Sample records for rule-based category learning

  1. When more is less: Feedback effects in perceptual category learning ☆

    PubMed Central

    Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent

    2008-01-01

    Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether their response was correct or incorrect, but are not informed of the correct category assignment. With full feedback subjects are informed of the correctness of their response and are also informed of the correct category assignment. An examination of the distinct neural circuits that subserve rule-based and information-integration category learning leads to the counterintuitive prediction that full feedback should facilitate rule-based learning but should also hinder information-integration learning. This prediction was supported in the experiment reported below. The implications of these results for theories of learning are discussed. PMID:18455155

  2. Rule-Based and Information-Integration Category Learning in Normal Aging

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M.

    2010-01-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated…

  3. When More Is Less: Feedback Effects in Perceptual Category Learning

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent

    2008-01-01

    Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether…

  4. Differential impact of relevant and irrelevant dimension primes on rule-based and information-integration category learning.

    PubMed

    Grimm, Lisa R; Maddox, W Todd

    2013-11-01

    Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.

  5. Cognitive changes in conjunctive rule-based category learning: An ERP approach.

    PubMed

    Rabi, Rahel; Joanisse, Marc F; Zhu, Tianshu; Minda, John Paul

    2018-06-25

    When learning rule-based categories, sufficient cognitive resources are needed to test hypotheses, maintain the currently active rule in working memory, update rules after feedback, and to select a new rule if necessary. Prior research has demonstrated that conjunctive rules are more complex than unidimensional rules and place greater demands on executive functions like working memory. In our study, event-related potentials (ERPs) were recorded while participants performed a conjunctive rule-based category learning task with trial-by-trial feedback. In line with prior research, correct categorization responses resulted in a larger stimulus-locked late positive complex compared to incorrect responses, possibly indexing the updating of rule information in memory. Incorrect trials elicited a pronounced feedback-locked P300 elicited which suggested a disconnect between perception, and the rule-based strategy. We also examined the differential processing of stimuli that were able to be correctly classified by the suboptimal single-dimensional rule ("easy" stimuli) versus those that could only be correctly classified by the optimal, conjunctive rule ("difficult" stimuli). Among strong learners, a larger, late positive slow wave emerged for difficult compared with easy stimuli, suggesting differential processing of category items even though strong learners performed well on the conjunctive category set. Overall, the findings suggest that ERP combined with computational modelling can be used to better understand the cognitive processes involved in rule-based category learning.

  6. Discontinuous categories affect information-integration but not rule-based category learning.

    PubMed

    Maddox, W Todd; Filoteo, J Vincent; Lauritzen, J Scott; Connally, Emily; Hejl, Kelli D

    2005-07-01

    Three experiments were conducted that provide a direct examination of within-category discontinuity manipulations on the implicit, procedural-based learning and the explicit, hypothesis-testing systems proposed in F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron's (1998) competition between verbal and implicit systems model. Discontinuous categories adversely affected information-integration but not rule-based category learning. Increasing the magnitude of the discontinuity did not lead to a significant decline in performance. The distance to the bound provides a reasonable description of the generalization profile associated with the hypothesis-testing system, whereas the distance to the bound plus the distance to the trained response region provides a reasonable description of the generalization profile associated with the procedural-based learning system. These results suggest that within-category discontinuity differentially impacts information-integration but not rule-based category learning and provides information regarding the detailed processing characteristics of each category learning system. ((c) 2005 APA, all rights reserved).

  7. Characterizing Rule-Based Category Learning Deficits in Patients with Parkinson's Disease

    ERIC Educational Resources Information Center

    Filoteo, J. Vincent; Maddox, W. Todd; Ing, A. David; Song, David D.

    2007-01-01

    Parkinson's disease (PD) patients and normal controls were tested in three category learning experiments to determine if previously observed rule-based category learning impairments in PD patients were due to deficits in selective attention or working memory. In Experiment 1, optimal categorization required participants to base their decision on a…

  8. Rule-Based Category Learning in Down Syndrome

    ERIC Educational Resources Information Center

    Phillips, B. Allyson; Conners, Frances A.; Merrill, Edward; Klinger, Mark R.

    2014-01-01

    Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III (Woodcock, McGrew, & Mather, 2001). In regression-based…

  9. The Role of Age and Executive Function in Auditory Category Learning

    PubMed Central

    Reetzke, Rachel; Maddox, W. Todd; Chandrasekaran, Bharath

    2015-01-01

    Auditory categorization is a natural and adaptive process that allows for the organization of high-dimensional, continuous acoustic information into discrete representations. Studies in the visual domain have identified a rule-based learning system that learns and reasons via a hypothesis-testing process that requires working memory and executive attention. The rule-based learning system in vision shows a protracted development, reflecting the influence of maturing prefrontal function on visual categorization. The aim of the current study is two-fold: (a) to examine the developmental trajectory of rule-based auditory category learning from childhood through adolescence, into early adulthood; and (b) to examine the extent to which individual differences in rule-based category learning relate to individual differences in executive function. Sixty participants with normal hearing, 20 children (age range, 7–12), 21 adolescents (age range, 13–19), and 19 young adults (age range, 20–23), learned to categorize novel dynamic ripple sounds using trial-by-trial feedback. The spectrotemporally modulated ripple sounds are considered the auditory equivalent of the well-studied Gabor patches in the visual domain. Results revealed that auditory categorization accuracy improved with age, with young adults outperforming children and adolescents. Computational modeling analyses indicated that the use of the task-optimal strategy (i.e. a conjunctive rule-based learning strategy) improved with age. Notably, individual differences in executive flexibility significantly predicted auditory category learning success. The current findings demonstrate a protracted development of rule-based auditory categorization. The results further suggest that executive flexibility coupled with perceptual processes play important roles in successful rule-based auditory category learning. PMID:26491987

  10. Category Learning Strategies in Younger and Older Adults: Rule Abstraction and Memorization

    PubMed Central

    Wahlheim, Christopher N.; McDaniel, Mark A.; Little, Jeri L.

    2016-01-01

    Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, both age groups had comparable frequencies of rule- and exemplar-based learners, but older adults had a higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies). Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. PMID:26950225

  11. The transfer of category knowledge by macaques (Macaca mulatta) and humans (Homo sapiens).

    PubMed

    Zakrzewski, Alexandria C; Church, Barbara A; Smith, J David

    2018-02-01

    Cognitive psychologists distinguish implicit, procedural category learning (stimulus-response associations learned outside declarative cognition) from explicit-declarative category learning (conscious category rules). These systems are dissociated by category learning tasks with either a multidimensional, information-integration (II) solution or a unidimensional, rule-based (RB) solution. In the present experiments, humans and two monkeys learned II and RB category tasks fostering implicit and explicit learning, respectively. Then they received occasional transfer trials-never directly reinforced-drawn from untrained regions of the stimulus space. We hypothesized that implicit-procedural category learning-allied to associative learning-would transfer weakly because it is yoked to the training stimuli. This result was confirmed for humans and monkeys. We hypothesized that explicit category learning-allied to abstract category rules-would transfer robustly. This result was confirmed only for humans. That is, humans displayed explicit category knowledge that transferred flawlessly. Monkeys did not. This result illuminates the distinctive abstractness, stimulus independence, and representational portability of humans' explicit category rules. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. One Giant Leap for Categorizers: One Small Step for Categorization Theory

    PubMed Central

    Smith, J. David; Ell, Shawn W.

    2015-01-01

    We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so. PMID:26332587

  13. Prefrontal Contributions to Rule-Based and Information-Integration Category Learning

    ERIC Educational Resources Information Center

    Schnyer, David M.; Maddox, W. Todd; Ell, Shawn; Davis, Sarah; Pacheco, Jenni; Verfaellie, Mieke

    2009-01-01

    Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W., Marchant, N. L., & Ivry, R. B. (2006). "Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks." "Neuropsychologia", 44(10), 1737-1751; Maddox, W. T. & Filoteo, J.…

  14. Category learning strategies in younger and older adults: Rule abstraction and memorization.

    PubMed

    Wahlheim, Christopher N; McDaniel, Mark A; Little, Jeri L

    2016-06-01

    Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, the frequencies of rule- and exemplar-based learners were not significantly different between age groups, but there was a significantly higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies) in the older than younger adult group. Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Rule-Based Category Learning in Children: The Role of Age and Executive Functioning

    PubMed Central

    Rabi, Rahel; Minda, John Paul

    2014-01-01

    Rule-based category learning was examined in 4–11 year-olds and adults. Participants were asked to learn a set of novel perceptual categories in a classification learning task. Categorization performance improved with age, with younger children showing the strongest rule-based deficit relative to older children and adults. Model-based analyses provided insight regarding the type of strategy being used to solve the categorization task, demonstrating that the use of the task appropriate strategy increased with age. When children and adults who identified the correct categorization rule were compared, the performance deficit was no longer evident. Executive functions were also measured. While both working memory and inhibitory control were related to rule-based categorization and improved with age, working memory specifically was found to marginally mediate the age-related improvements in categorization. When analyses focused only on the sample of children, results showed that working memory ability and inhibitory control were associated with categorization performance and strategy use. The current findings track changes in categorization performance across childhood, demonstrating at which points performance begins to mature and resemble that of adults. Additionally, findings highlight the potential role that working memory and inhibitory control may play in rule-based category learning. PMID:24489658

  16. The role of feedback contingency in perceptual category learning.

    PubMed

    Ashby, F Gregory; Vucovich, Lauren E

    2016-11-01

    Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from 2 or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all 4 conditions, and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects, as well as their theoretical implications, are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. The Role of Feedback Contingency in Perceptual Category Learning

    PubMed Central

    Ashby, F. Gregory; Vucovich, Lauren E.

    2016-01-01

    Feedback is highly contingent on behavior if it eventually becomes easy to predict, and weakly contingent on behavior if it remains difficult or impossible to predict even after learning is complete. Many studies have demonstrated that humans and nonhuman animals are highly sensitive to feedback contingency, but no known studies have examined how feedback contingency affects category learning, and current theories assign little or no importance to this variable. Two experiments examined the effects of contingency degradation on rule-based and information-integration category learning. In rule-based tasks, optimal accuracy is possible with a simple explicit rule, whereas optimal accuracy in information-integration tasks requires integrating information from two or more incommensurable perceptual dimensions. In both experiments, participants each learned rule-based or information-integration categories under either high or low levels of feedback contingency. The exact same stimuli were used in all four conditions and optimal accuracy was identical in every condition. Learning was good in both high-contingency conditions, but most participants showed little or no evidence of learning in either low-contingency condition. Possible causes of these effects are discussed, as well as their theoretical implications. PMID:27149393

  18. Rule Based Category Learning in Patients with Parkinson’s Disease

    PubMed Central

    Price, Amanda; Filoteo, J. Vincent; Maddox, W. Todd

    2009-01-01

    Measures of explicit rule-based category learning are commonly used in neuropsychological evaluation of individuals with Parkinson’s disease (PD) and the pattern of PD performance on these measures tends to be highly varied. We review the neuropsychological literature to clarify the manner in which PD affects the component processes of rule-based category learning and work to identify and resolve discrepancies within this literature. In particular, we address the manner in which PD and its common treatments affect the processes of rule generation, maintenance, shifting and selection. We then integrate the neuropsychological research with relevant neuroimaging and computational modeling evidence to clarify the neurobiological impact of PD on each process. Current evidence indicates that neurochemical changes associated with PD primarily disrupt rule shifting, and may disturb feedback-mediated learning processes that guide rule selection. Although surgical and pharmacological therapies remediate this deficit, it appears that the same treatments may contribute to impaired rule generation, maintenance and selection processes. These data emphasize the importance of distinguishing between the impact of PD and its common treatments when considering the neuropsychological profile of the disease. PMID:19428385

  19. Learning and transfer of category knowledge in an indirect categorization task.

    PubMed

    Helie, Sebastien; Ashby, F Gregory

    2012-05-01

    Knowledge representations acquired during category learning experiments are 'tuned' to the task goal. A useful paradigm to study category representations is indirect category learning. In the present article, we propose a new indirect categorization task called the "same"-"different" categorization task. The same-different categorization task is a regular same-different task, but the question asked to the participants is about the stimulus category membership instead of stimulus identity. Experiment 1 explores the possibility of indirectly learning rule-based and information-integration category structures using the new paradigm. The results suggest that there is little learning about the category structures resulting from an indirect categorization task unless the categories can be separated by a one-dimensional rule. Experiment 2 explores whether a category representation learned indirectly can be used in a direct classification task (and vice versa). The results suggest that previous categorical knowledge acquired during a direct classification task can be expressed in the same-different categorization task only when the categories can be separated by a rule that is easily verbalized. Implications of these results for categorization research are discussed.

  20. Compensatory processing during rule-based category learning in older adults.

    PubMed

    Bharani, Krishna L; Paller, Ken A; Reber, Paul J; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G

    2016-01-01

    Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex.

  1. Compensatory Processing During Rule-Based Category Learning in Older Adults

    PubMed Central

    Bharani, Krishna L.; Paller, Ken A.; Reber, Paul J.; Weintraub, Sandra; Yanar, Jorge; Morrison, Robert G.

    2016-01-01

    Healthy older adults typically perform worse than younger adults at rule-based category learning, but better than patients with Alzheimer's or Parkinson's disease. To further investigate aging's effect on rule-based category learning, we monitored event-related potentials (ERPs) while younger and neuropsychologically typical older adults performed a visual category-learning task with a rule-based category structure and trial-by-trial feedback. Using these procedures, we previously identified ERPs sensitive to categorization strategy and accuracy in young participants. In addition, previous studies have demonstrated the importance of neural processing in the prefrontal cortex and the medial temporal lobe for this task. In this study, older adults showed lower accuracy and longer response times than younger adults, but there were two distinct subgroups of older adults. One subgroup showed near-chance performance throughout the procedure, never categorizing accurately. The other subgroup reached asymptotic accuracy that was equivalent to that in younger adults, although they categorized more slowly. These two subgroups were further distinguished via ERPs. Consistent with the compensation theory of cognitive aging, older adults who successfully learned showed larger frontal ERPs when compared with younger adults. Recruitment of prefrontal resources may have improved performance while slowing response times. Additionally, correlations of feedback-locked P300 amplitudes with category-learning accuracy differentiated successful younger and older adults. Overall, the results suggest that the ability to adapt one's behavior in response to feedback during learning varies across older individuals, and that the failure of some to adapt their behavior may reflect inadequate engagement of prefrontal cortex. PMID:26422522

  2. Developmental Changes between Childhood and Adulthood in Passive Observational and Interactive Feedback-Based Categorization Rule Learning

    ERIC Educational Resources Information Center

    Hammer, Rubi; Kloet, Jim; Booth, James R.

    2016-01-01

    As children start attending school they are more likely to face situations where they have to autonomously learn about novel object categories (e.g. by reading a picture book with descriptions of novel animals). Such autonomous observational category learning (OCL) gradually complements interactive feedback-based category learning (FBCL), where a…

  3. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans.

    PubMed

    Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F

    2017-03-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A Comparison of the neural correlates that underlie rule-based and information-integration category learning.

    PubMed

    Carpenter, Kathryn L; Wills, Andy J; Benattayallah, Abdelmalek; Milton, Fraser

    2016-10-01

    The influential competition between verbal and implicit systems (COVIS) model proposes that category learning is driven by two competing neural systems-an explicit, verbal, system, and a procedural-based, implicit, system. In the current fMRI study, participants learned either a conjunctive, rule-based (RB), category structure that is believed to engage the explicit system, or an information-integration category structure that is thought to preferentially recruit the implicit system. The RB and information-integration category structures were matched for participant error rate, the number of relevant stimulus dimensions, and category separation. Under these conditions, considerable overlap in brain activation, including the prefrontal cortex, basal ganglia, and the hippocampus, was found between the RB and information-integration category structures. Contrary to the predictions of COVIS, the medial temporal lobes and in particular the hippocampus, key regions for explicit memory, were found to be more active in the information-integration condition than in the RB condition. No regions were more activated in RB than information-integration category learning. The implications of these results for theories of category learning are discussed. Hum Brain Mapp 37:3557-3574, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Deficits in Category Learning in Older Adults: Rule-Based Versus Clustering Accounts

    PubMed Central

    2017-01-01

    Memory research has long been one of the key areas of investigation for cognitive aging researchers but only in the last decade or so has categorization been used to understand age differences in cognition. Categorization tasks focus more heavily on the grouping and organization of items in memory, and often on the process of learning relationships through trial and error. Categorization studies allow researchers to more accurately characterize age differences in cognition: whether older adults show declines in the way in which they represent categories with simple rules or declines in representing categories by similarity to past examples. In the current study, young and older adults participated in a set of classic category learning problems, which allowed us to distinguish between three hypotheses: (a) rule-complexity: categories were represented exclusively with rules and older adults had differential difficulty when more complex rules were required, (b) rule-specific: categories could be represented either by rules or by similarity, and there were age deficits in using rules, and (c) clustering: similarity was mainly used and older adults constructed a less-detailed representation by lumping more items into fewer clusters. The ordinal levels of performance across different conditions argued against rule-complexity, as older adults showed greater deficits on less complex categories. The data also provided evidence against rule-specificity, as single-dimensional rules could not explain age declines. Instead, computational modeling of the data indicated that older adults utilized fewer conceptual clusters of items in memory than did young adults. PMID:28816474

  6. The time course of explicit and implicit categorization.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Herberger, Eric R; Boomer, Joseph; Roeder, Jessica L; Ashby, F Gregory; Church, Barbara A

    2015-10-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization.

  7. The impact of category structure and training methodology on learning and generalizing within-category representations.

    PubMed

    Ell, Shawn W; Smith, David B; Peralta, Gabriela; Hélie, Sébastien

    2017-08-01

    When interacting with categories, representations focused on within-category relationships are often learned, but the conditions promoting within-category representations and their generalizability are unclear. We report the results of three experiments investigating the impact of category structure and training methodology on the learning and generalization of within-category representations (i.e., correlational structure). Participants were trained on either rule-based or information-integration structures using classification (Is the stimulus a member of Category A or Category B?), concept (e.g., Is the stimulus a member of Category A, Yes or No?), or inference (infer the missing component of the stimulus from a given category) and then tested on either an inference task (Experiments 1 and 2) or a classification task (Experiment 3). For the information-integration structure, within-category representations were consistently learned, could be generalized to novel stimuli, and could be generalized to support inference at test. For the rule-based structure, extended inference training resulted in generalization to novel stimuli (Experiment 2) and inference training resulted in generalization to classification (Experiment 3). These data help to clarify the conditions under which within-category representations can be learned. Moreover, these results make an important contribution in highlighting the impact of category structure and training methodology on the generalization of categorical knowledge.

  8. Delayed Feedback Disrupts the Procedural-Learning System but Not the Hypothesis-Testing System in Perceptual Category Learning

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Ing, A. David

    2005-01-01

    W. T. Maddox, F. G. Ashby, and C. J. Bohil (2003) found that delayed feedback adversely affects information-integration but not rule-based category learning in support of a multiple-systems approach to category learning. However, differences in the number of stimulus dimensions relevant to solving the task and perceptual similarity failed to rule…

  9. Similarity-Dissimilarity Competition in Disjunctive Classification Tasks

    PubMed Central

    Mathy, Fabien; Haladjian, Harry H.; Laurent, Eric; Goldstone, Robert L.

    2013-01-01

    Typical disjunctive artificial classification tasks require participants to sort stimuli according to rules such as “x likes cars only when black and coupe OR white and SUV.” For categories like this, increasing the salience of the diagnostic dimensions has two simultaneous effects: increasing the distance between members of the same category and increasing the distance between members of opposite categories. Potentially, these two effects respectively hinder and facilitate classification learning, leading to competing predictions for learning. Increasing saliency may lead to members of the same category to be considered less similar, while the members of separate categories might be considered more dissimilar. This implies a similarity-dissimilarity competition between two basic classification processes. When focusing on sub-category similarity, one would expect more difficult classification when members of the same category become less similar (disregarding the increase of between-category dissimilarity); however, the between-category dissimilarity increase predicts a less difficult classification. Our categorization study suggests that participants rely more on using dissimilarities between opposite categories than finding similarities between sub-categories. We connect our results to rule- and exemplar-based classification models. The pattern of influences of within- and between-category similarities are challenging for simple single-process categorization systems based on rules or exemplars. Instead, our results suggest that either these processes should be integrated in a hybrid model, or that category learning operates by forming clusters within each category. PMID:23403979

  10. The Time Course of Explicit and Implicit Categorization

    PubMed Central

    Zakrzewski, Alexandria C.; Herberger, Eric; Boomer, Joseph; Roeder, Jessica; Ashby, F. Gregory; Church, Barbara A.

    2015-01-01

    Contemporary theory in cognitive neuroscience distinguishes, among the processes and utilities that serve categorization, explicit and implicit systems of category learning that learn, respectively, category rules by active hypothesis testing or adaptive behaviors by association and reinforcement. Little is known about the time course of categorization within these systems. Accordingly, the present experiments contrasted tasks that fostered explicit categorization (because they had a one-dimensional, rule-based solution) or implicit categorization (because they had a two-dimensional, information-integration solution). In Experiment 1, participants learned categories under unspeeded or speeded conditions. In Experiment 2, they applied previously trained category knowledge under unspeeded or speeded conditions. Speeded conditions selectively impaired implicit category learning and implicit mature categorization. These results illuminate the processing dynamics of explicit/implicit categorization. PMID:26025556

  11. The Effects of Concurrent Verbal and Visual Tasks on Category Learning

    ERIC Educational Resources Information Center

    Miles, Sarah J.; Minda, John Paul

    2011-01-01

    Current theories of category learning posit separate verbal and nonverbal learning systems. Past research suggests that the verbal system relies on verbal working memory and executive functioning and learns rule-defined categories; the nonverbal system does not rely on verbal working memory and learns non-rule-defined categories (E. M. Waldron…

  12. Ego depletion interferes with rule-defined category learning but not non-rule-defined category learning.

    PubMed

    Minda, John P; Rabi, Rahel

    2015-01-01

    Considerable research on category learning has suggested that many cognitive and environmental factors can have a differential effect on the learning of rule-defined (RD) categories as opposed to the learning of non-rule-defined (NRD) categories. Prior research has also suggested that ego depletion can temporarily reduce the capacity for executive functioning and cognitive flexibility. The present study examined whether temporarily reducing participants' executive functioning via a resource depletion manipulation would differentially impact RD and NRD category learning. Participants were either asked to write a story with no restrictions (the control condition), or without using two common letters (the ego depletion condition). Participants were then asked to learn either a set of RD categories or a set of NRD categories. Resource depleted participants performed more poorly than controls on the RD task, but did not differ from controls on the NRD task, suggesting that self regulatory resources are required for successful RD category learning. These results lend support to multiple systems theories and clarify the role of self-regulatory resources within this theory.

  13. Ego depletion interferes with rule-defined category learning but not non-rule-defined category learning

    PubMed Central

    Minda, John P.; Rabi, Rahel

    2015-01-01

    Considerable research on category learning has suggested that many cognitive and environmental factors can have a differential effect on the learning of rule-defined (RD) categories as opposed to the learning of non-rule-defined (NRD) categories. Prior research has also suggested that ego depletion can temporarily reduce the capacity for executive functioning and cognitive flexibility. The present study examined whether temporarily reducing participants’ executive functioning via a resource depletion manipulation would differentially impact RD and NRD category learning. Participants were either asked to write a story with no restrictions (the control condition), or without using two common letters (the ego depletion condition). Participants were then asked to learn either a set of RD categories or a set of NRD categories. Resource depleted participants performed more poorly than controls on the RD task, but did not differ from controls on the NRD task, suggesting that self regulatory resources are required for successful RD category learning. These results lend support to multiple systems theories and clarify the role of self-regulatory resources within this theory. PMID:25688220

  14. The Role of Corticostriatal Systems in Speech Category Learning

    PubMed Central

    Yi, Han-Gyol; Maddox, W. Todd; Mumford, Jeanette A.; Chandrasekaran, Bharath

    2016-01-01

    One of the most difficult category learning problems for humans is learning nonnative speech categories. While feedback-based category training can enhance speech learning, the mechanisms underlying these benefits are unclear. In this functional magnetic resonance imaging study, we investigated neural and computational mechanisms underlying feedback-dependent speech category learning in adults. Positive feedback activated a large corticostriatal network including the dorsolateral prefrontal cortex, inferior parietal lobule, middle temporal gyrus, caudate, putamen, and the ventral striatum. Successful learning was contingent upon the activity of domain-general category learning systems: the fast-learning reflective system, involving the dorsolateral prefrontal cortex that develops and tests explicit rules based on the feedback content, and the slow-learning reflexive system, involving the putamen in which the stimuli are implicitly associated with category responses based on the reward value in feedback. Computational modeling of response strategies revealed significant use of reflective strategies early in training and greater use of reflexive strategies later in training. Reflexive strategy use was associated with increased activation in the putamen. Our results demonstrate a critical role for the reflexive corticostriatal learning system as a function of response strategy and proficiency during speech category learning. Keywords: category learning, fMRI, corticostriatal systems, speech, putamen PMID:25331600

  15. The Effect of Feedback Delay and Feedback Type on Perceptual Category Learning: The Limits of Multiple Systems

    ERIC Educational Resources Information Center

    Dunn, John C.; Newell, Ben R.; Kalish, Michael L.

    2012-01-01

    Evidence that learning rule-based (RB) and information-integration (II) category structures can be dissociated across different experimental variables has been used to support the view that such learning is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables, the delay between response and feedback…

  16. The Role of Corticostriatal Systems in Speech Category Learning.

    PubMed

    Yi, Han-Gyol; Maddox, W Todd; Mumford, Jeanette A; Chandrasekaran, Bharath

    2016-04-01

    One of the most difficult category learning problems for humans is learning nonnative speech categories. While feedback-based category training can enhance speech learning, the mechanisms underlying these benefits are unclear. In this functional magnetic resonance imaging study, we investigated neural and computational mechanisms underlying feedback-dependent speech category learning in adults. Positive feedback activated a large corticostriatal network including the dorsolateral prefrontal cortex, inferior parietal lobule, middle temporal gyrus, caudate, putamen, and the ventral striatum. Successful learning was contingent upon the activity of domain-general category learning systems: the fast-learning reflective system, involving the dorsolateral prefrontal cortex that develops and tests explicit rules based on the feedback content, and the slow-learning reflexive system, involving the putamen in which the stimuli are implicitly associated with category responses based on the reward value in feedback. Computational modeling of response strategies revealed significant use of reflective strategies early in training and greater use of reflexive strategies later in training. Reflexive strategy use was associated with increased activation in the putamen. Our results demonstrate a critical role for the reflexive corticostriatal learning system as a function of response strategy and proficiency during speech category learning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Toward a dual-learning systems model of speech category learning

    PubMed Central

    Chandrasekaran, Bharath; Koslov, Seth R.; Maddox, W. T.

    2014-01-01

    More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article, we describe a neurobiologically constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, unidimensional rules to more complex, reflexive, multi-dimensional rules. In a second application, we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions. PMID:25132827

  18. Transfer between local and global processing levels by pigeons (Columba livia) and humans (Homo sapiens) in exemplar- and rule-based categorization tasks.

    PubMed

    Aust, Ulrike; Braunöder, Elisabeth

    2015-02-01

    The present experiment investigated pigeons' and humans' processing styles-local or global-in an exemplar-based visual categorization task in which category membership of every stimulus had to be learned individually, and in a rule-based task in which category membership was defined by a perceptual rule. Group Intact was trained with the original pictures (providing both intact local and global information), Group Scrambled was trained with scrambled versions of the same pictures (impairing global information), and Group Blurred was trained with blurred versions (impairing local information). Subsequently, all subjects were tested for transfer to the 2 untrained presentation modes. Humans outperformed pigeons regarding learning speed and accuracy as well as transfer performance and showed good learning irrespective of group assignment, whereas the pigeons of Group Blurred needed longer to learn the training tasks than the pigeons of Groups Intact and Scrambled. Also, whereas humans generalized equally well to any novel presentation mode, pigeons' transfer from and to blurred stimuli was impaired. Both species showed faster learning and, for the most part, better transfer in the rule-based than in the exemplar-based task, but there was no evidence of the used processing mode depending on the type of task (exemplar- or rule-based). Whereas pigeons relied on local information throughout, humans did not show a preference for either processing level. Additional tests with grayscale versions of the training stimuli, with versions that were both blurred and scrambled, and with novel instances of the rule-based task confirmed and further extended these findings. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  19. What is automatized during perceptual categorization?

    PubMed Central

    Roeder, Jessica L.; Ashby, F. Gregory

    2016-01-01

    An experiment is described that tested whether stimulus-response associations or an abstract rule are automatized during extensive practice at perceptual categorization. Twenty-seven participants each completed 12,300 trials of perceptual categorization, either on rule-based (RB) categories that could be learned explicitly or information-integration (II) categories that required procedural learning. Each participant practiced predominantly on a primary category structure, but every third session they switched to a secondary structure that used the same stimuli and responses. Half the stimuli retained their same response on the primary and secondary categories (the congruent stimuli) and half switched responses (the incongruent stimuli). Several results stood out. First, performance on the primary categories met the standard criteria of automaticity by the end of training. Second, for the primary categories in the RB condition, accuracy and response time (RT) were identical on congruent and incongruent stimuli. In contrast, for the primary II categories, accuracy was higher and RT was lower for congruent than for incongruent stimuli. These results are consistent with the hypothesis that rules are automatized in RB tasks, whereas stimulus-response associations are automatized in II tasks. A cognitive neuroscience theory is proposed that accounts for these results. PMID:27232521

  20. Rule-based and information-integration perceptual category learning in children with attention-deficit/hyperactivity disorder.

    PubMed

    Huang-Pollock, Cynthia L; Maddox, W Todd; Tam, Helen

    2014-07-01

    Suboptimal functioning of the basal ganglia is implicated in attention-deficit/hyperactivity disorder (ADHD). These structures are important to the acquisition of associative knowledge, leading some to theorize that associative learning deficits might be expected, despite the fact that most extant research in ADHD has focused on effortful control. We present 2 studies that examined the acquisition of explicit rule-based (RB) and associative information integration (II) category learning among school-age children with ADHD. In Study 1, we found deficits in both RB and II category learning tasks among children with ADHD (n = 81) versus controls (n = 42). Children with ADHD tended to sort by the more salient but irrelevant dimension (in the RB paradigm) and were unable to acquire a consistent sorting strategy (in the II paradigm). To disentangle whether the deficit was localized to II category learning versus a generalized inability to consider more than 1 stimulus dimension, in Study 2 children completed a conjunctive RB paradigm that required consideration of 2 stimulus dimensions. Children with ADHD (n = 50) continued to underperform controls (n = 33). Results provide partial support for neurocognitive developmental theories of ADHD that suggest that associative learning deficits should be found, and highlight the importance of using analytic approaches that go beyond asking whether an ADHD-related deficit exists to why such deficits exist.

  1. Automatic de-identification of French clinical records: comparison of rule-based and machine-learning approaches.

    PubMed

    Grouin, Cyril; Zweigenbaum, Pierre

    2013-01-01

    In this paper, we present a comparison of two approaches to automatically de-identify medical records written in French: a rule-based system and a machine-learning based system using a conditional random fields (CRF) formalism. Both systems have been designed to process nine identifiers in a corpus of medical records in cardiology. We performed two evaluations: first, on 62 documents in cardiology, and on 10 documents in foetopathology - produced by optical character recognition (OCR) - to evaluate the robustness of our systems. We achieved a 0.843 (rule-based) and 0.883 (machine-learning) exact match overall F-measure in cardiology. While the rule-based system allowed us to achieve good results on nominative (first and last names) and numerical data (dates, phone numbers, and zip codes), the machine-learning approach performed best on more complex categories (postal addresses, hospital names, medical devices, and towns). On the foetopathology corpus, although our systems have not been designed for this corpus and despite OCR character recognition errors, we obtained promising results: a 0.681 (rule-based) and 0.638 (machine-learning) exact-match overall F-measure. This demonstrates that existing tools can be applied to process new documents of lower quality.

  2. Continuous executive function disruption interferes with application of an information integration categorization strategy.

    PubMed

    Miles, Sarah J; Matsuki, Kazunaga; Minda, John Paul

    2014-07-01

    Category learning is often characterized as being supported by two separate learning systems. A verbal system learns rule-defined (RD) categories that can be described using a verbal rule and relies on executive functions (EFs) to learn via hypothesis testing. A nonverbal system learns non-rule-defined (NRD) categories that cannot be described by a verbal rule and uses automatic, procedural learning. The verbal system is dominant in that adults tend to use it during initial learning but may switch to the nonverbal system when the verbal system is unsuccessful. The nonverbal system has traditionally been thought to operate independently of EFs, but recent studies suggest that EFs may play a role in the nonverbal system-specifically, to facilitate the transition away from the verbal system. Accordingly, continuously interfering with EFs during the categorization process, so that EFs are never fully available to facilitate the transition, may be more detrimental to the nonverbal system than is temporary EF interference. Participants learned an NRD or an RD category while EFs were untaxed, taxed temporarily, or taxed continuously. When EFs were continuously taxed during NRD categorization, participants were less likely to use a nonverbal categorization strategy than when EFs were temporarily taxed, suggesting that when EFs were unavailable, the transition to the nonverbal system was hindered. For the verbal system, temporary and continuous interference had similar effects on categorization performance and on strategy use, illustrating that EFs play an important but different role in each of the category-learning systems.

  3. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  4. Comparing Product Category Rules from Different Programs: Learned Outcomes Towards Global Alignment

    EPA Science Inventory

    Purpose Product category rules (PCRs) provide category-specific guidance for estimating and reporting product life cycle environmental impacts, typically in the form of environmental product declarations and product carbon footprints. Lack of global harmonization between PCRs or ...

  5. Mere exposure alters category learning of novel objects.

    PubMed

    Folstein, Jonathan R; Gauthier, Isabel; Palmeri, Thomas J

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning.

  6. Mere Exposure Alters Category Learning of Novel Objects

    PubMed Central

    Folstein, Jonathan R.; Gauthier, Isabel; Palmeri, Thomas J.

    2010-01-01

    We investigated how mere exposure to complex objects with correlated or uncorrelated object features affects later category learning of new objects not seen during exposure. Correlations among pre-exposed object dimensions influenced later category learning. Unlike other published studies, the collection of pre-exposed objects provided no information regarding the categories to be learned, ruling out unsupervised or incidental category learning during pre-exposure. Instead, results are interpreted with respect to statistical learning mechanisms, providing one of the first demonstrations of how statistical learning can influence visual object learning. PMID:21833209

  7. Comparing Product Category Rules from Different Programs: Learned Outcomes Towards Global Alignment (Presentation)

    EPA Science Inventory

    Purpose Product category rules (PCRs) provide category-specific guidance for estimating and reporting product life cycle environmental impacts, typically in the form of environmental product declarations and product carbon footprints. Lack of global harmonization between PCRs or ...

  8. Combining Computational Modeling and Neuroimaging to Examine Multiple Category Learning Systems in the Brain

    PubMed Central

    Nomura, Emi M.; Reber, Paul J.

    2012-01-01

    Considerable evidence has argued in favor of multiple neural systems supporting human category learning, one based on conscious rule inference and one based on implicit information integration. However, there have been few attempts to study potential system interactions during category learning. The PINNACLE (Parallel Interactive Neural Networks Active in Category Learning) model incorporates multiple categorization systems that compete to provide categorization judgments about visual stimuli. Incorporating competing systems requires inclusion of cognitive mechanisms associated with resolving this competition and creates a potential credit assignment problem in handling feedback. The hypothesized mechanisms make predictions about internal mental states that are not always reflected in choice behavior, but may be reflected in neural activity. Two prior functional magnetic resonance imaging (fMRI) studies of category learning were re-analyzed using PINNACLE to identify neural correlates of internal cognitive states on each trial. These analyses identified additional brain regions supporting the two types of category learning, regions particularly active when the systems are hypothesized to be in maximal competition, and found evidence of covert learning activity in the “off system” (the category learning system not currently driving behavior). These results suggest that PINNACLE provides a plausible framework for how competing multiple category learning systems are organized in the brain and shows how computational modeling approaches and fMRI can be used synergistically to gain access to cognitive processes that support complex decision-making machinery. PMID:24962771

  9. Criterion learning in rule-based categorization: Simulation of neural mechanism and new data

    PubMed Central

    Helie, Sebastien; Ell, Shawn W.; Filoteo, J. Vincent; Maddox, W. Todd

    2015-01-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g, categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define ‘long’ and ‘short’). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL’s implications for future research on rule learning. PMID:25682349

  10. Criterion learning in rule-based categorization: simulation of neural mechanism and new data.

    PubMed

    Helie, Sebastien; Ell, Shawn W; Filoteo, J Vincent; Maddox, W Todd

    2015-04-01

    In perceptual categorization, rule selection consists of selecting one or several stimulus-dimensions to be used to categorize the stimuli (e.g., categorize lines according to their length). Once a rule has been selected, criterion learning consists of defining how stimuli will be grouped using the selected dimension(s) (e.g., if the selected rule is line length, define 'long' and 'short'). Very little is known about the neuroscience of criterion learning, and most existing computational models do not provide a biological mechanism for this process. In this article, we introduce a new model of rule learning called Heterosynaptic Inhibitory Criterion Learning (HICL). HICL includes a biologically-based explanation of criterion learning, and we use new category-learning data to test key aspects of the model. In HICL, rule selective cells in prefrontal cortex modulate stimulus-response associations using pre-synaptic inhibition. Criterion learning is implemented by a new type of heterosynaptic error-driven Hebbian learning at inhibitory synapses that uses feedback to drive cell activation above/below thresholds representing ionic gating mechanisms. The model is used to account for new human categorization data from two experiments showing that: (1) changing rule criterion on a given dimension is easier if irrelevant dimensions are also changing (Experiment 1), and (2) showing that changing the relevant rule dimension and learning a new criterion is more difficult, but also facilitated by a change in the irrelevant dimension (Experiment 2). We conclude with a discussion of some of HICL's implications for future research on rule learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Discrimination of artificial categories structured by family resemblances: a comparative study in people (Homo sapiens) and pigeons (Columba livia).

    PubMed

    Makino, Hiroshi; Jitsumori, Masako

    2007-02-01

    Adult humans (Homo sapiens) and pigeons (Columba livia) were trained to discriminate artificial categories that the authors created by mimicking 2 properties of natural categories. One was a family resemblance relationship: The highly variable exemplars, including those that did not have features in common, were structured by a similarity network with the features correlating to one another in each category. The other was a polymorphous rule: No single feature was essential for distinguishing the categories, and all the features overlapped between the categories. Pigeons learned the categories with ease and then showed a prototype effect in accord with the degrees of family resemblance for novel stimuli. Some evidence was also observed for interactive effects of learning of individual exemplars and feature frequencies. Humans had difficulty in learning the categories. The participants who learned the categories generally responded to novel stimuli in an all-or-none fashion on the basis of their acquired classification decision rules. The processes that underlie the classification performances of the 2 species are discussed.

  12. Classification of hadith into positive suggestion, negative suggestion, and information

    NASA Astrophysics Data System (ADS)

    Faraby, Said Al; Riviera Rachmawati Jasin, Eliza; Kusumaningrum, Andina; Adiwijaya

    2018-03-01

    As one of the Muslim life guidelines, based on the meaning of its sentence(s), a hadith can be viewed as a suggestion for doing something, or a suggestion for not doing something, or just information without any suggestion. In this paper, we tried to classify the Bahasa translation of hadith into the three categories using machine learning approach. We tried stemming and stopword removal in preprocessing, and TF-IDF of unigram, bigram, and trigram as the extracted features. As the classifier, we compared between SVM and Neural Network. Since the categories are new, so in order to compare the results of the previous pipelines, we created a baseline classifier using simple rule-based string matching technique. The rule-based algorithm conditions on the occurrence of words such as “janganlah, sholatlah, and so on” to determine the category. The baseline method achieved F1-Score of 0.69, while the best F1-Score from the machine learning approach was 0.88, and it was produced by SVM model with the linear kernel.

  13. Attentional Bias in Human Category Learning: The Case of Deep Learning.

    PubMed

    Hanson, Catherine; Caglar, Leyla Roskan; Hanson, Stephen José

    2018-01-01

    Category learning performance is influenced by both the nature of the category's structure and the way category features are processed during learning. Shepard (1964, 1987) showed that stimuli can have structures with features that are statistically uncorrelated (separable) or statistically correlated (integral) within categories. Humans find it much easier to learn categories having separable features, especially when attention to only a subset of relevant features is required, and harder to learn categories having integral features, which require consideration of all of the available features and integration of all the relevant category features satisfying the category rule (Garner, 1974). In contrast to humans, a single hidden layer backpropagation (BP) neural network has been shown to learn both separable and integral categories equally easily, independent of the category rule (Kruschke, 1993). This "failure" to replicate human category performance appeared to be strong evidence that connectionist networks were incapable of modeling human attentional bias. We tested the presumed limitations of attentional bias in networks in two ways: (1) by having networks learn categories with exemplars that have high feature complexity in contrast to the low dimensional stimuli previously used, and (2) by investigating whether a Deep Learning (DL) network, which has demonstrated humanlike performance in many different kinds of tasks (language translation, autonomous driving, etc.), would display human-like attentional bias during category learning. We were able to show a number of interesting results. First, we replicated the failure of BP to differentially process integral and separable category structures when low dimensional stimuli are used (Garner, 1974; Kruschke, 1993). Second, we show that using the same low dimensional stimuli, Deep Learning (DL), unlike BP but similar to humans, learns separable category structures more quickly than integral category structures. Third, we show that even BP can exhibit human like learning differences between integral and separable category structures when high dimensional stimuli (face exemplars) are used. We conclude, after visualizing the hidden unit representations, that DL appears to extend initial learning due to feature development thereby reducing destructive feature competition by incrementally refining feature detectors throughout later layers until a tipping point (in terms of error) is reached resulting in rapid asymptotic learning.

  14. The effect of category learning on attentional modulation of visual cortex.

    PubMed

    Folstein, Jonathan R; Fuller, Kelly; Howard, Dorothy; DePatie, Thomas

    2017-09-01

    Learning about visual object categories causes changes in the way we perceive those objects. One likely mechanism by which this occurs is the application of attention to potentially relevant objects. Here we test the hypothesis that category membership influences the allocation of attention, allowing attention to be applied not only to object features, but to entire categories. Participants briefly learned to categorize a set of novel cartoon animals after which EEG was recorded while participants distinguished between a target and non-target category. A second identical EEG session was conducted after two sessions of categorization practice. The category structure and task design allowed parametric manipulation of number of target features while holding feature frequency and category membership constant. We found no evidence that category membership influenced attentional selection: a postero-lateral negative component, labeled the selection negativity/N250, increased over time and was sensitive to number of target features, not target categories. In contrast, the right hemisphere N170 was not sensitive to target features. The P300 appeared sensitive to category in the first session, but showed a graded sensitivity to number of target features in the second session, possibly suggesting a transition from rule-based to similarity based categorization. Copyright © 2017. Published by Elsevier Ltd.

  15. Effect of explicit dimension instruction on speech category learning

    PubMed Central

    Chandrasekaran, Bharath; Yi, Han-Gyol; Smayda, Kirsten E.; Maddox, W. Todd

    2015-01-01

    Learning non-native speech categories is often considered a challenging task in adulthood. This difficulty is driven by cross-language differences in weighting critical auditory dimensions that differentiate speech categories. For example, previous studies have shown that differentiating Mandarin tonal categories requires attending to dimensions related to pitch height and direction. Relative to native speakers of Mandarin, the pitch direction dimension is under-weighted by native English speakers. In the current study, we examined the effect of explicit instructions (dimension instruction) on native English speakers' Mandarin tone category learning within the framework of a dual-learning systems (DLS) model. This model predicts that successful speech category learning is initially mediated by an explicit, reflective learning system that frequently utilizes unidimensional rules, with an eventual switch to a more implicit, reflexive learning system that utilizes multidimensional rules. Participants were explicitly instructed to focus and/or ignore the pitch height dimension, the pitch direction dimension, or were given no explicit prime. Our results show that instruction instructing participants to focus on pitch direction, and instruction diverting attention away from pitch height resulted in enhanced tone categorization. Computational modeling of participant responses suggested that instruction related to pitch direction led to faster and more frequent use of multidimensional reflexive strategies, and enhanced perceptual selectivity along the previously underweighted pitch direction dimension. PMID:26542400

  16. SUSTAIN: a network model of category learning.

    PubMed

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  17. Simulating Category Learning and Set Shifting Deficits in Patients Weight-Restored from Anorexia Nervosa

    DTIC Science & Technology

    2014-01-01

    Neuropsychology, in press     Simulating Category Learning and Set Shifting Deficits in Patients Weight-Restored from Anorexia Nervosa J...University   Objective: To examine set shifting in a group of women previously diagnosed with anorexia nervosa (AN) who are now weight-restored (AN-WR...participant fails to switch to the new rule but rather persists with the previously correct rule. Adult patients with Anorexia Nervosa (AN) are often impaired

  18. Schematic Influences on Category Learning and Recognition Memory

    ERIC Educational Resources Information Center

    Sakamoto, Yasuaki; Love, Bradley C.

    2004-01-01

    The results from 3 category learning experiments suggest that items are better remembered when they violate a salient knowledge structure such as a rule. The more salient the knowledge structure, the stronger the memory for deviant items. The effect of learning errors on subsequent recognition appears to be mediated through the imposed knowledge…

  19. Effects of musicality and motivational orientation on auditory category learning: a test of a regulatory-fit hypothesis.

    PubMed

    McAuley, J Devin; Henry, Molly J; Wedd, Alan; Pleskac, Timothy J; Cesario, Joseph

    2012-02-01

    Two experiments investigated the effects of musicality and motivational orientation on auditory category learning. In both experiments, participants learned to classify tone stimuli that varied in frequency and duration according to an initially unknown disjunctive rule; feedback involved gaining points for correct responses (a gains reward structure) or losing points for incorrect responses (a losses reward structure). For Experiment 1, participants were told at the start that musicians typically outperform nonmusicians on the task, and then they were asked to identify themselves as either a "musician" or a "nonmusician." For Experiment 2, participants were given either a promotion focus prime (a performance-based opportunity to gain entry into a raffle) or a prevention focus prime (a performance-based criterion that needed to be maintained to avoid losing an entry into a raffle) at the start of the experiment. Consistent with a regulatory-fit hypothesis, self-identified musicians and promotion-primed participants given a gains reward structure made more correct tone classifications and were more likely to discover the optimal disjunctive rule than were musicians and promotion-primed participants experiencing losses. Reward structure (gains vs. losses) had inconsistent effects on the performance of nonmusicians, and a weaker regulatory-fit effect was found for the prevention focus prime. Overall, the findings from this study demonstrate a regulatory-fit effect in the domain of auditory category learning and show that motivational orientation may contribute to musician performance advantages in auditory perception.

  20. Two Pathways to Stimulus Encoding in Category Learning?

    PubMed Central

    Davis, Tyler; Love, Bradley C.; Maddox, W. Todd

    2008-01-01

    Category learning theorists tacitly assume that stimuli are encoded by a single pathway. Motivated by theories of object recognition, we evaluate a dual-pathway account of stimulus encoding. The part-based pathway establishes mappings between sensory input and symbols that encode discrete stimulus features, whereas the image-based pathway applies holistic templates to sensory input. Our experiments use rule-plus-exception structures in which one exception item in each category violates a salient regularity and must be distinguished from other items. In Experiment 1, we find that discrete representations are crucial for recognition of exceptions following brief training. Experiments 2 and 3 involve multi-session training regimens designed to encourage either part or image-based encoding. We find that both pathways are able to support exception encoding, but have unique characteristics. We speculate that one advantage of the part-based pathway is the ability to generalize across domains, whereas the image-based pathway provides faster and more effortless recognition. PMID:19460948

  1. Individual differences in learning and transfer: stable tendencies for learning exemplars versus abstracting rules.

    PubMed

    McDaniel, Mark A; Cahill, Michael J; Robbins, Mathew; Wiener, Chelsea

    2014-04-01

    We hypothesize that during training some learners may focus on acquiring the particular exemplars and responses associated with the exemplars (termed exemplar learners), whereas other learners attempt to abstract underlying regularities reflected in the particular exemplars linked to an appropriate response (termed rule learners). Supporting this distinction, after training (on a function-learning task), participants displayed an extrapolation profile reflecting either acquisition of the trained cue-criterion associations (exemplar learners) or abstraction of the function rule (rule learners; Studies 1a and 1b). Further, working memory capacity (measured by operation span [Ospan]) was associated with the tendency to rely on rule versus exemplar processes. Studies 1c and 2 examined the persistence of these learning tendencies on several categorization tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the exemplar learners performed well on a novel categorization task (transfer) after training on an abstract coherent category. These patterns suggest that in complex conceptual tasks, (a) individuals tend to either focus on exemplars during learning or on extracting some abstraction of the concept, (b) this tendency might be a relatively stable characteristic of the individual, and (c) transfer patterns are determined by that tendency.

  2. Individual Differences in Learning and Transfer: Stable Tendencies for Learning Exemplars versus Abstracting Rules

    PubMed Central

    McDaniel, Mark A.; Cahill, Michael J.; Robbins, Mathew; Wiener, Chelsea

    2013-01-01

    We hypothesize that during training some learners may focus on acquiring the particular exemplars and responses associated with the exemplars (termed exemplar learners), whereas other learners attempt to abstract underlying regularities reflected in the particular exemplars linked to an appropriate response (termed rule learners). Supporting this distinction, after training (on a function-learning task), participants either displayed an extrapolation profile reflecting acquisition of the trained cue-criterion associations (exemplar learners) or abstraction of the function rule (rule learners; Studies 1a and 1b). Further, working memory capacity (measured by Ospan) was associated with the tendency to rely on rule versus exemplar processes. Studies 1c and 2 examined the persistence of these learning tendencies on several categorization tasks. Study 1c showed that rule learners were more likely than exemplar learners (indexed a priori by extrapolation profiles) to resist using idiosyncratic features (exemplar similarity) in generalization (transfer) of the trained category. Study 2 showed that the rule learners but not the exemplar learners performed well on a novel categorization task (transfer) after training on an abstract coherent category. These patterns suggest that in complex conceptual tasks, (a) individuals tend to either focus on exemplars during learning or on extracting some abstraction of the concept, (b) this tendency might be a relatively stable characteristic of the individual, and (c) transfer patterns are determined by that tendency. PMID:23750912

  3. The effect of training methodology on knowledge representation in categorization.

    PubMed

    Hélie, Sébastien; Shamloo, Farzin; Ell, Shawn W

    2017-01-01

    Category representations can be broadly classified as containing within-category information or between-category information. Although such representational differences can have a profound impact on decision-making, relatively little is known about the factors contributing to the development and generalizability of different types of category representations. These issues are addressed by investigating the impact of training methodology and category structures using a traditional empirical approach as well as the novel adaptation of computational modeling techniques from the machine learning literature. Experiment 1 focused on rule-based (RB) category structures thought to promote between-category representations. Participants learned two sets of two categories during training and were subsequently tested on a novel categorization problem using the training categories. Classification training resulted in a bias toward between-category representations whereas concept training resulted in a bias toward within-category representations. Experiment 2 focused on information-integration (II) category structures thought to promote within-category representations. With II structures, there was a bias toward within-category representations regardless of training methodology. Furthermore, in both experiments, computational modeling suggests that only within-category representations could support generalization during the test phase. These data suggest that within-category representations may be dominant and more robust for supporting the reconfiguration of current knowledge to support generalization.

  4. Category Learning in Rhesus Monkeys: A Study of the Shepard, Hovland, and Jenkins (1961) Tasks

    ERIC Educational Resources Information Center

    Smith, J. David; Minda, John Paul; Washburn, David A.

    2004-01-01

    In influential research, R. N. Shepard, C. I. Hovland, and H. M. Jenkins (1961) surveyed humans' categorization abilities using tasks based in rules, exclusive-or (XOR) relations, and exemplar memorization. Humans' performance was poorly predicted by cue-conditioning or stimulus-generalization theories, causing Shepard et al. to describe it in…

  5. Error Discounting in Probabilistic Category Learning

    PubMed Central

    Craig, Stewart; Lewandowsky, Stephan; Little, Daniel R.

    2011-01-01

    Some current theories of probabilistic categorization assume that people gradually attenuate their learning in response to unavoidable error. However, existing evidence for this error discounting is sparse and open to alternative interpretations. We report two probabilistic-categorization experiments that investigated error discounting by shifting feedback probabilities to new values after different amounts of training. In both experiments, responding gradually became less responsive to errors, and learning was slowed for some time after the feedback shift. Both results are indicative of error discounting. Quantitative modeling of the data revealed that adding a mechanism for error discounting significantly improved the fits of an exemplar-based and a rule-based associative learning model, as well as of a recency-based model of categorization. We conclude that error discounting is an important component of probabilistic learning. PMID:21355666

  6. A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making.

    PubMed

    Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele

    2017-01-01

    Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks.

  7. A Cognitive Modeling Approach to Strategy Formation in Dynamic Decision Making

    PubMed Central

    Prezenski, Sabine; Brechmann, André; Wolff, Susann; Russwinkel, Nele

    2017-01-01

    Decision-making is a high-level cognitive process based on cognitive processes like perception, attention, and memory. Real-life situations require series of decisions to be made, with each decision depending on previous feedback from a potentially changing environment. To gain a better understanding of the underlying processes of dynamic decision-making, we applied the method of cognitive modeling on a complex rule-based category learning task. Here, participants first needed to identify the conjunction of two rules that defined a target category and later adapt to a reversal of feedback contingencies. We developed an ACT-R model for the core aspects of this dynamic decision-making task. An important aim of our model was that it provides a general account of how such tasks are solved and, with minor changes, is applicable to other stimulus materials. The model was implemented as a mixture of an exemplar-based and a rule-based approach which incorporates perceptual-motor and metacognitive aspects as well. The model solves the categorization task by first trying out one-feature strategies and then, as a result of repeated negative feedback, switching to two-feature strategies. Overall, this model solves the task in a similar way as participants do, including generally successful initial learning as well as reversal learning after the change of feedback contingencies. Moreover, the fact that not all participants were successful in the two learning phases is also reflected in the modeling data. However, we found a larger variance and a lower overall performance of the modeling data as compared to the human data which may relate to perceptual preferences or additional knowledge and rules applied by the participants. In a next step, these aspects could be implemented in the model for a better overall fit. In view of the large interindividual differences in decision performance between participants, additional information about the underlying cognitive processes from behavioral, psychobiological and neurophysiological data may help to optimize future applications of this model such that it can be transferred to other domains of comparable dynamic decision tasks. PMID:28824512

  8. On the Role of Concepts in Learning and Instructional Design

    ERIC Educational Resources Information Center

    Jonassen, David H.

    2006-01-01

    The field of instructional design has traditionally treated concepts as discrete learning outcomes. Theoretically, learning concepts requires correctly isolating and applying attributes of specific objects into their correct categories. Similarity views of concept learning are unable to account for all of the rules governing concept formation,…

  9. The neural basis for novel semantic categorization.

    PubMed

    Koenig, Phyllis; Smith, Edward E; Glosser, Guila; DeVita, Chris; Moore, Peachie; McMillan, Corey; Gee, Jim; Grossman, Murray

    2005-01-15

    We monitored regional cerebral activity with BOLD fMRI during acquisition of a novel semantic category and subsequent categorization of test stimuli by a rule-based strategy or a similarity-based strategy. We observed different patterns of activation in direct comparisons of rule- and similarity-based categorization. During rule-based category acquisition, subjects recruited anterior cingulate, thalamic, and parietal regions to support selective attention to perceptual features, and left inferior frontal cortex to helps maintain rules in working memory. Subsequent rule-based categorization revealed anterior cingulate and parietal activation while judging stimuli whose conformity with the rules was readily apparent, and left inferior frontal recruitment during judgments of stimuli whose conformity was less apparent. By comparison, similarity-based category acquisition showed recruitment of anterior prefrontal and posterior cingulate regions, presumably to support successful retrieval of previously encountered exemplars from long-term memory, and bilateral temporal-parietal activation for perceptual feature integration. Subsequent similarity-based categorization revealed temporal-parietal, posterior cingulate, and anterior prefrontal activation. These findings suggest that large-scale networks support relatively distinct categorization processes during the acquisition and judgment of semantic category knowledge.

  10. Learning of Alignment Rules between Concept Hierarchies

    NASA Astrophysics Data System (ADS)

    Ichise, Ryutaro; Takeda, Hideaki; Honiden, Shinichi

    With the rapid advances of information technology, we are acquiring much information than ever before. As a result, we need tools for organizing this data. Concept hierarchies such as ontologies and information categorizations are powerful and convenient methods for accomplishing this goal, which have gained wide spread acceptance. Although each concept hierarchy is useful, it is difficult to employ multiple concept hierarchies at the same time because it is hard to align their conceptual structures. This paper proposes a rule learning method that inputs information from a source concept hierarchy and finds suitable location for them in a target hierarchy. The key idea is to find the most similar categories in each hierarchy, where similarity is measured by the κ(kappa) statistic that counts instances belonging to both categories. In order to evaluate our method, we conducted experiments using two internet directories: Yahoo! and LYCOS. We map information instances from the source directory into the target directory, and show that our learned rules agree with a human-generated assignment 76% of the time.

  11. Automatic detection of protected health information from clinic narratives.

    PubMed

    Yang, Hui; Garibaldi, Jonathan M

    2015-12-01

    This paper presents a natural language processing (NLP) system that was designed to participate in the 2014 i2b2 de-identification challenge. The challenge task aims to identify and classify seven main Protected Health Information (PHI) categories and 25 associated sub-categories. A hybrid model was proposed which combines machine learning techniques with keyword-based and rule-based approaches to deal with the complexity inherent in PHI categories. Our proposed approaches exploit a rich set of linguistic features, both syntactic and word surface-oriented, which are further enriched by task-specific features and regular expression template patterns to characterize the semantics of various PHI categories. Our system achieved promising accuracy on the challenge test data with an overall micro-averaged F-measure of 93.6%, which was the winner of this de-identification challenge. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. A supervised learning rule for classification of spatiotemporal spike patterns.

    PubMed

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  13. Multiple systems of category learning.

    PubMed

    Smith, Edward E; Grossman, Murray

    2008-01-01

    We review neuropsychological and neuroimaging evidence for the existence of three qualitatively different categorization systems. These categorization systems are themselves based on three distinct memory systems: working memory (WM), explicit long-term memory (explicit LTM), and implicit long-term memory (implicit LTM). We first contrast categorization based on WM with that based on explicit LTM, where the former typically involves applying rules to a test item and the latter involves determining the similarity between stored exemplars or prototypes and a test item. Neuroimaging studies show differences between brain activity in normal participants as a function of whether they are instructed to categorize novel test items by rule or by similarity to known category members. Rule instructions typically lead to more activation in frontal or parietal areas, associated with WM and selective attention, whereas similarity instructions may activate parietal areas associated with the integration of perceptual features. Studies with neurological patients in the same paradigms provide converging evidence, e.g., patients with Alzheimer's disease, who have damage in prefrontal regions, are more impaired with rule than similarity instructions. Our second contrast is between categorization based on explicit LTM with that based on implicit LTM. Neuropsychological studies with patients with medial-temporal lobe damage show that patients are impaired on tasks requiring explicit LTM, but perform relatively normally on an implicit categorization task. Neuroimaging studies provide converging evidence: whereas explicit categorization is mediated by activation in numerous frontal and parietal areas, implicit categorization is mediated by a deactivation in posterior cortex.

  14. Adaptive categorization of ART networks in robot behavior learning using game-theoretic formulation.

    PubMed

    Fung, Wai-keung; Liu, Yun-hui

    2003-12-01

    Adaptive Resonance Theory (ART) networks are employed in robot behavior learning. Two of the difficulties in online robot behavior learning, namely, (1) exponential memory increases with time, (2) difficulty for operators to specify learning tasks accuracy and control learning attention before learning. In order to remedy the aforementioned difficulties, an adaptive categorization mechanism is introduced in ART networks for perceptual and action patterns categorization in this paper. A game-theoretic formulation of adaptive categorization for ART networks is proposed for vigilance parameter adaptation for category size control on the categories formed. The proposed vigilance parameter update rule can help improving categorization performance in the aspect of category number stability and solve the problem of selecting initial vigilance parameter prior to pattern categorization in traditional ART networks. Behavior learning using physical robot is conducted to demonstrate the effectiveness of the proposed adaptive categorization mechanism in ART networks.

  15. Alternate Perspectives on Concept Internalization: Learning Top Down Vs. Learning Bottom Up.

    ERIC Educational Resources Information Center

    Pines, A. Leon

    This paper outlines two alternate ways in which concepts are acquired, known as "top down" and "bottom up". "Bottom up" refers to learning the members of a category and then extracting their similarities or differences, the rule or criterial attributes used to make the categorization. In the "top down"…

  16. Acetal Resins, Acrylic & Modacrylic Fibers, Carbon Black, Hydrogen Fluoride, Polycarbonate, Ethylene, Spandex & Cyanide Chemical Manufacturing: NESHAP for Source Categories, Generic Maximum Achievable Control Technology Standards (40 CFR 63, Subpart YY)

    EPA Pesticide Factsheets

    Learn about the NESHAP for GMACT for acetal resins, hydrogen fluoride, polycarbonate, ethylene production and cyanide chemicals. Find the rule history information, federal register citations, legal authority, rule summary, and additional resources

  17. Test of a potential link between analytic and nonanalytic category learning and automatic, effortful processing.

    PubMed

    Tracy, J I; Pinsk, M; Helverson, J; Urban, G; Dietz, T; Smith, D J

    2001-08-01

    The link between automatic and effortful processing and nonanalytic and analytic category learning was evaluated in a sample of 29 college undergraduates using declarative memory, semantic category search, and pseudoword categorization tasks. Automatic and effortful processing measures were hypothesized to be associated with nonanalytic and analytic categorization, respectively. Results suggested that contrary to prediction strong criterion-attribute (analytic) responding on the pseudoword categorization task was associated with strong automatic, implicit memory encoding of frequency-of-occurrence information. Data are discussed in terms of the possibility that criterion-attribute category knowledge, once established, may be expressed with few attentional resources. The data indicate that attention resource requirements, even for the same stimuli and task, vary depending on the category rule system utilized. Also, the automaticity emerging from familiarity with analytic category exemplars is very different from the automaticity arising from extensive practice on a semantic category search task. The data do not support any simple mapping of analytic and nonanalytic forms of category learning onto the automatic and effortful processing dichotomy and challenge simple models of brain asymmetries for such procedures. Copyright 2001 Academic Press.

  18. Rule-based support system for multiple UMLS semantic type assignments

    PubMed Central

    Geller, James; He, Zhe; Perl, Yehoshua; Morrey, C. Paul; Xu, Julia

    2012-01-01

    Background When new concepts are inserted into the UMLS, they are assigned one or several semantic types from the UMLS Semantic Network by the UMLS editors. However, not every combination of semantic types is permissible. It was observed that many concepts with rare combinations of semantic types have erroneous semantic type assignments or prohibited combinations of semantic types. The correction of such errors is resource-intensive. Objective We design a computational system to inform UMLS editors as to whether a specific combination of two, three, four, or five semantic types is permissible or prohibited or questionable. Methods We identify a set of inclusion and exclusion instructions in the UMLS Semantic Network documentation and derive corresponding rule-categories as well as rule-categories from the UMLS concept content. We then design an algorithm adviseEditor based on these rule-categories. The algorithm specifies rules for an editor how to proceed when considering a tuple (pair, triple, quadruple, quintuple) of semantic types to be assigned to a concept. Results Eight rule-categories were identified. A Web-based system was developed to implement the adviseEditor algorithm, which returns for an input combination of semantic types whether it is permitted, prohibited or (in a few cases) requires more research. The numbers of semantic type pairs assigned to each rule-category are reported. Interesting examples for each rule-category are illustrated. Cases of semantic type assignments that contradict rules are listed, including recently introduced ones. Conclusion The adviseEditor system implements explicit and implicit knowledge available in the UMLS in a system that informs UMLS editors about the permissibility of a desired combination of semantic types. Using adviseEditor might help accelerate the work of the UMLS editors and prevent erroneous semantic type assignments. PMID:23041716

  19. Use of evidence in a categorization task: analytic and holistic processing modes.

    PubMed

    Greco, Alberto; Moretti, Stefania

    2017-11-01

    Category learning performance can be influenced by many contextual factors, but the effects of these factors are not the same for all learners. The present study suggests that these differences can be due to the different ways evidence is used, according to two main basic modalities of processing information, analytically or holistically. In order to test the impact of the information provided, an inductive rule-based task was designed, in which feature salience and comparison informativeness between examples of two categories were manipulated during the learning phases, by introducing and progressively reducing some perceptual biases. To gather data on processing modalities, we devised the Active Feature Composition task, a production task that does not require classifying new items but reproducing them by combining features. At the end, an explicit rating task was performed, which entailed assessing the accuracy of a set of possible categorization rules. A combined analysis of the data collected with these two different tests enabled profiling participants in regard to the kind of processing modality, the structure of representations and the quality of categorial judgments. Results showed that despite the fact that the information provided was the same for all participants, those who adopted analytic processing better exploited evidence and performed more accurately, whereas with holistic processing categorization is perfectly possible but inaccurate. Finally, the cognitive implications of the proposed procedure, with regard to involved processes and representations, are discussed.

  20. Children's Category-Based Inferences Affect Classification

    ERIC Educational Resources Information Center

    Ross, Brian H.; Gelman, Susan A.; Rosengren, Karl S.

    2005-01-01

    Children learn many new categories and make inferences about these categories. Much work has examined how children make inferences on the basis of category knowledge. However, inferences may also affect what is learned about a category. Four experiments examine whether category-based inferences during category learning influence category knowledge…

  1. Striatal degeneration impairs language learning: evidence from Huntington's disease.

    PubMed

    De Diego-Balaguer, R; Couette, M; Dolbeau, G; Dürr, A; Youssov, K; Bachoud-Lévi, A-C

    2008-11-01

    Although the role of the striatum in language processing is still largely unclear, a number of recent proposals have outlined its specific contribution. Different studies report evidence converging to a picture where the striatum may be involved in those aspects of rule-application requiring non-automatized behaviour. This is the main characteristic of the earliest phases of language acquisition that require the online detection of distant dependencies and the creation of syntactic categories by means of rule learning. Learning of sequences and categorization processes in non-language domains has been known to require striatal recruitment. Thus, we hypothesized that the striatum should play a prominent role in the extraction of rules in learning a language. We studied 13 pre-symptomatic gene-carriers and 22 early stage patients of Huntington's disease (pre-HD), both characterized by a progressive degeneration of the striatum and 21 late stage patients Huntington's disease (18 stage II, two stage III and one stage IV) where cortical degeneration accompanies striatal degeneration. When presented with a simplified artificial language where words and rules could be extracted, early stage Huntington's disease patients (stage I) were impaired in the learning test, demonstrating a greater impairment in rule than word learning compared to the 20 age- and education-matched controls. Huntington's disease patients at later stages were impaired both on word and rule learning. While spared in their overall performance, gene-carriers having learned a set of abstract artificial language rules were then impaired in the transfer of those rules to similar artificial language structures. The correlation analyses among several neuropsychological tests assessing executive function showed that rule learning correlated with tests requiring working memory and attentional control, while word learning correlated with a test involving episodic memory. These learning impairments significantly correlated with the bicaudate ratio. The overall results support striatal involvement in rule extraction from speech and suggest that language acquisition requires several aspects of memory and executive functions for word and rule learning.

  2. Elevated depressive symptoms enhance reflexive but not reflective auditory category learning.

    PubMed

    Maddox, W Todd; Chandrasekaran, Bharath; Smayda, Kirsten; Yi, Han-Gyol; Koslov, Seth; Beevers, Christopher G

    2014-09-01

    In vision an extensive literature supports the existence of competitive dual-processing systems of category learning that are grounded in neuroscience and are partially-dissociable. The reflective system is prefrontally-mediated and uses working memory and executive attention to develop and test rules for classifying in an explicit fashion. The reflexive system is striatally-mediated and operates by implicitly associating perception with actions that lead to reinforcement. Although categorization is fundamental to auditory processing, little is known about the learning systems that mediate auditory categorization and even less is known about the effects of individual difference in the relative efficiency of the two learning systems. Previous studies have shown that individuals with elevated depressive symptoms show deficits in reflective processing. We exploit this finding to test critical predictions of the dual-learning systems model in audition. Specifically, we examine the extent to which the two systems are dissociable and competitive. We predicted that elevated depressive symptoms would lead to reflective-optimal learning deficits but reflexive-optimal learning advantages. Because natural speech category learning is reflexive in nature, we made the prediction that elevated depressive symptoms would lead to superior speech learning. In support of our predictions, individuals with elevated depressive symptoms showed a deficit in reflective-optimal auditory category learning, but an advantage in reflexive-optimal auditory category learning. In addition, individuals with elevated depressive symptoms showed an advantage in learning a non-native speech category structure. Computational modeling suggested that the elevated depressive symptom advantage was due to faster, more accurate, and more frequent use of reflexive category learning strategies in individuals with elevated depressive symptoms. The implications of this work for dual-process approach to auditory learning and depression are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Elevated Depressive Symptoms Enhance Reflexive but not Reflective Auditory Category Learning

    PubMed Central

    Maddox, W. Todd; Chandrasekaran, Bharath; Smayda, Kirsten; Yi, Han-Gyol; Koslov, Seth; Beevers, Christopher G.

    2014-01-01

    In vision an extensive literature supports the existence of competitive dual-processing systems of category learning that are grounded in neuroscience and are partially-dissociable. The reflective system is prefrontally-mediated and uses working memory and executive attention to develop and test rules for classifying in an explicit fashion. The reflexive system is striatally-mediated and operates by implicitly associating perception with actions that lead to reinforcement. Although categorization is fundamental to auditory processing, little is known about the learning systems that mediate auditory categorization and even less is known about the effects of individual difference in the relative efficiency of the two learning systems. Previous studies have shown that individuals with elevated depressive symptoms show deficits in reflective processing. We exploit this finding to test critical predictions of the dual-learning systems model in audition. Specifically, we examine the extent to which the two systems are dissociable and competitive. We predicted that elevated depressive symptoms would lead to reflective-optimal learning deficits but reflexive-optimal learning advantages. Because natural speech category learning is reflexive in nature, we made the prediction that elevated depressive symptoms would lead to superior speech learning. In support of our predictions, individuals with elevated depressive symptoms showed a deficit in reflective-optimal auditory category learning, but an advantage in reflexive-optimal auditory category learning. In addition, individuals with elevated depressive symptoms showed an advantage in learning a non-native speech category structure. Computational modeling suggested that the elevated depressive symptom advantage was due to faster, more accurate, and more frequent use of reflexive category learning strategies in individuals with elevated depressive symptoms. The implications of this work for dual-process approach to auditory learning and depression are discussed. PMID:25041936

  4. Product Category Rules Alignment Workshop, October 4, 2011 in Chicago, IL, USA

    EPA Science Inventory

    A workshop on Product Category Rule (PCR) alignment was held as a special session in the LCA XI conference with approximately 120 participants. PCR alignment refers to the process of assuring that PCRs (rules for developing LCA-based claims like EPDs) developed by different parti...

  5. Moral empiricism and the bias for act-based rules.

    PubMed

    Ayars, Alisabeth; Nichols, Shaun

    2017-10-01

    Previous studies on rule learning show a bias in favor of act-based rules, which prohibit intentionally producing an outcome but not merely allowing the outcome. Nichols, Kumar, Lopez, Ayars, and Chan (2016) found that exposure to a single sample violation in which an agent intentionally causes the outcome was sufficient for participants to infer that the rule was act-based. One explanation is that people have an innate bias to think rules are act-based. We suggest an alternative empiricist account: since most rules that people learn are act-based, people form an overhypothesis (Goodman, 1955) that rules are typically act-based. We report three studies that indicate that people can use information about violations to form overhypotheses about rules. In study 1, participants learned either three "consequence-based" rules that prohibited allowing an outcome or three "act-based" rules that prohibiting producing the outcome; in a subsequent learning task, we found that participants who had learned three consequence-based rules were more likely to think that the new rule prohibited allowing an outcome. In study 2, we presented participants with either 1 consequence-based rule or 3 consequence-based rules, and we found that those exposed to 3 such rules were more likely to think that a new rule was also consequence based. Thus, in both studies, it seems that learning 3 consequence-based rules generates an overhypothesis to expect new rules to be consequence-based. In a final study, we used a more subtle manipulation. We exposed participants to examples act-based or accident-based (strict liability) laws and then had them learn a novel rule. We found that participants who were exposed to the accident-based laws were more likely to think a new rule was accident-based. The fact that participants' bias for act-based rules can be shaped by evidence from other rules supports the idea that the bias for act-based rules might be acquired as an overhypothesis from the preponderance of act-based rules. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Topic categorisation of statements in suicide notes with integrated rules and machine learning.

    PubMed

    Kovačević, Aleksandar; Dehghan, Azad; Keane, John A; Nenadic, Goran

    2012-01-01

    We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of models derived by machine learning from a training dataset. The machine learning models rely on named entities, lexical, lexico-semantic and presentation features, as well as the rules that are applicable to a given statement. On a testing set of 300 suicide notes, the approach showed the overall best micro F-measure of up to 53.36%. The best precision achieved was 67.17% when only rules are used, whereas best recall of 50.57% was with integrated rules and machine learning. While some topics (eg, Sorrow, Anger, Blame) prove challenging, the performance for relatively frequent (eg, Love) and well-scoped categories (eg, Thankfulness) was comparatively higher (precision between 68% and 79%), suggesting that automated text mining approaches can be effective in topic categorisation of suicide notes.

  7. Information-integration category learning and the human uncertainty response.

    PubMed

    Paul, Erick J; Boomer, Joseph; Smith, J David; Ashby, F Gregory

    2011-04-01

    The human response to uncertainty has been well studied in tasks requiring attention and declarative memory systems. However, uncertainty monitoring and control have not been studied in multi-dimensional, information-integration categorization tasks that rely on non-declarative procedural memory. Three experiments are described that investigated the human uncertainty response in such tasks. Experiment 1 showed that following standard categorization training, uncertainty responding was similar in information-integration tasks and rule-based tasks requiring declarative memory. In Experiment 2, however, uncertainty responding in untrained information-integration tasks impaired the ability of many participants to master those tasks. Finally, Experiment 3 showed that the deficit observed in Experiment 2 was not because of the uncertainty response option per se, but rather because the uncertainty response provided participants a mechanism via which to eliminate stimuli that were inconsistent with a simple declarative response strategy. These results are considered in the light of recent models of category learning and metacognition.

  8. The interaction between specific and general information in category learning and representation: unitization and parallel interactive processing.

    PubMed

    Nahinsky, Irwin D; Harbison, J Isaiah

    2011-01-01

    We investigated the effects of specific stimulus information on the use of rule information in a category learning task in 2 experiments, one presented here and an intercategory transfer task reported in an earlier article. In the present experiment photograph--name combinations, called identifiers, were associated with 4 demographic attributes. The same attribute information was shown to all participants. However, for one group of participants, half of the identifiers were paired with attribute values repeated over presentation blocks. For the other group the identifier information was new for each presentation block. The first group performed less well than the second group on stimuli with nonrepeated identifiers, indicating a negative effect of specific stimulus information on processing rule information. Application of a network model to the 2 experiments, which provided for the growth of connections between attribute values in learning, indicated that repetition of identifiers produced a unitizing effect on stimuli. Results suggested that unitization produced interference through connections between irrelevant attribute values.

  9. Distributional Language Learning: Mechanisms and Models of ategory Formation.

    PubMed

    Aslin, Richard N; Newport, Elissa L

    2014-09-01

    In the past 15 years, a substantial body of evidence has confirmed that a powerful distributional learning mechanism is present in infants, children, adults and (at least to some degree) in nonhuman animals as well. The present article briefly reviews this literature and then examines some of the fundamental questions that must be addressed for any distributional learning mechanism to operate effectively within the linguistic domain. In particular, how does a naive learner determine the number of categories that are present in a corpus of linguistic input and what distributional cues enable the learner to assign individual lexical items to those categories? Contrary to the hypothesis that distributional learning and category (or rule) learning are separate mechanisms, the present article argues that these two seemingly different processes---acquiring specific structure from linguistic input and generalizing beyond that input to novel exemplars---actually represent a single mechanism. Evidence in support of this single-mechanism hypothesis comes from a series of artificial grammar-learning studies that not only demonstrate that adults can learn grammatical categories from distributional information alone, but that the specific patterning of distributional information among attested utterances in the learning corpus enables adults to generalize to novel utterances or to restrict generalization when unattested utterances are consistently absent from the learning corpus. Finally, a computational model of distributional learning that accounts for the presence or absence of generalization is reviewed and the implications of this model for linguistic-category learning are summarized.

  10. Concurrence of rule- and similarity-based mechanisms in artificial grammar learning.

    PubMed

    Opitz, Bertram; Hofmann, Juliane

    2015-03-01

    A current theoretical debate regards whether rule-based or similarity-based learning prevails during artificial grammar learning (AGL). Although the majority of findings are consistent with a similarity-based account of AGL it has been argued that these results were obtained only after limited exposure to study exemplars, and performance on subsequent grammaticality judgment tests has often been barely above chance level. In three experiments the conditions were investigated under which rule- and similarity-based learning could be applied. Participants were exposed to exemplars of an artificial grammar under different (implicit and explicit) learning instructions. The analysis of receiver operating characteristics (ROC) during a final grammaticality judgment test revealed that explicit but not implicit learning led to rule knowledge. It also demonstrated that this knowledge base is built up gradually while similarity knowledge governed the initial state of learning. Together these results indicate that rule- and similarity-based mechanisms concur during AGL. Moreover, it could be speculated that two different rule processes might operate in parallel; bottom-up learning via gradual rule extraction and top-down learning via rule testing. Crucially, the latter is facilitated by performance feedback that encourages explicit hypothesis testing. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Hippocampal BOLD response during category learning predicts subsequent performance on transfer generalization.

    PubMed

    Fera, Francesco; Passamonti, Luca; Herzallah, Mohammad M; Myers, Catherine E; Veltri, Pierangelo; Morganti, Giuseppina; Quattrone, Aldo; Gluck, Mark A

    2014-07-01

    To test a prediction of our previous computational model of cortico-hippocampal interaction (Gluck and Myers [1993, 2001]) for characterizing individual differences in category learning, we studied young healthy subjects using an fMRI-adapted category-learning task that has two phases, an initial phase in which associations are learned through trial-and-error feedback followed by a generalization phase in which previously learned rules can be applied to novel associations (Myers et al. [2003]). As expected by our model, we found a negative correlation between learning-related hippocampal responses and accuracy during transfer, demonstrating that hippocampal adaptation during learning is associated with better behavioral scores during transfer generalization. In addition, we found an inverse relationship between Blood Oxygenation Level Dependent (BOLD) activity in the striatum and that in the hippocampal formation and the orbitofrontal cortex during the initial learning phase. Conversely, activity in the dorsolateral prefrontal cortex, orbitofrontal cortex and parietal lobes dominated over that of the hippocampal formation during the generalization phase. These findings provide evidence in support of theories of the neural substrates of category learning which argue that the hippocampal region plays a critical role during learning for appropriately encoding and representing newly learned information so that that this learning can be successfully applied and generalized to subsequent novel task demands. Copyright © 2013 Wiley Periodicals, Inc.

  12. Learning to attend: modeling the shaping of selectivity in infero-temporal cortex in a categorization task.

    PubMed

    Szabo, Miruna; Deco, Gustavo; Fusi, Stefano; Del Giudice, Paolo; Mattia, Maurizio; Stetter, Martin

    2006-05-01

    Recent experiments on behaving monkeys have shown that learning a visual categorization task makes the neurons in infero-temporal cortex (ITC) more selective to the task-relevant features of the stimuli (Sigala and Logothetis in Nature 415 318-320, 2002). We hypothesize that such a selectivity modulation emerges from the interaction between ITC and other cortical area, presumably the prefrontal cortex (PFC), where the previously learned stimulus categories are encoded. We propose a biologically inspired model of excitatory and inhibitory spiking neurons with plastic synapses, modified according to a reward based Hebbian learning rule, to explain the experimental results and test the validity of our hypothesis. We assume that the ITC neurons, receiving feature selective inputs, form stronger connections with the category specific neurons to which they are consistently associated in rewarded trials. After learning, the top-down influence of PFC neurons enhances the selectivity of the ITC neurons encoding the behaviorally relevant features of the stimuli, as observed in the experiments. We conclude that the perceptual representation in visual areas like ITC can be strongly affected by the interaction with other areas which are devoted to higher cognitive functions.

  13. Ventral striatum and the evaluation of memory retrieval strategies.

    PubMed

    Badre, David; Lebrecht, Sophie; Pagliaccio, David; Long, Nicole M; Scimeca, Jason M

    2014-09-01

    Adaptive memory retrieval requires mechanisms of cognitive control that facilitate the recovery of goal-relevant information. Frontoparietal systems are known to support control of memory retrieval. However, the mechanisms by which the brain acquires, evaluates, and adapts retrieval strategies remain unknown. Here, we provide evidence that ventral striatal activation tracks the success of a retrieval strategy and correlates with subsequent reliance on that strategy. Human participants were scanned with fMRI while performing a lexical decision task. A rule was provided that indicated the likely semantic category of a target word given the category of a preceding prime. Reliance on the rule improved decision-making, as estimated within a drift diffusion framework. Ventral striatal activation tracked the benefit that relying on the rule had on decision-making. Moreover, activation in ventral striatum correlated with a participant's subsequent reliance on the rule. Taken together, these results support a role for ventral striatum in learning and evaluating declarative retrieval strategies.

  14. Hierarchical control of procedural and declarative category-learning systems

    PubMed Central

    Turner, Benjamin O.; Crossley, Matthew J.; Ashby, F. Gregory

    2017-01-01

    Substantial evidence suggests that human category learning is governed by the interaction of multiple qualitatively distinct neural systems. In this view, procedural memory is used to learn stimulus-response associations, and declarative memory is used to apply explicit rules and test hypotheses about category membership. However, much less is known about the interaction between these systems: how is control passed between systems as they interact to influence motor resources? Here, we used fMRI to elucidate the neural correlates of switching between procedural and declarative categorization systems. We identified a key region of the cerebellum (left Crus I) whose activity was bidirectionally modulated depending on switch direction. We also identified regions of the default mode network (DMN) that were selectively connected to left Crus I during switching. We propose that the cerebellum—in coordination with the DMN—serves a critical role in passing control between procedural and declarative memory systems. PMID:28213114

  15. When bad stress goes good: increased threat reactivity predicts improved category learning performance.

    PubMed

    Ell, Shawn W; Cosley, Brandon; McCoy, Shannon K

    2011-02-01

    The way in which we respond to everyday stressors can have a profound impact on cognitive functioning. Maladaptive stress responses in particular are generally associated with impaired cognitive performance. We argue, however, that the cognitive system mediating task performance is also a critical determinant of the stress-cognition relationship. Consistent with this prediction, we observed that stress reactivity consistent with a maladaptive, threat response differentially predicted performance on two categorization tasks. Increased threat reactivity predicted enhanced performance on an information-integration task (i.e., learning is thought to depend upon a procedural-based memory system), and a (nonsignificant) trend for impaired performance on a rule-based task (i.e., learning is thought to depend upon a hypothesis-testing system). These data suggest that it is critical to consider both variability in the stress response and variability in the cognitive system mediating task performance in order to fully understand the stress-cognition relationship.

  16. Recommendation System Based On Association Rules For Distributed E-Learning Management Systems

    NASA Astrophysics Data System (ADS)

    Mihai, Gabroveanu

    2015-09-01

    Traditional Learning Management Systems are installed on a single server where learning materials and user data are kept. To increase its performance, the Learning Management System can be installed on multiple servers; learning materials and user data could be distributed across these servers obtaining a Distributed Learning Management System. In this paper is proposed the prototype of a recommendation system based on association rules for Distributed Learning Management System. Information from LMS databases is analyzed using distributed data mining algorithms in order to extract the association rules. Then the extracted rules are used as inference rules to provide personalized recommendations. The quality of provided recommendations is improved because the rules used to make the inferences are more accurate, since these rules aggregate knowledge from all e-Learning systems included in Distributed Learning Management System.

  17. Economic Impacts of the Category 3 Marine Rule on Great Lakes Shipping

    EPA Science Inventory

    This is a scenario-based economic assessment of the impacts of EPA’s Category 3 Marine Diesel Engines Rule on certain cargo movements in the Great Lakes shipping network. During the proposed phase of the rulemaking, Congress recommended that EPA conduct such a study, and EPA wil...

  18. Ventral Striatum and the Evaluation of Memory Retrieval Strategies

    PubMed Central

    Badre, David; Lebrecht, Sophie; Pagliaccio, David; Long, Nicole M.; Scimeca, Jason M.

    2015-01-01

    Adaptive memory retrieval requires mechanisms of cognitive control that facilitate the recovery of goal-relevant information. Frontoparietal systems are known to support control of memory retrieval. However, the mechanisms by which the brain acquires, evaluates, and adapts retrieval strategies remain unknown. Here, we provide evidence that ventral striatal activation tracks the success of a retrieval strategy and correlates with subsequent reliance on that strategy. Human participants were scanned with fMRI while performing a lexical decision task. A rule was provided that indicated the likely semantic category of a target word given the category of a preceding prime. Reliance on the rule improved decision-making, as estimated within a drift diffusion framework. Ventral striatal activation tracked the benefit that relying on the rule had on decision-making. Moreover, activation in ventral striatum correlated with a participant’s subsequent reliance on the rule. Taken together, these results support a role for ventral striatum in learning and evaluating declarative retrieval strategies. PMID:24564466

  19. Mechanisms of object recognition: what we have learned from pigeons

    PubMed Central

    Soto, Fabian A.; Wasserman, Edward A.

    2014-01-01

    Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784

  20. A neurocomputational account of cognitive deficits in Parkinson’s disease

    PubMed Central

    Hélie, Sébastien; Paul, Erick J.; Ashby, F. Gregory

    2014-01-01

    Parkinson’s disease (PD) is caused by the accelerated death of dopamine (DA) producing neurons. Numerous studies documenting cognitive deficits of PD patients have revealed impairments in a variety of tasks related to memory, learning, visuospatial skills, and attention. While there have been several studies documenting cognitive deficits of PD patients, very few computational models have been proposed. In this article, we use the COVIS model of category learning to simulate DA depletion and show that the model suffers from cognitive symptoms similar to those of human participants affected by PD. Specifically, DA depletion in COVIS produced deficits in rule-based categorization, non-linear information-integration categorization, probabilistic classification, rule maintenance, and rule switching. These were observed by simulating results from younger controls, older controls, PD patients, and severe PD patients in five well-known tasks. Differential performance among the different age groups and clinical populations was modeled simply by changing the amount of DA available in the model. This suggests that COVIS may not only be an adequate model of the simulated tasks and phenomena but also more generally of the role of DA in these tasks and phenomena. PMID:22683450

  1. On the fusion of tuning parameters of fuzzy rules and neural network

    NASA Astrophysics Data System (ADS)

    Mamuda, Mamman; Sathasivam, Saratha

    2017-08-01

    Learning fuzzy rule-based system with neural network can lead to a precise valuable empathy of several problems. Fuzzy logic offers a simple way to reach at a definite conclusion based upon its vague, ambiguous, imprecise, noisy or missing input information. Conventional learning algorithm for tuning parameters of fuzzy rules using training input-output data usually end in a weak firing state, this certainly powers the fuzzy rule and makes it insecure for a multiple-input fuzzy system. In this paper, we introduce a new learning algorithm for tuning the parameters of the fuzzy rules alongside with radial basis function neural network (RBFNN) in training input-output data based on the gradient descent method. By the new learning algorithm, the problem of weak firing using the conventional method was addressed. We illustrated the efficiency of our new learning algorithm by means of numerical examples. MATLAB R2014(a) software was used in simulating our result The result shows that the new learning method has the best advantage of training the fuzzy rules without tempering with the fuzzy rule table which allowed a membership function of the rule to be used more than one time in the fuzzy rule base.

  2. Using an improved association rules mining optimization algorithm in web-based mobile-learning system

    NASA Astrophysics Data System (ADS)

    Huang, Yin; Chen, Jianhua; Xiong, Shaojun

    2009-07-01

    Mobile-Learning (M-learning) makes many learners get the advantages of both traditional learning and E-learning. Currently, Web-based Mobile-Learning Systems have created many new ways and defined new relationships between educators and learners. Association rule mining is one of the most important fields in data mining and knowledge discovery in databases. Rules explosion is a serious problem which causes great concerns, as conventional mining algorithms often produce too many rules for decision makers to digest. Since Web-based Mobile-Learning System collects vast amounts of student profile data, data mining and knowledge discovery techniques can be applied to find interesting relationships between attributes of learners, assessments, the solution strategies adopted by learners and so on. Therefore ,this paper focus on a new data-mining algorithm, combined with the advantages of genetic algorithm and simulated annealing algorithm , called ARGSA(Association rules based on an improved Genetic Simulated Annealing Algorithm), to mine the association rules. This paper first takes advantage of the Parallel Genetic Algorithm and Simulated Algorithm designed specifically for discovering association rules. Moreover, the analysis and experiment are also made to show the proposed method is superior to the Apriori algorithm in this Mobile-Learning system.

  3. Scaffolding in geometry based on self regulated learning

    NASA Astrophysics Data System (ADS)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2017-12-01

    This research aim to know the influence of problem based learning model by scaffolding technique on junior high school student’s learning achievement. This research took location on the junior high school in Banyumas. The research data obtained through mathematic learning achievement test and self-regulated learning (SRL) questioner. Then, the data analysis used two ways ANOVA. The results showed that scaffolding has positive effect to the mathematic learning achievement. The mathematic learning achievement use PBL-Scaffolding model is better than use PBL. The high SRL category student has better mathematic learning achievement than middle and low SRL categories, and then the middle SRL category has better than low SRL category. So, there are interactions between learning model with self-regulated learning in increasing mathematic learning achievement.

  4. Lexically-based learning and early grammatical development.

    PubMed

    Lieven, E V; Pine, J M; Baldwin, G

    1997-02-01

    Pine & Lieven (1993) suggest that a lexically-based positional analysis can account for the structure of a considerable proportion of children's early multiword corpora. The present study tests this claim on a second, larger sample of eleven children aged between 1;0 and 3;0 from a different social background, and extends the analysis to later in development. Results indicate that the positional analysis can account for a mean of 60% of all the children's multiword utterances and that the great majority of all other utterances are defined as frozen by the analysis. Alternative explanations of the data based on hypothesizing underlying syntactic or semantic relations are investigated through analyses of pronoun case marking and of verbs with prototypical agent-patient roles. Neither supports the view that the children's utterances are being produced on the basis of general underlying rules and categories. The implications of widespread distributional learning in early language development are discussed.

  5. A self-learning rule base for command following in dynamical systems

    NASA Technical Reports Server (NTRS)

    Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander

    1992-01-01

    In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.

  6. Can we compare the environmental performance of this product to that one? An update on the development of product category rules and future challenges toward alignment

    EPA Science Inventory

    When used to compare the relative environmental benefits of different products, life cycle-based, quantitative environmental claims, such as carbon footprints and environmental product declarations require common rules in order for claims to be comparable within a category. Produ...

  7. Instructional Gaming: Implications for Instructional Technology.

    ERIC Educational Resources Information Center

    Dempsey, John V.; And Others

    Instructional gaming, as distinguished from simulation, is defined as any overt instructional or learning format that involves competition and is rule-guided. The literature review identifies five categories of articles on instructional gaming: (1) research, (2) theory, (3) reviews, (4) discussion, and (5) development. Games have been found to…

  8. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  9. Semantic memory for contextual regularities within and across scene categories: evidence from eye movements.

    PubMed

    Brockmole, James R; Le-Hoa Võ, Melissa

    2010-10-01

    When encountering familiar scenes, observers can use item-specific memory to facilitate the guidance of attention to objects appearing in known locations or configurations. Here, we investigated how memory for relational contingencies that emerge across different scenes can be exploited to guide attention. Participants searched for letter targets embedded in pictures of bedrooms. In a between-subjects manipulation, targets were either always on a bed pillow or randomly positioned. When targets were systematically located within scenes, search for targets became more efficient. Importantly, this learning transferred to bedrooms without pillows, ruling out learning that is based on perceptual contingencies. Learning also transferred to living room scenes, but it did not transfer to kitchen scenes, even though both scene types contained pillows. These results suggest that statistical regularities abstracted across a range of stimuli are governed by semantic expectations regarding the presence of target-predicting local landmarks. Moreover, explicit awareness of these contingencies led to a central tendency bias in recall memory for precise target positions that is similar to the spatial category effects observed in landmark memory. These results broaden the scope of conditions under which contextual cuing operates and demonstrate how semantic memory plays a causal and independent role in the learning of associations between objects in real-world scenes.

  10. Problem based learning with scaffolding technique on geometry

    NASA Astrophysics Data System (ADS)

    Bayuningsih, A. S.; Usodo, B.; Subanti, S.

    2018-05-01

    Geometry as one of the branches of mathematics has an important role in the study of mathematics. This research aims to explore the effectiveness of Problem Based Learning (PBL) with scaffolding technique viewed from self-regulation learning toward students’ achievement learning in mathematics. The research data obtained through mathematics learning achievement test and self-regulated learning (SRL) questionnaire. This research employed quasi-experimental research. The subjects of this research are students of the junior high school in Banyumas Central Java. The result of the research showed that problem-based learning model with scaffolding technique is more effective to generate students’ mathematics learning achievement than direct learning (DL). This is because in PBL model students are more able to think actively and creatively. The high SRL category student has better mathematic learning achievement than middle and low SRL categories, and then the middle SRL category has better than low SRL category. So, there are interactions between learning model with self-regulated learning in increasing mathematic learning achievement.

  11. Common-Sense Chemistry: The Use of Assumptions and Heuristics in Problem Solving

    ERIC Educational Resources Information Center

    Maeyer, Jenine Rachel

    2013-01-01

    Students experience difficulty learning and understanding chemistry at higher levels, often because of cognitive biases stemming from common sense reasoning constraints. These constraints can be divided into two categories: assumptions (beliefs held about the world around us) and heuristics (the reasoning strategies or rules used to build…

  12. Birth of an abstraction: a dynamical systems account of the discovery of an elsewhere principle in a category learning task.

    PubMed

    Tabor, Whitney; Cho, Pyeong W; Dankowicz, Harry

    2013-01-01

    Human participants and recurrent ("connectionist") neural networks were both trained on a categorization system abstractly similar to natural language systems involving irregular ("strong") classes and a default class. Both the humans and the networks exhibited staged learning and a generalization pattern reminiscent of the Elsewhere Condition (Kiparsky, 1973). Previous connectionist accounts of related phenomena have often been vague about the nature of the networks' encoding systems. We analyzed our network using dynamical systems theory, revealing topological and geometric properties that can be directly compared with the mechanisms of non-connectionist, rule-based accounts. The results reveal that the networks "contain" structures related to mechanisms posited by rule-based models, partly vindicating the insights of these models. On the other hand, they support the one mechanism (OM), as opposed to the more than one mechanism (MOM), view of symbolic abstraction by showing how the appearance of MOM behavior can arise emergently from one underlying set of principles. The key new contribution of this study is to show that dynamical systems theory can allow us to explicitly characterize the relationship between the two perspectives in implemented models. © 2013 Cognitive Science Society, Inc.

  13. An Eye-Tracking Study of Multiple Feature Value Category Structure Learning: The Role of Unique Features

    PubMed Central

    Liu, Zhiya; Song, Xiaohong; Seger, Carol A.

    2015-01-01

    We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting. PMID:26274332

  14. An Eye-Tracking Study of Multiple Feature Value Category Structure Learning: The Role of Unique Features.

    PubMed

    Liu, Zhiya; Song, Xiaohong; Seger, Carol A

    2015-01-01

    We examined whether the degree to which a feature is uniquely characteristic of a category can affect categorization above and beyond the typicality of the feature. We developed a multiple feature value category structure with different dimensions within which feature uniqueness and typicality could be manipulated independently. Using eye tracking, we found that the highest attentional weighting (operationalized as number of fixations, mean fixation time, and the first fixation of the trial) was given to a dimension that included a feature that was both unique and highly typical of the category. Dimensions that included features that were highly typical but not unique, or were unique but not highly typical, received less attention. A dimension with neither a unique nor a highly typical feature received least attention. On the basis of these results we hypothesized that subjects categorized via a rule learning procedure in which they performed an ordered evaluation of dimensions, beginning with unique and strongly typical dimensions, and in which earlier dimensions received higher weighting in the decision. This hypothesis accounted for performance on transfer stimuli better than simple implementations of two other common theories of category learning, exemplar models and prototype models, in which all dimensions were evaluated in parallel and received equal weighting.

  15. Category learning in the color-word contingency learning paradigm.

    PubMed

    Schmidt, James R; Augustinova, Maria; De Houwer, Jan

    2018-04-01

    In the typical color-word contingency learning paradigm, participants respond to the print color of words where each word is presented most often in one color. Learning is indicated by faster and more accurate responses when a word is presented in its usual color, relative to another color. To eliminate the possibility that this effect is driven exclusively by the familiarity of item-specific word-color pairings, we examine whether contingency learning effects can be observed also when colors are related to categories of words rather than to individual words. To this end, the reported experiments used three categories of words (animals, verbs, and professions) that were each predictive of one color. Importantly, each individual word was presented only once, thus eliminating individual color-word contingencies. Nevertheless, for the first time, a category-based contingency effect was observed, with faster and more accurate responses when a category item was presented in the color in which most of the other items of that category were presented. This finding helps to constrain episodic learning models and sets the stage for new research on category-based contingency learning.

  16. The Interactive Effects of the Availability of Objectives and/or Rules on Computer-Based Learning: A Replication.

    ERIC Educational Resources Information Center

    Merrill, Paul F.; And Others

    To replicate and extend the results of a previous study, this project investigated the effects of behavioral objectives and/or rules on computer-based learning task performance. The 133 subjects were randomly assigned to an example-only, objective-example, rule example, or objective-rule example group. The availability of rules and/or objectives…

  17. Applications of Machine Learning and Rule Induction,

    DTIC Science & Technology

    1995-02-15

    An important area of application for machine learning is in automating the acquisition of knowledge bases required for expert systems. In this paper...we review the major paradigms for machine learning , including neural networks, instance-based methods, genetic learning, rule induction, and analytic

  18. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  19. A rule-based expert system for chemical prioritization using effects-based chemical categories

    EPA Science Inventory

    A rule-based expert system (ES) was developed to predict chemical binding to the estrogen receptor (ER) patterned on the research approaches championed by Gilman Veith to whom this article and journal issue are dedicated. The ERES was built to be mechanistically-transparent and m...

  20. Executive Control Over Cognition: Stronger and Earlier Rule-Based Modulation of Spatial Category Signals in Prefrontal Cortex Relative to Parietal Cortex

    PubMed Central

    Goodwin, Shikha J.; Blackman, Rachael K.; Sakellaridi, Sofia

    2012-01-01

    Human cognition is characterized by flexibility, the ability to select not only which action but which cognitive process to engage to best achieve the current behavioral objective. The ability to tailor information processing in the brain to rules, goals, or context is typically referred to as executive control, and although there is consensus that prefrontal cortex is importantly involved, at present we have an incomplete understanding of how computational flexibility is implemented at the level of prefrontal neurons and networks. To better understand the neural mechanisms of computational flexibility, we simultaneously recorded the electrical activity of groups of single neurons within prefrontal and posterior parietal cortex of monkeys performing a task that required executive control of spatial cognitive processing. In this task, monkeys applied different spatial categorization rules to reassign the same set of visual stimuli to alternative categories on a trial-by-trial basis. We found that single neurons were activated to represent spatially defined categories in a manner that was rule dependent, providing a physiological signature of a cognitive process that was implemented under executive control. We found also that neural signals coding rule-dependent categories were distributed between the parietal and prefrontal cortex—however, not equally. Rule-dependent category signals were stronger, more powerfully modulated by the rule, and earlier to emerge in prefrontal cortex relative to parietal cortex. This suggests that prefrontal cortex may initiate the switch in neural representation at a network level that is important for computational flexibility. PMID:22399773

  1. Dual-learning systems during speech category learning

    PubMed Central

    Chandrasekaran, Bharath; Yi, Han-Gyol; Maddox, W. Todd

    2013-01-01

    Dual-systems models of visual category learning posit the existence of an explicit, hypothesis-testing ‘reflective’ system, as well as an implicit, procedural-based ‘reflexive’ system. The reflective and reflexive learning systems are competitive and neurally dissociable. Relatively little is known about the role of these domain-general learning systems in speech category learning. Given the multidimensional, redundant, and variable nature of acoustic cues in speech categories, our working hypothesis is that speech categories are learned reflexively. To this end, we examined the relative contribution of these learning systems to speech learning in adults. Native English speakers learned to categorize Mandarin tone categories over 480 trials. The training protocol involved trial-by-trial feedback and multiple talkers. Experiment 1 and 2 examined the effect of manipulating the timing (immediate vs. delayed) and information content (full vs. minimal) of feedback. Dual-systems models of visual category learning predict that delayed feedback and providing rich, informational feedback enhance reflective learning, while immediate and minimally informative feedback enhance reflexive learning. Across the two experiments, our results show feedback manipulations that targeted reflexive learning enhanced category learning success. In Experiment 3, we examined the role of trial-to-trial talker information (mixed vs. blocked presentation) on speech category learning success. We hypothesized that the mixed condition would enhance reflexive learning by not allowing an association between talker-related acoustic cues and speech categories. Our results show that the mixed talker condition led to relatively greater accuracies. Our experiments demonstrate that speech categories are optimally learned by training methods that target the reflexive learning system. PMID:24002965

  2. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  3. Explanation-based learning in infancy.

    PubMed

    Baillargeon, Renée; DeJong, Gerald F

    2017-10-01

    In explanation-based learning (EBL), domain knowledge is leveraged in order to learn general rules from few examples. An explanation is constructed for initial exemplars and is then generalized into a candidate rule that uses only the relevant features specified in the explanation; if the rule proves accurate for a few additional exemplars, it is adopted. EBL is thus highly efficient because it combines both analytic and empirical evidence. EBL has been proposed as one of the mechanisms that help infants acquire and revise their physical rules. To evaluate this proposal, 11- and 12-month-olds (n = 260) were taught to replace their current support rule (that an object is stable when half or more of its bottom surface is supported) with a more sophisticated rule (that an object is stable when half or more of the entire object is supported). Infants saw teaching events in which asymmetrical objects were placed on a base, followed by static test displays involving a novel asymmetrical object and a novel base. When the teaching events were designed to facilitate EBL, infants learned the new rule with as few as two (12-month-olds) or three (11-month-olds) exemplars. When the teaching events were designed to impede EBL, however, infants failed to learn the rule. Together, these results demonstrate that even infants, with their limited knowledge about the world, benefit from the knowledge-based approach of EBL.

  4. Category transfer in sequential causal learning: the unbroken mechanism hypothesis.

    PubMed

    Hagmayer, York; Meder, Björn; von Sydow, Momme; Waldmann, Michael R

    2011-07-01

    The goal of the present set of studies is to explore the boundary conditions of category transfer in causal learning. Previous research has shown that people are capable of inducing categories based on causal learning input, and they often transfer these categories to new causal learning tasks. However, occasionally learners abandon the learned categories and induce new ones. Whereas previously it has been argued that transfer is only observed with essentialist categories in which the hidden properties are causally relevant for the target effect in the transfer relation, we here propose an alternative explanation, the unbroken mechanism hypothesis. This hypothesis claims that categories are transferred from a previously learned causal relation to a new causal relation when learners assume a causal mechanism linking the two relations that is continuous and unbroken. The findings of two causal learning experiments support the unbroken mechanism hypothesis. Copyright © 2011 Cognitive Science Society, Inc.

  5. An Examination of Strategy Implementation during Abstract Nonlinguistic Category Learning in Aphasia

    ERIC Educational Resources Information Center

    Vallila-Rohter, Sofia; Kiran, Swathi

    2015-01-01

    Purpose: Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Method: Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases…

  6. Self-Supervised Chinese Ontology Learning from Online Encyclopedias

    PubMed Central

    Shao, Zhiqing; Ruan, Tong

    2014-01-01

    Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO. PMID:24715819

  7. Self-supervised Chinese ontology learning from online encyclopedias.

    PubMed

    Hu, Fanghuai; Shao, Zhiqing; Ruan, Tong

    2014-01-01

    Constructing ontology manually is a time-consuming, error-prone, and tedious task. We present SSCO, a self-supervised learning based chinese ontology, which contains about 255 thousand concepts, 5 million entities, and 40 million facts. We explore the three largest online Chinese encyclopedias for ontology learning and describe how to transfer the structured knowledge in encyclopedias, including article titles, category labels, redirection pages, taxonomy systems, and InfoBox modules, into ontological form. In order to avoid the errors in encyclopedias and enrich the learnt ontology, we also apply some machine learning based methods. First, we proof that the self-supervised machine learning method is practicable in Chinese relation extraction (at least for synonymy and hyponymy) statistically and experimentally and train some self-supervised models (SVMs and CRFs) for synonymy extraction, concept-subconcept relation extraction, and concept-instance relation extraction; the advantages of our methods are that all training examples are automatically generated from the structural information of encyclopedias and a few general heuristic rules. Finally, we evaluate SSCO in two aspects, scale and precision; manual evaluation results show that the ontology has excellent precision, and high coverage is concluded by comparing SSCO with other famous ontologies and knowledge bases; the experiment results also indicate that the self-supervised models obviously enrich SSCO.

  8. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

    PubMed

    van Ginneken, Bram

    2017-03-01

    Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

  9. Event Recognition Based on Deep Learning in Chinese Texts

    PubMed Central

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%. PMID:27501231

  10. Event Recognition Based on Deep Learning in Chinese Texts.

    PubMed

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  11. SKOLAR MD: A Model for Self-Directed, In-Context Continuing Medical Education

    PubMed Central

    Strasberg, Howard R.; Rindfleisch, Thomas C.; Hardy, Steven

    2003-01-01

    INTRODUCTION SKOLAR has implemented a web-based CME program with which physicians can earn AMA Category 1 credit for self-directed learning. METHODS Physicians researched their questions in SKOLAR and applied for CME. Physician auditors reviewed all requests across two phases of the project. A selection rule set was derived from phase one and used in phase two to flag a subset of requests for detailed review. The selection rule set is described. RESULTS In phase one, SKOLAR received 1039 CME applications. Applicants frequently found their answer (94%) and would apply it clinically (93%). A linear regression analysis comparing time awarded to time requested (capped at actual time spent) had R2=0.79. DISCUSSION We believe that hat this self-directed approach to CME is effective and an important complement to traditional CME programs. However, selective audit of self-directed CME requests is necessary to ensure validity of credits awarded. PMID:14728250

  12. Incremental Bayesian Category Learning From Natural Language.

    PubMed

    Frermann, Lea; Lapata, Mirella

    2016-08-01

    Models of category learning have been extensively studied in cognitive science and primarily tested on perceptual abstractions or artificial stimuli. In this paper, we focus on categories acquired from natural language stimuli, that is, words (e.g., chair is a member of the furniture category). We present a Bayesian model that, unlike previous work, learns both categories and their features in a single process. We model category induction as two interrelated subproblems: (a) the acquisition of features that discriminate among categories, and (b) the grouping of concepts into categories based on those features. Our model learns categories incrementally using particle filters, a sequential Monte Carlo method commonly used for approximate probabilistic inference that sequentially integrates newly observed data and can be viewed as a plausible mechanism for human learning. Experimental results show that our incremental learner obtains meaningful categories which yield a closer fit to behavioral data compared to related models while at the same time acquiring features which characterize the learned categories. (An earlier version of this work was published in Frermann and Lapata .). Copyright © 2015 Cognitive Science Society, Inc.

  13. eFSM--a novel online neural-fuzzy semantic memory model.

    PubMed

    Tung, Whye Loon; Quek, Chai

    2010-01-01

    Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.

  14. Learning and Retention through Predictive Inference and Classification

    ERIC Educational Resources Information Center

    Sakamoto, Yasuaki; Love, Bradley C.

    2010-01-01

    Work in category learning addresses how humans acquire knowledge and, thus, should inform classroom practices. In two experiments, we apply and evaluate intuitions garnered from laboratory-based research in category learning to learning tasks situated in an educational context. In Experiment 1, learning through predictive inference and…

  15. Processing advantages for consonance: A comparison between rats (Rattus norvegicus) and humans (Homo sapiens).

    PubMed

    Crespo-Bojorque, Paola; Toro, Juan M

    2016-05-01

    Consonance is a salient perceptual feature in harmonic music associated with pleasantness. Besides being deeply rooted in how we experience music, research suggests consonant intervals are more easily processed than dissonant intervals. In the present work we explore from a comparative perspective if such processing advantage extends to more complex tasks such as the detection of abstract rules. We ran experiments on rule learning over consonant and dissonant intervals with nonhuman animals and human participants. Results show differences across species regarding the extent to which they benefit from differences in consonance. Animals learn abstract rules with the same ease independently of whether they are implemented over consonant intervals (Experiment 1), dissonant intervals (Experiment 2), or over a combination of them (Experiment 3). Humans, on the contrary, learn an abstract rule better when it is implemented over consonant (Experiment 4) than over dissonant intervals (Experiment 5). Moreover, their performance improves when there is a mapping between abstract categories defining a rule and consonant and dissonant intervals (Experiments 6 and 7). Results suggest that for humans, consonance might be used as a perceptual anchor for other cognitive processes as to facilitate the detection of abstract patterns. Lacking extensive experience with harmonic stimuli, nonhuman animals tested here do not seem to benefit from a processing advantage for consonant intervals. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Cerebellar tDCS Does Not Enhance Performance in an Implicit Categorization Learning Task.

    PubMed

    Verhage, Marie C; Avila, Eric O; Frens, Maarten A; Donchin, Opher; van der Geest, Jos N

    2017-01-01

    Background: Transcranial Direct Current Stimulation (tDCS) is a form of non-invasive electrical stimulation that changes neuronal excitability in a polarity and site-specific manner. In cognitive tasks related to prefrontal and cerebellar learning, cortical tDCS arguably facilitates learning, but the few studies investigating cerebellar tDCS, however, are inconsistent. Objective: We investigate the effect of cerebellar tDCS on performance of an implicit categorization learning task. Methods: Forty participants performed a computerized version of an implicit categorization learning task where squares had to be sorted into two categories, according to an unknown but fixed rule that integrated both the size and luminance of the square. Participants did one round of categorization to familiarize themselves with the task and to provide a baseline of performance. After that, 20 participants received anodal tDCS (20 min, 1.5 mA) over the right cerebellum, and 19 participants received sham stimulation and simultaneously started a second session of the categorization task using a new rule. Results: As expected, subjects performed better in the second session than in the first, baseline session, showing increased accuracy scores and reduced reaction times. Over trials, participants learned the categorization rule, improving their accuracy and reaction times. However, we observed no effect of anodal tDCS stimulation on overall performance or on learning, compared to sham stimulation. Conclusion: These results suggest that cerebellar tDCS does not modulate performance and learning on an implicit categorization task.

  17. Word Learning and Attention Allocation Based on Word Class and Category Knowledge

    ERIC Educational Resources Information Center

    Hupp, Julie M.

    2015-01-01

    Attention allocation in word learning may vary developmentally based on the novelty of the object. It has been suggested that children differentially learn verbs based on the novelty of the agent, but adults do not because they automatically infer the object's category and thus treat it like a familiar object. The current research examined…

  18. Discovering Fine-grained Sentiment in Suicide Notes

    PubMed Central

    Wang, Wenbo; Chen, Lu; Tan, Ming; Wang, Shaojun; Sheth, Amit P.

    2012-01-01

    This paper presents our solution for the i2b2 sentiment classification challenge. Our hybrid system consists of machine learning and rule-based classifiers. For the machine learning classifier, we investigate a variety of lexical, syntactic and knowledge-based features, and show how much these features contribute to the performance of the classifier through experiments. For the rule-based classifier, we propose an algorithm to automatically extract effective syntactic and lexical patterns from training examples. The experimental results show that the rule-based classifier outperforms the baseline machine learning classifier using unigram features. By combining the machine learning classifier and the rule-based classifier, the hybrid system gains a better trade-off between precision and recall, and yields the highest micro-averaged F-measure (0.5038), which is better than the mean (0.4875) and median (0.5027) micro-average F-measures among all participating teams. PMID:22879770

  19. The effectiveness of physics learning material based on South Kalimantan local wisdom

    NASA Astrophysics Data System (ADS)

    Hartini, Sri; Misbah, Helda, Dewantara, Dewi

    2017-08-01

    The local wisdom is essential element incorporated into learning process. However, there are no learning materials in Physics learning process which contain South Kalimantan local wisdom. Therefore, it is necessary to develop a Physics learning material based on South Kalimantan local wisdom. The objective of this research is to produce products in the form of learning material based on South Kalimantan local wisdom that is feasible and effective based on the validity, practicality, effectiveness of learning material and achievement of waja sampai kaputing (wasaka) character. This research is a research and development which refers to the ADDIE model. Data were obtained through the validation sheet of learning material, questionnaire, the test of learning outcomes and the sheet of character assesment. The research results showed that (1) the validity category of the learning material was very valid, (2) the practicality category of the learning material was very practical, (3) the effectiveness category of thelearning material was very effective, and (4) the achivement of wasaka characters was very good. In conclusion, the Physics learning materials based on South Kalimantan local wisdom are feasible and effective to be used in learning activities.

  20. A Rational Analysis of Rule-Based Concept Learning

    ERIC Educational Resources Information Center

    Goodman, Noah D.; Tenenbaum, Joshua B.; Feldman, Jacob; Griffiths, Thomas L.

    2008-01-01

    This article proposes a new model of human concept learning that provides a rational analysis of learning feature-based concepts. This model is built upon Bayesian inference for a grammatically structured hypothesis space--a concept language of logical rules. This article compares the model predictions to human generalization judgments in several…

  1. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  2. Mental Health Risk Adjustment with Clinical Categories and Machine Learning.

    PubMed

    Shrestha, Akritee; Bergquist, Savannah; Montz, Ellen; Rose, Sherri

    2017-12-15

    To propose nonparametric ensemble machine learning for mental health and substance use disorders (MHSUD) spending risk adjustment formulas, including considering Clinical Classification Software (CCS) categories as diagnostic covariates over the commonly used Hierarchical Condition Category (HCC) system. 2012-2013 Truven MarketScan database. We implement 21 algorithms to predict MHSUD spending, as well as a weighted combination of these algorithms called super learning. The algorithm collection included seven unique algorithms that were supplied with three differing sets of MHSUD-related predictors alongside demographic covariates: HCC, CCS, and HCC + CCS diagnostic variables. Performance was evaluated based on cross-validated R 2 and predictive ratios. Results show that super learning had the best performance based on both metrics. The top single algorithm was random forests, which improved on ordinary least squares regression by 10 percent with respect to relative efficiency. CCS categories-based formulas were generally more predictive of MHSUD spending compared to HCC-based formulas. Literature supports the potential benefit of implementing a separate MHSUD spending risk adjustment formula. Our results suggest there is an incentive to explore machine learning for MHSUD-specific risk adjustment, as well as considering CCS categories over HCCs. © Health Research and Educational Trust.

  3. Mathematical misconception in calculus 1: Identification and gender difference

    NASA Astrophysics Data System (ADS)

    Nassir, Asyura Abd; Abdullah, Nur Hidayah Masni; Ahmad, Salimah; Tarmuji, Nor Habibah; Idris, Aminatul Solehah

    2017-08-01

    A few years of experience of teaching mathematics make us notice that the same types of mistakes are done repeatedly by students. This paper presents an insight into categories of mistakes, how male and female students differ in terms of mistakes that are commonly done and the ability of the students to identify the mistakes. Sample of mistakes were taken from Calculus 1 final exam answer scripts, then it was listed and analyzed. Data analysis revealed that students' misconceptions fall into four categories. The first category is misunderstanding the meaning of brackets, followed by misconception of basic mathematics rules, misconception in notation and misconception in properties of trigonometry. A mistake identification test which consists of ten false mathematical statements was designed based on the mistake done by the previous batch of students that covered topics algebra, trigonometry, index, limit, differentiation and integration. Then, the test was given to students who enrolled in Calculus I course. Respondents of this study were randomly selected among two hundreds engineering students. Data obtained were analyzed using basic descriptive analysis and Chi Square test to capture gender differences in the mistake done for each category. Findings indicate that thirty five percent of the students have the ability to identify the mistakes and make a proper correction for at most two statements. Thirty one percent of the students are able to identify the mistakes but unable to make proper correction. Twenty five percent of the students failed to identify the mistakes in six out of ten false statements. Female students' misconception is more likely in basic mathematics rules compared to male. The findings of this study could serve as baseline information to be stressed in improving teaching and learning mathematics.

  4. Relative risk of probabilistic category learning deficits in patients with schizophrenia and their siblings

    PubMed Central

    Weickert, Thomas W.; Goldberg, Terry E.; Egan, Michael F.; Apud, Jose A.; Meeter, Martijn; Myers, Catherine E.; Gluck, Mark A; Weinberger, Daniel R.

    2010-01-01

    Background While patients with schizophrenia display an overall probabilistic category learning performance deficit, the extent to which this deficit occurs in unaffected siblings of patients with schizophrenia is unknown. There are also discrepant findings regarding probabilistic category learning acquisition rate and performance in patients with schizophrenia. Methods A probabilistic category learning test was administered to 108 patients with schizophrenia, 82 unaffected siblings, and 121 healthy participants. Results Patients with schizophrenia displayed significant differences from their unaffected siblings and healthy participants with respect to probabilistic category learning acquisition rates. Although siblings on the whole failed to differ from healthy participants on strategy and quantitative indices of overall performance and learning acquisition, application of a revised learning criterion enabling classification into good and poor learners based on individual learning curves revealed significant differences between percentages of sibling and healthy poor learners: healthy (13.2%), siblings (34.1%), patients (48.1%), yielding a moderate relative risk. Conclusions These results clarify previous discrepant findings pertaining to probabilistic category learning acquisition rate in schizophrenia and provide the first evidence for the relative risk of probabilistic category learning abnormalities in unaffected siblings of patients with schizophrenia, supporting genetic underpinnings of probabilistic category learning deficits in schizophrenia. These findings also raise questions regarding the contribution of antipsychotic medication to the probabilistic category learning deficit in schizophrenia. The distinction between good and poor learning may be used to inform genetic studies designed to detect schizophrenia risk alleles. PMID:20172502

  5. An interplay of fusiform gyrus and hippocampus enables prototype- and exemplar-based category learning.

    PubMed

    Lech, Robert K; Güntürkün, Onur; Suchan, Boris

    2016-09-15

    The aim of the present study was to examine the contributions of different brain structures to prototype- and exemplar-based category learning using functional magnetic resonance imaging (fMRI). Twenty-eight subjects performed a categorization task in which they had to assign prototypes and exceptions to two different families. This test procedure usually produces different learning curves for prototype and exception stimuli. Our behavioral data replicated these previous findings by showing an initially superior performance for prototypes and typical stimuli and a switch from a prototype-based to an exemplar-based categorization for exceptions in the later learning phases. Since performance varied, we divided participants into learners and non-learners. Analysis of the functional imaging data revealed that the interaction of group (learners vs. non-learners) and block (Block 5 vs. Block 1) yielded an activation of the left fusiform gyrus for the processing of prototypes, and an activation of the right hippocampus for exceptions after learning the categories. Thus, successful prototype- and exemplar-based category learning is associated with activations of complementary neural substrates that constitute object-based processes of the ventral visual stream and their interaction with unique-cue representations, possibly based on sparse coding within the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Heterogeneity in perceptual category learning by high functioning children with autism spectrum disorder

    PubMed Central

    Mercado, Eduardo; Church, Barbara A.; Coutinho, Mariana V. C.; Dovgopoly, Alexander; Lopata, Christopher J.; Toomey, Jennifer A.; Thomeer, Marcus L.

    2015-01-01

    Previous research suggests that high functioning (HF) children with autism spectrum disorder (ASD) sometimes have problems learning categories, but often appear to perform normally in categorization tasks. The deficits that individuals with ASD show when learning categories have been attributed to executive dysfunction, general deficits in implicit learning, atypical cognitive strategies, or abnormal perceptual biases and abilities. Several of these psychological explanations for category learning deficits have been associated with neural abnormalities such as cortical underconnectivity. The present study evaluated how well existing neurally based theories account for atypical perceptual category learning shown by HF children with ASD across multiple category learning tasks involving novel, abstract shapes. Consistent with earlier results, children’s performances revealed two distinct patterns of learning and generalization associated with ASD: one was indistinguishable from performance in typically developing children; the other revealed dramatic impairments. These two patterns were evident regardless of training regimen or stimulus set. Surprisingly, some children with ASD showed both patterns. Simulations of perceptual category learning could account for the two observed patterns in terms of differences in neural plasticity. However, no current psychological or neural theory adequately explains why a child with ASD might show such large fluctuations in category learning ability across training conditions or stimulus sets. PMID:26157368

  7. Aqui y Alla (Here and There) Information-Based Learning Corridors between Tennessee and Puerto Rico: The Five Golden Rules in Intercultural Education

    ERIC Educational Resources Information Center

    Mehra, Bharat; Allard, Suzie; Qayyum, M. Asim; Barclay-McLaughlin, Gina

    2008-01-01

    This article proposes five information-based Golden Rules in intercultural education that represent a holistic approach to creating learning corridors across geographically dispersed academic communities. The Golden Rules are generated through qualitative analysis, grounded theory application, reflective practice, and critical research to…

  8. Higher order thinking skills: using e-portfolio in project-based learning

    NASA Astrophysics Data System (ADS)

    Lukitasari, M.; Handhika, J.; Murtafiah, W.

    2018-03-01

    The purpose of this research is to describe students' higher-order thinking skills through project-based learning using e-portfolio. The method used in this research is descriptive qualitative method. The research instruments used were test, unstructured interview, and documentation. Research subjects were students of mathematics, physics and biology education department who take the Basics Physics course. The result shows that through project-based learning using e-portfolio the students’ ability to: analyze (medium category, N-Gain 0.67), evaluate (medium category, N-Gain 0.51), and create (medium Category, N-Gain 0.44) are improved.

  9. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  10. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  11. 14 CFR 91.189 - Category II and III operations: General operating rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pilot who is controlling the aircraft has appropriate instrumentation for the type of flight control... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Instrument Flight Rules § 91.189 Category II and III operations: General operating rules. (a) No...

  12. Developmental changes in automatic rule-learning mechanisms across early childhood.

    PubMed

    Mueller, Jutta L; Friederici, Angela D; Männel, Claudia

    2018-06-27

    Infants' ability to learn complex linguistic regularities from early on has been revealed by electrophysiological studies indicating that 3-month-olds, but not adults, can automatically detect non-adjacent dependencies between syllables. While different ERP responses in adults and infants suggest that both linguistic rule learning and its link to basic auditory processing undergo developmental changes, systematic investigations of the developmental trajectories are scarce. In the present study, we assessed 2- and 4-year-olds' ERP indicators of pitch discrimination and linguistic rule learning in a syllable-based oddball design. To test for the relation between auditory discrimination and rule learning, ERP responses to pitch changes were used as predictor for potential linguistic rule-learning effects. Results revealed that 2-year-olds, but not 4-year-olds, showed ERP markers of rule learning. Although, 2-year-olds' rule learning was not dependent on differences in pitch perception, 4-year-old children demonstrated a dependency, such that those children who showed more pronounced responses to pitch changes still showed an effect of rule learning. These results narrow down the developmental decline of the ability for automatic linguistic rule learning to the age between 2 and 4 years, and, moreover, point towards a strong modification of this change by auditory processes. At an age when the ability of automatic linguistic rule learning phases out, rule learning can still be observed in children with enhanced auditory responses. The observed interrelations are plausible causes for age-of-acquisition effects and inter-individual differences in language learning. © 2018 John Wiley & Sons Ltd.

  13. Contributions of Lateral and Orbital Frontal Regions to Abstract Rule Acquisition and Reversal in Monkeys

    PubMed Central

    La Camera, Giancarlo; Bouret, Sebastien; Richmond, Barry J.

    2018-01-01

    The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established. PMID:29615854

  14. Adaptive WTA with an analog VLSI neuromorphic learning chip.

    PubMed

    Häfliger, Philipp

    2007-03-01

    In this paper, we demonstrate how a particular spike-based learning rule (where exact temporal relations between input and output spikes of a spiking model neuron determine the changes of the synaptic weights) can be tuned to express rate-based classical Hebbian learning behavior (where the average input and output spike rates are sufficient to describe the synaptic changes). This shift in behavior is controlled by the input statistic and by a single time constant. The learning rule has been implemented in a neuromorphic very large scale integration (VLSI) chip as part of a neurally inspired spike signal image processing system. The latter is the result of the European Union research project Convolution AER Vision Architecture for Real-Time (CAVIAR). Since it is implemented as a spike-based learning rule (which is most convenient in the overall spike-based system), even if it is tuned to show rate behavior, no explicit long-term average signals are computed on the chip. We show the rule's rate-based Hebbian learning ability in a classification task in both simulation and chip experiment, first with artificial stimuli and then with sensor input from the CAVIAR system.

  15. Oscillatory neural network for pattern recognition: trajectory based classification and supervised learning.

    PubMed

    Miller, Vonda H; Jansen, Ben H

    2008-12-01

    Computer algorithms that match human performance in recognizing written text or spoken conversation remain elusive. The reasons why the human brain far exceeds any existing recognition scheme to date in the ability to generalize and to extract invariant characteristics relevant to category matching are not clear. However, it has been postulated that the dynamic distribution of brain activity (spatiotemporal activation patterns) is the mechanism by which stimuli are encoded and matched to categories. This research focuses on supervised learning using a trajectory based distance metric for category discrimination in an oscillatory neural network model. Classification is accomplished using a trajectory based distance metric. Since the distance metric is differentiable, a supervised learning algorithm based on gradient descent is demonstrated. Classification of spatiotemporal frequency transitions and their relation to a priori assessed categories is shown along with the improved classification results after supervised training. The results indicate that this spatiotemporal representation of stimuli and the associated distance metric is useful for simple pattern recognition tasks and that supervised learning improves classification results.

  16. Principle-Based Inferences in Young Children's Categorization: Revisiting the Impact of Function on the Naming of Artifacts.

    ERIC Educational Resources Information Center

    Nelson, Deborah G. Kemler

    1995-01-01

    Three studies investigated the influence of principle-based inferences and unprincipled similarity relations on new category learning by three- to six-year-old children. Results indicated that categorization into newly learned categories may activate self-initiated, principle-based reasoning in young children, suggesting that spontaneous…

  17. Textural features for image classification

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Dinstein, I.; Shanmugam, K.

    1973-01-01

    Description of some easily computable textural features based on gray-tone spatial dependances, and illustration of their application in category-identification tasks of three different kinds of image data - namely, photomicrographs of five kinds of sandstones, 1:20,000 panchromatic aerial photographs of eight land-use categories, and ERTS multispectral imagery containing several land-use categories. Two kinds of decision rules are used - one for which the decision regions are convex polyhedra (a piecewise-linear decision rule), and one for which the decision regions are rectangular parallelpipeds (a min-max decision rule). In each experiment the data set was divided into two parts, a training set and a test set. Test set identification accuracy is 89% for the photomicrographs, 82% for the aerial photographic imagery, and 83% for the satellite imagery. These results indicate that the easily computable textural features probably have a general applicability for a wide variety of image-classification applications.

  18. Comparative analysis of expert and machine-learning methods for classification of body cavity effusions in companion animals.

    PubMed

    Hotz, Christine S; Templeton, Steven J; Christopher, Mary M

    2005-03-01

    A rule-based expert system using CLIPS programming language was created to classify body cavity effusions as transudates, modified transudates, exudates, chylous, and hemorrhagic effusions. The diagnostic accuracy of the rule-based system was compared with that produced by 2 machine-learning methods: Rosetta, a rough sets algorithm and RIPPER, a rule-induction method. Results of 508 body cavity fluid analyses (canine, feline, equine) obtained from the University of California-Davis Veterinary Medical Teaching Hospital computerized patient database were used to test CLIPS and to test and train RIPPER and Rosetta. The CLIPS system, using 17 rules, achieved an accuracy of 93.5% compared with pathologist consensus diagnoses. Rosetta accurately classified 91% of effusions by using 5,479 rules. RIPPER achieved the greatest accuracy (95.5%) using only 10 rules. When the original rules of the CLIPS application were replaced with those of RIPPER, the accuracy rates were identical. These results suggest that both rule-based expert systems and machine-learning methods hold promise for the preliminary classification of body fluids in the clinical laboratory.

  19. Applying the Rule Space Model to Develop a Learning Progression for Thermochemistry

    NASA Astrophysics Data System (ADS)

    Chen, Fu; Zhang, Shanshan; Guo, Yanfang; Xin, Tao

    2017-12-01

    We used the Rule Space Model, a cognitive diagnostic model, to measure the learning progression for thermochemistry for senior high school students. We extracted five attributes and proposed their hierarchical relationships to model the construct of thermochemistry at four levels using a hypothesized learning progression. For this study, we developed 24 test items addressing the attributes of exothermic and endothermic reactions, chemical bonds and heat quantity change, reaction heat and enthalpy, thermochemical equations, and Hess's law. The test was administered to a sample base of 694 senior high school students taught in 3 schools across 2 cities. Results based on the Rule Space Model analysis indicated that (1) the test items developed by the Rule Space Model were of high psychometric quality for good analysis of difficulties, discriminations, reliabilities, and validities; (2) the Rule Space Model analysis classified the students into seven different attribute mastery patterns; and (3) the initial hypothesized learning progression was modified by the attribute mastery patterns and the learning paths to be more precise and detailed.

  20. Differences in perceptual learning transfer as a function of training task.

    PubMed

    Green, C Shawn; Kattner, Florian; Siegel, Max H; Kersten, Daniel; Schrater, Paul R

    2015-01-01

    A growing body of research--including results from behavioral psychology, human structural and functional imaging, single-cell recordings in nonhuman primates, and computational modeling--suggests that perceptual learning effects are best understood as a change in the ability of higher-level integration or association areas to read out sensory information in the service of particular decisions. Work in this vein has argued that, depending on the training experience, the "rules" for this read-out can either be applicable to new contexts (thus engendering learning generalization) or can apply only to the exact training context (thus resulting in learning specificity). Here we contrast learning tasks designed to promote either stimulus-specific or stimulus-general rules. Specifically, we compare learning transfer across visual orientation following training on three different tasks: an orientation categorization task (which permits an orientation-specific learning solution), an orientation estimation task (which requires an orientation-general learning solution), and an orientation categorization task in which the relevant category boundary shifts on every trial (which lies somewhere between the two tasks above). While the simple orientation-categorization training task resulted in orientation-specific learning, the estimation and moving categorization tasks resulted in significant orientation learning generalization. The general framework tested here--that task specificity or generality can be predicted via an examination of the optimal learning solution--may be useful in building future training paradigms with certain desired outcomes.

  1. Fuzzy Q-Learning for Generalization of Reinforcement Learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1996-01-01

    Fuzzy Q-Learning, introduced earlier by the author, is an extension of Q-Learning into fuzzy environments. GARIC is a methodology for fuzzy reinforcement learning. In this paper, we introduce GARIC-Q, a new method for doing incremental Dynamic Programming using a society of intelligent agents which are controlled at the top level by Fuzzy Q-Learning and at the local level, each agent learns and operates based on GARIC. GARIC-Q improves the speed and applicability of Fuzzy Q-Learning through generalization of input space by using fuzzy rules and bridges the gap between Q-Learning and rule based intelligent systems.

  2. Developing Product Environmental Footprint Category Rules (PEFCR) for shampoos - The basis for comparable Life Cycle Assessments.

    PubMed

    Golsteijn, Laura; Lessard, Lindsay; Campion, Jean-Florent; Capelli, Alexandre; D'Enfert, Virginie; King, Henry; Kremer, Joachim; Krugman, Michael; Orliac, Hélène; Furnemont, Severine Roullet; Schuh, Werner; Stalmans, Mark; O'Hanlon, Natasha Williams; Coroama, Manuela

    2018-06-05

    In 2013, the European Commission launched the Environmental Footprint Rules pilot phase. This initiative aims at setting specific rules for life cycle assessment (LCA: raw material sourcing, production, logistics, use- and disposal phase) studies within one product category, so called product environmental footprint category rules (PEFCR), as well as for organisations, so called organisational environmental footprint sector rules (OEFSR). Such specific rules for measuring environmental performance throughout the life cycle should facilitate the comparability between LCA studies, and provide principles for communicating the environmental performance, such as transparency, reliability, completeness, and clarity. Cosmetics Europe, the association representing the cosmetics industry in the EU, completed a voluntary study into the development of PEFCR for shampoo, generally following the guidelines and methodology developed by the European Commission for its own pilot projects. The study assessed the feasibility and relevance of establishing PEFCR for shampoo. Specifically, the study defines a large number of modelling assumptions and default values relevant for shampoo (e.g. for the functional unit, the system boundaries, default transport distances, rinsing water volumes, temperature differences, life cycle inventory data sources etc) that can be modified as appropriate, according to specificities of individual products, manufacturing companies and countries. The results of the study may be used to support internal decision-making (e.g. to identify 'hotspots' with high environmental impact and opportunities for improvement) or to meet information requests from commercial partners, consumers, media or authorities on product environmental characteristics. In addition, the shampoo study also highlighted many of the challenges and limitations of the current PEF methodology, namely its complexity and resource intensiveness. It highlighted two areas where improvements are much needed: (1) data quality and availability, and (2) impact assessment methodologies and robustness. Many of the learnings are applicable to other rinse-off cosmetic products such as shower gels, liquid soaps, bath products and hair conditioners. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Contrastive Constraints Guide Explanation-Based Category Learning

    ERIC Educational Resources Information Center

    Chin-Parker, Seth; Cantelon, Julie

    2017-01-01

    This paper provides evidence for a contrastive account of explanation that is motivated by pragmatic theories that recognize the contribution that context makes to the interpretation of a prompt for explanation. This study replicates the primary findings of previous work in explanation-based category learning (Williams & Lombrozo, 2010),…

  4. Study preferences for exemplar variability in self-regulated category learning.

    PubMed

    Wahlheim, Christopher N; DeSoto, K Andrew

    2017-02-01

    Increasing exemplar variability during category learning can enhance classification of novel exemplars from studied categories. Four experiments examined whether participants preferred variability when making study choices with the goal of later classifying novel exemplars. In Experiments 1-3, participants were familiarised with exemplars of birds from multiple categories prior to making category-level assessments of learning and subsequent choices about whether to receive more variability or repetitions of exemplars during study. After study, participants classified novel exemplars from studied categories. The majority of participants showed a consistent preference for variability in their study, but choices were not related to category-level assessments of learning. Experiment 4 provided evidence that study preferences were based primarily on theoretical beliefs in that most participants indicated a preference for variability on questionnaires that did not include prior experience with exemplars. Potential directions for theoretical development and applications to education are discussed.

  5. Learning Category-Specific Dictionary and Shared Dictionary for Fine-Grained Image Categorization.

    PubMed

    Gao, Shenghua; Tsang, Ivor Wai-Hung; Ma, Yi

    2014-02-01

    This paper targets fine-grained image categorization by learning a category-specific dictionary for each category and a shared dictionary for all the categories. Such category-specific dictionaries encode subtle visual differences among different categories, while the shared dictionary encodes common visual patterns among all the categories. To this end, we impose incoherence constraints among the different dictionaries in the objective of feature coding. In addition, to make the learnt dictionary stable, we also impose the constraint that each dictionary should be self-incoherent. Our proposed dictionary learning formulation not only applies to fine-grained classification, but also improves conventional basic-level object categorization and other tasks such as event recognition. Experimental results on five data sets show that our method can outperform the state-of-the-art fine-grained image categorization frameworks as well as sparse coding based dictionary learning frameworks. All these results demonstrate the effectiveness of our method.

  6. Implementation of a spike-based perceptron learning rule using TiO2-x memristors.

    PubMed

    Mostafa, Hesham; Khiat, Ali; Serb, Alexander; Mayr, Christian G; Indiveri, Giacomo; Prodromakis, Themis

    2015-01-01

    Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic "cognitive" capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2-x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode.

  7. Search for Minimal and Semi-Minimal Rule Sets in Incremental Learning of Context-Free and Definite Clause Grammars

    NASA Astrophysics Data System (ADS)

    Imada, Keita; Nakamura, Katsuhiko

    This paper describes recent improvements to Synapse system for incremental learning of general context-free grammars (CFGs) and definite clause grammars (DCGs) from positive and negative sample strings. An important feature of our approach is incremental learning, which is realized by a rule generation mechanism called “bridging” based on bottom-up parsing for positive samples and the search for rule sets. The sizes of rule sets and the computation time depend on the search strategies. In addition to the global search for synthesizing minimal rule sets and serial search, another method for synthesizing semi-optimum rule sets, we incorporate beam search to the system for synthesizing semi-minimal rule sets. The paper shows several experimental results on learning CFGs and DCGs, and we analyze the sizes of rule sets and the computation time.

  8. Identifying Strategy Use in Category Learning Tasks: A Case for More Diagnostic Data and Models

    ERIC Educational Resources Information Center

    Donkin, Chris; Newell, Ben R.; Kalish, Mike; Dunn, John C.; Nosofsky, Robert M.

    2015-01-01

    The strength of conclusions about the adoption of different categorization strategies--and their implications for theories about the cognitive and neural bases of category learning--depend heavily on the techniques for identifying strategy use. We examine performance in an often-used "information-integration" category structure and…

  9. Attentional effects on rule extraction and consolidation from speech.

    PubMed

    López-Barroso, Diana; Cucurell, David; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2016-07-01

    Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowledge derived from implicit learning, which is based on prediction-based mechanisms, may become explicit. The role that attention plays in the formation of implicit and explicit knowledge of the learned material is unclear. In the present study, we investigated the role that attention plays in the acquisition of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention during learning changes the representation of the learned material after a 24h delay containing sleep. For that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial language that contained non-adjacent dependencies (rules) between words whereas different conditions were established to manipulate the amount of attention given to the rules (target and non-target conditions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of the rules occurred regardless of attention, more explicit judgments after learning showed differences in the type of learning reached under the two attention conditions. 24 hours later, indirect measures showed no further improvements during additional language exposure and explicit judgments indicated that only the information more robustly learned in the previous day, was consolidated. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Attentional effects on rule extraction and consolidation from speech

    PubMed Central

    López-Barroso, Diana; Cucurell, David; Rodríguez-Fornells, Antoni; de Diego-Balaguer, Ruth

    2016-01-01

    Incidental learning plays a crucial role in the initial phases of language acquisition. However the knowledge derived from implicit learning, which is based on prediction-based mechanisms, may become explicit. The role that attention plays in the formation of implicit and explicit knowledge of the learned material is unclear. In the present study, we investigated the role that attention plays in the acquisition of non-adjacent rule learning from speech. In addition, we also tested whether the amount of attention during learning changes the representation of the learned material after a 24 h delay containing sleep. For that, we developed an experiment run on two consecutive days consisting on the exposure to an artificial language that contained non-adjacent dependencies (rules) between words whereas different conditions were established to manipulate the amount of attention given to the rules (target and non-target conditions). Furthermore, we used both indirect and direct measures of learning that are more sensitive to implicit and explicit knowledge, respectively. Whereas the indirect measures indicated that learning of the rules occurred regardless of attention, more explicit judgments after learning showed differences in the type of learning reached under the two attention conditions. 24 hours later, indirect measures showed no further improvements during additional language exposure and explicit judgments indicated that only the information more robustly learned in the previous day, was consolidated. PMID:27031495

  11. A Study on Contingency Learning in Introductory Physics Concepts

    NASA Astrophysics Data System (ADS)

    Scaife, Thomas M.

    Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student learning is maximized? The choice is typically made by an intuitive assumption about which exact example will result in the most lucid illustration and the greatest student improvement. By questioning 583 students in four experiments, I examined a more principled approach to example selection. By controlling the manner in which physical dimensions vary, the parameter space of each concept can be divided into a discrete number of example categories. The effects of training with members of each of category was explored in two different physical contexts: projectile motion and torque. In the first context, students were shown two trajectories and asked to determine which represented the longer time of flight. Height, range, and time of flight were the physical dimensions that were used to categorize the examples. In the second context, students were shown a balance-scale with loads of differing masses placed at differing positions along either side of the balance-arm. Mass, lever-arm length, and torque were the physical dimensions used to categorize these examples. For both contexts, examples were chosen so that one or two independent dimensions were varied. After receiving training with examples from specific categories, students were tested with questions from all question categories. Successful training or instruction can be measured either as producing correct, expert-like behavior (as observed through answers to the questions) or as explicitly instilling an understanding of the underlying rule that governs a physical phenomenon. A student's behavior might not be consistent with their explicit rule, so following the investigation of their behavior, students were asked what rule they used when answering questions. Although the self-reported rules might not be congruent with their behavior, training with specific examples might affect how students explicitly think about physics problems. In addition to exploring the effectiveness of various training examples, the results were also compared to a cognitive theory of causality: the contingency model. Physical concepts can often be expressed in terms of causal relations (e.g., a net force causes an object to accelerate), and a large body of work has found that people make many decisions that are consistent with causal reasoning. The contingency model, in particular, explains how certain statistical regularities in the co-occurrence of two events can be interpreted by individuals as causal relations, and was chosen primarily because it of its robust results and simple, parsimonious form. The empirical results demonstrate that different categories of training examples did affect student answers differently. Furthermore, these effects were mostly consistent with the predictions made by the contingency model. When rule use was explored, the self-reported rules were consistent with contingency model predictions, but indicated that examples alone were insufficient to teach complex functional relationships between physical dimensions, such as torque.

  12. Land cover classification in multispectral imagery using clustering of sparse approximations over learned feature dictionaries

    DOE PAGES

    Moody, Daniela I.; Brumby, Steven P.; Rowland, Joel C.; ...

    2014-12-09

    We present results from an ongoing effort to extend neuromimetic machine vision algorithms to multispectral data using adaptive signal processing combined with compressive sensing and machine learning techniques. Our goal is to develop a robust classification methodology that will allow for automated discretization of the landscape into distinct units based on attributes such as vegetation, surface hydrological properties, and topographic/geomorphic characteristics. We use a Hebbian learning rule to build spectral-textural dictionaries that are tailored for classification. We learn our dictionaries from millions of overlapping multispectral image patches and then use a pursuit search to generate classification features. Land cover labelsmore » are automatically generated using unsupervised clustering of sparse approximations (CoSA). We demonstrate our method on multispectral WorldView-2 data from a coastal plain ecosystem in Barrow, Alaska. We explore learning from both raw multispectral imagery and normalized band difference indices. We explore a quantitative metric to evaluate the spectral properties of the clusters in order to potentially aid in assigning land cover categories to the cluster labels. In this study, our results suggest CoSA is a promising approach to unsupervised land cover classification in high-resolution satellite imagery.« less

  13. The use of misclassification costs to learn rule-based decision support models for cost-effective hospital admission strategies.

    PubMed

    Ambrosino, R; Buchanan, B G; Cooper, G F; Fine, M J

    1995-01-01

    Cost-effective health care is at the forefront of today's important health-related issues. A research team at the University of Pittsburgh has been interested in lowering the cost of medical care by attempting to define a subset of patients with community-acquire pneumonia for whom outpatient therapy is appropriate and safe. Sensitivity and specificity requirements for this domain make it difficult to use rule-based learning algorithms with standard measures of performance based on accuracy. This paper describes the use of misclassification costs to assist a rule-based machine-learning program in deriving a decision-support aid for choosing outpatient therapy for patients with community-acquired pneumonia.

  14. RuleML-Based Learning Object Interoperability on the Semantic Web

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Boley, Harold; Ranganathan, Girish R.

    2008-01-01

    Purpose: The present paper aims to describe an approach for building the Semantic Web rules for interoperation between heterogeneous learning objects, namely course outlines from different universities, and one of the rule uses: identifying (in)compatibilities between course descriptions. Design/methodology/approach: As proof of concept, a rule…

  15. Categorization: The View from Animal Cognition.

    PubMed

    Smith, J David; Zakrzewski, Alexandria C; Johnson, Jennifer M; Valleau, Jeanette C; Church, Barbara A

    2016-06-15

    Exemplar, prototype, and rule theory have organized much of the enormous literature on categorization. From this theoretical foundation have arisen the two primary debates in the literature-the prototype-exemplar debate and the single system-multiple systems debate. We review these theories and debates. Then, we examine the contribution that animal-cognition studies have made to them. Animals have been crucial behavioral ambassadors to the literature on categorization. They reveal the roots of human categorization, the basic assumptions of vertebrates entering category tasks, the surprising weakness of exemplar memory as a category-learning strategy. They show that a unitary exemplar theory of categorization is insufficient to explain human and animal categorization. They show that a multiple-systems theoretical account-encompassing exemplars, prototypes, and rules-will be required for a complete explanation. They show the value of a fitness perspective in understanding categorization, and the value of giving categorization an evolutionary depth and phylogenetic breadth. They raise important questions about the internal similarity structure of natural kinds and categories. They demonstrate strong continuities with humans in categorization, but discontinuities, too. Categorization's great debates are resolving themselves, and to these resolutions animals have made crucial contributions.

  16. Validity of "Hi_Science" as instructional media based-android refer to experiential learning model

    NASA Astrophysics Data System (ADS)

    Qamariah, Jumadi, Senam, Wilujeng, Insih

    2017-08-01

    Hi_Science is instructional media based-android in learning science on material environmental pollution and global warming. This study is aimed: (a) to show the display of Hi_Science that will be applied in Junior High School, and (b) to describe the validity of Hi_Science. Hi_Science as instructional media created with colaboration of innovative learning model and development of technology at the current time. Learning media selected is based-android and collaborated with experiential learning model as an innovative learning model. Hi_Science had adapted student worksheet by Taufiq (2015). Student worksheet had very good category by two expert lecturers and two science teachers (Taufik, 2015). This student worksheet is refined and redeveloped in android as an instructional media which can be used by students for learning science not only in the classroom, but also at home. Therefore, student worksheet which has become instructional media based-android must be validated again. Hi_Science has been validated by two experts. The validation is based on assessment of meterials aspects and media aspects. The data collection was done by media assessment instrument. The result showed the assessment of material aspects has obtained the average value 4,72 with percentage of agreement 96,47%, that means Hi_Science on the material aspects is in excellent category or very valid category. The assessment of media aspects has obtained the average value 4,53 with percentage of agreement 98,70%, that means Hi_Science on the media aspects is in excellent category or very valid category. It was concluded that Hi_Science as instructional media can be applied in the junior high school.

  17. Error identification and recovery by student nurses using human patient simulation: opportunity to improve patient safety.

    PubMed

    Henneman, Elizabeth A; Roche, Joan P; Fisher, Donald L; Cunningham, Helene; Reilly, Cheryl A; Nathanson, Brian H; Henneman, Philip L

    2010-02-01

    This study examined types of errors that occurred or were recovered in a simulated environment by student nurses. Errors occurred in all four rule-based error categories, and all students committed at least one error. The most frequent errors occurred in the verification category. Another common error was related to physician interactions. The least common errors were related to coordinating information with the patient and family. Our finding that 100% of student subjects committed rule-based errors is cause for concern. To decrease errors and improve safe clinical practice, nurse educators must identify effective strategies that students can use to improve patient surveillance. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Do Development and Learning Really Decrease Memory? On Similarity and Category-Based Induction in Adults and Children

    ERIC Educational Resources Information Center

    Wilburn, Catherine; Feeney, Aidan

    2008-01-01

    In a recently published study, Sloutsky and Fisher [Sloutsky, V. M., & Fisher, A.V. (2004a). When development and learning decrease memory: Evidence against category-based induction in children. "Psychological Science", 15, 553-558; Sloutsky, V. M., & Fisher, A. V. (2004b). Induction and categorization in young children: A similarity-based model.…

  19. Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning

    PubMed Central

    Ettlinger, Marc; Wong, Patrick C. M.

    2016-01-01

    Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085

  20. Timing of quizzes during learning: Effects on motivation and retention.

    PubMed

    Healy, Alice F; Jones, Matt; Lalchandani, Lakshmi A; Tack, Lindsay Anderson

    2017-06-01

    This article investigates how the timing of quizzes given during learning impacts retention of studied material. We investigated the hypothesis that interspersing quizzes among study blocks increases student engagement, thus improving learning. Participants learned 8 artificial facts about each of 8 plant categories, with the categories blocked during learning. Quizzes about 4 of the 8 facts from each category occurred either immediately after studying the facts for that category (standard) or after studying the facts from all 8 categories (postponed). In Experiment 1, participants were given tests shortly after learning and several days later, including both the initially quizzed and unquizzed facts. Test performance was better in the standard than in the postponed condition, especially for categories learned later in the sequence. This result held even for the facts not quizzed during learning, suggesting that the advantage cannot be due to any direct testing effects. Instead the results support the hypothesis that interrupting learning with quiz questions is beneficial because it can enhance learner engagement. Experiment 2 provided further support for this hypothesis, based on participants' retrospective ratings of their task engagement during the learning phase. These findings have practical implications for when to introduce quizzes in the classroom. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    PubMed

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  2. Collaborative project-based learning: an integrative science and technological education project

    NASA Astrophysics Data System (ADS)

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-04-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills.

  3. Study of distributed learning as a solution to category proliferation in Fuzzy ARTMAP based neural systems.

    PubMed

    Parrado-Hernández, Emilio; Gómez-Sánchez, Eduardo; Dimitriadis, Yannis A

    2003-09-01

    An evaluation of distributed learning as a means to attenuate the category proliferation problem in Fuzzy ARTMAP based neural systems is carried out, from both qualitative and quantitative points of view. The study involves two original winner-take-all (WTA) architectures, Fuzzy ARTMAP and FasArt, and their distributed versions, dARTMAP and dFasArt. A qualitative analysis of the distributed learning properties of dARTMAP is made, focusing on the new elements introduced to endow Fuzzy ARTMAP with distributed learning. In addition, a quantitative study on a selected set of classification problems points out that problems have to present certain features in their output classes in order to noticeably reduce the number of recruited categories and achieve an acceptable classification accuracy. As part of this analysis, distributed learning was successfully adapted to a member of the Fuzzy ARTMAP family, FasArt, and similar procedures can be used to extend distributed learning capabilities to other Fuzzy ARTMAP based systems.

  4. How learning one category influences the learning of another: intercategory generalization based on analogy and specific stimulus information.

    PubMed

    Nahinsky, Irwin D; Lucas, Barbara A; Edgell, Stephen E; Overfelt, Joseph; Loeb, Richard

    2004-01-01

    We investigated the effect of learning one category structure on the learning of a related category structure. Photograph-name combinations, called identifiers, were associated with values of four demographic attributes. Two problems were related by analogous demographic attributes, common identifiers, or both to examine the impact of common identifier, related general characteristics, and the interaction of the two variables in mediating learning transfer from one category structure to another. Problems sharing the same identifier information prompted greater positive transfer than those not sharing the same identifier information. In contrast, analogous defining characteristics in the two problems did not facilitate transfer. We computed correlations between responses to first-problem stimuli and responses to analogous second-problem stimuli for each participant. The analogous characteristics produced a tendency to respond in the same way to corresponding stimuli in the two problems. The results support an alignment between category structures related by analogous defining characteristics, which is facilitated by specific identifier information shared by two category structures.

  5. A Simulation Tool for the Duties of Computer Specialist Non-Commissioned Officers on a Turkish Air Force Base

    DTIC Science & Technology

    2009-09-01

    Interface IFR Instrument Flight Rules LANTIRN Low-Altitude Navigation and Targeting Infrared for Night MANTIRN Medium Altitude Navigation and...MANTIRN categories, and IFR weather categories. Aside from the category of personnel (computer specialist NCOs rather than pilots), the main...of the node, (2) Adding a description, (3) Implementing event arguments , local variables, and state transitions, (4) Implementing a code that is

  6. Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning

    PubMed Central

    Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien

    2015-01-01

    Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction. PMID:26065018

  7. Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning.

    PubMed

    Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien

    2015-01-01

    Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction.

  8. [Problem based learning: achievement of educational goals in the information and comprehension sub-categories of Bloom cognitive domain].

    PubMed

    Montecinos, P; Rodewald, A M

    1994-06-01

    The aim this work was to assess and compare the achievements of medical students, subjected to problem based learning methodology. The information and comprehension categories of Bloom were tested in 17 medical students in four different occasions during the physiopathology course, using a multiple choice knowledge test. There was a significant improvement in the number of correct answers towards the end of the course. It is concluded that these medical students obtained adequate learning achievements in the information subcategory of Bloom using problem based learning methodology, during the physiopathology course.

  9. Learning and retention through predictive inference and classification.

    PubMed

    Sakamoto, Yasuaki; Love, Bradley C

    2010-12-01

    Work in category learning addresses how humans acquire knowledge and, thus, should inform classroom practices. In two experiments, we apply and evaluate intuitions garnered from laboratory-based research in category learning to learning tasks situated in an educational context. In Experiment 1, learning through predictive inference and classification were compared for fifth-grade students using class-related materials. Making inferences about properties of category members and receiving feedback led to the acquisition of both queried (i.e., tested) properties and nonqueried properties that were correlated with a queried property (e.g., even if not queried, students learned about a species' habitat because it correlated with a queried property, like the species' size). In contrast, classifying items according to their species and receiving feedback led to knowledge of only the property most diagnostic of category membership. After multiple-day delay, the fifth-graders who learned through inference selectively retained information about the queried properties, and the fifth-graders who learned through classification retained information about the diagnostic property, indicating a role for explicit evaluation in establishing memories. Overall, inference learning resulted in fewer errors, better retention, and more liking of the categories than did classification learning. Experiment 2 revealed that querying a property only a few times was enough to manifest the full benefits of inference learning in undergraduate students. These results suggest that classroom teaching should emphasize reasoning from the category to multiple properties rather than from a set of properties to the category. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  10. 76 FR 18587 - Self-Regulatory Organizations; Notice of Filing and Immediate Effectiveness of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... purpose of Exchange Rule 1090. Pursuant to By-Law Article X, Section 12-10, to be eligible as an Inactive... purposes of Exchange Rule 1090.\\6\\ Rule 1090 was enacted to identify categories of persons that are not... trading floor. In order for Rule 1090 to apply to all categories of registered persons located on the...

  11. Adults' and Children's Understanding of How Expertise Influences Learning.

    PubMed

    Danovitch, Judith H; Shenouda, Christine K

    2018-01-01

    Adults and children use information about expertise to infer what a person is likely to know, but it is unclear whether they realize that expertise also has implications for learning. We explore adults' and children's understanding that expertise in a particular category supports learning about a closely related category. In four experiments, 5-year-olds and adults (n = 160) judged which of two people would be better at learning about a new category. When faced with an expert and a nonexpert, adults consistently indicated that expertise supports learning in a closely related category; however, children's judgments were inconsistent and were strongly influenced by the description of the nonexpert. The results suggest that although children understand what it means to be an expert, they may judge an individual's learning capacity based on different considerations than adults.

  12. Development of Category-based Induction and Semantic Knowledge

    ERIC Educational Resources Information Center

    Fisher, Anna V.; Godwin, Karrie E.; Matlen, Bryan J.; Unger, Layla

    2015-01-01

    Category-based induction is a hallmark of mature cognition; however, little is known about its origins. This study evaluated the hypothesis that category-based induction is related to semantic development. Computational studies suggest that early on there is little differentiation among concepts, but learning and development lead to increased…

  13. Learning Non-Adjacent Regularities at Age 0 ; 7

    ERIC Educational Resources Information Center

    Gervain, Judit; Werker, Janet F.

    2013-01-01

    One important mechanism suggested to underlie the acquisition of grammar is rule learning. Indeed, infants aged 0 ; 7 are able to learn rules based on simple identity relations (adjacent repetitions, ABB: "wo fe fe" and non-adjacent repetitions, ABA: "wo fe wo", respectively; Marcus et al., 1999). One unexplored issue is…

  14. Effects of Reflection Category and Reflection Quality on Learning Outcomes during Web-Based Portfolio Assessment Process: A Case Study of High School Students in Computer Application Course

    ERIC Educational Resources Information Center

    Chou, Pao-Nan; Chang, Chi-Cheng

    2011-01-01

    This study examines the effects of reflection category and reflection quality on learning outcomes during Web-based portfolio assessment process. Experimental subjects consist of forty-five eight-grade students in a "Computer Application" course. Through the Web-based portfolio assessment system, these students write reflection, and join…

  15. Genetic reinforcement learning through symbiotic evolution for fuzzy controller design.

    PubMed

    Juang, C F; Lin, J Y; Lin, C T

    2000-01-01

    An efficient genetic reinforcement learning algorithm for designing fuzzy controllers is proposed in this paper. The genetic algorithm (GA) adopted in this paper is based upon symbiotic evolution which, when applied to fuzzy controller design, complements the local mapping property of a fuzzy rule. Using this Symbiotic-Evolution-based Fuzzy Controller (SEFC) design method, the number of control trials, as well as consumed CPU time, are considerably reduced when compared to traditional GA-based fuzzy controller design methods and other types of genetic reinforcement learning schemes. Moreover, unlike traditional fuzzy controllers, which partition the input space into a grid, SEFC partitions the input space in a flexible way, thus creating fewer fuzzy rules. In SEFC, different types of fuzzy rules whose consequent parts are singletons, fuzzy sets, or linear equations (TSK-type fuzzy rules) are allowed. Further, the free parameters (e.g., centers and widths of membership functions) and fuzzy rules are all tuned automatically. For the TSK-type fuzzy rule especially, which put the proposed learning algorithm in use, only the significant input variables are selected to participate in the consequent of a rule. The proposed SEFC design method has been applied to different simulated control problems, including the cart-pole balancing system, a magnetic levitation system, and a water bath temperature control system. The proposed SEFC has been verified to be efficient and superior from these control problems, and from comparisons with some traditional GA-based fuzzy systems.

  16. View-invariant object category learning, recognition, and search: how spatial and object attention are coordinated using surface-based attentional shrouds.

    PubMed

    Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio

    2009-02-01

    How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.

  17. Brief Report: Simulations Suggest Heterogeneous Category Learning and Generalization in Children with Autism is a Result of Idiosyncratic Perceptual Transformations.

    PubMed

    Mercado, Eduardo; Church, Barbara A

    2016-08-01

    Children with autism spectrum disorder (ASD) sometimes have difficulties learning categories. Past computational work suggests that such deficits may result from atypical representations in cortical maps. Here we use neural networks to show that idiosyncratic transformations of inputs can result in the formation of feature maps that impair category learning for some inputs, but not for other closely related inputs. These simulations suggest that large inter- and intra-individual variations in learning capacities shown by children with ASD across similar categorization tasks may similarly result from idiosyncratic perceptual encoding that is resistant to experience-dependent changes. If so, then both feedback- and exposure-based category learning should lead to heterogeneous, stimulus-dependent deficits in children with ASD.

  18. Reinforcement Learning in a Nonstationary Environment: The El Farol Problem

    NASA Technical Reports Server (NTRS)

    Bell, Ann Maria

    1999-01-01

    This paper examines the performance of simple learning rules in a complex adaptive system based on a coordination problem modeled on the El Farol problem. The key features of the El Farol problem are that it typically involves a medium number of agents and that agents' pay-off functions have a discontinuous response to increased congestion. First we consider a single adaptive agent facing a stationary environment. We demonstrate that the simple learning rules proposed by Roth and Er'ev can be extremely sensitive to small changes in the initial conditions and that events early in a simulation can affect the performance of the rule over a relatively long time horizon. In contrast, a reinforcement learning rule based on standard practice in the computer science literature converges rapidly and robustly. The situation is reversed when multiple adaptive agents interact: the RE algorithms often converge rapidly to a stable average aggregate attendance despite the slow and erratic behavior of individual learners, while the CS based learners frequently over-attend in the early and intermediate terms. The symmetric mixed strategy equilibria is unstable: all three learning rules ultimately tend towards pure strategies or stabilize in the medium term at non-equilibrium probabilities of attendance. The brittleness of the algorithms in different contexts emphasize the importance of thorough and thoughtful examination of simulation-based results.

  19. Economic Impacts of the Category 3 Marine Rule on Great ...

    EPA Pesticide Factsheets

    This is a scenario-based economic assessment of the impacts of EPA’s Category 3 Marine Diesel Engines Rule on certain cargo movements in the Great Lakes shipping network. During the proposed phase of the rulemaking, Congress recommended that EPA conduct such a study, and EPA will docket the final peer-reviewed product at EPA-HQ-OAR-2007-0121. The objective is to assess how the requirement to switch to cleaner, more expensive fuel will affect certain shippers and operators on the Great Lakes, including the likelihood of cargo movements shifting away from marine transport.

  20. Individual differences in the benefits of feedback for learning.

    PubMed

    Kelley, Christopher M; McLaughlin, Anne Collins

    2012-02-01

    Research on learning from feedback has produced ambiguous guidelines for feedback design--some have advocated minimal feedback, whereas others have recommended more extensive feedback that highly supported performance. The objective of the current study was to investigate how individual differences in cognitive resources may predict feedback requirements and resolve previous conflicted findings. Cognitive resources were controlled for by comparing samples from populations with known differences, older and younger adults.To control for task demands, a simple rule-based learning task was created in which participants learned to identify fake Windows pop-ups. Pop-ups were divided into two categories--those that required fluid ability to identify and those that could be identified using crystallized intelligence. In general, results showed participants given higher feedback learned more. However, when analyzed by type of task demand, younger adults performed comparably with both levels of feedback for both cues whereas older adults benefited from increased feedbackfor fluid ability cues but from decreased feedback for crystallized ability cues. One explanation for the current findings is feedback requirements are connected to the cognitive abilities of the learner-those with higher abilities for the type of demands imposed by the task are likely to benefit from reduced feedback. We suggest the following considerations for feedback design: Incorporate learner characteristics and task demands when designing learning support via feedback.

  1. When does fading enhance perceptual category learning?

    PubMed

    Pashler, Harold; Mozer, Michael C

    2013-07-01

    Training that uses exaggerated versions of a stimulus discrimination (fading) has sometimes been found to enhance category learning, mostly in studies involving animals and impaired populations. However, little is known about whether and when fading facilitates learning for typical individuals. This issue was explored in 7 experiments. In Experiments 1 and 2, observers discriminated stimuli based on a single sensory continuum (time duration and line length, respectively). Adaptive fading dramatically improved performance in training (unsurprisingly) but did not enhance learning as assessed in a final test. The same was true for nonadaptive linear fading (Experiment 3). However, when variation in length (predicting category membership) was embedded among other (category-irrelevant) variation, fading dramatically enhanced not only performance in training but also learning as assessed in a final test (Experiments 4 and 5). Fading also helped learners to acquire a color saturation discrimination amid category-irrelevant variation in hue and brightness, although this learning proved transitory after feedback was withdrawn (Experiment 7). Theoretical implications are discussed, and we argue that fading should have practical utility in naturalistic category learning tasks, which involve extremely high dimensional stimuli and many irrelevant dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  2. An Examination of Strategy Implementation During Abstract Nonlinguistic Category Learning in Aphasia.

    PubMed

    Vallila-Rohter, Sofia; Kiran, Swathi

    2015-08-01

    Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases were calculated. To evaluate strategy use, strategy analyses were conducted over training and testing phases. Participant data were compared with model data that simulated complex multi-cue, single feature, and random pattern strategies. Learning success and strategy use were evaluated within the context of standardized cognitive-linguistic assessments. Categorization accuracy was higher among control participants than among PWA. The majority of control participants implemented suboptimal or optimal multi-cue and single-feature strategies by testing phases of the experiment. In contrast, a large subgroup of PWA implemented random patterns, or no strategy, during both training and testing phases of the experiment. Person-to-person variability arises not only in category learning ability but also in the strategies implemented to complete category learning tasks. PWA less frequently developed effective strategies during category learning tasks than control participants. Certain PWA may have impairments of strategy development or feedback processing not captured by language and currently probed cognitive abilities.

  3. Ways of dealing with science learning: a study based on Swedish early childhood education practice

    NASA Astrophysics Data System (ADS)

    Gustavsson, Laila; Jonsson, Agneta; Ljung-Djärf, Agneta; Thulin, Susanne

    2016-07-01

    The Swedish school system offers curriculum-based early childhood education (ECE) organised as preschool (for 0-5-year-olds) and preschool class (for 6-year-olds). The intention to create a playful and educational environment based on children's perspectives, interests, and questions is strongly based on historical and cultural traditions. This article develops knowledge of ECE teachers' approaches to science-learning situations. The study applies a phenomenographic approach. The analysis is based on approximately 9.5 hours of video documentation of teacher-led and child-initiated Swedish ECE science activities. We identified two descriptive categories and four subcategories dealing with science-learning situations: (A) making anything visible, containing the three subcategories (Aa) addressing everyone, (Ab) addressing everything, and (Ac) addressing play and fantasy; and (B) creating a shared space for learning (Ba) addressing common content. These categories are related to how efforts to take advantage of children's perspectives are interpreted and addressed in educational practice. The article discusses and exemplifies the use of various categories and their potential implications for ECE learning practice.

  4. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    PubMed Central

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule’s error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism. PMID:27532262

  5. Inferential Learning of Serial Order of Perceptual Categories by Rhesus Monkeys (Macaca mulatta)

    PubMed Central

    2017-01-01

    Category learning in animals is typically trained explicitly, in most instances by varying the exemplars of a single category in a matching-to-sample task. Here, we show that male rhesus macaques can learn categories by a transitive inference paradigm in which novel exemplars of five categories were presented throughout training. Instead of requiring decisions about a constant set of repetitively presented stimuli, we studied the macaque's ability to determine the relative order of multiple exemplars of particular stimuli that were rarely repeated. Ordinal decisions generalized both to novel stimuli and, as a consequence, to novel pairings. Thus, we showed that rhesus monkeys could learn to categorize on the basis of implied ordinal position, without prior matching-to-sample training, and that they could then make inferences about category order. Our results challenge the plausibility of association models of category learning and broaden the scope of the transitive inference paradigm. SIGNIFICANCE STATEMENT The cognitive abilities of nonhuman animals are of enduring interest to scientists and the general public because they blur the dividing line between human and nonhuman intelligence. Categorization and sequence learning are highly abstract cognitive abilities each in their own right. This study is the first to provide evidence that visual categories can be ordered serially by macaque monkeys using a behavioral paradigm that provides no explicit feedback about category or serial order. These results strongly challenge accounts of learning based on stimulus–response associations. PMID:28546309

  6. A hybrid learning method for constructing compact rule-based fuzzy models.

    PubMed

    Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W

    2013-12-01

    The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.

  7. Age-Related Brain Activation Changes during Rule Repetition in Word-Matching.

    PubMed

    Methqal, Ikram; Pinsard, Basile; Amiri, Mahnoush; Wilson, Maximiliano A; Monchi, Oury; Provost, Jean-Sebastien; Joanette, Yves

    2017-01-01

    Objective: The purpose of this study was to explore the age-related brain activation changes during a word-matching semantic-category-based task, which required either repeating or changing a semantic rule to be applied. In order to do so, a word-semantic rule-based task was adapted from the Wisconsin Sorting Card Test, involving the repeated feedback-driven selection of given pairs of words based on semantic category-based criteria. Method: Forty healthy adults (20 younger and 20 older) performed a word-matching task while undergoing a fMRI scan in which they were required to pair a target word with another word from a group of three words. The required pairing is based on three word-pair semantic rules which correspond to different levels of semantic control demands: functional relatedness, moderately typical-relatedness (which were considered as low control demands), and atypical-relatedness (high control demands). The sorting period consisted of a continuous execution of the same sorting rule and an inferred trial-by-trial feedback was given. Results: Behavioral performance revealed increases in response times and decreases of correct responses according to the level of semantic control demands (functional vs. typical vs. atypical) for both age groups (younger and older) reflecting graded differences in the repetition of the application of a given semantic rule. Neuroimaging findings of significant brain activation showed two main results: (1) Greater task-related activation changes for the repetition of the application of atypical rules relative to typical and functional rules, and (2) Changes (older > younger) in the inferior prefrontal regions for functional rules and more extensive and bilateral activations for typical and atypical rules. Regarding the inter-semantic rules comparison, only task-related activation differences were observed for functional > typical (e.g., inferior parietal and temporal regions bilaterally) and atypical > typical (e.g., prefrontal, inferior parietal, posterior temporal, and subcortical regions). Conclusion: These results suggest that healthy cognitive aging relies on the adaptive changes of inferior prefrontal resources involved in the repetitive execution of semantic rules, thus reflecting graded differences in support of task demands.

  8. Merit-Based Incentive Payment System: Meaningful Changes in the Final Rule Brings Cautious Optimism.

    PubMed

    Manchikanti, Laxmaiah; Helm Ii, Standiford; Calodney, Aaron K; Hirsch, Joshua A

    2017-01-01

    The Medicare Access and CHIP Reauthorization Act of 2015 (MACRA) eliminated the flawed Sustainable Growth Rate (SGR) act formula - a longstanding crucial issue of concern for health care providers and Medicare beneficiaries. MACRA also included a quality improvement program entitled, "The Merit-Based Incentive Payment System, or MIPS." The proposed rule of MIPS sought to streamline existing federal quality efforts and therefore linked 4 distinct programs into one. Three existing programs, meaningful use (MU), Physician Quality Reporting System (PQRS), value-based payment (VBP) system were merged with the addition of Clinical Improvement Activity category. The proposed rule also changed the name of MU to Advancing Care Information, or ACI. ACI contributes to 25% of composite score of the four programs, PQRS contributes 50% of the composite score, while VBP system, which deals with resource use or cost, contributes to 10% of the composite score. The newest category, Improvement Activities or IA, contributes 15% to the composite score. The proposed rule also created what it called a design incentive that drives movement to delivery system reform principles with the inclusion of Advanced Alternative Payment Models (APMs).Following the release of the proposed rule, the medical community, as well as Congress, provided substantial input to Centers for Medicare and Medicaid Services (CMS),expressing their concern. American Society of Interventional Pain Physicians (ASIPP) focused on 3 important aspects: delay the implementation, provide a 3-month performance period, and provide ability to submit meaningful quality measures in a timely and economic manner. The final rule accepted many of the comments from various organizations, including several of those specifically emphasized by ASIPP, with acceptance of 3-month reporting period, as well as the ability to submit non-MIPS measures to improve real quality and make the system meaningful. CMS also provided a mechanism for physicians to avoid penalties for non-reporting with reporting of just a single patient. In summary, CMS has provided substantial flexibility with mechanisms to avoid penalties, reporting for 90 continuous days, increasing the low volume threshold, changing the reporting burden and data thresholds and, finally, coordination between performance categories. The final rule has made MIPS more meaningful with bonuses for exceptional performance, the ability to report for 90 days, and to report on 50% of the patients in 2017 and 60% of the patients in 2018. The final rule also reduced the quality measures to 6, including only one outcome or high priority measure with elimination of cross cutting measure requirement. In addition, the final rule reduced the burden of ACI, improved the coordination of performance, reduced improvement activities burden from 60 points to 40 points, and finally improved coordination between performance categories. Multiple concerns remain regarding the reduction in scoring for quality improvement in future years, increase in proportion of MIPS scoring for resource use utilizing flawed, claims based methodology and the continuation of the disproportionate importance of ACI, an expensive program that can be onerous for providers which in many ways has not lived up to its promise. Key words: Medicare Access and CHIP Reauthorization Act of 2015, merit-based incentive payment system, quality performance measures, resource use, improvement activities, advancing care information performance category.

  9. Expert networks in CLIPS

    NASA Technical Reports Server (NTRS)

    Hruska, S. I.; Dalke, A.; Ferguson, J. J.; Lacher, R. C.

    1991-01-01

    Rule-based expert systems may be structurally and functionally mapped onto a special class of neural networks called expert networks. This mapping lends itself to adaptation of connectionist learning strategies for the expert networks. A parsing algorithm to translate C Language Integrated Production System (CLIPS) rules into a network of interconnected assertion and operation nodes has been developed. The translation of CLIPS rules to an expert network and back again is illustrated. Measures of uncertainty similar to those rules in MYCIN-like systems are introduced into the CLIPS system and techniques for combining and hiring nodes in the network based on rule-firing with these certainty factors in the expert system are presented. Several learning algorithms are under study which automate the process of attaching certainty factors to rules.

  10. Cerebellar Deep Nuclei Involvement in Cognitive Adaptation and Automaticity

    ERIC Educational Resources Information Center

    Callu, Delphine; Lopez, Joelle; El Massioui, Nicole

    2013-01-01

    To determine the role of the interpositus nuclei of cerebellum in rule-based learning and optimization processes, we studied (1) successive transfers of an initially acquired response rule in a cross maze and (2) behavioral strategies in learning a simple response rule in a T maze in interpositus lesioned rats (neurotoxic or electrolytic lesions).…

  11. Developing a Learning Progression for Number Sense Based on the Rule Space Model in China

    ERIC Educational Resources Information Center

    Chen, Fu; Yan, Yue; Xin, Tao

    2017-01-01

    The current study focuses on developing the learning progression of number sense for primary school students, and it applies a cognitive diagnostic model, the rule space model, to data analysis. The rule space model analysis firstly extracted nine cognitive attributes and their hierarchy model from the analysis of previous research and the…

  12. Phonological Concept Learning.

    PubMed

    Moreton, Elliott; Pater, Joe; Pertsova, Katya

    2017-01-01

    Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by the same models. We test GMECCS (Gradual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural Cue Model (Gluck & Bower, ) in a Maximum Entropy phonotactic-learning framework (Goldwater & Johnson, ; Hayes & Wilson, ) with a single free parameter, against the alternative hypothesis that learners seek featurally simple algebraic rules ("rule-seeking"). We study the full typology of patterns introduced by Shepard, Hovland, and Jenkins () ("SHJ"), instantiated as both phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2 found that both phonotactic and visual patterns that depended on fewer features could be more difficult than those that depended on more features, as predicted by GMECCS but not by rule-seeking. GMECCS also correctly predicted performance differences between stimulus subclasses within each pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learning) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude that similar cue-based cognitive processes are available for phonological and visual concept learning, and hence that studying either kind of learning can lead to significant insights about the other. Copyright © 2015 Cognitive Science Society, Inc.

  13. The Impact of Personality Traits on the Affective Category of English Language Learning Strategies

    ERIC Educational Resources Information Center

    Fazeli, Seyed Hossein

    2011-01-01

    The present study aims at discovering the impact of personality traits in the prediction use of the Affective English Language Learning Strategies (AELLSs) for learners of English as a foreign language. Four instruments were used, which were Adapted Inventory for Affective English Language Learning Strategies based on Affective category of…

  14. Interpretable Decision Sets: A Joint Framework for Description and Prediction

    PubMed Central

    Lakkaraju, Himabindu; Bach, Stephen H.; Jure, Leskovec

    2016-01-01

    One of the most important obstacles to deploying predictive models is the fact that humans do not understand and trust them. Knowing which variables are important in a model’s prediction and how they are combined can be very powerful in helping people understand and trust automatic decision making systems. Here we propose interpretable decision sets, a framework for building predictive models that are highly accurate, yet also highly interpretable. Decision sets are sets of independent if-then rules. Because each rule can be applied independently, decision sets are simple, concise, and easily interpretable. We formalize decision set learning through an objective function that simultaneously optimizes accuracy and interpretability of the rules. In particular, our approach learns short, accurate, and non-overlapping rules that cover the whole feature space and pay attention to small but important classes. Moreover, we prove that our objective is a non-monotone submodular function, which we efficiently optimize to find a near-optimal set of rules. Experiments show that interpretable decision sets are as accurate at classification as state-of-the-art machine learning techniques. They are also three times smaller on average than rule-based models learned by other methods. Finally, results of a user study show that people are able to answer multiple-choice questions about the decision boundaries of interpretable decision sets and write descriptions of classes based on them faster and more accurately than with other rule-based models that were designed for interpretability. Overall, our framework provides a new approach to interpretable machine learning that balances accuracy, interpretability, and computational efficiency. PMID:27853627

  15. Learning "Rules" of Practice within the Context of the Practicum Triad: A Case Study of Learning to Teach

    ERIC Educational Resources Information Center

    Chalies, Sebastien; Escalie, Guillaume; Stefano, Bertone; Clarke, Anthony

    2012-01-01

    This case study sought to determine the professional development circumstances in which a preservice teacher learned rules of practice (Wittgenstein, 1996) on practicum while interacting with a cooperating teacher and university supervisor. Borrowing from a theoretical conceptualization of teacher professional development based on the postulates…

  16. Out of sight, out of mind: Categorization learning and normal aging.

    PubMed

    Schenk, Sabrina; Minda, John P; Lech, Robert K; Suchan, Boris

    2016-10-01

    The present combined EEG and eye tracking study examined the process of categorization learning at different age ranges and aimed to investigate to which degree categorization learning is mediated by visual attention and perceptual strategies. Seventeen young subjects and ten elderly subjects had to perform a visual categorization task with two abstract categories. Each category consisted of prototypical stimuli and an exception. The categorization of prototypical stimuli was learned very early during the experiment, while the learning of exceptions was delayed. The categorization of exceptions was accompanied by higher P150, P250 and P300 amplitudes. In contrast to younger subjects, elderly subjects had problems in the categorization of exceptions, but showed an intact categorization performance for prototypical stimuli. Moreover, elderly subjects showed higher fixation rates for important stimulus features and higher P150 amplitudes, which were positively correlated with the categorization performances. These results indicate that elderly subjects compensate for cognitive decline through enhanced perceptual and attentional processing of individual stimulus features. Additionally, a computational approach has been applied and showed a transition away from purely abstraction-based learning to an exemplar-based learning in the middle block for both groups. However, the calculated models provide a better fit for younger subjects than for elderly subjects. The current study demonstrates that human categorization learning is based on early abstraction-based processing followed by an exemplar-memorization stage. This strategy combination facilitates the learning of real world categories with a nuanced category structure. In addition, the present study suggests that categorization learning is affected by normal aging and modulated by perceptual processing and visual attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Problem based learning: the effect of real time data on the website to student independence

    NASA Astrophysics Data System (ADS)

    Setyowidodo, I.; Pramesti, Y. S.; Handayani, A. D.

    2018-05-01

    Learning science developed as an integrative science rather than disciplinary education, the reality of the nation character development has not been able to form a more creative and independent Indonesian man. Problem Based Learning based on real time data in the website is a learning method focuses on developing high-level thinking skills in problem-oriented situations by integrating technology in learning. The essence of this study is the presentation of authentic problems in the real time data situation in the website. The purpose of this research is to develop student independence through Problem Based Learning based on real time data in website. The type of this research is development research with implementation using purposive sampling technique. Based on the study there is an increase in student self-reliance, where the students in very high category is 47% and in the high category is 53%. This learning method can be said to be effective in improving students learning independence in problem-oriented situations.

  18. Learning and tuning fuzzy logic controllers through reinforcements.

    PubMed

    Berenji, H R; Khedkar, P

    1992-01-01

    A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  19. Comparison of rule induction, decision trees and formal concept analysis approaches for classification

    NASA Astrophysics Data System (ADS)

    Kotelnikov, E. V.; Milov, V. R.

    2018-05-01

    Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.

  20. Rule-Based Categorization Deficits in Focal Basal Ganglia Lesion and Parkinson’s Disease Patients

    PubMed Central

    Ell, Shawn W.; Weinstein, Andrea; Ivry, Richard B.

    2010-01-01

    Patients with basal ganglia (BG) pathology are consistently found to be impaired on rule-based category learning tasks in which learning is thought to depend upon the use of an explicit, hypothesis-guided strategy. The factors that influence this impairment remain unclear. Moreover, it remains unknown if the impairments observed in patients with degenerative disorders such as Parkinson's disease (PD) are also observed in those with focal BG lesions. In the present study, we tested patients with either focal BG lesions or PD on two categorization tasks that varied in terms of their demands on selective attention and working memory. Individuals with focal BG lesions were impaired on the task in which working-memory demand was high and performed similarly to healthy controls on the task in which selective-attention demand was high. In contrast, individuals with PD were impaired on both tasks, and accuracy rates did not differ between on- and off-medication states for a subset of patients who were also tested after abstaining from dopaminergic medication. Quantitative, model-based analyses attributed the performance deficit for both groups in the task with high working-memory demand to the utilization of suboptimal strategies, whereas the PD-specific impairment on the task with high selective-attention demand was driven by the inconsistent use of an optimal strategy. These data suggest that the demands on selective attention and working memory affect the presence of impairment in patients with focal BG lesions and the nature of the impairment in patients with PD. PMID:20600196

  1. Learning of Monotonic and Nonmonotonic Sequences in Domesticated Horses ("Equus Callabus") and Chickens ("Gallus Domesticus")

    ERIC Educational Resources Information Center

    Kundey, Shannon M. A.; Strandell, Brittany; Mathis, Heather; Rowan, James D.

    2010-01-01

    (Hulse and Dorsky, 1977) and (Hulse and Dorsky, 1979) found that rats, like humans, learn sequences following a simple rule-based structure more quickly than those lacking a rule-based structure. Through two experiments, we explored whether two additional species--domesticated horses ("Equus callabus") and chickens ("Gallus domesticus")--would…

  2. The cognitive capabilities of farm animals: categorisation learning in dwarf goats (Capra hircus).

    PubMed

    Meyer, Susann; Nürnberg, Gerd; Puppe, Birger; Langbein, Jan

    2012-07-01

    The ability to establish categories enables organisms to classify stimuli, objects and events by assessing perceptual, associative or rational similarities and provides the basis for higher cognitive processing. The cognitive capabilities of farm animals are receiving increasing attention in applied ethology, a development driven primarily by scientifically based efforts to improve animal welfare. The present study investigated the learning of perceptual categories in Nigerian dwarf goats (Capra hircus) by using an automated learning device installed in the animals' pen. Thirteen group-housed goats were trained in a closed-economy approach to discriminate artificial two-dimensional symbols presented in a four-choice design. The symbols belonged to two categories: category I, black symbols with an open centre (rewarded) and category II, the same symbols but filled black (unrewarded). One symbol from category I and three different symbols from category II were used to define a discrimination problem. After the training of eight problems, the animals were presented with a transfer series containing the training problems interspersed with completely new problems made from new symbols belonging to the same categories. The results clearly demonstrate that dwarf goats are able to form categories based on similarities in the visual appearance of artificial symbols and to generalise across new symbols. However, the goats had difficulties in discriminating specific symbols. It is probable that perceptual problems caused these difficulties. Nevertheless, the present study suggests that goats housed under farming conditions have well-developed cognitive abilities, including learning of open-ended categories. This result could prove beneficial by facilitating animals' adaptation to housing environments that favour their cognitive capabilities.

  3. Evaluation of Machine Learning and Rules-Based Approaches for Predicting Antimicrobial Resistance Profiles in Gram-negative Bacilli from Whole Genome Sequence Data.

    PubMed

    Pesesky, Mitchell W; Hussain, Tahir; Wallace, Meghan; Patel, Sanket; Andleeb, Saadia; Burnham, Carey-Ann D; Dantas, Gautam

    2016-01-01

    The time-to-result for culture-based microorganism recovery and phenotypic antimicrobial susceptibility testing necessitates initial use of empiric (frequently broad-spectrum) antimicrobial therapy. If the empiric therapy is not optimal, this can lead to adverse patient outcomes and contribute to increasing antibiotic resistance in pathogens. New, more rapid technologies are emerging to meet this need. Many of these are based on identifying resistance genes, rather than directly assaying resistance phenotypes, and thus require interpretation to translate the genotype into treatment recommendations. These interpretations, like other parts of clinical diagnostic workflows, are likely to be increasingly automated in the future. We set out to evaluate the two major approaches that could be amenable to automation pipelines: rules-based methods and machine learning methods. The rules-based algorithm makes predictions based upon current, curated knowledge of Enterobacteriaceae resistance genes. The machine-learning algorithm predicts resistance and susceptibility based on a model built from a training set of variably resistant isolates. As our test set, we used whole genome sequence data from 78 clinical Enterobacteriaceae isolates, previously identified to represent a variety of phenotypes, from fully-susceptible to pan-resistant strains for the antibiotics tested. We tested three antibiotic resistance determinant databases for their utility in identifying the complete resistome for each isolate. The predictions of the rules-based and machine learning algorithms for these isolates were compared to results of phenotype-based diagnostics. The rules based and machine-learning predictions achieved agreement with standard-of-care phenotypic diagnostics of 89.0 and 90.3%, respectively, across twelve antibiotic agents from six major antibiotic classes. Several sources of disagreement between the algorithms were identified. Novel variants of known resistance factors and incomplete genome assembly confounded the rules-based algorithm, resulting in predictions based on gene family, rather than on knowledge of the specific variant found. Low-frequency resistance caused errors in the machine-learning algorithm because those genes were not seen or seen infrequently in the test set. We also identified an example of variability in the phenotype-based results that led to disagreement with both genotype-based methods. Genotype-based antimicrobial susceptibility testing shows great promise as a diagnostic tool, and we outline specific research goals to further refine this methodology.

  4. Evolving fuzzy rules in a learning classifier system

    NASA Technical Reports Server (NTRS)

    Valenzuela-Rendon, Manuel

    1993-01-01

    The fuzzy classifier system (FCS) combines the ideas of fuzzy logic controllers (FLC's) and learning classifier systems (LCS's). It brings together the expressive powers of fuzzy logic as it has been applied in fuzzy controllers to express relations between continuous variables, and the ability of LCS's to evolve co-adapted sets of rules. The goal of the FCS is to develop a rule-based system capable of learning in a reinforcement regime, and that can potentially be used for process control.

  5. Impact of feature saliency on visual category learning.

    PubMed

    Hammer, Rubi

    2015-01-01

    People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the 'essence' of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies.

  6. Impact of feature saliency on visual category learning

    PubMed Central

    Hammer, Rubi

    2015-01-01

    People have to sort numerous objects into a large number of meaningful categories while operating in varying contexts. This requires identifying the visual features that best predict the ‘essence’ of objects (e.g., edibility), rather than categorizing objects based on the most salient features in a given context. To gain this capacity, visual category learning (VCL) relies on multiple cognitive processes. These may include unsupervised statistical learning, that requires observing multiple objects for learning the statistics of their features. Other learning processes enable incorporating different sources of supervisory information, alongside the visual features of the categorized objects, from which the categorical relations between few objects can be deduced. These deductions enable inferring that objects from the same category may differ from one another in some high-saliency feature dimensions, whereas lower-saliency feature dimensions can best differentiate objects from distinct categories. Here I illustrate how feature saliency affects VCL, by also discussing kinds of supervisory information enabling reflective categorization. Arguably, principles debated here are often being ignored in categorization studies. PMID:25954220

  7. Tracking Multiple Statistics: Simultaneous Learning of Object Names and Categories in English and Mandarin Speakers.

    PubMed

    Chen, Chi-Hsin; Gershkoff-Stowe, Lisa; Wu, Chih-Yi; Cheung, Hintat; Yu, Chen

    2017-08-01

    Two experiments were conducted to examine adult learners' ability to extract multiple statistics in simultaneously presented visual and auditory input. Experiment 1 used a cross-situational learning paradigm to test whether English speakers were able to use co-occurrences to learn word-to-object mappings and concurrently form object categories based on the commonalities across training stimuli. Experiment 2 replicated the first experiment and further examined whether speakers of Mandarin, a language in which final syllables of object names are more predictive of category membership than English, were able to learn words and form object categories when trained with the same type of structures. The results indicate that both groups of learners successfully extracted multiple levels of co-occurrence and used them to learn words and object categories simultaneously. However, marked individual differences in performance were also found, suggesting possible interference and competition in processing the two concurrent streams of regularities. Copyright © 2016 Cognitive Science Society, Inc.

  8. Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Wang, Zhi; Le, Yansi; Sun, Chonghui; Song, Xiaojia; Wu, Chongqing

    2016-10-01

    Neuromorphic engineering has a wide range of applications in the fields of machine learning, pattern recognition, adaptive control, etc. Photonics, characterized by its high speed, wide bandwidth, low power consumption and massive parallelism, is an ideal way to realize ultrafast spiking neural networks (SNNs). Synaptic plasticity is believed to be critical for learning, memory and development in neural circuits. Experimental results have shown that changes of synapse are highly dependent on the relative timing of pre- and postsynaptic spikes. Synaptic plasticity in which presynaptic spikes preceding postsynaptic spikes results in strengthening, while the opposite timing results in weakening is called antisymmetric spike-timing-dependent plasticity (STDP) learning rule. And synaptic plasticity has the opposite effect under the same conditions is called antisymmetric anti-STDP learning rule. We proposed and experimentally demonstrated an optical implementation of neural learning algorithms, which can achieve both of antisymmetric STDP and anti-STDP learning rule, based on the cross-gain modulation (XGM) within a single semiconductor optical amplifier (SOA). The weight and height of the potentitation and depression window can be controlled by adjusting the injection current of the SOA, to mimic the biological antisymmetric STDP and anti-STDP learning rule more realistically. As the injection current increases, the width of depression and potentitation window decreases and height increases, due to the decreasing of recovery time and increasing of gain under a stronger injection current. Based on the demonstrated optical STDP circuit, ultrafast learning in optical SNNs can be realized.

  9. Work-Based Learning: A Resource Guide for Change. Test Draft.

    ERIC Educational Resources Information Center

    Hudson River Center for Program Development, Glenmont, NY.

    This resource guide is intended to provide New York schools, business/industry, and others with resources to develop work-based learning strategies and components. Section 1 examines the scope, foundation, categories, and operation of work-based learning. Section 2 presents detailed information about the following forms of work-based learning:…

  10. An Examination of Strategy Implementation During Abstract Nonlinguistic Category Learning in Aphasia

    PubMed Central

    Kiran, Swathi

    2015-01-01

    Purpose Our purpose was to study strategy use during nonlinguistic category learning in aphasia. Method Twelve control participants without aphasia and 53 participants with aphasia (PWA) completed a computerized feedback-based category learning task consisting of training and testing phases. Accuracy rates of categorization in testing phases were calculated. To evaluate strategy use, strategy analyses were conducted over training and testing phases. Participant data were compared with model data that simulated complex multi-cue, single feature, and random pattern strategies. Learning success and strategy use were evaluated within the context of standardized cognitive–linguistic assessments. Results Categorization accuracy was higher among control participants than among PWA. The majority of control participants implemented suboptimal or optimal multi-cue and single-feature strategies by testing phases of the experiment. In contrast, a large subgroup of PWA implemented random patterns, or no strategy, during both training and testing phases of the experiment. Conclusions Person-to-person variability arises not only in category learning ability but also in the strategies implemented to complete category learning tasks. PWA less frequently developed effective strategies during category learning tasks than control participants. Certain PWA may have impairments of strategy development or feedback processing not captured by language and currently probed cognitive abilities. PMID:25908438

  11. The Development of Inquiry Learning Materials to Complete Content Life System Organization in Junior High School Students

    NASA Astrophysics Data System (ADS)

    Mayasari, F.; Raharjo; Supardi, Z. A. I.

    2018-01-01

    This research aims to develop the material eligibility to complete the inquiry learning of student in the material organization system of junior high school students. Learning materials developed include syllabi, lesson plans, students’ textbook, worksheets, and learning achievement test. This research is the developmental research which employ Dick and Carey model to develop learning material. The experiment was done in Junior High School 4 Lamongan regency using One Group Pretest-Posttest Design. The data collection used validation, observation, achievement test, questionnaire administration, and documentation. Data analysis techniques used quantitative and qualitative descriptive.The results showed that the developed learning material was valid and can be used. Learning activity accomplished with good category, where student activities were observed. The aspects of attitudes were observed during the learning process are honest, responsible, and confident. Student learning achievement gained an average of 81, 85 in complete category, with N-Gain 0, 75 for a high category. The activities and student response to learning was very well categorized. Based on the results, this researcher concluded that the device classified as feasible of inquiry-based learning (valid, practical, and effective) system used on the material organization of junior high school students.

  12. CMedTEX: A Rule-based Temporal Expression Extraction and Normalization System for Chinese Clinical Notes.

    PubMed

    Liu, Zengjian; Tang, Buzhou; Wang, Xiaolong; Chen, Qingcai; Li, Haodi; Bu, Junzhao; Jiang, Jingzhi; Deng, Qiwen; Zhu, Suisong

    2016-01-01

    Time is an important aspect of information and is very useful for information utilization. The goal of this study was to analyze the challenges of temporal expression (TE) extraction and normalization in Chinese clinical notes by assessing the performance of a rule-based system developed by us on a manually annotated corpus (including 1,778 clinical notes of 281 hospitalized patients). In order to develop system conveniently, we divided TEs into three categories: direct, indirect and uncertain TEs, and designed different rules for each category of them. Evaluation on the independent test set shows that our system achieves an F-score of93.40% on TE extraction, and an accuracy of 92.58% on TE normalization under "exact-match" criterion. Compared with HeidelTime for Chinese newswire text, our system is much better, indicating that it is necessary to develop a specific TE extraction and normalization system for Chinese clinical notes because of domain difference.

  13. Collaborative Project-Based Learning: An Integrative Science and Technological Education Project

    ERIC Educational Resources Information Center

    Baser, Derya; Ozden, M. Yasar; Karaarslan, Hasan

    2017-01-01

    Background: Blending collaborative learning and project-based learning (PBL) based on Wolff (2003) design categories, students interacted in a learning environment where they developed their technology integration practices as well as their technological and collaborative skills. Purpose: The study aims to understand how seventh grade students…

  14. RESIDUAL RISK ASSESSMENT: MAGNETIC TAPE ...

    EPA Pesticide Factsheets

    This document describes the residual risk assessment for the Magnetic Tape Manufacturing source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Magnetic Tape Manufacturing source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  15. Logic Learning Machine and standard supervised methods for Hodgkin's lymphoma prognosis using gene expression data and clinical variables.

    PubMed

    Parodi, Stefano; Manneschi, Chiara; Verda, Damiano; Ferrari, Enrico; Muselli, Marco

    2018-03-01

    This study evaluates the performance of a set of machine learning techniques in predicting the prognosis of Hodgkin's lymphoma using clinical factors and gene expression data. Analysed samples from 130 Hodgkin's lymphoma patients included a small set of clinical variables and more than 54,000 gene features. Machine learning classifiers included three black-box algorithms ( k-nearest neighbour, Artificial Neural Network, and Support Vector Machine) and two methods based on intelligible rules (Decision Tree and the innovative Logic Learning Machine method). Support Vector Machine clearly outperformed any of the other methods. Among the two rule-based algorithms, Logic Learning Machine performed better and identified a set of simple intelligible rules based on a combination of clinical variables and gene expressions. Decision Tree identified a non-coding gene ( XIST) involved in the early phases of X chromosome inactivation that was overexpressed in females and in non-relapsed patients. XIST expression might be responsible for the better prognosis of female Hodgkin's lymphoma patients.

  16. Normal Aging and the Dissociable Prototype Learning Systems

    PubMed Central

    Glass, Brian D.; Chotibut, Tanya; Pacheco, Jennifer; Schnyer, David M.; Maddox, W. Todd

    2011-01-01

    Dissociable prototype learning systems have been demonstrated behaviorally and with neuroimaging in younger adults as well as with patient populations. In A/not-A (AN) prototype learning, participants are shown members of category A during training, and during test are asked to decide whether novel items are in category A or are not in category A. Research suggests that AN learning is mediated by a perceptual learning system. In A/B (AB) prototype learning, participants are shown members of category A and B during training, and during test are asked to decide whether novel items are in category A or category B. In contrast to AN, research suggests that AB learning is mediated by a declarative memory system. The current study examined the effects of normal aging on AN and AB prototype learning. We observed an age-related deficit in AB learning, but an age-related advantage in AN learning. Computational modeling supports one possible interpretation based on narrower selective attentional focus in older adults in the AB task and broader selective attention in the AN task. Neuropsychological testing in older participants suggested that executive functioning and attentional control were associated with better performance in both tasks. However, nonverbal memory was associated with better AN performance, while visual attention was associated with worse AB performance. The results support an interactive memory systems approach and suggest that age-related declines in one memory system can lead to deficits in some tasks, but to enhanced performance in others. PMID:21875215

  17. An E-liquid Flavor Wheel: A Shared Vocabulary based on Systematically Reviewing E-liquid Flavor Classifications in Literature.

    PubMed

    Krüsemann, Erna Johanna Zegerina; Boesveldt, Sanne; de Graaf, Kees; Talhout, Reinskje

    2018-05-18

    E-liquids are available in a high variety of flavors. A systematic classification of e-liquid flavors is necessary to increase comparability of research results. In the food, alcohol and fragrance industry, flavors are classified using flavor wheels. We systematically reviewed literature on flavors related to e-cigarette use, to investigate how e-liquid flavors have been classified in research, and propose an e-liquid flavor wheel to classify e-liquids based on marketing descriptions. The search was conducted in May 2017 using PubMed and Embase databases. Keywords included terms associated with e-cigarettes, flavors, liking, learning, and wanting in articles. Results were independently screened and reviewed. Flavor categories used in the articles reviewed were extracted. Searches yielded 386 unique articles of which 28 were included. Forty-three main flavor categories were reported in these articles (e.g., tobacco, menthol, mint, fruit, bakery/dessert, alcohol, nuts, spice, candy, coffee/tea, beverages, chocolate, sweet flavors, vanilla, unflavored). Flavor classifications of e-liquids in literature showed similarities and differences across studies. Our proposed e-liquid flavor wheel contains 13 main categories and 90 subcategories, which summarize flavor categories from literature to find a shared vocabulary. For classification of e-liquids using our flavor wheel, marketing descriptions should be used. We have proposed a flavor wheel for classification of e-liquids. Further research is needed to test the flavor wheels' empirical value. Consistently classifying e-liquid flavors using our flavor wheel in research (e.g., experimental, marketing, or qualitative studies) minimizes interpretation differences and increases comparability of results. We reviewed e-liquid flavors and flavor categories used in research. A large variation in the naming of flavor categories was found and e-liquid flavors were not consistently classified. We developed an e-liquid flavor wheel and provided a guideline for systematic classification of e-liquids based on marketing descriptions. Our flavor wheel summarizes e-liquid flavors and categories used in literature in order to create a shared vocabulary. Applying our flavor wheel in research on e-liquids will improve data interpretation, increase comparability across studies, and support policy makers in developing rules for regulation of e-liquid flavors.

  18. Learning to use working memory: a reinforcement learning gating model of rule acquisition in rats

    PubMed Central

    Lloyd, Kevin; Becker, Nadine; Jones, Matthew W.; Bogacz, Rafal

    2012-01-01

    Learning to form appropriate, task-relevant working memory representations is a complex process central to cognition. Gating models frame working memory as a collection of past observations and use reinforcement learning (RL) to solve the problem of when to update these observations. Investigation of how gating models relate to brain and behavior remains, however, at an early stage. The current study sought to explore the ability of simple RL gating models to replicate rule learning behavior in rats. Rats were trained in a maze-based spatial learning task that required animals to make trial-by-trial choices contingent upon their previous experience. Using an abstract version of this task, we tested the ability of two gating algorithms, one based on the Actor-Critic and the other on the State-Action-Reward-State-Action (SARSA) algorithm, to generate behavior consistent with the rats'. Both models produced rule-acquisition behavior consistent with the experimental data, though only the SARSA gating model mirrored faster learning following rule reversal. We also found that both gating models learned multiple strategies in solving the initial task, a property which highlights the multi-agent nature of such models and which is of importance in considering the neural basis of individual differences in behavior. PMID:23115551

  19. Improving drivers' knowledge of road rules using digital games.

    PubMed

    Li, Qing; Tay, Richard

    2014-04-01

    Although a proficient knowledge of the road rules is important to safe driving, many drivers do not retain the knowledge acquired after they have obtained their licenses. Hence, more innovative and appealing methods are needed to improve drivers' knowledge of the road rules. This study examines the effect of game based learning on drivers' knowledge acquisition and retention. We find that playing an entertaining game that is designed to impart knowledge of the road rules not only improves players' knowledge but also helps them retain such knowledge. Hence, learning by gaming appears to be a promising learning approach for driver education. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. [Problem based learning from the perspective of tutors].

    PubMed

    Navarro Hernández, Nancy; Illesca P, Mónica; Cabezas G, Mirtha

    2009-02-01

    Problem based learning is a student centered learning technique that develops deductive, constructive and reasoning capacities among the students. Teachers must adapt to this paradigm of constructing rather than transmitting knowledge. To interpret the importance of tutors in problem based learning during a module of Health research and management given to medical, nursing, physical therapy, midwifery, technology and nutrition students. Eight teachers that participated in a module using problem based learning accepted to participate in an in depth interview. The qualitative analysis of the textual information recorded, was performed using the ATLAS software. We identified 662 meaning units, grouped in 29 descriptive categories, with eight emerging meta categories. The sequential and cross-generated qualitative analysis generated four domains: competence among students, competence of teachers, student-centered learning and evaluation process. Multiprofessional problem based learning contributes to the development of generic competences among future health professionals, such as multidisciplinary work, critical capacity and social skills. Teachers must shelter the students in the context of their problems and social situation.

  1. Is Statistical Learning Constrained by Lower Level Perceptual Organization?

    PubMed Central

    Emberson, Lauren L.; Liu, Ran; Zevin, Jason D.

    2013-01-01

    In order for statistical information to aid in complex developmental processes such as language acquisition, learning from higher-order statistics (e.g. across successive syllables in a speech stream to support segmentation) must be possible while perceptual abilities (e.g. speech categorization) are still developing. The current study examines how perceptual organization interacts with statistical learning. Adult participants were presented with multiple exemplars from novel, complex sound categories designed to reflect some of the spectral complexity and variability of speech. These categories were organized into sequential pairs and presented such that higher-order statistics, defined based on sound categories, could support stream segmentation. Perceptual similarity judgments and multi-dimensional scaling revealed that participants only perceived three perceptual clusters of sounds and thus did not distinguish the four experimenter-defined categories, creating a tension between lower level perceptual organization and higher-order statistical information. We examined whether the resulting pattern of learning is more consistent with statistical learning being “bottom-up,” constrained by the lower levels of organization, or “top-down,” such that higher-order statistical information of the stimulus stream takes priority over the perceptual organization, and perhaps influences perceptual organization. We consistently find evidence that learning is constrained by perceptual organization. Moreover, participants generalize their learning to novel sounds that occupy a similar perceptual space, suggesting that statistical learning occurs based on regions of or clusters in perceptual space. Overall, these results reveal a constraint on learning of sound sequences, such that statistical information is determined based on lower level organization. These findings have important implications for the role of statistical learning in language acquisition. PMID:23618755

  2. Information from multiple modalities helps 5-month-olds learn abstract rules.

    PubMed

    Frank, Michael C; Slemmer, Jonathan A; Marcus, Gary F; Johnson, Scott P

    2009-07-01

    By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli (Marcus et al., 1999), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract rules. We habituated 5-month-olds to simple abstract patterns (ABA or ABB) instantiated in coordinated looming visual shapes and speech sounds (Experiment 1), shapes alone (Experiment 2), and speech sounds accompanied by uninformative but coordinated shapes (Experiment 3). Infants showed evidence of rule learning only in the presence of the informative multimodal cues. We hypothesize that the additional evidence present in these multimodal displays was responsible for the success of younger infants in learning rules, congruent with both a Bayesian account and with the Intersensory Redundancy Hypothesis.

  3. Non-linguistic learning and aphasia: Evidence from a paired associate and feedback-based task

    PubMed Central

    Vallila-Rohter, Sofia; Kiran, Swathi

    2013-01-01

    Though aphasia is primarily characterized by impairments in the comprehension and/or expression of language, research has shown that patients with aphasia also show deficits in cognitive-linguistic domains such as attention, executive function, concept knowledge and memory (Helm-Estabrooks, 2002 for review). Research in aphasia suggests that cognitive impairments can impact the online construction of language, new verbal learning, and transactional success (Freedman & Martin, 2001; Hula & McNeil, 2008; Ramsberger, 2005). In our research, we extend this hypothesis to suggest that general cognitive deficits influence progress with therapy. The aim of our study is to explore learning, a cognitive process that is integral to relearning language, yet underexplored in the field of aphasia rehabilitation. We examine non-linguistic category learning in patients with aphasia (n=19) and in healthy controls (n=12), comparing feedback and non-feedback based instruction. Participants complete two computer-based learning tasks that require them to categorize novel animals based on the percentage of features shared with one of two prototypes. As hypothesized, healthy controls showed successful category learning following both methods of instruction. In contrast, only 60% of our patient population demonstrated successful non-linguistic category learning. Patient performance was not predictable by standardized measures of cognitive ability. Results suggest that general learning is affected in aphasia and is a unique, important factor to consider in the field of aphasia rehabilitation. PMID:23127795

  4. Designing boosting ensemble of relational fuzzy systems.

    PubMed

    Scherer, Rafał

    2010-10-01

    A method frequently used in classification systems for improving classification accuracy is to combine outputs of several classifiers. Among various types of classifiers, fuzzy ones are tempting because of using intelligible fuzzy if-then rules. In the paper we build an AdaBoost ensemble of relational neuro-fuzzy classifiers. Relational fuzzy systems bond input and output fuzzy linguistic values by a binary relation; thus, fuzzy rules have additional, comparing to traditional fuzzy systems, weights - elements of a fuzzy relation matrix. Thanks to this the system is better adjustable to data during learning. In the paper an ensemble of relational fuzzy systems is proposed. The problem is that such an ensemble contains separate rule bases which cannot be directly merged. As systems are separate, we cannot treat fuzzy rules coming from different systems as rules from the same (single) system. In the paper, the problem is addressed by a novel design of fuzzy systems constituting the ensemble, resulting in normalization of individual rule bases during learning. The method described in the paper is tested on several known benchmarks and compared with other machine learning solutions from the literature.

  5. Models as Relational Categories

    NASA Astrophysics Data System (ADS)

    Kokkonen, Tommi

    2017-11-01

    Model-based learning (MBL) has an established position within science education. It has been found to enhance conceptual understanding and provide a way for engaging students in authentic scientific activity. Despite ample research, few studies have examined the cognitive processes regarding learning scientific concepts within MBL. On the other hand, recent research within cognitive science has examined the learning of so-called relational categories. Relational categories are categories whose membership is determined on the basis of the common relational structure. In this theoretical paper, I argue that viewing models as relational categories provides a well-motivated cognitive basis for MBL. I discuss the different roles of models and modeling within MBL (using ready-made models, constructive modeling, and generative modeling) and discern the related cognitive aspects brought forward by the reinterpretation of models as relational categories. I will argue that relational knowledge is vital in learning novel models and in the transfer of learning. Moreover, relational knowledge underlies the coherent, hierarchical knowledge of experts. Lastly, I will examine how the format of external representations may affect the learning of models and the relevant relations. The nature of the learning mechanisms underlying students' mental representations of models is an interesting open question to be examined. Furthermore, the ways in which the expert-like knowledge develops and how to best support it is in need of more research. The discussion and conceptualization of models as relational categories allows discerning students' mental representations of models in terms of evolving relational structures in greater detail than previously done.

  6. Procrastinating Behavior in Computer-Based Learning Environments to Predict Performance: A Case Study in Moodle

    PubMed Central

    Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C.

    2017-01-01

    Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs). Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages. PMID:28883801

  7. Procrastinating Behavior in Computer-Based Learning Environments to Predict Performance: A Case Study in Moodle.

    PubMed

    Cerezo, Rebeca; Esteban, María; Sánchez-Santillán, Miguel; Núñez, José C

    2017-01-01

    Introduction: Research about student performance has traditionally considered academic procrastination as a behavior that has negative effects on academic achievement. Although there is much evidence for this in class-based environments, there is a lack of research on Computer-Based Learning Environments (CBLEs) . Therefore, the purpose of this study is to evaluate student behavior in a blended learning program and specifically procrastination behavior in relation to performance through Data Mining techniques. Materials and Methods: A sample of 140 undergraduate students participated in a blended learning experience implemented in a Moodle (Modular Object Oriented Developmental Learning Environment) Management System. Relevant interaction variables were selected for the study, taking into account student achievement and analyzing data by means of association rules, a mining technique. The association rules were arrived at and filtered through two selection criteria: 1, rules must have an accuracy over 0.8 and 2, they must be present in both sub-samples. Results: The findings of our study highlight the influence of time management in online learning environments, particularly on academic achievement, as there is an association between procrastination variables and student performance. Conclusion: Negative impact of procrastination in learning outcomes has been observed again but in virtual learning environments where practical implications, prevention of, and intervention in, are different from class-based learning. These aspects are discussed to help resolve student difficulties at various ages.

  8. Neural Correlates of Morphology Acquisition through a Statistical Learning Paradigm.

    PubMed

    Sandoval, Michelle; Patterson, Dianne; Dai, Huanping; Vance, Christopher J; Plante, Elena

    2017-01-01

    The neural basis of statistical learning as it occurs over time was explored with stimuli drawn from a natural language (Russian nouns). The input reflected the "rules" for marking categories of gendered nouns, without making participants explicitly aware of the nature of what they were to learn. Participants were scanned while listening to a series of gender-marked nouns during four sequential scans, and were tested for their learning immediately after each scan. Although participants were not told the nature of the learning task, they exhibited learning after their initial exposure to the stimuli. Independent component analysis of the brain data revealed five task-related sub-networks. Unlike prior statistical learning studies of word segmentation, this morphological learning task robustly activated the inferior frontal gyrus during the learning period. This region was represented in multiple independent components, suggesting it functions as a network hub for this type of learning. Moreover, the results suggest that subnetworks activated by statistical learning are driven by the nature of the input, rather than reflecting a general statistical learning system.

  9. Timely Diagnostic Feedback for Database Concept Learning

    ERIC Educational Resources Information Center

    Lin, Jian-Wei; Lai, Yuan-Cheng; Chuang, Yuh-Shy

    2013-01-01

    To efficiently learn database concepts, this work adopts association rules to provide diagnostic feedback for drawing an Entity-Relationship Diagram (ERD). Using association rules and Asynchronous JavaScript and XML (AJAX) techniques, this work implements a novel Web-based Timely Diagnosis System (WTDS), which provides timely diagnostic feedback…

  10. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  11. Incremental Learning of Context Free Grammars by Parsing-Based Rule Generation and Rule Set Search

    NASA Astrophysics Data System (ADS)

    Nakamura, Katsuhiko; Hoshina, Akemi

    This paper discusses recent improvements and extensions in Synapse system for inductive inference of context free grammars (CFGs) from sample strings. Synapse uses incremental learning, rule generation based on bottom-up parsing, and the search for rule sets. The form of production rules in the previous system is extended from Revised Chomsky Normal Form A→βγ to Extended Chomsky Normal Form, which also includes A→B, where each of β and γ is either a terminal or nonterminal symbol. From the result of bottom-up parsing, a rule generation mechanism synthesizes minimum production rules required for parsing positive samples. Instead of inductive CYK algorithm in the previous version of Synapse, the improved version uses a novel rule generation method, called ``bridging,'' which bridges the lacked part of the derivation tree for the positive string. The improved version also employs a novel search strategy, called serial search in addition to minimum rule set search. The synthesis of grammars by the serial search is faster than the minimum set search in most cases. On the other hand, the size of the generated CFGs is generally larger than that by the minimum set search, and the system can find no appropriate grammar for some CFL by the serial search. The paper shows experimental results of incremental learning of several fundamental CFGs and compares the methods of rule generation and search strategies.

  12. Mining Formative Evaluation Rules Using Web-Based Learning Portfolios for Web-Based Learning Systems

    ERIC Educational Resources Information Center

    Chen, Chih-Ming; Hong, Chin-Ming; Chen, Shyuan-Yi; Liu, Chao-Yu

    2006-01-01

    Learning performance assessment aims to evaluate what knowledge learners have acquired from teaching activities. Objective technical measures of learning performance are difficult to develop, but are extremely important for both teachers and learners. Learning performance assessment using learning portfolios or web server log data is becoming an…

  13. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    PubMed

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  14. Striatal and Hippocampal Entropy and Recognition Signals in Category Learning: Simultaneous Processes Revealed by Model-Based fMRI

    PubMed Central

    Davis, Tyler; Love, Bradley C.; Preston, Alison R.

    2012-01-01

    Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and adjust their representations to support behavior in future encounters. Many techniques that are available to understand the neural basis of category learning assume that the multiple processes that subserve it can be neatly separated between different trials of an experiment. Model-based functional magnetic resonance imaging offers a promising tool to separate multiple, simultaneously occurring processes and bring the analysis of neuroimaging data more in line with category learning’s dynamic and multifaceted nature. We use model-based imaging to explore the neural basis of recognition and entropy signals in the medial temporal lobe and striatum that are engaged while participants learn to categorize novel stimuli. Consistent with theories suggesting a role for the anterior hippocampus and ventral striatum in motivated learning in response to uncertainty, we find that activation in both regions correlates with a model-based measure of entropy. Simultaneously, separate subregions of the hippocampus and striatum exhibit activation correlated with a model-based recognition strength measure. Our results suggest that model-based analyses are exceptionally useful for extracting information about cognitive processes from neuroimaging data. Models provide a basis for identifying the multiple neural processes that contribute to behavior, and neuroimaging data can provide a powerful test bed for constraining and testing model predictions. PMID:22746951

  15. Change detection and change monitoring of natural and man-made features in multispectral and hyperspectral satellite imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, Daniela Irina

    An approach for land cover classification, seasonal and yearly change detection and monitoring, and identification of changes in man-made features may use a clustering of sparse approximations (CoSA) on sparse representations in learned dictionaries. A Hebbian learning rule may be used to build multispectral or hyperspectral, multiresolution dictionaries that are adapted to regional satellite image data. Sparse image representations of pixel patches over the learned dictionaries may be used to perform unsupervised k-means clustering into land cover categories. The clustering process behaves as a classifier in detecting real variability. This approach may combine spectral and spatial textural characteristics to detectmore » geologic, vegetative, hydrologic, and man-made features, as well as changes in these features over time.« less

  16. A Burst-Based “Hebbian” Learning Rule at Retinogeniculate Synapses Links Retinal Waves to Activity-Dependent Refinement

    PubMed Central

    Butts, Daniel A; Kanold, Patrick O; Shatz, Carla J

    2007-01-01

    Patterned spontaneous activity in the developing retina is necessary to drive synaptic refinement in the lateral geniculate nucleus (LGN). Using perforated patch recordings from neurons in LGN slices during the period of eye segregation, we examine how such burst-based activity can instruct this refinement. Retinogeniculate synapses have a novel learning rule that depends on the latencies between pre- and postsynaptic bursts on the order of one second: coincident bursts produce long-lasting synaptic enhancement, whereas non-overlapping bursts produce mild synaptic weakening. It is consistent with “Hebbian” development thought to exist at this synapse, and we demonstrate computationally that such a rule can robustly use retinal waves to drive eye segregation and retinotopic refinement. Thus, by measuring plasticity induced by natural activity patterns, synaptic learning rules can be linked directly to their larger role in instructing the patterning of neural connectivity. PMID:17341130

  17. Non-linguistic learning in aphasia: Effects of training method and stimulus characteristics

    PubMed Central

    Vallila-Rohter, Sofia; Kiran, Swathi

    2013-01-01

    Purpose The purpose of the current study was to explore non-linguistic learning ability in patients with aphasia, examining the impact of stimulus typicality and feedback on success with learning. Method Eighteen patients with aphasia and eight healthy controls participated in this study. All participants completed four computerized, non-linguistic category-learning tasks. We probed learning ability under two methods of instruction: feedback-based (FB) and paired-associate (PA). We also examined the impact of task complexity on learning ability, comparing two stimulus conditions: typical (Typ) and atypical (Atyp). Performance was compared between groups and across conditions. Results Results demonstrated that healthy controls were able to successfully learn categories under all conditions. For our patients with aphasia, two patterns of performance arose. One subgroup of patients was able to maintain learning across task manipulations and conditions. The other subgroup of patients demonstrated a sensitivity to task complexity, learning successfully only in the typical training conditions. Conclusions Results support the hypothesis that impairments of general learning are present in aphasia. Some patients demonstrated the ability to extract category information under complex training conditions, while others learned only under conditions that were simplified and emphasized salient category features. Overall, the typical training condition facilitated learning for all participants. Findings have implications for therapy, which are discussed. PMID:23695914

  18. RESIDUAL RISK ASSESSMENT: ETHYLENE OXIDE ...

    EPA Pesticide Factsheets

    This document describes the residual risk assessment for the Ethylene Oxide Commercial Sterilization source category. For stationary sources, section 112 (f) of the Clean Air Act requires EPA to assess risks to human health and the environment following implementation of technology-based control standards. If these technology-based control standards do not provide an ample margin of safety, then EPA is required to promulgate addtional standards. This document describes the methodology and results of the residual risk assessment performed for the Ethylene Oxide Commercial Sterilization source category. The results of this analyiss will assist EPA in determining whether a residual risk rule for this source category is appropriate.

  19. Triangular model integrating clinical teaching and assessment

    PubMed Central

    Abdelaziz, Adel; Koshak, Emad

    2014-01-01

    Structuring clinical teaching is a challenge facing medical education curriculum designers. A variety of instructional methods on different domains of learning are indicated to accommodate different learning styles. Conventional methods of clinical teaching, like training in ambulatory care settings, are prone to the factor of coincidence in having varieties of patient presentations. Accordingly, alternative methods of instruction are indicated to compensate for the deficiencies of these conventional methods. This paper presents an initiative that can be used to design a checklist as a blueprint to guide appropriate selection and implementation of teaching/learning and assessment methods in each of the educational courses and modules based on educational objectives. Three categories of instructional methods were identified, and within each a variety of methods were included. These categories are classroom-type settings, health services-based settings, and community service-based settings. Such categories have framed our triangular model of clinical teaching and assessment. PMID:24624002

  20. Triangular model integrating clinical teaching and assessment.

    PubMed

    Abdelaziz, Adel; Koshak, Emad

    2014-01-01

    Structuring clinical teaching is a challenge facing medical education curriculum designers. A variety of instructional methods on different domains of learning are indicated to accommodate different learning styles. Conventional methods of clinical teaching, like training in ambulatory care settings, are prone to the factor of coincidence in having varieties of patient presentations. Accordingly, alternative methods of instruction are indicated to compensate for the deficiencies of these conventional methods. This paper presents an initiative that can be used to design a checklist as a blueprint to guide appropriate selection and implementation of teaching/learning and assessment methods in each of the educational courses and modules based on educational objectives. Three categories of instructional methods were identified, and within each a variety of methods were included. These categories are classroom-type settings, health services-based settings, and community service-based settings. Such categories have framed our triangular model of clinical teaching and assessment.

  1. Implicit learning and reading: insights from typical children and children with developmental dyslexia using the artificial grammar learning (AGL) paradigm.

    PubMed

    Pavlidou, Elpis V; Williams, Joanne M

    2014-07-01

    We examined implicit learning in school-aged children with and without developmental dyslexia based on the proposal that implicit learning plays a significant role in mastering fluent reading. We ran two experiments with 16 typically developing children (9 to 11-years-old) and 16 age-matched children with developmental dyslexia using the artificial grammar learning (AGL) paradigm. In Experiment 1 (non-transfer task), children were trained on stimuli that followed patterns (rules) unknown to them. Subsequently, they were asked to decide from a novel set which stimuli follow the same rules (grammaticality judgments). In Experiment 2 (transfer task), training and testing stimuli differed in their superficial characteristics but followed the same rules. Again, children were asked to make grammaticality judgments. Our findings expand upon previous research by showing that children with developmental dyslexia show difficulties in implicit learning that are most likely specific to higher-order rule-like learning. These findings are discussed in relation to current theories of developmental dyslexia and of implicit learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. On the applicability of STDP-based learning mechanisms to spiking neuron network models

    NASA Astrophysics Data System (ADS)

    Sboev, A.; Vlasov, D.; Serenko, A.; Rybka, R.; Moloshnikov, I.

    2016-11-01

    The ways to creating practically effective method for spiking neuron networks learning, that would be appropriate for implementing in neuromorphic hardware and at the same time based on the biologically plausible plasticity rules, namely, on STDP, are discussed. The influence of the amount of correlation between input and output spike trains on the learnability by different STDP rules is evaluated. A usability of alternative combined learning schemes, involving artificial and spiking neuron models is demonstrated on the iris benchmark task and on the practical task of gender recognition.

  3. SCADA-based Operator Support System for Power Plant Equipment Fault Forecasting

    NASA Astrophysics Data System (ADS)

    Mayadevi, N.; Ushakumari, S. S.; Vinodchandra, S. S.

    2014-12-01

    Power plant equipment must be monitored closely to prevent failures from disrupting plant availability. Online monitoring technology integrated with hybrid forecasting techniques can be used to prevent plant equipment faults. A self learning rule-based expert system is proposed in this paper for fault forecasting in power plants controlled by supervisory control and data acquisition (SCADA) system. Self-learning utilizes associative data mining algorithms on the SCADA history database to form new rules that can dynamically update the knowledge base of the rule-based expert system. In this study, a number of popular associative learning algorithms are considered for rule formation. Data mining results show that the Tertius algorithm is best suited for developing a learning engine for power plants. For real-time monitoring of the plant condition, graphical models are constructed by K-means clustering. To build a time-series forecasting model, a multi layer preceptron (MLP) is used. Once created, the models are updated in the model library to provide an adaptive environment for the proposed system. Graphical user interface (GUI) illustrates the variation of all sensor values affecting a particular alarm/fault, as well as the step-by-step procedure for avoiding critical situations and consequent plant shutdown. The forecasting performance is evaluated by computing the mean absolute error and root mean square error of the predictions.

  4. A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning

    PubMed Central

    Balcarras, Matthew; Womelsdorf, Thilo

    2016-01-01

    Learning in a new environment is influenced by prior learning and experience. Correctly applying a rule that maps a context to stimuli, actions, and outcomes enables faster learning and better outcomes compared to relying on strategies for learning that are ignorant of task structure. However, it is often difficult to know when and how to apply learned rules in new contexts. In our study we explored how subjects employ different strategies for learning the relationship between stimulus features and positive outcomes in a probabilistic task context. We test the hypothesis that task naive subjects will show enhanced learning of feature specific reward associations by switching to the use of an abstract rule that associates stimuli by feature type and restricts selections to that dimension. To test this hypothesis we designed a decision making task where subjects receive probabilistic feedback following choices between pairs of stimuli. In the task, trials are grouped in two contexts by blocks, where in one type of block there is no unique relationship between a specific feature dimension (stimulus shape or color) and positive outcomes, and following an un-cued transition, alternating blocks have outcomes that are linked to either stimulus shape or color. Two-thirds of subjects (n = 22/32) exhibited behavior that was best fit by a hierarchical feature-rule model. Supporting the prediction of the model mechanism these subjects showed significantly enhanced performance in feature-reward blocks, and rapidly switched their choice strategy to using abstract feature rules when reward contingencies changed. Choice behavior of other subjects (n = 10/32) was fit by a range of alternative reinforcement learning models representing strategies that do not benefit from applying previously learned rules. In summary, these results show that untrained subjects are capable of flexibly shifting between behavioral rules by leveraging simple model-free reinforcement learning and context-specific selections to drive responses. PMID:27064794

  5. An Application of CICCT Accident Categories to Aviation Accidents in 1988-2004

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2007-01-01

    Interventions or technologies developed to improve aviation safety often focus on specific causes or accident categories. Evaluation of the potential effectiveness of those interventions is dependent upon mapping the historical aviation accidents into those same accident categories. To that end, the United States civil aviation accidents occurring between 1988 and 2004 (n=26,117) were assigned accident categories based upon the taxonomy developed by the CAST/ICAO Common Taxonomy Team (CICTT). Results are presented separately for four main categories of flight rules: Part 121 (large commercial air carriers), Scheduled Part 135 (commuter airlines), Non-Scheduled Part 135 (on-demand air taxi) and Part 91 (general aviation). Injuries and aircraft damage are summarized by year and by accident category.

  6. Learning and coding in biological neural networks

    NASA Astrophysics Data System (ADS)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and theoretical results on the scalability of this rule show that learning with stochastic gradient ascent may be adequately fast to explain learning in the bird. Finally, we address the more general issue of the scalability of stochastic gradient learning on quadratic cost surfaces in linear systems, as a function of system size and task characteristics, by deriving analytical expressions for the learning curves.

  7. 77 FR 29935 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-21

    ...The EPA is proposing to amend specific provisions of the Greenhouse Gas Reporting Rule to provide greater clarity and flexibility to facilities subject to reporting emissions from certain source categories. These source categories will report greenhouse gas (GHG) data for the first time in September of 2012. The proposed changes are not expected to significantly change the overall calculation and monitoring requirements of the Greenhouse Gas Reporting Rule or add additional requirements for reporters, but are expected to correct errors and clarify existing requirements in order to facilitate accurate and timely reporting. The EPA is also proposing confidentiality determinations for four new data elements for the fluorinated gas production source category of the Greenhouse Gas Reporting Rule. Lastly, we are proposing an amendment to Table A-7 of the general provisions to add a data element used as an input to an emission equation in the fluorinated gas production source category.

  8. College Students' Conceptions of Learning Management: The Difference between Traditional (Face-to-Face) Instruction and Web-Based Learning Environments

    ERIC Educational Resources Information Center

    Lin, Hung-Ming; Tsai, Chin-Chung

    2011-01-01

    This study investigates the differences between students' conceptions of learning management via traditional instruction and Web-based learning environments. The Conceptions of Learning Management Inventory (COLM) was administered to 259 Taiwanese college students majoring in Business Administration. The COLM has six factors (categories), namely,…

  9. Interactions between statistical and semantic information in infant language development

    PubMed Central

    Lany, Jill; Saffran, Jenny R.

    2013-01-01

    Infants can use statistical regularities to form rudimentary word categories (e.g. noun, verb), and to learn the meanings common to words from those categories. Using an artificial language methodology, we probed the mechanisms by which two types of statistical cues (distributional and phonological regularities) affect word learning. Because linking distributional cues vs. phonological information to semantics make different computational demands on learners, we also tested whether their use is related to language proficiency. We found that 22-month-old infants with smaller vocabularies generalized using phonological cues; however, infants with larger vocabularies showed the opposite pattern of results, generalizing based on distributional cues. These findings suggest that both phonological and distributional cues marking word categories promote early word learning. Moreover, while correlations between these cues are important to forming word categories, we found infants’ weighting of these cues in subsequent word-learning tasks changes over the course of early language development. PMID:21884336

  10. Dimension-Based Statistical Learning Affects Both Speech Perception and Production

    ERIC Educational Resources Information Center

    Lehet, Matthew; Holt, Lori L.

    2017-01-01

    Multiple acoustic dimensions signal speech categories. However, dimensions vary in their informativeness; some are more diagnostic of category membership than others. Speech categorization reflects these dimensional regularities such that diagnostic dimensions carry more "perceptual weight" and more effectively signal category membership…

  11. Striatal and Hippocampal Entropy and Recognition Signals in Category Learning: Simultaneous Processes Revealed by Model-Based fMRI

    ERIC Educational Resources Information Center

    Davis, Tyler; Love, Bradley C.; Preston, Alison R.

    2012-01-01

    Category learning is a complex phenomenon that engages multiple cognitive processes, many of which occur simultaneously and unfold dynamically over time. For example, as people encounter objects in the world, they simultaneously engage processes to determine their fit with current knowledge structures, gather new information about the objects, and…

  12. Diagnosticity and Prototypicality in Category Learning: A Comparison of Inference Learning and Classification Learning

    ERIC Educational Resources Information Center

    Chin-Parker, Seth; Ross, Brian H.

    2004-01-01

    Category knowledge allows for both the determination of category membership and an understanding of what the members of a category are like. Diagnostic information is used to determine category membership; prototypical information reflects the most likely features given category membership. Two experiments examined 2 means of category learning,…

  13. Mining knowledge from corpora: an application to retrieval and indexing.

    PubMed

    Soualmia, Lina F; Dahamna, Badisse; Darmoni, Stéfan

    2008-01-01

    The present work aims at discovering new associations between medical concepts to be exploited as input in retrieval and indexing. Association rules method is applied to documents. The process is carried out on three major document categories referring to e-health information consumers: health professionals, students and lay people. Association rules evaluation is founded on statistical measures combined with domain knowledge. Association rules represent existing relations between medical concepts (60.62%) and new knowledge (54.21%). Based on observations, 463 expert rules are defined by medical librarians for retrieval and indexing. Association rules bear out existing relations, produce new knowledge and support users and indexers in document retrieval and indexing.

  14. Comparison promotes learning and transfer of relational categories.

    PubMed

    Kurtz, Kenneth J; Boukrina, Olga; Gentner, Dedre

    2013-07-01

    We investigated the effect of co-presenting training items during supervised classification learning of novel relational categories. Strong evidence exists that comparison induces a structural alignment process that renders common relational structure more salient. We hypothesized that comparisons between exemplars would facilitate learning and transfer of categories that cohere around a common relational property. The effect of comparison was investigated using learning trials that elicited a separate classification response for each item in presentation pairs that could be drawn from the same or different categories. This methodology ensures consideration of both items and invites comparison through an implicit same-different judgment inherent in making the two responses. In a test phase measuring learning and transfer, the comparison group significantly outperformed a control group receiving an equivalent training session of single-item classification learning. Comparison-based learners also outperformed the control group on a test of far transfer, that is, the ability to accurately classify items from a novel domain that was relationally alike, but surface-dissimilar, to the training materials. Theoretical and applied implications of this comparison advantage are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  15. Rule Extraction Based on Extreme Learning Machine and an Improved Ant-Miner Algorithm for Transient Stability Assessment.

    PubMed

    Li, Yang; Li, Guoqing; Wang, Zhenhao

    2015-01-01

    In order to overcome the problems of poor understandability of the pattern recognition-based transient stability assessment (PRTSA) methods, a new rule extraction method based on extreme learning machine (ELM) and an improved Ant-miner (IAM) algorithm is presented in this paper. First, the basic principles of ELM and Ant-miner algorithm are respectively introduced. Then, based on the selected optimal feature subset, an example sample set is generated by the trained ELM-based PRTSA model. And finally, a set of classification rules are obtained by IAM algorithm to replace the original ELM network. The novelty of this proposal is that transient stability rules are extracted from an example sample set generated by the trained ELM-based transient stability assessment model by using IAM algorithm. The effectiveness of the proposed method is shown by the application results on the New England 39-bus power system and a practical power system--the southern power system of Hebei province.

  16. A requirement for memory retrieval during and after long-term extinction learning

    PubMed Central

    Ouyang, Ming; Thomas, Steven A.

    2005-01-01

    Current learning theories are based on the idea that learning is driven by the difference between expectations and experience (the delta rule). In extinction, one learns that certain expectations no longer apply. Here, we test the potential validity of the delta rule by manipulating memory retrieval (and thus expectations) during extinction learning. Adrenergic signaling is critical for the time-limited retrieval (but not acquisition or consolidation) of contextual fear. Using genetic and pharmacologic approaches to manipulate adrenergic signaling, we find that long-term extinction requires memory retrieval but not conditioned responding. Identical manipulations of the adrenergic system that do not affect memory retrieval do not alter extinction. The results provide substantial support for the delta rule of learning theory. In addition, the timing over which extinction is sensitive to adrenergic manipulation suggests a model whereby memory retrieval occurs during, and several hours after, extinction learning to consolidate long-term extinction memory. PMID:15947076

  17. Self-Efficacy in Internet-Based Learning Environments: A Literature Review

    ERIC Educational Resources Information Center

    Tsai, Chin-Chung; Chuang, Shih-Chyueh; Liang, Jyh-Chong; Tsai, Meng-Jung

    2011-01-01

    This paper reviews 46 papers from 1999 to 2009 regarding self-efficacy in Internet-based learning environments, and discusses three major categories of research: (1) learners' Internet self-efficacy, assessing learners' confidence in their skills or knowledge of operating general Internet functions or applications in Internet-based learning; (2)…

  18. Word and feature identification by profoundly deaf teenagers using the Queen's University tactile vocoder.

    PubMed

    Brooks, P L; Frost, B J; Mason, J L; Gibson, D M

    1987-03-01

    The experiments described are part of an ongoing evaluation of the Queen's University Tactile Vocoder, a device that allows the acoustic waveform to be felt as a vibrational pattern on the skin. Two prelingually profoundly deaf teenagers reached criterion on a 50-word vocabulary (live voice, single speaker) using information obtained solely from the tactile vocoder with 28.5 and 24.0 hours of training. Immediately following word-learning experiments, subjects were asked to place 16 CVs into five phonemic categories (voiced & unvoiced stops, voiced & unvoiced fricatives, approximants). Average accuracy was 84.5%. Similar performance (89.6%) was obtained for placement of 12 VCs into four phonemic categories. Subjects were able to acquire some general rules about voicing and manner of articulation cues.

  19. Efficient probabilistic inference in generic neural networks trained with non-probabilistic feedback.

    PubMed

    Orhan, A Emin; Ma, Wei Ji

    2017-07-26

    Animals perform near-optimal probabilistic inference in a wide range of psychophysical tasks. Probabilistic inference requires trial-to-trial representation of the uncertainties associated with task variables and subsequent use of this representation. Previous work has implemented such computations using neural networks with hand-crafted and task-dependent operations. We show that generic neural networks trained with a simple error-based learning rule perform near-optimal probabilistic inference in nine common psychophysical tasks. In a probabilistic categorization task, error-based learning in a generic network simultaneously explains a monkey's learning curve and the evolution of qualitative aspects of its choice behavior. In all tasks, the number of neurons required for a given level of performance grows sublinearly with the input population size, a substantial improvement on previous implementations of probabilistic inference. The trained networks develop a novel sparsity-based probabilistic population code. Our results suggest that probabilistic inference emerges naturally in generic neural networks trained with error-based learning rules.Behavioural tasks often require probability distributions to be inferred about task specific variables. Here, the authors demonstrate that generic neural networks can be trained using a simple error-based learning rule to perform such probabilistic computations efficiently without any need for task specific operations.

  20. The cost of selective attention in category learning: Developmental differences between adults and infants

    PubMed Central

    Best, Catherine A.; Yim, Hyungwook; Sloutsky, Vladimir M.

    2013-01-01

    Selective attention plays an important role in category learning. However, immaturities of top-down attentional control during infancy coupled with successful category learning suggest that early category learning is achieved without attending selectively. Research presented here examines this possibility by focusing on category learning in infants (6–8 months old) and adults. Participants were trained on a novel visual category. Halfway through the experiment, unbeknownst to participants, the to-be-learned category switched to another category, where previously relevant features became irrelevant and previously irrelevant features became relevant. If participants attend selectively to the relevant features of the first category, they should incur a cost of selective attention immediately after the unknown category switch. Results revealed that adults demonstrated a cost, as evidenced by a decrease in accuracy and response time on test trials as well as a decrease in visual attention to newly relevant features. In contrast, infants did not demonstrate a similar cost of selective attention as adults despite evidence of learning both to-be-learned categories. Findings are discussed as supporting multiple systems of category learning and as suggesting that learning mechanisms engaged by adults may be different from those engaged by infants. PMID:23773914

  1. Learning and tuning fuzzy logic controllers through reinforcements

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1992-01-01

    This paper presents a new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system. In particular, our generalized approximate reasoning-based intelligent control (GARIC) architecture (1) learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward neural network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto et al. (1983) to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.

  2. Supervised and Unsupervised Learning of Multidimensional Acoustic Categories

    ERIC Educational Resources Information Center

    Goudbeek, Martijn; Swingley, Daniel; Smits, Roel

    2009-01-01

    Learning to recognize the contrasts of a language-specific phonemic repertoire can be viewed as forming categories in a multidimensional psychophysical space. Research on the learning of distributionally defined visual categories has shown that categories defined over 1 dimension are easy to learn and that learning multidimensional categories is…

  3. Incidental Auditory Category Learning

    PubMed Central

    Gabay, Yafit; Dick, Frederic K.; Zevin, Jason D.; Holt, Lori L.

    2015-01-01

    Very little is known about how auditory categories are learned incidentally, without instructions to search for category-diagnostic dimensions, overt category decisions, or experimenter-provided feedback. This is an important gap because learning in the natural environment does not arise from explicit feedback and there is evidence that the learning systems engaged by traditional tasks are distinct from those recruited by incidental category learning. We examined incidental auditory category learning with a novel paradigm, the Systematic Multimodal Associations Reaction Time (SMART) task, in which participants rapidly detect and report the appearance of a visual target in one of four possible screen locations. Although the overt task is rapid visual detection, a brief sequence of sounds precedes each visual target. These sounds are drawn from one of four distinct sound categories that predict the location of the upcoming visual target. These many-to-one auditory-to-visuomotor correspondences support incidental auditory category learning. Participants incidentally learn categories of complex acoustic exemplars and generalize this learning to novel exemplars and tasks. Further, learning is facilitated when category exemplar variability is more tightly coupled to the visuomotor associations than when the same stimulus variability is experienced across trials. We relate these findings to phonetic category learning. PMID:26010588

  4. Multi-agents and learning: Implications for Webusage mining.

    PubMed

    Lotfy, Hewayda M S; Khamis, Soheir M S; Aboghazalah, Maie M

    2016-03-01

    Characterization of user activities is an important issue in the design and maintenance of websites. Server weblog files have abundant information about the user's current interests. This information can be mined and analyzed therefore the administrators may be able to guide the users in their browsing activity so they may obtain relevant information in a shorter span of time to obtain user satisfaction. Web-based technology facilitates the creation of personally meaningful and socially useful knowledge through supportive interactions, communication and collaboration among educators, learners and information. This paper suggests a new methodology based on learning techniques for a Web-based Multiagent-based application to discover the hidden patterns in the user's visited links. It presents a new approach that involves unsupervised, reinforcement learning, and cooperation between agents. It is utilized to discover patterns that represent the user's profiles in a sample website into specific categories of materials using significance percentages. These profiles are used to make recommendations of interesting links and categories to the user. The experimental results of the approach showed successful user pattern recognition, and cooperative learning among agents to obtain user profiles. It indicates that combining different learning algorithms is capable of improving user satisfaction indicated by the percentage of precision, recall, the progressive category weight and F 1-measure.

  5. Multi-agents and learning: Implications for Webusage mining

    PubMed Central

    Lotfy, Hewayda M.S.; Khamis, Soheir M.S.; Aboghazalah, Maie M.

    2015-01-01

    Characterization of user activities is an important issue in the design and maintenance of websites. Server weblog files have abundant information about the user’s current interests. This information can be mined and analyzed therefore the administrators may be able to guide the users in their browsing activity so they may obtain relevant information in a shorter span of time to obtain user satisfaction. Web-based technology facilitates the creation of personally meaningful and socially useful knowledge through supportive interactions, communication and collaboration among educators, learners and information. This paper suggests a new methodology based on learning techniques for a Web-based Multiagent-based application to discover the hidden patterns in the user’s visited links. It presents a new approach that involves unsupervised, reinforcement learning, and cooperation between agents. It is utilized to discover patterns that represent the user’s profiles in a sample website into specific categories of materials using significance percentages. These profiles are used to make recommendations of interesting links and categories to the user. The experimental results of the approach showed successful user pattern recognition, and cooperative learning among agents to obtain user profiles. It indicates that combining different learning algorithms is capable of improving user satisfaction indicated by the percentage of precision, recall, the progressive category weight and F1-measure. PMID:26966569

  6. 78 FR 36434 - Revisions to Rules of Practice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... federal holidays, make grammatical corrections, and remove the reference to part-day holidays. Rule 3001... section, the following categories of persons are designated ``decision-making personnel'': (i) The.... The following categories of person are designated ``non-decision-making personnel'': (i) All...

  7. The prefrontal cortex: categories, concepts and cognition.

    PubMed Central

    Miller, Earl K; Freedman, David J; Wallis, Jonathan D

    2002-01-01

    The ability to generalize behaviour-guiding principles and concepts from experience is key to intelligent, goal-directed behaviour. It allows us to deal efficiently with a complex world and to adapt readily to novel situations. We review evidence that the prefrontal cortex-the cortical area that reaches its greatest elaboration in primates-plays a central part in acquiring and representing this information. The prefrontal cortex receives highly processed information from all major forebrain systems, and neurophysiological studies suggest that it synthesizes this into representations of learned task contingencies, concepts and task rules. In short, the prefrontal cortex seems to underlie our internal representations of the 'rules of the game'. This may provide the necessary foundation for the complex behaviour of primates, in whom this structure is most elaborate. PMID:12217179

  8. Aiding eco-labelling process and its implementation: Environmental Impact Assessment Methodology to define Product Category Rules for canned anchovies.

    PubMed

    Laso, Jara; Margallo, María; Fullana, Pére; Bala, Alba; Gazulla, Cristina; Irabien, Ángel; Aldaco, Rubén

    2017-01-01

    To be able to fulfil high market expectations for a number of practical applications, Environmental Product Declarations (EPDs) have to meet and comply with specific and strict methodological prerequisites. These expectations include the possibility to add up Life Cycle Assessment (LCA)-based information in the supply chain and to compare different EPDs. To achieve this goal, common and harmonized calculation rules have to be established, the so-called Product Category Rules (PCRs), which set the overall LCA calculation rules to create EPDs. This document provides PCRs for the assessment of the environmental performance of canned anchovies in Cantabria Region based on an Environmental Sustainability Assessment (ESA) method. This method uses two main variables: the natural resources sustainability (NRS) and the environmental burdens sustainability (EBS). To reduce the complexity of ESA and facilitate the decision-making process, all variables are normalized and weighted to obtain two global dimensionless indexes: resource consumption (X 1 ) and environmental burdens (X 2 ). •This paper sets the PCRs adapted to the Cantabrian canned anchovies.•ESA method facilitates the product comparison and the decision-making process.•This paper stablishes all the steps that an EPD should include within the PCRs of Cantabrian canned anchovies.

  9. The Effectiveness of the Gesture-Based Learning System (GBLS) and Its Impact on Learning Experience

    ERIC Educational Resources Information Center

    Shakroum, Moamer; Wong, Kok Wai; Fung, Lance Chun Che

    2016-01-01

    Several studies and experiments have been conducted in recent years to examine the value and the advantage of using the Gesture-Based Learning System (GBLS).The investigation of the influence of the GBLS mode on the learning outcomes is still scarce. Most previous studies did not address more than one category of learning outcomes (cognitive,…

  10. Perceptual Learning Improves Adult Amblyopic Vision Through Rule-Based Cognitive Compensation

    PubMed Central

    Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A.; Levi, Dennis M.; Yu, Cong

    2014-01-01

    Purpose. We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Methods. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Results. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). Conclusions. The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation. PMID:24550359

  11. Perceptual learning improves adult amblyopic vision through rule-based cognitive compensation.

    PubMed

    Zhang, Jun-Yun; Cong, Lin-Juan; Klein, Stanley A; Levi, Dennis M; Yu, Cong

    2014-04-01

    We investigated whether perceptual learning in adults with amblyopia could be enabled to transfer completely to an orthogonal orientation, which would suggest that amblyopic perceptual learning results mainly from high-level cognitive compensation, rather than plasticity in the amblyopic early visual brain. Nineteen adults (mean age = 22.5 years) with anisometropic and/or strabismic amblyopia were trained following a training-plus-exposure (TPE) protocol. The amblyopic eyes practiced contrast, orientation, or Vernier discrimination at one orientation for six to eight sessions. Then the amblyopic or nonamblyopic eyes were exposed to an orthogonal orientation via practicing an irrelevant task. Training was first performed at a lower spatial frequency (SF), then at a higher SF near the cutoff frequency of the amblyopic eye. Perceptual learning was initially orientation specific. However, after exposure to the orthogonal orientation, learning transferred to an orthogonal orientation completely. Reversing the exposure and training order failed to produce transfer. Initial lower SF training led to broad improvement of contrast sensitivity, and later higher SF training led to more specific improvement at high SFs. Training improved visual acuity by 1.5 to 1.6 lines (P < 0.001) in the amblyopic eyes with computerized tests and a clinical E acuity chart. It also improved stereoacuity by 53% (P < 0.001). The complete transfer of learning suggests that perceptual learning in amblyopia may reflect high-level learning of rules for performing a visual discrimination task. These rules are applicable to new orientations to enable learning transfer. Therefore, perceptual learning may improve amblyopic vision mainly through rule-based cognitive compensation.

  12. Parental perceptions of teen driving: Restrictions, worry and influence.

    PubMed

    Jewett, Amy; Shults, Ruth A; Bhat, Geeta

    2016-12-01

    Parents play a critical role in preventing crashes among teens. Research of parental perceptions and concerns regarding teen driving safety is limited. We examined results from the 2013 Summer ConsumerStyles survey that queried parents about restrictions placed on their teen drivers, their perceived level of "worry" about their teen driver's safety, and influence of parental restrictions regarding their teen's driving. We produced frequency distributions for the number of restrictions imposed, parental "worry," and influence of rules regarding their teen's driving, reported by teen's driving license status (learning to drive or obtained a driver's license). Response categories were dichotomized because of small cell sizes, and we ran separate log-linear regression models to explore whether imposing all four restrictions on teen drivers was associated with either worry intensity ("a lot" versus "somewhat, not very much or not at all") or perceived influence of parental rules ("a lot" versus "somewhat, not very much or not at all"). Among the 456 parent respondents, 80% reported having restrictions for their teen driver regarding use of safety belts, drinking and driving, cell phones, and text messaging while driving. However, among the 188 parents of licensed teens, only 9% reported having a written parent-teen driving agreement, either currently or in the past. Worrying "a lot" was reported less frequently by parents of newly licensed teens (36%) compared with parents of learning teens (61%). Parents report having rules and restrictions for their teen drivers, but only a small percentage formalize the rules and restrictions in a written parent-teen driving agreement. Parents worry less about their teen driver's safety during the newly licensed phase, when crash risk is high as compared to the learning phase. Further research is needed into how to effectively support parents in supervising and monitoring their teen driver. Published by Elsevier Ltd.

  13. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the phenomenon of AP are also discussed. Copyright © 2015. Published by Elsevier B.V.

  14. Experiments on individual strategy updating in iterated snowdrift game under random rematching.

    PubMed

    Qi, Hang; Ma, Shoufeng; Jia, Ning; Wang, Guangchao

    2015-03-07

    How do people actually play the iterated snowdrift games, particularly under random rematching protocol is far from well explored. Two sets of laboratory experiments on snowdrift game were conducted to investigate human strategy updating rules. Four groups of subjects were modeled by experience-weighted attraction learning theory at individual-level. Three out of the four groups (75%) passed model validation. Substantial heterogeneity is observed among the players who update their strategies in four typical types, whereas rare people behave like belief-based learners even under fixed pairing. Most subjects (63.9%) adopt the reinforcement learning (or alike) rules; but, interestingly, the performance of averaged reinforcement learners suffered. It is observed that two factors seem to benefit players in competition, i.e., the sensitivity to their recent experiences and the overall consideration of forgone payoffs. Moreover, subjects with changing opponents tend to learn faster based on their own recent experience, and display more diverse strategy updating rules than they do with fixed opponent. These findings suggest that most of subjects do apply reinforcement learning alike updating rules even under random rematching, although these rules may not improve their performance. The findings help evolutionary biology researchers to understand sophisticated human behavioral strategies in social dilemmas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Intrusion Detection Systems with Live Knowledge System

    DTIC Science & Technology

    2016-05-31

    Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR, which is a machine-learning based RDR...propose novel approach that uses Ripple -down Rule (RDR) to maintain the knowledge from human experts with knowledge base generated by the Induct RDR...detection model by applying Induct RDR approach. The proposed induct RDR ( Ripple Down Rules) approach allows to acquire the phishing detection

  16. Strategy Selection for Cognitive Skill Acquisition Depends on Task Demands and Working Memory Capacity

    ERIC Educational Resources Information Center

    Hinze, Scott R.; Bunting, Michael F; Pellegrino, James W.

    2009-01-01

    The involvement of working memory capacity (WMC) in ruled-based cognitive skill acquisition is well-established, but the duration of its involvement and its role in learning strategy selection are less certain. Participants (N=610) learned four logic rules, their corresponding symbols, or logic gates, and the appropriate input-output combinations…

  17. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems.

    PubMed

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning.

  18. Paired-Associate and Feedback-Based Weather Prediction Tasks Support Multiple Category Learning Systems

    PubMed Central

    Li, Kaiyun; Fu, Qiufang; Sun, Xunwei; Zhou, Xiaoyan; Fu, Xiaolan

    2016-01-01

    It remains unclear whether probabilistic category learning in the feedback-based weather prediction task (FB-WPT) can be mediated by a non-declarative or procedural learning system. To address this issue, we compared the effects of training time and verbal working memory, which influence the declarative learning system but not the non-declarative learning system, in the FB and paired-associate (PA) WPTs, as the PA task recruits a declarative learning system. The results of Experiment 1 showed that the optimal accuracy in the PA condition was significantly decreased when the training time was reduced from 7 to 3 s, but this did not occur in the FB condition, although shortened training time impaired the acquisition of explicit knowledge in both conditions. The results of Experiment 2 showed that the concurrent working memory task impaired the optimal accuracy and the acquisition of explicit knowledge in the PA condition but did not influence the optimal accuracy or the acquisition of self-insight knowledge in the FB condition. The apparent dissociation results between the FB and PA conditions suggested that a non-declarative or procedural learning system is involved in the FB-WPT and provided new evidence for the multiple-systems theory of human category learning. PMID:27445958

  19. The cost of selective attention in category learning: developmental differences between adults and infants.

    PubMed

    Best, Catherine A; Yim, Hyungwook; Sloutsky, Vladimir M

    2013-10-01

    Selective attention plays an important role in category learning. However, immaturities of top-down attentional control during infancy coupled with successful category learning suggest that early category learning is achieved without attending selectively. Research presented here examines this possibility by focusing on category learning in infants (6-8months old) and adults. Participants were trained on a novel visual category. Halfway through the experiment, unbeknownst to participants, the to-be-learned category switched to another category, where previously relevant features became irrelevant and previously irrelevant features became relevant. If participants attend selectively to the relevant features of the first category, they should incur a cost of selective attention immediately after the unknown category switch. Results revealed that adults demonstrated a cost, as evidenced by a decrease in accuracy and response time on test trials as well as a decrease in visual attention to newly relevant features. In contrast, infants did not demonstrate a similar cost of selective attention as adults despite evidence of learning both to-be-learned categories. Findings are discussed as supporting multiple systems of category learning and as suggesting that learning mechanisms engaged by adults may be different from those engaged by infants. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Generalization of Pain-Related Fear Based on Conceptual Knowledge.

    PubMed

    Meulders, Ann; Vandael, Kristof; Vlaeyen, Johan W S

    2017-05-01

    Increasing evidence suggests that pain-related fear is key to the transition from acute to chronic pain. Previous research has shown that perceptual similarity with a pain-associated movement fosters the generalization of fear to novel movements. Perceptual generalization of pain-related fear is adaptive as it enables individuals to extrapolate the threat value of one movement to another without the necessity to learn anew. However, excessive spreading of fear to safe movements may become maladaptive and may lead to sustained anxiety, dysfunctional avoidance behaviors, and severe disability. A hallmark of human cognition is the ability to extract conceptual knowledge from a learning episode as well. Although this conceptual pathway may be important to understand fear generalization in chronic pain, research on this topic is lacking. We investigated acquisition and generalization of concept-based pain-related fear. During acquisition, unique exemplars of one action category (CS+; e.g., opening boxes) were followed by pain, whereas exemplars of another action category (CS-; e.g., closing boxes) were not. Subsequently, spreading of pain-related fear to novel exemplars of both action categories was tested. Participants learned to expect the pain to occur and reported more pain-related fear to the exemplars of the CS+ category compared with those of the CS- category. During generalization, fear and expectancy generalized to novel exemplars of the CS+ category, but not to the CS- category. This pattern was not corroborated in the eyeblink startle measures. This is the first study that demonstrates that pain-related fear can be acquired and generalized based on conceptual knowledge. Copyright © 2016. Published by Elsevier Ltd.

  1. The injury profile of Karate World Championships: new rules, less injuries.

    PubMed

    Arriaza, Rafael; Leyes, Manuel; Zaeimkohan, Hamid; Arriaza, Alvaro

    2009-12-01

    The aim of this paper is to document the injury rate in high-level modern competitive karate after a change of competition rules was implemented in the year 2000, and to compare it with the injury rate found before the rules were changed. A prospective recording of the injuries resulting from 2,762 matches in three consecutive World Karate Championships (representing 7,425 min of active fighting) was performed, and compared with the results from 2,837 matches from the three last World Karate Championships (representing 7,631 min of active fighting) held before the change of competition rules. In total, 497 injuries were recorded, with an incidence of 0.180 injuries per match or 6.7 per 100 min of active fighting. There were 1,901 male category fights (in which 383 injuries were recorded), and 861 female category fights (in which 114 injuries were recorded). The global injury incidence was almost double with the old rules compared to the one with the new rules [OR 1.99, 95% CI (1.76-2.26); p < 0.00001]. In male category, the risk of injury was higher before the rules were changed [OR 1.81, 95% CI (1.56-2.09); p < 0.00001], and also in female category [OR 2.71; 95% CI (2.64-2.80); p < 0.00001]. The rate of severe injuries was not different before and after the change of rules. The implementation of the new competition rules in competitive karate has been associated with a significant reduction in injury rate, making competition safer for athletes.

  2. The development of automaticity in short-term memory search: Item-response learning and category learning.

    PubMed

    Cao, Rui; Nosofsky, Robert M; Shiffrin, Richard M

    2017-05-01

    In short-term-memory (STM)-search tasks, observers judge whether a test probe was present in a short list of study items. Here we investigated the long-term learning mechanisms that lead to the highly efficient STM-search performance observed under conditions of consistent-mapping (CM) training, in which targets and foils never switch roles across trials. In item-response learning, subjects learn long-term mappings between individual items and target versus foil responses. In category learning, subjects learn high-level codes corresponding to separate sets of items and learn to attach old versus new responses to these category codes. To distinguish between these 2 forms of learning, we tested subjects in categorized varied mapping (CV) conditions: There were 2 distinct categories of items, but the assignment of categories to target versus foil responses varied across trials. In cases involving arbitrary categories, CV performance closely resembled standard varied-mapping performance without categories and departed dramatically from CM performance, supporting the item-response-learning hypothesis. In cases involving prelearned categories, CV performance resembled CM performance, as long as there was sufficient practice or steps taken to reduce trial-to-trial category-switching costs. This pattern of results supports the category-coding hypothesis for sufficiently well-learned categories. Thus, item-response learning occurs rapidly and is used early in CM training; category learning is much slower but is eventually adopted and is used to increase the efficiency of search beyond that available from item-response learning. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. How to select combination operators for fuzzy expert systems using CRI

    NASA Technical Reports Server (NTRS)

    Turksen, I. B.; Tian, Y.

    1992-01-01

    A method to select combination operators for fuzzy expert systems using the Compositional Rule of Inference (CRI) is proposed. First, fuzzy inference processes based on CRI are classified into three categories in terms of their inference results: the Expansion Type Inference, the Reduction Type Inference, and Other Type Inferences. Further, implication operators under Sup-T composition are classified as the Expansion Type Operator, the Reduction Type Operator, and the Other Type Operators. Finally, the combination of rules or their consequences is investigated for inference processes based on CRI.

  4. Guidance for Product Category Rule Development: Process, Outcome and Next Steps

    EPA Science Inventory

    Background The development of Product Category Rules (PCRs) is inconsistent among the program operators using ISO 14025 as the basis. Furthermore, the existence of several other product claim standards and specifications that require PCRs for making product claims, has the potent...

  5. Native-likeness in second language lexical categorization reflects individual language history and linguistic community norms.

    PubMed

    Zinszer, Benjamin D; Malt, Barbara C; Ameel, Eef; Li, Ping

    2014-01-01

    SECOND LANGUAGE LEARNERS FACE A DUAL CHALLENGE IN VOCABULARY LEARNING: First, they must learn new names for the 100s of common objects that they encounter every day. Second, after some time, they discover that these names do not generalize according to the same rules used in their first language. Lexical categories frequently differ between languages (Malt et al., 1999), and successful language learning requires that bilinguals learn not just new words but new patterns for labeling objects. In the present study, Chinese learners of English with varying language histories and resident in two different language settings (Beijing, China and State College, PA, USA) named 67 photographs of common serving dishes (e.g., cups, plates, and bowls) in both Chinese and English. Participants' response patterns were quantified in terms of similarity to the responses of functionally monolingual native speakers of Chinese and English and showed the cross-language convergence previously observed in simultaneous bilinguals (Ameel et al., 2005). For English, bilinguals' names for each individual stimulus were also compared to the dominant name generated by the native speakers for the object. Using two statistical models, we disentangle the effects of several highly interactive variables from bilinguals' language histories and the naming norms of the native speaker community to predict inter-personal and inter-item variation in L2 (English) native-likeness. We find only a modest age of earliest exposure effect on L2 category native-likeness, but importantly, we find that classroom instruction in L2 negatively impacts L2 category native-likeness, even after significant immersion experience. We also identify a significant role of both L1 and L2 norms in bilinguals' L2 picture naming responses.

  6. Native-likeness in second language lexical categorization reflects individual language history and linguistic community norms

    PubMed Central

    Zinszer, Benjamin D.; Malt, Barbara C.; Ameel, Eef; Li, Ping

    2014-01-01

    Second language learners face a dual challenge in vocabulary learning: First, they must learn new names for the 100s of common objects that they encounter every day. Second, after some time, they discover that these names do not generalize according to the same rules used in their first language. Lexical categories frequently differ between languages (Malt et al., 1999), and successful language learning requires that bilinguals learn not just new words but new patterns for labeling objects. In the present study, Chinese learners of English with varying language histories and resident in two different language settings (Beijing, China and State College, PA, USA) named 67 photographs of common serving dishes (e.g., cups, plates, and bowls) in both Chinese and English. Participants’ response patterns were quantified in terms of similarity to the responses of functionally monolingual native speakers of Chinese and English and showed the cross-language convergence previously observed in simultaneous bilinguals (Ameel et al., 2005). For English, bilinguals’ names for each individual stimulus were also compared to the dominant name generated by the native speakers for the object. Using two statistical models, we disentangle the effects of several highly interactive variables from bilinguals’ language histories and the naming norms of the native speaker community to predict inter-personal and inter-item variation in L2 (English) native-likeness. We find only a modest age of earliest exposure effect on L2 category native-likeness, but importantly, we find that classroom instruction in L2 negatively impacts L2 category native-likeness, even after significant immersion experience. We also identify a significant role of both L1 and L2 norms in bilinguals’ L2 picture naming responses. PMID:25386149

  7. Mobile Mental Health: Navigating New Rules and Regulations for Digital Tools.

    PubMed

    Armontrout, James; Torous, John; Fisher, Matthew; Drogin, Eric; Gutheil, Thomas

    2016-10-01

    Mobile health (mHealth) apps are becoming much more widely available. As more patients learn about and download apps, clinicians are sure to face more questions about the role these apps can play in treatment. Clinicians thus need to familiarize themselves with the clinical and legal risks that apps may introduce. Regulatory rules and organizations that oversee the safety and efficacy of mHealth apps are currently fragmentary in nature and clinicians should pay special attention to categories of apps which are currently exempt from significant regulation. Uniform HIPAA protection does not apply to personal health data that are shared with apps in many contexts which creates a number of clinically relevant privacy and security concerns. Clinicians should also consider several relatively novel potential adverse clinical outcomes and liability concerns that may be relevant to specific categories of apps, including apps that target (i) medication adherence, (ii) collection of self-reported data, (iii) collection of passive data, and (iv) generation of treatment recommendations for psychotherapeutic and behavioral interventions. Considering these potential pitfalls (and disclosing them to patients as a part of obtaining informed consent) is necessary as clinicians consider incorporating apps into treatment.

  8. Differential item functioning analysis of the Vanderbilt Expertise Test for cars.

    PubMed

    Lee, Woo-Yeol; Cho, Sun-Joo; McGugin, Rankin W; Van Gulick, Ana Beth; Gauthier, Isabel

    2015-01-01

    The Vanderbilt Expertise Test for cars (VETcar) is a test of visual learning for contemporary car models. We used item response theory to assess the VETcar and in particular used differential item functioning (DIF) analysis to ask if the test functions the same way in laboratory versus online settings and for different groups based on age and gender. An exploratory factor analysis found evidence of multidimensionality in the VETcar, although a single dimension was deemed sufficient to capture the recognition ability measured by the test. We selected a unidimensional three-parameter logistic item response model to examine item characteristics and subject abilities. The VETcar had satisfactory internal consistency. A substantial number of items showed DIF at a medium effect size for test setting and for age group, whereas gender DIF was negligible. Because online subjects were on average older than those tested in the lab, we focused on the age groups to conduct a multigroup item response theory analysis. This revealed that most items on the test favored the younger group. DIF could be more the rule than the exception when measuring performance with familiar object categories, therefore posing a challenge for the measurement of either domain-general visual abilities or category-specific knowledge.

  9. Basal ganglia and Dopamine Contributions to Probabilistic Category Learning

    PubMed Central

    Shohamy, D.; Myers, C.E.; Kalanithi, J.; Gluck, M.A.

    2009-01-01

    Studies of the medial temporal lobe and basal ganglia memory systems have recently been extended towards understanding the neural systems contributing to category learning. The basal ganglia, in particular, have been linked to probabilistic category learning in humans. A separate parallel literature in systems neuroscience has emerged, indicating a role for the basal ganglia and related dopamine inputs in reward prediction and feedback processing. Here, we review behavioral, neuropsychological, functional neuroimaging, and computational studies of basal ganglia and dopamine contributions to learning in humans. Collectively, these studies implicate the basal ganglia in incremental, feedback-based learning that involves integrating information across multiple experiences. The medial temporal lobes, by contrast, contribute to rapid encoding of relations between stimuli and support flexible generalization of learning to novel contexts and stimuli. By breaking down our understanding of the cognitive and neural mechanisms contributing to different aspects of learning, recent studies are providing insight into how, and when, these different processes support learning, how they may interact with each other, and the consequence of different forms of learning for the representation of knowledge. PMID:18061261

  10. Comparison of Natural Language Processing Rules-based and Machine-learning Systems to Identify Lumbar Spine Imaging Findings Related to Low Back Pain.

    PubMed

    Tan, W Katherine; Hassanpour, Saeed; Heagerty, Patrick J; Rundell, Sean D; Suri, Pradeep; Huhdanpaa, Hannu T; James, Kathryn; Carrell, David S; Langlotz, Curtis P; Organ, Nancy L; Meier, Eric N; Sherman, Karen J; Kallmes, David F; Luetmer, Patrick H; Griffith, Brent; Nerenz, David R; Jarvik, Jeffrey G

    2018-03-28

    To evaluate a natural language processing (NLP) system built with open-source tools for identification of lumbar spine imaging findings related to low back pain on magnetic resonance and x-ray radiology reports from four health systems. We used a limited data set (de-identified except for dates) sampled from lumbar spine imaging reports of a prospectively assembled cohort of adults. From N = 178,333 reports, we randomly selected N = 871 to form a reference-standard dataset, consisting of N = 413 x-ray reports and N = 458 MR reports. Using standardized criteria, four spine experts annotated the presence of 26 findings, where 71 reports were annotated by all four experts and 800 were each annotated by two experts. We calculated inter-rater agreement and finding prevalence from annotated data. We randomly split the annotated data into development (80%) and testing (20%) sets. We developed an NLP system from both rule-based and machine-learned models. We validated the system using accuracy metrics such as sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The multirater annotated dataset achieved inter-rater agreement of Cohen's kappa > 0.60 (substantial agreement) for 25 of 26 findings, with finding prevalence ranging from 3% to 89%. In the testing sample, rule-based and machine-learned predictions both had comparable average specificity (0.97 and 0.95, respectively). The machine-learned approach had a higher average sensitivity (0.94, compared to 0.83 for rules-based), and a higher overall AUC (0.98, compared to 0.90 for rules-based). Our NLP system performed well in identifying the 26 lumbar spine findings, as benchmarked by reference-standard annotation by medical experts. Machine-learned models provided substantial gains in model sensitivity with slight loss of specificity, and overall higher AUC. Copyright © 2018 The Association of University Radiologists. All rights reserved.

  11. Development of multimedia learning based inquiry on vibration and wave material

    NASA Astrophysics Data System (ADS)

    Madeali, H.; Prahani, B. K.

    2018-03-01

    This study aims to develop multimedia learning based inquiry that is interesting, easy to understand by students and streamline the time of teachers in bringing the teaching materials as well as feasible to be used in learning the physics subject matter of vibration and wave. This research is a Research and Development research with reference to ADDIE model that is Analysis, Design, Development, Implementation, and Evaluation. Multimedia based learning inquiry is packaged in hypertext form using Adobe Flash CS6 Software. The inquiry aspect is constructed by showing the animation of the concepts that the student wants to achieve and then followed by questions that will ask the students what is observable. Multimedia learning based inquiry is then validated by 2 learning experts, 3 material experts and 3 media experts and tested on 3 junior high school teachers and 23 students of state junior high school 5 of Kendari. The results of the study include: (1) Validation results by learning experts, material experts and media experts in valid categories; (2) The results of trials by teachers and students fall into the practical category. These results prove that the multimedia learning based inquiry on vibration and waves materials that have been developed feasible use in physics learning by students of junior high school class VIII.

  12. National Emission Standards for Hazardous Air Pollutants (NESHAP) for Source Categories: Perchloroethylene Dry Cleaning Facilities - 1993 Final Rule (58 FR 49354)

    EPA Pesticide Factsheets

    This document is a copy of the Federal Register publication of the September 22, 1993 Final Rule for the National Emission Standards for Hazardous Air Pollutants for Source Categories: Perchloroethylene Dry Cleaning Facilities.

  13. Adaptive structured dictionary learning for image fusion based on group-sparse-representation

    NASA Astrophysics Data System (ADS)

    Yang, Jiajie; Sun, Bin; Luo, Chengwei; Wu, Yuzhong; Xu, Limei

    2018-04-01

    Dictionary learning is the key process of sparse representation which is one of the most widely used image representation theories in image fusion. The existing dictionary learning method does not use the group structure information and the sparse coefficients well. In this paper, we propose a new adaptive structured dictionary learning algorithm and a l1-norm maximum fusion rule that innovatively utilizes grouped sparse coefficients to merge the images. In the dictionary learning algorithm, we do not need prior knowledge about any group structure of the dictionary. By using the characteristics of the dictionary in expressing the signal, our algorithm can automatically find the desired potential structure information that hidden in the dictionary. The fusion rule takes the physical meaning of the group structure dictionary, and makes activity-level judgement on the structure information when the images are being merged. Therefore, the fused image can retain more significant information. Comparisons have been made with several state-of-the-art dictionary learning methods and fusion rules. The experimental results demonstrate that, the dictionary learning algorithm and the fusion rule both outperform others in terms of several objective evaluation metrics.

  14. Information from Multiple Modalities Helps 5-Month-Olds Learn Abstract Rules

    ERIC Educational Resources Information Center

    Frank, Michael C.; Slemmer, Jonathan A.; Marcus, Gary F.; Johnson, Scott P.

    2009-01-01

    By 7 months of age, infants are able to learn rules based on the abstract relationships between stimuli ( Marcus et al., 1999 ), but they are better able to do so when exposed to speech than to some other classes of stimuli. In the current experiments we ask whether multimodal stimulus information will aid younger infants in identifying abstract…

  15. Building v/s Exploring Models: Comparing Learning of Evolutionary Processes through Agent-based Modeling

    NASA Astrophysics Data System (ADS)

    Wagh, Aditi

    Two strands of work motivate the three studies in this dissertation. Evolutionary change can be viewed as a computational complex system in which a small set of rules operating at the individual level result in different population level outcomes under different conditions. Extensive research has documented students' difficulties with learning about evolutionary change (Rosengren et al., 2012), particularly in terms of levels slippage (Wilensky & Resnick, 1999). Second, though building and using computational models is becoming increasingly common in K-12 science education, we know little about how these two modalities compare. This dissertation adopts agent-based modeling as a representational system to compare these modalities in the conceptual context of micro-evolutionary processes. Drawing on interviews, Study 1 examines middle-school students' productive ways of reasoning about micro-evolutionary processes to find that the specific framing of traits plays a key role in whether slippage explanations are cued. Study 2, which was conducted in 2 schools with about 150 students, forms the crux of the dissertation. It compares learning processes and outcomes when students build their own models or explore a pre-built model. Analysis of Camtasia videos of student pairs reveals that builders' and explorers' ways of accessing rules, and sense-making of observed trends are of a different character. Builders notice rules through available blocks-based primitives, often bypassing their enactment while explorers attend to rules primarily through the enactment. Moreover, builders' sense-making of observed trends is more rule-driven while explorers' is more enactment-driven. Pre and posttests reveal that builders manifest a greater facility with accessing rules, providing explanations manifesting targeted assembly. Explorers use rules to construct explanations manifesting non-targeted assembly. Interviews reveal varying degrees of shifts away from slippage in both modalities, with students who built models not incorporating slippage explanations in responses. Study 3 compares these modalities with a control using traditional activities. Pre and posttests reveal that the two modalities manifested greater facility with accessing and assembling rules than the control. The dissertation offers implications for the design of learning environments for evolutionary change, design of the two modalities based on their strengths and weaknesses, and teacher training for the same.

  16. Learning temporal rules to forecast instability in continuously monitored patients

    PubMed Central

    Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R

    2017-01-01

    Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. PMID:27274020

  17. The representation of grammatical categories in the brain.

    PubMed

    Shapiro, Kevin; Caramazza, Alfonso

    2003-05-01

    Language relies on the rule-based combination of words with different grammatical properties, such as nouns and verbs. Yet most research on the problem of word retrieval has focused on the production of concrete nouns, leaving open a crucial question: how is knowledge about different grammatical categories represented in the brain, and what components of the language production system make use of it? Drawing on evidence from neuropsychology, electrophysiology and neuroimaging, we argue that information about a word's grammatical category might be represented independently of its meaning at the levels of word form and morphological computation.

  18. Optimal Sequential Rules for Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Vos, Hans J.

    1998-01-01

    Formulates sequential rules for adapting the appropriate amount of instruction to learning needs in the context of computer-based instruction. Topics include Bayesian decision theory, threshold and linear-utility structure, psychometric model, optimal sequential number of test questions, and an empirical example of sequential instructional…

  19. Individual Differences in Learning Talker Categories: The Role of Working Memory

    PubMed Central

    Levi, Susannah V.

    2016-01-01

    The current study explores the question of how an auditory category is learned by having school-age listeners learn to categorize speech not in terms of linguistic categories, but instead in terms of talker categories (i.e., who is talking). Findings from visual-category learning indicate that working memory skills affect learning, but the literature is equivocal: sometimes better working memory is advantageous, and sometimes not. The current study examined the role of different components of working memory to test which component skills benefit, and which hinder, learning talker categories. Results revealed that the short-term storage component positively predicted learning, but that the Central Executive and Episodic Buffer negatively predicted learning. As with visual categories, better working memory is not always an advantage. PMID:25721393

  20. A framework for medical image retrieval using machine learning and statistical similarity matching techniques with relevance feedback.

    PubMed

    Rahman, Md Mahmudur; Bhattacharya, Prabir; Desai, Bipin C

    2007-01-01

    A content-based image retrieval (CBIR) framework for diverse collection of medical images of different imaging modalities, anatomic regions with different orientations and biological systems is proposed. Organization of images in such a database (DB) is well defined with predefined semantic categories; hence, it can be useful for category-specific searching. The proposed framework consists of machine learning methods for image prefiltering, similarity matching using statistical distance measures, and a relevance feedback (RF) scheme. To narrow down the semantic gap and increase the retrieval efficiency, we investigate both supervised and unsupervised learning techniques to associate low-level global image features (e.g., color, texture, and edge) in the projected PCA-based eigenspace with their high-level semantic and visual categories. Specially, we explore the use of a probabilistic multiclass support vector machine (SVM) and fuzzy c-mean (FCM) clustering for categorization and prefiltering of images to reduce the search space. A category-specific statistical similarity matching is proposed in a finer level on the prefiltered images. To incorporate a better perception subjectivity, an RF mechanism is also added to update the query parameters dynamically and adjust the proposed matching functions. Experiments are based on a ground-truth DB consisting of 5000 diverse medical images of 20 predefined categories. Analysis of results based on cross-validation (CV) accuracy and precision-recall for image categorization and retrieval is reported. It demonstrates the improvement, effectiveness, and efficiency achieved by the proposed framework.

  1. Beta Hebbian Learning as a New Method for Exploratory Projection Pursuit.

    PubMed

    Quintián, Héctor; Corchado, Emilio

    2017-09-01

    In this research, a novel family of learning rules called Beta Hebbian Learning (BHL) is thoroughly investigated to extract information from high-dimensional datasets by projecting the data onto low-dimensional (typically two dimensional) subspaces, improving the existing exploratory methods by providing a clear representation of data's internal structure. BHL applies a family of learning rules derived from the Probability Density Function (PDF) of the residual based on the beta distribution. This family of rules may be called Hebbian in that all use a simple multiplication of the output of the neural network with some function of the residuals after feedback. The derived learning rules can be linked to an adaptive form of Exploratory Projection Pursuit and with artificial distributions, the networks perform as the theory suggests they should: the use of different learning rules derived from different PDFs allows the identification of "interesting" dimensions (as far from the Gaussian distribution as possible) in high-dimensional datasets. This novel algorithm, BHL, has been tested over seven artificial datasets to study the behavior of BHL parameters, and was later applied successfully over four real datasets, comparing its results, in terms of performance, with other well-known Exploratory and projection models such as Maximum Likelihood Hebbian Learning (MLHL), Locally-Linear Embedding (LLE), Curvilinear Component Analysis (CCA), Isomap and Neural Principal Component Analysis (Neural PCA).

  2. Dependent Measure and Time Constraints Modulate the Competition between Conflicting Feature-Based and Rule-Based Generalization Processes

    ERIC Educational Resources Information Center

    Cobos, Pedro L.; Gutiérrez-Cobo, María J.; Morís, Joaquín; Luque, David

    2017-01-01

    In our study, we tested the hypothesis that feature-based and rule-based generalization involve different types of processes that may affect each other producing different results depending on time constraints and on how generalization is measured. For this purpose, participants in our experiments learned cue-outcome relationships that followed…

  3. Statistical Inference in the Learning of Novel Phonetic Categories

    ERIC Educational Resources Information Center

    Zhao, Yuan

    2010-01-01

    Learning a phonetic category (or any linguistic category) requires integrating different sources of information. A crucial unsolved problem for phonetic learning is how this integration occurs: how can we update our previous knowledge about a phonetic category as we hear new exemplars of the category? One model of learning is Bayesian Inference,…

  4. Feedback-based probabilistic category learning is selectively impaired in attention/hyperactivity deficit disorder.

    PubMed

    Gabay, Yafit; Goldfarb, Liat

    2017-07-01

    Although Attention-Deficit Hyperactivity Disorder (ADHD) is closely linked to executive function deficits, it has recently been attributed to procedural learning impairments that are quite distinct from the former. These observations challenge the ability of the executive function framework solely to account for the diverse range of symptoms observed in ADHD. A recent neurocomputational model emphasizes the role of striatal dopamine (DA) in explaining ADHD's broad range of deficits, but the link between this model and procedural learning impairments remains unclear. Significantly, feedback-based procedural learning is hypothesized to be disrupted in ADHD because of the involvement of striatal DA in this type of learning. In order to test this assumption, we employed two variants of a probabilistic category learning task known from the neuropsychological literature. Feedback-based (FB) and paired associate-based (PA) probabilistic category learning were employed in a non-medicated sample of ADHD participants and neurotypical participants. In the FB task, participants learned associations between cues and outcomes initially by guessing and subsequently through feedback indicating the correctness of the response. In the PA learning task, participants viewed the cue and its associated outcome simultaneously without receiving an overt response or corrective feedback. In both tasks, participants were trained across 150 trials. Learning was assessed in a subsequent test without a presentation of the outcome or corrective feedback. Results revealed an interesting disassociation in which ADHD participants performed as well as control participants in the PA task, but were impaired compared with the controls in the FB task. The learning curve during FB training differed between the two groups. Taken together, these results suggest that the ability to incrementally learn by feedback is selectively disrupted in ADHD participants. These results are discussed in relation to both the ADHD dopaminergic dysfunction model and recent findings implicating procedural learning impairments in those with ADHD. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Classification versus inference learning contrasted with real-world categories.

    PubMed

    Jones, Erin L; Ross, Brian H

    2011-07-01

    Categories are learned and used in a variety of ways, but the research focus has been on classification learning. Recent work contrasting classification with inference learning of categories found important later differences in category performance. However, theoretical accounts differ on whether this is due to an inherent difference between the tasks or to the implementation decisions. The inherent-difference explanation argues that inference learners focus on the internal structure of the categories--what each category is like--while classification learners focus on diagnostic information to predict category membership. In two experiments, using real-world categories and controlling for earlier methodological differences, inference learners learned more about what each category was like than did classification learners, as evidenced by higher performance on a novel classification test. These results suggest that there is an inherent difference between learning new categories by classifying an item versus inferring a feature.

  6. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... related to the electronics manufacturing source category. DATES: This rule will be effective on March 23...

  7. Learning about the internal structure of categories through classification and feature inference.

    PubMed

    Jee, Benjamin D; Wiley, Jennifer

    2014-01-01

    Previous research on category learning has found that classification tasks produce representations that are skewed toward diagnostic feature dimensions, whereas feature inference tasks lead to richer representations of within-category structure. Yet, prior studies often measure category knowledge through tasks that involve identifying only the typical features of a category. This neglects an important aspect of a category's internal structure: how typical and atypical features are distributed within a category. The present experiments tested the hypothesis that inference learning results in richer knowledge of internal category structure than classification learning. We introduced several new measures to probe learners' representations of within-category structure. Experiment 1 found that participants in the inference condition learned and used a wider range of feature dimensions than classification learners. Classification learners, however, were more sensitive to the presence of atypical features within categories. Experiment 2 provided converging evidence that classification learners were more likely to incorporate atypical features into their representations. Inference learners were less likely to encode atypical category features, even in a "partial inference" condition that focused learners' attention on the feature dimensions relevant to classification. Overall, these results are contrary to the hypothesis that inference learning produces superior knowledge of within-category structure. Although inference learning promoted representations that included a broad range of category-typical features, classification learning promoted greater sensitivity to the distribution of typical and atypical features within categories.

  8. The effectiveness of research-based physics learning module with predict-observe-explain strategies to improve the student’s competence

    NASA Astrophysics Data System (ADS)

    Usmeldi

    2018-05-01

    The preliminary study shows that many students are difficult to master the concept of physics. There are still many students who have not mastery learning physics. Teachers and students still use textbooks. Students rarely do experiments in the laboratory. One model of learning that can improve students’ competence is a research-based learning with Predict- Observe-Explain (POE) strategies. To implement this learning, research-based physics learning modules with POE strategy are used. The research aims to find out the effectiveness of implementation of research-based physics learning modules with POE strategy to improving the students’ competence. The research used a quasi-experimental with pretest-posttest group control design. Data were collected using observation sheets, achievement test, skill assessment sheets, questionnaire of attitude and student responses to learning implementation. The results of research showed that research-based physics learning modules with POE strategy was effective to improve the students’ competence, in the case of (1) mastery learning of physics has been achieved by majority of students, (2) improving the students competency of experimental class including high category, (3) there is a significant difference between the average score of students’ competence of experimental class and the control class, (4) the average score of the students competency of experimental class is higher than the control class, (5) the average score of the students’ responses to the learning implementation is very good category, this means that most students can implement research-based learning with POE strategies.

  9. Is better beautiful or is beautiful better? Exploring the relationship between beauty and category structure.

    PubMed

    Sanders, Megan; Davis, Tyler; Love, Bradley C

    2013-06-01

    We evaluate two competing accounts of the relationship between beauty and category structure. According to the similarity-based view, beauty arises from category structure such that central items are favored due to their increased fluency. In contrast, the theory-based view holds that people's theories of beauty shape their perceptions of categories. In the present study, subjects learned to categorize abstract paintings into meaningfully labeled categories and rated the paintings' beauty, value, and typicality. Inconsistent with the similarity-based view, beauty ratings were highly correlated across conditions despite differences in fluency and assigned category structure. Consistent with the theory-based view, beautiful paintings were treated as central members for categories expected to contain beautiful paintings (e.g., art museum pieces), but not in others (e.g., student show pieces). These results suggest that the beauty of complex, real-world stimuli is not determined by fluency within category structure but, instead, interacts with people's prior knowledge to structure categories.

  10. Is spacing really the “friend of induction”?

    PubMed Central

    Verkoeijen, Peter P. J. L.; Bouwmeester, Samantha

    2014-01-01

    Inductive learning takes place when people learn a new concept or category by observing a variety of exemplars. Kornell and Bjork (2008) asked participants to learn new painting styles either by presenting different paintings of the same artist consecutively (massed presentation) or by mixing paintings of different artists (spaced presentation). In their second experiment, Kornell and Bjork (2008) showed with a final style recognition test, that spacing resulted in better inductive learning than massing. Also, by using this style recognition test, they ruled out the possibility that spacing merely resulted in a better memory for the labels of the newly learned painting styles. The findings from Kornell and Bjork’s (2008) second experiment are important because they show that the benefit of spaced learning generalizes to complex learning tasks and outcomes, and that it is not confined to rote memory learning. However, the findings from Kornell and Bjork’s (2008) second experiment have never been replicated. In the present study we performed an exact and high-powered replication of Kornell and Bjork’s (2008) second experiment with a Web-based sample. Such a replication contributes to establish the reliability of the original finding and hence to more conclusive evidence of the spacing effect in inductive learning. The findings from the present replication attempt revealed a medium-sized advantage of spacing over massing in inductive learning, which was comparable to the original effect in the experiment by Kornell and Bjork (2008). Also, the 95% confidence intervals (CI) of the effect sizes from both experiments overlapped considerably. Hence, the findings from the present replication experiment and the original experiment clearly reinforce each other. PMID:24744742

  11. Rapid Transfer of Abstract Rules to Novel Contexts in Human Lateral Prefrontal Cortex

    PubMed Central

    Cole, Michael W.; Etzel, Joset A.; Zacks, Jeffrey M.; Schneider, Walter; Braver, Todd S.

    2011-01-01

    Flexible, adaptive behavior is thought to rely on abstract rule representations within lateral prefrontal cortex (LPFC), yet it remains unclear how these representations provide such flexibility. We recently demonstrated that humans can learn complex novel tasks in seconds. Here we hypothesized that this impressive mental flexibility may be possible due to rapid transfer of practiced rule representations within LPFC to novel task contexts. We tested this hypothesis using functional MRI and multivariate pattern analysis, classifying LPFC activity patterns across 64 tasks. Classifiers trained to identify abstract rules based on practiced task activity patterns successfully generalized to novel tasks. This suggests humans can transfer practiced rule representations within LPFC to rapidly learn new tasks, facilitating cognitive performance in novel circumstances. PMID:22125519

  12. System diagnostic builder: a rule-generation tool for expert systems that do intelligent data evaluation

    NASA Astrophysics Data System (ADS)

    Nieten, Joseph L.; Burke, Roger

    1993-03-01

    The system diagnostic builder (SDB) is an automated knowledge acquisition tool using state- of-the-art artificial intelligence (AI) technologies. The SDB uses an inductive machine learning technique to generate rules from data sets that are classified by a subject matter expert (SME). Thus, data is captured from the subject system, classified by an expert, and used to drive the rule generation process. These rule-bases are used to represent the observable behavior of the subject system, and to represent knowledge about this system. The rule-bases can be used in any knowledge based system which monitors or controls a physical system or simulation. The SDB has demonstrated the utility of using inductive machine learning technology to generate reliable knowledge bases. In fact, we have discovered that the knowledge captured by the SDB can be used in any number of applications. For example, the knowledge bases captured from the SMS can be used as black box simulations by intelligent computer aided training devices. We can also use the SDB to construct knowledge bases for the process control industry, such as chemical production, or oil and gas production. These knowledge bases can be used in automated advisory systems to ensure safety, productivity, and consistency.

  13. 78 FR 52123 - Atlantic Highly Migratory Species; 2006 Consolidated Highly Migratory Species Fishery Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-22

    ... quota. As described in the proposed rule, the proposed measures include Allocation measures, Area-Based... logistics for 10 public hearings to provide additional opportunities for members of the public to comment on... among the quota categories; (2) area-based measures that would implement restrictions on the use of...

  14. A Comparative Analysis of the Snort and Suricata Intrusion-Detection Systems

    DTIC Science & Technology

    2011-09-01

    Category: Test Rules Test #6: Simple LFI Attack 43 Snort True Positive: Snort generated an alert based on the ‘/etc/ passwd ’ string passed...through an HTTP command. Suricata True Positive: Suricata generated an alert based on the ‘/etc/ passwd ’ string passed through an HTTP command

  15. Cognitive and linguistic biases in morphology learning.

    PubMed

    Finley, Sara

    2018-05-30

    Morphology is the study of the relationship between form and meaning. The study of morphology involves understanding the rules and processes that underlie word formation, including the use and productivity of affixes, and the systems that create novel word forms. The present review explores these processes by examining the cognitive components that contribute to typological regularities among morphological systems across the world's language. The review will focus on research in morpheme segmentation, the suffixing preference, acquisition of morphophonology, and acquiring morphological categories and inflectional paradigms. The review will highlight research in a range of areas of linguistics, from child language acquisition, to computational modeling, to adult language learning experiments. In order to best understand the cognitive biases that shape morphological learning, a broad, interdisciplinary approach must be taken. This article is categorized under: Linguistics > Linguistic Theory Linguistics > Language Acquisition Psychology > Language. © 2018 Wiley Periodicals, Inc.

  16. Conditions for excellence in teaching in medical education: The Frankfurt Model to ensure quality in teaching and learning.

    PubMed

    Giesler, Marianne; Karsten, Gudrun; Ochsendorf, Falk; Breckwoldt, Jan

    2017-01-01

    Background: There is general consensus that the organizational and administrative aspects of academic study programs exert an important influence on teaching and learning. Despite this, no comprehensive framework currently exists to describe the conditions that affect the quality of teaching and learning in medical education. The aim of this paper is to systematically and comprehensively identify these factors to offer academic administrators and decision makers interested in improving teaching a theory-based and, to an extent, empirically founded framework on the basis of which improvements in teaching quality can be identified and implemented. Method: Primarily, the issue was addressed by combining a theory-driven deductive approach with an experience based, "best evidence" one during the course of two workshops held by the GMA Committee on Personnel and Organizational Development in Academic Teaching (POiL) in Munich (2013) and Frankfurt (2014). Two models describing the conditions relevant to teaching and learning (Euler/Hahn and Rindermann) were critically appraised and synthesized into a new third model. Practical examples of teaching strategies that promote or hinder learning were compiled and added to the categories of this model and, to the extent possible, supported with empirical evidence. Based on this, a checklist with recommendations for optimizing general academic conditions was formulated. Results: The Frankfurt Model of conditions to ensure Quality in Teaching and Learning covers six categories: organizational structure/medical school culture, regulatory frameworks, curricular requirements, time constraints, material and personnel resources, and qualification of teaching staff. These categories have been supplemented by the interests, motives and abilities of the actual teachers and students in this particular setting. The categories of this model provide the structure for a checklist in which recommendations for optimizing teaching are given. Conclusions: The checklist derived from the Frankfurt Model for ensuring quality in teaching and learning can be used for quality assurance and to improve the conditions under which teaching and learning take place in medical schools.

  17. How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential Tasks

    PubMed Central

    Rombouts, Jaldert O.; Bohte, Sander M.; Roelfsema, Pieter R.

    2015-01-01

    Intelligence is our ability to learn appropriate responses to new stimuli and situations. Neurons in association cortex are thought to be essential for this ability. During learning these neurons become tuned to relevant features and start to represent them with persistent activity during memory delays. This learning process is not well understood. Here we develop a biologically plausible learning scheme that explains how trial-and-error learning induces neuronal selectivity and working memory representations for task-relevant information. We propose that the response selection stage sends attentional feedback signals to earlier processing levels, forming synaptic tags at those connections responsible for the stimulus-response mapping. Globally released neuromodulators then interact with tagged synapses to determine their plasticity. The resulting learning rule endows neural networks with the capacity to create new working memory representations of task relevant information as persistent activity. It is remarkably generic: it explains how association neurons learn to store task-relevant information for linear as well as non-linear stimulus-response mappings, how they become tuned to category boundaries or analog variables, depending on the task demands, and how they learn to integrate probabilistic evidence for perceptual decisions. PMID:25742003

  18. An analysis of science content and representations in introductory college physics textbooks and multimodal learning resources

    NASA Astrophysics Data System (ADS)

    Donnelly, Suzanne M.

    This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations

  19. Adaptive learning in a compartmental model of visual cortex—how feedback enables stable category learning and refinement

    PubMed Central

    Layher, Georg; Schrodt, Fabian; Butz, Martin V.; Neumann, Heiko

    2014-01-01

    The categorization of real world objects is often reflected in the similarity of their visual appearances. Such categories of objects do not necessarily form disjunct sets of objects, neither semantically nor visually. The relationship between categories can often be described in terms of a hierarchical structure. For instance, tigers and leopards build two separate mammalian categories, both of which are subcategories of the category Felidae. In the last decades, the unsupervised learning of categories of visual input stimuli has been addressed by numerous approaches in machine learning as well as in computational neuroscience. However, the question of what kind of mechanisms might be involved in the process of subcategory learning, or category refinement, remains a topic of active investigation. We propose a recurrent computational network architecture for the unsupervised learning of categorial and subcategorial visual input representations. During learning, the connection strengths of bottom-up weights from input to higher-level category representations are adapted according to the input activity distribution. In a similar manner, top-down weights learn to encode the characteristics of a specific stimulus category. Feedforward and feedback learning in combination realize an associative memory mechanism, enabling the selective top-down propagation of a category's feedback weight distribution. We suggest that the difference between the expected input encoded in the projective field of a category node and the current input pattern controls the amplification of feedforward-driven representations. Large enough differences trigger the recruitment of new representational resources and the establishment of additional (sub-) category representations. We demonstrate the temporal evolution of such learning and show how the proposed combination of an associative memory with a modulatory feedback integration successfully establishes category and subcategory representations. PMID:25538637

  20. A network model of behavioural performance in a rule learning task.

    PubMed

    Hasselmo, Michael E; Stern, Chantal E

    2018-04-19

    Humans demonstrate differences in performance on cognitive rule learning tasks which could involve differences in properties of neural circuits. An example model is presented to show how gating of the spread of neural activity could underlie rule learning and the generalization of rules to previously unseen stimuli. This model uses the activity of gating units to regulate the pattern of connectivity between neurons responding to sensory input and subsequent gating units or output units. This model allows analysis of network parameters that could contribute to differences in cognitive rule learning. These network parameters include differences in the parameters of synaptic modification and presynaptic inhibition of synaptic transmission that could be regulated by neuromodulatory influences on neural circuits. Neuromodulatory receptors play an important role in cognitive function, as demonstrated by the fact that drugs that block cholinergic muscarinic receptors can cause cognitive impairments. In discussions of the links between neuromodulatory systems and biologically based traits, the issue of mechanisms through which these linkages are realized is often missing. This model demonstrates potential roles of neural circuit parameters regulated by acetylcholine in learning context-dependent rules, and demonstrates the potential contribution of variation in neural circuit properties and neuromodulatory function to individual differences in cognitive function.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Author(s).

  1. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

    PubMed Central

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.

    2015-01-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies. PMID:26496502

  2. Neuromodulated Synaptic Plasticity on the SpiNNaker Neuromorphic System

    PubMed Central

    Mikaitis, Mantas; Pineda García, Garibaldi; Knight, James C.; Furber, Steve B.

    2018-01-01

    SpiNNaker is a digital neuromorphic architecture, designed specifically for the low power simulation of large-scale spiking neural networks at speeds close to biological real-time. Unlike other neuromorphic systems, SpiNNaker allows users to develop their own neuron and synapse models as well as specify arbitrary connectivity. As a result SpiNNaker has proved to be a powerful tool for studying different neuron models as well as synaptic plasticity—believed to be one of the main mechanisms behind learning and memory in the brain. A number of Spike-Timing-Dependent-Plasticity(STDP) rules have already been implemented on SpiNNaker and have been shown to be capable of solving various learning tasks in real-time. However, while STDP is an important biological theory of learning, it is a form of Hebbian or unsupervised learning and therefore does not explain behaviors that depend on feedback from the environment. Instead, learning rules based on neuromodulated STDP (three-factor learning rules) have been shown to be capable of solving reinforcement learning tasks in a biologically plausible manner. In this paper we demonstrate for the first time how a model of three-factor STDP, with the third-factor representing spikes from dopaminergic neurons, can be implemented on the SpiNNaker neuromorphic system. Using this learning rule we first show how reward and punishment signals can be delivered to a single synapse before going on to demonstrate it in a larger network which solves the credit assignment problem in a Pavlovian conditioning experiment. Because of its extra complexity, we find that our three-factor learning rule requires approximately 2× as much processing time as the existing SpiNNaker STDP learning rules. However, we show that it is still possible to run our Pavlovian conditioning model with up to 1 × 104 neurons in real-time, opening up new research opportunities for modeling behavioral learning on SpiNNaker. PMID:29535600

  3. Diverse strategy-learning styles promote cooperation in evolutionary spatial prisoner's dilemma game

    NASA Astrophysics Data System (ADS)

    Liu, Run-Ran; Jia, Chun-Xiao; Rong, Zhihai

    2015-11-01

    Observational learning and practice learning are two important learning styles and play important roles in our information acquisition. In this paper, we study a spacial evolutionary prisoner's dilemma game, where players can choose the observational learning rule or the practice learning rule when updating their strategies. In the proposed model, we use a parameter p controlling the preference of players choosing the observational learning rule, and found that there exists an optimal value of p leading to the highest cooperation level, which indicates that the cooperation can be promoted by these two learning rules collaboratively and one single learning rule is not favor the promotion of cooperation. By analysing the dynamical behavior of the system, we find that the observational learning rule can make the players residing on cooperative clusters more easily realize the bad sequence of mutual defection. However, a too high observational learning probability suppresses the players to form compact cooperative clusters. Our results highlight the importance of a strategy-updating rule, more importantly, the observational learning rule in the evolutionary cooperation.

  4. The effect of training methodology on knowledge representation in categorization

    PubMed Central

    Shamloo, Farzin; Ell, Shawn W.

    2017-01-01

    Category representations can be broadly classified as containing within–category information or between–category information. Although such representational differences can have a profound impact on decision–making, relatively little is known about the factors contributing to the development and generalizability of different types of category representations. These issues are addressed by investigating the impact of training methodology and category structures using a traditional empirical approach as well as the novel adaptation of computational modeling techniques from the machine learning literature. Experiment 1 focused on rule–based (RB) category structures thought to promote between–category representations. Participants learned two sets of two categories during training and were subsequently tested on a novel categorization problem using the training categories. Classification training resulted in a bias toward between–category representations whereas concept training resulted in a bias toward within–category representations. Experiment 2 focused on information-integration (II) category structures thought to promote within–category representations. With II structures, there was a bias toward within–category representations regardless of training methodology. Furthermore, in both experiments, computational modeling suggests that only within–category representations could support generalization during the test phase. These data suggest that within–category representations may be dominant and more robust for supporting the reconfiguration of current knowledge to support generalization. PMID:28846732

  5. Teachers' Attitudes to and Beliefs about Web-Based Collaborative Learning Environments in the Context of an International Implementation

    ERIC Educational Resources Information Center

    Kollias, V.; Mamalougos, N.; Vamvakoussi, X.; Lakkala, M.; Vosniadou, S.

    2005-01-01

    Fifty-six teachers, from four European countries, were interviewed to ascertain their attitudes to and beliefs about the Collaborative Learning Environments (CLEs) which were designed under the Innovative Technologies for Collaborative Learning Project. Their responses were analysed using categories based on a model from cultural-historical…

  6. Defining the requisite knowledge for providers of in-service professional development for K--12 teachers of science: Refining the construct

    NASA Astrophysics Data System (ADS)

    Tucker, Deborah L.

    Purpose. The purpose of this grounded theory study was to refine, using a Delphi study process, the four categories of the theoretical model of the comprehensive knowledge base required by providers of professional development for K-12 teachers of science generated from a review of the literature. Methodology. This grounded theory study used data collected through a modified Delphi technique and interviews to refine and validate the literature-based knowledge base required by providers of professional development for K-12 teachers of science. Twenty-three participants, experts in the fields of science education, how people learn, instructional and assessment strategies, and learning contexts, responded to the study's questions. Findings. By "densifying" the four categories of the knowledge base, this study determined the causal conditions (the science subject matter knowledge), the intervening conditions (how people learn), the strategies (the effective instructional and assessment strategies), and the context (the context and culture of formal learning environments) surrounding the science professional development process. Eight sections were added to the literature-based knowledge base; the final model comprised of forty-nine sections. The average length of the operational definitions increased nearly threefold and the number of citations per operational definition increased more than twofold. Conclusions. A four-category comprehensive model that can serve as the foundation for the knowledge base required by science professional developers now exists. Subject matter knowledge includes science concepts, inquiry, the nature of science, and scientific habits of mind; how people learn includes the principles of learning, active learning, andragogy, variations in learners, neuroscience and cognitive science, and change theory; effective instructional and assessment strategies include constructivist learning and inquiry-based teaching, differentiation of instruction, making knowledge and thinking accessible to learners, automatic and fluent retrieval of nonscience-specific skills, and science assessment and assessment strategies, science-specific instructional strategies, and safety within a learning environment; and, contextual knowledge includes curriculum selection and implementation strategies and knowledge of building program coherence. Recommendations. Further research on the use of which specific instructional strategies identified in the refined knowledge base have positive, significant effect sizes for adult learners is recommended.

  7. Affordance Analysis--Matching Learning Tasks with Learning Technologies

    ERIC Educational Resources Information Center

    Bower, Matt

    2008-01-01

    This article presents a design methodology for matching learning tasks with learning technologies. First a working definition of "affordances" is provided based on the need to describe the action potentials of the technologies (utility). Categories of affordances are then proposed to provide a framework for analysis. Following this, a…

  8. Feature Inference Learning and Eyetracking

    ERIC Educational Resources Information Center

    Rehder, Bob; Colner, Robert M.; Hoffman, Aaron B.

    2009-01-01

    Besides traditional supervised classification learning, people can learn categories by inferring the missing features of category members. It has been proposed that feature inference learning promotes learning a category's internal structure (e.g., its typical features and interfeature correlations) whereas classification promotes the learning of…

  9. The Convallis Rule for Unsupervised Learning in Cortical Networks

    PubMed Central

    Yger, Pierre; Harris, Kenneth D.

    2013-01-01

    The phenomenology and cellular mechanisms of cortical synaptic plasticity are becoming known in increasing detail, but the computational principles by which cortical plasticity enables the development of sensory representations are unclear. Here we describe a framework for cortical synaptic plasticity termed the “Convallis rule”, mathematically derived from a principle of unsupervised learning via constrained optimization. Implementation of the rule caused a recurrent cortex-like network of simulated spiking neurons to develop rate representations of real-world speech stimuli, enabling classification by a downstream linear decoder. Applied to spike patterns used in in vitro plasticity experiments, the rule reproduced multiple results including and beyond STDP. However STDP alone produced poorer learning performance. The mathematical form of the rule is consistent with a dual coincidence detector mechanism that has been suggested by experiments in several synaptic classes of juvenile neocortex. Based on this confluence of normative, phenomenological, and mechanistic evidence, we suggest that the rule may approximate a fundamental computational principle of the neocortex. PMID:24204224

  10. Chromatic Perceptual Learning but No Category Effects without Linguistic Input.

    PubMed

    Grandison, Alexandra; Sowden, Paul T; Drivonikou, Vicky G; Notman, Leslie A; Alexander, Iona; Davies, Ian R L

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest.

  11. An agent-based model of dialect evolution in killer whales.

    PubMed

    Filatova, Olga A; Miller, Patrick J O

    2015-05-21

    The killer whale is one of the few animal species with vocal dialects that arise from socially learned group-specific call repertoires. We describe a new agent-based model of killer whale populations and test a set of vocal-learning rules to assess which mechanisms may lead to the formation of dialect groupings observed in the wild. We tested a null model with genetic transmission and no learning, and ten models with learning rules that differ by template source (mother or matriline), variation type (random errors or innovations) and type of call change (no divergence from kin vs. divergence from kin). The null model without vocal learning did not produce the pattern of group-specific call repertoires we observe in nature. Learning from either mother alone or the entire matriline with calls changing by random errors produced a graded distribution of the call phenotype, without the discrete call types observed in nature. Introducing occasional innovation or random error proportional to matriline variance yielded more or less discrete and stable call types. A tendency to diverge from the calls of related matrilines provided fast divergence of loose call clusters. A pattern resembling the dialect diversity observed in the wild arose only when rules were applied in combinations and similar outputs could arise from different learning rules and their combinations. Our results emphasize the lack of information on quantitative features of wild killer whale dialects and reveal a set of testable questions that can draw insights into the cultural evolution of killer whale dialects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Consider the category: The effect of spacing depends on individual learning histories.

    PubMed

    Slone, Lauren K; Sandhofer, Catherine M

    2017-07-01

    The spacing effect refers to increased retention following learning instances that are spaced out in time compared with massed together in time. By one account, the advantages of spaced learning should be independent of task particulars and previous learning experiences given that spacing effects have been demonstrated in a variety of tasks across the lifespan. However, by another account, spaced learning should be affected by previous learning because past learning affects the memory and attention processes that form the crux of the spacing effect. The current study investigated whether individuals' learning histories affect the role of spacing in category learning. We examined the effect of spacing on 24 2- to 3.5-year-old children's learning of categories organized by properties to which children's previous learning experiences have biased them to attend (i.e., shape) and properties to which children are less biased to attend (i.e., texture and color). Spaced presentations led to significantly better learning of shape categories, but not of texture or color categories, compared with massed presentations. In addition, generalized estimating equations analyses revealed positive relations between the size of children's "shape-side" productive vocabularies and their shape category learning and between the size of children's "against-the-system" productive vocabularies and their texture category learning. These results suggest that children's attention to and memory for novel object categories are strongly related to their individual word-learning histories. Moreover, children's learned attentional biases affected the types of categories for which spacing facilitated learning. These findings highlight the importance of considering how learners' previous experiences may influence future learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Reducing the computational footprint for real-time BCPNN learning

    PubMed Central

    Vogginger, Bernhard; Schüffny, René; Lansner, Anders; Cederström, Love; Partzsch, Johannes; Höppner, Sebastian

    2015-01-01

    The implementation of synaptic plasticity in neural simulation or neuromorphic hardware is usually very resource-intensive, often requiring a compromise between efficiency and flexibility. A versatile, but computationally-expensive plasticity mechanism is provided by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building upon Bayesian statistics, and having clear links to biological plasticity processes, the BCPNN learning rule has been applied in many fields, ranging from data classification, associative memory, reward-based learning, probabilistic inference to cortical attractor memory networks. In the spike-based version of this learning rule the pre-, postsynaptic and coincident activity is traced in three low-pass-filtering stages, requiring a total of eight state variables, whose dynamics are typically simulated with the fixed step size Euler method. We derive analytic solutions allowing an efficient event-driven implementation of this learning rule. Further speedup is achieved by first rewriting the model which reduces the number of basic arithmetic operations per update to one half, and second by using look-up tables for the frequently calculated exponential decay. Ultimately, in a typical use case, the simulation using our approach is more than one order of magnitude faster than with the fixed step size Euler method. Aiming for a small memory footprint per BCPNN synapse, we also evaluate the use of fixed-point numbers for the state variables, and assess the number of bits required to achieve same or better accuracy than with the conventional explicit Euler method. All of this will allow a real-time simulation of a reduced cortex model based on BCPNN in high performance computing. More important, with the analytic solution at hand and due to the reduced memory bandwidth, the learning rule can be efficiently implemented in dedicated or existing digital neuromorphic hardware. PMID:25657618

  14. Reducing the computational footprint for real-time BCPNN learning.

    PubMed

    Vogginger, Bernhard; Schüffny, René; Lansner, Anders; Cederström, Love; Partzsch, Johannes; Höppner, Sebastian

    2015-01-01

    The implementation of synaptic plasticity in neural simulation or neuromorphic hardware is usually very resource-intensive, often requiring a compromise between efficiency and flexibility. A versatile, but computationally-expensive plasticity mechanism is provided by the Bayesian Confidence Propagation Neural Network (BCPNN) paradigm. Building upon Bayesian statistics, and having clear links to biological plasticity processes, the BCPNN learning rule has been applied in many fields, ranging from data classification, associative memory, reward-based learning, probabilistic inference to cortical attractor memory networks. In the spike-based version of this learning rule the pre-, postsynaptic and coincident activity is traced in three low-pass-filtering stages, requiring a total of eight state variables, whose dynamics are typically simulated with the fixed step size Euler method. We derive analytic solutions allowing an efficient event-driven implementation of this learning rule. Further speedup is achieved by first rewriting the model which reduces the number of basic arithmetic operations per update to one half, and second by using look-up tables for the frequently calculated exponential decay. Ultimately, in a typical use case, the simulation using our approach is more than one order of magnitude faster than with the fixed step size Euler method. Aiming for a small memory footprint per BCPNN synapse, we also evaluate the use of fixed-point numbers for the state variables, and assess the number of bits required to achieve same or better accuracy than with the conventional explicit Euler method. All of this will allow a real-time simulation of a reduced cortex model based on BCPNN in high performance computing. More important, with the analytic solution at hand and due to the reduced memory bandwidth, the learning rule can be efficiently implemented in dedicated or existing digital neuromorphic hardware.

  15. Mathematics and Structural Learning. Final Report.

    ERIC Educational Resources Information Center

    Scandura, Joseph M.

    This report contains four papers describing research based on the view of mathematical knowledge as a hierarchy of "rules." The first paper: "The Role of Rules in Behavior" was abstracted in ED 040 036 (October 1970). The second paper: "A Theory of Mathematical Knowledge" defends the thesis that rules are the basic building blocks of mathematical…

  16. CARSVM: a class association rule-based classification framework and its application to gene expression data.

    PubMed

    Kianmehr, Keivan; Alhajj, Reda

    2008-09-01

    In this study, we aim at building a classification framework, namely the CARSVM model, which integrates association rule mining and support vector machine (SVM). The goal is to benefit from advantages of both, the discriminative knowledge represented by class association rules and the classification power of the SVM algorithm, to construct an efficient and accurate classifier model that improves the interpretability problem of SVM as a traditional machine learning technique and overcomes the efficiency issues of associative classification algorithms. In our proposed framework: instead of using the original training set, a set of rule-based feature vectors, which are generated based on the discriminative ability of class association rules over the training samples, are presented to the learning component of the SVM algorithm. We show that rule-based feature vectors present a high-qualified source of discrimination knowledge that can impact substantially the prediction power of SVM and associative classification techniques. They provide users with more conveniences in terms of understandability and interpretability as well. We have used four datasets from UCI ML repository to evaluate the performance of the developed system in comparison with five well-known existing classification methods. Because of the importance and popularity of gene expression analysis as real world application of the classification model, we present an extension of CARSVM combined with feature selection to be applied to gene expression data. Then, we describe how this combination will provide biologists with an efficient and understandable classifier model. The reported test results and their biological interpretation demonstrate the applicability, efficiency and effectiveness of the proposed model. From the results, it can be concluded that a considerable increase in classification accuracy can be obtained when the rule-based feature vectors are integrated in the learning process of the SVM algorithm. In the context of applicability, according to the results obtained from gene expression analysis, we can conclude that the CARSVM system can be utilized in a variety of real world applications with some adjustments.

  17. Criteria for evidence-based practice in Iranian traditional medicine.

    PubMed

    Soltani Arabshahi, SeyyedKamran; Mohammadi Kenari, Hoorieh; Kordafshari, Gholamreza; Shams-Ardakani, MohammadReza; Bigdeli, Shoaleh

    2015-07-01

    The major difference between Iranian traditional medicine and allopathic medicine is in the application  of  evidence  and  documents.  In  this  study,  criteria  for  evidence-based  practice  in  Iranian traditional medicine and its rules of practice were studied. The experts' views were investigated through in- depth, semi-structured interviews and the results were categorized into four main categories including Designing clinical questions/clinical question-based search, critical appraisal, resource search criteria and clinical prescription appraisal. Although the application of evidence in Iranian traditional medicine follows Evidence Based Medicine (EBM) principles but it benefits from its own rules, regulations, and criteria that are compatible with EBM.

  18. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.

    PubMed

    Grossberg, Stephen

    2015-09-24

    This article provides an overview of neural models of synaptic learning and memory whose expression in adaptive behavior depends critically on the circuits and systems in which the synapses are embedded. It reviews Adaptive Resonance Theory, or ART, models that use excitatory matching and match-based learning to achieve fast category learning and whose learned memories are dynamically stabilized by top-down expectations, attentional focusing, and memory search. ART clarifies mechanistic relationships between consciousness, learning, expectation, attention, resonance, and synchrony. ART models are embedded in ARTSCAN architectures that unify processes of invariant object category learning, recognition, spatial and object attention, predictive remapping, and eye movement search, and that clarify how conscious object vision and recognition may fail during perceptual crowding and parietal neglect. The generality of learned categories depends upon a vigilance process that is regulated by acetylcholine via the nucleus basalis. Vigilance can get stuck at too high or too low values, thereby causing learning problems in autism and medial temporal amnesia. Similar synaptic learning laws support qualitatively different behaviors: Invariant object category learning in the inferotemporal cortex; learning of grid cells and place cells in the entorhinal and hippocampal cortices during spatial navigation; and learning of time cells in the entorhinal-hippocampal system during adaptively timed conditioning, including trace conditioning. Spatial and temporal processes through the medial and lateral entorhinal-hippocampal system seem to be carried out with homologous circuit designs. Variations of a shared laminar neocortical circuit design have modeled 3D vision, speech perception, and cognitive working memory and learning. A complementary kind of inhibitory matching and mismatch learning controls movement. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Smartphone-Based Patients' Activity Recognition by Using a Self-Learning Scheme for Medical Monitoring.

    PubMed

    Guo, Junqi; Zhou, Xi; Sun, Yunchuan; Ping, Gong; Zhao, Guoxing; Li, Zhuorong

    2016-06-01

    Smartphone based activity recognition has recently received remarkable attention in various applications of mobile health such as safety monitoring, fitness tracking, and disease prediction. To achieve more accurate and simplified medical monitoring, this paper proposes a self-learning scheme for patients' activity recognition, in which a patient only needs to carry an ordinary smartphone that contains common motion sensors. After the real-time data collection though this smartphone, we preprocess the data using coordinate system transformation to eliminate phone orientation influence. A set of robust and effective features are then extracted from the preprocessed data. Because a patient may inevitably perform various unpredictable activities that have no apriori knowledge in the training dataset, we propose a self-learning activity recognition scheme. The scheme determines whether there are apriori training samples and labeled categories in training pools that well match with unpredictable activity data. If not, it automatically assembles these unpredictable samples into different clusters and gives them new category labels. These clustered samples combined with the acquired new category labels are then merged into the training dataset to reinforce recognition ability of the self-learning model. In experiments, we evaluate our scheme using the data collected from two postoperative patient volunteers, including six labeled daily activities as the initial apriori categories in the training pool. Experimental results demonstrate that the proposed self-learning scheme for activity recognition works very well for most cases. When there exist several types of unseen activities without any apriori information, the accuracy reaches above 80 % after the self-learning process converges.

  20. Inductive learning of thyroid functional states using the ID3 algorithm. The effect of poor examples on the learning result.

    PubMed

    Forsström, J

    1992-01-01

    The ID3 algorithm for inductive learning was tested using preclassified material for patients suspected to have a thyroid illness. Classification followed a rule-based expert system for the diagnosis of thyroid function. Thus, the knowledge to be learned was limited to the rules existing in the knowledge base of that expert system. The learning capability of the ID3 algorithm was tested with an unselected learning material (with some inherent missing data) and with a selected learning material (no missing data). The selected learning material was a subgroup which formed a part of the unselected learning material. When the number of learning cases was increased, the accuracy of the program improved. When the learning material was large enough, an increase in the learning material did not improve the results further. A better learning result was achieved with the selected learning material not including missing data as compared to unselected learning material. With this material we demonstrate a weakness in the ID3 algorithm: it can not find available information from good example cases if we add poor examples to the data.

  1. The contribution of temporary storage and executive processes to category learning.

    PubMed

    Wang, Tengfei; Ren, Xuezhu; Schweizer, Karl

    2015-09-01

    Three distinctly different working memory processes, temporary storage, mental shifting and inhibition, were proposed to account for individual differences in category learning. A sample of 213 participants completed a classic category learning task and two working memory tasks that were experimentally manipulated for tapping specific working memory processes. Fixed-links models were used to decompose data of the category learning task into two independent components representing basic performance and improvement in performance in category learning. Processes of working memory were also represented by fixed-links models. In a next step the three working memory processes were linked to components of category learning. Results from modeling analyses indicated that temporary storage had a significant effect on basic performance and shifting had a moderate effect on improvement in performance. In contrast, inhibition showed no effect on any component of the category learning task. These results suggest that temporary storage and the shifting process play different roles in the course of acquiring new categories. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Guidance for Product Category Rule Development, Version 1.0

    EPA Science Inventory

    Environmental claims based on life cycle assessment (LCA) can provide quantitative, full life cycle information on products in a format that can permit comparisons and thereby inform purchasing decisions. In recent years, a number of standards and guides have emerged for making b...

  3. Best practices: Product category rule creation and use

    EPA Science Inventory

    Benefits of life cycle-based claims For most products, the majority of impact occurs upstream or downstream of product use . Single-stage claims for products (e.g., recycled content; energy efficient) don’t capture the relevance of that attribute in life-cycle environmental per...

  4. Increasing Dopamine Levels in the Brain Improves Feedback-Based Procedural Learning in Healthy Participants: An Artificial-Grammar-Learning Experiment

    ERIC Educational Resources Information Center

    de Vries, Meinou H.; Ulte, Catrin; Zwitserlood, Pienie; Szymanski, Barbara; Knecht, Stefan

    2010-01-01

    Recently, an increasing number of studies have suggested a role for the basal ganglia and related dopamine inputs in procedural learning, specifically when learning occurs through trial-by-trial feedback (Shohamy, Myers, Kalanithi, & Gluck. (2008). "Basal ganglia and dopamine contributions to probabilistic category learning." "Neuroscience and…

  5. Against risk-benefit review of prisoner research.

    PubMed

    Chwang, Eric

    2010-01-01

    The 2006 Institute of Medicine (IOM) report, 'Ethical Considerations for Research Involving Prisoners', recommended five main changes to current US Common Rule regulations on prisoner research. Their third recommendation was to shift from a category-based to a risk-benefit approach to research review, similar to current guidelines on pediatric research. However, prisoners are not children, so risk-benefit constraints on prisoner research must be justified in a different way from those on pediatric research. In this paper I argue that additional risk-benefit constraints on prisoner research are unnecessary: the current Common Rule regulations, omitting category-based restrictions but conjoined with the IOM report's other four main recommendations, ensure that prisoner research is as ethical as non-prisoner research is. I explain why four problems which which may be more prevalent in prisons and which risk-benefit constraints may seem to address - coercion, undue inducements, exploitation, and protection from harm - are in fact not solved by adding further risk-benefit constraints on prisoner research.

  6. Automatic learning of rules. A practical example of using artificial intelligence to improve computer-based detection of myocardial infarction and left ventricular hypertrophy in the 12-lead ECG.

    PubMed

    Kaiser, W; Faber, T S; Findeis, M

    1996-01-01

    The authors developed a computer program that detects myocardial infarction (MI) and left ventricular hypertrophy (LVH) in two steps: (1) by extracting parameter values from a 10-second, 12-lead electrocardiogram, and (2) by classifying the extracted parameter values with rule sets. Every disease has its dedicated set of rules. Hence, there are separate rule sets for anterior MI, inferior MI, and LVH. If at least one rule is satisfied, the disease is said to be detected. The computer program automatically develops these rule sets. A database (learning set) of healthy subjects and patients with MI, LVH, and mixed MI+LVH was used. After defining the rule type, initial limits, and expected quality of the rules (positive predictive value, minimum number of patients), the program creates a set of rules by varying the limits. The general rule type is defined as: disease = lim1l < p1 < or = lim1u and lim2l < p2 < or = lim2u and ... limnl < pn < or = limnu. When defining the rule types, only the parameters (p1 ... pn) that are known as clinical electrocardiographic criteria (amplitudes [mV] of Q, R, and T waves and ST-segment; duration [ms] of Q wave; frontal angle [degrees]) were used. This allowed for submitting the learned rule sets to an independent investigator for medical verification. It also allowed the creation of explanatory texts with the rules. These advantages are not offered by the neurons of a neural network. The learned rules were checked against a test set and the following results were obtained: MI: sensitivity 76.2%, positive predictive value 98.6%; LVH: sensitivity 72.3%, positive predictive value 90.9%. The specificity ratings for MI are better than 98%; for LVH, better than 90%.

  7. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control

    PubMed Central

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms. PMID:25389391

  8. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    PubMed

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.

  9. Internet-Based Science Learning: A Review of Journal Publications

    ERIC Educational Resources Information Center

    Lee, Silvia Wen-Yu; Tsai, Chin-Chung; Wu, Ying-Tien; Tsai, Meng-Jung; Liu, Tzu-Chien; Hwang, Fu-Kwun; Lai, Chih-Hung; Liang, Jyh-Chong; Wu, Huang-Ching; Chang, Chun-Yen

    2011-01-01

    Internet-based science learning has been advocated by many science educators for more than a decade. This review examines relevant research on this topic. Sixty-five papers are included in the review. The review consists of the following two major categories: (1) the role of demographics and learners' characteristics in Internet-based science…

  10. Chromatic Perceptual Learning but No Category Effects without Linguistic Input

    PubMed Central

    Grandison, Alexandra; Sowden, Paul T.; Drivonikou, Vicky G.; Notman, Leslie A.; Alexander, Iona; Davies, Ian R. L.

    2016-01-01

    Perceptual learning involves an improvement in perceptual judgment with practice, which is often specific to stimulus or task factors. Perceptual learning has been shown on a range of visual tasks but very little research has explored chromatic perceptual learning. Here, we use two low level perceptual threshold tasks and a supra-threshold target detection task to assess chromatic perceptual learning and category effects. Experiment 1 investigates whether chromatic thresholds reduce as a result of training and at what level of analysis learning effects occur. Experiment 2 explores the effect of category training on chromatic thresholds, whether training of this nature is category specific and whether it can induce categorical responding. Experiment 3 investigates the effect of category training on a higher level, lateralized target detection task, previously found to be sensitive to category effects. The findings indicate that performance on a perceptual threshold task improves following training but improvements do not transfer across retinal location or hue. Therefore, chromatic perceptual learning is category specific and can occur at relatively early stages of visual analysis. Additionally, category training does not induce category effects on a low level perceptual threshold task, as indicated by comparable discrimination thresholds at the newly learned hue boundary and adjacent test points. However, category training does induce emerging category effects on a supra-threshold target detection task. Whilst chromatic perceptual learning is possible, learnt category effects appear to be a product of left hemisphere processing, and may require the input of higher level linguistic coding processes in order to manifest. PMID:27252669

  11. 75 FR 52860 - Final Airworthiness Design Standards for Acceptance Under the Primary Category Rule; Orlando...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ...., wish to apply these airworthiness design standards to other airplane models, OHA, Inc. must submit a... affects only certain airworthiness design standards on Cessna model C172I, C172K, C172L, C172M airplanes... Design Standards for Acceptance Under the Primary Category Rule; Orlando Helicopter Airways (OHA), Inc...

  12. Electronic Learning Systems in Hong Kong Business Organizations: A Study of Early and Late Adopters

    ERIC Educational Resources Information Center

    Chan, Simon C. H.; Ngai, Eric W. T.

    2012-01-01

    Based on the diffusion of innovation theory (E. M. Rogers, 1983, 1995), the authors examined the antecedents of the adoption of electronic learning (e-learning) systems by using a time-based assessment model (R. C. Beatty, J. P. Shim, & M. C. Jones, 2001), which classified adopters into categories upon point in time when adopting e-learning…

  13. Fuzzy self-learning control for magnetic servo system

    NASA Technical Reports Server (NTRS)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  14. Proof Rules for Automated Compositional Verification through Learning

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Giannakopoulou, Dimitra; Pasareanu, Corina S.

    2003-01-01

    Compositional proof systems not only enable the stepwise development of concurrent processes but also provide a basis to alleviate the state explosion problem associated with model checking. An assume-guarantee style of specification and reasoning has long been advocated to achieve compositionality. However, this style of reasoning is often non-trivial, typically requiring human input to determine appropriate assumptions. In this paper, we present novel assume- guarantee rules in the setting of finite labelled transition systems with blocking communication. We show how these rules can be applied in an iterative and fully automated fashion within a framework based on learning.

  15. A Decision Making Methodology in Support of the Business Rules Lifecycle

    NASA Technical Reports Server (NTRS)

    Wild, Christopher; Rosca, Daniela

    1998-01-01

    The business rules that underlie an enterprise emerge as a new category of system requirements that represent decisions about how to run the business, and which are characterized by their business-orientation and their propensity for change. In this report, we introduce a decision making methodology which addresses several aspects of the business rules lifecycle: acquisition, deployment and evolution. We describe a meta-model for representing business rules in terms of an enterprise model, and also a decision support submodel for reasoning about and deriving the rules. The possibility for lifecycle automated assistance is demonstrated in terms of the automatic extraction of business rules from the decision structure. A system based on the metamodel has been implemented, including the extraction algorithm. This is the final report for Daniela Rosca's PhD fellowship. It describes the work we have done over the past year, current research and the list of publications associated with her thesis topic.

  16. Foraging Ecology Predicts Learning Performance in Insectivorous Bats

    PubMed Central

    Clarin, Theresa M. A.; Ruczyński, Ireneusz; Page, Rachel A.

    2013-01-01

    Bats are unusual among mammals in showing great ecological diversity even among closely related species and are thus well suited for studies of adaptation to the ecological background. Here we investigate whether behavioral flexibility and simple- and complex-rule learning performance can be predicted by foraging ecology. We predict faster learning and higher flexibility in animals hunting in more complex, variable environments than in animals hunting in more simple, stable environments. To test this hypothesis, we studied three closely related insectivorous European bat species of the genus Myotis that belong to three different functional groups based on foraging habitats: M. capaccinii, an open water forager, M. myotis, a passive listening gleaner, and M. emarginatus, a clutter specialist. We predicted that M. capaccinii would show the least flexibility and slowest learning reflecting its relatively unstructured foraging habitat and the stereotypy of its natural foraging behavior, while the other two species would show greater flexibility and more rapid learning reflecting the complexity of their natural foraging tasks. We used a purposefully unnatural and thus species-fair crawling maze to test simple- and complex-rule learning, flexibility and re-learning performance. We found that M. capaccinii learned a simple rule as fast as the other species, but was slower in complex rule learning and was less flexible in response to changes in reward location. We found no differences in re-learning ability among species. Our results corroborate the hypothesis that animals’ cognitive skills reflect the demands of their ecological niche. PMID:23755146

  17. Structure identification in fuzzy inference using reinforcement learning

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.; Khedkar, Pratap

    1993-01-01

    In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.

  18. A Teacher-Friendly Instrument in Identifying Learning Styles in the Classroom.

    ERIC Educational Resources Information Center

    Pitts, Joseph I.

    This report describes a reliability and validity study on a learning styles instrument that was developed based on the Dunn, Dunn, & Price model. That model included 104 Likert five-point scale items for investigating 24 scales grouped into five categories considered likely to affect learning. The Learning Style Preference Inventory (LSPI)…

  19. 78 FR 20783 - Designation of Product Categories for Federal Procurement; Withdrawal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... Designation of Product Categories for Federal Procurement; Withdrawal AGENCY: Office of Procurement and.... Department of Agriculture (USDA) is withdrawing the final rule ``Designation of Product Categories for... product categories within which biobased products will be afforded Federal procurement preference, was...

  20. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  1. Rule learning in autism: the role of reward type and social context.

    PubMed

    Jones, E J H; Webb, S J; Estes, A; Dawson, G

    2013-01-01

    Learning abstract rules is central to social and cognitive development. Across two experiments, we used Delayed Non-Matching to Sample tasks to characterize the longitudinal development and nature of rule-learning impairments in children with Autism Spectrum Disorder (ASD). Results showed that children with ASD consistently experienced more difficulty learning an abstract rule from a discrete physical reward than children with DD. Rule learning was facilitated by the provision of more concrete reinforcement, suggesting an underlying difficulty in forming conceptual connections. Learning abstract rules about social stimuli remained challenging through late childhood, indicating the importance of testing executive functions in both social and non-social contexts.

  2. Analysis of senior high school students’ creative thinking skills profile in Klaten regency

    NASA Astrophysics Data System (ADS)

    Sugiyanto, F. N.; Masykuri, M.; Muzzazinah

    2018-04-01

    The aim of this research is to analyze the initial profile of creative thinking skills in Senior High School students on biology learning. This research was a quantitative descriptive research using test method. Analysis was conducted by giving tests containing creative thinking skills. The research subject was grade 11 students of Senior High School that categorized by its accreditation as category A (high grade) and category B (low grade). These schools are placed in Klaten Regency, Central Java. Based on the analysis, it showed that the percentage of creative thinking skill achievement in category A school is: fluency (46.35%), flexibility (13.54%), originality (20%), and elaboration (34.76%); meanwhile, category B school is fluency (30.39%), flexibility (2.45%), originality (9.11 %) and elaboration (12.87%). The lowest percentage of that result in both school categories was found on flexibility and originality indicator. Based on the result, the average of creative thinking skills in category A school was 28.66%, and category B school was 13.71%. The conclusion of this research is the initial profile of students’ creative thinking skills in biology learning was relatively in low grade. The result indicates that creative thinking skills of Senior High School students should become a serious attention considering the low percentage on each indicator.

  3. Differences in Characteristics of Aviation Accidents during 1993-2012 Based on Flight Purpose

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2016-01-01

    Usually aviation accidents are categorized and analyzed within flight conduct rules (Part 121, Part 135, Part 91) because differences in accident rates within flight rules have been demonstrated. Even within a particular flight rule the flights have different purposes. For many, Part 121 flights are synonymous with scheduled passenger transport, and indeed this is the largest group of Part 121 accidents. But there are also non-scheduled (charter) passenger transport and cargo flights. The primary purpose of the analysis reported here is to examine the differences in aviation accidents based on the purpose of the flight. Some of the factors examined are the accident severity, aircraft characteristics and accident occurrence categories. Twenty consecutive years of data were available and utilized to complete this analysis.

  4. A role for the developing lexicon in phonetic category acquisition

    PubMed Central

    Feldman, Naomi H.; Griffiths, Thomas L.; Goldwater, Sharon; Morgan, James L.

    2013-01-01

    Infants segment words from fluent speech during the same period when they are learning phonetic categories, yet accounts of phonetic category acquisition typically ignore information about the words in which sounds appear. We use a Bayesian model to illustrate how feedback from segmented words might constrain phonetic category learning by providing information about which sounds occur together in words. Simulations demonstrate that word-level information can successfully disambiguate overlapping English vowel categories. Learning patterns in the model are shown to parallel human behavior from artificial language learning tasks. These findings point to a central role for the developing lexicon in phonetic category acquisition and provide a framework for incorporating top-down constraints into models of category learning. PMID:24219848

  5. A theory of local learning, the learning channel, and the optimality of backpropagation.

    PubMed

    Baldi, Pierre; Sadowski, Peter

    2016-11-01

    In a physical neural system, where storage and processing are intimately intertwined, the rules for adjusting the synaptic weights can only depend on variables that are available locally, such as the activity of the pre- and post-synaptic neurons, resulting in local learning rules. A systematic framework for studying the space of local learning rules is obtained by first specifying the nature of the local variables, and then the functional form that ties them together into each learning rule. Such a framework enables also the systematic discovery of new learning rules and exploration of relationships between learning rules and group symmetries. We study polynomial local learning rules stratified by their degree and analyze their behavior and capabilities in both linear and non-linear units and networks. Stacking local learning rules in deep feedforward networks leads to deep local learning. While deep local learning can learn interesting representations, it cannot learn complex input-output functions, even when targets are available for the top layer. Learning complex input-output functions requires local deep learning where target information is communicated to the deep layers through a backward learning channel. The nature of the communicated information about the targets and the structure of the learning channel partition the space of learning algorithms. For any learning algorithm, the capacity of the learning channel can be defined as the number of bits provided about the error gradient per weight, divided by the number of required operations per weight. We estimate the capacity associated with several learning algorithms and show that backpropagation outperforms them by simultaneously maximizing the information rate and minimizing the computational cost. This result is also shown to be true for recurrent networks, by unfolding them in time. The theory clarifies the concept of Hebbian learning, establishes the power and limitations of local learning rules, introduces the learning channel which enables a formal analysis of the optimality of backpropagation, and explains the sparsity of the space of learning rules discovered so far. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. From Concrete Examples to Abstract Relations: The Rostrolateral Prefrontal Cortex Integrates Novel Examples into Relational Categories.

    PubMed

    Davis, Tyler; Goldwater, Micah; Giron, Josue

    2017-04-01

    The ability to form relational categories for objects that share few features in common is a hallmark of human cognition. For example, anything that can play a preventative role, from a boulder to poverty, can be a "barrier." However, neurobiological research has focused solely on how people acquire categories defined by features. The present functional magnetic resonance imaging study examines how relational and feature-based category learning compare in well-matched learning tasks. Using a computational model-based approach, we observed a cluster in left rostrolateral prefrontal cortex (rlPFC) that tracked quantitative predictions for the representational distance between test and training examples during relational categorization. Contrastingly, medial and dorsal PFC exhibited graded activation that tracked decision evidence during both feature-based and relational categorization. The results suggest that rlPFC computes an alignment signal that is critical for integrating novel examples during relational categorization whereas other PFC regions support more general decision functions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. [Which learning methods are expected for ultrasound training? Blended learning on trial].

    PubMed

    Röhrig, S; Hempel, D; Stenger, T; Armbruster, W; Seibel, A; Walcher, F; Breitkreutz, R

    2014-10-01

    Current teaching methods in graduate and postgraduate training often include frontal presentations. Especially in ultrasound education not only knowledge but also sensomotory and visual skills need to be taught. This requires new learning methods. This study examined which types of teaching methods are preferred by participants in ultrasound training courses before, during and after the course by analyzing a blended learning concept. It also investigated how much time trainees are willing to spend on such activities. A survey was conducted at the end of a certified ultrasound training course. Participants were asked to complete a questionnaire based on a visual analogue scale (VAS) in which three categories were defined: category (1) vote for acceptance with a two thirds majority (VAS 67-100%), category (2) simple acceptance (50-67%) and category (3) rejection (< 50%). A total of 176 trainees participated in this survey. Participants preferred an e-learning program with interactive elements, short presentations (less than 20 min), incorporating interaction with the audience, hands-on sessions in small groups, an alternation between presentations and hands-on-sessions, live demonstrations and quizzes. For post-course learning, interactive and media-assisted approaches were preferred, such as e-learning, films of the presentations and the possibility to stay in contact with instructors in order to discuss the results. Participants also voted for maintaining a logbook for documentation of results. The results of this study indicate the need for interactive learning concepts and blended learning activities. Directors of ultrasound courses may consider these aspects and are encouraged to develop sustainable learning pathways.

  8. District nurses' knowledge development in wound management: ongoing learning without organizational support.

    PubMed

    Friman, Anne; Wahlberg, Anna Carin; Mattiasson, Anne-Cathrine; Ebbeskog, Britt

    2014-10-01

    The aim of this study was to describe district nurses' (DNs') experiences of their knowledge development in wound management when treating patients with different types of wounds at healthcare centers. In primary healthcare, DNs are mainly responsible for wound management. Previous research has focused on DNs' level of expertise regarding wound management, mostly based on quantitative studies. An unanswered question concerns DNs' knowledge development in wound management. The present study therefore intends to broaden understanding and to provide deeper knowledge in regard to the DNs' experiences of their knowledge development when treating patients with wounds. A qualitative descriptive design was used. Subjects were a purposeful sample of 16 DNs from eight healthcare centers in a metropolitan area in Stockholm, Sweden. The study was conducted with qualitative interviews and qualitative content analysis was used to analyze the data. The content analysis resulted in three categories and 11 sub-categories. The first category, 'ongoing learning by experience,' was based on experiences of learning alongside clinical practice. The second category 'searching for information,' consisted of various channels for obtaining information. The third category, 'lacking organizational support,' consisted of experiences related to the DNs' work organization, which hindered their development in wound care knowledge. The DNs experienced that they were in a constant state of learning and obtained their wound care knowledge to a great extent through practical work, from their colleagues as well as from various companies. A lack of organizational structures and support from staff management made it difficult for DNs to develop their knowledge and skills in wound management, which can lead to inadequate wound management.

  9. Classifying the Indication for Colonoscopy Procedures: A Comparison of NLP Approaches in a Diverse National Healthcare System.

    PubMed

    Patterson, Olga V; Forbush, Tyler B; Saini, Sameer D; Moser, Stephanie E; DuVall, Scott L

    2015-01-01

    In order to measure the level of utilization of colonoscopy procedures, identifying the primary indication for the procedure is required. Colonoscopies may be utilized not only for screening, but also for diagnostic or therapeutic purposes. To determine whether a colonoscopy was performed for screening, we created a natural language processing system to identify colonoscopy reports in the electronic medical record system and extract indications for the procedure. A rule-based model and three machine-learning models were created using 2,000 manually annotated clinical notes of patients cared for in the Department of Veterans Affairs. Performance of the models was measured and compared. Analysis of the models on a test set of 1,000 documents indicates that the rule-based system performance stays fairly constant as evaluated on training and testing sets. However, the machine learning model without feature selection showed significant decrease in performance. Therefore, rule-based classification system appears to be more robust than a machine-learning system in cases when no feature selection is performed.

  10. What you learn is more than what you see: what can sequencing effects tell us about inductive category learning?

    PubMed Central

    Carvalho, Paulo F.; Goldstone, Robert L.

    2015-01-01

    Inductive category learning takes place across time. As such, it is not surprising that the sequence in which information is studied has an impact in what is learned and how efficient learning is. In this paper we review research on different learning sequences and how this impacts learning. We analyze different aspects of interleaved (frequent alternation between categories during study) and blocked study (infrequent alternation between categories during study) that might explain how and when one sequence of study results in improved learning. While these different sequences of study differ in the amount of temporal spacing and temporal juxtaposition between items of different categories, these aspects do not seem to account for the majority of the results available in the literature. However, differences in the type of category being studied and the duration of the retention interval between study and test may play an important role. We conclude that there is no single aspect that is able to account for all the evidence available. Understanding learning as a process of sequential comparisons in time and how different sequences fundamentally alter the statistics of this experience offers a promising framework for understanding sequencing effects in category learning. We use this framework to present novel predictions and hypotheses for future research on sequencing effects in inductive category learning. PMID:25983699

  11. Learning through Feature Prediction: An Initial Investigation into Teaching Categories to Children with Autism through Predicting Missing Features

    ERIC Educational Resources Information Center

    Sweller, Naomi

    2015-01-01

    Individuals with autism have difficulty generalising information from one situation to another, a process that requires the learning of categories and concepts. Category information may be learned through: (1) classifying items into categories, or (2) predicting missing features of category items. Predicting missing features has to this point been…

  12. Design issues for a reinforcement-based self-learning fuzzy controller

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Dauherity, Walter

    1993-01-01

    Fuzzy logic controllers have some often cited advantages over conventional techniques such as PID control: easy implementation, its accommodation to natural language, the ability to cover wider range of operating conditions and others. One major obstacle that hinders its broader application is the lack of a systematic way to develop and modify its rules and as result the creation and modification of fuzzy rules often depends on try-error or pure experimentation. One of the proposed approaches to address this issue is self-learning fuzzy logic controllers (SFLC) that use reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of self-learning fuzzy controller is highly contingent on the design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for the application to chemical process are discussed and its performance is compared with that of PID and self-tuning fuzzy logic controller.

  13. Parental perceptions of teen driving: Restrictions, worry and influence☆

    PubMed Central

    Jewett, Amy; Shults, Ruth A.; Bhat, Geeta

    2016-01-01

    Introduction Parents play a critical role in preventing crashes among teens. Research of parental perceptions and concerns regarding teen driving safety is limited. We examined results from the 2013 Summer ConsumerStyles survey that queried parents about restrictions placed on their teen drivers, their perceived level of “worry” about their teen driver’s safety, and influence of parental restrictions regarding their teen’s driving. Methods We produced frequency distributions for the number of restrictions imposed, parental “worry,” and influence of rules regarding their teen’s driving, reported by teen’s driving license status (learning to drive or obtained a driver’s license). Response categories were dichotomized because of small cell sizes, and we ran separate log-linear regression models to explore whether imposing all four restrictions on teen drivers was associated with either worry intensity (“a lot” versus “somewhat, not very much or not at all”) or perceived influence of parental rules (“a lot” versus “somewhat, not very much or not at all”). Results Among the 456 parent respondents, 80% reported having restrictions for their teen driver regarding use of safety belts, drinking and driving, cell phones, and text messaging while driving. However, among the 188 parents of licensed teens, only 9% reported having a written parent-teen driving agreement, either currently or in the past. Worrying “a lot” was reported less frequently by parents of newly licensed teens (36%) compared with parents of learning teens (61%). Conclusions and Practical Applications Parents report having rules and restrictions for their teen drivers, but only a small percentage formalize the rules and restrictions in a written parent-teen driving agreement. Parents worry less about their teen driver’s safety during the newly licensed phase, when crash risk is high as compared to the learning phase. Further research is needed into how to effectively support parents in supervising and monitoring their teen driver. PMID:27846995

  14. Differential item functioning analysis of the Vanderbilt Expertise Test for cars

    PubMed Central

    Lee, Woo-Yeol; Cho, Sun-Joo; McGugin, Rankin W.; Van Gulick, Ana Beth; Gauthier, Isabel

    2015-01-01

    The Vanderbilt Expertise Test for cars (VETcar) is a test of visual learning for contemporary car models. We used item response theory to assess the VETcar and in particular used differential item functioning (DIF) analysis to ask if the test functions the same way in laboratory versus online settings and for different groups based on age and gender. An exploratory factor analysis found evidence of multidimensionality in the VETcar, although a single dimension was deemed sufficient to capture the recognition ability measured by the test. We selected a unidimensional three-parameter logistic item response model to examine item characteristics and subject abilities. The VETcar had satisfactory internal consistency. A substantial number of items showed DIF at a medium effect size for test setting and for age group, whereas gender DIF was negligible. Because online subjects were on average older than those tested in the lab, we focused on the age groups to conduct a multigroup item response theory analysis. This revealed that most items on the test favored the younger group. DIF could be more the rule than the exception when measuring performance with familiar object categories, therefore posing a challenge for the measurement of either domain-general visual abilities or category-specific knowledge. PMID:26418499

  15. Adaptive Critic-based Neurofuzzy Controller for the Steam Generator Water Level

    NASA Astrophysics Data System (ADS)

    Fakhrazari, Amin; Boroushaki, Mehrdad

    2008-06-01

    In this paper, an adaptive critic-based neurofuzzy controller is presented for water level regulation of nuclear steam generators. The problem has been of great concern for many years as the steam generator is a highly nonlinear system showing inverse response dynamics especially at low operating power levels. Fuzzy critic-based learning is a reinforcement learning method based on dynamic programming. The only information available for the critic agent is the system feedback which is interpreted as the last action the controller has performed in the previous state. The signal produced by the critic agent is used alongside the backpropagation of error algorithm to tune online conclusion parts of the fuzzy inference rules. The critic agent here has a proportional-derivative structure and the fuzzy rule base has nine rules. The proposed controller shows satisfactory transient responses, disturbance rejection and robustness to model uncertainty. Its simple design procedure and structure, nominates it as one of the suitable controller designs for the steam generator water level control in nuclear power plant industry.

  16. Rule Learning in Autism: The Role of Reward Type and Social Context

    PubMed Central

    Jones, E. J. H.; Webb, S. J.; Estes, A.; Dawson, G.

    2013-01-01

    Learning abstract rules is central to social and cognitive development. Across two experiments, we used Delayed Non-Matching to Sample tasks to characterize the longitudinal development and nature of rule-learning impairments in children with Autism Spectrum Disorder (ASD). Results showed that children with ASD consistently experienced more difficulty learning an abstract rule from a discrete physical reward than children with DD. Rule learning was facilitated by the provision of more concrete reinforcement, suggesting an underlying difficulty in forming conceptual connections. Learning abstract rules about social stimuli remained challenging through late childhood, indicating the importance of testing executive functions in both social and non-social contexts. PMID:23311315

  17. Learning and Tuning of Fuzzy Rules

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1997-01-01

    In this chapter, we review some of the current techniques for learning and tuning fuzzy rules. For clarity, we refer to the process of generating rules from data as the learning problem and distinguish it from tuning an already existing set of fuzzy rules. For learning, we touch on unsupervised learning techniques such as fuzzy c-means, fuzzy decision tree systems, fuzzy genetic algorithms, and linear fuzzy rules generation methods. For tuning, we discuss Jang's ANFIS architecture, Berenji-Khedkar's GARIC architecture and its extensions in GARIC-Q. We show that the hybrid techniques capable of learning and tuning fuzzy rules, such as CART-ANFIS, RNN-FLCS, and GARIC-RB, are desirable in development of a number of future intelligent systems.

  18. Learning temporal rules to forecast instability in continuously monitored patients.

    PubMed

    Guillame-Bert, Mathieu; Dubrawski, Artur; Wang, Donghan; Hravnak, Marilyn; Clermont, Gilles; Pinsky, Michael R

    2017-01-01

    Inductive machine learning, and in particular extraction of association rules from data, has been successfully used in multiple application domains, such as market basket analysis, disease prognosis, fraud detection, and protein sequencing. The appeal of rule extraction techniques stems from their ability to handle intricate problems yet produce models based on rules that can be comprehended by humans, and are therefore more transparent. Human comprehension is a factor that may improve adoption and use of data-driven decision support systems clinically via face validity. In this work, we explore whether we can reliably and informatively forecast cardiorespiratory instability (CRI) in step-down unit (SDU) patients utilizing data from continuous monitoring of physiologic vital sign (VS) measurements. We use a temporal association rule extraction technique in conjunction with a rule fusion protocol to learn how to forecast CRI in continuously monitored patients. We detail our approach and present and discuss encouraging empirical results obtained using continuous multivariate VS data from the bedside monitors of 297 SDU patients spanning 29 346 hours (3.35 patient-years) of observation. We present example rules that have been learned from data to illustrate potential benefits of comprehensibility of the extracted models, and we analyze the empirical utility of each VS as a potential leading indicator of an impending CRI event. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Implicit Procedural Learning in Fragile X and Down Syndrome

    ERIC Educational Resources Information Center

    Bussy, G.; Charrin, E.; Brun, A.; Curie, A.; des Portes, V.

    2011-01-01

    Background: Procedural learning refers to rule-based motor skill learning and storage. It involves the cerebellum, striatum and motor areas of the frontal lobe network. Fragile X syndrome, which has been linked with anatomical abnormalities within the striatum, may result in implicit procedural learning deficit. Methods: To address this issue, a…

  20. Retrosynthetic Reaction Prediction Using Neural Sequence-to-Sequence Models

    PubMed Central

    2017-01-01

    We describe a fully data driven model that learns to perform a retrosynthetic reaction prediction task, which is treated as a sequence-to-sequence mapping problem. The end-to-end trained model has an encoder–decoder architecture that consists of two recurrent neural networks, which has previously shown great success in solving other sequence-to-sequence prediction tasks such as machine translation. The model is trained on 50,000 experimental reaction examples from the United States patent literature, which span 10 broad reaction types that are commonly used by medicinal chemists. We find that our model performs comparably with a rule-based expert system baseline model, and also overcomes certain limitations associated with rule-based expert systems and with any machine learning approach that contains a rule-based expert system component. Our model provides an important first step toward solving the challenging problem of computational retrosynthetic analysis. PMID:29104927

  1. Bayesian learning and the psychology of rule induction

    PubMed Central

    Endress, Ansgar D.

    2014-01-01

    In recent years, Bayesian learning models have been applied to an increasing variety of domains. While such models have been criticized on theoretical grounds, the underlying assumptions and predictions are rarely made concrete and tested experimentally. Here, I use Frank and Tenenbaum's (2011) Bayesian model of rule-learning as a case study to spell out the underlying assumptions, and to confront them with the empirical results Frank and Tenenbaum (2011) propose to simulate, as well as with novel experiments. While rule-learning is arguably well suited to rational Bayesian approaches, I show that their models are neither psychologically plausible nor ideal observer models. Further, I show that their central assumption is unfounded: humans do not always preferentially learn more specific rules, but, at least in some situations, those rules that happen to be more salient. Even when granting the unsupported assumptions, I show that all of the experiments modeled by Frank and Tenenbaum (2011) either contradict their models, or have a large number of more plausible interpretations. I provide an alternative account of the experimental data based on simple psychological mechanisms, and show that this account both describes the data better, and is easier to falsify. I conclude that, despite the recent surge in Bayesian models of cognitive phenomena, psychological phenomena are best understood by developing and testing psychological theories rather than models that can be fit to virtually any data. PMID:23454791

  2. Category Learning Research in the Interactive Online Environment Second Life

    NASA Technical Reports Server (NTRS)

    Andrews, Jan; Livingston, Ken; Sturm, Joshua; Bliss, Daniel; Hawthorne, Daniel

    2011-01-01

    The interactive online environment Second Life allows users to create novel three-dimensional stimuli that can be manipulated in a meaningful yet controlled environment. These features suggest Second Life's utility as a powerful tool for investigating how people learn concepts for unfamiliar objects. The first of two studies was designed to establish that cognitive processes elicited in this virtual world are comparable to those tapped in conventional settings by attempting to replicate the established finding that category learning systematically influences perceived similarity . From the perspective of an avatar, participants navigated a course of unfamiliar three-dimensional stimuli and were trained to classify them into two labeled categories based on two visual features. Participants then gave similarity ratings for pairs of stimuli and their responses were compared to those of control participants who did not learn the categories. Results indicated significant compression, whereby objects classified together were judged to be more similar by learning than control participants, thus supporting the validity of using Second Life as a laboratory for studying human cognition. A second study used Second Life to test the novel hypothesis that effects of learning on perceived similarity do not depend on the presence of verbal labels for categories. We presented the same stimuli but participants classified them by selecting between two complex visual patterns designed to be extremely difficult to label. While learning was more challenging in this condition , those who did learn without labels showed a compression effect identical to that found in the first study using verbal labels. Together these studies establish that at least some forms of human learning in Second Life parallel learning in the actual world and thus open the door to future studies that will make greater use of the enriched variety of objects and interactions possible in simulated environments compared to traditional experimental situations.

  3. When It Hurts (and Helps) to Try: The Role of Effort in Language Learning

    PubMed Central

    Finn, Amy S.; Lee, Taraz; Kraus, Allison; Hudson Kam, Carla L.

    2014-01-01

    Compared to children, adults are bad at learning language. This is counterintuitive; adults outperform children on most measures of cognition, especially those that involve effort (which continue to mature into early adulthood). The present study asks whether these mature effortful abilities interfere with language learning in adults and further, whether interference occurs equally for aspects of language that adults are good (word-segmentation) versus bad (grammar) at learning. Learners were exposed to an artificial language comprised of statistically defined words that belong to phonologically defined categories (grammar). Exposure occurred under passive or effortful conditions. Passive learners were told to listen while effortful learners were instructed to try to 1) learn the words, 2) learn the categories, or 3) learn the category-order. Effortful learners showed an advantage for learning words while passive learners showed an advantage for learning the categories. Effort can therefore hurt the learning of categories. PMID:25047901

  4. When it hurts (and helps) to try: the role of effort in language learning.

    PubMed

    Finn, Amy S; Lee, Taraz; Kraus, Allison; Hudson Kam, Carla L

    2014-01-01

    Compared to children, adults are bad at learning language. This is counterintuitive; adults outperform children on most measures of cognition, especially those that involve effort (which continue to mature into early adulthood). The present study asks whether these mature effortful abilities interfere with language learning in adults and further, whether interference occurs equally for aspects of language that adults are good (word-segmentation) versus bad (grammar) at learning. Learners were exposed to an artificial language comprised of statistically defined words that belong to phonologically defined categories (grammar). Exposure occurred under passive or effortful conditions. Passive learners were told to listen while effortful learners were instructed to try to 1) learn the words, 2) learn the categories, or 3) learn the category-order. Effortful learners showed an advantage for learning words while passive learners showed an advantage for learning the categories. Effort can therefore hurt the learning of categories.

  5. Designing Distance Learning Tasks to Help Maximize Vocabulary Development

    ERIC Educational Resources Information Center

    Loucky, John Paul

    2012-01-01

    Task-based language learning using the benefits of online computer-assisted language learning (CALL) can be effective for rapid vocabulary expansion, especially when target vocabulary has been pre-arranged into bilingual categories under simpler, common Semantic Field Keywords. Results and satisfaction levels for both Chinese English majors and…

  6. The Role of Multiple Neuromodulators in Reinforcement Learning That Is Based on Competition between Eligibility Traces.

    PubMed

    Huertas, Marco A; Schwettmann, Sarah E; Shouval, Harel Z

    2016-01-01

    The ability to maximize reward and avoid punishment is essential for animal survival. Reinforcement learning (RL) refers to the algorithms used by biological or artificial systems to learn how to maximize reward or avoid negative outcomes based on past experiences. While RL is also important in machine learning, the types of mechanistic constraints encountered by biological machinery might be different than those for artificial systems. Two major problems encountered by RL are how to relate a stimulus with a reinforcing signal that is delayed in time (temporal credit assignment), and how to stop learning once the target behaviors are attained (stopping rule). To address the first problem synaptic eligibility traces were introduced, bridging the temporal gap between a stimulus and its reward. Although, these were mere theoretical constructs, recent experiments have provided evidence of their existence. These experiments also reveal that the presence of specific neuromodulators converts the traces into changes in synaptic efficacy. A mechanistic implementation of the stopping rule usually assumes the inhibition of the reward nucleus; however, recent experimental results have shown that learning terminates at the appropriate network state even in setups where the reward nucleus cannot be inhibited. In an effort to describe a learning rule that solves the temporal credit assignment problem and implements a biologically plausible stopping rule, we proposed a model based on two separate synaptic eligibility traces, one for long-term potentiation (LTP) and one for long-term depression (LTD), each obeying different dynamics and having different effective magnitudes. The model has been shown to successfully generate stable learning in recurrent networks. Although, the model assumes the presence of a single neuromodulator, evidence indicates that there are different neuromodulators for expressing the different traces. What could be the role of different neuromodulators for expressing the LTP and LTD traces? Here we expand on our previous model to include several neuromodulators, and illustrate through various examples how different these contribute to learning reward-timing within a wide set of training paradigms and propose further roles that multiple neuromodulators can play in encoding additional information of the rewarding signal.

  7. Provide for Student Safety. Second Edition. Module E-5 of Category E--Instructional Management. Professional Teacher Education Module Series

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    One in a series of 127 performance-based teacher education learning packages focusing on specific professional competencies of vocational teachers, this learning module deals with providing for student safety. It consists of four learning experiences. Covered in the individual learning experiences are the following topics: providing for student…

  8. Employ Simulation Techniques. Second Edition. Module C-5 of Category C--Instructional Execution. Professional Teacher Education Module Series.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    One of a series of performance-based teacher education learning packages focusing upon specific professional competencies of vocational teachers, this learning module deals with employing simulation techniques. It consists of an introduction and four learning experiences. Covered in the first learning experience are various types of simulation…

  9. From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms.

    PubMed

    Shao, Ling; Yan, Ruomei; Li, Xuelong; Liu, Yan

    2014-07-01

    Image denoising is a well explored topic in the field of image processing. In the past several decades, the progress made in image denoising has benefited from the improved modeling of natural images. In this paper, we introduce a new taxonomy based on image representations for a better understanding of state-of-the-art image denoising techniques. Within each category, several representative algorithms are selected for evaluation and comparison. The experimental results are discussed and analyzed to determine the overall advantages and disadvantages of each category. In general, the nonlocal methods within each category produce better denoising results than local ones. In addition, methods based on overcomplete representations using learned dictionaries perform better than others. The comprehensive study in this paper would serve as a good reference and stimulate new research ideas in image denoising.

  10. A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music.

    PubMed

    Giraldo, Sergio I; Ramirez, Rafael

    2016-01-01

    Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules.

  11. A Machine Learning Approach to Discover Rules for Expressive Performance Actions in Jazz Guitar Music

    PubMed Central

    Giraldo, Sergio I.; Ramirez, Rafael

    2016-01-01

    Expert musicians introduce expression in their performances by manipulating sound properties such as timing, energy, pitch, and timbre. Here, we present a data driven computational approach to induce expressive performance rule models for note duration, onset, energy, and ornamentation transformations in jazz guitar music. We extract high-level features from a set of 16 commercial audio recordings (and corresponding music scores) of jazz guitarist Grant Green in order to characterize the expression in the pieces. We apply machine learning techniques to the resulting features to learn expressive performance rule models. We (1) quantitatively evaluate the accuracy of the induced models, (2) analyse the relative importance of the considered musical features, (3) discuss some of the learnt expressive performance rules in the context of previous work, and (4) assess their generailty. The accuracies of the induced predictive models is significantly above base-line levels indicating that the audio performances and the musical features extracted contain sufficient information to automatically learn informative expressive performance patterns. Feature analysis shows that the most important musical features for predicting expressive transformations are note duration, pitch, metrical strength, phrase position, Narmour structure, and tempo and key of the piece. Similarities and differences between the induced expressive rules and the rules reported in the literature were found. Differences may be due to the fact that most previously studied performance data has consisted of classical music recordings. Finally, the rules' performer specificity/generality is assessed by applying the induced rules to performances of the same pieces performed by two other professional jazz guitar players. Results show a consistency in the ornamentation patterns between Grant Green and the other two musicians, which may be interpreted as a good indicator for generality of the ornamentation rules. PMID:28066290

  12. Associative learning in baboons (Papio papio) and humans (Homo sapiens): species differences in learned attention to visual features.

    PubMed

    Fagot, J; Kruschke, J K; Dépy, D; Vauclair, J

    1998-10-01

    We examined attention shifting in baboons and humans during the learning of visual categories. Within a conditional matching-to-sample task, participants of the two species sequentially learned two two-feature categories which shared a common feature. Results showed that humans encoded both features of the initially learned category, but predominantly only the distinctive feature of the subsequently learned category. Although baboons initially encoded both features of the first category, they ultimately retained only the distinctive features of each category. Empirical data from the two species were analyzed with the 1996 ADIT connectionist model of Kruschke. ADIT fits the baboon data when the attentional shift rate is zero, and the human data when the attentional shift rate is not zero. These empirical and modeling results suggest species differences in learned attention to visual features.

  13. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum.

    PubMed

    Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano

    2015-01-01

    Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.

  14. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum

    PubMed Central

    Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano

    2016-01-01

    Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine. PMID:26834535

  15. Evaluating Machine Learning Classifiers for Hybrid Network Intrusion Detection Systems

    DTIC Science & Technology

    2015-03-26

    7 VRT Vulnerability Research Team...and the Talos (formerly the Vulnerability Research Team ( VRT )) [7] 7 ruleset libraries are the two leading rulesets in use. Both libraries offer paid...rule sets to load for the signature-based IDS. Snort is selected as the IDS engine using the “ VRT and ET No/GPL” rule set. The total rule count in the

  16. Learning, retention, and generalization of haptic categories

    NASA Astrophysics Data System (ADS)

    Do, Phuong T.

    This dissertation explored how haptic concepts are learned, retained, and generalized to the same or different modality. Participants learned to classify objects into three categories either visually or haptically via different training procedures, followed by an immediate or delayed transfer test. Experiment I involved visual versus haptic learning and transfer. Intermodal matching between vision and haptics was investigated in Experiment II. Experiments III and IV examined intersensory conflict in within- and between-category bimodal situations to determine the degree of perceptual dominance between sight and touch. Experiment V explored the intramodal relationship between similarity and categorization in a psychological space, as revealed by MDS analysis of similarity judgments. Major findings were: (1) visual examination resulted in relatively higher performance accuracy than haptic learning; (2) systematic training produced better category learning of haptic concepts across all modality conditions; (3) the category prototypes were rated newer than any transfer stimulus followed learning both immediately and after a week delay; and, (4) although they converged at the apex of two transformational trajectories, the category prototypes became more central to their respective categories and increasingly structured as a function of learning. Implications for theories of multimodal similarity and categorization behavior are discussed in terms of discrimination learning, sensory integration, and dominance relation.

  17. Feature highlighting enhances learning of a complex natural-science category.

    PubMed

    Miyatsu, Toshiya; Gouravajhala, Reshma; Nosofsky, Robert M; McDaniel, Mark A

    2018-04-26

    Learning naturalistic categories, which tend to have fuzzy boundaries and vary on many dimensions, can often be harder than learning well defined categories. One method for facilitating the category learning of naturalistic stimuli may be to provide explicit feature descriptions that highlight the characteristic features of each category. Although this method is commonly used in textbooks and classrooms, theoretically it remains uncertain whether feature descriptions should advantage learning complex natural-science categories. In three experiments, participants were trained on 12 categories of rocks, either without or with a brief description highlighting key features of each category. After training, they were tested on their ability to categorize both old and new rocks from each of the categories. Providing feature descriptions as a caption under a rock image failed to improve category learning relative to providing only the rock image with its category label (Experiment 1). However, when these same feature descriptions were presented such that they were explicitly linked to the relevant parts of the rock image (feature highlighting), participants showed significantly higher performance on both immediate generalization to new rocks (Experiment 2) and generalization after a 2-day delay (Experiment 3). Theoretical and practical implications are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. On Learning Natural-Science Categories That Violate the Family-Resemblance Principle.

    PubMed

    Nosofsky, Robert M; Sanders, Craig A; Gerdom, Alex; Douglas, Bruce J; McDaniel, Mark A

    2017-01-01

    The general view in psychological science is that natural categories obey a coherent, family-resemblance principle. In this investigation, we documented an example of an important exception to this principle: Results of a multidimensional-scaling study of igneous, metamorphic, and sedimentary rocks (Experiment 1) suggested that the structure of these categories is disorganized and dispersed. This finding motivated us to explore what might be the optimal procedures for teaching dispersed categories, a goal that is likely critical to science education in general. Subjects in Experiment 2 learned to classify pictures of rocks into compact or dispersed high-level categories. One group learned the categories through focused high-level training, whereas a second group was required to simultaneously learn classifications at a subtype level. Although high-level training led to enhanced performance when the categories were compact, subtype training was better when the categories were dispersed. We provide an interpretation of the results in terms of an exemplar-memory model of category learning.

  19. Analysis of Rules for Islamic Inheritance Law in Indonesia Using Hybrid Rule Based Learning

    NASA Astrophysics Data System (ADS)

    Khosyi'ah, S.; Irfan, M.; Maylawati, D. S.; Mukhlas, O. S.

    2018-01-01

    Along with the development of human civilization in Indonesia, the changes and reform of Islamic inheritance law so as to conform to the conditions and culture cannot be denied. The distribution of inheritance in Indonesia can be done automatically by storing the rule of Islamic inheritance law in the expert system. In this study, we analyze the knowledge of experts in Islamic inheritance in Indonesia and represent it in the form of rules using rule-based Forward Chaining (FC) and Davis-Putman-Logemann-Loveland (DPLL) algorithms. By hybridizing FC and DPLL algorithms, the rules of Islamic inheritance law in Indonesia are clearly defined and measured. The rules were conceptually validated by some experts in Islamic laws and informatics. The results revealed that generally all rules were ready for use in an expert system.

  20. An investigation of care-based vs. rule-based morality in frontotemporal dementia, Alzheimer's disease, and healthy controls.

    PubMed

    Carr, Andrew R; Paholpak, Pongsatorn; Daianu, Madelaine; Fong, Sylvia S; Mather, Michelle; Jimenez, Elvira E; Thompson, Paul; Mendez, Mario F

    2015-11-01

    Behavioral changes in dementia, especially behavioral variant frontotemporal dementia (bvFTD), may result in alterations in moral reasoning. Investigators have not clarified whether these alterations reflect differential impairment of care-based vs. rule-based moral behavior. This study investigated 18 bvFTD patients, 22 early onset Alzheimer's disease (eAD) patients, and 20 healthy age-matched controls on care-based and rule-based items from the Moral Behavioral Inventory and the Social Norms Questionnaire, neuropsychological measures, and magnetic resonance imaging (MRI) regions of interest. There were significant group differences with the bvFTD patients rating care-based morality transgressions less severely than the eAD group and rule-based moral behavioral transgressions more severely than controls. Across groups, higher care-based morality ratings correlated with phonemic fluency on neuropsychological tests, whereas higher rule-based morality ratings correlated with increased difficulty set-shifting and learning new rules to tasks. On neuroimaging, severe care-based reasoning correlated with cortical volume in right anterior temporal lobe, and rule-based reasoning correlated with decreased cortical volume in the right orbitofrontal cortex. Together, these findings suggest that frontotemporal disease decreases care-based morality and facilitates rule-based morality possibly from disturbed contextual abstraction and set-shifting. Future research can examine whether frontal lobe disorders and bvFTD result in a shift from empathic morality to the strong adherence to conventional rules. Published by Elsevier Ltd.

  1. An Investigation of Care-Based vs. Rule-Based Morality in Frontotemporal Dementia, Alzheimer’s Disease, and Healthy Controls

    PubMed Central

    Carr, Andrew R.; Paholpak, Pongsatorn; Daianu, Madelaine; Fong, Sylvia S.; Mather, Michelle; Jimenez, Elvira E.; Thompson, Paul; Mendez, Mario F.

    2015-01-01

    Behavioral changes in dementia, especially behavioral variant frontotemporal dementia (bvFTD), may result in alterations in moral reasoning. Investigators have not clarified whether these alterations reflect differential impairment of care-based vs. rule-based moral behavior. This study investigated 18 bvFTD patients, 22 early onset Alzheimer’s disease (eAD) patients, and 20 healthy age-matched controls on care-based and rule-based items from the Moral Behavioral Inventory and the Social Norms Questionnaire, neuropsychological measures, and magnetic resonance imaging (MRI) regions of interest. There were significant group differences with the bvFTD patients rating care-based morality transgressions less severely than the eAD group and rule-based moral behavioral transgressions more severely than controls. Across groups, higher care-based morality ratings correlated with phonemic fluency on neuropsychological tests, whereas higher rule-based morality ratings correlated with increased difficulty set-shifting and learning new rules to tasks. On neuroimaging, severe care-based reasoning correlated with cortical volume in right anterior temporal lobe, and rule-based reasoning correlated with decreased cortical volume in the right orbitofrontal cortex. Together, these findings suggest that frontotemporal disease decreases care-based morality and facilitates rule-based morality possibly from disturbed contextual abstraction and set-shifting. Future research can examine whether frontal lobe disorders and bvFTD result in a shift from empathic morality to the strong adherence to conventional rules. PMID:26432341

  2. Computer-Based Feedback and Goal Intervention: Learning Effects

    ERIC Educational Resources Information Center

    Valdez, Alfred

    2012-01-01

    This study investigated how a goal intervention influences the learning effects gained from feedback when acquiring concepts and rules pertaining to the topic of descriptive statistics. Three feedback conditions; knowledge of correct response feedback (KCRF), principle-based feedback (PBF), and no-feedback (NF), were crossed with two goal…

  3. A Local Learning Rule for Independent Component Analysis

    PubMed Central

    Isomura, Takuya; Toyoizumi, Taro

    2016-01-01

    Humans can separately recognize independent sources when they sense their superposition. This decomposition is mathematically formulated as independent component analysis (ICA). While a few biologically plausible learning rules, so-called local learning rules, have been proposed to achieve ICA, their performance varies depending on the parameters characterizing the mixed signals. Here, we propose a new learning rule that is both easy to implement and reliable. Both mathematical and numerical analyses confirm that the proposed rule outperforms other local learning rules over a wide range of parameters. Notably, unlike other rules, the proposed rule can separate independent sources without any preprocessing, even if the number of sources is unknown. The successful performance of the proposed rule is then demonstrated using natural images and movies. We discuss the implications of this finding for our understanding of neuronal information processing and its promising applications to neuromorphic engineering. PMID:27323661

  4. A Rule-Based System for Hybrid Search and Delivery of Learning Objects to Learners

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Baghi, Hamidreza; Steele, Jarrett; Vovk, Ruslan

    2012-01-01

    Purpose: Presently, searching the internet for learning material relevant to ones own interest continues to be a time-consuming task. Systems that can suggest learning material (learning objects) to a learner would reduce time spent searching for material, and enable the learner to spend more time for actual learning. The purpose of this paper is…

  5. Moving Beyond Motive-based categories of Targeted Violence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weine, Stevan; Cohen, John; Brannegan, David

    Today’s categories for responding to targeted violence are motive-based and tend to drive policies, practices, training, media coverage, and research. These categories are based on the assumption that there are significant differences between ideological and non-ideological actors and between domestic and international actors. We question the reliance on these categories and offer an alternative way to frame the response to multiple forms of targeted violence. We propose adopting a community-based multidisciplinary approach to assess risk and provide interventions that are focused on the pre-criminal space. We describe four capabilities that should be implemented locally by establishing and maintaining multidisciplinary responsemore » teams that combine community and law-enforcement components: (1) community members are educated, making them better able to identify and report patterns associated with elevated risk for violence; (2) community-based professionals are trained to assess the risks for violent behavior posed by individuals; (3) community-based professionals learn to implement strategies that directly intervene in causal factors for those individuals who are at elevated risk; and (4) community-based professionals learn to monitor and assess an individual’s risk for violent behaviors on an ongoing basis. Community-based multidisciplinary response teams have the potential to identify and help persons in the pre-criminal space and to reduce barriers that have traditionally impeded community/law-enforcement collaboration.« less

  6. Functional requirements for reward-modulated spike-timing-dependent plasticity.

    PubMed

    Frémaux, Nicolas; Sprekeler, Henning; Gerstner, Wulfram

    2010-10-06

    Recent experiments have shown that spike-timing-dependent plasticity is influenced by neuromodulation. We derive theoretical conditions for successful learning of reward-related behavior for a large class of learning rules where Hebbian synaptic plasticity is conditioned on a global modulatory factor signaling reward. We show that all learning rules in this class can be separated into a term that captures the covariance of neuronal firing and reward and a second term that presents the influence of unsupervised learning. The unsupervised term, which is, in general, detrimental for reward-based learning, can be suppressed if the neuromodulatory signal encodes the difference between the reward and the expected reward-but only if the expected reward is calculated for each task and stimulus separately. If several tasks are to be learned simultaneously, the nervous system needs an internal critic that is able to predict the expected reward for arbitrary stimuli. We show that, with a critic, reward-modulated spike-timing-dependent plasticity is capable of learning motor trajectories with a temporal resolution of tens of milliseconds. The relation to temporal difference learning, the relevance of block-based learning paradigms, and the limitations of learning with a critic are discussed.

  7. Direct care worker's perceptions of job satisfaction following implementation of work-based learning.

    PubMed

    Lopez, Cynthia; White, Diana L; Carder, Paula C

    2014-02-01

    The purpose of this study was to understand the impact of a work-based learning program on the work lives of Direct Care Workers (DCWs) at assisted living (AL) residences. The research questions were addressed using focus group data collected as part of a larger evaluation of a work-based learning (WBL) program called Jobs to Careers. The theoretical perspective of symbolic interactionism was used to frame the qualitative data analysis. Results indicated that the WBL program impacted DCWs' job satisfaction through the program curriculum and design and through three primary categories: relational aspects of work, worker identity, and finding time. This article presents a conceptual model for understanding how these categories are interrelated and the implications for WBL programs. Job satisfaction is an important topic that has been linked to quality of care and reduced turnover in long-term care settings.

  8. Work-Based Learning: A Resource Guide for Change.

    ERIC Educational Resources Information Center

    Hudson River Center for Program Development, Glenmont, NY.

    This document is intended to provide New York schools, business/industry representatives, and others with resources to develop or further refine work-based learning (WBL) strategies or components. Section 1 presents background information on the following topics: (1) the scope of WBL; (2) foundations for the development of WBL; (3) categories of…

  9. Development and Evaluation of Computer-Based Laboratory Practical Learning Tool

    ERIC Educational Resources Information Center

    Gandole, Y. B.

    2006-01-01

    Effective evaluation of educational software is a key issue for successful introduction of advanced tools in the curriculum. This paper details to developing and evaluating a tool for computer assisted learning of science laboratory courses. The process was based on the generic instructional system design model. Various categories of educational…

  10. Digital Game-Based Learning in Accounting and Business Education

    ERIC Educational Resources Information Center

    Carenys, Jordi; Moya, Soledad

    2016-01-01

    This article presents a review of the accounting and business literature on digital game-based learning (DGBL). The article classifies what is already settled in the literature about the theoretical foundations of DGBL's effectiveness and its practical use into three categories. The first comprises what is known about the evaluation of digital…

  11. STEM based learning to facilitate middle school students’ conceptual change, creativity and collaboration in organization of living system topic

    NASA Astrophysics Data System (ADS)

    Rustaman, N. Y.; Afianti, E.; Maryati, S.

    2018-05-01

    A study using one group pre-post-test experimental design on Life organization system topic was carried out to investigate student’s tendency in learning abstract concept, their creativity and collaboration in designing and producing cell models through STEM-based learning. A number of seventh grade students in Cianjur district were involved as research subjects (n=34). Data were collected using two tier test for tracing changes in student conception before and after the application of STEM-based learning, and rubrics in creativity design (adopted from Torrance) and product on cell models (individually, in group), and rubric for self-assessment and observed skills on collaboration adapted from Marzano’s for life-long learning. Later the data obtained were analyzed qualitatively by interpreting the tendency of data presented in matrix sorted by gender. Research findings showed that the percentage of student’s scientific concept mastery is moderate in general. Their creativity in making a cell model design varied in category (expressing, emergent, excellent, not yet evident). Student’s collaboration varied from excellent, fair, good, less once, to less category in designing cell model. It was found that STEM based learning can facilitate students conceptual change, creativity and collaboration.

  12. A spectral-knowledge-based approach for urban land-cover discrimination

    NASA Technical Reports Server (NTRS)

    Wharton, Stephen W.

    1987-01-01

    A prototype expert system was developed to demonstrate the feasibility of classifying multispectral remotely sensed data on the basis of spectral knowledge. The spectral expert was developed and tested with Thematic Mapper Simulator (TMS) data having eight spectral bands and a spatial resolution of 5 m. A knowledge base was developed that describes the target categories in terms of characteristic spectral relationships. The knowledge base was developed under the following assumptions: the data are calibrated to ground reflectance, the area is well illuminated, the pixels are dominated by a single category, and the target categories can be recognized without the use of spatial knowledge. Classification decisions are made on the basis of convergent evidence as derived from applying the spectral rules to a multiple spatial resolution representation of the image. The spectral expert achieved an accuracy of 80-percent correct or higher in recognizing 11 spectral categories in TMS data for the washington, DC, area. Classification performance can be expected to decrease for data that do not satisfy the above assumptions as illustrated by the 63-percent accuracy for 30-m resolution Thematic Mapper data.

  13. Evolving optimised decision rules for intrusion detection using particle swarm paradigm

    NASA Astrophysics Data System (ADS)

    Sivatha Sindhu, Siva S.; Geetha, S.; Kannan, A.

    2012-12-01

    The aim of this article is to construct a practical intrusion detection system (IDS) that properly analyses the statistics of network traffic pattern and classify them as normal or anomalous class. The objective of this article is to prove that the choice of effective network traffic features and a proficient machine-learning paradigm enhances the detection accuracy of IDS. In this article, a rule-based approach with a family of six decision tree classifiers, namely Decision Stump, C4.5, Naive Baye's Tree, Random Forest, Random Tree and Representative Tree model to perform the detection of anomalous network pattern is introduced. In particular, the proposed swarm optimisation-based approach selects instances that compose training set and optimised decision tree operate over this trained set producing classification rules with improved coverage, classification capability and generalisation ability. Experiment with the Knowledge Discovery and Data mining (KDD) data set which have information on traffic pattern, during normal and intrusive behaviour shows that the proposed algorithm produces optimised decision rules and outperforms other machine-learning algorithm.

  14. The home care teaching and learning process in undergraduate health care degree courses.

    PubMed

    Hermann, Ana Paula; Lacerda, Maria Ribeiro; Maftum, Mariluci Alves; Bernardino, Elizabeth; Mello, Ana Lúcia Schaefer Ferreira de

    2017-07-01

    Home care, one of the services provided by the health system, requires health practitioners who are capable of understanding its specificities. This study aimed to build a substantive theory that describes experiences of home care teaching and learning during undergraduate degree courses in nursing, pharmacy, medicine, nutrition, dentistry and occupational therapy. A qualitative analysis was performed using the grounded theory approach based on the results of 63 semistructured interviews conducted with final year students, professors who taught subjects related to home care, and recent graduates working with home care, all participants in the above courses. The data was analyzed in three stages - open coding, axial coding and selective coding - resulting in the phenomenon Experiences of home care teaching and learning during the undergraduate health care degree courses. Its causes were described in the category Articulating knowledge of home care, strategies in the category Experiencing the unique nature of home care, intervening conditions in the category Understanding the multidimensional characteristics of home care, consequences in the category Changing thinking about home care training, and context in the category Understanding home care in the health system. Home care contributes towards the decentralization of hospital care.

  15. Cultural Conceptualisations in Learning English as an L2: Examples from Persian-Speaking Learners

    ERIC Educational Resources Information Center

    Sharifian, Farzad

    2013-01-01

    Traditionally, many studies of second language acquisition (SLA) were based on the assumption that learning a new language mainly involves learning a set of grammatical rules, lexical items, and certain new sounds and sound combinations. However, for many second language learners, learning a second language may involve contact and interactions…

  16. Online Learning Behaviors for Radiology Interns Based on Association Rules and Clustering Technique

    ERIC Educational Resources Information Center

    Chen, Hsing-Shun; Liou, Chuen-He

    2014-01-01

    In a hospital, clinical teachers must also care for patients, so there is less time for the teaching of clinical courses, or for discussing clinical cases with interns. However, electronic learning (e-learning) can complement clinical skills education for interns in a blended-learning process. Students discuss and interact with classmates in an…

  17. Learning multiple rules simultaneously: Affixes are more salient than reduplications.

    PubMed

    Gervain, Judit; Endress, Ansgar D

    2017-04-01

    Language learners encounter numerous opportunities to learn regularities, but need to decide which of these regularities to learn, because some are not productive in their native language. Here, we present an account of rule learning based on perceptual and memory primitives (Endress, Dehaene-Lambertz, & Mehler, Cognition, 105(3), 577-614, 2007; Endress, Nespor, & Mehler, Trends in Cognitive Sciences, 13(8), 348-353, 2009), suggesting that learners preferentially learn regularities that are more salient to them, and that the pattern of salience reflects the frequency of language features across languages. We contrast this view with previous artificial grammar learning research, which suggests that infants "choose" the regularities they learn based on rational, Bayesian criteria (Frank & Tenenbaum, Cognition, 120(3), 360-371, 2013; Gerken, Cognition, 98(3)B67-B74, 2006, Cognition, 115(2), 362-366, 2010). In our experiments, adult participants listened to syllable strings starting with a syllable reduplication and always ending with the same "affix" syllable, or to syllable strings starting with this "affix" syllable and ending with the "reduplication". Both affixation and reduplication are frequently used for morphological marking across languages. We find three crucial results. First, participants learned both regularities simultaneously. Second, affixation regularities seemed easier to learn than reduplication regularities. Third, regularities in sequence offsets were easier to learn than regularities at sequence onsets. We show that these results are inconsistent with previous Bayesian rule learning models, but mesh well with the perceptual or memory primitives view. Further, we show that the pattern of salience revealed in our experiments reflects the distribution of regularities across languages. Ease of acquisition might thus be one determinant of the frequency of regularities across languages.

  18. DCS-Neural-Network Program for Aircraft Control and Testing

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    2006-01-01

    A computer program implements a dynamic-cell-structure (DCS) artificial neural network that can perform such tasks as learning selected aerodynamic characteristics of an airplane from wind-tunnel test data and computing real-time stability and control derivatives of the airplane for use in feedback linearized control. A DCS neural network is one of several types of neural networks that can incorporate additional nodes in order to rapidly learn increasingly complex relationships between inputs and outputs. In the DCS neural network implemented by the present program, the insertion of nodes is based on accumulated error. A competitive Hebbian learning rule (a supervised-learning rule in which connection weights are adjusted to minimize differences between actual and desired outputs for training examples) is used. A Kohonen-style learning rule (derived from a relatively simple training algorithm, implements a Delaunay triangulation layout of neurons) is used to adjust node positions during training. Neighborhood topology determines which nodes are used to estimate new values. The network learns, starting with two nodes, and adds new nodes sequentially in locations chosen to maximize reductions in global error. At any given time during learning, the error becomes homogeneously distributed over all nodes.

  19. Measure in the ESRD QIP for PY 2020. Final rule.

    PubMed

    2017-08-04

    This final rule updates the payment rates used under the prospective payment system (PPS) for skilled nursing facilities (SNFs) for fiscal year (FY) 2018. It also revises and rebases the market basket index by updating the base year from 2010 to 2014, and by adding a new cost category for Installation, Maintenance, and Repair Services. The rule also finalizes revisions to the SNF Quality Reporting Program (QRP), including measure and standardized resident assessment data policies and policies related to public display. In addition, it finalizes policies for the Skilled Nursing Facility Value-Based Purchasing Program that will affect Medicare payment to SNFs beginning in FY 2019. The final rule also clarifies the regulatory requirements for team composition for surveys conducted for investigating a complaint and aligns regulatory provisions for investigation of complaints with the statutory requirements. The final rule also finalizes the performance period for the National Healthcare Safety Network (NHSN) Healthcare Personnel (HCP) Influenza Vaccination Reporting Measure included in the End-Stage Renal Disease (ESRD) Quality Incentive Program (QIP) for Payment Year 2020.

  20. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    PubMed

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  1. The Use of a Well-Designed Instructional Guideline in Online MBA Teaching

    ERIC Educational Resources Information Center

    Duesing, Robert J.; Ling, Juan; Yang, Jiaqin

    2016-01-01

    This study investigated the positive impact of a teaching practice on student learning outcomes in an online MBA program. An instructional project guideline was developed to help online students enhance their achieving required learning objectives corresponding to five categories of Bloom's Taxonomy. The course learning objectives are based on…

  2. Novel approach for identification of influenza virus host range and zoonotic transmissible sequences by determination of host-related associative positions in viral genome segments.

    PubMed

    Kargarfard, Fatemeh; Sami, Ashkan; Mohammadi-Dehcheshmeh, Manijeh; Ebrahimie, Esmaeil

    2016-11-16

    Recent (2013 and 2009) zoonotic transmission of avian or porcine influenza to humans highlights an increase in host range by evading species barriers. Gene reassortment or antigenic shift between viruses from two or more hosts can generate a new life-threatening virus when the new shuffled virus is no longer recognized by antibodies existing within human populations. There is no large scale study to help understand the underlying mechanisms of host transmission. Furthermore, there is no clear understanding of how different segments of the influenza genome contribute in the final determination of host range. To obtain insight into the rules underpinning host range determination, various supervised machine learning algorithms were employed to mine reassortment changes in different viral segments in a range of hosts. Our multi-host dataset contained whole segments of 674 influenza strains organized into three host categories: avian, human, and swine. Some of the sequences were assigned to multiple hosts. In point of fact, the datasets are a form of multi-labeled dataset and we utilized a multi-label learning method to identify discriminative sequence sites. Then algorithms such as CBA, Ripper, and decision tree were applied to extract informative and descriptive association rules for each viral protein segment. We found informative rules in all segments that are common within the same host class but varied between different hosts. For example, for infection of an avian host, HA14V and NS1230S were the most important discriminative and combinatorial positions. Host range identification is facilitated by high support combined rules in this study. Our major goal was to detect discriminative genomic positions that were able to identify multi host viruses, because such viruses are likely to cause pandemic or disastrous epidemics.

  3. Breaking the Rules: Do Infants Have a True Understanding of False Belief?

    ERIC Educational Resources Information Center

    Yott, Jessica; Poulin-Dubois, Diane

    2012-01-01

    It has been suggested that infants' performance on the false belief task can be explained by the use of behavioural rules. To test this hypothesis, 18-month-old infants were trained to learn the new rule that an object that disappeared in location A could be found in location B. Infants were then administered a false belief task based on the…

  4. A hierarchical structure for representing and learning fuzzy rules

    NASA Technical Reports Server (NTRS)

    Yager, Ronald R.

    1993-01-01

    Yager provides an example in which the flat representation of fuzzy if-then rules leads to unsatisfactory results. Consider a rule base consisting to two rules: if U is 12 the V is 29; if U is (10-15) the V is (25-30). If U = 12 we would get V is G where G = (25-30). The application of the defuzzification process leads to a selection of V = 27.5. Thus we see that the very specific instruction was not followed. The problem with the technique used is that the most specific information was swamped by the less specific information. In this paper we shall provide for a new structure for the representation of fuzzy if-then rules. The representational form introduced here is called a Hierarchical Prioritized Structure (HPS) representation. Most importantly in addition to overcoming the problem illustrated in the previous example this HPS representation has an inherent capability to emulate the learning of general rules and provides a reasonable accurate cognitive mapping of how human beings store information.

  5. Cue-type manipulation dissociates two types of task set inhibition: backward inhibition and competitor rule suppression.

    PubMed

    Regev, Shirley; Meiran, Nachshon

    2016-07-01

    Backward inhibition (BI) reflects the suppression of a recently abandoned task set to allow for smooth transition to a new task even when the rules do not generate a response conflict. Competitor rule suppression (CRS) reflects the inhibition/suppression of irrelevant task rules when these rules generate a response conflict even if they have not recently been abandoned. We assessed whether BI and CRS are differentially affected by the difficulty in retrieving category-response mappings from memory. Retrieval demands were manipulated via the information provided by the task cues, which either indicated the relevant dimension (dimension cues; "color") or the relevant dimension with its category-to-key mapping (mapping cues; "red green", indicating that "red" and "green" go with the left/right responses, respectively). CRS was larger with dimension compared to mapping cues when cue-type varied between groups and was larger after trials involving dimension cues when cue-type varied on a trial-by-trial basis. In contrast, BI was not influenced by cue-type. These results suggest that task switching involve at least two distinct inhibitory processes, with CRS being related to the ease of retrieval of category-response mappings from memory.

  6. Verification and Validation of KBS with Neural Network Components

    NASA Technical Reports Server (NTRS)

    Wen, Wu; Callahan, John

    1996-01-01

    Artificial Neural Network (ANN) play an important role in developing robust Knowledge Based Systems (KBS). The ANN based components used in these systems learn to give appropriate predictions through training with correct input-output data patterns. Unlike traditional KBS that depends on a rule database and a production engine, the ANN based system mimics the decisions of an expert without specifically formulating the if-than type of rules. In fact, the ANNs demonstrate their superiority when such if-then type of rules are hard to generate by human expert. Verification of traditional knowledge based system is based on the proof of consistency and completeness of the rule knowledge base and correctness of the production engine.These techniques, however, can not be directly applied to ANN based components.In this position paper, we propose a verification and validation procedure for KBS with ANN based components. The essence of the procedure is to obtain an accurate system specification through incremental modification of the specifications using an ANN rule extraction algorithm.

  7. Cognitive analysis as a way to understand students' problem-solving process in BODMAS rule

    NASA Astrophysics Data System (ADS)

    Ung, Ting Su; Kiong, Paul Lau Ngee; Manaf, Badron bin; Hamdan, Anniza Binti; Khium, Chen Chee

    2017-04-01

    Students tend to make lots of careless mistake during the process of mathematics solving. To facilitate effective learning, educators have to understand which cognitive processes are used by students and how these processes help them to solve problems. This paper is only aimed to determine the common errors in mathematics by pre-diploma students that took Intensive Mathematics I (MAT037) in UiTM Sarawak. Then, concentrate on the errors did by the students on the topic of BODMAS rule and the mental processes corresponding to these errors that been developed by students. One class of pre-diploma students taking MAT037 taught by the researchers was selected because they performed poorly in SPM mathematics. It is inevitable that they finished secondary education with many misconceptions in mathematics. The solution scripts for all the tutorials of the participants were collected. This study was predominately qualitative and the solution scripts were content analyzed to identify the common errors committed by the participants, and to generate possible mental processes to these errors. Selected students were interviewed by the researchers during the progress. BODMAS rule could be further divided into Numerical Simplification and Powers Simplification. Furthermore, the erroneous processes could be attributed to categories of Basic Arithmetic Rules, Negative Numbers and Powers.

  8. 77 FR 40527 - New Express Mail Price Category-Express Mail Padded Flat Rate Envelope

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... POSTAL SERVICE 39 CFR Part 111 New Express Mail Price Category--Express Mail Padded Flat Rate.... SUPPLEMENTARY INFORMATION: This final rule describes a new price category under Express Mail, Express Mail... new price category is available under Docket Number CP2012-39 on the Postal Regulatory Commission's...

  9. On Classification of Modular Categories by Rank: Table A.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruillard, Paul; Ng, Siu-Hung; Rowell, Eric C.

    2016-04-10

    The feasibility of a classification-by-rank program for modular categories follows from the Rank-Finiteness Theorem. We develop arithmetic, representation theoretic and algebraic methods for classifying modular categories by rank. As an application, we determine all possible fusion rules for all rank=5 modular categories and describe the corresponding monoidal equivalence classes.

  10. Context-Awareness Based Personalized Recommendation of Anti-Hypertension Drugs.

    PubMed

    Chen, Dexin; Jin, Dawei; Goh, Tiong-Thye; Li, Na; Wei, Leiru

    2016-09-01

    The World Health Organization estimates that almost one-third of the world's adult population are suffering from hypertension which has gradually become a "silent killer". Due to the varieties of anti-hypertensive drugs, patients are interested in how these drugs can be selected to match their respective conditions. This study provides a personalized recommendation service system of anti-hypertensive drugs based on context-awareness and designs a context ontology framework of the service. In addition, this paper introduces a Semantic Web Rule Language (SWRL)-based rule to provide high-level context reasoning and information recommendation and to overcome the limitation of ontology reasoning. To make the information recommendation of the drugs more personalized, this study also devises three categories of information recommendation rules that match different priority levels and uses a ranking algorithm to optimize the recommendation. The experiment conducted shows that combining the anti-hypertensive drugs personalized recommendation service context ontology (HyRCO) with the optimized rule reasoning can achieve a higher-quality personalized drug recommendation service. Accordingly this exploratory study of the personalized recommendation service for hypertensive drugs and its method can be easily adopted for other diseases.

  11. Brain activity across the development of automatic categorization: A comparison of categorization tasks using multi-voxel pattern analysis

    PubMed Central

    Soto, Fabian A.; Waldschmidt, Jennifer G.; Helie, Sebastien; Ashby, F. Gregory

    2013-01-01

    Previous evidence suggests that relatively separate neural networks underlie initial learning of rule-based and information-integration categorization tasks. With the development of automaticity, categorization behavior in both tasks becomes increasingly similar and exclusively related to activity in cortical regions. The present study uses multi-voxel pattern analysis to directly compare the development of automaticity in different categorization tasks. Each of three groups of participants received extensive training in a different categorization task: either an information-integration task, or one of two rule-based tasks. Four training sessions were performed inside an MRI scanner. Three different analyses were performed on the imaging data from a number of regions of interest (ROIs). The common patterns analysis had the goal of revealing ROIs with similar patterns of activation across tasks. The unique patterns analysis had the goal of revealing ROIs with dissimilar patterns of activation across tasks. The representational similarity analysis aimed at exploring (1) the similarity of category representations across ROIs and (2) how those patterns of similarities compared across tasks. The results showed that common patterns of activation were present in motor areas and basal ganglia early in training, but only in the former later on. Unique patterns were found in a variety of cortical and subcortical areas early in training, but they were dramatically reduced with training. Finally, patterns of representational similarity between brain regions became increasingly similar across tasks with the development of automaticity. PMID:23333700

  12. Competitive STDP Learning of Overlapping Spatial Patterns.

    PubMed

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.

  13. Hierarchy-associated semantic-rule inference framework for classifying indoor scenes

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei

    2016-03-01

    Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.

  14. Generating Concise Rules for Human Motion Retrieval

    NASA Astrophysics Data System (ADS)

    Mukai, Tomohiko; Wakisaka, Ken-Ichi; Kuriyama, Shigeru

    This paper proposes a method for retrieving human motion data with concise retrieval rules based on the spatio-temporal features of motion appearance. Our method first converts motion clip into a form of clausal language that represents geometrical relations between body parts and their temporal relationship. A retrieval rule is then learned from the set of manually classified examples using inductive logic programming (ILP). ILP automatically discovers the essential rule in the same clausal form with a user-defined hypothesis-testing procedure. All motions are indexed using this clausal language, and the desired clips are retrieved by subsequence matching using the rule. Such rule-based retrieval offers reasonable performance and the rule can be intuitively edited in the same language form. Consequently, our method enables efficient and flexible search from a large dataset with simple query language.

  15. AVNM: A Voting based Novel Mathematical Rule for Image Classification.

    PubMed

    Vidyarthi, Ankit; Mittal, Namita

    2016-12-01

    In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Fuzzy Logic Based Anomaly Detection for Embedded Network Security Cyber Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ondrej Linda; Todd Vollmer; Jason Wright

    Resiliency and security in critical infrastructure control systems in the modern world of cyber terrorism constitute a relevant concern. Developing a network security system specifically tailored to the requirements of such critical assets is of a primary importance. This paper proposes a novel learning algorithm for anomaly based network security cyber sensor together with its hardware implementation. The presented learning algorithm constructs a fuzzy logic rule based model of normal network behavior. Individual fuzzy rules are extracted directly from the stream of incoming packets using an online clustering algorithm. This learning algorithm was specifically developed to comply with the constrainedmore » computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental test-bed mimicking the environment of a critical infrastructure control system.« less

  17. Transfer of Mixed Word Identification Training to a Reading Context.

    ERIC Educational Resources Information Center

    Koehler, John; And Others

    The research reported here was designed to examine a number of factors that findings from verbal learning studies indicate should affect the recall and transfer of word identification materials. Sight word and phonics-based or rule-based learning were investigated in 112 kindergarteners who were identified as nonreaders. Groups were trained on…

  18. Machine Learning Based Evaluation of Reading and Writing Difficulties.

    PubMed

    Iwabuchi, Mamoru; Hirabayashi, Rumi; Nakamura, Kenryu; Dim, Nem Khan

    2017-01-01

    The possibility of auto evaluation of reading and writing difficulties was investigated using non-parametric machine learning (ML) regression technique for URAWSS (Understanding Reading and Writing Skills of Schoolchildren) [1] test data of 168 children of grade 1 - 9. The result showed that the ML had better prediction than the ordinary rule-based decision.

  19. Cross-Situational Learning with Bayesian Generative Models for Multimodal Category and Word Learning in Robots

    PubMed Central

    Taniguchi, Akira; Taniguchi, Tadahiro; Cangelosi, Angelo

    2017-01-01

    In this paper, we propose a Bayesian generative model that can form multiple categories based on each sensory-channel and can associate words with any of the four sensory-channels (action, position, object, and color). This paper focuses on cross-situational learning using the co-occurrence between words and information of sensory-channels in complex situations rather than conventional situations of cross-situational learning. We conducted a learning scenario using a simulator and a real humanoid iCub robot. In the scenario, a human tutor provided a sentence that describes an object of visual attention and an accompanying action to the robot. The scenario was set as follows: the number of words per sensory-channel was three or four, and the number of trials for learning was 20 and 40 for the simulator and 25 and 40 for the real robot. The experimental results showed that the proposed method was able to estimate the multiple categorizations and to learn the relationships between multiple sensory-channels and words accurately. In addition, we conducted an action generation task and an action description task based on word meanings learned in the cross-situational learning scenario. The experimental results showed that the robot could successfully use the word meanings learned by using the proposed method. PMID:29311888

  20. Analysis of e-learning implementation readiness based on integrated elr model

    NASA Astrophysics Data System (ADS)

    Adiyarta, K.; Napitupulu, D.; Rahim, R.; Abdullah, D.; Setiawan, MI

    2018-04-01

    E-learning nowadays has become a requirement for institutions to support their learning activities. To adopt e-learning, an institution requires a large strategy and resources for optimal application. Unfortunately, not all institutions that have used e-learning got the desired results or expectations. This study aims to identify the extent of the level of readiness of e-learning implementation in institution X. The degree of institutional readiness will determine the success of future e-learning utilization. In addition, institutional readiness measurement are needed to evaluate the effectiveness of strategies in e-learning development. The research method used is survey with questionnaire designed based on integration of 8 best practice ELR (e-learning readiness) model. The results showed that from 13 factors of integrated ELR model being measured, there are 3 readiness factors included in the category of not ready and needs a lot of work. They are human resource (2.57), technology skill (2.38) and content factors (2.41). In general, e-learning implementation in institutions is in the category of not ready but needs some of work (3.27). Therefore, the institution should consider which factors or areas of ELR factors are considered still not ready and needs improvement in the future.

  1. Metacognitive monitoring during category learning: how success affects future behaviour.

    PubMed

    Doyle, Mario E; Hourihan, Kathleen L

    2016-10-01

    The purpose of this study was to see how people perceive their own learning during a category learning task, and whether their perceptions matched their performance. In two experiments, participants were asked to learn natural categories, of both high and low variability, and make category learning judgements (CLJs). Variability was manipulated by varying the number of exemplars and the number of times each exemplar was presented within each category. Experiment 1 showed that participants were generally overconfident in their knowledge of low variability families, suggesting that they considered repetition to be more useful for learning than it actually was. Also, a correct trial, for a particular category, was more likely to occur if the previous trial was correct. CLJs had the largest increase when a trial was correct following an incorrect trial and the largest decrease when an incorrect trial followed a correct trial. Experiment 2 replicated these results, but also demonstrated that global CLJ ratings showed the same bias towards repetition. These results indicate that we generally identify success as being the biggest determinant of learning, but do not always recognise cues, such as variability, that enhance learning.

  2. Working memory supports inference learning just like classification learning.

    PubMed

    Craig, Stewart; Lewandowsky, Stephan

    2013-08-01

    Recent research has found a positive relationship between people's working memory capacity (WMC) and their speed of category learning. To date, only classification-learning tasks have been considered, in which people learn to assign category labels to objects. It is unknown whether learning to make inferences about category features might also be related to WMC. We report data from a study in which 119 participants undertook classification learning and inference learning, and completed a series of WMC tasks. Working memory capacity was positively related to people's classification and inference learning performance.

  3. CrossTalk: The Journal of Defense Software Engineering. Volume 27, Number 1, January/February 2014

    DTIC Science & Technology

    2014-02-01

    deficit in trustworthiness and will permit analysis on how this deficit needs to be overcome. This analysis will help identify adaptations that are...approaches to trustworthy analysis split into two categories: product-based and process-based. Product-based techniques [9] identify factors that...Criticalities may also be assigned to decompositions and contributions. 5. Evaluation and analysis : in this task the propagation rules of the NFR

  4. A reinforcement learning-based architecture for fuzzy logic control

    NASA Technical Reports Server (NTRS)

    Berenji, Hamid R.

    1992-01-01

    This paper introduces a new method for learning to refine a rule-based fuzzy logic controller. A reinforcement learning technique is used in conjunction with a multilayer neural network model of a fuzzy controller. The approximate reasoning based intelligent control (ARIC) architecture proposed here learns by updating its prediction of the physical system's behavior and fine tunes a control knowledge base. Its theory is related to Sutton's temporal difference (TD) method. Because ARIC has the advantage of using the control knowledge of an experienced operator and fine tuning it through the process of learning, it learns faster than systems that train networks from scratch. The approach is applied to a cart-pole balancing system.

  5. Learning Problem-Solving Rules as Search Through a Hypothesis Space.

    PubMed

    Lee, Hee Seung; Betts, Shawn; Anderson, John R

    2016-07-01

    Learning to solve a class of problems can be characterized as a search through a space of hypotheses about the rules for solving these problems. A series of four experiments studied how different learning conditions affected the search among hypotheses about the solution rule for a simple computational problem. Experiment 1 showed that a problem property such as computational difficulty of the rules biased the search process and so affected learning. Experiment 2 examined the impact of examples as instructional tools and found that their effectiveness was determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal directions with examples and found that both could guide search. The final experiment tried to improve learning by using more explicit verbal directions or by adding scaffolding to the example. While both manipulations improved learning, learning still took the form of a search through a hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the instruction can bias the rules participants hypothesize rather than directly be encoded into a rule; (2) participants do not have memory for past wrong hypotheses and are likely to retry them. These assumptions are realized in a Markov model that fits all the data by estimating two sets of probabilities. First, the learning condition induced one set of Start probabilities of trying various rules. Second, should this first hypothesis prove wrong, the learning condition induced a second set of Choice probabilities of considering various rules. These findings broaden our understanding of effective instruction and provide implications for instructional design. Copyright © 2015 Cognitive Science Society, Inc.

  6. Observation versus classification in supervised category learning.

    PubMed

    Levering, Kimery R; Kurtz, Kenneth J

    2015-02-01

    The traditional supervised classification paradigm encourages learners to acquire only the knowledge needed to predict category membership (a discriminative approach). An alternative that aligns with important aspects of real-world concept formation is learning with a broader focus to acquire knowledge of the internal structure of each category (a generative approach). Our work addresses the impact of a particular component of the traditional classification task: the guess-and-correct cycle. We compare classification learning to a supervised observational learning task in which learners are shown labeled examples but make no classification response. The goals of this work sit at two levels: (1) testing for differences in the nature of the category representations that arise from two basic learning modes; and (2) evaluating the generative/discriminative continuum as a theoretical tool for understand learning modes and their outcomes. Specifically, we view the guess-and-correct cycle as consistent with a more discriminative approach and therefore expected it to lead to narrower category knowledge. Across two experiments, the observational mode led to greater sensitivity to distributional properties of features and correlations between features. We conclude that a relatively subtle procedural difference in supervised category learning substantially impacts what learners come to know about the categories. The results demonstrate the value of the generative/discriminative continuum as a tool for advancing the psychology of category learning and also provide a valuable constraint for formal models and associated theories.

  7. Pioneering a web-Based Museum in Taiwan: Design and Implementation of Lifelong Distance Learning of Science Education.

    ERIC Educational Resources Information Center

    Young, Shelley Shwu-Ching; Huang, Yi-Long; Jang, Jyh-Shing Roger

    2000-01-01

    Describes the development and implementation process of a Web-based science museum in Taiwan. Topics include use of the Internet; lifelong distance learning; museums and the Internet; objectives of the science museum; funding; categories of exhibitions; analysis of Web users; homepage characteristics; graphics and the effect on speed; and future…

  8. Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants.

    PubMed

    Werchan, Denise M; Collins, Anne G E; Frank, Michael J; Amso, Dima

    2016-10-05

    Recent research indicates that adults and infants spontaneously create and generalize hierarchical rule sets during incidental learning. Computational models and empirical data suggest that, in adults, this process is supported by circuits linking prefrontal cortex (PFC) with striatum and their modulation by dopamine, but the neural circuits supporting this form of learning in infants are largely unknown. We used near-infrared spectroscopy to record PFC activity in 8-month-old human infants during a simple audiovisual hierarchical-rule-learning task. Behavioral results confirmed that infants adopted hierarchical rule sets to learn and generalize spoken object-label mappings across different speaker contexts. Infants had increased activity over right dorsal lateral PFC when rule sets switched from one trial to the next, a neural marker related to updating rule sets into working memory in the adult literature. Infants' eye blink rate, a possible physiological correlate of striatal dopamine activity, also increased when rule sets switched from one trial to the next. Moreover, the increase in right dorsolateral PFC activity in conjunction with eye blink rate also predicted infants' generalization ability, providing exploratory evidence for frontostriatal involvement during learning. These findings provide evidence that PFC is involved in rudimentary hierarchical rule learning in 8-month-old infants, an ability that was previously thought to emerge later in life in concert with PFC maturation. Hierarchical rule learning is a powerful learning mechanism that allows rules to be selected in a context-appropriate fashion and transferred or reused in novel contexts. Data from computational models and adults suggests that this learning mechanism is supported by dopamine-innervated interactions between prefrontal cortex (PFC) and striatum. Here, we provide evidence that PFC also supports hierarchical rule learning during infancy, challenging the current dogma that PFC is an underdeveloped brain system until adolescence. These results add new insights into the neurobiological mechanisms available to support learning and generalization in very early postnatal life, providing evidence that PFC and the frontostriatal circuitry are involved in organizing learning and behavior earlier in life than previously known. Copyright © 2016 the authors 0270-6474/16/3610314-09$15.00/0.

  9. Role of Prefrontal Cortex in Learning and Generalizing Hierarchical Rules in 8-Month-Old Infants

    PubMed Central

    Werchan, Denise M.; Collins, Anne G.E.; Frank, Michael J.

    2016-01-01

    Recent research indicates that adults and infants spontaneously create and generalize hierarchical rule sets during incidental learning. Computational models and empirical data suggest that, in adults, this process is supported by circuits linking prefrontal cortex (PFC) with striatum and their modulation by dopamine, but the neural circuits supporting this form of learning in infants are largely unknown. We used near-infrared spectroscopy to record PFC activity in 8-month-old human infants during a simple audiovisual hierarchical-rule-learning task. Behavioral results confirmed that infants adopted hierarchical rule sets to learn and generalize spoken object–label mappings across different speaker contexts. Infants had increased activity over right dorsal lateral PFC when rule sets switched from one trial to the next, a neural marker related to updating rule sets into working memory in the adult literature. Infants' eye blink rate, a possible physiological correlate of striatal dopamine activity, also increased when rule sets switched from one trial to the next. Moreover, the increase in right dorsolateral PFC activity in conjunction with eye blink rate also predicted infants' generalization ability, providing exploratory evidence for frontostriatal involvement during learning. These findings provide evidence that PFC is involved in rudimentary hierarchical rule learning in 8-month-old infants, an ability that was previously thought to emerge later in life in concert with PFC maturation. SIGNIFICANCE STATEMENT Hierarchical rule learning is a powerful learning mechanism that allows rules to be selected in a context-appropriate fashion and transferred or reused in novel contexts. Data from computational models and adults suggests that this learning mechanism is supported by dopamine-innervated interactions between prefrontal cortex (PFC) and striatum. Here, we provide evidence that PFC also supports hierarchical rule learning during infancy, challenging the current dogma that PFC is an underdeveloped brain system until adolescence. These results add new insights into the neurobiological mechanisms available to support learning and generalization in very early postnatal life, providing evidence that PFC and the frontostriatal circuitry are involved in organizing learning and behavior earlier in life than previously known. PMID:27707968

  10. A new simple /spl infin/OH neuron model as a biologically plausible principal component analyzer.

    PubMed

    Jankovic, M V

    2003-01-01

    A new approach to unsupervised learning in a single-layer neural network is discussed. An algorithm for unsupervised learning based upon the Hebbian learning rule is presented. A simple neuron model is analyzed. A dynamic neural model, which contains both feed-forward and feedback connections between the input and the output, has been adopted. The, proposed learning algorithm could be more correctly named self-supervised rather than unsupervised. The solution proposed here is a modified Hebbian rule, in which the modification of the synaptic strength is proportional not to pre- and postsynaptic activity, but instead to the presynaptic and averaged value of postsynaptic activity. It is shown that the model neuron tends to extract the principal component from a stationary input vector sequence. Usually accepted additional decaying terms for the stabilization of the original Hebbian rule are avoided. Implementation of the basic Hebbian scheme would not lead to unrealistic growth of the synaptic strengths, thanks to the adopted network structure.

  11. Finding Influential Users in Social Media Using Association Rule Learning

    NASA Astrophysics Data System (ADS)

    Erlandsson, Fredrik; Bródka, Piotr; Borg, Anton; Johnson, Henric

    2016-04-01

    Influential users play an important role in online social networks since users tend to have an impact on one other. Therefore, the proposed work analyzes users and their behavior in order to identify influential users and predict user participation. Normally, the success of a social media site is dependent on the activity level of the participating users. For both online social networking sites and individual users, it is of interest to find out if a topic will be interesting or not. In this article, we propose association learning to detect relationships between users. In order to verify the findings, several experiments were executed based on social network analysis, in which the most influential users identified from association rule learning were compared to the results from Degree Centrality and Page Rank Centrality. The results clearly indicate that it is possible to identify the most influential users using association rule learning. In addition, the results also indicate a lower execution time compared to state-of-the-art methods.

  12. Rule induction performance in amnestic mild cognitive impairment and Alzheimer's dementia: examining the role of simple and biconditional rule learning processes.

    PubMed

    Oosterman, Joukje M; Heringa, Sophie M; Kessels, Roy P C; Biessels, Geert Jan; Koek, Huiberdina L; Maes, Joseph H R; van den Berg, Esther

    2017-04-01

    Rule induction tests such as the Wisconsin Card Sorting Test require executive control processes, but also the learning and memorization of simple stimulus-response rules. In this study, we examined the contribution of diminished learning and memorization of simple rules to complex rule induction test performance in patients with amnestic mild cognitive impairment (aMCI) or Alzheimer's dementia (AD). Twenty-six aMCI patients, 39 AD patients, and 32 control participants were included. A task was used in which the memory load and the complexity of the rules were independently manipulated. This task consisted of three conditions: a simple two-rule learning condition (Condition 1), a simple four-rule learning condition (inducing an increase in memory load, Condition 2), and a complex biconditional four-rule learning condition-inducing an increase in complexity and, hence, executive control load (Condition 3). Performance of AD patients declined disproportionately when the number of simple rules that had to be memorized increased (from Condition 1 to 2). An additional increment in complexity (from Condition 2 to 3) did not, however, disproportionately affect performance of the patients. Performance of the aMCI patients did not differ from that of the control participants. In the patient group, correlation analysis showed that memory performance correlated with Condition 1 performance, whereas executive task performance correlated with Condition 2 performance. These results indicate that the reduced learning and memorization of underlying task rules explains a significant part of the diminished complex rule induction performance commonly reported in AD, although results from the correlation analysis suggest involvement of executive control functions as well. Taken together, these findings suggest that care is needed when interpreting rule induction task performance in terms of executive function deficits in these patients.

  13. 2012 Technical Corrections Fact Sheet

    EPA Pesticide Factsheets

    Final Rule: 2012 Technical Corrections, Clarifying and Other Amendments to theGreenhouse Gas Reporting Rule, and Confidentiality Determinations for Certain DataElements of the Fluorinated Gas Source Category

  14. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    NASA Technical Reports Server (NTRS)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  15. Problem solving of student with visual impairment related to mathematical literacy problem

    NASA Astrophysics Data System (ADS)

    Pratama, A. R.; Saputro, D. R. S.; Riyadi

    2018-04-01

    The student with visual impairment, total blind category depends on the sense of touch and hearing in obtaining information. In fact, the two senses can receive information less than 20%. Thus, students with visual impairment of the total blind categories in the learning process must have difficulty, including learning mathematics. This study aims to describe the problem-solving process of the student with visual impairment, total blind category on mathematical literacy issues based on Polya phase. This research using test method similar problems mathematical literacy in PISA and in-depth interviews. The subject of this study was a student with visual impairment, total blind category. Based on the result of the research, problem-solving related to mathematical literacy based on Polya phase is quite good. In the phase of understanding the problem, the student read about twice by brushing the text and assisted with information through hearing three times. The student with visual impairment in problem-solving based on the Polya phase, devising a plan by summoning knowledge and experience gained previously. At the phase of carrying out the plan, students with visual impairment implement the plan in accordance with pre-made. In the looking back phase, students with visual impairment need to check the answers three times but have not been able to find a way.

  16. Incidental learning of sound categories is impaired in developmental dyslexia.

    PubMed

    Gabay, Yafit; Holt, Lori L

    2015-12-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Incidental Learning of Sound Categories is Impaired in Developmental Dyslexia

    PubMed Central

    Gabay, Yafit; Holt, Lori L.

    2015-01-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. PMID:26409017

  18. An assessment of the effectiveness of a random forest classifier for land-cover classification

    NASA Astrophysics Data System (ADS)

    Rodriguez-Galiano, V. F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J. P.

    2012-01-01

    Land cover monitoring using remotely sensed data requires robust classification methods which allow for the accurate mapping of complex land cover and land use categories. Random forest (RF) is a powerful machine learning classifier that is relatively unknown in land remote sensing and has not been evaluated thoroughly by the remote sensing community compared to more conventional pattern recognition techniques. Key advantages of RF include: their non-parametric nature; high classification accuracy; and capability to determine variable importance. However, the split rules for classification are unknown, therefore RF can be considered to be black box type classifier. RF provides an algorithm for estimating missing values; and flexibility to perform several types of data analysis, including regression, classification, survival analysis, and unsupervised learning. In this paper, the performance of the RF classifier for land cover classification of a complex area is explored. Evaluation was based on several criteria: mapping accuracy, sensitivity to data set size and noise. Landsat-5 Thematic Mapper data captured in European spring and summer were used with auxiliary variables derived from a digital terrain model to classify 14 different land categories in the south of Spain. Results show that the RF algorithm yields accurate land cover classifications, with 92% overall accuracy and a Kappa index of 0.92. RF is robust to training data reduction and noise because significant differences in kappa values were only observed for data reduction and noise addition values greater than 50 and 20%, respectively. Additionally, variables that RF identified as most important for classifying land cover coincided with expectations. A McNemar test indicates an overall better performance of the random forest model over a single decision tree at the 0.00001 significance level.

  19. Understanding Clinical Mammographic Breast Density Assessment: a Deep Learning Perspective.

    PubMed

    Mohamed, Aly A; Luo, Yahong; Peng, Hong; Jankowitz, Rachel C; Wu, Shandong

    2017-09-20

    Mammographic breast density has been established as an independent risk marker for developing breast cancer. Breast density assessment is a routine clinical need in breast cancer screening and current standard is using the Breast Imaging and Reporting Data System (BI-RADS) criteria including four qualitative categories (i.e., fatty, scattered density, heterogeneously dense, or extremely dense). In each mammogram examination, a breast is typically imaged with two different views, i.e., the mediolateral oblique (MLO) view and cranial caudal (CC) view. The BI-RADS-based breast density assessment is a qualitative process made by visual observation of both the MLO and CC views by radiologists, where there is a notable inter- and intra-reader variability. In order to maintain consistency and accuracy in BI-RADS-based breast density assessment, gaining understanding on radiologists' reading behaviors will be educational. In this study, we proposed to leverage the newly emerged deep learning approach to investigate how the MLO and CC view images of a mammogram examination may have been clinically used by radiologists in coming up with a BI-RADS density category. We implemented a convolutional neural network (CNN)-based deep learning model, aimed at distinguishing the breast density categories using a large (15,415 images) set of real-world clinical mammogram images. Our results showed that the classification of density categories (in terms of area under the receiver operating characteristic curve) using MLO view images is significantly higher than that using the CC view. This indicates that most likely it is the MLO view that the radiologists have predominately used to determine the breast density BI-RADS categories. Our study holds a potential to further interpret radiologists' reading characteristics, enhance personalized clinical training to radiologists, and ultimately reduce reader variations in breast density assessment.

  20. Discovery learning with SAVI approach in geometry learning

    NASA Astrophysics Data System (ADS)

    Sahara, R.; Mardiyana; Saputro, D. R. S.

    2018-05-01

    Geometry is one branch of mathematics that an important role in learning mathematics in the schools. This research aims to find out about Discovery Learning with SAVI approach to achievement of learning geometry. This research was conducted at Junior High School in Surakarta city. Research data were obtained through test and questionnaire. Furthermore, the data was analyzed by using two-way Anova. The results showed that Discovery Learning with SAVI approach gives a positive influence on mathematics learning achievement. Discovery Learning with SAVI approach provides better mathematics learning outcomes than direct learning. In addition, students with high self-efficacy categories have better mathematics learning achievement than those with moderate and low self-efficacy categories, while student with moderate self-efficacy categories are better mathematics learning achievers than students with low self-efficacy categories. There is an interaction between Discovery Learning with SAVI approach and self-efficacy toward student's mathematics learning achievement. Therefore, Discovery Learning with SAVI approach can improve mathematics learning achievement.

  1. The Space of Pedagogic Imaginary: The Interstice of Teacher's Intent and Students' Learning

    ERIC Educational Resources Information Center

    Doerr, Neriko Musha

    2016-01-01

    How do we make of students learning something their teacher did not intend to teach? Researchers suggest it unnecessary extras, learning of implicit rules of the game, or keys to understand power structure. Based on an ethnographic fieldwork of a college alternative break trip to learn about poverty through simulation, this article suggests such…

  2. Susan Loucks-Horsley learning model in light pollution theme: based on a new taxonomy for science education

    NASA Astrophysics Data System (ADS)

    Liliawati, W.; Utama, J. A.; Fauziah, H.

    2016-08-01

    The curriculum in Indonesia recommended that science teachers in the elementary and intermediate schools should have interdisciplinary ability in science. However, integrated learning still has not been implemented optimally. This research is designing and applying integrated learning with Susan Loucks-Horsley model in light pollution theme. It can be showed how the student's achievements based on new taxonomy of science education with five domains: knowing & understanding, science process skill, creativity, attitudinal and connecting & applying. This research use mixed methods with concurrent embedded design. The subject is grade 8 of junior high school students in Bandung as many as 27 students. The Instrument have been employed has 28 questions test mastery of concepts, observations sheet and moral dilemma test. The result shows that integrated learning with model Susan Loucks-Horsley is able to increase student's achievement and positive characters on light pollution theme. As the results are the average normalized gain of knowing and understanding domain reach in lower category, the average percentage of science process skill domain reach in good category, the average percentage of creativity and connecting domain reach respectively in good category and attitudinal domain the average percentage is over 75% in moral knowing and moral feeling.

  3. Cue Cards: A Self-Regulatory Strategy for Students with Learning Disabilities

    ERIC Educational Resources Information Center

    Conderman, Greg; Hedin, Laura

    2011-01-01

    General and special educators have used many instructional strategies to help students with learning disabilities (LD) succeed in school. One of those strategies is cue cards. As a vehicle for supporting evidence-based practices, cue cards help students (a) learn academic and behavioral steps, principles, procedures, processes, and rules; (b)…

  4. A forecast-based STDP rule suitable for neuromorphic implementation.

    PubMed

    Davies, S; Galluppi, F; Rast, A D; Furber, S B

    2012-08-01

    Artificial neural networks increasingly involve spiking dynamics to permit greater computational efficiency. This becomes especially attractive for on-chip implementation using dedicated neuromorphic hardware. However, both spiking neural networks and neuromorphic hardware have historically found difficulties in implementing efficient, effective learning rules. The best-known spiking neural network learning paradigm is Spike Timing Dependent Plasticity (STDP) which adjusts the strength of a connection in response to the time difference between the pre- and post-synaptic spikes. Approaches that relate learning features to the membrane potential of the post-synaptic neuron have emerged as possible alternatives to the more common STDP rule, with various implementations and approximations. Here we use a new type of neuromorphic hardware, SpiNNaker, which represents the flexible "neuromimetic" architecture, to demonstrate a new approach to this problem. Based on the standard STDP algorithm with modifications and approximations, a new rule, called STDP TTS (Time-To-Spike) relates the membrane potential with the Long Term Potentiation (LTP) part of the basic STDP rule. Meanwhile, we use the standard STDP rule for the Long Term Depression (LTD) part of the algorithm. We show that on the basis of the membrane potential it is possible to make a statistical prediction of the time needed by the neuron to reach the threshold, and therefore the LTP part of the STDP algorithm can be triggered when the neuron receives a spike. In our system these approximations allow efficient memory access, reducing the overall computational time and the memory bandwidth required. The improvements here presented are significant for real-time applications such as the ones for which the SpiNNaker system has been designed. We present simulation results that show the efficacy of this algorithm using one or more input patterns repeated over the whole time of the simulation. On-chip results show that the STDP TTS algorithm allows the neural network to adapt and detect the incoming pattern with improvements both in the reliability of, and the time required for, consistent output. Through the approximations we suggest in this paper, we introduce a learning rule that is easy to implement both in event-driven simulators and in dedicated hardware, reducing computational complexity relative to the standard STDP rule. Such a rule offers a promising solution, complementary to standard STDP evaluation algorithms, for real-time learning using spiking neural networks in time-critical applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Complex-learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance.

    PubMed

    Reuveni, Iris; Lin, Longnian; Barkai, Edi

    2018-06-15

    Following training in a difficult olfactory-discrimination (OD) task rats acquire the capability to perform the task easily, with little effort. This new acquired skill, of 'learning how to learn' is termed 'rule learning'. At the single-cell level, rule learning is manifested in long-term enhancement of intrinsic neuronal excitability of piriform cortex (PC) pyramidal neurons, and in excitatory synaptic connections between these neurons to maintain cortical stability, such long-lasting increase in excitability must be accompanied by paralleled increase in inhibitory processes that would prevent hyper-excitable activation. In this review we describe the cellular and molecular mechanisms underlying complex-learning-induced long-lasting modifications in GABA A -receptors and GABA B -receptor-mediated synaptic inhibition. Subsequently we discuss how such modifications support the induction and preservation of long-term memories in the in the mammalian brain. Based on experimental results, computational analysis and modeling, we propose that rule learning is maintained by doubling the strength of synaptic inputs, excitatory as well as inhibitory, in a sub-group of neurons. This enhanced synaptic transmission, which occurs in all (or almost all) synaptic inputs onto these neurons, activates specific stored memories. At the molecular level, such rule-learning-relevant synaptic strengthening is mediated by doubling the conductance of synaptic channels, but not their numbers. This post synaptic process is controlled by a whole-cell mechanism via particular second messenger systems. This whole-cell mechanism enables memory amplification when required and memory extinction when not relevant. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Social and nonsocial category discriminations in a chimpanzee (Pan troglodytes) and American black bears (Ursus americanus).

    PubMed

    Vonk, Jennifer; Johnson-Ulrich, Zoe

    2014-09-01

    One captive adult chimpanzee and 3 adult American black bears were presented with a series of natural category discrimination tasks on a touch-screen computer. This is the first explicit comparison of bear and primate abilities using identical tasks, and the first test of a social concept in a carnivore. The discriminations involved a social relationship category (mother/offspring) and a nonsocial category involving food items. The social category discrimination could be made using knowledge of the overarching mother/offspring concept, whereas the nonsocial category discriminations could be made only by using perceptual rules, such as "choose images that show larger and smaller items of the same type." The bears failed to show above-chance transfer on either the social or nonsocial discriminations, indicating that they did not use either the perceptual rule or knowledge of the overarching concept of mother/offspring to guide their choices in these tasks. However, at least 1 bear remembered previously reinforced stimuli when these stimuli were recombined, later. The chimpanzee showed transfer on a control task and did not consistently apply a perceptual rule to solve the nonsocial task, so it is possible that he eventually acquired the social concept. Further comparisons between species on identical tasks assessing social knowledge will help illuminate the selective pressures responsible for a range of social cognitive skills.

  7. 77 FR 40478 - Removal of Category IIIa, IIIb, and IIIc Definitions; Confirmation of Effective Date and Response...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ...-0019; Amdt. No. 1-67] RIN 2120- AK03 Removal of Category IIIa, IIIb, and IIIc Definitions; Confirmation... remove the definitions of Category IIIa, IIIb, and IIIc operations because the definitions are outdated..., entitled ``Removal of Category IIIa, IIIb, and IIIc Definitions'' (77 FR 9163). The direct final rule...

  8. Fine-grained leukocyte classification with deep residual learning for microscopic images.

    PubMed

    Qin, Feiwei; Gao, Nannan; Peng, Yong; Wu, Zizhao; Shen, Shuying; Grudtsin, Artur

    2018-08-01

    Leukocyte classification and cytometry have wide applications in medical domain, previous researches usually exploit machine learning techniques to classify leukocytes automatically. However, constrained by the past development of machine learning techniques, for example, extracting distinctive features from raw microscopic images are difficult, the widely used SVM classifier only has relative few parameters to tune, these methods cannot efficiently handle fine-grained classification cases when the white blood cells have up to 40 categories. Based on deep learning theory, a systematic study is conducted on finer leukocyte classification in this paper. A deep residual neural network based leukocyte classifier is constructed at first, which can imitate the domain expert's cell recognition process, and extract salient features robustly and automatically. Then the deep neural network classifier's topology is adjusted according to the prior knowledge of white blood cell test. After that the microscopic image dataset with almost one hundred thousand labeled leukocytes belonging to 40 categories is built, and combined training strategies are adopted to make the designed classifier has good generalization ability. The proposed deep residual neural network based classifier was tested on microscopic image dataset with 40 leukocyte categories. It achieves top-1 accuracy of 77.80%, top-5 accuracy of 98.75% during the training procedure. The average accuracy on the test set is nearly 76.84%. This paper presents a fine-grained leukocyte classification method for microscopic images, based on deep residual learning theory and medical domain knowledge. Experimental results validate the feasibility and effectiveness of our approach. Extended experiments support that the fine-grained leukocyte classifier could be used in real medical applications, assist doctors in diagnosing diseases, reduce human power significantly. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Gender Divide and Acceptance of Collaborative Web 2.0 Applications for Learning in Higher Education

    ERIC Educational Resources Information Center

    Huang, Wen-Hao David; Hood, Denice Ward; Yoo, Sun Joo

    2013-01-01

    Situated in the gender digital divide framework, this survey study investigated the role of computer anxiety in influencing female college students' perceptions toward Web 2.0 applications for learning. Based on 432 college students' "Web 2.0 for learning" perception ratings collected by relevant categories of "Unified Theory of Acceptance and Use…

  10. Personality Traits as Predictors of the Social English Language Learning Strategies

    ERIC Educational Resources Information Center

    Fazeli, Seyed Hossein

    2012-01-01

    The present study aims to find out the role of personality traits in the prediction use of the Social English Language Learning Strategies (SELLSs) for learners of English as a foreign language. Four instruments were used, which were Adapted Inventory for Social English Language Learning Strategies based on Social category of Strategy Inventory…

  11. Teachers' Knowing How to Use Technology: Exploring a Conceptual Framework for Purposeful Learning Activity

    ERIC Educational Resources Information Center

    Fisher, Tony; Denning, Tim; Higgins, Chris; Loveless, Avril

    2012-01-01

    This article describes a project to apply and validate a conceptual framework of clusters of purposeful learning activity involving ICT tools. The framework, which is based in a socio-cultural perspective, is described as "DECK", and comprises the following major categories of the use of digital technologies to support learning:…

  12. An Interval Type-2 Neural Fuzzy System for Online System Identification and Feature Elimination.

    PubMed

    Lin, Chin-Teng; Pal, Nikhil R; Wu, Shang-Lin; Liu, Yu-Ting; Lin, Yang-Yin

    2015-07-01

    We propose an integrated mechanism for discarding derogatory features and extraction of fuzzy rules based on an interval type-2 neural fuzzy system (NFS)-in fact, it is a more general scheme that can discard bad features, irrelevant antecedent clauses, and even irrelevant rules. High-dimensional input variable and a large number of rules not only enhance the computational complexity of NFSs but also reduce their interpretability. Therefore, a mechanism for simultaneous extraction of fuzzy rules and reducing the impact of (or eliminating) the inferior features is necessary. The proposed approach, namely an interval type-2 Neural Fuzzy System for online System Identification and Feature Elimination (IT2NFS-SIFE), uses type-2 fuzzy sets to model uncertainties associated with information and data in designing the knowledge base. The consequent part of the IT2NFS-SIFE is of Takagi-Sugeno-Kang type with interval weights. The IT2NFS-SIFE possesses a self-evolving property that can automatically generate fuzzy rules. The poor features can be discarded through the concept of a membership modulator. The antecedent and modulator weights are learned using a gradient descent algorithm. The consequent part weights are tuned via the rule-ordered Kalman filter algorithm to enhance learning effectiveness. Simulation results show that IT2NFS-SIFE not only simplifies the system architecture by eliminating derogatory/irrelevant antecedent clauses, rules, and features but also maintains excellent performance.

  13. Pigeons acquire multiple categories in parallel via associative learning: A parallel to human word learning?

    PubMed Central

    Wasserman, Edward A.; Brooks, Daniel I.; McMurray, Bob

    2014-01-01

    Might there be parallels between category learning in animals and word learning in children? To examine this possibility, we devised a new associative learning technique for teaching pigeons to sort 128 photographs of objects into 16 human language categories. We found that pigeons learned all 16 categories in parallel, they perceived the perceptual coherence of the different object categories, and they generalized their categorization behavior to novel photographs from the training categories. More detailed analyses of the factors that predict trial-by-trial learning implicated a number of factors that may shape learning. First, we found considerable trial-by-trial dependency of pigeons’ categorization responses, consistent with several recent studies that invoke this dependency to claim that humans acquire words via symbolic or inferential mechanisms; this finding suggests that such dependencies may also arise in associative systems. Second, our trial-by-trial analyses divulged seemingly irrelevant aspects of the categorization task, like the spatial location of the report responses, which influenced learning. Third, those trial-by-trial analyses also supported the possibility that learning may be determined both by strengthening correct stimulus-response associations and by weakening incorrect stimulus-response associations. The parallel between all these findings and important aspects of human word learning suggests that associative learning mechanisms may play a much stronger part in complex human behavior than is commonly believed. PMID:25497520

  14. Habituation: a non-associative learning rule design for spiking neurons and an autonomous mobile robots implementation.

    PubMed

    Cyr, André; Boukadoum, Mounir

    2013-03-01

    This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information.

  15. ChemStable: a web server for rule-embedded naïve Bayesian learning approach to predict compound stability.

    PubMed

    Liu, Zhihong; Zheng, Minghao; Yan, Xin; Gu, Qiong; Gasteiger, Johann; Tijhuis, Johan; Maas, Peter; Li, Jiabo; Xu, Jun

    2014-09-01

    Predicting compound chemical stability is important because unstable compounds can lead to either false positive or to false negative conclusions in bioassays. Experimental data (COMDECOM) measured from DMSO/H2O solutions stored at 50 °C for 105 days were used to predicted stability by applying rule-embedded naïve Bayesian learning, based upon atom center fragment (ACF) features. To build the naïve Bayesian classifier, we derived ACF features from 9,746 compounds in the COMDECOM dataset. By recursively applying naïve Bayesian learning from the data set, each ACF is assigned with an expected stable probability (p(s)) and an unstable probability (p(uns)). 13,340 ACFs, together with their p(s) and p(uns) data, were stored in a knowledge base for use by the Bayesian classifier. For a given compound, its ACFs were derived from its structure connection table with the same protocol used to drive ACFs from the training data. Then, the Bayesian classifier assigned p(s) and p(uns) values to the compound ACFs by a structural pattern recognition algorithm, which was implemented in-house. Compound instability is calculated, with Bayes' theorem, based upon the p(s) and p(uns) values of the compound ACFs. We were able to achieve performance with an AUC value of 84% and a tenfold cross validation accuracy of 76.5%. To reduce false negatives, a rule-based approach has been embedded in the classifier. The rule-based module allows the program to improve its predictivity by expanding its compound instability knowledge base, thus further reducing the possibility of false negatives. To our knowledge, this is the first in silico prediction service for the prediction of the stabilities of organic compounds.

  16. Modeling a flexible representation machinery of human concept learning.

    PubMed

    Matsuka, Toshihiko; Sakamoto, Yasuaki; Chouchourelou, Arieta

    2008-01-01

    It is widely acknowledged that categorically organized abstract knowledge plays a significant role in high-order human cognition. Yet, there are many unknown issues about the nature of how categories are internally represented in our mind. Traditionally, it has been considered that there is a single innate internal representation system for categorical knowledge, such as Exemplars, Prototypes, or Rules. However, results of recent empirical and computational studies collectively suggest that the human internal representation system is apparently capable of exhibiting behaviors consistent with various types of internal representation schemes. We, then, hypothesized that humans' representational system as a dynamic mechanism, capable of selecting a representation scheme that meets situational characteristics, including complexities of category structure. The present paper introduces a framework for a cognitive model that integrates robust and flexible internal representation machinery. Three simulation studies were conducted. The results showed that SUPERSET, our new model, successfully exhibited cognitive behaviors that are consistent with three main theories of the human internal representation system. Furthermore, a simulation study on social cognitive behaviors showed that the model was capable of acquiring knowledge with high commonality, even for a category structure with numerous valid conceptualizations.

  17. Categorization: The View from Animal Cognition

    PubMed Central

    Smith, J. David; Zakrzewski, Alexandria C.; Johnson, Jennifer M.; Valleau, Jeanette C.; Church, Barbara A.

    2016-01-01

    Exemplar, prototype, and rule theory have organized much of the enormous literature on categorization. From this theoretical foundation have arisen the two primary debates in the literature—the prototype-exemplar debate and the single system-multiple systems debate. We review these theories and debates. Then, we examine the contribution that animal-cognition studies have made to them. Animals have been crucial behavioral ambassadors to the literature on categorization. They reveal the roots of human categorization, the basic assumptions of vertebrates entering category tasks, the surprising weakness of exemplar memory as a category-learning strategy. They show that a unitary exemplar theory of categorization is insufficient to explain human and animal categorization. They show that a multiple-systems theoretical account—encompassing exemplars, prototypes, and rules—will be required for a complete explanation. They show the value of a fitness perspective in understanding categorization, and the value of giving categorization an evolutionary depth and phylogenetic breadth. They raise important questions about the internal similarity structure of natural kinds and categories. They demonstrate strong continuities with humans in categorization, but discontinuities, too. Categorization’s great debates are resolving themselves, and to these resolutions animals have made crucial contributions. PMID:27314392

  18. Linguistic labels, dynamic visual features, and attention in infant category learning.

    PubMed

    Deng, Wei Sophia; Sloutsky, Vladimir M

    2015-06-01

    How do words affect categorization? According to some accounts, even early in development words are category markers and are different from other features. According to other accounts, early in development words are part of the input and are akin to other features. The current study addressed this issue by examining the role of words and dynamic visual features in category learning in 8- to 12-month-old infants. Infants were familiarized with exemplars from one category in a label-defined or motion-defined condition and then tested with prototypes from the studied category and from a novel contrast category. Eye-tracking results indicated that infants exhibited better category learning in the motion-defined condition than in the label-defined condition, and their attention was more distributed among different features when there was a dynamic visual feature compared with the label-defined condition. These results provide little evidence for the idea that linguistic labels are category markers that facilitate category learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Linguistic Labels, Dynamic Visual Features, and Attention in Infant Category Learning

    PubMed Central

    Deng, Wei (Sophia); Sloutsky, Vladimir M.

    2015-01-01

    How do words affect categorization? According to some accounts, even early in development, words are category markers and are different from other features. According to other accounts, early in development, words are part of the input and are akin to other features. The current study addressed this issue by examining the role of words and dynamic visual features in category learning in 8- to 12- month infants. Infants were familiarized with exemplars from one category in a label-defined or motion-defined condition and then tested with prototypes from the studied category and from a novel contrast category. Eye tracking results indicated that infants exhibited better category learning in the motion-defined than in the label-defined condition and their attention was more distributed among different features when there was a dynamic visual feature compared to the label-defined condition. These results provide little evidence for the idea that linguistic labels are category markers that facilitate category learning. PMID:25819100

  20. Learning general phonological rules from distributional information: a computational model.

    PubMed

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

Top