicius, Dalius
2015-08-01
Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.
Spiking neuron network Helmholtz machine.
Sountsov, Pavel; Miller, Paul
2015-01-01
An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.
Spiking neuron network Helmholtz machine
Sountsov, Pavel; Miller, Paul
2015-01-01
An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal) probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm) can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule. PMID:25954191
Mining Formative Evaluation Rules Using Web-Based Learning Portfolios for Web-Based Learning Systems
ERIC Educational Resources Information Center
Chen, Chih-Ming; Hong, Chin-Ming; Chen, Shyuan-Yi; Liu, Chao-Yu
2006-01-01
Learning performance assessment aims to evaluate what knowledge learners have acquired from teaching activities. Objective technical measures of learning performance are difficult to develop, but are extremely important for both teachers and learners. Learning performance assessment using learning portfolios or web server log data is becoming an…
Service Learning in the Middle Grades: Learning by Doing and Caring
ERIC Educational Resources Information Center
Farber, Katy; Bishop, Penny
2018-01-01
Although service learning has been documented as a promising pedagogy for middle grades learners, it remains the exception rather than the rule in many middle schools. This qualitative study examined fifth grade students' experience of a service-learning class. Using the tenets of service learning and experiential learning theory as the…
ERIC Educational Resources Information Center
In'am, Akhsanul; Hajar, Siti
2013-01-01
A good-quality teacher may determines a good-quality learning, thus good-quality students will be the results. In order to have a good-quality learning, a lot of strategies and methods can be adopted. The objective of this research is to improve students' ability in determining the rules of a numeric sequence and analysing the effectiveness of the…
SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting
NASA Astrophysics Data System (ADS)
Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.
2014-12-01
Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.
The Teaching of Electromagnetic Induction at Sixth Form Level
ERIC Educational Resources Information Center
Archenhold, W. F.
1974-01-01
Presents some ideas about teaching electromagnetic induction at sixth form level, including educational objectives, learning difficulties, syllabus requirements, selection of unit system, and sequence of material presentation. Suggests the Education Group of the Institute of Physics hold further discussions on these aspects before including the…
A Practical English Teaching Mode of Vocational Education: Induction-Interaction Learning Community
ERIC Educational Resources Information Center
Zhang, Yonglong
2008-01-01
Secondary Vocational School Students are characterized by the awkward fact "congenital malnutrition" and "acquired development deficiency", continuously adopting of the current teaching methods and modes of General Education is completely impossible. In this report, a new English Teaching Mode of Induction-Interaction Learning…
NASA Astrophysics Data System (ADS)
Hirst, Jonathan D.; King, Ross D.; Sternberg, Michael J. E.
1994-08-01
One of the largest available data sets for developing a quantitative structure-activity relationship (QSAR) — the inhibition of dihydrofolate reductase (DHFR) by 2,4-diamino-6,6-dimethyl-5-phenyl-dihydrotriazine derivatives — has been used for a sixfold cross-validation trial of neural networks, inductive logic programming (ILP) and linear regression. No statistically significant difference was found between the predictive capabilities of the methods. However, the representation of molecules by attributes, which is integral to the ILP approach, provides understandable rules about drug-receptor interactions.