Science.gov

Sample records for rule-based decision support

  1. Fuzzy rule-based models for decision support in ecosystem management.

    PubMed

    Adriaenssens, Veronique; De Baets, Bernard; Goethals, Peter L M; De Pauw, Niels

    2004-02-05

    To facilitate decision support in the ecosystem management, ecological expertise and site-specific data need to be integrated. Fuzzy logic can deal with highly variable, linguistic, vague and uncertain data or knowledge and, therefore, has the ability to allow for a logical, reliable and transparent information stream from data collection down to data usage in decision-making. Several environmental applications already implicate the use of fuzzy logic. Most of these applications have been set up by trial and error and are mainly limited to the domain of environmental assessment. In this article, applications of fuzzy logic for decision support in ecosystem management are reviewed and assessed, with an emphasis on rule-based models. In particular, the identification, optimisation, validation, the interpretability and uncertainty aspects of fuzzy rule-based models for decision support in ecosystem management are discussed.

  2. Increasing Complexity in Rule-Based Clinical Decision Support: The Symptom Assessment and Management Intervention

    PubMed Central

    Johns, Ellis B; Halpenny, Barbara; Saunders, Toni-Ann; Brzozowski, Jane; Del Fiol, Guilherme; Berry, Donna L; Braun, Ilana M; Finn, Kathleen; Wolfe, Joanne; Abrahm, Janet L; Cooley, Mary E

    2016-01-01

    Background Management of uncontrolled symptoms is an important component of quality cancer care. Clinical guidelines are available for optimal symptom management, but are not often integrated into the front lines of care. The use of clinical decision support (CDS) at the point-of-care is an innovative way to incorporate guideline-based symptom management into routine cancer care. Objective The objective of this study was to develop and evaluate a rule-based CDS system to enable management of multiple symptoms in lung cancer patients at the point-of-care. Methods This study was conducted in three phases involving a formative evaluation, a system evaluation, and a contextual evaluation of clinical use. In Phase 1, we conducted iterative usability testing of user interface prototypes with patients and health care providers (HCPs) in two thoracic oncology clinics. In Phase 2, we programmed complex algorithms derived from clinical practice guidelines into a rules engine that used Web services to communicate with the end-user application. Unit testing of algorithms was conducted using a stack-traversal tree-spanning methodology to identify all possible permutations of pathways through each algorithm, to validate accuracy. In Phase 3, we evaluated clinical use of the system among patients and HCPs in the two clinics via observations, structured interviews, and questionnaires. Results In Phase 1, 13 patients and 5 HCPs engaged in two rounds of formative testing, and suggested improvements leading to revisions until overall usability scores met a priori benchmarks. In Phase 2, symptom management algorithms contained between 29 and 1425 decision nodes, resulting in 19 to 3194 unique pathways per algorithm. Unit testing required 240 person-hours, and integration testing required 40 person-hours. In Phase 3, both patients and HCPs found the system usable and acceptable, and offered suggestions for improvements. Conclusions A rule-based CDS system for complex symptom management

  3. A rule-based clinical decision model to support interpretation of multiple data in health examinations.

    PubMed

    Kuo, Kuan-Liang; Fuh, Chiou-Shann

    2011-12-01

    Health examinations can obtain relatively complete health information and thus are important for the personal and public health management. For clinicians, one of the most important works in the health examinations is to interpret the health examination results. Continuously interpreting numerous health examination results of healthcare receivers is tedious and error-prone. This paper proposes a clinical decision support system to assist solving above problems. In order to customize the clinical decision support system intuitively and flexibly, this paper also proposes the rule syntax to implement computer-interpretable logic for health examinations. It is our purpose in this paper to describe the methodology of the proposed clinical decision support system. The evaluation was performed by the implementation and execution of decision rules on health examination results and a survey on clinical decision support system users. It reveals the efficiency and user satisfaction of proposed clinical decision support system. Positive impact of clinical data interpretation is also noted.

  4. A Description and Functional Taxonomy of Rule-based Decision Support Content at a Large Integrated Delivery Network

    PubMed Central

    Wright, Adam; Goldberg, Howard; Hongsermeier, Tonya; Middleton, Blackford

    2007-01-01

    Objective This study sought to develop a functional taxonomy of rule-based clinical decision support. Design The rule-based clinical decision support content of a large integrated delivery network with a long history of computer-based point-of-care decision support was reviewed and analyzed along four functional dimensions: trigger, input data elements, interventions, and offered choices. Results A total of 181 rule types were reviewed, comprising 7,120 different instances of rule usage. A total of 42 taxa were identified across the four categories. Many rules fell into multiple taxa in a given category. Entered order and stored laboratory result were the most common triggers; laboratory result, drug list, and hospital unit were the most frequent data elements used. Notify and log were the most common interventions, and write order, defer warning, and override rule were the most common offered choices. Conclusion A relatively small number of taxa successfully described a large body of clinical knowledge. These taxa can be directly mapped to functions of clinical systems and decision support systems, providing feature guidance for developers, implementers, and certifiers of clinical information systems. PMID:17460131

  5. Modelling a decision-support system for oncology using rule-based and case-based reasoning methodologies.

    PubMed

    Rossille, Delphine; Laurent, Jean-François; Burgun, Anita

    2005-03-01

    In most hospital medical units, multidisciplinary committees meet weekly to discuss their patients' cases. The medical experts base their decisions on three sources of information. First, they check if their patient complies with existing guidelines. Failing these, the medical experts will base their therapeutic decisions on the cases of similar patients that they have treated in the past. We propose a multi-modal reasoning decision-support system based on both guideline and case series, which will automatically compare the patient's case to the corresponding guideline, then to other cases, and retrieve similar cases. The general structure of the system is presented here, the domain of application being oncology. As the patients' records are not currently stored in a database in a format which is directly accessible, an object-oriented model is proposed, which includes prognosis factors currently tested in clinical trials, well-established ones, and a description of the illness episodes. The system is designed to be a data warehouse. Such a system does not exist in the literature. Future work will be needed to define the similarity measures, and to connect the system to the current database.

  6. Evaluation of a rule base for decision making in general practice.

    PubMed Central

    Essex, B; Healy, M

    1994-01-01

    BACKGROUND. Decision making in general practice relies heavily on judgmental expertise. It should be possible to codify this expertise into rules and principles. AIM. A study was undertaken to evaluate the effectiveness, of rules from a rule base designed to improve students' and trainees' management decisions relating to patients seen in general practice. METHOD. The rule base was developed after studying decisions about and management of thousands of patients seen in one general practice over an eight year period. Vignettes were presented to 93 fourth year medical students and 179 general practitioner trainees. They recorded their perception and management of each case before and after being presented with a selection of relevant rules. Participants also commented on their level of agreement with each of the rules provided with the vignettes. A panel of five independent assessors then rated as good, acceptable or poor, the participants' perception and management of each case before and after seeing the rules. RESULTS. Exposure to a few selected rules of thumb improved the problem perception and management decisions of both undergraduates and trainees. The degree of improvement was not related to previous experience or to the stated level of agreement with the proposed rules. The assessors identified difficulties students and trainees experienced in changing their perceptions and management decisions when the rules suggested options they had not considered. CONCLUSION. The rules developed to improve decision making skills in general practice are effective when used with vignettes. The next phase is to transform the rule base into an expert system to train students and doctors to acquire decision making skills. It could also be used to provide decision support when confronted with difficult management decisions in general practice. PMID:8204334

  7. On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Jamshidi, Mo

    1997-01-01

    Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.

  8. Clinical decision support foundations.

    PubMed

    Pradhan, Malcolm; Liaw, Siaw Teng

    2010-01-01

    This chapter gives an educational overview of: * The elements of a clinical decision; * The elements of decision making: prior probability, evidence (likelihood), posterior probability, actions, utility (value); * A framework for decision making, and support, encompassing validity, utility, importance and certainty; and * The required elements of a clinical decision support system. * The role of knowledge management in the construction and maintenance of clinical decision support.

  9. A new intuitionistic fuzzy rule-based decision-making system for an operating system process scheduler.

    PubMed

    Butt, Muhammad Arif; Akram, Muhammad

    2016-01-01

    We present a new intuitionistic fuzzy rule-based decision-making system based on intuitionistic fuzzy sets for a process scheduler of a batch operating system. Our proposed intuitionistic fuzzy scheduling algorithm, inputs the nice value and burst time of all available processes in the ready queue, intuitionistically fuzzify the input values, triggers appropriate rules of our intuitionistic fuzzy inference engine and finally calculates the dynamic priority (dp) of all the processes in the ready queue. Once the dp of every process is calculated the ready queue is sorted in decreasing order of dp of every process. The process with maximum dp value is sent to the central processing unit for execution. Finally, we show complete working of our algorithm on two different data sets and give comparisons with some standard non-preemptive process schedulers.

  10. A Telesurveillance System With Automatic Electrocardiogram Interpretation Based on Support Vector Machine and Rule-Based Processing

    PubMed Central

    Lin, Ching-Miao; Lai, Feipei; Ho, Yi-Lwun; Hung, Chi-Sheng

    2015-01-01

    Background Telehealth care is a global trend affecting clinical practice around the world. To mitigate the workload of health professionals and provide ubiquitous health care, a comprehensive surveillance system with value-added services based on information technologies must be established. Objective We conducted this study to describe our proposed telesurveillance system designed for monitoring and classifying electrocardiogram (ECG) signals and to evaluate the performance of ECG classification. Methods We established a telesurveillance system with an automatic ECG interpretation mechanism. The system included: (1) automatic ECG signal transmission via telecommunication, (2) ECG signal processing, including noise elimination, peak estimation, and feature extraction, (3) automatic ECG interpretation based on the support vector machine (SVM) classifier and rule-based processing, and (4) display of ECG signals and their analyzed results. We analyzed 213,420 ECG signals that were diagnosed by cardiologists as the gold standard to verify the classification performance. Results In the clinical ECG database from the Telehealth Center of the National Taiwan University Hospital (NTUH), the experimental results showed that the ECG classifier yielded a specificity value of 96.66% for normal rhythm detection, a sensitivity value of 98.50% for disease recognition, and an accuracy value of 81.17% for noise detection. For the detection performance of specific diseases, the recognition model mainly generated sensitivity values of 92.70% for atrial fibrillation, 89.10% for pacemaker rhythm, 88.60% for atrial premature contraction, 72.98% for T-wave inversion, 62.21% for atrial flutter, and 62.57% for first-degree atrioventricular block. Conclusions Through connected telehealth care devices, the telesurveillance system, and the automatic ECG interpretation system, this mechanism was intentionally designed for continuous decision-making support and is reliable enough to reduce the

  11. Decision Support Systems: Theory.

    DTIC Science & Technology

    1976-01-01

    comprehensive bibli- ography search was initiated . This activity continued throughout the contract period. It included a library search, and contact with...bibliography appears at the end of this report. While the bibliographical search con- tinued, a corpanion activity was initiated . This consisted of...number, support decisions which occur infrequently or are not usually anticipated. 2.3 Some Definitions of a DSS Much of the initial focus and direction

  12. A rule-based approach for the correlation of alarms to support Disaster and Emergency Management

    NASA Astrophysics Data System (ADS)

    Gloria, M.; Minei, G.; Lersi, V.; Pasquariello, D.; Monti, C.; Saitto, A.

    2009-04-01

    application as CiscoWorks, HP OpenView NNM and Operation, BMC Patrol, etc. Analysis of text of an alarm can detect some keywords that allow to classify the particular event. The inference rules were developed by means an analysis about news regard real emergency found by web reaserches. We have seen that often a kind of emergency is characterized by more keyword. Keywords are not uniquely associated with a specific emergency, but they can be shared by different types of emergencies (such as. keyword "landslide" can be associated both emergency "landslide" and emergency "Flood"). However, the identification of two or more keywords associated with a particular type of emergency identified in most cases the correct type of emergency. So, for example, if text contains words as "water", "flood", "overflowing", "landslide" o other words belonging to the set of defined keywords or words that have some root of keywords, the system "decides" that this alarm belongs to specific typology, in this case "flood typology". The system has the memory of this information, so if a new alarm is reported and belongs to one of the typology already identified, it proceeds with the comparison of coordinates. The comparison between the centers of the alarms allows to see if they describe an area inscribed in an ideal circle that has centered on the first alarm and radius defined by the typology above mentioned. If this happens the system CI6 creates an emergency that has centered on the centre of that area and typology equal to that of the alarms. It follows that an emergency is represented by at least two alarms. Thus, the system suggests to manager (CI6's user) the possibility that most alarms can concern same events and makes a classification of this event. It is important to stress that CI6 is a system of decision support, hence also this service is limited to providing advice to the user to facilitate his task, leaving him the decision to accept it or not. REFERENCES SEC (Simple Event Correlator

  13. A rule-based decision-making diagnosis system to evaluate arteriovenous shunt stenosis for hemodialysis treatment of patients using fuzzy petri nets.

    PubMed

    Chen, Wei-Ling; Kan, Chung-Dann; Lin, Chia-Hung; Chen, Tainsong

    2014-03-01

    This paper proposes a rule-based decision-making diagnosis system to evaluate arteriovenous shunt (AVS) stenosis for long-term hemodialysis treatment of patients using fuzzy petri nets (FPNs). AVS stenoses are often associated with blood sounds, resulting from turbulent flow over the narrowed blood vessel. Phonoangiography provides a noninvasive technique to monitor the sounds of the AVS. Since the power spectra changes in frequency and amplitude with the degree of AVS stenosis, it is difficult to make a human-made decision to judge the degree using a combination of those variances. The Burg autoregressive (AR) method is used to estimate the frequency spectra of a phonoangiographic signal and identify the characteristic frequencies. A rule-based decision-making method, FPNs, is designed as a decision-making system to evaluate the degree of stenosis (DOS) in routine examinations. For 42 long-term follow-up patients, the examination results show the proposed diagnosis system has greater efficiency in evaluating AVS stenosis.

  14. Spatial Decision Support Workshop 2011

    DTIC Science & Technology

    2011-01-01

    report are those of the author(s) and should not contrued as an official Department of the Army position, policy or decision, unless so designated by...and temporal development of phenomena and processes ;  Complex multi-dimensional and heterogeneous data describing decision situations;  Large or...information is an integral part of DoD operations and installation management. Spatial decision support processes and systems combine GIS and other

  15. Decision Support Framework (DSF) (Formerly Decision Support Platform)

    EPA Science Inventory

    The Science Advisory Board (SAB) provided several comments on the draft Ecosystem Services Research Program's (ESRP's) Multi-Year Plan (MYP). This presentation provides a response to comments related to the decision support framework (DSF) part of Long-Term Goal 1. The comments...

  16. A shotgun wedding: business decision support meets clinical decision support.

    PubMed

    Oliveira, Jason

    2002-01-01

    By effectively closing the loop between the data, analytics, processes, and methods supporting business and clinical decision making, a healthcare organization closes the loop between its knowledge generation activities and its actions at the bedside: knowledge guiding actions, actions generating knowledge.

  17. Automating hypertext for decision support

    NASA Technical Reports Server (NTRS)

    Bieber, Michael

    1990-01-01

    A decision support system (DSS) shell is being constructed that can support applications in a variety of fields, e.g., engineering, manufacturing, finance. The shell provides a hypertext-style interface for 'navigating' among DSS application models, data, and reports. The traditional notion of hypertext had to be enhanced. Hypertext normally requires manually, pre-defined links. A DSS shell, however, requires that hypertext connections to be built 'on the fly'. The role of hypertext is discussed in augmenting DSS applications and the decision making process. Also discussed is how hypertext nodes, links, and link markers tailored to an arbitrary DSS application were automatically generated.

  18. EVALUATING ENVIRONMENTAL DECISION SUPPORT TOOLS.

    SciTech Connect

    SULLIVAN, T.

    2004-10-01

    Effective contaminated land management requires a number of decisions addressing a suite of technical, economic, and social concerns. These concerns include human health risks, ecological risks, economic costs, technical feasibility of proposed remedial actions, and the value society places on clean-up and re-use of formerly contaminated lands. Decision making, in the face of uncertainty and multiple and often conflicting objectives, is a vital and challenging role in environmental management that affects a significant economic activity. Although each environmental remediation problem is unique and requires a site-specific analysis, many of the key decisions are similar in structure. This has led many to attempt to develop standard approaches. As part of the standardization process, attempts have been made to codify specialist expertise into decision support tools. This activity is intended to facilitate reproducible and transparent decision making. The process of codifying procedures has also been found to be a useful activity for establishing and rationalizing management processes. This study will have two primary objectives. The first is to develop taxonomy for Decision Support Tools (DST) to provide a framework for understanding the different tools and what they are designed to address in the context of environmental remediation problems. The taxonomy will have a series of subject areas for the DST. From these subjects, a few key areas will be selected for further study and software in these areas will be identified. The second objective, will be to review the existing DST in the selected areas and develop a screening matrix for each software product.

  19. Simulation of operating rules and discretional decisions using a fuzzy rule-based system integrated into a water resources management model

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2013-04-01

    Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total

  20. Joint Command Decision Support System

    DTIC Science & Technology

    2011-06-01

    Greenley et al. 2006) resulted in the identification of a set of overarching principles for the implementation of Joint Command Decision Support (Hales...and adjustment of resources, and longer term feasibility planning. As highlighted in the Joint Staff Front End Analysis report ( Greenley et al. 2006...Townsend (2006). The Federal Response to Hurricane Katrina Lessons Learned, Washington, D.C. February 2006. Greenley , A., Baker, K. & Cochran, L. (2006

  1. Comparison of Support-Vector Machine and Sparse Representation Using a Modified Rule-Based Method for Automated Myocardial Ischemia Detection

    PubMed Central

    Tseng, Yi-Li; Lin, Keng-Sheng; Jaw, Fu-Shan

    2016-01-01

    An automatic method is presented for detecting myocardial ischemia, which can be considered as the early symptom of acute coronary events. Myocardial ischemia commonly manifests as ST- and T-wave changes on ECG signals. The methods in this study are proposed to detect abnormal ECG beats using knowledge-based features and classification methods. A novel classification method, sparse representation-based classification (SRC), is involved to improve the performance of the existing algorithms. A comparison was made between two classification methods, SRC and support-vector machine (SVM), using rule-based vectors as input feature space. The two methods are proposed with quantitative evaluation to validate their performances. The results of SRC method encompassed with rule-based features demonstrate higher sensitivity than that of SVM. However, the specificity and precision are a trade-off. Moreover, SRC method is less dependent on the selection of rule-based features and can achieve high performance using fewer features. The overall performances of the two methods proposed in this study are better than the previous methods. PMID:26925158

  2. Decision Support Methods and Tools

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Alexandrov, Natalia M.; Brown, Sherilyn A.; Cerro, Jeffrey A.; Gumbert, Clyde r.; Sorokach, Michael R.; Burg, Cecile M.

    2006-01-01

    This paper is one of a set of papers, developed simultaneously and presented within a single conference session, that are intended to highlight systems analysis and design capabilities within the Systems Analysis and Concepts Directorate (SACD) of the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). This paper focuses on the specific capabilities of uncertainty/risk analysis, quantification, propagation, decomposition, and management, robust/reliability design methods, and extensions of these capabilities into decision analysis methods within SACD. These disciplines are discussed together herein under the name of Decision Support Methods and Tools. Several examples are discussed which highlight the application of these methods within current or recent aerospace research at the NASA LaRC. Where applicable, commercially available, or government developed software tools are also discussed

  3. Decision support for financial forecasting

    SciTech Connect

    Jairam, B.N.; Morris, J.D.; Emrich, M.L.; Hardee, H.K.

    1988-10-01

    A primary mission of the Budget Management Division of the Air Force is fiscal analysis. This involves formulating, justifying, and tracking financial data during budget preparation and execution. An essential requirement of this process is the ready availability and easy manipulation of past and current budget data. This necessitates the decentralization of the data. A prototypical system, BAFS (Budget Analysis and Forecasting System), that provides such a capability is presented. In its current state, the system is designed to be a decision support tool. A brief report of the budget decisions and activities is presented. The system structure and its major components are discussed. An insight into the implementation strategies and the tool used is provided. The paper concludes with a discussion of future enhancements and the system's evolution into an expert system. 4 refs., 3 figs.

  4. Visual Decision Support Tool for Supporting Asset ...

    EPA Pesticide Factsheets

    Abstract:Managing urban water infrastructures faces the challenge of jointly dealing with assets of diverse types, useful life, cost, ages and condition. Service quality and sustainability require sound long-term planning, well aligned with tactical and operational planning and management. In summary, the objective of an integrated approach to infrastructure asset management is to assist utilities answer the following questions:•Who are we at present?•What service do we deliver?•What do we own?•Where do we want to be in the long-term?•How do we get there?The AWARE-P approach (www.aware-p.org) offers a coherent methodological framework and a valuable portfolio of software tools. It is designed to assist water supply and wastewater utility decision-makers in their analyses and planning processes. It is based on a Plan-Do-Check-Act process and is in accordance with the key principles of the International Standards Organization (ISO) 55000 standards on asset management. It is compatible with, and complementary to WERF’s SIMPLE framework. The software assists in strategic, tactical, and operational planning, through a non-intrusive, web-based, collaborative environment where objectives and metrics drive IAM planning. It is aimed at industry professionals and managers, as well as at the consultants and technical experts that support them. It is easy to use and maximizes the value of information from multiple existing data sources, both in da

  5. Clinical Decision Support and Palivizumab

    PubMed Central

    Hogan, A.; Michel, J.; Localio, A.R.; Karavite, D.; Song, L.; Ramos, M.J.; Fiks, A.G.; Lorch, S.; Grundmeier, R.W.

    2015-01-01

    Background and Objectives Palivizumab can reduce hospitalizations due to respiratory syncytial virus (RSV), but many eligible infants fail to receive the full 5-dose series. The efficacy of clinical decision support (CDS) in fostering palivizumab receipt has not been studied. We sought a comprehensive solution for identifying eligible patients and addressing barriers to palivizumab administration. Methods We developed workflow and CDS tools targeting patient identification and palivizumab administration. We randomized 10 practices to receive palivizumab-focused CDS and 10 to receive comprehensive CDS for premature infants in a 3-year longitudinal cluster-randomized trial with 2 baseline and 1 intervention RSV seasons. Results There were 356 children eligible to receive palivizumab, with 194 in the palivizumab-focused group and 162 in the comprehensive CDS group. The proportion of doses administered to children in the palivizumab-focused intervention group increased from 68.4% and 65.5% in the two baseline seasons to 84.7% in the intervention season. In the comprehensive intervention group, proportions of doses administered declined during the baseline seasons (from 71.9% to 62.4%) with partial recovery to 67.9% during the intervention season. The palivizumab-focused group improved by 19.2 percentage points in the intervention season compared to the prior baseline season (p < 0.001), while the comprehensive intervention group only improved 5.5 percentage points (p = 0.288). The difference in change between study groups was significant (p = 0.05). Conclusions Workflow and CDS tools integrated in an EHR may increase the administration of palivizumab. The support focused on palivizumab, rather than comprehensive intervention, was more effective at improving palivizumab administration. PMID:26767069

  6. Lung Cancer Assistant: a hybrid clinical decision support application for lung cancer care

    PubMed Central

    Sesen, M. Berkan; Peake, Michael D.; Banares-Alcantara, Rene; Tse, Donald; Kadir, Timor; Stanley, Roz; Gleeson, Fergus; Brady, Michael

    2014-01-01

    Multidisciplinary team (MDT) meetings are becoming the model of care for cancer patients worldwide. While MDTs have improved the quality of cancer care, the meetings impose substantial time pressure on the members, who generally attend several such MDTs. We describe Lung Cancer Assistant (LCA), a clinical decision support (CDS) prototype designed to assist the experts in the treatment selection decisions in the lung cancer MDTs. A novel feature of LCA is its ability to provide rule-based and probabilistic decision support within a single platform. The guideline-based CDS is based on clinical guideline rules, while the probabilistic CDS is based on a Bayesian network trained on the English Lung Cancer Audit Database (LUCADA). We assess rule-based and probabilistic recommendations based on their concordances with the treatments recorded in LUCADA. Our results reveal that the guideline rule-based recommendations perform well in simulating the recorded treatments with exact and partial concordance rates of 0.57 and 0.79, respectively. On the other hand, the exact and partial concordance rates achieved with probabilistic results are relatively poorer with 0.27 and 0.76. However, probabilistic decision support fulfils a complementary role in providing accurate survival estimations. Compared to recorded treatments, both CDS approaches promote higher resection rates and multimodality treatments. PMID:24990290

  7. Intelligent decision support in process environments

    SciTech Connect

    Hollnagel, E.; Mancini, G.; Woods, D.D.

    1986-01-01

    This book deals with the basis for design of intelligent systems to support human decision-making in supervisory control, and provides a view of how human and artificial cognitive systems can interact. It covers the design and development of intelligent decision aiding systems, as well as the testing and evaluation. Topics discussed include: decision theory; cognitive engineering; systems engineering; and artificial intelligence.

  8. Decision Support Systems for Academic Administration.

    ERIC Educational Resources Information Center

    Moore, Laurence J.; Greenwood, Allen G.

    1984-01-01

    The history and features of Decision Support Systems (DSS) and use of the approach by academic administrators are discussed. The objective of DSS is to involve the manager/decision maker in the decision-analysis process while simultaneously relieving that person of the burden of developing and performing detailed analysis. DSS represents a…

  9. Exploiting multi-modal reasoning for knowledge management and decision support: an evaluation study.

    PubMed Central

    Montani, S.; Bellazzi, R.

    2000-01-01

    We present the first evaluation results of a knowledge management and decision support system for Type I diabetes patients' care. Such system, meant to help physicians in therapy revision, relies on the integration of Rule Based Reasoning and Case Based Reasoning, and exploits both explicit and implicit knowledge. Reliability was positively judged by a group of expert diabetologists; an increase in its performances is foreseen as new knowledge will be acquired, through the system usage in clinical practice. PMID:11079951

  10. Using Visualization in Cockpit Decision Support Systems

    SciTech Connect

    Aragon, Cecilia R.

    2005-07-01

    In order to safely operate their aircraft, pilots must makerapid decisions based on integrating and processing large amounts ofheterogeneous information. Visual displays are often the most efficientmethod of presenting safety-critical data to pilots in real time.However, care must be taken to ensure the pilot is provided with theappropriate amount of information to make effective decisions and notbecome cognitively overloaded. The results of two usability studies of aprototype airflow hazard visualization cockpit decision support systemare summarized. The studies demonstrate that such a system significantlyimproves the performance of helicopter pilots landing under turbulentconditions. Based on these results, design principles and implicationsfor cockpit decision support systems using visualization arepresented.

  11. Information gap decision support for contaminant remediation

    NASA Astrophysics Data System (ADS)

    Vesselinov, V. V.; O'Malley, D.

    2013-12-01

    Uncertainty quantifications and decision analyses under severe lack of information are ubiquitous in every applied field of engineering, policy, and science. A severe lack of information precludes our ability to determine unbiased probabilistic distributions for model parameters and model predictions; therefore, model and decision uncertainties due to a severe lack of information cannot be characterized probabilistically. To circumvent this problem, information gap (info-gap) theory has been developed to explicitly recognize and quantify the implications of information gaps in decision making. Here we present a decision analysis based on info-gap theory developed for a source identification problem where the locations and mass fluxes of contaminants impacting groundwater resources are unknown. The problem is characterized with a lack of information related to (1) model parameters representing contaminant migration in the aquifer, and (2) observed contamination concentration in the existing monitoring wells. These two sources of uncertainty are coupled through an inverse model where the observed concentrations are applied to estimate model parameters. The decision goal is based on contaminant predictions at points of compliance. The decision analysis is demonstrated for synthetic and real-world test cases. The applied uncertainty-quantification, decision-support techniques and computational algorithms are implemented in code MADS (Model Analyses for Decision Support; http://mads.lanl.gov). MADS is C/C++ code that provides a framework for model-based decision support. MADS performs various types of model analyses including sensitivity analysis, parameter estimation, uncertainty quantification, model calibration, selection and averaging. To perform the analyses, MADS can be coupled with any external simulators. Our efforts target development of an interactive computer-based Decision Support System (DSS) that will help domain scientist, managers, regulators, and

  12. A decision-supported outpatient practice system.

    PubMed Central

    Barrows, R. C.; Allen, B. A.; Smith, K. C.; Arni, V. V.; Sherman, E.

    1996-01-01

    We describe a Decision-supported Outpatient Practice (DOP) system developed and now in use at the Columbia-Presbyterian Medical Center. DOP is an automated ambulatory medical record system that integrates in-patient and ambulatory care data, and incorporates active and passive decision support mechanisms with a view towards improving the quality of primary care. Active decision support occurs in the form of event-driven reminders created within a remote clinical information system with its central data repository and decision support system (DSS). Novel features of DOP include patient specific health maintenance task lists calculated by the remote DSS. uses of a semantically structured controlled medical vocabulary to support clinical results review and provider data entry, and exploitation of an underlying ambulatory data model that provides for an explicit record of evolution of insight regarding patient management. Benefits, challenges, and plans are discussed. PMID:8947774

  13. Evaluation of selected environmental decision support software

    SciTech Connect

    Sullivan, T.M.; Moskowitz, P.D.; Gitten, M.

    1997-06-01

    Decision Support Software (DSS) continues to be developed to support analysis of decisions pertaining to environmental management. Decision support systems are computer-based systems that facilitate the use of data, models, and structured decision processes in decision making. The optimal DSS should attempt to integrate, analyze, and present environmental information to remediation project managers in order to select cost-effective cleanup strategies. The optimal system should have a balance between the sophistication needed to address the wide range of complicated sites and site conditions present at DOE facilities, and ease of use (e.g., the system should not require data that is typically unknown and should have robust error checking of problem definition through input, etc.). In the first phase of this study, an extensive review of the literature, the Internet, and discussions with sponsors and developers of DSS led to identification of approximately fifty software packages that met the preceding definition.

  14. Geospatial decision support systems for societal decision making

    USGS Publications Warehouse

    Bernknopf, R.L.

    2005-01-01

    While science provides reliable information to describe and understand the earth and its natural processes, it can contribute more. There are many important societal issues in which scientific information can play a critical role. Science can add greatly to policy and management decisions to minimize loss of life and property from natural and man-made disasters, to manage water, biological, energy, and mineral resources, and in general, to enhance and protect our quality of life. However, the link between science and decision-making is often complicated and imperfect. Technical language and methods surround scientific research and the dissemination of its results. Scientific investigations often are conducted under different conditions, with different spatial boundaries, and in different timeframes than those needed to support specific policy and societal decisions. Uncertainty is not uniformly reported in scientific investigations. If society does not know that data exist, what the data mean, where to use the data, or how to include uncertainty when a decision has to be made, then science gets left out -or misused- in a decision making process. This paper is about using Geospatial Decision Support Systems (GDSS) for quantitative policy analysis. Integrated natural -social science methods and tools in a Geographic Information System that respond to decision-making needs can be used to close the gap between science and society. The GDSS has been developed so that nonscientists can pose "what if" scenarios to evaluate hypothetical outcomes of policy and management choices. In this approach decision makers can evaluate the financial and geographic distribution of potential policy options and their societal implications. Actions, based on scientific information, can be taken to mitigate hazards, protect our air and water quality, preserve the planet's biodiversity, promote balanced land use planning, and judiciously exploit natural resources. Applications using the

  15. Decision Support for Medical Treatment: A TPN Prescription System on a Central Hospital Computer

    PubMed Central

    Moliver, Nina; Coates, Allan L.

    1987-01-01

    An interactive decision-support system for the prescription of total or partial parenteral nutrition (TPN) is described. The system is applicable to all sizes and ages of patients, from premature infants to adults. Both the physician and the pharmacist are users of the system, with the physician using rule-based safety checks and branching algorithms to make decisions in the prescription process, and the pharmacist receiving the prescription totals electronically in order to complete further calculations needed. Since its introduction, the system appears to have increased the safety of the TPN prescription, saved time, and improved the quality and appropriateness of TPN prescriptions.

  16. Burn Resuscitation Decision Support System (BRDSS)

    DTIC Science & Technology

    2013-09-01

    CONTRACTING ORGANIZATION: Arcos , Inc. HoustonTX77018-5308 REPORT DATE: September 2013 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical... Arcos , Inc. 866 W. 41st St. Houston TX 77018-5308 The Burn Resuscitation Decision Support System (BRDSS) is a medical device designed to guide and...project: The Burn Resuscitation Decision Support System (BRDSS) Tablet project will be broken into four major phases. Throughout the project Arcos will

  17. Decision Support for Attack Submarine Commanders.

    DTIC Science & Technology

    1980-10-01

    AD-AO95 892 DECISION SCIENCE CONSORTIUM INC FALLS CHURCH VA F./e 12/2 DECISION SUPPORT FOR ATTACK SUBMARINE COMMANDERS. (U) OCT 80 M S COHEN, R V...BROWN N00014-80-C-0046 UNCLASSIFIED TR-8S-11 ML DECISIN IEN$CE CUIVSURTiUM, MrC. DECISION SUPPORT FOR A TTA CK SUBMARINE COMMANDERS Marvin S . Cohen and...on reverse) DDI ,o..ŕ 1473 EDITION OF I NOV 65 IS OISOLCTZ Unclassified S /N 0102-014-6601 1 SECURITY CLASIFICATION OF TNIS PAGE (10bon DW& tateo* 01

  18. Group decision support using Toulmin argument structures

    SciTech Connect

    Janssen, T. |; Sage, A.P.

    1996-12-31

    This paper addresses the need for sound science, technology, and management assessment relative to environmental policy decision making through an approach that involves a logical structure for evidence, a framed decision-making process, and an environment that encourages group participation. Toulmin-based logic possesses these characteristics and is used as the basis for development of a group decision support system. This system can support several user groups, such as pesticide policy-making experts, who can use the support system to state arguments for or against an important policy issue, and pest management experts, who can use the system to assist in identifying and evaluating alternatives for controlling pests on agricultural commodities. The resulting decision support system assists in improving the clarity of the lines of reasoning used in specific situations; the warrants, grounds, and backings that are used to support claims and specific lines of reasoning; and the contradictions, rebuttals, and arguments surrounding each step in the reasoning process associated with evaluating a claim or counterclaim. Experts and decisions makers with differing views can better understand each other`s thought processes. The net effect is enhanced communications and understanding of the whole picture and, in many cases, consensus on decisions to be taken.

  19. Using Best Practices to Extract, Organize, and Reuse Embedded Decision Support Content Knowledge Rules from Mature Clinical Systems

    PubMed Central

    DesAutels, Spencer J.; Fox, Zachary E.; Giuse, Dario A.; Williams, Annette M.; Kou, Qing-hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia

    2016-01-01

    Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems. PMID:28269846

  20. Using Best Practices to Extract, Organize, and Reuse Embedded Decision Support Content Knowledge Rules from Mature Clinical Systems.

    PubMed

    DesAutels, Spencer J; Fox, Zachary E; Giuse, Dario A; Williams, Annette M; Kou, Qing-Hua; Weitkamp, Asli; Neal R, Patel; Bettinsoli Giuse, Nunzia

    2016-01-01

    Clinical decision support (CDS) knowledge, embedded over time in mature medical systems, presents an interesting and complex opportunity for information organization, maintenance, and reuse. To have a holistic view of all decision support requires an in-depth understanding of each clinical system as well as expert knowledge of the latest evidence. This approach to clinical decision support presents an opportunity to unify and externalize the knowledge within rules-based decision support. Driven by an institutional need to prioritize decision support content for migration to new clinical systems, the Center for Knowledge Management and Health Information Technology teams applied their unique expertise to extract content from individual systems, organize it through a single extensible schema, and present it for discovery and reuse through a newly created Clinical Support Knowledge Acquisition and Archival Tool (CS-KAAT). CS-KAAT can build and maintain the underlying knowledge infrastructure needed by clinical systems.

  1. Using Visualization in Cockpit Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2005-01-01

    In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.

  2. Performance Evaluation of the Machine Learning Algorithms Used in Inference Mechanism of a Medical Decision Support System

    PubMed Central

    Bal, Mert; Amasyali, M. Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets. PMID:25295291

  3. Performance evaluation of the machine learning algorithms used in inference mechanism of a medical decision support system.

    PubMed

    Bal, Mert; Amasyali, M Fatih; Sever, Hayri; Kose, Guven; Demirhan, Ayse

    2014-01-01

    The importance of the decision support systems is increasingly supporting the decision making process in cases of uncertainty and the lack of information and they are widely used in various fields like engineering, finance, medicine, and so forth, Medical decision support systems help the healthcare personnel to select optimal method during the treatment of the patients. Decision support systems are intelligent software systems that support decision makers on their decisions. The design of decision support systems consists of four main subjects called inference mechanism, knowledge-base, explanation module, and active memory. Inference mechanism constitutes the basis of decision support systems. There are various methods that can be used in these mechanisms approaches. Some of these methods are decision trees, artificial neural networks, statistical methods, rule-based methods, and so forth. In decision support systems, those methods can be used separately or a hybrid system, and also combination of those methods. In this study, synthetic data with 10, 100, 1000, and 2000 records have been produced to reflect the probabilities on the ALARM network. The accuracy of 11 machine learning methods for the inference mechanism of medical decision support system is compared on various data sets.

  4. Bayesian Decision Support for Adaptive Lung Treatments

    NASA Astrophysics Data System (ADS)

    McShan, Daniel; Luo, Yi; Schipper, Matt; TenHaken, Randall

    2014-03-01

    Purpose: A Bayesian Decision Network will be demonstrated to provide clinical decision support for adaptive lung response-driven treatment management based on evidence that physiologic metrics may correlate better with individual patient response than traditional (population-based) dose and volume-based metrics. Further, there is evidence that information obtained during the course of radiation therapy may further improve response predictions. Methods: Clinical factors were gathered for 58 patients including planned mean lung dose, and the bio-markers IL-8 and TGF-β1 obtained prior to treatment and two weeks into treatment along with complication outcomes for these patients. A Bayesian Decision Network was constructed using Netica 5.0.2 from Norsys linking these clinical factors to obtain a prediction of radiation induced lung disese (RILD) complication. A decision node was added to the network to provide a plan adaption recommendation based on the trade-off between the RILD prediction and complexity of replanning. A utility node provides the weighting cost between the competing factors. Results: The decision node predictions were optimized against the data for the 58 cases. With this decision network solution, one can consider the decision result for a new patient with specific findings to obtain a recommendation to adaptively modify the originally planned treatment course. Conclusions: A Bayesian approach allows handling and propagating probabilistic data in a logical and principled manner. Decision networks provide the further ability to provide utility-based trade-offs, reflecting non-medical but practical cost/benefit analysis. The network demonstrated illustrates the basic concept, but many other factors may affect these decisions and work on building better models are being designed and tested. Acknowledgement: Supported by NIH-P01-CA59827

  5. LIMSI @ 2014 Clinical Decision Support Track

    DTIC Science & Technology

    2014-11-01

    Clinical Decision Support 1 Introduction The goal of the Clinical Decision Support Track is to retrieve relevant biomedical articles given a patient record...queries: • Diagnosis: "diagnosis"[MeSH Terms] OR "diagnosis, oral"[MeSH Terms] OR "diagnostic equipment "[MeSH Terms] OR "diagnostic services"[MeSH Terms...particular biomedical domain or search strategy) that were created as part of the CISMeF project[2]3. The Test query was manually created for 3These and

  6. Computerized Clinical Decision Support: Contributions from 2014

    PubMed Central

    Koutkias, V.

    2015-01-01

    Summary Objective To summarize recent research and propose a selection of best papers published in 2014 in the field of computerized clinical decision support for the Decision Support section of the IMIA yearbook. Method A literature review was performed by searching two bibliographic databases for papers related to clinical decision support systems (CDSSs) and computerized provider order entry systems in order to select a list of candidate best papers to be then peer-reviewed by external reviewers. A consensus meeting between the two section editors and the editorial team was finally organized to conclude on the selection of best papers. Results Among the 1,254 returned papers published in 2014, the full review process selected four best papers. The first one is an experimental contribution to a better understanding of unintended uses of CDSSs. The second paper describes the effective use of previously collected data to tailor and adapt a CDSS. The third paper presents an innovative application that uses pharmacogenomic information to support personalized medicine. The fourth paper reports on the long-term effect of the routine use of a CDSS for antibiotic therapy. Conclusions As health information technologies spread more and more meaningfully, CDSSs are improving to answer users’ needs more accurately. The exploitation of previously collected data and the use of genomic data for decision support has started to materialize. However, more work is still needed to address issues related to the correct usage of such technologies, and to assess their effective impact in the long term. PMID:26293858

  7. Use of conditional rule structure to automate clinical decision support: a comparison of artificial intelligence and deterministic programming techniques

    SciTech Connect

    Friedman, R.H.; Frank, A.D.

    1983-08-01

    A rule-based computer system was developed to perform clinical decision-making support within a medical information system, oncology practice, and clinical research. This rule-based system, which has been programmed using deterministic rules, possesses features of generalizability, modularity of structure, convenience in rule acquisition, explanability, and utility for patient care and teaching, features which have been identified as advantages of artificial intelligence (AI) rule-based systems. Formal rules are primarily represented as conditional statements; common conditions and actions are stored in system dictionaries so that they can be recalled at any time to form new decision rules. Important similarities and differences exist in the structure of this system and clinical computer systems utilizing artificial intelligence (AI) production rule techniques. The non-AI rule-based system posesses advantages in cost and ease of implementation. The degree to which significant medical decision problems can be solved by this technique remains uncertain as does whether the more complex AI methodologies will be required. 15 references.

  8. Adaptive Rule Based Fetal QRS Complex Detection Using Hilbert Transform

    PubMed Central

    Ulusar, Umit D.; Govindan, R.B.; Wilson, James D.; Lowery, Curtis L.; Preissl, Hubert; Eswaran, Hari

    2010-01-01

    In this paper we introduce an adaptive rule based QRS detection algorithm using the Hilbert transform (adHQRS) for fetal magnetocardiography processing. Hilbert transform is used to combine multiple channel measurements and the adaptive rule based decision process is used to eliminate spurious beats. The algorithm has been tested with a large number of datasets and promising results were obtained. PMID:19964648

  9. Adaptive rule based fetal QRS complex detection using Hilbert transform.

    PubMed

    Ulusar, Umit D; Govindan, R B; Wilson, James D; Lowery, Curtis L; Preissl, Hubert; Eswaran, Hari

    2009-01-01

    In this paper we introduce an adaptive rule based QRS detection algorithm using the Hilbert transform (adHQRS) for fetal magnetocardiography processing. Hilbert transform is used to combine multiple channel measurements and the adaptive rule based decision process is used to eliminate spurious beats. The algorithm has been tested with a large number of datasets and promising results were obtained.

  10. Decision support system for nursing management control

    SciTech Connect

    Ernst, C.J.

    1983-01-01

    A knowledge representation approach for expert systems supporting decision processes in business is proposed. A description of a knowledge representation schema using a logic programming metalanguage is described, then the role of such a schema in a management expert system is demonstrated through the problem of nursing management control in hospitals. 18 references.

  11. Computer Based Decision Support in Dentistry.

    ERIC Educational Resources Information Center

    Wagner, Ina-Veronika; Schneider, Werner

    1991-01-01

    The paper discusses computer-based decision support in the following areas: the dental patient record system; diagnosis and treatment of diseases of the oral mucosa; treatment strategy in complex clinical situations; diagnosis and treatment of functional disturbances of the masticatory system; and patient recall. (DB)

  12. Query Reformulation for Clinical Decision Support Search

    DTIC Science & Technology

    2014-11-01

    Query Reformulation for Clinical Decision Support Search Luca Soldaini, Arman Cohan, Andrew Yates, Nazli Goharian, Ophir Frieder Information...work, we present a query reformulation approach that addresses the unique formulation of case reports, making them suitable to be used on a general... reformulation approach does not directly take into account the generic question type (diagnosis, test, treatment) provided with each approach. To ameliorate

  13. Modeling uncertainty in requirements engineering decision support

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Maynard-Zhang, Pedrito; Kiper, James D.

    2005-01-01

    One inherent characteristic of requrements engineering is a lack of certainty during this early phase of a project. Nevertheless, decisions about requirements must be made in spite of this uncertainty. Here we describe the context in which we are exploring this, and some initial work to support elicitation of uncertain requirements, and to deal with the combination of such information from multiple stakeholders.

  14. System Engineering and Evolution Decision Support

    DTIC Science & Technology

    2007-11-02

    increasing the quality of service provided complex systems while reducing development risks, costs, and time. our work focused on decision support for...design synthesis. Mathematical models for implementing a set of automated and integrated engineering automation tools were also developed. Our work ...coordinating concurrent work by engineering teams. Our work will ensure design consistency and alleviate communication difficulties. The significance

  15. A Multiple Objective Decision Support Tool (MODS)

    SciTech Connect

    2003-12-14

    The Multiple Objective Decision Support (MODS) tool is an automated tool used to assist decision makers and policy analysts with multiple-objective decision problems. The classes of problems that this decision support tool addresses have both multiple objectives and multiple stakeholders. Decision problems, which have multiple objectives that in general cannot be maximized simultaneously, and multiple stakeholders, who have different perspectives about the relative importance of the objectives, require analytic approaches and tools that can provide flexible support to decision makers. This tool provides capabilities for the management, analysis, and graphical display for these types of decision problems drawn from diverse problem domains. The MODS tool is a unique integration of analysis algorithms, an information database, and a graphical user interface. This collection of algorithms, the combination of an information database with the analysis into a single tool, and the graphical user interface provides a technically advanced tool to decision makers and policy analysts. There are two main issues when addressing problems of this type: what set of attributes should be used to characterize the tokens in the domain of interest, and how should the values of these attributes and their weights be determined and combined to provide a relative ordering to the tokens. This tool addresses both of these issues. This decision support tool provides a flexible way to derive and use a chosen set of attributes. For example, the tool could be used to first perform a paired comparison of a large set of attributes and from this evaluation select those attributes that have the highest weights. The flexibility of the tool allows experimentation with various attribute sets and this capability, along with domain expertise, addresses the first issue. To address the second issue, several algorithms have been implemented. For example, two algorithms that have been implemented are the

  16. The conceptual foundation of environmental decision support.

    PubMed

    Reichert, Peter; Langhans, Simone D; Lienert, Judit; Schuwirth, Nele

    2015-05-01

    Environmental decision support intends to use the best available scientific knowledge to help decision makers find and evaluate management alternatives. The goal of this process is to achieve the best fulfillment of societal objectives. This requires a careful analysis of (i) how scientific knowledge can be represented and quantified, (ii) how societal preferences can be described and elicited, and (iii) how these concepts can best be used to support communication with authorities, politicians, and the public in environmental management. The goal of this paper is to discuss key requirements for a conceptual framework to address these issues and to suggest how these can best be met. We argue that a combination of probability theory and scenario planning with multi-attribute utility theory fulfills these requirements, and discuss adaptations and extensions of these theories to improve their application for supporting environmental decision making. With respect to (i) we suggest the use of intersubjective probabilities, if required extended to imprecise probabilities, to describe the current state of scientific knowledge. To address (ii), we emphasize the importance of value functions, in addition to utilities, to support decisions under risk. We discuss the need for testing "non-standard" value aggregation techniques, the usefulness of flexibility of value functions regarding attribute data availability, the elicitation of value functions for sub-objectives from experts, and the consideration of uncertainty in value and utility elicitation. With respect to (iii), we outline a well-structured procedure for transparent environmental decision support that is based on a clear separation of scientific prediction and societal valuation. We illustrate aspects of the suggested methodology by its application to river management in general and with a small, didactical case study on spatial river rehabilitation prioritization.

  17. Decision support for patient care: implementing cybernetics.

    PubMed

    Ozbolt, Judy; Ozdas, Asli; Waitman, Lemuel R; Smith, Janis B; Brennan, Grace V; Miller, Randolph A

    2004-01-01

    The application of principles and methods of cybernetics permits clinicians and managers to use feedback about care effectiveness and resource expenditure to improve quality and to control costs. Keys to the process are the specification of therapeutic goals and the creation of an organizational culture that supports the use of feedback to improve care. Daily feedback on the achievement of each patient's therapeutic goals provides tactical decision support, enabling clinicians to adjust care as needed. Monthly or quarterly feedback on aggregated goal achievement for all patients on a clinical pathway provides strategic decision support, enabling clinicians and managers to identify problems with supposed "best practices" and to test hypotheses about solutions. Work is underway at Vanderbilt University Medical Center to implement feedback loops in care and management processes and to evaluate the effects.

  18. Decision Support for Operations and Maintenance IV

    SciTech Connect

    2011-12-22

    DSOM (Decision Support for Operations and Maintenance) is an expert operations and maintenance system that integrates plant operations, fuel management, and maintenance processes. The DSOM package provides operators with the information they need for cost-effective operating decisions creating savings in fuel, personnel, maintenance, and plant life extension. DSOM provides operators real-time system performance information to allow them to determine if the plant is malfunctioning or running below expectations. By catching potential problems, DSOM enables plants to operate safely at peak efficiency, while providing a higher level of reliability and safety.

  19. Executive Support Systems: An Innovation Decision Perspective

    DTIC Science & Technology

    1990-01-01

    account . The exception and annotation ability of MIDS alerted the executives to what was happening and prevented a ripple effect of overreactions...information directly to these executives, an executive support system (ESS) allows more effective analysis, control, planning, and decision making...Automated improve- ments to the management process have the potential to highly leverage the executive’s effectiveness . An ESS is a concept, a clustered IT

  20. Proactive and Adaptive Decision Support Study (PDS)

    DTIC Science & Technology

    2014-08-31

    Arlington, VA 22203-1995 703-696-2875 jeffrey.g.morrison@navy.mil Report Prepared By: Thomas G. Allen Boston Fusion Corp. 1 Van de Graaff Drive...7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Boston Fusion Corp.,1 Van de Graaff Drive, Suite 107,Burlington,MA,01803 8. PERFORMING...During August, the principal activities for Boston Fusion were related to the preparation for, and attendance at, the ONR Proactive Decision Support

  1. Best Practices in Clinical Decision Support

    PubMed Central

    Wright, Adam; Phansalkar, Shobha; Bloomrosen, Meryl; Jenders, Robert A.; Bobb, Anne M.; Halamka, John D.; Kuperman, Gilad; Payne, Thomas H.; Teasdale, S.; Vaida, A. J.; Bates, D. W.

    2010-01-01

    Background Evidence demonstrates that clinical decision support (CDS) is a powerful tool for improving healthcare quality and ensuring patient safety. However, implementing and maintaining effective decision support interventions presents multiple technical and organizational challenges. Purpose To identify best practices for CDS, using the domain of preventive care reminders as an example. Methods We assembled a panel of experts in CDS and held a series of facilitated online and inperson discussions. We analyzed the results of these discussions using a grounded theory method to elicit themes and best practices. Results Eight best practice themes were identified as important: deliver CDS in the most appropriate ways, develop effective governance structures, consider use of incentives, be aware of workflow, keep content current, monitor and evaluate impact, maintain high quality data, and consider sharing content. Keys themes within each of these areas were also described. Conclusion Successful implementation of CDS requires consideration of both technical and socio-technical factors. The themes identified in this study provide guidance on crucial factors that need consideration when CDS is implemented across healthcare settings. These best practice themes may be useful for developers, implementers, and users of decision support. PMID:21991299

  2. Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS

    NASA Astrophysics Data System (ADS)

    Tehrany, Mahyat Shafapour; Pradhan, Biswajeet; Jebur, Mustafa Neamah

    2013-11-01

    Decision tree (DT) machine learning algorithm was used to map the flood susceptible areas in Kelantan, Malaysia.We used an ensemble frequency ratio (FR) and logistic regression (LR) model in order to overcome weak points of the LR.Combined method of FR and LR was used to map the susceptible areas in Kelantan, Malaysia.Results of both methods were compared and their efficiency was assessed.Most influencing conditioning factors on flooding were recognized.

  3. SANDS - Sediment Analysis Network for Decision Support

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Hawkins, L.; He, M.; Ebersole, S.

    2010-12-01

    Since the year 2000, Eastern Louisiana, coastal Mississippi, Alabama, and the western Florida panhandle have been affected by 28 tropical storms, seven of which were hurricanes. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance. Although tides, seasonality, and agricultural development influence suspended sediment and sediment deposition over periods of time, tropical storm activity has the capability of moving the largest sediment loads in the shortest periods of time for coastal areas. The SANDS project is also investigating the effects of sediment immersed oil from the Deepwater Horizon disaster in April 2010 which has the potential to resurface as a result of tropical storm activity. The importance of sediments upon water quality, coastal erosion, habitats and nutrients has made their study and monitoring vital to decision makers in the region. Currently agencies such as United States Army Corps of Engineers (USACE), NASA, and Geological Survey of Alabama (GSA) are employing a variety of in-situ and airborne based measurements to assess and monitor sediment loading and deposition. These methods provide highly accurate information but are limited in geographic range, are not continuous over a region and, in the case of airborne LIDAR are expensive and do not recur on a regular basis. Multi-temporal and multi-spectral satellite imagery that shows tropical-storm-induced suspended sediment and storm-surge sediment deposits can provide decision makers with immediate and long-term information about the impacts of tropical storms and hurricanes. It can also be valuable for those conducting research and for projects related to coastal issues such as recovery, planning, management, and mitigation. The Sediment Analysis Network for Decision Support has generated a number of decision support products derived from MODIS, Landsat and SeaWiFS instruments that potentially support

  4. Decision support system for drinking water management

    NASA Astrophysics Data System (ADS)

    Janža, M.

    2012-04-01

    The problems in drinking water management are complex and often solutions must be reached under strict time constrains. This is especially distinct in case of environmental accidents in the catchment areas of the wells that are used for drinking water supply. The beneficial tools that can help decision makers and make program of activities more efficient are decision support systems (DSS). In general they are defined as computer-based support systems that help decision makers utilize data and models to solve unstructured problems. The presented DSS was developed in the frame of INCOME project which is focused on the long-term stable and safe drinking water supply in Ljubljana. The two main water resources Ljubljana polje and Barje alluvial aquifers are characterized by a strong interconnection of surface and groundwater, high vulnerability, high velocities of groundwater flow and pollutant transport. In case of sudden pollution, reactions should be very fast to avoid serious impact to the water supply. In the area high pressures arising from urbanization, industry, traffic, agriculture and old environmental burdens. The aim of the developed DSS is to optimize the activities in cases of emergency water management and to optimize the administrative work regarding the activities that can improve groundwater quality status. The DSS is an interactive computer system that utilizes data base, hydrological modelling, and experts' and stakeholders' knowledge. It consists of three components, tackling the different abovementioned issues in water management. The first one utilizes the work on identification, cleaning up and restoration of illegal dumpsites that are a serious threat to the qualitative status of groundwater. The other two components utilize the predictive capability of the hydrological model and scenario analysis. The user interacts with the system by a graphical interface that guides the user step-by-step to the recommended remedial measures. Consequently, the

  5. Implementing a commercial rule base as a medication order safety net.

    PubMed

    Reichley, Richard M; Seaton, Terry L; Resetar, Ervina; Micek, Scott T; Scott, Karen L; Fraser, Victoria J; Dunagan, W Claiborne; Bailey, Thomas C

    2005-01-01

    A commercial rule base (Cerner Multum) was used to identify medication orders exceeding recommended dosage limits at five hospitals within BJC HealthCare, an integrated health care system. During initial testing, clinical pharmacists determined that there was an excessive number of nuisance and clinically insignificant alerts, with an overall alert rate of 9.2%. A method for customizing the commercial rule base was implemented to increase rule specificity for problematic rules. The system was subsequently deployed at two facilities and achieved alert rates of less than 1%. Pharmacists screened these alerts and contacted ordering physicians in 21% of cases. Physicians made therapeutic changes in response to 38% of alerts presented to them. By applying simple techniques to customize rules, commercial rule bases can be used to rapidly deploy a safety net to screen drug orders for excessive dosages, while preserving the rule architecture for later implementations of more finely tuned clinical decision support.

  6. A Framework for Classifying Decision Support Systems

    PubMed Central

    Sim, Ida; Berlin, Amy

    2003-01-01

    Background Computer-based clinical decision support systems (CDSSs) vary greatly in design and function. A taxonomy for classifying CDSS structure and function would help efforts to describe and understand the variety of CDSSs in the literature, and to explore predictors of CDSS effectiveness and generalizability. Objective To define and test a taxonomy for characterizing the contextual, technical, and workflow features of CDSSs. Methods We retrieved and analyzed 150 English language articles published between 1975 and 2002 that described computer systems designed to assist physicians and/or patients with clinical decision making. We identified aspects of CDSS structure or function and iterated our taxonomy until additional article reviews did not result in any new descriptors or taxonomic modifications. Results Our taxonomy comprises 95 descriptors along 24 descriptive axes. These axes are in 5 categories: Context, Knowledge and Data Source, Decision Support, Information Delivery, and Workflow. The axes had an average of 3.96 coded choices each. 75% of the descriptors had an inter-rater agreement kappa of greater than 0.6. Conclusions We have defined and tested a comprehensive, multi-faceted taxonomy of CDSSs that shows promising reliability for classifying CDSSs reported in the literature. PMID:14728243

  7. Computational Support for Technology- Investment Decisions

    NASA Technical Reports Server (NTRS)

    Adumitroaie, Virgil; Hua, Hook; Lincoln, William; Block, Gary; Mrozinski, Joseph; Shelton, Kacie; Weisbin, Charles; Elfes, Alberto; Smith, Jeffrey

    2007-01-01

    Strategic Assessment of Risk and Technology (START) is a user-friendly computer program that assists human managers in making decisions regarding research-and-development investment portfolios in the presence of uncertainties and of non-technological constraints that include budgetary and time limits, restrictions related to infrastructure, and programmatic and institutional priorities. START facilitates quantitative analysis of technologies, capabilities, missions, scenarios and programs, and thereby enables the selection and scheduling of value-optimal development efforts. START incorporates features that, variously, perform or support a unique combination of functions, most of which are not systematically performed or supported by prior decision- support software. These functions include the following: Optimal portfolio selection using an expected-utility-based assessment of capabilities and technologies; Temporal investment recommendations; Distinctions between enhancing and enabling capabilities; Analysis of partial funding for enhancing capabilities; and Sensitivity and uncertainty analysis. START can run on almost any computing hardware, within Linux and related operating systems that include Mac OS X versions 10.3 and later, and can run in Windows under the Cygwin environment. START can be distributed in binary code form. START calls, as external libraries, several open-source software packages. Output is in Excel (.xls) file format.

  8. Business models for health care decision support.

    PubMed

    Gaughan, Phil

    2003-01-01

    CareScience, Inc. is a public company (NASDAQ: CARE) that originated ten years ago to commercialize risk adjustment and complication predictions developed by the Wharton School of Business and the University of Pennsylvania School of Medicine. Over the past decade, the company has grown to approximately 200 clients and 150 employees. Among the "firsts" recorded by the company, CareScience was the first to offer a clinical decision support system as an Application Service Provider (ASP), the first to offer peer-to-peer clinical data sharing among health care provider organizations and practitioners (Santa Barbara Care Data Exchange), and the first to provide a care management outsourcing arrangement.

  9. Linquistic geometry: new technology for decision support

    NASA Astrophysics Data System (ADS)

    Stilman, Boris; Yakhnis, Vladimir

    2003-09-01

    Linguistic Geometry (LG) is a revolutionary gaming approach which is ideally suited for military decision aids for Air, Ground, Naval, and Space-based operations, as well guiding robotic vehicles and traditional entertainment games. When thinking about modern or future military operations, the game metaphor comes to mind right away. Indeed, the air space together with the ground and seas may be viewed as a gigantic three-dimensional game board. Refining this picture, the LG approach is capable of providing an LG hypergame, that is, a system of multiple concurrent interconnected multi-player abstract board games (ABG) of various resolutions and time frames reflecting various kinds of hardware and effects involved in the battlespace and the solution space. By providing a hypergame representation of the battlespace, LG already provides a significant advance in situational awareness. However, the greatest advantage of the LG approach is an ability to provide commanders of campaigns and missions with decision options resulting in attainment of the commander's intent. At each game turn, an LG decision support tool assigns the best actions to each of the multitude of battlespace actors (UAVs, bombers, cruise missiles, etc.). This is done through utilization of algorithms finding winning strategies and tactics, which are the core of the LG approach.

  10. Creating clinical decision support systems for respiratory medicine.

    PubMed

    Tams, Carl G; Euliano, Neil R

    2015-01-01

    Clinical decision support systems are vital for advances in improving patient therapeutic care. We share lessons learned from creating two respiratory clinical decisions support systems for ventilating patients in a critical care setting.

  11. A Semantic Approach with Decision Support for Safety Service in Smart Home Management

    PubMed Central

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-01-01

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate. PMID:27527170

  12. A Semantic Approach with Decision Support for Safety Service in Smart Home Management.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-08-03

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate.

  13. Sediment Analysis Network for Decision Support (SANDS)

    NASA Astrophysics Data System (ADS)

    Hardin, D. M.; Keiser, K.; Graves, S. J.; Conover, H.; Ebersole, S.

    2009-12-01

    Since the year 2000, Eastern Louisiana, coastal Mississippi, Alabama, and the western Florida panhandle have been affected by 28 tropical storms, seven of which were hurricanes. These tropical cyclones have significantly altered normal coastal processes and characteristics in the Gulf region through sediment disturbance. Although tides, seasonality, and agricultural development influence suspended sediment and sediment deposition over periods of time, tropical storm activity has the capability of moving the largest sediment loads in the shortest periods of time for coastal areas. The importance of sediments upon water quality, coastal erosion, habitats and nutrients has made their study and monitoring vital to decision makers in the region. Currently agencies such as United States Army Corps of Engineers (USACE), NASA, and Geological Survey of Alabama (GSA) are employing a variety of in-situ and airborne based measurements to assess and monitor sediment loading and deposition. These methods provide highly accurate information but are limited in geographic range, are not continuous over a region and, in the case of airborne LIDAR are expensive and do not recur on a regular basis. Multi-temporal and multi-spectral satellite imagery that shows tropical-storm-induced suspended sediment and storm-surge sediment deposits can provide decision makers with immediate and long-term information about the impacts of tropical storms and hurricanes. It can also be valuable for those conducting research and for projects related to coastal issues such as recovery, planning, management, and mitigation. The recently awarded Sediment Analysis Network for Decision Support will generate decision support products using NASA satellite observations from MODIS, Landsat and SeaWiFS instruments to support resource management, planning, and decision making activities in the Gulf of Mexico. Specifically, SANDS will generate decision support products that address the impacts of tropical storms

  14. Decision support software technology demonstration plan

    SciTech Connect

    SULLIVAN,T.; ARMSTRONG,A.

    1998-09-01

    The performance evaluation of innovative and alternative environmental technologies is an integral part of the US Environmental Protection Agency's (EPA) mission. Early efforts focused on evaluating technologies that supported the implementation of the Clean Air and Clean Water Acts. In 1986 the Agency began to demonstrate and evaluate the cost and performance of remediation and monitoring technologies under the Superfund Innovative Technology Evaluation (SITE) program (in response to the mandate in the Superfund Amendments and Reauthorization Act of 1986 (SARA)). In 1990, the US Technology Policy was announced. This policy placed a renewed emphasis on making the best use of technology in achieving the national goals of improved quality of life for all Americans, continued economic growth, and national security. In the spirit of the technology policy, the Agency began to direct a portion of its resources toward the promotion, recognition, acceptance, and use of US-developed innovative environmental technologies both domestically and abroad. Decision Support Software (DSS) packages integrate environmental data and simulation models into a framework for making site characterization, monitoring, and cleanup decisions. To limit the scope which will be addressed in this demonstration, three endpoints have been selected for evaluation: Visualization; Sample Optimization; and Cost/Benefit Analysis. Five topics are covered in this report: the objectives of the demonstration; the elements of the demonstration plan; an overview of the Site Characterization and Monitoring Technology Pilot; an overview of the technology verification process; and the purpose of this demonstration plan.

  15. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality

    PubMed Central

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-01-01

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks. PMID:26610496

  16. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  17. Decision investigation and support environment (DISE)

    NASA Astrophysics Data System (ADS)

    VonPlinsky, Michael J.; Johnson, Pete; Crowder, Ed

    2001-09-01

    The "Decision Integration and Support Environment" (DISE) is a Bayesian network (BN) based modeling and simulation of the target nomination and aircraft tasking decision process. FTI has developed two BNs to model these processes, incorporating aircraft, target, and overall mission priorities from the Air Operations Center (OAC) and the mission planners/command staff. DISE operates in event driven interactions with FTI's AOC model, being triggered from within the Time Critical Target (TCT) Operations cell. As new target detections are received by the AOC from off-board ISR Sources and processed by the Automatic Target Recognition (ATR) module in the AOC, DISE is called to determine if the target should be prosectued, and if so, which of the available aircraft should be tasked to attack it. A range of decision criteria, with priorities established off-line and input into the tool, are associated with this process, including factors such as: * Fuel Level - amount of fuel in aircraft * Type of Weapon - available weapons on board aircraft * Probability of Survival - depends on the type of TST, time criticality and other factors * Potential Collateral Damage - amount of damage incurred on TST surroundings * Time Criticality of TST - how "critical" it is to attack the target depending on its launch status * Time to Target - aircraft's distance (in minutes) from the TST * Current Mission Priority - priority of the mission to which the aircraft is currently assigned * TST Mission Priority - determined when the target is originally nominated * Possible Reassignment - represents whether it is even possible to reassign the aircraft * Aircraft Re-tasking Availability - represents any factor not taken into account by the model, including commander override.

  18. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  19. Decision Support for Emergency Operations Centers

    NASA Technical Reports Server (NTRS)

    Harvey, Craig; Lawhead, Joel; Watts, Zack

    2005-01-01

    The Flood Disaster Mitigation Decision Support System (DSS) is a computerized information system that allows regional emergency-operations government officials to make decisions regarding the dispatch of resources in response to flooding. The DSS implements a real-time model of inundation utilizing recently acquired lidar elevation data as well as real-time data from flood gauges, and other instruments within and upstream of an area that is or could become flooded. The DSS information is updated as new data become available. The model generates realtime maps of flooded areas and predicts flood crests at specified locations. The inundation maps are overlaid with information on population densities, property values, hazardous materials, evacuation routes, official contact information, and other information needed for emergency response. The program maintains a database and a Web portal through which real-time data from instrumentation are gathered into the database. Also included in the database is a geographic information system, from which the program obtains the overlay data for areas of interest as needed. The portal makes some portions of the database accessible to the public. Access to other portions of the database is restricted to government officials according to various levels of authorization. The Flood Disaster Mitigation DSS has been integrated into a larger DSS named REACT (Real-time Emergency Action Coordination Tool), which also provides emergency operations managers with data for any type of impact area such as floods, fires, bomb

  20. Semantic technologies in a decision support system

    NASA Astrophysics Data System (ADS)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.

    2015-10-01

    The aim of our work is to design a decision support system based on ontological representation of domain(s) and semantic technologies. Specifically, we consider the case when Grid / Cloud user describes his/her requirements regarding a "resource" as a class expression from an ontology, while the instances of (the same) ontology represent available resources. The goal is to help the user to find the best option with respect to his/her requirements, while remembering that user's knowledge may be "limited." In this context, we discuss multiple approaches based on semantic data processing, which involve different "forms" of user interaction with the system. Specifically, we consider: (a) ontological matchmaking based on SPARQL queries and class expression, (b) graph-based semantic closeness of instances representing user requirements (constructed from the class expression) and available resources, and (c) multicriterial analysis based on the AHP method, which utilizes expert domain knowledge (also ontologically represented).

  1. Reducing Risk with Clinical Decision Support

    PubMed Central

    Maloney, F.L.; Feblowitz, J.; Samal, L.; Sato, L.; Wright, A.

    2014-01-01

    Summary Objective Identify clinical opportunities to intervene to prevent a malpractice event and determine the proportion of malpractice claims potentially preventable by clinical decision support (CDS). Materials and Methods Cross-sectional review of closed malpractice claims over seven years from one malpractice insurance company and seven hospitals in the Boston area. For each event, clinical opportunities to intervene to avert the malpractice event and the presence or absence of CDS that might have a role in preventing the event, were assigned by a panel of expert raters. Compensation paid out to resolve a claim (indemnity), was associated with each CDS type. Results Of the 477 closed malpractice cases, 359 (75.3%) were categorized as substantiated and 195 (54%) had at least one opportunity to intervene. Common opportunities to intervene related to performance of procedure, diagnosis, and fall prevention. We identified at least one CDS type for 63% of substantiated claims. The 41 CDS types identified included clinically significant test result alerting, diagnostic decision support and electronic tracking of instruments. Cases with at least one associated intervention accounted for $40.3 million (58.9%) of indemnity. Discussion CDS systems and other forms of health information technology (HIT) are expected to improve quality of care, but their potential to mitigate risk had not previously been quantified. Our results suggest that, in addition to their known benefits for quality and safety, CDS systems within HIT have a potential role in decreasing malpractice payments. Conclusion More than half of malpractice events and over $40 million of indemnity were potentially preventable with CDS. PMID:25298814

  2. Novel Architecture for supporting medical decision making of different data types based on Fuzzy Cognitive Map Framework.

    PubMed

    Papageorgiou, Elpiniki; Stylios, Chrysostomos; Groumpos, Peter

    2007-01-01

    Medical problems involve different types of variables and data, which have to be processed, analyzed and synthesized in order to reach a decision and/or conclude to a diagnosis. Usually, information and data set are both symbolic and numeric but most of the well-known data analysis methods deal with only one kind of data. Even when fuzzy approaches are considered, which are not depended on the scales of variables, usually only numeric data is considered. The medical decision support methods usually are accessed in only one type of available data. Thus, sophisticated methods have been proposed such as integrated hybrid learning approaches to process symbolic and numeric data for the decision support tasks. Fuzzy Cognitive Maps (FCM) is an efficient modelling method, which is based on human knowledge and experience and it can handle with uncertainty and it is constructed by extracted knowledge in the form of fuzzy rules. The FCM model can be enhanced if a fuzzy rule base (IF-THEN rules) is available. This rule base could be derived by a number of machine learning and knowledge extraction methods. Here it is introduced a hybrid attempt to handle situations with different types of available medical and/or clinical data and with difficulty to handle them for decision support tasks using soft computing techniques.

  3. Intelligent Case Based Decision Support System for Online Diagnosis of Automated Production System

    NASA Astrophysics Data System (ADS)

    Ben Rabah, N.; Saddem, R.; Ben Hmida, F.; Carre-Menetrier, V.; Tagina, M.

    2017-01-01

    Diagnosis of Automated Production System (APS) is a decision-making process designed to detect, locate and identify a particular failure caused by the control law. In the literature, there are three major types of reasoning for industrial diagnosis: the first is model-based, the second is rule-based and the third is case-based. The common and major limitation of the first and the second reasonings is that they do not have automated learning ability. This paper presents an interactive and effective Case Based Decision Support System for online Diagnosis (CB-DSSD) of an APS. It offers a synergy between the Case Based Reasoning (CBR) and the Decision Support System (DSS) in order to support and assist Human Operator of Supervision (HOS) in his/her decision process. Indeed, the experimental evaluation performed on an Interactive Training System for PLC (ITS PLC) that allows the control of a Programmable Logic Controller (PLC), simulating sensors or/and actuators failures and validating the control algorithm through a real time interactive experience, showed the efficiency of our approach.

  4. Quantitative Decision Support Requires Quantitative User Guidance

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2009-12-01

    Is it conceivable that models run on 2007 computer hardware could provide robust and credible probabilistic information for decision support and user guidance at the ZIP code level for sub-daily meteorological events in 2060? In 2090? Retrospectively, how informative would output from today’s models have proven in 2003? or the 1930’s? Consultancies in the United Kingdom, including the Met Office, are offering services to “future-proof” their customers from climate change. How is a US or European based user or policy maker to determine the extent to which exciting new Bayesian methods are relevant here? or when a commercial supplier is vastly overselling the insights of today’s climate science? How are policy makers and academic economists to make the closely related decisions facing them? How can we communicate deep uncertainty in the future at small length-scales without undermining the firm foundation established by climate science regarding global trends? Three distinct aspects of the communication of the uses of climate model output targeting users and policy makers, as well as other specialist adaptation scientists, are discussed. First, a brief scientific evaluation of the length and time scales at which climate model output is likely to become uninformative is provided, including a note on the applicability the latest Bayesian methodology to current state-of-the-art general circulation models output. Second, a critical evaluation of the language often employed in communication of climate model output, a language which accurately states that models are “better”, have “improved” and now “include” and “simulate” relevant meteorological processed, without clearly identifying where the current information is thought to be uninformative and misleads, both for the current climate and as a function of the state of the (each) climate simulation. And thirdly, a general approach for evaluating the relevance of quantitative climate model output

  5. 12 CFR 944.4 - Decision on community support statements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Decision on community support statements. 944.4 Section 944.4 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK MISSION COMMUNITY SUPPORT REQUIREMENTS § 944.4 Decision on community support statements. (a) Action on community...

  6. WaterlooClarke: TREC 2015 Clinical Decision Support Track

    DTIC Science & Technology

    2015-11-20

    WaterlooClarke: TREC 2015 Clinical Decision Support Track Amira Ghenai1, Eldar Khalilov1, Pavel Valov1, and Charles L. A. Clarke1 1Department of...Abstract Clinical decision support systems help physicians with finding additional information about a partic- ular medical case. In this paper, we...develop a clinical decision support system that, based on a short medical case description, can recommend research articles to answer some common

  7. A Framework and Model for Evaluating Clinical Decision Support Architectures

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    In this paper, we develop a four-phase model for evaluating architectures for clinical decision support that focuses on: defining a set of desirable features for a decision support architecture; building a proof-of-concept prototype; demonstrating that the architecture is useful by showing that it can be integrated with existing decision support systems and comparing its coverage to that of other architectures. We apply this framework to several well-known decision support architectures, including Arden Syntax, GLIF, SEBASTIAN and SAGE PMID:18462999

  8. HUMAN HEALTH METRICS FOR ENVIRONMENTAL DECISION SUPPORT TOOLS: LESSONS FROM HEALTH ECONOMICS AND DECISION ANALYSIS

    EPA Science Inventory

    Decision makers using environmental decision support tools are often confronted with information that predicts a multitude of different human health effects due to environmental stressors. If these health effects need to be contrasted with costs or compared with alternative scena...

  9. Architecting next 30 years of climate monitoring from space with instructive examples from NPOESS and GCOS plus new rule-based decision tools: suggesting and promoting global collaborative paths forward (Part V)

    NASA Astrophysics Data System (ADS)

    Helmuth, Douglas B.; Bell, Raymond M.; Lentz, Christopher A.

    2013-10-01

    Collecting the earth's critical climate signatures over the next 30 years is an obvious priority for many world governments and international organizations. Implementing a solution requires bridging from today's scientific missions to `operational' constellations that are adequate to support the future demands of decision makers, scientific investigators and global users for trusted data.

  10. Clinical Decision Support Systems and Prevention

    PubMed Central

    Njie, Gibril J.; Proia, Krista K.; Thota, Anilkrishna B.; Finnie, Ramona K.C.; Hopkins, David P.; Banks, Starr M.; Callahan, David B.; Pronk, Nicolaas P.; Rask, Kimberly J.; Lackland, Daniel T.; Kottke, Thomas E.

    2016-01-01

    Context Clinical decision support systems (CDSSs) can help clinicians assess cardiovascular disease (CVD) risk and manage CVD risk factors by providing tailored assessments and treatment recommendations based on individual patient data. The goal of this systematic review was to examine the effectiveness of CDSSs in improving screening for CVD risk factors, practices for CVD-related preventive care services such as clinical tests and prescribed treatments, and management of CVD risk factors. Evidence acquisition An existing systematic review (search period, January 1975–January 2011) of CDSSs for any condition was initially identified. Studies of CDSSs that focused on CVD prevention in that review were combined with studies identified through an updated search (January 2011–October 2012). Data analysis was conducted in 2013. Evidence synthesis A total of 45 studies qualified for inclusion in the review. Improvements were seen for recommended screening and other preventive care services completed by clinicians, recommended clinical tests completed by clinicians, and recommended treatments prescribed by clinicians (median increases of 3.8, 4.0, and 2.0 percentage points, respectively). Results were inconsistent for changes in CVD risk factors such as systolic and diastolic blood pressure, total and low-density lipoprotein cholesterol, and hemoglobin A1C levels. Conclusions CDSSs are effective in improving clinician practices related to screening and other preventive care services, clinical tests, and treatments. However, more evidence is needed from implementation of CDSSs within the broad context of comprehensive service delivery aimed at reducing CVD risk and CVD-related morbidity and mortality. PMID:26477805

  11. Rule-Based Runtime Verification

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We present a rule-based framework for defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. Our logic, EAGLE, is implemented as a Java library and involves novel techniques for rule definition, manipulation and execution. Monitoring is done on a state-by-state basis, without storing the execution trace.

  12. From Prediction to Prescription: Intelligent Decision Support for Variable Rate Fertilization

    SciTech Connect

    Fink, Raymond Keith; Hoskinson, Reed Louis; Hess, John Richard

    2001-07-01

    We describe the use of machine learning methods in the analysis of spatial soil fertility, soil physical characteristics, and yield data, with a particular objective of determining local (field- to farm-scale) crop response patterns. For effective prescriptive use, the output of these tools is augmented with economic data and operational constraints, and recast as a rulebased decision support tool to maximize economic return in variable rate fertilization systems. We describe some of the practical issues addressed in development of one such system, including data preparation, adaptation of regression tree output for use in a rule-based expert system, and incorporation of real-world limits on system recommendations. Results from various field trials of this system are summarized.

  13. Reef Ecosystem Services and Decision Support Database

    EPA Science Inventory

    This scientific and management information database utilizes systems thinking to describe the linkages between decisions, human activities, and provisioning of reef ecosystem goods and services. This database provides: (1) Hierarchy of related topics - Click on topics to navigat...

  14. Application of Voice Recognition Input to Decision Support Systems

    DTIC Science & Technology

    1988-12-01

    Support System (GDSS) Talkwriter Human Computer Interface Voice Input Individual Decision Support System (IDSS) Voice Input/Output Man Machine Voice ... Interface Voice Processing Natural Language Voice Input Voice Recognition Natural Language Accessed Voice Recognizer Speech Entry Voice Vocabulary

  15. Future of electronic health records: implications for decision support.

    PubMed

    Rothman, Brian; Leonard, Joan C; Vigoda, Michael M

    2012-01-01

    The potential benefits of the electronic health record over traditional paper are many, including cost containment, reductions in errors, and improved compliance by utilizing real-time data. The highest functional level of the electronic health record (EHR) is clinical decision support (CDS) and process automation, which are expected to enhance patient health and healthcare. The authors provide an overview of the progress in using patient data more efficiently and effectively through clinical decision support to improve health care delivery, how decision support impacts anesthesia practice, and how some are leading the way using these systems to solve need-specific issues. Clinical decision support uses passive or active decision support to modify clinician behavior through recommendations of specific actions. Recommendations may reduce medication errors, which would result in considerable savings by avoiding adverse drug events. In selected studies, clinical decision support has been shown to decrease the time to follow-up actions, and prediction has proved useful in forecasting patient outcomes, avoiding costs, and correctly prompting treatment plan modifications by clinicians before engaging in decision-making. Clinical documentation accuracy and completeness is improved by an electronic health record and greater relevance of care data is delivered. Clinical decision support may increase clinician adherence to clinical guidelines, but educational workshops may be equally effective. Unintentional consequences of clinical decision support, such as alert desensitization, can decrease the effectiveness of a system. Current anesthesia clinical decision support use includes antibiotic administration timing, improved documentation, more timely billing, and postoperative nausea and vomiting prophylaxis. Electronic health record implementation offers data-mining opportunities to improve operational, financial, and clinical processes. Using electronic health record data

  16. The design of aircraft using the decision support problem technique

    NASA Technical Reports Server (NTRS)

    Mistree, Farrokh; Marinopoulos, Stergios; Jackson, David M.; Shupe, Jon A.

    1988-01-01

    The Decision Support Problem Technique for unified design, manufacturing and maintenance is being developed at the Systems Design Laboratory at the University of Houston. This involves the development of a domain-independent method (and the associated software) that can be used to process domain-dependent information and thereby provide support for human judgment. In a computer assisted environment, this support is provided in the form of optimal solutions to Decision Support Problems.

  17. Military Medical Decision Support for Homeland Defense During Emergency

    DTIC Science & Technology

    2004-12-01

    Integrated Decision Support ( MERMAIDS ) developed for training of emergency response teams using heterogeneous resources under a unified command and control...The MERMAIDS has been designed to contain a decision-centric interface, which is not only useful for emergency information management, but has...decision models to support response planning during emergency conditions. An expert heuristic evaluation of the MERMAIDS is encouraging. The expert

  18. Becoming a Mother: Supported Decision-Making in Context

    ERIC Educational Resources Information Center

    Jamieson, Rhiann; Theodore, Kate; Raczka, Roman

    2016-01-01

    Little is known about how women with intellectual disabilities make decisions in relation to pregnancy. Social support is important for mothers with intellectual disabilities in many areas. This study explored how the support network influenced the decision-making of women with intellectual disabilities in relation to pregnancy. The study extended…

  19. Development of Asset Management Decision Support Tools for Power Equipment

    NASA Astrophysics Data System (ADS)

    Okamoto, Tatsuki; Takahashi, Tsuguhiro

    Development of asset management decision support tools become very intensive in order to reduce maintenance cost of power equipment due to the liberalization of power business. This article reviews some aspects of present status of asset management decision support tools development for power equipment based on the papers published in international conferences, domestic conventions, and several journals.

  20. Automation and Accountability in Decision Support System Interface Design

    ERIC Educational Resources Information Center

    Cummings, Mary L.

    2006-01-01

    When the human element is introduced into decision support system design, entirely new layers of social and ethical issues emerge but are not always recognized as such. This paper discusses those ethical and social impact issues specific to decision support systems and highlights areas that interface designers should consider during design with an…

  1. Decision Performance Using Spatial Decision Support Systems: A Geospatial Reasoning Ability Perspective

    ERIC Educational Resources Information Center

    Erskine, Michael A.

    2013-01-01

    As many consumer and business decision makers are utilizing Spatial Decision Support Systems (SDSS), a thorough understanding of how such decisions are made is crucial for the information systems domain. This dissertation presents six chapters encompassing a comprehensive analysis of the impact of geospatial reasoning ability on…

  2. The Contribution of a Decision Support System to Educational Decision-Making Processes

    ERIC Educational Resources Information Center

    Klein, Joseph; Ronen, Herman

    2003-01-01

    In the light of reports of bias, the present study investigated the hypothesis that administrative educational decisions assisted by Decision Support Systems (DSS) are characterized by different pedagogical and organizational orientation than decisions made without computer assistance. One hundred and ten high school teachers were asked to suggest…

  3. Proactive and Adaptive Decision Support Study (PDS)

    DTIC Science & Technology

    2014-12-09

    Approved for public release; distribution unlimited. • DMOC-, N3- and N6-specific CCIRs • GCCS-M • C2RPC / MTC2 SOA • ENMS and other network health...Process RFI Request for Information SMDP Semi-Markov decision process SOA Service-Oriented Architecture SOP Standard Operating Procedure TTP Tactics, Techniques, and Procedures

  4. Environmental Decision Support with Consistent Metrics

    EPA Science Inventory

    One of the most effective ways to pursue environmental progress is through the use of consistent metrics within a decision making framework. The US Environmental Protection Agency’s Sustainable Technology Division has developed TRACI, the Tool for the Reduction and Assessment of...

  5. Feedback can be superior to observational training for both rule-based and information-integration category structures.

    PubMed

    Edmunds, C E R; Milton, Fraser; Wills, Andy J

    2015-01-01

    The effects of two different types of training on rule-based and information-integration category learning were investigated in two experiments. In observational training, a category label is presented, followed by an example of that category and the participant's response. In feedback training, the stimulus is presented, and the participant assigns it to a category and then receives feedback about the accuracy of that decision. Ashby, Maddox, and Bohil (2002. Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30, 666-677) reported that feedback training was superior to observational training when learning information-integration category structures, but that training type had little effect on the acquisition of rule-based category structures. These results were argued to support the COVIS (competition between verbal and implicit systems) dual-process account of category learning. However, a number of nonessential differences between their rule-based and information-integration conditions complicate interpretation of these findings. Experiment 1 controlled between-category structures for participant error rates, category separation, and the number of stimulus dimensions relevant to the categorization. Under these more controlled conditions, rule-based and information-integration category structures both benefited from feedback training to a similar degree. Experiment 2 maintained this difference in training type when learning a rule-based category that had otherwise been matched, in terms of category overlap and overall performance, with the rule-based categories used in Ashby et al. These results indicate that differences in dimensionality between the category structures in Ashby et al. is a more likely explanation for the interaction between training type and category structure than the dual-system explanation that they offered.

  6. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  7. Mobile decision support for transplantation patient data.

    PubMed

    Krause, Andreas; Hartl, Dominik; Theis, Fabian; Stangl, Manfred; Gerauer, Klaus E; Mehlhorn, Alexander T

    2004-06-15

    In high-critical medical fields instant information delivery is essential. Task-flow analyses within the transplantation unit of the Technische Universität München revealed that valuable time could be saved in pre-transplantation management being able to retrieve data of organ receivers ubiquitously. Inspired by this clinical scenario, a mobile application was designed and implemented providing surgeons with decision-relevant information on potential organ receivers. It assists them in considering the prospects of forthcoming organ transplantations and facilitates decision making and documentation with regard to high security demands. The described system services three organ receiver lists and is used by the surgeons in every transplantation procedure. After a 6-month period of clinical usage, the system has been evaluated in terms of handling, clinical benefit and total time savings. Intuitive, ubiquitous access to decision-relevant patient data and authenticated documentation were the major improvements with average total time savings of 50 min in comparison to the old system.

  8. Decision support for redesigning wastewater treatment technologies.

    PubMed

    McConville, Jennifer R; Künzle, Rahel; Messmer, Ulrike; Udert, Kai M; Larsen, Tove A

    2014-10-21

    This paper offers a methodology for structuring the design space for innovative process engineering technology development. The methodology is exemplified in the evaluation of a wide variety of treatment technologies for source-separated domestic wastewater within the scope of the Reinvent the Toilet Challenge. It offers a methodology for narrowing down the decision-making field based on a strict interpretation of treatment objectives for undiluted urine and dry feces and macroenvironmental factors (STEEPLED analysis) which influence decision criteria. Such an evaluation identifies promising paths for technology development such as focusing on space-saving processes or the need for more innovation in low-cost, energy-efficient urine treatment methods. Critical macroenvironmental factors, such as housing density, transportation infrastructure, and climate conditions were found to affect technology decisions regarding reactor volume, weight of outputs, energy consumption, atmospheric emissions, investment cost, and net revenue. The analysis also identified a number of qualitative factors that should be carefully weighed when pursuing technology development; such as availability of O&M resources, health and safety goals, and other ethical issues. Use of this methodology allows for coevolution of innovative technology within context constraints; however, for full-scale technology choices in the field, only very mature technologies can be evaluated.

  9. New approaches for real time decision support systems

    NASA Technical Reports Server (NTRS)

    Hair, D. Charles; Pickslay, Kent

    1994-01-01

    NCCOSC RDT&E Division (NRaD) is conducting research into ways of improving decision support systems (DSS) that are used in tactical Navy decision making situations. The research has focused on the incorporation of findings about naturalistic decision-making processes into the design of the DSS. As part of that research, two computer tools were developed that model the two primary naturalistic decision-making strategies used by Navy experts in tactical settings. Current work is exploring how best to incorporate the information produced by those tools into an existing simulation of current Navy decision support systems. This work has implications for any applications involving the need to make decisions under time constraints, based on incomplete or ambiguous data.

  10. Decision support systems for robotic surgery and acute care

    NASA Astrophysics Data System (ADS)

    Kazanzides, Peter

    2012-06-01

    Doctors must frequently make decisions during medical treatment, whether in an acute care facility, such as an Intensive Care Unit (ICU), or in an operating room. These decisions rely on a various information sources, such as the patient's medical history, preoperative images, and general medical knowledge. Decision support systems can assist by facilitating access to this information when and where it is needed. This paper presents some research eorts that address the integration of information with clinical practice. The example systems include a clinical decision support system (CDSS) for pediatric traumatic brain injury, an augmented reality head- mounted display for neurosurgery, and an augmented reality telerobotic system for minimally-invasive surgery. While these are dierent systems and applications, they share the common theme of providing information to support clinical decisions and actions, whether the actions are performed with the surgeon's own hands or with robotic assistance.

  11. Decision Support Framework (DSF) Team Research Implementation Plan

    EPA Science Inventory

    The mission of ORD's Ecosystem Services Research Program (ESRP) is to provide the information and methods needed by decision-makers to assess the benefits of ecosystem goods and services to human well-being for inclusion in management alternatives. The Decision Support Framework...

  12. The reliability of an epilepsy treatment clinical decision support system.

    PubMed

    Standridge, Shannon; Faist, Robert; Pestian, John; Glauser, Tracy; Ittenbach, Richard

    2014-10-01

    We developed a content validated computerized epilepsy treatment clinical decision support system to assist clinicians with selecting the best antiepilepsy treatments. Before disseminating our computerized epilepsy treatment clinical decision support system, further rigorous validation testing was necessary. As reliability is a precondition of validity, we verified proof of reliability first. We evaluated the consistency of the epilepsy treatment clinical decision support system in three areas including the preferred antiepilepsy drug choice, the top three recommended choices, and the rank order of the three choices. We demonstrated 100% reliability on 15,000 executions involving a three-step process on five different common pediatric epilepsy syndromes. Evidence for the reliability of the epilepsy treatment clinical decision support system was essential for the long-term viability of the system, and served as a crucial component for the next phase of system validation.

  13. DECISION SUPPORT FRAMEWORK FOR STORMWATER MANAGEMENT IN URBAN WATERSHEDS

    EPA Science Inventory

    To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (USEPA) is developing a decision support system for placement of BMPs at strategic locations in urban watersheds. This tool wil...

  14. Personalizing Drug Selection Using Advanced Clinical Decision Support

    PubMed Central

    Pestian, John; Spencer, Malik; Matykiewicz, Pawel; Zhang, Kejian; Vinks, Alexander A.; Glauser, Tracy

    2009-01-01

    This article describes the process of developing an advanced pharmacogenetics clinical decision support at one of the United States’ leading pediatric academic medical centers. This system, called CHRISTINE, combines clinical and genetic data to identify the optimal drug therapy when treating patients with epilepsy or Attention Deficit Hyperactivity Disorder. In the discussion a description of clinical decision support systems is provided, along with an overview of neurocognitive computing and how it is applied in this setting. PMID:19898682

  15. Personalizing Drug Selection Using Advanced Clinical Decision Support.

    PubMed

    Pestian, John; Spencer, Malik; Matykiewicz, Pawel; Zhang, Kejian; Vinks, Alexander A; Glauser, Tracy

    2009-06-23

    This article describes the process of developing an advanced pharmacogenetics clinical decision support at one of the United States' leading pediatric academic medical centers. This system, called CHRISTINE, combines clinical and genetic data to identify the optimal drug therapy when treating patients with epilepsy or Attention Deficit Hyperactivity Disorder. In the discussion a description of clinical decision support systems is provided, along with an overview of neurocognitive computing and how it is applied in this setting.

  16. Medical decision support systems and therapeutics: The role of autopilots.

    PubMed

    Woosley, R L; Whyte, J; Mohamadi, A; Romero, K

    2016-02-01

    For decades, medical practice has increasingly relied on prescription medicines to treat, cure, or prevent illness but their net benefit is reduced by prescribing errors that result in adverse drug reactions (ADRs) and tens of thousands of deaths each year. Optimal prescribing requires effective management of massive amounts of data. Clinical decision support systems (CDSS) can help manage information and support optimal therapeutic decisions before errors are made by operating as the prescribers' "autopilot."

  17. Decision Support System for ASD (Aeronatical Systems Division) Program Managers.

    DTIC Science & Technology

    1985-09-01

    quality of the decision depends on the depth of the program manager’s analysis . Recently, management has attempted to use the support of others to make...knowledge of system analysis and management techniques. 4. Program Managers will have access to the developed deci- sion support system. Definitions...the depth of the Progr a Managers analysis . A decision is more apt to be correct if the depth of analysis is increased (21:a-8). The depth of analysis

  18. Interactive Decision Support for Academic Advising

    ERIC Educational Resources Information Center

    Mohamed, Abdallah

    2016-01-01

    Purpose: This paper aims to support academic advising, which plays a crucial role in student success and retention. The paper focuses on one of the most challenging tasks involved in academic advising: individual course scheduling. This task includes not only careful planning for different courses over several semesters according to students'…

  19. Investigating the Heart Pump Implant Decision Process: Opportunities for Decision Support Tools to Help

    PubMed Central

    Yang, Qian; Zimmerman, John; Steinfeld, Aaron; Carey, Lisa; Antaki, James F.

    2016-01-01

    Clinical decision support tools (DSTs) are computational systems that aid healthcare decision-making. While effective in labs, almost all these systems failed when they moved into clinical practice. Healthcare researchers speculated it is most likely due to a lack of user-centered HCI considerations in the design of these systems. This paper describes a field study investigating how clinicians make a heart pump implant decision with a focus on how to best integrate an intelligent DST into their work process. Our findings reveal a lack of perceived need for and trust of machine intelligence, as well as many barriers to computer use at the point of clinical decision-making. These findings suggest an alternative perspective to the traditional use models, in which clinicians engage with DSTs at the point of making a decision. We identify situations across patients’ healthcare trajectories when decision supports would help, and we discuss new forms it might take in these situations. PMID:27833397

  20. Supporting contractors' bidding decision: RBF neural networks application

    NASA Astrophysics Data System (ADS)

    Leśniak, Agnieszka

    2016-06-01

    A bidding decision, despite its being important for the contractor, often needs to be made quickly and within a limited timeframe. To facilitate the contractor's reasoning by limiting randomness that may lead to mistakes decision support models are frequently applied. This paper presents possible applications of an Artificial Neural Network (ANN) to support bidding decisions. The proposed model involving networks with radial basis functions (RBF) was to perform a classification task. On the basis of a set of input data, the network was to suggest either participation in the bid or resignation from it. The results, 93% of correctly classified cases, confirmed the usability of RBF network in solving the problem.

  1. Prolog: A Practical Language for Decision Support Systems in Nursing?

    PubMed Central

    Ozbolt, Judy G.

    1987-01-01

    Developing decision support systems for nursing has been limited by difficulties in defining and representing nursing's knowledge base and by a lack of knowledge of how nurses make decisions. Recent theoretical and empirical work offers solutions to those problems. The challenge now is to represent nursing knowledge in a way that is comprehensible to both nurse and computer and to design decision support modalities that are accurate, efficient, and appropriate for nurses with different levels of expertise. This paper reviews the issues and critically evaluates Prolog as a tool for meeting the challenge.

  2. Nurses' ethical decision-making role in artificial nutritional support.

    PubMed

    Tsaloglidou, A; Rammos, K; Kiriklidis, K; Zourladani, A; Matziari, C

    This study provides an insight into the process of ethical decision-making regarding the initiation or withdrawal of artificial nutritional support of seriously ill patients and explores the nursing involvement in it. Fifteen health carers were recruited from a clinical nutrition unit in the UK and qualitative research methods were used to gather data. The findings of the study indicate that nursing contribution to decision-making appeared to be in the 'back room' as the nurses feel that the decisions about difficult ethical dilemmas are 'out of their hands' because of lack of knowledge, experience and confidence. The medical staff and the clinical nurse specialist appear to be primarily responsible for making important decisions. It is clear from the study that to become more effective in the process, nurses need to enhance their knowledge in nutritional support and to develop their practical skills in ethical decision-making through experience and research.

  3. Designing Colorectal Cancer Screening Decision Support: A Cognitive Engineering Enterprise

    PubMed Central

    Militello, Laura G.; Saleem, Jason J.; Borders, Morgan R.; Sushereba, Christen E.; Haverkamp, Donald; Wolf, Steven P.; Doebbeling, Bradley N.

    2016-01-01

    Adoption of clinical decision support has been limited. Important barriers include an emphasis on algorithmic approaches to decision support that do not align well with clinical work flow and human decision strategies, and the expense and challenge of developing, implementing, and refining decision support features in existing electronic health records (EHRs). We applied decision-centered design to create a modular software application to support physicians in managing and tracking colorectal cancer screening. Using decision-centered design facilitates a thorough understanding of cognitive support requirements from an end user perspective as a foundation for design. In this project, we used an iterative design process, including ethnographic observation and cognitive task analysis, to move from an initial design concept to a working modular software application called the Screening & Surveillance App. The beta version is tailored to work with the Veterans Health Administration’s EHR Computerized Patient Record System (CPRS). Primary care providers using the beta version Screening & Surveillance App more accurately answered questions about patients and found relevant information more quickly compared to those using CPRS alone. Primary care providers also reported reduced mental effort and rated the Screening & Surveillance App positively for usability. PMID:26973441

  4. System-Agnostic Clinical Decision Support Services: Benefits and Challenges for Scalable Decision Support

    PubMed Central

    Kawamoto, Kensaku; Del Fiol, Guilherme; Orton, Charles; Lobach, David F

    2010-01-01

    System-agnostic clinical decision support (CDS) services provide patient evaluation capabilities that are independent of specific CDS systems and system implementation contexts. While such system-agnostic CDS services hold great potential for facilitating the widespread implementation of CDS systems, little has been described regarding the benefits and challenges of their use. In this manuscript, the authors address this need by describing potential benefits and challenges of using a system-agnostic CDS service. This analysis is based on the authors’ formal assessments of, and practical experiences with, various approaches to developing, implementing, and maintaining CDS capabilities. In particular, the analysis draws on the authors’ experience developing and leveraging a system-agnostic CDS Web service known as SEBASTIAN. A primary potential benefit of using a system-agnostic CDS service is the relative ease and flexibility with which the service can be leveraged to implement CDS capabilities across applications and care settings. Other important potential benefits include facilitation of centralized knowledge management and knowledge sharing; the potential to support multiple underlying knowledge representations and knowledge resources through a common service interface; improved simplicity and componentization; easier testing and validation; and the enabling of distributed CDS system development. Conversely, important potential challenges include the increased effort required to develop knowledge resources capable of being used in many contexts and the critical need to standardize the service interface. Despite these challenges, our experiences to date indicate that the benefits of using a system-agnostic CDS service generally outweigh the challenges of using this approach to implementing and maintaining CDS systems. PMID:21603281

  5. System-agnostic clinical decision support services: benefits and challenges for scalable decision support.

    PubMed

    Kawamoto, Kensaku; Del Fiol, Guilherme; Orton, Charles; Lobach, David F

    2010-01-01

    System-agnostic clinical decision support (CDS) services provide patient evaluation capabilities that are independent of specific CDS systems and system implementation contexts. While such system-agnostic CDS services hold great potential for facilitating the widespread implementation of CDS systems, little has been described regarding the benefits and challenges of their use. In this manuscript, the authors address this need by describing potential benefits and challenges of using a system-agnostic CDS service. This analysis is based on the authors' formal assessments of, and practical experiences with, various approaches to developing, implementing, and maintaining CDS capabilities. In particular, the analysis draws on the authors' experience developing and leveraging a system-agnostic CDS Web service known as SEBASTIAN. A primary potential benefit of using a system-agnostic CDS service is the relative ease and flexibility with which the service can be leveraged to implement CDS capabilities across applications and care settings. Other important potential benefits include facilitation of centralized knowledge management and knowledge sharing; the potential to support multiple underlying knowledge representations and knowledge resources through a common service interface; improved simplicity and componentization; easier testing and validation; and the enabling of distributed CDS system development. Conversely, important potential challenges include the increased effort required to develop knowledge resources capable of being used in many contexts and the critical need to standardize the service interface. Despite these challenges, our experiences to date indicate that the benefits of using a system-agnostic CDS service generally outweigh the challenges of using this approach to implementing and maintaining CDS systems.

  6. Barriers to and facilitators of implementing shared decision making and decision support in a paediatric hospital: A descriptive study

    PubMed Central

    Boland, Laura; McIsaac, Daniel I; Lawson, Margaret L

    2016-01-01

    OBJECTIVE: To explore multiple stakeholders’ perceived barriers to and facilitators of implementing shared decision making and decision support in a tertiary paediatric hospital. METHODS: An interpretive descriptive qualitative study was conducted using focus groups and interviews to examine senior hospital administrators’, clinicians’, parents’ and youths’ perceived barriers to and facilitators of shared decision making and decision support implementation. Data were analyzed using inductive thematic analysis. RESULTS: Fifty-seven stakeholders participated. Six barrier and facilitator themes emerged. The main barrier was gaps in stakeholders’ knowledge of shared decision making and decision support. Facilitators included compatibility between shared decision making and the hospital’s culture and ideal practices, perceptions of positive patient and family outcomes associated with shared decision making, and positive attitudes regarding shared decision making and decision support. However, youth attitudes regarding the necessity and usefulness of a decision support program were a barrier. Two themes were both a barrier and a facilitator. First, stakeholder groups were uncertain which clinical situations are suitable for shared decision making (eg, new diagnoses, chronic illnesses, complex decisions or urgent decisions). Second, the clinical process may be hindered if shared decision making and decision support decrease efficiency and workflow; however, shared decision making may reduce repeat visits and save time over the long term. CONCLUSIONS: Specific knowledge translation strategies that improve shared decision making knowledge and match specific barriers identified by each stakeholder group may be required to promote successful shared decision making and decision support implementation in the authors’ paediatric hospital. PMID:27398058

  7. Automated revision of CLIPS rule-bases

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.; Pazzani, Michael J.

    1994-01-01

    This paper describes CLIPS-R, a theory revision system for the revision of CLIPS rule-bases. CLIPS-R may be used for a variety of knowledge-base revision tasks, such as refining a prototype system, adapting an existing system to slightly different operating conditions, or improving an operational system that makes occasional errors. We present a description of how CLIPS-R revises rule-bases, and an evaluation of the system on three rule-bases.

  8. Structured decision making as a method for linking quantitative decision support to community fundamental objectives

    EPA Science Inventory

    Decision support intended to improve ecosystem sustainability requires that we link stakeholder priorities directly to quantitative tools and measures of desired outcomes. Actions taken at the community level can have large impacts on production and delivery of ecosystem service...

  9. Reviewing model application to support animal health decision making.

    PubMed

    Singer, Alexander; Salman, Mo; Thulke, Hans-Hermann

    2011-04-01

    Animal health is of societal importance as it affects human welfare, and anthropogenic interests shape decision making to assure animal health. Scientific advice to support decision making is manifold. Modelling, as one piece of the scientific toolbox, is appreciated for its ability to describe and structure data, to give insight in complex processes and to predict future outcome. In this paper we study the application of scientific modelling to support practical animal health decisions. We reviewed the 35 animal health related scientific opinions adopted by the Animal Health and Animal Welfare Panel of the European Food Safety Authority (EFSA). Thirteen of these documents were based on the application of models. The review took two viewpoints, the decision maker's need and the modeller's approach. In the reviewed material three types of modelling questions were addressed by four specific model types. The correspondence between tasks and models underpinned the importance of the modelling question in triggering the modelling approach. End point quantifications were the dominating request from decision makers, implying that prediction of risk is a major need. However, due to knowledge gaps corresponding modelling studies often shed away from providing exact numbers. Instead, comparative scenario analyses were performed, furthering the understanding of the decision problem and effects of alternative management options. In conclusion, the most adequate scientific support for decision making - including available modelling capacity - might be expected if the required advice is clearly stated.

  10. Developing a Decision Support System: The Software and Hardware Tools.

    ERIC Educational Resources Information Center

    Clark, Phillip M.

    1989-01-01

    Describes some of the available software and hardware tools that can be used to develop a decision support system implemented on microcomputers. Activities that should be supported by software are discussed, including data entry, data coding, finding and combining data, and data compatibility. Hardware considerations include speed, storage…

  11. Reducing Diagnostic Error with Computer-Based Clinical Decision Support

    ERIC Educational Resources Information Center

    Greenes, Robert A.

    2009-01-01

    Information technology approaches to delivering diagnostic clinical decision support (CDS) are the subject of the papers to follow in the proceedings. These will address the history of CDS and present day approaches (Miller), evaluation of diagnostic CDS methods (Friedman), and the role of clinical documentation in supporting diagnostic decision…

  12. Promoting Shared Decision Making in Disorders of Sex Development (DSD): Decision Aids and Support Tools.

    PubMed

    Siminoff, L A; Sandberg, D E

    2015-05-01

    Specific complaints and grievances from adult patients with disorders of sex development (DSD), and their advocates center around the lack of information or misinformation they were given about their condition and feeling stigmatized and shamed by the secrecy surrounding their condition and its management. Many also attribute poor sexual function to damaging genital surgery and/or repeated, insensitive genital examinations. These reports suggest the need to reconsider the decision-making process for the treatment of children born with DSD. This paper proposes that shared decision making, an important concept in adult health care, be operationalized for the major decisions commonly encountered in DSD care and facilitated through the utilization of decision aids and support tools. This approach may help patients and their families make informed decisions that are better aligned with their personal values and goals. It may also lead to greater confidence in decision making with greater satisfaction and less regret. A brief review of the past and current approach to DSD decision making is provided, along with a review of shared decision making and decision aids and support tools. A case study explores the need and potential utility of this suggested new approach.

  13. Multi-Objective Markov Decision Processes for Data-Driven Decision Support

    PubMed Central

    Lizotte, Daniel J.; Laber, Eric B.

    2016-01-01

    We present new methodology based on Multi-Objective Markov Decision Processes for developing sequential decision support systems from data. Our approach uses sequential decision-making data to provide support that is useful to many different decision-makers, each with different, potentially time-varying preference. To accomplish this, we develop an extension of fitted-Q iteration for multiple objectives that computes policies for all scalarization functions, i.e. preference functions, simultaneously from continuous-state, finite-horizon data. We identify and address several conceptual and computational challenges along the way, and we introduce a new solution concept that is appropriate when different actions have similar expected outcomes. Finally, we demonstrate an application of our method using data from the Clinical Antipsychotic Trials of Intervention Effectiveness and show that our approach offers decision-makers increased choice by a larger class of optimal policies. PMID:28018133

  14. Decision support methodology to establish priorities on the inspection of structures

    NASA Astrophysics Data System (ADS)

    Cortes, V. Juliette; Sterlacchini, Simone; Bogaard, Thom; Frigerio, Simone; Schenato, Luca; Pasuto, Alessandro

    2014-05-01

    For hydro-meteorological hazards in mountain areas, the regular inspection of check dams and bridges is important due to the effect of their functional status on water-sediment processes. Moreover, the inspection of these structures is time consuming for organizations due to their extensive number in many regions. However, trained citizen-volunteers can support civil protection and technical services in the frequency, timeliness and coverage of monitoring the functional status of hydraulic structures. Technicians should evaluate and validate these reports to get an index for the status of the structure. Thus, preventive actions could initiate such as the cleaning of obstructions or to pre-screen potential problems for a second level inspection. This study proposes a decision support methodology that technicians can use to assess an index for three parameters representing the functional status of the structure: a) condition of the structure at the opening of the stream flow, b) level of obstruction at the structure and c) the level of erosion in the stream bank. The calculation of the index for each parameter is based upon fuzzy logic theory to handle ranges in precision of the reports and to convert the linguistic rating scales into numbers representing the structure's status. A weighting method and multi-criteria method (Analytic Hierarchy Process- AHP and TOPSIS), can be used by technicians to combine the different ratings according to the component elements of the structure and the completeness of the reports. Finally, technicians can set decision rules based on the worst rating and a threshold for the functional indexes. The methodology was implemented as a prototype web-based tool to be tested with technicians of the Civil Protection in the Fella basin, Northern Italy. Results at this stage comprise the design and implementation of the web-based tool with GIS interaction to evaluate available reports and to set priorities on the inspection of structures

  15. Risk Analysis Based Business Rule Enforcement for Intelligent Decision Support

    NASA Astrophysics Data System (ADS)

    Vasilecas, Olegas; Smaizys, Aidas; Brazinskas, Ramunas

    Intelligent information systems are acting by structured rules and do not deal with possible impact on the business environment or future consequences. That is the main reason why automated decisions based on such rules cannot take responsibility and requires involvement or approval of dedicated business people. This limits decision automation possibilities in information systems. However, business rules describe business policy and represent business logics. This can be used in intelligent information systems, together with risk assessment model to simulate real business environment and evaluate possible impact of automated decisions, to support intelligent decision automation. The chapter proposes risk and business rule model integration to provide full intelligent decision automation model used for business rule enforcement and implementation into intelligent software systems of information systems.

  16. Periodicals collection management using a decision support system

    SciTech Connect

    Compton, M.L.; Moser, E.C.

    1993-12-31

    Sandia National Laboratories is a multiprogram national laboratory established in 1949. The Library currently uses DOBIS for its automated system, including the Periodicals Control function for periodical check-in. DOBIS performs processing and control functions adequately, but could not meet our reporting needs. Therefore the Library`s Periodicals Decision Team decided that they needed another ``system`` for collection management. A Periodicals Decision Support System was created using information downloaded from DOBIS and uploaded into dBASE IV. The Periodical Decision Support System functions as an information-processing system that has aided us in making collection management decisions for periodicals. It certainly allows us to do interactive ad-hoc analysis; although there are no modeling tools currently incorporated in the system. We hope that these modeling tools will come later. We have been gathering information and developing needed reports to achieve this goal.

  17. IBM’s Health Analytics and Clinical Decision Support

    PubMed Central

    Sun, J.; Knoop, S.; Shabo, A.; Carmeli, B.; Sow, D.; Syed-Mahmood, T.; Rapp, W.

    2014-01-01

    Summary Objectives This survey explores the role of big data and health analytics developed by IBM in supporting the transformation of healthcare by augmenting evidence-based decision-making. Methods Some problems in healthcare and strategies for change are described. It is argued that change requires better decisions, which, in turn, require better use of the many kinds of healthcare information. Analytic resources that address each of the information challenges are described. Examples of the role of each of the resources are given. Results There are powerful analytic tools that utilize the various kinds of big data in healthcare to help clinicians make more personalized, evidenced-based decisions. Such resources can extract relevant information and provide insights that clinicians can use to make evidence-supported decisions. There are early suggestions that these resources have clinical value. As with all analytic tools, they are limited by the amount and quality of data. Conclusion Big data is an inevitable part of the future of healthcare. There is a compelling need to manage and use big data to make better decisions to support the transformation of healthcare to the personalized, evidence-supported model of the future. Cognitive computing resources are necessary to manage the challenges in employing big data in healthcare. Such tools have been and are being developed. The analytic resources, themselves, do not drive, but support healthcare transformation. PMID:25123736

  18. ClinicalAccess: a clinical decision support tool.

    PubMed

    Crowell, Karen; Vardell, Emily

    2015-01-01

    ClinicalAccess is a new clinical decision support tool that uses a question-and-answer format to mirror clinical decision-making strategies. The unique format of ClinicalAccess delivers concise, authoritative answers to more than 120,000 clinical questions. This column presents a review of the product, a sample search, and a comparison with other point-of-care search engines.

  19. Application of GIS in foreign direct investment decision support system

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlan; Sun, Koumei

    2007-06-01

    It is important to make decisions on how to attract foreign direct investment (FDI) to China and know how the inequality of FDI introduction by locational different provinces. Following background descriptions on China's FDI economic environments and FDI-related policies, this paper demonstrates the uses of geographical information system (GIS) and multi-criterion decision-making (MCDM) framework in solving a spatial multi-objective problem of evaluating and ranking China's provinces for FDI introduction. It implements a foreign direct investment decision support system, which reveals the main determinants of FDI in China and gives some results of regional geographical analysis over spatial data.

  20. Modular analytics management architecture for interoperability and decision support

    NASA Astrophysics Data System (ADS)

    Marotta, Stephen; Metzger, Max; Gorman, Joe; Sliva, Amy

    2016-05-01

    The Dual Node Decision Wheels (DNDW) architecture is a new approach to information fusion and decision support systems. By combining cognitive systems engineering organizational analysis tools, such as decision trees, with the Dual Node Network (DNN) technical architecture for information fusion, the DNDW can align relevant data and information products with an organization's decision-making processes. In this paper, we present the Compositional Inference and Machine Learning Environment (CIMLE), a prototype framework based on the principles of the DNDW architecture. CIMLE provides a flexible environment so heterogeneous data sources, messaging frameworks, and analytic processes can interoperate to provide the specific information required for situation understanding and decision making. It was designed to support the creation of modular, distributed solutions over large monolithic systems. With CIMLE, users can repurpose individual analytics to address evolving decision-making requirements or to adapt to new mission contexts; CIMLE's modular design simplifies integration with new host operating environments. CIMLE's configurable system design enables model developers to build analytical systems that closely align with organizational structures and processes and support the organization's information needs.

  1. Machine Learning Techniques for Decision Support in Intelligent Data Management

    NASA Astrophysics Data System (ADS)

    Lynnes, C.; Miller, J.; Ramapriyan, H.; Isaac, D.; Harberts, R.

    2002-12-01

    NASA's growth in remote sensing data volumes has kept pace with Moore's Law, i.e., doubling every 18 months, with future growth likely from new instruments. Also, advances in instrumental design (e.g., hyperspectral scanners) and science algorithms are enabling more near-real-time applications of the data. The confluence of low-latency requirements with high data volumes and numbers of files poses major challenges for archive data management. In order to make the right data available at the right time, an archive will need to apply knowledge of the data content in its data management decisions. This decision support domain includes aspects such as automatic quality assessment, feature detection to support caching decisions, and content-based metadata to support efficient data selection. In this study, we evaluate a variety of machine learning algorithms for use in several decision support roles in intelligent data management. Machine learning algorithms such as neural networks and clustering have been used for decision support in business and policy domains. These techniques have found some use in remote sensing, e.g., for cloud and land cover classification. Yet most research on remote sensing data rests on science-based algorithms, such as those based on radiative transfer equations. Machine learning for scientific applications faces challenges such as discretization constraints, non-physical basis, and the difficulty of assembling training sets. However, these difficulties may be less significant in the decision support role. For instance, it is often enough to know whether a data attribute exceeds a certain threshold when selecting it for an application, without knowing the exact value. The training data problem can be surmounted by using products output by the science-based algorithms. On the other hand, an advantage of machine learning algorithms for decision support is their speed once they have been trained. Data management decisions must be made while the

  2. Shared decision making in Chile: supportive policies and research initiatives.

    PubMed

    Bravo, Paulina; Cabieses, Báltica; Bustamante, Claudia; Campos, Solange; Stacey, Dawn

    2011-01-01

    WHAT ABOUT POLICY REGARDING SDM? Since 1999, there has been a small but growing interest by academics, the government, and society as a whole in strengthening patients' and professionals' involvement in shared decision making (SDM). Two governmental policy documents that indicate support for SDM are (1) Health Reform in 2003 and (2) Sanitary Objectives 2011-2020, which includes a brief section on client participation and SDM. WHAT ABOUT TOOLS - DECISION SUPPORT FOR PATIENTS? Research by Chilean academics has highlighted the patients' desire to participate in health decisions and effective approaches for enhancing health professionals' skills in interprofessional SDM; however, little has been done to support this need and the work is centralised in only one academic institution. Decision support tools and coaching interventions are limited to patients considering decisions about managing type 2 diabetes. WHAT ABOUT PROFESSIONAL INTEREST AND IMPLEMENTATION? Although there is increasing attention to studying patients' participation and involvement on their healthcare, little has been studied in relation to professionals' interest in SDM. As well, there are significant challenges for implementation of a country-wide SDM policy. WHAT DOES THE FUTURE LOOK LIKE? The future looks promising given the new health policies, local Chilean research projects, and international initiatives. Collaboration between health professionals, academics, and government policy makers, with public involvement needs to be strengthened in order to promote concrete strategies to implement SDM in Chile.

  3. Decision Support Systems for Research and Management in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Rodriquez, Luis F.

    2004-01-01

    Decision support systems have been implemented in many applications including strategic planning for battlefield scenarios, corporate decision making for business planning, production planning and control systems, and recommendation generators like those on Amazon.com(Registered TradeMark). Such tools are reviewed for developing a similar tool for NASA's ALS Program. DSS are considered concurrently with the development of the OPIS system, a database designed for chronicling of research and development in ALS. By utilizing the OPIS database, it is anticipated that decision support can be provided to increase the quality of decisions by ALS managers and researchers.

  4. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that

  5. g.infer: A GRASS GIS module for rule-based data-driven classification and workflow control.

    NASA Astrophysics Data System (ADS)

    Löwe, Peter

    2013-04-01

    This poster describes the internal architecture of the new GRASS GIS module g.infer [1] and demonstrates application scenarios . The new module for GRASS GIS Version 6.x and 7.x enables rule-based analysis and workflow management via data-driven inference processes based on the C Language Integrated Production System (CLIPS) [2]. g.infer uses the pyClips module [3] to provide an Python-based environment for CLIPS within the GRASS GIS environment for rule-based knowledge engineering. Application scenarios range from rule-based classification tasks, event-driven workflow-control to complex simulations for tasks such as Soil Erosion Monitoring and Disaster Early Warning [4]. References: [1] Löwe P.: Introducing the new GRASS module g.infer for data-driven rule-based applications, Vol.8 2012-08, Geoinformatics FCE CTU, ISSN 1802-2669 [2] http://clipsrules.sourceforge.net/ [3] http://pyclips.sourceforge.net/web/ [4] Löwe P.: A Spatial Decision Support System for Radar-metereology Data in South Africa, Transactions in GIS 2004, (2): 235-244

  6. A fuzzy rule based metamodel for monthly catchment nitrate fate simulations

    NASA Astrophysics Data System (ADS)

    van der Heijden, S.; Haberlandt, U.

    2015-12-01

    The high complexity of nitrate dynamics and corresponding deterministic models make it very appealing to employ easy, fast, and parsimonious modelling alternatives for decision support. This study presents a fuzzy rule based metamodel consisting of eight fuzzy modules, which is able to simulate nitrate fluxes in large watersheds from their diffuse sources via surface runoff, interflow, and base flow to the catchment outlet. The fuzzy rules are trained on a database established with a calibrated SWAT model for an investigation area of 1000 km2. The metamodel performs well on this training area and on two out of three validation areas in different landscapes, with a Nash-Sutcliffe coefficient of around 0.5-0.7 for the monthly nitrate calculations. The fuzzy model proves to be fast, requires only few readily available input data, and the rule based model structure facilitates a common-sense interpretation of the model, which deems the presented approach suitable for the development of decision support tools.

  7. Technology Infusion Challenges from a Decision Support Perspective

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Weisbin, C. R.

    2009-01-01

    In a restricted science budget environment and increasingly numerous required technology developments, the technology investment decisions within NASA are objectively more and more difficult to make such that the end results are satisfying the technical objectives and all the organizational constraints. Under these conditions it is rationally desirable to build an investment portfolio, which has the highest possible technology infusion rate. Arguably the path to infusion is subject to many influencing factors, but here only the challenges associated with the very initial stages are addressed: defining the needs and the subsequent investment decision-support process. It is conceivable that decision consistency and possibly its quality suffer when the decision-making process has limited or no traceability. This paper presents a structured decision-support framework aiming to provide traceable, auditable, infusion- driven recommendations towards a selection process in which these recommendations are used as reference points in further discussions among stakeholders. In this framework addressing well-defined requirements, different measures of success can be defined based on traceability to specific selection criteria. As a direct result, even by using simplified decision models the likelihood of infusion can be probed and consequently improved.

  8. Decision support model for introduction of gamification solution using AHP.

    PubMed

    Kim, Sangkyun

    2014-01-01

    Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform.

  9. Decision Support Model for Introduction of Gamification Solution Using AHP

    PubMed Central

    2014-01-01

    Gamification means the use of various elements of game design in nongame contexts including workplace collaboration, marketing, education, military, and medical services. Gamification is effective for both improving workplace productivity and motivating employees. However, introduction of gamification is not easy because the planning and implementation processes of gamification are very complicated and it needs interdisciplinary knowledge such as information systems, organization behavior, and human psychology. Providing a systematic decision making method for gamification process is the purpose of this paper. This paper suggests the decision criteria for selection of gamification platform to support a systematic decision making process for managements. The criteria are derived from previous works on gamification, introduction of information systems, and analytic hierarchy process. The weights of decision criteria are calculated through a survey by the professionals on game, information systems, and business administration. The analytic hierarchy process is used to derive the weights. The decision criteria and weights provided in this paper could support the managements to make a systematic decision for selection of gamification platform. PMID:24892075

  10. Distributed decision support for the 21st century mission space

    NASA Astrophysics Data System (ADS)

    McQuay, William K.

    2002-07-01

    The past decade has produced significant changes in the conduct of military operations: increased humanitarian missions, asymmetric warfare, the reliance on coalitions and allies, stringent rules of engagement, concern about casualties, and the need for sustained air operations. Future mission commanders will need to assimilate a tremendous amount of information, make quick-response decisions, and quantify the effects of those decisions in the face of uncertainty. Integral to this process is creating situational assessment-understanding the mission space, simulation to analyze alternative futures, current capabilities, planning assessments, course-of-action assessments, and a common operational picture-keeping everyone on the same sheet of paper. Decision support tools in a distributed collaborative environment offer the capability of decomposing these complex multitask processes and distributing them over a dynamic set of execution assets. Decision support technologies can semi-automate activities, such as planning an operation, that have a reasonably well-defined process and provide machine-level interfaces to refine the myriad of information that is not currently fused. The marriage of information and simulation technologies provides the mission commander with a collaborative virtual environment for planning and decision support.

  11. Data Mining and Data Fusion for Enhanced Decision Support

    SciTech Connect

    Khan, Shiraj; Ganguly, Auroop R; Gupta, Amar

    2008-01-01

    The process of Data Mining converts information to knowledge by utilizing tools from the disciplines of computational statistics, database technologies, machine learning, signal processing, nonlinear dynamics, process modeling, simulation, and allied disciplines. Data Mining allows business problems to be analyzed from diverse perspectives, including dimensionality reduction, correlation and co-occurrence, clustering and classification, regression and forecasting, anomaly detection, and change analysis. The predictive insights generated from Data Mining can be further utilized through real-time analysis and decision sciences, as well as through human-driven analysis based on management by exceptions or by objectives, to generate actionable knowledge. The tools that enable the transformation of raw data to actionable predictive insights are collectively referred as Decision Support tools. This chapter presents a new formalization of the decision process, leading to a new Decision Superiority model, partially motivated by the Joint Directors of Laboratories (JDL) Data Fusion Model. In addition, it examines the growing importance of Data Fusion concepts.

  12. Web-LCCA: decision support system for military display acquisition

    NASA Astrophysics Data System (ADS)

    Binder, Michael L.; Calvo, Alberto B.; Gibson, Gregory J.

    2000-08-01

    This paper describes a Decision Support System for military display acquisition being developed under U.S. Display Consortium (USDC) sponsorship. The core of the system is a standard Life-Cycle Cost model. The system will use World Wide Web technology to make it widely accessible to Industry and Government Program Offices for use in the Display Acquisition Decision Process. Web-LCCA (Life-Cycle Cost Analyzer), a derivative of TASC's LCCATM, has been designed to aid in the evaluation of different Display System acquisition options. The target users of Web-LCCA are display vendors (Industry) and buyers (Government Program Offices). Web-LCCA will be USDC's standard tool for supporting cost tradeoffs and acquisition decisions among current operational displays and new flat panel display products.

  13. Clinical decision support: the power behind the electronic health record.

    PubMed

    Glaser, John

    2008-07-01

    There are six strategic objectives for promoting adoption of clinical decision support: Use a standardized format for representing clinical data and CDS interventions. Ensure appropriate access to clinical data and CDS interventions. Provide support and incentives for providers to use CDS. Disseminate information about best practices for system design, CDS delivery, and CDS implementation. Continue national demonstrations and evaluation of CDS use. Leverage data interchange between EHRs.

  14. Behavior-aware decision support systems : LDRD final report.

    SciTech Connect

    Hirsch, Gary B.; Homer, Jack; Chenoweth, Brooke N.; Backus, George A.; Strip, David R.

    2007-11-01

    As Sandia National Laboratories serves its mission to provide support for the security-related interests of the United States, it is faced with considering the behavioral responses that drive problems, mitigate interventions, or lead to unintended consequences. The effort described here expands earlier works in using healthcare simulation to develop behavior-aware decision support systems. This report focuses on using qualitative choice techniques and enhancing two analysis models developed in a sister project.

  15. A decision support system for rainfed agricultural areas of Mexico

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rural inhabitants of arid lands lack sufficient water to fulfill their agricultural and household needs. They do not have readily available technical information to support decisions regarding the course of action they should follow to handle the agro-climatic risk. In this paper, a computer model (...

  16. A Decision Support System for Solving Multiple Criteria Optimization Problems

    ERIC Educational Resources Information Center

    Filatovas, Ernestas; Kurasova, Olga

    2011-01-01

    In this paper, multiple criteria optimization has been investigated. A new decision support system (DSS) has been developed for interactive solving of multiple criteria optimization problems (MOPs). The weighted-sum (WS) approach is implemented to solve the MOPs. The MOPs are solved by selecting different weight coefficient values for the criteria…

  17. Team Machine: A Decision Support System for Team Formation

    ERIC Educational Resources Information Center

    Bergey, Paul; King, Mark

    2014-01-01

    This paper reports on the cross-disciplinary research that resulted in a decision-support tool, Team Machine (TM), which was designed to create maximally diverse student teams. TM was used at a large United States university between 2004 and 2012, and resulted in significant improvement in the performance of student teams, superior overall balance…

  18. DECISION SUPPORT FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN WATERSHEDS

    EPA Science Inventory

    To assist stormwater management professionals in planning for best management practices (BMPs) implementation, the U.S. Environmental Protection Agency (USEPA) initiated a research in 2003 to develop a decision support system for placement of BMPs at strategic locations in urban ...

  19. Implementation problems of decision support system for nosocomial infection.

    PubMed

    Rems, M; Bohanec, M; Urh, B; Kramar, Z

    1997-01-01

    Decision support system for nosocomial infection therapy Ptah can reduce antibiotic misuse with data about bacteria resistance and antibiotic ineffectiveness. Resistance vectors in time series show epidemiological problems with resistant bacterias, named house-bacteria. Most important implementation factors are integrated hospital information system and doctors, nurses and managers interested in problems of nosocomial infection.

  20. Knowledge Flow Mesh and Its Dynamics: A Decision Support Environment

    DTIC Science & Technology

    2008-06-01

    Upper Saddle River, NJ, USA. 23 Mataxiotis, K. (2004). Decision support through knowledge management: The role of t artificial intelligence ...paper was the ability of the United States military to achieve dominance through information superiority. The use of intelligent sensors and... Intelligence Agency, National Security Agency, Defense Intelligence Agency, and individual Service intelligence agencies). In fact, these edge entities would

  1. Decision Support System for Disability Assessment and Intervention.

    ERIC Educational Resources Information Center

    Dowler, Denetta L.; And Others

    1991-01-01

    Constructed decision support system to aid referral of good candidates for rehabilitation from Social Security Administration to rehabilitation counselors. Three layers of system were gross screening based on policy guidelines, training materials, and interviews with experts; physical and mental functional capacity items derived from policy…

  2. Integrated decision support tools for Puget Sound salmon recovery planning

    EPA Science Inventory

    We developed a set of tools to provide decision support for community-based salmon recovery planning in Salish Sea watersheds. Here we describe how these tools are being integrated and applied in collaboration with Puget Sound tribes and community stakeholders to address restora...

  3. A knowledge-based decision support system for payload scheduling

    NASA Technical Reports Server (NTRS)

    Tyagi, Rajesh; Tseng, Fan T.

    1988-01-01

    This paper presents the development of a prototype Knowledge-based Decision Support System, currently under development, for scheduling payloads/experiments on space station missions. The DSS is being built on Symbolics, a Lisp machine, using KEE, a commercial knowledge engineering tool.

  4. Decision blocks: A tool for automating decision making in CLIPS

    NASA Technical Reports Server (NTRS)

    Eick, Christoph F.; Mehta, Nikhil N.

    1991-01-01

    The human capability of making complex decision is one of the most fascinating facets of human intelligence, especially if vague, judgemental, default or uncertain knowledge is involved. Unfortunately, most existing rule based forward chaining languages are not very suitable to simulate this aspect of human intelligence, because of their lack of support for approximate reasoning techniques needed for this task, and due to the lack of specific constructs to facilitate the coding of frequently reoccurring decision block to provide better support for the design and implementation of rule based decision support systems. A language called BIRBAL, which is defined on the top of CLIPS, for the specification of decision blocks, is introduced. Empirical experiments involving the comparison of the length of CLIPS program with the corresponding BIRBAL program for three different applications are surveyed. The results of these experiments suggest that for decision making intensive applications, a CLIPS program tends to be about three times longer than the corresponding BIRBAL program.

  5. Tools to support evidence-informed public health decision making

    PubMed Central

    2014-01-01

    Background Public health professionals are increasingly expected to engage in evidence-informed decision making to inform practice and policy decisions. Evidence-informed decision making involves the use of research evidence along with expertise, existing public health resources, knowledge about community health issues, the local context and community, and the political climate. The National Collaborating Centre for Methods and Tools has identified a seven step process for evidence-informed decision making. Tools have been developed to support public health professionals as they work through each of these steps. This paper provides an overview of tools used in three Canadian public health departments involved in a study to develop capacity for evidence-informed decision making. Methods As part of a knowledge translation and exchange intervention, a Knowledge Broker worked with public health professionals to identify and apply tools for use with each of the steps of evidence-informed decision making. The Knowledge Broker maintained a reflective journal and interviews were conducted with a purposive sample of decision makers and public health professionals. This paper presents qualitative analysis of the perceived usefulness and usability of the tools. Results Tools were used in the health departments to assist in: question identification and clarification; searching for the best available research evidence; assessing the research evidence for quality through critical appraisal; deciphering the ‘actionable message(s)’ from the research evidence; tailoring messages to the local context to ensure their relevance and suitability; deciding whether and planning how to implement research evidence in the local context; and evaluating the effectiveness of implementation efforts. Decision makers provided descriptions of how the tools were used within the health departments and made suggestions for improvement. Overall, the tools were perceived as valuable for advancing

  6. A Decision Support System for Concrete Bridge Maintenance

    NASA Astrophysics Data System (ADS)

    Rashidi, Maria; Lemass, Brett; Gibson, Peter

    2010-05-01

    The maintenance of bridges as a key element in transportation infrastructure has become a major concern for asset managers and society due to increasing traffic volumes, deterioration of existing bridges and well-publicised bridge failures. A pivotal responsibility for asset managers in charge of bridge remediation is to identify the risks and assess the consequences of remediation programs to ensure that the decisions are transparent and lead to the lowest predicted losses in recognized constraint areas. The ranking of bridge remediation treatments can be quantitatively assessed using a weighted constraint approach to structure the otherwise ill-structured phases of problem definition, conceptualization and embodiment [1]. This Decision Support System helps asset managers in making the best decision with regards to financial limitations and other dominant constraints imposed upon the problem at hand. The risk management framework in this paper deals with the development of a quantitative intelligent decision support system for bridge maintenance which has the ability to provide a source for consistent decisions through selecting appropriate remediation treatments based upon cost, service life, product durability/sustainability, client preferences, legal and environmental constraints. Model verification and validation through industry case studies is ongoing.

  7. Toward image analysis and decision support for ultrasound technology.

    PubMed

    Crofts, Gillian; Padman, Rema; Maharaja, Nisha

    2013-01-01

    Ultrasound is a low cost and efficient method of detecting diseases and abnormalities in the body. Yet there is a lack of precision and reliability associated with the technology, partly due to the operator dependent nature of ultrasound scanning. When scanning is performed to an agreed protocol, ultrasound has been shown to be highly reliable. This research aims to minimize these limitations that arise during ultrasound training, scanning and reporting by developing and evaluating an image analysis and decision support system that can aid the decision making process. We hypothesize that this intervention will likely increase the role of ultrasound in diagnosis when compared with other imaging technologies, particularly in low resource settings.

  8. Semantic Interoperability in Clinical Decision Support Systems: A Systematic Review.

    PubMed

    Marco-Ruiz, Luis; Bellika, Johan Gustav

    2015-01-01

    The interoperability of Clinical Decision Support (CDS) systems with other health information systems has become one of the main limitations to their broad adoption. Semantic interoperability must be granted in order to share CDS modules across different health information systems. Currently, numerous standards for different purposes are available to enable the interoperability of CDS systems. We performed a literature review to identify and provide an overview of the available standards that enable CDS interoperability in the areas of clinical information, decision logic, terminology, and web service interfaces.

  9. Virtual medical record implementation for enhancing clinical decision support.

    PubMed

    Gomoi, Valentin-Sergiu; Dragu, Daniel; Stoicu-Tivadar, Vasile

    2012-01-01

    Development of clinical decision support systems (CDS) is a process which highly depends on the local databases, this resulting in low interoperability. To increase the interoperability of CDS a standard representation of clinical information is needed. The paper suggests a CDS architecture which integrates several HL7 standards and the new vMR (virtual Medical Record). The clinical information for the CDS systems (the vMR) is represented with Topic Maps technology. Beside the implementation of the vMR, the architecture integrates: a Data Manager, an interface, a decision making system (based on Egadss), a retrieving data module. Conclusions are issued.

  10. Connecting clinical and actuarial prediction with rule-based methods.

    PubMed

    Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H

    2015-06-01

    Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods.

  11. A Decision Support System for Optimum Use of Fertilizers

    SciTech Connect

    Hoskinson, Reed Louis; Hess, John Richard; Fink, Raymond Keith

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems’ infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend in the agricultural decision-making process.

  12. A Decision Support System for Optimum Use of Fertilizers

    SciTech Connect

    R. L. Hoskinson; J. R. Hess; R. K. Fink

    1999-07-01

    The Decision Support System for Agriculture (DSS4Ag) is an expert system being developed by the Site-Specific Technologies for Agriculture (SST4Ag) precision farming research project at the INEEL. DSS4Ag uses state-of-the-art artificial intelligence and computer science technologies to make spatially variable, site-specific, economically optimum decisions on fertilizer use. The DSS4Ag has an open architecture that allows for external input and addition of new requirements and integrates its results with existing agricultural systems' infrastructures. The DSS4Ag reflects a paradigm shift in the information revolution in agriculture that is precision farming. We depict this information revolution in agriculture as an historic trend in the agricultural decision-making process.

  13. Insurance Contract Analysis for Company Decision Support in Acquisition Management

    NASA Astrophysics Data System (ADS)

    Chernovita, H. P.; Manongga, D.; Iriani, A.

    2017-01-01

    One of company activities to retain their business is marketing the products which include in acquisition management to get new customers. Insurance contract analysis using ID3 to produce decision tree and rules to be decision support for the insurance company. The decision tree shows 13 rules that lead to contract termination claim. This could be a guide for the insurance company in acquisition management to prevent contract binding with these contract condition because it has a big chance for the customer to terminate their insurance contract before its expired date. As the result, there are several strong points that could be the determinant of contract termination such as: 1) customer age whether too young or too old, 2) long insurance period (above 10 years), 3) big insurance amount, 4) big amount of premium charges, and 5) payment method.

  14. Middle Mississippi River decision support system: user's manual

    USGS Publications Warehouse

    Rohweder, Jason J.; Zigler, Steven J.; Fox, Timothy J.; Hulse, Steven N.

    2005-01-01

    This user's manual describes the Middle Mississippi River Decision Support System (MMRDSS) and gives detailed examples on its use. The MMRDSS provides a framework to assist decision makers regarding natural resource issues in the Middle Mississippi River floodplain. The MMRDSS is designed to provide users with a spatially explicit tool for tasks, such as inventorying existing knowledge, developing models to investigate the potential effects of management decisions, generating hypotheses to advance scientific understanding, and developing scientifically defensible studies and monitoring. The MMRDSS also includes advanced tools to assist users in evaluating differences in complexity, connectivity, and structure of aquatic habitats among river reaches. The Environmental Systems Research Institute ArcView 3.x platform was used to create and package the data and tools of the MMRDSS.

  15. Automating Guidelines for Clinical Decision Support: Knowledge Engineering and Implementation

    PubMed Central

    Tso, Geoffrey J.; Tu, Samson W.; Oshiro, Connie; Martins, Susana; Ashcraft, Michael; Yuen, Kaeli W.; Wang, Dan; Robinson, Amy; Heidenreich, Paul A.; Goldstein, Mary K.

    2016-01-01

    As utilization of clinical decision support (CDS) increases, it is important to continue the development and refinement of methods to accurately translate the intention of clinical practice guidelines (CPG) into a computable form. In this study, we validate and extend the 13 steps that Shiffman et al.5 identified for translating CPG knowledge for use in CDS. During an implementation project of ATHENA-CDS, we encoded complex CPG recommendations for five common chronic conditions for integration into an existing clinical dashboard. Major decisions made during the implementation process were recorded and categorized according to the 13 steps. During the implementation period, we categorized 119 decisions and identified 8 new categories required to complete the project. We provide details on an updated model that outlines all of the steps used to translate CPG knowledge into a CDS integrated with existing health information technology. PMID:28269916

  16. Prioritization of engineering support requests and advanced technology projects using decision support and industrial engineering models

    NASA Technical Reports Server (NTRS)

    Tavana, Madjid

    1995-01-01

    The evaluation and prioritization of Engineering Support Requests (ESR's) is a particularly difficult task at the Kennedy Space Center (KSC) -- Shuttle Project Engineering Office. This difficulty is due to the complexities inherent in the evaluation process and the lack of structured information. The evaluation process must consider a multitude of relevant pieces of information concerning Safety, Supportability, O&M Cost Savings, Process Enhancement, Reliability, and Implementation. Various analytical and normative models developed over the past have helped decision makers at KSC utilize large volumes of information in the evaluation of ESR's. The purpose of this project is to build on the existing methodologies and develop a multiple criteria decision support system that captures the decision maker's beliefs through a series of sequential, rational, and analytical processes. The model utilizes the Analytic Hierarchy Process (AHP), subjective probabilities, the entropy concept, and Maximize Agreement Heuristic (MAH) to enhance the decision maker's intuition in evaluating a set of ESR's.

  17. Towards the ecotourism: a decision support model for the assessment of sustainability of mountain huts in the Alps.

    PubMed

    Stubelj Ars, Mojca; Bohanec, Marko

    2010-12-01

    This paper studies mountain hut infrastructure in the Alps as an important element of ecotourism in the Alpine region. To improve the decision-making process regarding the implementation of future infrastructure and improvement of existing infrastructure in the vulnerable natural environment of mountain ecosystems, a new decision support model has been developed. The methodology is based on qualitative multi-attribute modelling supported by the DEXi software. The integrated rule-based model is hierarchical and consists of two submodels that cover the infrastructure of the mountain huts and that of the huts' surroundings. The final goal for the designed tool is to help minimize the ecological footprint of tourists in environmentally sensitive and undeveloped mountain areas and contribute to mountain ecotourism. The model has been tested in the case study of four mountain huts in Triglav National Park in Slovenia. Study findings provide a new empirical approach to evaluating existing mountain infrastructure and predicting improvements for the future. The assessment results are of particular interest for decision makers in protected areas, such as Alpine national parks managers and administrators. In a way, this model proposes an approach to the management assessment of mountain huts with the main aim of increasing the quality of life of mountain environment visitors as well as the satisfaction of tourists who may eventually become ecotourists.

  18. A Decision Support Model and Tool to Assist Financial Decision-Making in Universities

    ERIC Educational Resources Information Center

    Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive

    2015-01-01

    In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…

  19. Using nursing clinical decision support systems to achieve meaningful use.

    PubMed

    Harrison, Roberta L; Lyerla, Frank

    2012-07-01

    The Health Information Technology and Clinical Health Act (one component of the American Recovery and Reinvestment Act) is responsible for providing incentive payments to hospitals and eligible providers in an effort to support the adoption of electronic health records. Future penalties are planned for electronic health record noncompliance. In order to receive incentives and avoid penalties, hospitals and eligible providers must demonstrate "meaningful use" of their electronic health records. One of the meaningful-use objectives established by the Centers for Medicare & Medicaid Services involves the use of a clinical decision support rule that addresses a hospital-defined, high-priority condition. This article describes the Plan-Do-Study-Act process for creating and implementing a nursing clinical decision support system designed to improve guideline adherence for hypoglycemia management. This project identifies hypoglycemia management as the high-priority area. However, other facilities with different high-priority conditions may find the process presented in this article useful for implementing additional clinical decision support rules geared toward improving outcomes and meeting federal mandates.

  20. Human Decision Processes: Implications for SSA Support Tools

    NASA Astrophysics Data System (ADS)

    Picciano, P.

    2013-09-01

    paper), one opinion shared is that the rational, economic, deliberate listing/evaluation of all options is NOT representative of how many decision are made. A framework gaining interest lately describes two systems predominantly at work: intuition and reasoning (Kahneman, 2003). Intuition is fast, automatic, and parallel contrasted with the more effortful, deliberative, and sequential reasoning. One of the issues of contention is that considerable research is stacked supporting both sides claiming that intuition is: • A hallmark of expertise responsible for rapid, optimal decisions in the face of adversity • A vulnerability where biases serve as decision traps leading to wrong choices Using seminal studies from a range of domains and tasking, potential solutions for SSA decision support will be offered. Important issues such as managing uncertainty, framing inquiries, and information architecture, and contextual cues will be discussed. The purpose is to provide awareness of the human limitations and capabilities in complex decision making so engineers and designers can consider such factors in their development of SSA tools.

  1. A Customized Drought Decision Support Tool for Hsinchu Science Park

    NASA Astrophysics Data System (ADS)

    Huang, Jung; Tien, Yu-Chuan; Lin, Hsuan-Te; Liu, Tzu-Ming; Tung, Ching-Pin

    2016-04-01

    Climate change creates more challenges for water resources management. Due to the lack of sufficient precipitation in Taiwan in fall of 2014, many cities and counties suffered from water shortage during early 2015. Many companies in Hsinchu Science Park were significantly influenced and realized that they need a decision support tool to help them managing water resources. Therefore, a customized computer program was developed, which is capable of predicting the future status of public water supply system and water storage of factories when the water rationing is announced by the government. This program presented in this study for drought decision support (DDSS) is a customized model for a semiconductor company in the Hsinchu Science Park. The DDSS is programmed in Java which is a platform-independent language. System requirements are any PC with the operating system above Windows XP and an installed Java SE Runtime Environment 7. The DDSS serves two main functions. First function is to predict the future storage of Baoshan Reservoir and Second Baoshan Reservoir, so to determine the time point of water use restriction in Hsinchu Science Park. Second function is to use the results to help the company to make decisions to trigger their response plans. The DDSS can conduct real-time scenario simulations calculating the possible storage of water tank for each factory with pre-implementation and post-implementation of those response plans. In addition, DDSS can create reports in Excel to help decision makers to compare results between different scenarios.

  2. Supported decision making: a review of the international literature.

    PubMed

    Davidson, Gavin; Kelly, Berni; Macdonald, Geraldine; Rizzo, Maria; Lombard, Louise; Abogunrin, Oluwaseye; Clift-Matthews, Victoria; Martin, Alison

    2015-01-01

    Supported decision making (SDM) refers to the process of supporting people, whose decision making ability may be impaired, to make decisions and so promote autonomy and prevent the need for substitute decision making. There have been developments in SDM but mainly in the areas of intellectual disabilities and end-of-life care rather than in mental health. The main aim of this review was to provide an overview of the available evidence relevant to SDM and so facilitate discussion of how this aspect of law, policy and practice may be further developed in mental health services. The method used for this review was a Rapid Evidence Assessment which involved: developing appropriate search strategies; searching relevant databases and grey literature; then assessing, including and reviewing relevant studies. Included studies were grouped into four main themes: studies reporting stakeholders' views on SDM; studies identifying barriers to the implementation of SDM; studies highlighting ways to improve implementation; and studies on the impact of SDM. The available evidence on implementation and impact, identified by this review, is limited but there are important rights-based, effectiveness and pragmatic arguments for further developing and researching SDM for people with mental health problems.

  3. Evaluation of fuzzy relation method for medical decision support.

    PubMed

    Wagholikar, Kavishwar; Mangrulkar, Sanjeev; Deshpande, Ashok; Sundararajan, Vijayraghavan

    2012-02-01

    The potential of computer based tools to assist physicians in medical decision making, was envisaged five decades ago. Apart from factors like usability, integration with work-flow and natural language processing, lack of decision accuracy of the tools has hindered their utility. Hence, research to develop accurate algorithms for medical decision support tools, is required. Pioneering research in last two decades, has demonstrated the utility of fuzzy set theory for medical domain. Recently, Wagholikar and Deshpande proposed a fuzzy relation based method (FR) for medical diagnosis. In their case studies for heart and infectious diseases, the FR method was found to be better than naive bayes (NB). However, the datasets in their studies were small and included only categorical symptoms. Hence, more evaluative studies are required for drawing general conclusions. In the present paper, we compare the classification performance of FR with NB, for a variety of medical datasets. Our results indicate that the FR method is useful for classification problems in the medical domain, and that FR is marginally better than NB. However, the performance of FR is significantly better for datasets having high proportion of unknown attribute values. Such datasets occur in problems involving linguistic information, where FR can be particularly useful. Our empirical study will benefit medical researchers in the choice of algorithms for decision support tools.

  4. Decision Support for Patient Preference-based Care Planning

    PubMed Central

    Ruland, Cornelia M.

    1999-01-01

    Objective: While preference elicitation techniques have been effective in helping patients make decisions consistent with their preferences, little is known about whether information about patient preferences affects clinicians in clinical decision making and improves patient outcomes. The purpose of this study was to evaluate a decision support system for eliciting elderly patients' preferences for self-care capability and providing this information to nurses in clinical practice—specifically, its effect on nurses' care priorities and the patient outcomes of preference achievement and patient satisfaction. Design: Three-group quasi-experimental design with one experimental and two control groups (N = 151). In the experimental group computer-processed information about individual patient's preferences was placed in patients' charts to be used for care planning. Results: Information about patient preferences changed nurses' care priorities to be more consistent with patient preferences and improved patients' preference achievement and physical functioning. Further, higher consistency between patient preferences and nurses' care priorities was associated with higher preference achievement, and higher preference achievement with greater patient satisfaction. Conclusion: This study demonstrated that decision support for eliciting patient preferences and including them in nursing care planning is an effective and feasible strategy for improving nursing care and patient outcomes. PMID:10428003

  5. What can Natural Language Processing do for Clinical Decision Support?

    PubMed Central

    Demner-Fushman, Dina; Chapman, Wendy W.; McDonald, Clement J.

    2009-01-01

    Computerized Clinical Decision Support (CDS) aims to aid decision making of health care providers and the public by providing easily accessible health-related information at the point and time it is needed. Natural Language Processing (NLP) is instrumental in using free-text information to drive CDS, representing clinical knowledge and CDS interventions in standardized formats, and leveraging clinical narrative. The early innovative NLP research of clinical narrative was followed by a period of stable research conducted at the major clinical centers and a shift of mainstream interest to biomedical NLP. This review primarily focuses on the recently renewed interest in development of fundamental NLP methods and advances in the NLP systems for CDS. The current solutions to challenges posed by distinct sublanguages, intended user groups, and support goals are discussed. PMID:19683066

  6. Decision support system based semantic web for personalized patient care.

    PubMed

    Douali, Nassim; De Roo, Jos; Jaulent, Marie-Christine

    2012-01-01

    Personalized medicine may be considered an extension of traditional approaches to understanding and treating diseases, but with greater precision. A profile of a patient's genetic variation can guide the selection of drugs or treatment protocols that minimize harmful side effects or ensure a more successful outcome. In this paper we describe a decision support system designed to assist physicians for personalized care, and methodology for integration in the clinical workflow. A reasoning method for interacting heterogeneous knowledge and data is a necessity in the context of personalized medicine. Development of clinical decision support based semantic web for personalized patient care is to achieve its potential and improve the quality, safety and efficiency of healthcare.

  7. A Flight Deck Decision Support Tool for Autonomous Airborne Operations

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Sharma, Vivek; Vivona, Robert A.; Johnson, Edward J.; Ramiscal, Ermin

    2002-01-01

    NASA is developing a flight deck decision support tool to support research into autonomous operations in a future distributed air/ground traffic management environment. This interactive real-time decision aid, referred to as the Autonomous Operations Planner (AOP), will enable the flight crew to plan autonomously in the presence of dense traffic and complex flight management constraints. In assisting the flight crew, the AOP accounts for traffic flow management and airspace constraints, schedule requirements, weather hazards, aircraft operational limits, and crew or airline flight-planning goals. This paper describes the AOP and presents an overview of functional and implementation design considerations required for its development. Required AOP functionality is described, its application in autonomous operations research is discussed, and a prototype software architecture for the AOP is presented.

  8. Query Modification through External Sources to Support Clinical Decisions

    DTIC Science & Technology

    2014-11-01

    Query Modification through External Sources to Support Clinical Decisions Raymond Wan1, Jannifer Hiu-Kwan Man2, and Ting-Fung Chan1 1School of Life...query modifications that use either external data sources or a domain expert. While each method gave slightly different results, we discovered that...biomedical literature offers many possible paths of investigation, our study focused on modifications to the query using external data sources. We submitted 5

  9. Visualizing Non-Physical, Logical Constructs for Command Decision Support

    DTIC Science & Technology

    2004-04-01

    NY 14260 USA llinas@eng.buffalo.edu T. Kesavadas, Ph.D 315 Bell Hall University at Buffalo Buffalo, NY 14260 USA kesh @eng.buffalo.edu...Decision- Making Support Dr. James Llinas Dr. “ Kesh ” Kesavadas Center for Multisource Information Fusion (CMIF) State University of New York at...Buffalo Buffalo, New York, USA llinas@eng.buffalo.edu kesh @eng.buffalo.edu 7-2 Visualization, Info. Fusion and Logical Constructs Info Fusion Traditional

  10. Clinical Decision Support for Vascular Disease in Community Family Practice

    PubMed Central

    Keshavjee, K; Holbrook, AM; Lau, E; Esporlas-Jewer, I; Troyan, S

    2006-01-01

    The COMPETE III Vascular Disease Tracker (C3VT) is a personalized, Web-based, clinical decision support tool that provides patients and physicians access to a patient’s 16 individual vascular risk markers, specific advice for each marker and links to best practices in vascular disease management. It utilizes the chronic care model1 so that physicians can better manage patients with chronic diseases. Over 1100 patients have been enrolled into the COMPETE III study to date.

  11. Emulation Modeling with Bayesian Networks for Efficient Decision Support

    NASA Astrophysics Data System (ADS)

    Fienen, M. N.; Masterson, J.; Plant, N. G.; Gutierrez, B. T.; Thieler, E. R.

    2012-12-01

    Bayesian decision networks (BDN) have long been used to provide decision support in systems that require explicit consideration of uncertainty; applications range from ecology to medical diagnostics and terrorism threat assessments. Until recently, however, few studies have applied BDNs to the study of groundwater systems. BDNs are particularly useful for representing real-world system variability by synthesizing a range of hydrogeologic situations within a single simulation. Because BDN output is cast in terms of probability—an output desired by decision makers—they explicitly incorporate the uncertainty of a system. BDNs can thus serve as a more efficient alternative to other uncertainty characterization methods such as computationally demanding Monte Carlo analyses and others methods restricted to linear model analyses. We present a unique application of a BDN to a groundwater modeling analysis of the hydrologic response of Assateague Island, Maryland to sea-level rise. Using both input and output variables of the modeled groundwater response to different sea-level (SLR) rise scenarios, the BDN predicts the probability of changes in the depth to fresh water, which exerts an important influence on physical and biological island evolution. Input variables included barrier-island width, maximum island elevation, and aquifer recharge. The variability of these inputs and their corresponding outputs are sampled along cross sections in a single model run to form an ensemble of input/output pairs. The BDN outputs, which are the posterior distributions of water table conditions for the sea-level rise scenarios, are evaluated through error analysis and cross-validation to assess both fit to training data and predictive power. The key benefit for using BDNs in groundwater modeling analyses is that they provide a method for distilling complex model results into predictions with associated uncertainty, which is useful to decision makers. Future efforts incorporate

  12. Disaster Management with a Next Generation Disaster Decision Support System

    NASA Astrophysics Data System (ADS)

    Chen, Y.

    2015-12-01

    As populations become increasingly concentrated in large cities, the world is experiencing an inevitably growing trend towards the urbanisation of disasters. Scientists have contributed significant advances in understanding the geophysical causes of natural hazards and have developed sophisticated tools to predict their effects; while, much less attention has been devoted to tools that increase situational awareness, facilitate leadership, provide effective communication channels and data flow and enhance the cognitive abilities of decision makers and first responders. In this paper, we envisioned the capabilities of a next generation disaster decision support system and hence proposed a state-of-the-art system architecture design to facilitate the decision making process in natural catastrophes such as flood and bushfire by utilising a combination of technologies for multi-channel data aggregation, disaster modelling, visualisation and optimisation. Moreover, we put our thoughts into action by implementing an Intelligent Disaster Decision Support System (IDDSS). The developed system can easily plug in to external disaster models and aggregate large amount of heterogeneous data from government agencies, sensor networks, and crowd sourcing platforms in real-time to enhance the situational awareness of decision makers and offer them a comprehensive understanding of disaster impacts from diverse perspectives such as environment, infrastructure and economy, etc. Sponsored by the Australian Government and the Victorian Department of Justice (Australia), the system was built upon a series of open-source frameworks (see attached figure) with four key components: data management layer, model application layer, processing service layer and presentation layer. It has the potential to be adopted by a range of agencies across Australian jurisdictions to assist stakeholders in accessing, sharing and utilising available information in their management of disaster events.

  13. Proactive Decision Support Via Narrative-Integrated Multi-Level Support System (NIMSS)

    DTIC Science & Technology

    2014-11-30

    unlimited Overall objective is to create and test (using specific applications) a theory and model-based technology for enabling and advancing a...decision-makers build, maintain, and represent situational context. Integrate multiple existing theories and conceptual models of context that address...Develop NIMSS Theory & Formalism In this task, we will develop the NIM context model and develop a Decision Support model based on the underlying context

  14. Personalization and Patient Involvement in Decision Support Systems: Current Trends

    PubMed Central

    Sacchi, L.; Lanzola, G.; Viani, N.

    2015-01-01

    Summary Objectives This survey aims at highlighting the latest trends (2012-2014) on the development, use, and evaluation of Information and Communication Technologies (ICT) based decision support systems (DSSs) in medicine, with a particular focus on patient-centered and personalized care. Methods We considered papers published on scientific journals, by querying PubMed and Web of Science™. Included studies focused on the implementation or evaluation of ICT-based tools used in clinical practice. A separate search was performed on computerized physician order entry systems (CPOEs), since they are increasingly embedding patient-tailored decision support. Results We found 73 papers on DSSs (53 on specific ICT tools) and 72 papers on CPOEs. Although decision support through the delivery of recommendations is frequent (28/53 papers), our review highlighted also DSSs only based on efficient information presentation (25/53). Patient participation in making decisions is still limited (9/53), and mostly focused on risk communication. The most represented medical area is cancer (12%). Policy makers are beginning to be included among stakeholders (6/73), but integration with hospital information systems is still low. Concerning knowledge representation/management issues, we identified a trend towards building inference engines on top of standard data models. Most of the tools (57%) underwent a formal assessment study, even if half of them aimed at evaluating usability and not effectiveness. Conclusions Overall, we have noticed interesting evolutions of medical DSSs to improve communication with the patient, consider the economic and organizational impact, and use standard models for knowledge representation. However, systems focusing on patient-centered care still do not seem to be available at large. PMID:26293857

  15. Decision support system for economic value of irrigation water

    NASA Astrophysics Data System (ADS)

    El-Gafy, Inas; El-Ganzori, Akram

    2012-06-01

    The mismatch between the supply and demand, inequitable distribution and the over irrigation of water consuming crops are the main constraints that are faced in the implementation of the integrated water resources management in Egypt. With water scarcity, the problem under consideration is that the current cropping pattern is not economically efficient in the utilization of the available water resource. Moreover, in consequence of the importance of the agricultural sector to the national economies, it is necessary to be aware of the economic performance of water use in the crops production. The scope of this study is to develop economic value of irrigation water maps of Egypt. The objective of the study is carried out by acquiring a Decision Support System for economic value of irrigation water of Egypt. This Decision Support System is applied for developing economic value maps for the irrigation water that is used for cultivating 45 crops under cereal, fiber, legumes, and vegetables, herbalist, and forages categories at each governorate of Egypt in year 2008 and 2009. The crops that achieve the highest and lowest economic value of irrigation water at each governorate of Egypt were identified. The reasons of the variations in the economic value of irrigation water at the governorates of Egypt were determined. The developed Decision Support System could be used yearly as a tool for demonstrating a picture about the economic value of irrigation water for the decision makers in the areas of water resources and agriculture. The developed economic value of irrigation water maps can be used in proposing a cropping pattern that maximizes the economic value of irrigation water in each governorate of Egypt.

  16. Demonstration of Decision Support Tools for Sustainable Development

    SciTech Connect

    Shropshire, David Earl; Jacobson, Jacob Jordan; Berrett, Sharon; Cobb, D. A.; Worhach, P.

    2000-11-01

    The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

  17. The economic valuation of improved process plant decision support technology.

    PubMed

    White, Douglas C

    2007-06-01

    How can investments that would potentially improve a manufacturing plant's decision process be economically justified? What is the value of "better information," "more flexibility," or "improved integration" and the technologies that provide these effects? Technology investments such as improved process modelling, new real time historians and other databases, "smart" instrumentation, better data analysis and visualization software, and/or improved user interfaces often include these benefits as part of their valuation. How are these "soft" benefits to be converted to a quantitative economic return? Quantification is important if rational management decisions are to be made about the correct amount of money to invest in the technologies, and which technologies to choose among the many available ones. Modelling the plant operational decision cycle-detect, analyse, forecast, choose and implement--provides a basis for this economic quantification. In this paper a new economic model is proposed for estimation of the value of decision support investments based on their effect upon the uncertainty in forecasting plant financial performance. This model leads to quantitative benefit estimates that have a realistic financial basis. An example is presented demonstrating the application of the method.

  18. Bridging groundwater models and decision support with a Bayesian network

    USGS Publications Warehouse

    Fienen, Michael N.; Masterson, John P.; Plant, Nathaniel G.; Gutierrez, Benjamin T.; Thieler, E. Robert

    2013-01-01

    Resource managers need to make decisions to plan for future environmental conditions, particularly sea level rise, in the face of substantial uncertainty. Many interacting processes factor in to the decisions they face. Advances in process models and the quantification of uncertainty have made models a valuable tool for this purpose. Long-simulation runtimes and, often, numerical instability make linking process models impractical in many cases. A method for emulating the important connections between model input and forecasts, while propagating uncertainty, has the potential to provide a bridge between complicated numerical process models and the efficiency and stability needed for decision making. We explore this using a Bayesian network (BN) to emulate a groundwater flow model. We expand on previous approaches to validating a BN by calculating forecasting skill using cross validation of a groundwater model of Assateague Island in Virginia and Maryland, USA. This BN emulation was shown to capture the important groundwater-flow characteristics and uncertainty of the groundwater system because of its connection to island morphology and sea level. Forecast power metrics associated with the validation of multiple alternative BN designs guided the selection of an optimal level of BN complexity. Assateague island is an ideal test case for exploring a forecasting tool based on current conditions because the unique hydrogeomorphological variability of the island includes a range of settings indicative of past, current, and future conditions. The resulting BN is a valuable tool for exploring the response of groundwater conditions to sea level rise in decision support.

  19. Human-Computer Interaction with Medical Decisions Support Systems

    NASA Technical Reports Server (NTRS)

    Adolf, Jurine A.; Holden, Kritina L.

    1994-01-01

    Decision Support Systems (DSSs) have been available to medical diagnosticians for some time, yet their acceptance and use have not increased with advances in technology and availability of DSS tools. Medical DSSs will be necessary on future long duration space missions, because access to medical resources and personnel will be limited. Human-Computer Interaction (HCI) experts at NASA's Human Factors and Ergonomics Laboratory (HFEL) have been working toward understanding how humans use DSSs, with the goal of being able to identify and solve the problems associated with these systems. Work to date consists of identification of HCI research areas, development of a decision making model, and completion of two experiments dealing with 'anchoring'. Anchoring is a phenomenon in which the decision maker latches on to a starting point and does not make sufficient adjustments when new data are presented. HFEL personnel have replicated a well-known anchoring experiment and have investigated the effects of user level of knowledge. Future work includes further experimentation on level of knowledge, confidence in the source of information and sequential decision making.

  20. Decision Integration and Support Engine (DISE) for dynamic aircraft and ISR asset tasking/retasking decision support for the AOC

    NASA Astrophysics Data System (ADS)

    VonPlinsky, Michael J.; Crowder, Ed

    2002-07-01

    The Decision Integration and Support Environment (DISE) is a Bayesian network (BN) based modeling and simulation of the target nomination and aircraft tasking decision processes. DISE operates in event driven interactions with FTI's AOC model, being triggered from within the Time Critical Target (TCT) Operations cell. As new target detections are received by the AOC from off-board ISR sources and processed by the Automatic Target Recognition (ATR) module in the AOC, DISE is called to determine if the target should be prosecuted, and if so, which of the available aircraft should be tasked to attack it. A range of decision criteria, with priorities established off-line and input into the tool, are associated with this process. DISE, when running in its constructive mode, automatically selects the best-suited aircraft and assigns the new target. In virtual mode, with a human operator, DISE presents the user with a suitability ranked list of the available aircraft for assignment. Recent DISE enhancements are applying this concept to the prioritization and scheduling of ISR support requests from Users to support both latent and dynamic tasking and scheduling of both space-based and airborne ISR assets.

  1. An Intelligent Polar Cyberinfrastrucuture to Support Spatiotemporal Decision Making

    NASA Astrophysics Data System (ADS)

    Song, M.; Li, W.; Zhou, X.

    2014-12-01

    In the era of big data, polar sciences have already faced an urgent demand of utilizing intelligent approaches to support precise and effective spatiotemporal decision-making. Service-oriented cyberinfrastructure has advantages of seamlessly integrating distributed computing resources, and aggregating a variety of geospatial data derived from Earth observation network. This paper focuses on building a smart service-oriented cyberinfrastructure to support intelligent question answering related to polar datasets. The innovation of this polar cyberinfrastructure includes: (1) a problem-solving environment that parses geospatial question in natural language, builds geoprocessing rules, composites atomic processing services and executes the entire workflow; (2) a self-adaptive spatiotemporal filter that is capable of refining query constraints through semantic analysis; (3) a dynamic visualization strategy to support results animation and statistics in multiple spatial reference systems; and (4) a user-friendly online portal to support collaborative decision-making. By means of this polar cyberinfrastructure, we intend to facilitate integration of distributed and heterogeneous Arctic datasets and comprehensive analysis of multiple environmental elements (e.g. snow, ice, permafrost) to provide a better understanding of the environmental variation in circumpolar regions.

  2. Decision support framework for oil-spill response

    SciTech Connect

    Octavio, K.H.

    1986-01-01

    A review of the state of oil spill response planning and an interpretation of the administrative, procedural and political climate surrounding response in general and in the Venezuelan case in particular reveals critical areas where things go wrong, affecting speed and appropriateness of response. Generic issues faced by any region preparing contingency plans are identified and techniques for resolving them and the appropriate institutional setting are suggested. The first reported design of an integrated interactive graphic microcomputer based decision Support System for operational oil spill response is presented. The integrated DSS with its status display and log entries provides a formal mechanism for recording activities, and their justifications at the time of occurrence so that activities and their consequences can be reviewed to improve procedures and priorities. There is an identifiable dearth of realistic training exercises meant to hone decision making skills under the pressures of an ongoing major spill event. The design of an operational oil spill response training system based directly on the framework of an interactive, graphics oriented Decision Support System for operational response to oil spills is presented. This training framework not only develops skills needed by new spill response coordinators in devising and carrying out action plans, it also identified flaws or gaps in managerial or institutional arrangements before the response system is tested by an actual spill. The underlying concepts of both the DSS and the training exercise are general and can be readily applied to any region concerned with organizing oil spill response.

  3. North Slope Decision Support for Water Resource Planning and Management

    SciTech Connect

    Schnabel, William; Brumbelow, Kelly

    2013-03-31

    The objective of this project was to enhance the water resource decision-making process with respect to oil and gas exploration/production activities on Alaska’s North Slope. To this end, a web-based software tool was developed to allow stakeholders to assemble, evaluate, and communicate relevant information between and amongst themselves. The software, termed North Slope Decision Support System (NSDSS), is a visually-referenced database that provides a platform for running complex natural system, planning, and optimization models. The NSDSS design was based upon community input garnered during a series of stakeholder workshops, and the end product software is freely available to all stakeholders via the project website. The tool now resides on servers hosted by the UAF Water and Environmental Research Center, and will remain accessible and free-of-charge for all interested stakeholders. The development of the tool fostered new advances in the area of data evaluation and decision support technologies, and the finished product is envisioned to enhance water resource planning activities on Alaska’s North Slope.

  4. Technosocial Predictive Analytics in Support of Naturalistic Decision Making

    SciTech Connect

    Sanfilippo, Antonio P.; Cowell, Andrew J.; Malone, Elizabeth L.; Riensche, Roderick M.; Thomas, James J.; Unwin, Stephen D.; Whitney, Paul D.; Wong, Pak C.

    2009-06-23

    A main challenge we face in fostering sustainable growth is to anticipate outcomes through predictive and proactive across domains as diverse as energy, security, the environment, health and finance in order to maximize opportunities, influence outcomes and counter adversities. The goal of this paper is to present new methods for anticipatory analytical thinking which address this challenge through the development of a multi-perspective approach to predictive modeling as a core to a creative decision making process. This approach is uniquely multidisciplinary in that it strives to create decision advantage through the integration of human and physical models, and leverages knowledge management and visual analytics to support creative thinking by facilitating the achievement of interoperable knowledge inputs and enhancing the user’s cognitive access. We describe a prototype system which implements this approach and exemplify its functionality with reference to a use case in which predictive modeling is paired with analytic gaming to support collaborative decision-making in the domain of agricultural land management.

  5. A highly scalable, interoperable clinical decision support service

    PubMed Central

    Goldberg, Howard S; Paterno, Marilyn D; Rocha, Beatriz H; Schaeffer, Molly; Wright, Adam; Erickson, Jessica L; Middleton, Blackford

    2014-01-01

    Objective To create a clinical decision support (CDS) system that is shareable across healthcare delivery systems and settings over large geographic regions. Materials and methods The enterprise clinical rules service (ECRS) realizes nine design principles through a series of enterprise java beans and leverages off-the-shelf rules management systems in order to provide consistent, maintainable, and scalable decision support in a variety of settings. Results The ECRS is deployed at Partners HealthCare System (PHS) and is in use for a series of trials by members of the CDS consortium, including internally developed systems at PHS, the Regenstrief Institute, and vendor-based systems deployed at locations in Oregon and New Jersey. Performance measures indicate that the ECRS provides sub-second response time when measured apart from services required to retrieve data and assemble the continuity of care document used as input. Discussion We consider related work, design decisions, comparisons with emerging national standards, and discuss uses and limitations of the ECRS. Conclusions ECRS design, implementation, and use in CDS consortium trials indicate that it provides the flexibility and modularity needed for broad use and performs adequately. Future work will investigate additional CDS patterns, alternative methods of data passing, and further optimizations in ECRS performance. PMID:23828174

  6. Decision support for integrated water-energy planning.

    SciTech Connect

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Kobos, Peter Holmes; Castillo, Cesar; Hart, William Eugene; Klise, Geoffrey T.

    2009-10-01

    Currently, electrical power generation uses about 140 billion gallons of water per day accounting for over 39% of all freshwater withdrawals thus competing with irrigated agriculture as the leading user of water. Coupled to this water use is the required pumping, conveyance, treatment, storage and distribution of the water which requires on average 3% of all electric power generated. While water and energy use are tightly coupled, planning and management of these fundamental resources are rarely treated in an integrated fashion. Toward this need, a decision support framework has been developed that targets the shared needs of energy and water producers, resource managers, regulators, and decision makers at the federal, state and local levels. The framework integrates analysis and optimization capabilities to identify trade-offs, and 'best' alternatives among a broad list of energy/water options and objectives. The decision support framework is formulated in a modular architecture, facilitating tailored analyses over different geographical regions and scales (e.g., national, state, county, watershed, NERC region). An interactive interface allows direct control of the model and access to real-time results displayed as charts, graphs and maps. Ultimately, this open and interactive modeling framework provides a tool for evaluating competing policy and technical options relevant to the energy-water nexus.

  7. Clinical decision support systems: data quality management and governance.

    PubMed

    Liaw, Siaw-Teng

    2013-01-01

    This chapter examines data quality management (DQM) and information governance (IG) of electronic decision support (EDS) systems so that they are safe and fit for use by clinicians and patients and their carers. This is consistent with the ISO definition of data quality as being fit for purpose. The scope of DQM & IG should range from data creation and collection in clinical settings, through cleaning and, where obtained from multiple sources, linkage, storage, use by the EDS logic engine and algorithms, knowledge base and guidance provided, to curation and presentation. It must also include protocols and mechanisms to monitor the safety of EDS, which will feedback into DQM & IG activities. Ultimately, DQM & IG must be integrated across the data cycle to ensure that the EDS systems provide guidance that leads to safe and effective clinical decisions and care.

  8. Combining decision support and image processing: a PROforma model.

    PubMed

    Sordo, M; Fox, J; Blum, C; Taylor, P; Lee, R; Alberdi, E

    2001-01-01

    This paper addresses two important problems in medical image interpretation:(1) integration of numeric and symbolic information, (2) access to external sources of medical knowledge. We have developed a prototype in which image processing algorithms are combined with symbolic representations for reasoning, decision making and task management in an integrated, platform-independent system for the differential diagnosis of abnormalities in mammograms. The prototype is based on PROforma, a generic technology for building decision support systems based on clinical guidelines. The PROforma language defines a set of tasks, one of which, the enquiry, is used as means of interaction with the outside world. However, the current enquiry model has proved to be too limited for our purposes. In this paper we outline a more general model, which can be used as an interface between symbolic functions and image or other signal data.

  9. Clinical Decision Support Systems for Comorbidity: Architecture, Algorithms, and Applications

    PubMed Central

    Fan, Aihua; Tang, Yu

    2017-01-01

    In this paper, we present the design of a clinical decision support system (CDSS) for monitoring comorbid conditions. Specifically, we address the architecture of a CDSS by characterizing it from three layers and discuss the algorithms in each layer. Also we address the applications of CDSSs in a few real scenarios and analyze the accuracy of a CDSS in consideration of the potential conflicts when using multiple clinical practice guidelines concurrently. Finally, we compare the system performance in our design with that in the other design schemes. Our study shows that our proposed design can achieve a clinical decision in a shorter time than the other designs, while ensuring a high level of system accuracy. PMID:28373881

  10. Improving the implementation of clinical decision support systems.

    PubMed

    Rüping, Stefan; Anguita, Alberto; Bucur, Anca; Cirstea, Traian Cristian; Jacobs, Björn; Torge, Antje

    2013-01-01

    Clinical decision support (CDS) systems promise to improve the quality of clinical care by helping physicians to make better, more informed decisions efficiently. However, the design and testing of CDS systems for practical medical use is cumbersome. It has been recognized that this may easily lead to a problematic mismatch between the developers' idea of the system and requirements from clinical practice. In this paper, we will present an approach to reduce the complexity of constructing a CDS system. The approach is based on an ontological annotation of data resources, which improves standardization and the semantic processing of data. This, in turn, allows to use data mining tools to automatically create hypotheses for CDS models, which reduces the manual workload in the creation of a new model. The approach is implemented in the context of EU research project p-medicine. A proof of concept implementation on data from an existing Leukemia study is presented.

  11. Water flow algorithm decision support tool for travelling salesman problem

    NASA Astrophysics Data System (ADS)

    Kamarudin, Anis Aklima; Othman, Zulaiha Ali; Sarim, Hafiz Mohd

    2016-08-01

    This paper discuss about the role of Decision Support Tool in Travelling Salesman Problem (TSP) for helping the researchers who doing research in same area will get the better result from the proposed algorithm. A study has been conducted and Rapid Application Development (RAD) model has been use as a methodology which includes requirement planning, user design, construction and cutover. Water Flow Algorithm (WFA) with initialization technique improvement is used as the proposed algorithm in this study for evaluating effectiveness against TSP cases. For DST evaluation will go through usability testing conducted on system use, quality of information, quality of interface and overall satisfaction. Evaluation is needed for determine whether this tool can assists user in making a decision to solve TSP problems with the proposed algorithm or not. Some statistical result shown the ability of this tool in term of helping researchers to conduct the experiments on the WFA with improvements TSP initialization.

  12. FWFA Optimization based Decision Support System for Road Traffic Engineering

    NASA Astrophysics Data System (ADS)

    Utama, D. N.; Zaki, F. A.; Munjeri, I. J.; Putri, N. U.

    2017-01-01

    Several ways and efforts have been already conducted to formally solve the road traffic congestion. However, the objective strategy type of road traffic engineering could not be proven truly. Try and error is one inefficient way in road traffic engineering to degrade the level of congestion. The combination between fuzzy-logic and water flow algorithm methods (called FWFA) was used as a main method to construct the decision support system (DSS) for selecting the objective strategy in road traffic engineering. The proposed DSS can suggest the most optimal strategy decision in road traffic engineering. Here, a main traffic road of Juanda in area Ciputat, Tangerang Selatan, province Banten, Indonesia; was selected as a research object in this study. The constructed DSS for road traffic engineering was structurally delivered in this paper.

  13. Dynamic clinical data mining: search engine-based decision support.

    PubMed

    Celi, Leo Anthony; Zimolzak, Andrew J; Stone, David J

    2014-06-23

    The research world is undergoing a transformation into one in which data, on massive levels, is freely shared. In the clinical world, the capture of data on a consistent basis has only recently begun. We propose an operational vision for a digitally based care system that incorporates data-based clinical decision making. The system would aggregate individual patient electronic medical data in the course of care; query a universal, de-identified clinical database using modified search engine technology in real time; identify prior cases of sufficient similarity as to be instructive to the case at hand; and populate the individual patient's electronic medical record with pertinent decision support material such as suggested interventions and prognosis, based on prior outcomes. Every individual's course, including subsequent outcomes, would then further populate the population database to create a feedback loop to benefit the care of future patients.

  14. Impact of a decision-support tool on decision making at the district level in Kenya

    PubMed Central

    2013-01-01

    Background In many countries, the responsibility for planning and delivery of health services is devolved to the subnational level. Health programs, however, often fall short of efficient use of data to inform decisions. As a result, programs are not as effective as they can be at meeting the health needs of the populations they serve. In Kenya, a decision-support tool, the District Health Profile (DHP) tool was developed to integrate data from health programs, primarily HIV, at the district level and to enable district health management teams to review and monitor program progress for specific health issues to make informed service delivery decisions. Methods Thirteen in-depth interviews were conducted with ten tool users and three non-users in six districts to qualitatively assess the process of implementing the tool and its effect on data-informed decision making at the district level. The factors that affected use or non-use of the tool were also investigated. Respondents were selected via convenience sample from among those that had been trained to use the DHP tool except for one user who was self-taught to use the tool. Selection criteria also included respondents from urban districts with significant resources as well as respondents from more remote, under-resourced districts. Results Findings from the in-depth interviews suggest that among those who used it, the DHP tool had a positive effect on data analysis, review, interpretation, and sharing at the district level. The automated function of the tool allowed for faster data sharing and immediate observation of trends that facilitated data-informed decision making. All respondents stated that the DHP tool assisted them to better target existing services in need of improvement and to plan future services, thus positively influencing program improvement. Conclusions This paper stresses the central role that a targeted decision-support tool can play in making data aggregation, analysis, and presentation

  15. New Decision Support for Landslide and Other Disaster Events

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Keiser, K.; Wu, Y.; Kaulfus, A.; Srinivasan, K.; Anderson, E. R.; McEniry, M.

    2013-12-01

    An Event-Driven Data delivery (ED3) framework has been created that provides reusable services and configurations to support better data preparedness for decision support of disasters and other events by rapidly providing pre-planned access to data, special processing, modeling and other capabilities, all executed in response to criteria-based events. ED3 facilitates decision makers to plan in advance of disasters and other types of events for the data necessary for decisions and response activities. A layer of services provided in the ED3 framework allows systems to support user definition of subscriptions for data plans that will be triggered when events matching specified criteria occur. Pre-planning for data in response to events lessens the burden on decision makers in the aftermath of an event and allows planners to think through the desired processing for specialized data products. Additionally the ED3 framework provides support for listening for event alerts and support for multiple workflow managers that provide data and processing functionality in response to events. Landslides are often costly and, at times, deadly disaster events. Whereas intense and/or sustained rainfall is often the primary trigger for landslides, soil type and slope are also important factors in determining the location and timing of slope failure. Accounting for the substantial spatial variability of these factors is one of the major difficulties when predicting the timing and location of slope failures. A wireless sensor network (WSN), developed by NASA SERVIR and USRA, with peer-to-peer communication capability and low power consumption, is ideal for high spatial in situ monitoring in remote locations. In collaboration with the University of Huntsville at Alabama, WSN equipped with accelerometer, rainfall and soil moisture sensors is being integrated into an end-to-end landslide warning system. The WSN is being tested to ascertain communication capabilities and the density of

  16. Integrated decision support in a hospital cancer registry.

    PubMed

    Tafazzoli, A G; Altmann, U; Bürkle, T; Hölzer, S; Dudeck, J

    2002-03-01

    In this paper we present (a) a shell for integrated knowledge-based functions that is destined to support decision processes of the users of the Giessener Tumordokumentationssystem (GTDS) and (b) some results we obtained during a 6-month observation period at one of the customers of the GTDS. A special characteristic of the provided decision support is the high degree of integration in the underlying information system GTDS, i.e. the functions are triggered by events in the patient database, existing patient data is reused as input for the reasoning process and generated alerts are presented instantly to the end-user. The first routine field of application was supporting registrars to adhere to integrity constraints as defined by the International Agency of Research on Cancer (IARC) during the documentation process. This information is important for the registrars since the checks of the IARC are an accepted standard for data quality in cancer registries. The expected benefit of this application area is less effort in achieving adherence to the specification of the IARC by preventing the costly rectification at a later time. During the last 5 months of the observation period 164 alerts were displayed. About 65% of the assessed alerts were considered to be correct. Especially, the analysis of the incorrect alerts revealed some shortcomings in the knowledge behind some of the integrity constraints of the IARC. The general feedback from the end-users indicate positive user satisfaction. Currently, the shell is in use in six hospital cancer registries.

  17. Coordinating complex decision support activities across distributed applications

    NASA Technical Reports Server (NTRS)

    Adler, Richard M.

    1994-01-01

    Knowledge-based technologies have been applied successfully to automate planning and scheduling in many problem domains. Automation of decision support can be increased further by integrating task-specific applications with supporting database systems, and by coordinating interactions between such tools to facilitate collaborative activities. Unfortunately, the technical obstacles that must be overcome to achieve this vision of transparent, cooperative problem-solving are daunting. Intelligent decision support tools are typically developed for standalone use, rely on incompatible, task-specific representational models and application programming interfaces (API's), and run on heterogeneous computing platforms. Getting such applications to interact freely calls for platform independent capabilities for distributed communication, as well as tools for mapping information across disparate representations. Symbiotics is developing a layered set of software tools (called NetWorks! for integrating and coordinating heterogeneous distributed applications. he top layer of tools consists of an extensible set of generic, programmable coordination services. Developers access these services via high-level API's to implement the desired interactions between distributed applications.

  18. A decision support system for assessing landfill performance

    SciTech Connect

    Celik, Basak; Girgin, Sertan; Yazici, Adnan; Unlue, Kahraman

    2010-01-15

    Designing environmentally sound landfills is a challenging engineering task due to complex interactions of numerous design variables; such as landfill size, waste characteristics, and site hydrogeology. Decision support systems (DSS) can be utilized to handle these complex interactions and to aid in a performance-based landfill design by coupling system simulation models (SSM). The aim of this paper is to present a decision support system developed for a performance-based landfill design. The developed DSS is called Landfill Design Decision Support System - LFDSS. A two-step DSS framework, composed of preliminary design and detailed design phases, is set to effectively couple and run the SSMs and calculation modules. In preliminary design phase, preliminary design alternatives are proposed using general site data. In detailed design phase, proposed design alternatives are further simulated under site-specific data using SSMs for performance evaluation. LFDSS calculates the required landfill volume, performs landfill base contour design, proposes preliminary design alternatives based on general site conditions, evaluates the performance of the proposed designs, calculates the factor of safety values for slope stability analyses, and performs major cost calculations. The DSS evaluates the results of all landfill design alternatives, and determines whether the design satisfies the predefined performance criteria. The DSS ultimately enables comparisons among different landfill designs based on their performances (i.e. leachate head stability, and groundwater contamination), constructional stability and costs. The developed DSS was applied to a real site, and the results demonstrated the strengths of the developed system on designing environmentally sound and feasible landfills.

  19. A decision support system for assessing landfill performance.

    PubMed

    Celik, Başak; Girgin, Sertan; Yazici, Adnan; Unlü, Kahraman

    2010-01-01

    Designing environmentally sound landfills is a challenging engineering task due to complex interactions of numerous design variables; such as landfill size, waste characteristics, and site hydrogeology. Decision support systems (DSS) can be utilized to handle these complex interactions and to aid in a performance-based landfill design by coupling system simulation models (SSM). The aim of this paper is to present a decision support system developed for a performance-based landfill design. The developed DSS is called Landfill Design Decision Support System - LFDSS. A two-step DSS framework, composed of preliminary design and detailed design phases, is set to effectively couple and run the SSMs and calculation modules. In preliminary design phase, preliminary design alternatives are proposed using general site data. In detailed design phase, proposed design alternatives are further simulated under site-specific data using SSMs for performance evaluation. LFDSS calculates the required landfill volume, performs landfill base contour design, proposes preliminary design alternatives based on general site conditions, evaluates the performance of the proposed designs, calculates the factor of safety values for slope stability analyses, and performs major cost calculations. The DSS evaluates the results of all landfill design alternatives, and determines whether the design satisfies the predefined performance criteria. The DSS ultimately enables comparisons among different landfill designs based on their performances (i.e. leachate head stability, and groundwater contamination), constructional stability and costs. The developed DSS was applied to a real site, and the results demonstrated the strengths of the developed system on designing environmentally sound and feasible landfills.

  20. Artificial intelligence based decision support for trumpeter swan management

    USGS Publications Warehouse

    Sojda, Richard S.

    2002-01-01

    The number of trumpeter swans (Cygnus buccinator) breeding in the Tri-State area where Montana, Idaho, and Wyoming come together has declined to just a few hundred pairs. However, these birds are part of the Rocky Mountain Population which additionally has over 3,500 birds breeding in Alberta, British Columbia, Northwest Territories, and Yukon Territory. To a large degree, these birds seem to have abandoned traditional migratory pathways in the flyway. Waterfowl managers have been interested in decision support tools that would help them explore simulated management scenarios in their quest towards reaching population recovery and the reestablishment of traditional migratory pathways. I have developed a decision support system to assist biologists with such management, especially related to wetland ecology. Decision support systems use a combination of models, analytical techniques, and information retrieval to help develop and evaluate appropriate alternatives. Swan management is a domain that is ecologically complex, and this complexity is compounded by spatial and temporal issues. As such, swan management is an inherently distributed problem. Therefore, the ecological context for modeling swan movements in response to management actions was built as a multiagent system of interacting intelligent agents that implements a queuing model representing swan migration. These agents accessed ecological knowledge about swans, their habitats, and flyway management principles from three independent expert systems. The agents were autonomous, had some sensory capability, and could respond to changing conditions. A key problem when developing ecological decision support systems is empirically determining that the recommendations provided are valid. Because Rocky Mountain trumpeter swans have been surveyed for a long period of time, I was able to compare simulated distributions provided by the system with actual field observations across 20 areas for the period 1988

  1. Use of decision support systems as a drought management tool

    USGS Publications Warehouse

    Frevert, D.; Lins, H.; ,

    2005-01-01

    Droughts present a unique challenge to water managers throughout the world and the current drought in the western United States is taxing facilities to the limit. Coping with this severe drought requires state of the art decision support systems including efficient and accurate hydrologic process models, detailed hydrologic data bases and effective river systems management modeling frameworks. This paper will outline a system of models developed by the Bureau of Reclamation, the US Geological Survey, the University of Colorado and a number of other governmental and university partners. The application of the technology to drought management in several key western river basins will be discussed.

  2. Clinical Decision Support for Immunizations (CDSi): A Comprehensive, Collaborative Strategy

    PubMed Central

    Arzt, Noam H.

    2016-01-01

    This article focuses on the requirements and current developments in clinical decision support technologies for immunizations (CDSi) in both the public health and clinical communities, with an emphasis on shareable solutions. The requirements of the Electronic Health Record Incentive Programs have raised some unique challenges for the clinical community, including vocabulary mapping, update of changing guidelines, single immunization schedule, and scalability. This article discusses new, collaborative approaches whose long-term goal is to make CDSi more sustainable for both the public and private sectors. PMID:27789956

  3. Decision support system for individualized nursing procedures: SAPIEN-Tx.

    PubMed

    Ito, M; Ramos, M P; Chern, M S; Espósito, S R; Carmagnani, M I; Cunha, I C; Piveta, V M; Nespoulos, E; Iwasa, A T; Anção, M S

    1995-01-01

    The present work proposes a Decision Support System for nursing procedures: SAPIEN-Tx. The discussion includes the acquisition, modeling , and implementation of nursing expertise professionals in Renal Transplant. It was developed to obtain better quality healthcare services, as well as an effective contribution to the nursing professional in the global assistance of their clientele. We used the KADS methodology to develop the system knowledge base. This methodology permitted us to perform the knowledge modeling with quality and organization. In opposition to the old method, errors were detected before the implementation, avoiding possible modification on the whole project structure.

  4. Decision-Making Amplification under Uncertainty: An Exploratory Study of Behavioral Similarity and Intelligent Decision Support Systems

    ERIC Educational Resources Information Center

    Campbell, Merle Wayne

    2013-01-01

    Intelligent decision systems have the potential to support and greatly amplify human decision-making across a number of industries and domains. However, despite the rapid improvement in the underlying capabilities of these "intelligent" systems, increasing their acceptance as decision aids in industry has remained a formidable challenge.…

  5. Critical infrastructure protection decision support system decision model : overview and quick-start user's guide.

    SciTech Connect

    Samsa, M.; Van Kuiken, J.; Jusko, M.; Decision and Information Sciences

    2008-12-01

    The Critical Infrastructure Protection Decision Support System Decision Model (CIPDSS-DM) is a useful tool for comparing the effectiveness of alternative risk-mitigation strategies on the basis of CIPDSS consequence scenarios. The model is designed to assist analysts and policy makers in evaluating and selecting the most effective risk-mitigation strategies, as affected by the importance assigned to various impact measures and the likelihood of an incident. A typical CIPDSS-DM decision map plots the relative preference of alternative risk-mitigation options versus the annual probability of an undesired incident occurring once during the protective life of the investment, assumed to be 20 years. The model also enables other types of comparisons, including a decision map that isolates a selected impact variable and displays the relative preference for the options of interest--parameterized on the basis of the contribution of the isolated variable to total impact, as well as the likelihood of the incident. Satisfaction/regret analysis further assists the analyst or policy maker in evaluating the confidence with which one option can be selected over another.

  6. Decision support system for the operating room rescheduling problem.

    PubMed

    van Essen, J Theresia; Hurink, Johann L; Hartholt, Woutske; van den Akker, Bernd J

    2012-12-01

    Due to surgery duration variability and arrivals of emergency surgeries, the planned Operating Room (OR) schedule is disrupted throughout the day which may lead to a change in the start time of the elective surgeries. These changes may result in undesirable situations for patients, wards or other involved departments, and therefore, the OR schedule has to be adjusted. In this paper, we develop a decision support system (DSS) which assists the OR manager in this decision by providing the three best adjusted OR schedules. The system considers the preferences of all involved stakeholders and only evaluates the OR schedules that satisfy the imposed resource constraints. The decision rules used for this system are based on a thorough analysis of the OR rescheduling problem. We model this problem as an Integer Linear Program (ILP) which objective is to minimize the deviation from the preferences of the considered stakeholders. By applying this ILP to instances from practice, we determined that the given preferences mainly lead to (i) shifting a surgery and (ii) scheduling a break between two surgeries. By using these changes in the DSS, the performed simulation study shows that less surgeries are canceled and patients and wards are more satisfied, but also that the perceived workload of several departments increases to compensate this. The system can also be used to judge the acceptability of a proposed initial OR schedule.

  7. Striatal prediction errors support dynamic control of declarative memory decisions

    PubMed Central

    Scimeca, Jason M.; Katzman, Perri L.; Badre, David

    2016-01-01

    Adaptive memory requires context-dependent control over how information is retrieved, evaluated and used to guide action, yet the signals that drive adjustments to memory decisions remain unknown. Here we show that prediction errors (PEs) coded by the striatum support control over memory decisions. Human participants completed a recognition memory test that incorporated biased feedback to influence participants' recognition criterion. Using model-based fMRI, we find that PEs—the deviation between the outcome and expected value of a memory decision—correlate with striatal activity and predict individuals' final criterion. Importantly, the striatal PEs are scaled relative to memory strength rather than the expected trial outcome. Follow-up experiments show that the learned recognition criterion transfers to free recall, and targeting biased feedback to experimentally manipulate the magnitude of PEs influences criterion consistent with PEs scaled relative to memory strength. This provides convergent evidence that declarative memory decisions can be regulated via striatally mediated reinforcement learning signals. PMID:27713407

  8. The approaches for the decision support in case natural hazards

    NASA Astrophysics Data System (ADS)

    Vyazilov, Evgeny; Chunyaev, Nikita

    2013-04-01

    In spite of using highly automated systems of measurement, collecting, storing, handling, prediction and delivery of information on the marine environment, including natural hazards, the amount of damage from natural phenomena increases. Because information on the marine environment delivered to the industrial facilities not effectively used. To such information pays little attention by individual decision-makers and not always perform preventive measures necessary for reduce and prevent damage. Automation of information support will improve the efficiency management of the marine activities. In Russia develops "The Unified system of the information about World ocean" (ESIMO, http://esimo.ru/), that integrates observation, analysis, prognostic and climate data. Necessary to create tools to automatic selection natural disasters through all integrated data; notification decision-makers about arising natural hazards - software agent; provision of information in a compact form for the decision-makers; assessment of possible damage and costs to the preventive measures; providing information on the impacts of environment on economic facilities and recommendations for decision-making; the use of maps, diagrams, tables for reporting. Tools for automatic selection designed for identification of natural phenomena based on the resources ESIMO and corresponding critical values of the indicators environment. The result of this module will be constantly updated database of critical situations of environment for each object or technological process. To operational notify and provide current information about natural hazards proposes using a software agent that is installed on the computer decision-makers, which is activated in case critical situations and provides a minimum of information. In the event of natural disaster software agent should be able to inform decision-makers about this, providing information on the current situation, and the possibility for more and detailed

  9. Evaluation of RxNorm for Medication Clinical Decision Support

    PubMed Central

    Freimuth, Robert R.; Wix, Kelly; Zhu, Qian; Siska, Mark; Chute, Christopher G.

    2014-01-01

    We evaluated the potential use of RxNorm to provide standardized representations of generic drug name and route of administration to facilitate management of drug lists for clinical decision support (CDS) rules. We found a clear representation of generic drug name but not route of administration. We identified several issues related to data quality, including erroneous or missing defined relationships, and the use of different concept hierarchies to represent the same drug. More importantly, we found extensive semantic precoordination of orthogonal concepts related to route and dose form, which would complicate the use of RxNorm for drug-based CDS. This study demonstrated that while RxNorm is a valuable resource for the standardization of medications used in clinical practice, additional work is required to enhance the terminology so that it can support expanded use cases, such as managing drug lists for CDS. PMID:25954360

  10. Evaluation of RxNorm for Medication Clinical Decision Support.

    PubMed

    Freimuth, Robert R; Wix, Kelly; Zhu, Qian; Siska, Mark; Chute, Christopher G

    2014-01-01

    We evaluated the potential use of RxNorm to provide standardized representations of generic drug name and route of administration to facilitate management of drug lists for clinical decision support (CDS) rules. We found a clear representation of generic drug name but not route of administration. We identified several issues related to data quality, including erroneous or missing defined relationships, and the use of different concept hierarchies to represent the same drug. More importantly, we found extensive semantic precoordination of orthogonal concepts related to route and dose form, which would complicate the use of RxNorm for drug-based CDS. This study demonstrated that while RxNorm is a valuable resource for the standardization of medications used in clinical practice, additional work is required to enhance the terminology so that it can support expanded use cases, such as managing drug lists for CDS.

  11. Development, deployment and usability of a point-of-care decision support system for chronic disease management using the recently-approved HL7 decision support service standard.

    PubMed

    Lobach, David F; Kawamoto, Kensaku; Anstrom, Kevin J; Russell, Michael L; Woods, Peter; Smith, Dwight

    2007-01-01

    Clinical decision support is recognized as one potential remedy for the growing crisis in healthcare quality in the United States and other industrialized nations. While decision support systems have been shown to improve care quality and reduce errors, these systems are not widely available. This lack of availability arises in part because most decision support systems are not portable or scalable. The Health Level 7 international standard development organization recently adopted a draft standard known as the Decision Support Service standard to facilitate the implementation of clinical decision support systems using software services. In this paper, we report the first implementation of a clinical decision support system using this new standard. This system provides point-of-care chronic disease management for diabetes and other conditions and is deployed throughout a large regional health system. We also report process measures and usability data concerning the system. Use of the Decision Support Service standard provides a portable and scalable approach to clinical decision support that could facilitate the more extensive use of decision support systems.

  12. SANDS: An Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2007-01-01

    A new architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support) is introduced and its performance evaluated. The architecture provides a method for performing clinical decision support across a network, as in a health information exchange. Using the prototype we demonstrated that, first, a number of useful types of decision support can be carried out using our architecture; and, second, that the architecture exhibits desirable reliability and performance characteristics. PMID:18693950

  13. Integrated Decision Support for Global Environmental Change Adaptation

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Cantrell, S.; Higgins, G. J.; Marshall, J.; VanWijngaarden, F.

    2011-12-01

    Environmental changes are happening now that has caused concern in many parts of the world; particularly vulnerable are the countries and communities with limited resources and with natural environments that are more susceptible to climate change impacts. Global leaders are concerned about the observed phenomena and events such as Amazon deforestation, shifting monsoon patterns affecting agriculture in the mountain slopes of Peru, floods in Pakistan, water shortages in Middle East, droughts impacting water supplies and wildlife migration in Africa, and sea level rise impacts on low lying coastal communities in Bangladesh. These environmental changes are likely to get exacerbated as the temperatures rise, the weather and climate patterns change, and sea level rise continues. Large populations and billions of dollars of infrastructure could be affected. At Northrop Grumman, we have developed an integrated decision support framework for providing necessary information to stakeholders and planners to adapt to the impacts of climate variability and change at the regional and local levels. This integrated approach takes into account assimilation and exploitation of large and disparate weather and climate data sets, regional downscaling (dynamic and statistical), uncertainty quantification and reduction, and a synthesis of scientific data with demographic and economic data to generate actionable information for the stakeholders and decision makers. Utilizing a flexible service oriented architecture and state-of-the-art visualization techniques, this information can be delivered via tailored GIS portals to meet diverse set of user needs and expectations. This integrated approach can be applied to regional and local risk assessments, predictions and decadal projections, and proactive adaptation planning for vulnerable communities. In this paper we will describe this comprehensive decision support approach with selected applications and case studies to illustrate how this

  14. Comparing decision-support systems in adopting sustainable intensification criteria.

    PubMed

    Ahmadi, Bouda Vosough; Moran, Dominic; Barnes, Andrew P; Baret, Philippe V

    2015-01-01

    Sustainable intensification (SI) is a multifaceted concept incorporating the ambition to increase or maintain the current level of agricultural yields while reduce negative ecological and environmental impacts. Decision-support systems (DSS) that use integrated analytical methods are often used to support decision making processes in agriculture. However, DSS often consist of set of values, objectives, and assumptions that may be inconsistent or in conflict with merits and objectives of SI. These potential conflicts will have consequences for adoption and up-take of agricultural research, technologies and related policies and regulations such as genetic technology in pursuit of SI. This perspective paper aimed at comparing a number of frequently used socio-economic DSS with respect to their capacity in incorporating various dimensions of SI, and discussing their application to analyzing farm animal genetic resources (FAnGR) policies. The case of FAnGR policies was chosen because of its great potential in delivering merits of SI. It was concluded that flexible DSS, with great integration capacity with various natural and social sciences, are needed to provide guidance on feasibility, practicality, and policy implementation for SI.

  15. Verification and Validation of NASA-Supported Enhancements to Decision Support Tools of PECAD

    NASA Technical Reports Server (NTRS)

    Ross, Kenton W.; McKellip, Rodney; Moore, Roxzana F.; Fendley, Debbie

    2005-01-01

    This section of the evaluation report summarizes the verification and validation (V&V) of recently implemented, NASA-supported enhancements to the decision support tools of the Production Estimates and Crop Assessment Division (PECAD). The implemented enhancements include operationally tailored Moderate Resolution Imaging Spectroradiometer (MODIS) products and products of the Global Reservoir and Lake Monitor (GRLM). The MODIS products are currently made available through two separate decision support tools: the MODIS Image Gallery and the U.S. Department of Agriculture (USDA) Foreign Agricultural Service (FAS) MODIS Normalized Difference Vegetation Index (NDVI) Database. Both the Global Reservoir and Lake Monitor and MODIS Image Gallery provide near-real-time products through PECAD's CropExplorer. This discussion addresses two areas: 1. Assessments of the standard NASA products on which these enhancements are based. 2. Characterizations of the performance of the new operational products.

  16. Aggregation of Environmental Model Data for Decision Support

    NASA Astrophysics Data System (ADS)

    Alpert, J. C.

    2013-12-01

    model output offering access to probability and calibrating information for real time decision making. The aggregation content server reports over ensemble component and forecast time in addition to the other data dimensions of vertical layer and position for each variable. The unpacking, organization and reading of many binary packed files is accomplished most efficiently on the server while weather element event probability calculations, the thresholds for more accurate decision support, or display remain for the client. Our goal is to reduce uncertainty for variables of interest, e.g, agricultural importance. The weather service operational GFS model ensemble and short range ensemble forecasts can make skillful probability forecasts to alert users if and when their selected weather events will occur. A description of how this framework operates and how it can be implemented using existing NOMADS content services and applications is described.

  17. A Methodology to Support Decision Making in Flood Plan Mitigation

    NASA Astrophysics Data System (ADS)

    Biscarini, C.; di Francesco, S.; Manciola, P.

    2009-04-01

    The focus of the present document is on specific decision-making aspects of flood risk analysis. A flood is the result of runoff from rainfall in quantities too great to be confined in the low-water channels of streams. Little can be done to prevent a major flood, but we may be able to minimize damage within the flood plain of the river. This broad definition encompasses many possible mitigation measures. Floodplain management considers the integrated view of all engineering, nonstructural, and administrative measures for managing (minimizing) losses due to flooding on a comprehensive scale. The structural measures are the flood-control facilities designed according to flood characteristics and they include reservoirs, diversions, levees or dikes, and channel modifications. Flood-control measures that modify the damage susceptibility of floodplains are usually referred to as nonstructural measures and may require minor engineering works. On the other hand, those measures designed to modify the damage potential of permanent facilities are called non-structural and allow reducing potential damage during a flood event. Technical information is required to support the tasks of problem definition, plan formulation, and plan evaluation. The specific information needed and the related level of detail are dependent on the nature of the problem, the potential solutions, and the sensitivity of the findings to the basic information. Actions performed to set up and lay out the study are preliminary to the detailed analysis. They include: defining the study scope and detail, the field data collection, a review of previous studies and reports, and the assembly of needed maps and surveys. Risk analysis can be viewed as having many components: risk assessment, risk communication and risk management. Risk assessment comprises an analysis of the technical aspects of the problem, risk communication deals with conveying the information and risk management involves the decision process

  18. A Collaborative Decision Environment to Support UAV Wildfire Monitoring Missions

    NASA Astrophysics Data System (ADS)

    Frost, C. R.; Enomoto, F. Y.; D'Ortenzio, M. V.; Nguyen, Q. B.

    2006-12-01

    NASA developed the Collaborative Decision Environment (CDE), the ground-based component of its Intelligent Mission Management (IMM) technology for science missions employing long endurance unmanned aerial vehicles (UAVs). The CDE was used to support science mission planning and decision-making for a NASA- and U.S. Forest Service-sponsored mission to monitor wildfires in the western United States using a multi- spectral imager flown onboard the General Atomics Altair UAV in summer of 2006. The CDE is a ground-based system that provides the mission/science team with situational awareness, collaboration, and decision tools. The CDE is used for pre-flight planning, mission monitoring, and visualization of acquired data. It integrates external data products used for planning and executing a mission, such as weather, large wildfire locations, satellite-derived fire detection data, temporarily restricted airspace, and satellite imagery. While a prototype CDE was developed as a Java-based client/server application in 2004-2005, the team investigated the use of Google Earth to take advantage of its 3-D visualization capabilities, friendly user interface, and enhanced graphics performance. External data is acquired via the Internet by leveraging established and emerging Open Geospatial Consortium (OGC) standards and is re-formatted into the Keyhole Markup Language (KML) specification used by Google Earth. Aircraft flight position and sensor data products are relayed from the instrument ground station to CDE servers where they are made available to users. An instant messaging chat server is used to facilitate real-time communication between remote users. This paper will present an overview of the CDE system architecture, and discuss how science user input was crucial to shaping and developing the system. Examples from the UAV mission will be used to illustrate the presentation. Plans for future development work to improve mission operations, such as integration with

  19. Modeling decision support rule interactions in a clinical setting.

    PubMed

    Sordo, Margarita; Rocha, Beatriz H; Morales, Alfredo A; Maviglia, Saverio M; Oglio, Elisa Dell'Oglio; Fairbanks, Amanda; Aroy, Teal; Dubois, David; Bouyer-Ferullo, Sharon; Rocha, Roberto A

    2013-01-01

    Traditionally, rule interactions are handled at implementation time through rule task properties that control the order in which rules are executed. By doing so, knowledge about the behavior and interactions of decision rules is not captured at modeling time. We argue that this is important knowledge that should be integrated in the modeling phase. In this project, we build upon current work on a conceptual schema to represent clinical knowledge for decision support in the form of if then rules. This schema currently captures provenance of the clinical content, context where such content is actionable (i.e. constraints) and the logic of the rule itself. For this project, we borrowed concepts from both the Semantic Web (i.e., Ontologies) and Complex Adaptive Systems (CAS), to explore a conceptual approach for modeling rule interactions in an enterprise-wide clinical setting. We expect that a more comprehensive modeling will facilitate knowledge authoring, editing and update; foster consistency in rules implementation and maintenance; and develop authoritative knowledge repositories to promote quality, safety and efficacy of healthcare.

  20. Integrated models to support multiobjective ecological restoration decisions.

    PubMed

    Fraser, Hannah; Rumpff, Libby; Yen, Jian D L; Robinson, Doug; Wintle, Brendan A

    2017-03-24

    Many objectives motivate ecological restoration including improving vegetation condition, increasing the range and abundance of threatened species, and improving aggregate measures of biodiversity such as richness and diversity. While ecological models have been used to examine the outcomes of ecological restoration, there are few attempts to develop models to account for multiple, potentially competing objectives. We develop the first predictive model that integrates a vegetation-focused state-and-transition model with species distribution models for birds. We demonstrate how this integrated model can be used to identify effective restoration options for vegetation and bird species under a constrained budget. For example, using a typical agricultural land management scenario from south-eastern Australia, we demonstrate how the optimal management actions for promoting the occurrence of the Brown Treecreeper, an iconic threatened species, may be suboptimal for meeting vegetation condition objectives. This highlights that any 'preferred' management decision depends on the value assigned to the different objectives. An exploration of sensitivity to value weightings highlighted that 'no management' or 'weed control' were most likely to be the best management options to meet multiple objectives in the scenario we explored. We thus illustrate an approach to using the model outputs to explore trade-offs between bird and vegetation objectives. Our approach to exploring management outcomes and trade-offs using integrated modelling and structured decision support approaches has wide application for conservation management problems in which trade-offs exist between competing objectives. This article is protected by copyright. All rights reserved.

  1. Decision support in medical practice: a physician's perspective

    NASA Astrophysics Data System (ADS)

    Shieh, Yao-Yang; Roberson, Glenn H.

    1998-03-01

    A physician's decision support system consists of three components: (1) a comprehensive patient record and medical knowledge database, (2) information infrastructure for data storage, transfer, and (3) an analytical inference engine, accompanied by business operation database. Medical knowledge database provides the guideline for the selection of powerful clinical features or tests to be observed so that an accurate diagnosis as well as effective treatment can be quickly reached. With a tremendous amount of information stored in multiple data centers, it takes an effective information infrastructure to provide streamlined flow of information to the physician in a timely fashion. A real-time analytical inference engine mimics the physician's reasoning process. However due to incomplete, imperfect data and medical knowledge, a realistic output from this engine will be a list of options with associated confidence level, expected risk, so that the physician can make a well-informed final decision. Physicians are challenged to pursue the objective of ensuring an acceptable quality of care in an economically restrained environment. Therefore, business operation data have to be factored into the calculation of overall loss. Follow-up of diagnosis and treatment provides retrospective assessment of the accuracy and effectiveness of the existing inference engine.

  2. Decision Support Systems for Launch and Range Operations Using Jess

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar

    2007-01-01

    The virtual test bed for launch and range operations developed at NASA Ames Research Center consists of various independent expert systems advising on weather effects, toxic gas dispersions and human health risk assessment during space-flight operations. An individual dedicated server supports each expert system and the master system gather information from the dedicated servers to support the launch decision-making process. Since the test bed is based on the web system, reducing network traffic and optimizing the knowledge base is critical to its success of real-time or near real-time operations. Jess, a fast rule engine and powerful scripting environment developed at Sandia National Laboratory has been adopted to build the expert systems providing robustness and scalability. Jess also supports XML representation of knowledge base with forward and backward chaining inference mechanism. Facts added - to working memory during run-time operations facilitates analyses of multiple scenarios. Knowledge base can be distributed with one inference engine performing the inference process. This paper discusses details of the knowledge base and inference engine using Jess for a launch and range virtual test bed.

  3. Making Risk Models Operational for Situational Awareness and Decision Support

    SciTech Connect

    Paulson, Patrick R.; Coles, Garill A.; Shoemaker, Steven V.

    2012-06-12

    Modernization of nuclear power operations control systems, in particular the move to digital control systems, creates an opportunity to modernize existing legacy infrastructure and extend plant life. We describe here decision support tools that allow the assessment of different facets of risk and support the optimization of available resources to reduce risk as plants are upgraded and maintained. This methodology could become an integrated part of the design review process and a part of the operations management systems. The methodology can be applied to the design of new reactors such as small nuclear reactors (SMR), and be helpful in assessing the risks of different configurations of the reactors. Our tool provides a low cost evaluation of alternative configurations and provides an expanded safety analysis by considering scenarios while early in the implementation cycle where cost impacts can be minimized. The effects of failures can be modeled and thoroughly vetted to understand their potential impact on risk. The process and tools presented here allow for an integrated assessment of risk by supporting traditional defense in depth approaches while taking into consideration the insertion of new digital instrument and control systems.

  4. Clinical decision support for perioperative information management systems.

    PubMed

    Wanderer, Jonathan P; Ehrenfeld, Jesse M

    2013-12-01

    Clinical decision support (CDS) systems are being used to optimize the increasingly complex care that our health care system delivers. These systems have become increasingly important in the delivery of perioperative care for patients undergoing cardiac, thoracic, and vascular procedures. The adoption of perioperative information management systems (PIMS) has allowed these technologies to enter the operating room and support the clinical work flow of anesthesiologists and operational processes. Constructing effective CDS systems necessitates an understanding of operative work flow and technical considerations as well as achieving integration with existing information systems. In this review, we describe published examples of CDS for PIMS, including support for cardiopulmonary bypass separation physiological alarms, β-blocker guideline adherence, enhanced revenue capture for arterial line placement, and detection of hemodynamic monitoring gaps. Although these and other areas are amenable to CDS systems, the challenges of latency and data reliability represent fundamental limitations on the potential application of these tools to specific types of clinical issues. Ultimately, we expect that CDS will remain an important tool in our efforts to optimize the quality of care delivered.

  5. FRAMEWORK FOR DECISION SUPPORT USED IN CONTAMINATED LAND MANAGEMENT IN EUROPE AND NORTH AMERICA.

    SciTech Connect

    SULLIVAN,T.; BARDOS,R.P.; MAROT,C.; MARIOTTI,R.

    2000-06-01

    Effective contaminated land management requires a number of decisions addressing a suite of technical, economic and social concerns. This paper offers a common framework and terminology for describing decision support approaches, along with an overview of recent applications of decision support tools in Europe and the USA. A common problem with work on decision support approaches is a lack of a common framework and terminology to describe the process. These have been proposed in this paper.

  6. A Clinical Decision Support System for Breast Cancer Patients

    NASA Astrophysics Data System (ADS)

    Fernandes, Ana S.; Alves, Pedro; Jarman, Ian H.; Etchells, Terence A.; Fonseca, José M.; Lisboa, Paulo J. G.

    This paper proposes a Web clinical decision support system for clinical oncologists and for breast cancer patients making prognostic assessments, using the particular characteristics of the individual patient. This system comprises three different prognostic modelling methodologies: the clinically widely used Nottingham prognostic index (NPI); the Cox regression modelling and a partial logistic artificial neural network with automatic relevance determination (PLANN-ARD). All three models yield a different prognostic index that can be analysed together in order to obtain a more accurate prognostic assessment of the patient. Missing data is incorporated in the mentioned models, a common issue in medical data that was overcome using multiple imputation techniques. Risk group assignments are also provided through a methodology based on regression trees, where Boolean rules can be obtained expressed with patient characteristics.

  7. Studying the Vendor Perspective on Clinical Decision Support

    PubMed Central

    Ash, Joan S.; Sittig, Dean F.; McMullen, Carmit K.; McCormack, James L.; Wright, Adam; Bunce, Arwen; Wasserman, Joseph; Mohan, Vishnu; Cohen, Deborah J.; Shapiro, Michael; Middleton, Blackford

    2011-01-01

    In prior work, using a Rapid Assessment Process (RAP), we have investigated clinical decision support (CDS) in ambulatory clinics and hospitals. We realized that individuals in these settings provide only one perspective related to the CDS landscape, which also includes content vendors and electronic health record (EHR) vendors. To discover content vendors’ perspectives and their perceived challenges, we modified RAP for industrial settings. We describe how we employed RAP, and show its utility by describing two illustrative themes. We found that while the content vendors believe they provide unique much-needed services, the amount of labor involved in content development is underestimated by others. We also found that the content vendors believe their products are resources to be used by practitioners, so they are somewhat protected from liability issues. To promote adequate understanding about these issues, we recommend a “three way conversation” among content vendors, EHR vendors, and user organizations. PMID:22195058

  8. Clinical decision support for physician order-entry: design challenges.

    PubMed

    Broverman, C A; Clyman, J I; Schlesinger, J M; Want, E

    1996-01-01

    We report on a joint development effort between ALLTEL Information Services Health Care Division and IBM Worldwide Healthcare Industry to demonstrate concurrent clinical decision support using Arden Syntax at order-entry time. The goal of the partnership is to build a high performance CDS toolkit that may be easily customized for multiple health care enterprises. Our work uses and promotes open technologies and health care standards while building a generalizable interface to a legacy patient-care system and clinical database. This paper identifies four areas of design challenges and solutions unique to a concurrent order-entry environment: the clinical information model, the currency of the patient virtual chart, the granularity of event triggers and rule evaluation context, and performance.

  9. Impact Decision Support Services in the Arctic - A Case Study

    NASA Astrophysics Data System (ADS)

    Scott, C. A.

    2015-12-01

    The National Weather Service Alaska Region's (AR) Regional Operation Center (ROC) provided weather and ice decision support services for the Bureau of Ocean and Energy Management (BOEM) oversight of Royal Dutch Shell's exploratory drilling operations in the Chukchi Sea during the summer and early fall of 2015. The AR ROC, coordinated input from WFO's Anchorage and Fairbanks, the NCEP/Ocean Prediction Center and Climate Prediction Center, and NOAA's National Ice Center. Briefings began in early Spring 2015, focused on melt-out and freeze up dates in the vicinity of the "Burger" drill site. Initially packages were prepared and briefed twice weekly. The frequency increased as the drilling season progressed, and included marine and aviation weather forecasts, current and forecast sea ice conditions as it impacts vessels and aircraft transiting to and from the drilling sites in the Chukchi Sea. Spot forecasts are also available for specific missions as needed.

  10. Protective jacket enabling decision support for workers in cold climate.

    PubMed

    Seeberg, Trine M; Vardoy, Astrid-Sofie B; Austad, Hanne O; Wiggen, Oystein; Stenersen, Henning S; Liverud, Anders E; Storholmen, Tore Christian B; Faerevik, Hilde

    2013-01-01

    The cold and harsh climate in the High North represents a threat to safety and work performance. The aim of this study was to show that sensors integrated in clothing can provide information that can improve decision support for workers in cold climate without disturbing the user. Here, a wireless demonstrator consisting of a working jacket with integrated temperature, humidity and activity sensors has been developed. Preliminary results indicate that the demonstrator can provide easy accessible information about the thermal conditions at the site of the worker and local cooling effects of extremities. The demonstrator has the ability to distinguish between activity and rest, and enables implementation of more sophisticated sensor fusion algorithms to assess work load and pre-defined activities. This information can be used in an enhanced safety perspective as an improved tool to advice outdoor work control for workers in cold climate.

  11. Decision support systems and methods for complex networks

    DOEpatents

    Huang, Zhenyu [Richland, WA; Wong, Pak Chung [Richland, WA; Ma, Jian [Richland, WA; Mackey, Patrick S [Richland, WA; Chen, Yousu [Richland, WA; Schneider, Kevin P [Seattle, WA

    2012-02-28

    Methods and systems for automated decision support in analyzing operation data from a complex network. Embodiments of the present invention utilize these algorithms and techniques not only to characterize the past and present condition of a complex network, but also to predict future conditions to help operators anticipate deteriorating and/or problem situations. In particular, embodiments of the present invention characterize network conditions from operation data using a state estimator. Contingency scenarios can then be generated based on those network conditions. For at least a portion of all of the contingency scenarios, risk indices are determined that describe the potential impact of each of those scenarios. Contingency scenarios with risk indices are presented visually as graphical representations in the context of a visual representation of the complex network. Analysis of the historical risk indices based on the graphical representations can then provide trends that allow for prediction of future network conditions.

  12. Studying the vendor perspective on clinical decision support.

    PubMed

    Ash, Joan S; Sittig, Dean F; McMullen, Carmit K; McCormack, James L; Wright, Adam; Bunce, Arwen; Wasserman, Joseph; Mohan, Vishnu; Cohen, Deborah J; Shapiro, Michael; Middleton, Blackford

    2011-01-01

    In prior work, using a Rapid Assessment Process (RAP), we have investigated clinical decision support (CDS) in ambulatory clinics and hospitals. We realized that individuals in these settings provide only one perspective related to the CDS landscape, which also includes content vendors and electronic health record (EHR) vendors. To discover content vendors' perspectives and their perceived challenges, we modified RAP for industrial settings. We describe how we employed RAP, and show its utility by describing two illustrative themes. We found that while the content vendors believe they provide unique much-needed services, the amount of labor involved in content development is underestimated by others. We also found that the content vendors believe their products are resources to be used by practitioners, so they are somewhat protected from liability issues. To promote adequate understanding about these issues, we recommend a "three way conversation" among content vendors, EHR vendors, and user organizations.

  13. Clinical Decision Support for Early Recognition of Sepsis.

    PubMed

    Amland, Robert C; Hahn-Cover, Kristin E

    2016-01-01

    Sepsis is an inflammatory response triggered by infection, with a high in-hospital mortality rate. Early recognition and treatment can reverse the inflammatory response, with evidence of improved patient outcomes. One challenge clinicians face is identifying the inflammatory syndrome against the background of the patient's infectious illness and comorbidities. An approach to this problem is implementation of computerized early warning tools for sepsis. This multicenter retrospective study sought to determine clinimetric performance of a cloud-based computerized sepsis clinical decision support system (CDS), understand the epidemiology of sepsis, and identify opportunities for quality improvement. Data encompassed 6200 adult hospitalizations from 2012 through 2013. Of 13% patients screened-in, 51% were already suspected to have an infection when the system activated. This study focused on a patient cohort screened-in before infection was suspected; median time from arrival to CDS activation was 3.5 hours, and system activation to diagnostic collect was another 8.6 hours.

  14. New decision support tool for acute lymphoblastic leukemia classification

    NASA Astrophysics Data System (ADS)

    Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.

    2012-03-01

    In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.

  15. Decision support environment for medical product safety surveillance.

    PubMed

    Botsis, Taxiarchis; Jankosky, Christopher; Arya, Deepa; Kreimeyer, Kory; Foster, Matthew; Pandey, Abhishek; Wang, Wei; Zhang, Guangfan; Forshee, Richard; Goud, Ravi; Menschik, David; Walderhaug, Mark; Woo, Emily Jane; Scott, John

    2016-12-01

    We have developed a Decision Support Environment (DSE) for medical experts at the US Food and Drug Administration (FDA). The DSE contains two integrated systems: The Event-based Text-mining of Health Electronic Records (ETHER) and the Pattern-based and Advanced Network Analyzer for Clinical Evaluation and Assessment (PANACEA). These systems assist medical experts in reviewing reports submitted to the Vaccine Adverse Event Reporting System (VAERS) and the FDA Adverse Event Reporting System (FAERS). In this manuscript, we describe the DSE architecture and key functionalities, and examine its potential contributions to the signal management process by focusing on four use cases: the identification of missing cases from a case series, the identification of duplicate case reports, retrieving cases for a case series analysis, and community detection for signal identification and characterization.

  16. Decision Support for Iteration Scheduling in Agile Environments

    NASA Astrophysics Data System (ADS)

    Szőke, Ákos

    Today’s software business development projects often lay claim to low-risk value to the customers in order to be financed. Emerging agile processes offer shorter investment periods, faster time-to-market and better customer satisfaction. To date, however, in agile environments there is no sound methodological schedule support contrary to the traditional plan-based approaches. To address this situation, we present an agile iteration scheduling method whose usefulness is evaluated with post-mortem simulation. It demonstrates that the method can significantly improve load balancing of resources (cca. 5×), produce higher quality and lower-risk feasible schedule, and provide more informed and established decisions by optimized schedule production. Finally, the paper analyzes benefits and issues from the use of this method.

  17. Research design of decision support system for team sport

    NASA Astrophysics Data System (ADS)

    Abidin, Mohammad Zukuwwan Zainol; Nawawi, Mohd Kamal Mohd; Kasim, Maznah Mat

    2016-10-01

    This paper proposes a suitable research procedure that can be referred to while conducting a Decision Support System (DSS) study, especially when the development activity of system artifacts becomes one of the research objectives. The design of the research procedure was based on the completion of a football DSS development that can help in determining the position of a player and the best team formation to be used during a game. After studying the relevant literature, we found that it is necessary to combine the conventional rainfall System Development Life Cycle (SDLC) approach with Case Study approach to help in structuring the research task and phases, which can contribute to the fulfillment of the research aim and objectives.

  18. PATHway: Decision Support in Exercise Programmes for Cardiac Rehabilitation.

    PubMed

    Filos, Dimitris; Triantafyllidis, Andreas; Chouvarda, Ioanna; Buys, Roselien; Cornelissen, Véronique; Budts, Werner; Walsh, Deirdre; Woods, Catherine; Moran, Kieran; Maglaveras, Nicos

    2016-01-01

    Rehabilitation is important for patients with cardiovascular diseases (CVD) to improve health outcomes and quality of life. However, adherence to current exercise programmes in cardiac rehabilitation is limited. We present the design and development of a Decision Support System (DSS) for telerehabilitation, aiming to enhance exercise programmes for CVD patients through ensuring their safety, personalising the programme according to their needs and performance, and motivating them toward meeting their physical activity goals. The DSS processes data originated from a Microsoft Kinect camera, a blood pressure monitor, a heart rate sensor and questionnaires, in order to generate a highly individualised exercise programme and improve patient adherence. Initial results within the EU-funded PATHway project show the potential of our approach.

  19. NOAA Climate Information and Tools for Decision Support Services

    NASA Astrophysics Data System (ADS)

    Timofeyeva, M. M.; Higgins, W.; Strager, C.; Horsfall, F. M.

    2013-12-01

    NOAA is an active participant of the Global Framework for Climate Services (GFCS) contributing data, information, analytical capabilities, forecasts, and decision support services to the Climate Services Partnership (CSP). These contributions emerge from NOAA's own climate services, which have evolved to respond to the urgent and growing need for reliable, trusted, transparent, and timely climate information across all sectors of the U.S. economy. Climate services not only enhance development opportunities in many regions, but also reduce vulnerability to climate change around the world. The NOAA contribution lies within the NOAA Climate Goal mission, which is focusing its efforts on four key climate priority areas: water, extremes, coastal inundation, and marine ecosystems. In order to make progress in these areas, NOAA is exploiting its fundamental capabilities, including foundational research to advance understanding of the Earth system, observations to preserve and build the climate data record and monitor changes in climate conditions, climate models to predict and project future climate across space and time scales, and the development and delivery of decision support services focused on risk management. NOAA's National Weather Services (NWS) is moving toward provision of Decision Support Services (DSS) as a part of the Roadmap on the way to achieving a Weather Ready National (WRN) strategy. Both short-term and long-term weather, water, and climate information are critical for DSS and emergency services and have been integrated into NWS in the form of pilot projects run by National and Regional Operations Centers (NOC and ROCs respectively) as well as several local offices. Local offices with pilot projects have been focusing their efforts on provision of timely and actionable guidance for specific tasks such as DSS in support of Coastal Environments and Integrated Environmental Studies. Climate information in DSS extends the concept of climate services to

  20. Space-time statistics for decision support to smart farming.

    PubMed

    Stein, A; Hoosbeek, M R; Sterk, G

    1997-01-01

    This paper summarizes statistical procedures which are useful for precision farming at different scales. Three topics are addressed: spatial comparison of scenarios for land use, analysis of data in the space-time domain, and sampling in space and time. The first study compares six scenarios for nitrate leaching to ground water. Disjunctive cokriging reduces the computing time by 80% without loss of accuracy. The second study analyses wind erosion during four storms in a field in Niger measured with 21 devices. We investigated the use of temporal replicates to overcome the lack of spatial data. The third study analyses the effects of sampling in space and time for soil nutrient data in a Southwest African field. We concluded that statistical procedures are indispensable for decision support to smart farming.

  1. Creating and sharing clinical decision support content with Web 2.0: Issues and examples.

    PubMed

    Wright, Adam; Bates, David W; Middleton, Blackford; Hongsermeier, Tonya; Kashyap, Vipul; Thomas, Sean M; Sittig, Dean F

    2009-04-01

    Clinical decision support is a powerful tool for improving healthcare quality and patient safety. However, developing a comprehensive package of decision support interventions is costly and difficult. If used well, Web 2.0 methods may make it easier and less costly to develop decision support. Web 2.0 is characterized by online communities, open sharing, interactivity and collaboration. Although most previous attempts at sharing clinical decision support content have worked outside of the Web 2.0 framework, several initiatives are beginning to use Web 2.0 to share and collaborate on decision support content. We present case studies of three efforts: the Clinfowiki, a world-accessible wiki for developing decision support content; Partners Healthcare eRooms, web-based tools for developing decision support within a single organization; and Epic Systems Corporation's Community Library, a repository for sharing decision support content for customers of a single clinical system vendor. We evaluate the potential of Web 2.0 technologies to enable collaborative development and sharing of clinical decision support systems through the lens of three case studies; analyzing technical, legal and organizational issues for developers, consumers and organizers of clinical decision support content in Web 2.0. We believe the case for Web 2.0 as a tool for collaborating on clinical decision support content appears strong, particularly for collaborative content development within an organization.

  2. Facilitating knowledge transfer: decision support tools in environment and health.

    PubMed

    Liu, Hai-Ying; Bartonova, Alena; Neofytou, Panagiotis; Yang, Aileen; Kobernus, Michael J; Negrenti, Emanuele; Housiadas, Christos

    2012-06-28

    The HENVINET Health and Environment Network aimed to enhance the use of scientific knowledge in environmental health for policy making. One of the goals was to identify and evaluate Decision Support Tools (DST) in current use. Special attention was paid to four "priority" health issues: asthma and allergies, cancer, neurodevelopment disorders, and endocrine disruptors.We identified a variety of tools that are used for decision making at various levels and by various stakeholders. We developed a common framework for information acquisition about DSTs, translated this to a database structure and collected the information in an online Metadata Base (MDB).The primary product is an open access web-based MDB currently filled with 67 DSTs, accessible through the HENVINET networking portal http://www.henvinet.eu and http://henvinet.nilu.no. Quality assurance and control of the entries and evaluation of requirements to use the DSTs were also a focus of the work. The HENVINET DST MDB is an open product that enables the public to get basic information about the DSTs, and to search the DSTs using pre-designed attributes or free text. Registered users are able to 1) review and comment on existing DSTs; 2) evaluate each DST's functionalities, and 3) add new DSTs, or change the entry for their own DSTs. Assessment of the available 67 DSTs showed: 1) more than 25% of the DSTs address only one pollution source; 2) 25% of the DSTs address only one environmental stressor; 3) almost 50% of the DSTs are only applied to one disease; 4) 41% of the DSTs can only be applied to one decision making area; 5) 60% of the DSTs' results are used only by national authority and/or municipality/urban level administration; 6) almost half of the DSTs are used only by environmental professionals and researchers. This indicates that there is a need to develop DSTs covering an increasing number of pollution sources, environmental stressors and health end points, and considering links to other 'Driving

  3. Observations to support adaptation: Principles, scales and decision-making

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2012-12-01

    As has been long noted, a comprehensive, coordinated observing system is the backbone of any Earth information system. Demands are increasingly placed on earth observation and prediction systems and attendant services to address the needs of economically and environmentally vulnerable sectors and investments, including energy, water, human health, transportation, agriculture, fisheries, tourism, biodiversity, and national security. Climate services include building capacity to interpret information and recognize standards and limitations of data in the promotion of social and economic development in a changing climate. This includes improving the understanding of climate in the context of a variety of temporal and spatial scales (including the influence of decadal scale forcings and land surface feedbacks on seasonal forecast reliability). Climate data and information are central for developing decision options that are sensitive to climate-related uncertainties and the design of flexible adaptation pathways. Ideally monitoring should be action oriented to support climate risk assessment and adaptation including informing robust decision making to multiple risks over the long term. Based on the experience of global observations programs and empirical research we outline- Challenges in developing effective monitoring and climate information systems to support adaptation. The types of observations of critical importance needed for sector planning to enhance food, water and energy security, and to improve early warning for disaster risk reduction Observations needed for ecosystem-based adaptation including the identification of thresholds, maintenance of biological diversity and land degradation The benefits and limits of linking regional model output to local observations including analogs and verification for adaptation planning To support these goals a robust systems of integrated observations are needed to characterize the uncertainty surrounding emergent risks

  4. Exploration Clinical Decision Support System: Medical Data Architecture

    NASA Technical Reports Server (NTRS)

    Lindsey, Tony; Shetye, Sandeep; Shaw, Tianna (Editor)

    2016-01-01

    The Exploration Clinical Decision Support (ECDS) System project is intended to enhance the Exploration Medical Capability (ExMC) Element for extended duration, deep-space mission planning in HRP. A major development guideline is the Risk of "Adverse Health Outcomes & Decrements in Performance due to Limitations of In-flight Medical Conditions". ECDS attempts to mitigate that Risk by providing crew-specific health information, actionable insight, crew guidance and advice based on computational algorithmic analysis. The availability of inflight health diagnostic computational methods has been identified as an essential capability for human exploration missions. Inflight electronic health data sources are often heterogeneous, and thus may be isolated or not examined as an aggregate whole. The ECDS System objective provides both a data architecture that collects and manages disparate health data, and an active knowledge system that analyzes health evidence to deliver case-specific advice. A single, cohesive space-ready decision support capability that considers all exploration clinical measurements is not commercially available at present. Hence, this Task is a newly coordinated development effort by which ECDS and its supporting data infrastructure will demonstrate the feasibility of intelligent data mining and predictive modeling as a biomedical diagnostic support mechanism on manned exploration missions. The initial step towards ground and flight demonstrations has been the research and development of both image and clinical text-based computer-aided patient diagnosis. Human anatomical images displaying abnormal/pathological features have been annotated using controlled terminology templates, marked-up, and then stored in compliance with the AIM standard. These images have been filtered and disease characterized based on machine learning of semantic and quantitative feature vectors. The next phase will evaluate disease treatment response via quantitative linear

  5. Improvements in agricultural water decision support using remote sensing

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.

    2012-12-01

    Population driven water scarcity, aggravated by climate-driven evaporative demand in dry regions of the world, has the potential of transforming ecological and social systems to the point of armed conflict. Water shortages will be most severe in agricultural areas, as the priority shifts to urban and industrial use. In order to design, evaluate, and monitor appropriate mitigation strategies, predictive models must be developed that quantify exposure to water shortage. Remote sensing data has been used for more than three decades now to parametrize these models, because field measurements are costly and difficult in remote regions of the world. In the past decade, decision-makers for the first time can make accurate and near real-time evaluations of field conditions with the advent of hyper- spatial and spectral and coarse resolution continuous remote sensing data. Here, we summarize two projects representing diverse applications of remote sensing to improve agricultural water decision support. The first project employs MODIS (coarse resolution continuous data) to drive an evapotranspiration index, which is combined with the Standardized Precipitation Index driven by meteorological satellite data to improve famine early warning in Africa. The combined index is evaluated using district-level crop yield data from Kenya and Malawi and national-level crop yield data from the United Nations Food and Agriculture Organization. The second project utilizes hyper- spatial (GeoEye 1, Quickbird, IKONOS, and RapidEye) and spectral (Hyperion/ALI), as well as multi-spectral (Landsat ETM+, SPOT, and MODIS) data to develop biomass estimates for key crops (alfalfa, corn, cotton, and rice) in the Central Valley of California. Crop biomass is an important indicator of crop water productivity. The remote sensing data is combined using various data fusion techniques and evaluated with field data collected in the summer of 2012. We conclude with a brief discussion on implementation of

  6. WEB-GIS Decision Support System for CO2 storage

    NASA Astrophysics Data System (ADS)

    Gaitanaru, Dragos; Leonard, Anghel; Radu Gogu, Constantin; Le Guen, Yvi; Scradeanu, Daniel; Pagnejer, Mihaela

    2013-04-01

    Environmental decision support systems (DSS) paradigm evolves and changes as more knowledge and technology become available to the environmental community. Geographic Information Systems (GIS) can be used to extract, assess and disseminate some types of information, which are otherwise difficult to access by traditional methods. In the same time, with the help of the Internet and accompanying tools, creating and publishing online interactive maps has become easier and rich with options. The Decision Support System (MDSS) developed for the MUSTANG (A MUltiple Space and Time scale Approach for the quaNtification of deep saline formations for CO2 storaGe) project is a user friendly web based application that uses the GIS capabilities. MDSS can be exploited by the experts for CO2 injection and storage in deep saline aquifers. The main objective of the MDSS is to help the experts to take decisions based large structured types of data and information. In order to achieve this objective the MDSS has a geospatial objected-orientated database structure for a wide variety of data and information. The entire application is based on several principles leading to a series of capabilities and specific characteristics: (i) Open-Source - the entire platform (MDSS) is based on open-source technologies - (1) database engine, (2) application server, (3) geospatial server, (4) user interfaces, (5) add-ons, etc. (ii) Multiple database connections - MDSS is capable to connect to different databases that are located on different server machines. (iii)Desktop user experience - MDSS architecture and design follows the structure of a desktop software. (iv)Communication - the server side and the desktop are bound together by series functions that allows the user to upload, use, modify and download data within the application. The architecture of the system involves one database and a modular application composed by: (1) a visualization module, (2) an analysis module, (3) a guidelines module

  7. How Decision Support Systems Can Benefit from a Theory of Change Approach.

    PubMed

    Allen, Will; Cruz, Jennyffer; Warburton, Bruce

    2017-03-09

    Decision support systems are now mostly computer and internet-based information systems designed to support land managers with complex decision-making. However, there is concern that many environmental and agricultural decision support systems remain underutilized and ineffective. Recent efforts to improve decision support systems use have focused on enhancing stakeholder participation in their development, but a mismatch between stakeholders' expectations and the reality of decision support systems outputs continues to limit uptake. Additional challenges remain in problem-framing and evaluation. We propose using an outcomes-based approach called theory of change in conjunction with decision support systems development to support both wider problem-framing and outcomes-based monitoring and evaluation. The theory of change helps framing by placing the decision support systems within a wider context. It highlights how decision support systems use can "contribute" to long-term outcomes, and helps align decision support systems outputs with these larger goals. We illustrate the benefits of linking decision support systems development and application with a theory of change approach using an example of pest rabbit management in Australia. We develop a theory of change that outlines the activities required to achieve the outcomes desired from an effective rabbit management program, and two decision support systems that contribute to specific aspects of decision making in this wider problem context. Using a theory of change in this way should increase acceptance of the role of decision support systems by end-users, clarify their limitations and, importantly, increase effectiveness of rabbit management. The use of a theory of change should benefit those seeking to improve decision support systems design, use and, evaluation.

  8. Issues of trust and ethics in computerized clinical decision support systems.

    PubMed

    Alexander, Gregory L

    2006-01-01

    Clinical decision support systems are computer technologies that model and provide support for human decision-making processes. Decision support mechanisms facilitate and enhance a clinician's ability to make decisions at the point of care. Decisions are facilitated through technology by using automated mechanisms that provide alerts or messages to clinicians about a potential patient problem. A clinician's level of trust in these technologies to support decision making is affected by how knowledge is represented in these tools, their ability to make reasonable decisions, and how they are designed. Furthermore, ethical tensions occur if these systems do not promote standards, if clinicians do not understand how to use these systems, and when professional relationships are affected. Issues of trust and ethical concerns will be examined in this article, using a research study of midwestern nursing homes that implemented a clinical decision support system.

  9. Adriatic Sea Decision Support System (ADRI-DSS)

    NASA Astrophysics Data System (ADS)

    Coppini, Giovanni; Lyubartsev, Vladyslav; Pinardi, Nadia; Montanari, Giuseppe; Rinaldi, Attilio; Serra, Stefano; Santoleri, Rosalia

    2010-05-01

    The Adriatic Sea decision support system (ADRI-DSS) consists of an on-line service built upon a set of integrated operational oceanography products. ADRI-DSS integrates the Adriatic Sea monitoring and forecasting system (AFS) with local in-situ observations and is built to support the Emilia-Romagna coastal monitoring system for marine environment and ecosystem health. The target user is the Regional Environment Prevention Agency from Emilia-Romagna (Italy) called ARPA-EMR. Specifically ADRI-DSS will support the daily action of the oceanographic section of ARPA-EMR called ARPA-DAPHNE providing all the available products (forecast, observations, simulations) from Adriatic Forecasting System. The product is shaped as required by the user and moreover ADRI-DSS also integrates with the routinely observations that the user carry out on a weekly basis. The system has been designed through the interaction with ARPA-DAPHNE and consists of a online portal containing simulation and forecast for the relevant north Adriatic region. Moreover the model products are compared with in-situ observations of temperature and salinity collected by the ARPA-DAPHNE itself. In the coming future also satellite observations and indicators will be made available by ADRI-DSS. The final aim of ADRI-DSS is to integrate selected products from the AFS with the insitu and satellite observation to support the monitoring activities of ARPA-DAPNHE and to improve ARPA-DAPHNE capabilities for the Emilia-Romagna marine environment status assessment. ADRI-DSS has been developed within ECOOP project (European COastal-shelf sea OPerational Observing and forecasting system Integrated Project). ADRI-DSS is a web-based application available via internet browsers with JavaScript capability. The server part is implemented on PHP (data management) and NCL (graphics production). The NCL is NCAR Command Language, a free interpreted language designed specifically for scientific data processing and visualization, see

  10. Using Google Earth in Marine Research and Operational Decision Support

    NASA Astrophysics Data System (ADS)

    Blower, J. D.; Bretherton, D.; Haines, K.; Liu, C.; Rawlings, C.; Santokhee, A.; Smith, I.

    2006-12-01

    A key advantage of Virtual Globes ("geobrowsers") such as Google Earth is that they can display many different geospatial data types at a huge range of spatial scales. In this demonstration and poster display we shall show how marine data from disparate sources can be brought together in a geobrowser in order to support both scientific research and operational search and rescue activities. We have developed the Godiva2 interactive website for browsing and exploring marine data, mainly output from supercomputer analyses and predictions of ocean circulation. The user chooses a number of parameters (e.g. sea temperature at 100m depth on 1st July 2006) and can load an image of the resulting data in Google Earth. Through the use of an automatically-refreshing NetworkLink the user can explore the whole globe at a very large range of spatial scales: the displayed data will automatically be refreshed to show data at increasingly fine resolution as the user zooms in. This is a valuable research tool for exploring these terabyte- scale datasets. Many coastguard organizations around the world use SARIS, a software application produced by BMT Cordah Ltd., to predict the drift pattern of objects in the sea in order to support search and rescue operations. Different drifting objects have different trajectories depending on factors such as their buoyancy and windage and so a computer model, supported by meteorological and oceanographic data, is needed to help rescuers locate their targets. We shall demonstrate how Google Earth is used to display output from the SARIS model (including the search target location and associated error polygon) alongside meteorological data (wind vectors) and oceanographic data (sea temperature, surface currents) from Godiva2 in order to support decision-making. We shall also discuss the limitations of using Google Earth in this context: these include the difficulties of working with time- dependent data and the need to access data securely. essc

  11. Verification and Validation of NASA-Supported Enhancements to PECAD's Decision Support Tools

    NASA Technical Reports Server (NTRS)

    McKellipo, Rodney; Ross, Kenton W.

    2006-01-01

    The NASA Applied Sciences Directorate (ASD), part of the Earth-Sun System Division of NASA's Science Mission Directorate, has partnered with the U.S. Department of Agriculture (USDA) to enhance decision support in the area of agricultural efficiency-an application of national importance. The ASD integrated the results of NASA Earth science research into USDA decision support tools employed by the USDA Foreign Agricultural Service (FAS) Production Estimates and Crop Assessment Division (PECAD), which supports national decision making by gathering, analyzing, and disseminating global crop intelligence. Verification and validation of the following enhancements are summarized: 1) Near-real-time Moderate Resolution Imaging Spectroradiometer (MODIS) products through PECAD's MODIS Image Gallery; 2) MODIS Normalized Difference Vegetation Index (NDVI) time series data through the USDA-FAS MODIS NDVI Database; and 3) Jason-1 and TOPEX/Poseidon lake level estimates through PECAD's Global Reservoir and Lake Monitor. Where possible, each enhanced product was characterized for accuracy, timeliness, and coverage, and the characterized performance was compared to PECAD operational requirements. The MODIS Image Gallery and the GRLM are more mature and have achieved a semi-operational status, whereas the USDA-FAS MODIS NDVI Database is still evolving and should be considered

  12. Research on web-based decision support system for sports competitions

    NASA Astrophysics Data System (ADS)

    Huo, Hanqiang

    2010-07-01

    This paper describes the system architecture and implementation technology of the decision support system for sports competitions, discusses the design of decision-making modules, management modules and security of the system, and proposes the development idea of building a web-based decision support system for sports competitions.

  13. Developing a Software for Fuzzy Group Decision Support System: A Case Study

    ERIC Educational Resources Information Center

    Baba, A. Fevzi; Kuscu, Dincer; Han, Kerem

    2009-01-01

    The complex nature and uncertain information in social problems required the emergence of fuzzy decision support systems in social areas. In this paper, we developed user-friendly Fuzzy Group Decision Support Systems (FGDSS) software. The software can be used for multi-purpose decision making processes. It helps the users determine the main and…

  14. Creating a GIS-Based Decision-Support System

    NASA Technical Reports Server (NTRS)

    Alvarado, Lori; Gates, Ann Q.; Gray, Bob; Reyes, Raul

    1998-01-01

    Tilting the Balance: Climate Variability and Water Resource Management in the Southwest, a regional conference hosted by the Pan American Center for Environmental Studies, will be held at The University of Texas at El Paso on March 2-4, 1998. The conference is supported through the US Global Change Research Program (USGCRP) established by the President in 1989, and codified by Congress in the Global Change Research Act of 1990. The NASA Mission to Planet Earth program is one of the workshops sponsors. The purpose of the regional workshops is to improve understanding of the consequences of global change. This workshop will be focused on issues along the border and the Rio Grande River and thus will bring together stakeholders from Mexico, California, Texas, New Mexico, Arizona and Colorado representing federal, state, and local governments; universities and laboratories; industry, agricultural and natural resource managers; and non-governmental organizations. This paper discusses the efforts of the NASA PACES center create a GIS-based decision-support system that can be used to facilitate discussion of the complex issues of resource management within the targeted international region.

  15. Documentation of a decision framework to support enhanced sludge washing

    SciTech Connect

    Brothers, A.J.

    1995-12-31

    This document describes a proposed decision model that, if developed to its fullest, can provide a wide range of analysis options and insights to pretreatment/sludge washing alternatives. A recent decision has been made to terminate this work

  16. Is there a need for hydrological modelling in decision support systems for nuclear emergencies.

    PubMed

    Raskob, W; Heling, R; Zheleznyak, M

    2004-01-01

    This paper discusses the role of hydrological modelling in decision support systems for nuclear emergencies. In particular, most recent developments such as, the radionuclide transport models integrated in to the decision support system RODOS will be explored. Recent progress in the implementation of physically-based distributed hydrological models for operational forecasting in national and supranational centres, may support a closer cooperation between national hydrological services and therefore, strengthen the use of hydrological and radiological models implemented in decision support systems.

  17. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  18. Enhancing Drought Risk Management: Tools and Services for Decision Support

    NASA Astrophysics Data System (ADS)

    Svoboda, M. D.; Hayes, M. J.

    2011-12-01

    The National Drought Mitigation Center (NDMC) (http://drought.unl.edu) has been working with the National Integrated Drought Information System (NIDIS) (http://drought.gov) and other partners with a goal of developing tools, products, services and outreach with a goal of contributing to a U.S. drought early warning system (DEWS) as well as contributing to efforts underway toward building a virtual and collaborative global drought early warning system (GDEWS). The NDMC's mission is to work to reduce societal vulnerability to drought by helping decision makers at all levels to: develop and implement DEWS, understand and prevent drought impacts and increase long-term resilience to drought through proactive risk management planning. The NDMC is a national center founded in 1995 and located at the University of Nebraska-Lincoln. The NDMC conducts basic and applied research, services and decision support applications, along with the maintaining of a number of operational drought-related tools, products and outreach activities, including the U.S. Drought Monitor (USDM), Drought Impact Reporter (DIR), Vegetation Drought Response Index (VegDRI) along with the newly developed and enhanced National Drought Atlas, Drought Ready Communities Guide to Community Drought Preparedness and our Managing Drought Risk on the Ranch planning section on our newly revamped web site at http://drought.unl.edu. This presentation will describe in more detail the various drought resources, tools, research efforts, services and collaborations already being provided by the NDMC and its partners toward developing a collaborative DEWS in the U.S. and around the world.

  19. NWS Alaska Sea Ice Program: Operations and Decision Support Services

    NASA Astrophysics Data System (ADS)

    Schreck, M. B.; Nelson, J. A., Jr.; Heim, R.

    2015-12-01

    The National Weather Service's Alaska Sea Ice Program is designed to service customers and partners operating and planning operations within Alaska waters. The Alaska Sea Ice Program offers daily sea ice and sea surface temperature analysis products. The program also delivers a five day sea ice forecast 3 times each week, provides a 3 month sea ice outlook at the end of each month, and has staff available to respond to sea ice related information inquiries. These analysis and forecast products are utilized by many entities around the state of Alaska and nationally for safety of navigation and community strategic planning. The list of current customers stem from academia and research institutions, to local state and federal agencies, to resupply barges, to coastal subsistence hunters, to gold dredgers, to fisheries, to the general public. Due to a longer sea ice free season over recent years, activity in the waters around Alaska has increased. This has led to a rise in decision support services from the Alaska Sea Ice Program. The ASIP is in constant contact with the National Ice Center as well as the United States Coast Guard (USCG) for safety of navigation. In the past, the ASIP provided briefings to the USCG when in support of search and rescue efforts. Currently, not only does that support remain, but our team is also briefing on sea ice outlooks into the next few months. As traffic in the Arctic increases, the ASIP will be called upon to provide more and more services on varying time scales to meet customer needs. This talk will address the many facets of the current Alaska Sea Ice Program as well as delve into what we see as the future of the ASIP.

  20. Distributed Hydrologic Modeling Apps for Decision Support in the Cloud

    NASA Astrophysics Data System (ADS)

    Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.

    2013-12-01

    Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it

  1. A Four-Phase Model of the Evolution of Clinical Decision Support Architectures

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    Background A large body of evidence over many years suggests that clinical decision support systems can be helpful in improving both clinical outcomes and adherence to evidence-based guidelines. However, to this day, clinical decision support systems are not widely used outside of a small number of sites. One reason why decision support systems are not widely used is the relative difficulty of integrating such systems into clinical workflows and computer systems. Purpose To review and synthesize the history of clinical decision support systems, and to propose a model of various architectures for integrating clinical decision support systems with clinical systems. Methods The authors conducted an extensive review of the clinical decision support literature since 1959, sequenced the systems and developed a model. Results The model developed consists of four phases: standalone decision support systems, decision support integrated into clinical systems, standards for sharing clinical decision support content and service models for decision support. These four phases have not heretofore been identified, but they track remarkably well with the chronological history of clinical decision support, and show evolving and increasingly sophisticated attempts to ease integrating decision support systems into clinical workflows and other clinical systems. Conclusions Each of the four evolutionary approaches to decision support architecture has unique advantages and disadvantages. A key lesson was that there were common limitations that almost all the approaches faced, and no single approach has been able to entirely surmount: 1) fixed knowledge representation systems inherently circumscribe the type of knowledge that can be represented in them, 2) there are serious terminological issues, 3) patient data may be spread across several sources with no single source having a complete view of the patient, and 4) major difficulties exist in transferring successful interventions from one

  2. Visualization Component of Vehicle Health Decision Support System

    NASA Technical Reports Server (NTRS)

    Jacob, Joseph; Turmon, Michael; Stough, Timothy; Siegel, Herbert; Walter, patrick; Kurt, Cindy

    2008-01-01

    The visualization front-end of a Decision Support System (DSS) also includes an analysis engine linked to vehicle telemetry, and a database of learned models for known behaviors. Because the display is graphical rather than text-based, the summarization it provides has a greater information density on one screen for evaluation by a flight controller.This tool provides a system-level visualization of the state of a vehicle, and drill-down capability for more details and interfaces to separate analysis algorithms and sensor data streams. The system-level view is a 3D rendering of the vehicle, with sensors represented as icons, tied to appropriate positions within the vehicle body and colored to indicate sensor state (e.g., normal, warning, anomalous state, etc.). The sensor data is received via an Information Sharing Protocol (ISP) client that connects to an external server for real-time telemetry. Users can interactively pan, zoom, and rotate this 3D view, as well as select sensors for a detail plot of the associated time series data. Subsets of the plotted data can be selected and sent to an external analysis engine to either search for a similar time series in an historical database, or to detect anomalous events. The system overview and plotting capabilities are completely general in that they can be applied to any vehicle instrumented with a collection of sensors. This visualization component can interface with the ISP for data streams used by NASA s Mission Control Center at Johnson Space Center. In addition, it can connect to, and display results from, separate analysis engine components that identify anomalies or that search for past instances of similar behavior. This software supports NASA's Software, Intelligent Systems, and Modeling element in the Exploration Systems Research and Technology Program by augmenting the capability of human flight controllers to make correct decisions, thus increasing safety and reliability. It was designed specifically as a

  3. Towards a Decision Support System for Space Flight Operations

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila; Hogle, Charles; Ruszkowski, James

    2013-01-01

    The Mission Operations Directorate (MOD) at the Johnson Space Center (JSC) has put in place a Model Based Systems Engineering (MBSE) technological framework for the development and execution of the Flight Production Process (FPP). This framework has provided much added value and return on investment to date. This paper describes a vision for a model based Decision Support System (DSS) for the development and execution of the FPP and its design and development process. The envisioned system extends the existing MBSE methodology and technological framework which is currently in use. The MBSE technological framework currently in place enables the systematic collection and integration of data required for building an FPP model for a diverse set of missions. This framework includes the technology, people and processes required for rapid development of architectural artifacts. It is used to build a feasible FPP model for the first flight of spacecraft and for recurrent flights throughout the life of the program. This model greatly enhances our ability to effectively engage with a new customer. It provides a preliminary work breakdown structure, data flow information and a master schedule based on its existing knowledge base. These artifacts are then refined and iterated upon with the customer for the development of a robust end-to-end, high-level integrated master schedule and its associated dependencies. The vision is to enhance this framework to enable its application for uncertainty management, decision support and optimization of the design and execution of the FPP by the program. Furthermore, this enhanced framework will enable the agile response and redesign of the FPP based on observed system behavior. The discrepancy of the anticipated system behavior and the observed behavior may be due to the processing of tasks internally, or due to external factors such as changes in program requirements or conditions associated with other organizations that are outside of

  4. Integrating Climate and Risk-Informed Science to Support Critical Decisions

    ScienceCinema

    None

    2016-08-10

    The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.

  5. Integrating Climate and Risk-Informed Science to Support Critical Decisions

    SciTech Connect

    2016-07-27

    The PNNL Environmental Health and Remediation Sector stewards several decision support capabilities to integrate climate- and risk-informed science to support critical decisions. Utilizing our expertise in risk and decision analysis, integrated Earth systems modeling, and remote sensing and geoinformatics, PNNL is influencing the way science informs high level decisions at national, regional and local scales to protect and preserve our most critical assets.

  6. An architecture for rule based system explanation

    NASA Technical Reports Server (NTRS)

    Fennel, T. R.; Johannes, James D.

    1990-01-01

    A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.

  7. Generalized Tumor Dose for Treatment Planning Decision Support

    NASA Astrophysics Data System (ADS)

    Zuniga, Areli A.

    Modern radiation therapy techniques allow for improved target conformity and normal tissue sparing. These highly conformal treatment plans have allowed dose escalation techniques increasing the probability of tumor control. At the same time this conformation has introduced inhomogeneous dose distributions, making delivered dose characterizations more difficult. The concept of equivalent uniform dose (EUD) characterizes a heterogeneous dose distribution within irradiated structures as a single value and has been used in biologically based treatment planning (BBTP); however, there are no substantial validation studies on clinical outcome data supporting EUD's use and therefore has not been widely adopted as decision-making support. These highly conformal treatment plans have also introduced the need for safety margins around the target volume. These margins are designed to minimize geometrical misses, and to compensate for dosimetric and treatment delivery uncertainties. The margin's purpose is to reduce the chance of tumor recurrence. This dissertation introduces a new EUD formulation designed especially for tumor volumes, called generalized Tumor Dose (gTD). It also investigates, as a second objective, margins extensions for potential improvements in local control while maintaining or minimizing toxicity. The suitability of gTD to rank LC was assessed by means of retrospective studies in a head and neck (HN) squamous cell carcinoma (SCC) and non-small cell lung cancer (NSCLC) cohorts. The formulation was optimized based on two datasets (one of each type) and then, model validation was assessed on independent cohorts. The second objective of this dissertation was investigated by ranking the probability of LC of the primary disease adding different margin sizes. In order to do so, an already published EUD formula was used retrospectively in a HN and a NSCLC datasets. Finally, recommendations for the viability to implement this new formulation into a routine treatment

  8. Machine Learning and Decision Support in Critical Care

    PubMed Central

    Johnson, Alistair E. W.; Ghassemi, Mohammad M.; Nemati, Shamim; Niehaus, Katherine E.; Clifton, David A.; Clifford, Gari D.

    2016-01-01

    Clinical data management systems typically provide caregiver teams with useful information, derived from large, sometimes highly heterogeneous, data sources that are often changing dynamically. Over the last decade there has been a significant surge in interest in using these data sources, from simply re-using the standard clinical databases for event prediction or decision support, to including dynamic and patient-specific information into clinical monitoring and prediction problems. However, in most cases, commercial clinical databases have been designed to document clinical activity for reporting, liability and billing reasons, rather than for developing new algorithms. With increasing excitement surrounding “secondary use of medical records” and “Big Data” analytics, it is important to understand the limitations of current databases and what needs to change in order to enter an era of “precision medicine.” This review article covers many of the issues involved in the collection and preprocessing of critical care data. The three challenges in critical care are considered: compartmentalization, corruption, and complexity. A range of applications addressing these issues are covered, including the modernization of static acuity scoring; on-line patient tracking; personalized prediction and risk assessment; artifact detection; state estimation; and incorporation of multimodal data sources such as genomic and free text data. PMID:27765959

  9. Decision support system for the provision of emergency sanitation.

    PubMed

    Zakaria, F; Garcia, H A; Hooijmans, C M; Brdjanovic, D

    2015-04-15

    Proper provision of sanitation in emergencies is considered a life-saving intervention. Without access to sanitation, refugees at emergency camps are at a high risk of contracting diseases. Even the most knowledgeable relief agencies have experienced difficulties providing sanitation alternatives in such challenging scenarios. This study developed a computer-based decision support system (DSS) to plan a sanitation response in emergencies. The sanitation alternatives suggested by the DSS are based on a sanitation chain concept that considers different steps in the faecal sludge management, from the toilet or latrine to the safe disposal of faecal matters. The DSS first screens individual sanitation technologies using the user's given input. Remaining sanitation options are then built into a feasible sanitation chain. Subsequently, each technology in the chain is evaluated on a scoring system. Different sanitation chains can later be ranked based on the total evaluation scores. The DSS addresses several deficiencies encountered in the provision of sanitation in emergencies including: the application of standard practices and intuition, the omission of site specific conditions, the limited knowledge exhibited by emergency planners, and the provision of sanitation focused exclusively on the collection step (i.e., just the provision of toilets).

  10. Geospatial decision support framework for critical infrastructure interdependency assessment

    NASA Astrophysics Data System (ADS)

    Shih, Chung Yan

    Critical infrastructures, such as telecommunications, energy, banking and finance, transportation, water systems and emergency services are the foundations of modern society. There is a heavy dependence on critical infrastructures at multiple levels within the supply chain of any good or service. Any disruptions in the supply chain may cause profound cascading effect to other critical infrastructures. A 1997 report by the President's Commission on Critical Infrastructure Protection states that a serious interruption in freight rail service would bring the coal mining industry to a halt within approximately two weeks and the availability of electric power could be reduced in a matter of one to two months. Therefore, this research aimed at representing and assessing the interdependencies between coal supply, transportation and energy production. A proposed geospatial decision support framework was established and applied to analyze interdependency related disruption impact. By utilizing the data warehousing approach, geospatial and non-geospatial data were retrieved, integrated and analyzed based on the transportation model and geospatial disruption analysis developed in the research. The results showed that by utilizing this framework, disruption impacts can be estimated at various levels (e.g., power plant, county, state, etc.) for preventative or emergency response efforts. The information derived from the framework can be used for data mining analysis (e.g., assessing transportation mode usages; finding alternative coal suppliers, etc.).

  11. Decision Support System for Aquifer Recharge (AR) and ...

    EPA Pesticide Factsheets

    Aquifer recharge (AR) is a technical method being utilized to enhance groundwater resources through man-made replenishment means, such as infiltration basins and injections wells. Aquifer storage and recovery (ASR) furthers the AR techniques by withdrawal of stored groundwater at a later time for beneficial use. It is a viable adaptation technique for water availability problems. Variants of the water storage practices include recharge through urban green infrastructure and the subsurface injection of reclaimed water, i.e., wastewater, which has been treated to remove solids and impurities. In addition to a general overview of ASR variations, this report focuses on the principles and technical basis for an ASR decision support system (DSS), with the necessary technical references provided. The DSS consists of three levels of tools and methods for ASR system planning and assessment, design, and evaluation. Level 1 of the system is focused on ASR feasibility, for which four types of data and technical information are organized around: 1) ASR regulations and permitting needs, 2) Water demand projections, 3) Climate change and water availability, and 4) ASR sites and technical information. These technical resources are integrated to quantify water availability gaps and the feasibility of using ASR to meet the volume and timing of the water resource shortages. A systemic analysis of water resources was conducted for sustainable water supplies in Las Vegas, Nevada f

  12. Development and commissioning of decision support tools for sewerage management.

    PubMed

    Manic, G; Printemps, C; Zug, M; Lemoine, C

    2006-01-01

    Managing sewerage systems is a highly complex task due to the dynamic nature of the facilities. Their performance strongly depends on the know-how applied by the operators. In order to define optimal operational settings, two decision support tools based on mathematical models have been developed. Moreover, easy-to-use interfaces have been created as well, aiding operators who presumably do not have the necessary skills to use modelling software. The two developed programs simulate the behaviour of both wastewater treatment plants (WWTP) and sewer network systems, respectively. They have essentially the same structure, including raw data management and statistical analysis, a simulation layer using the application programming interface of the applied software and a layer responsible for the representation of the obtained results. Four user modes are provided in the two software including the simulation of historical data using the applied and novel operational settings, as well as modes concerning prediction of possible operation periods and updates. Concerning the WWTP software, it was successfully installed in Nantes (France) in June 2004. Moreover, the one managing sewer networks has been deployed in Saint-Malo (France) in January 2005. This paper presents the structure of the developed software and the first results obtained during the commissioning phase.

  13. A semantic sensor web for environmental decision support applications.

    PubMed

    Gray, Alasdair J G; Sadler, Jason; Kit, Oles; Kyzirakos, Kostis; Karpathiotakis, Manos; Calbimonte, Jean-Paul; Page, Kevin; García-Castro, Raúl; Frazer, Alex; Galpin, Ixent; Fernandes, Alvaro A A; Paton, Norman W; Corcho, Oscar; Koubarakis, Manolis; De Roure, David; Martinez, Kirk; Gómez-Pérez, Asunción

    2011-01-01

    Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England.

  14. [Decision support system for watershed management: a review].

    PubMed

    Cao, Yu; Yan, Jing

    2012-07-01

    Watershed management decision support system (DSS) is an intellectual system developed for the optimal allocation of water resources by watershed managers, and the simulation results of the system can directly affect the scientificity and practicability of watershed management. This paper summarized the related researches from the aspects of water quantity simulation and deployment systems, water quality monitoring and evaluation systems, and integrated watershed management systems. The main features and problems in existing DSS were analyzed, and the model structure and development status of the representative systems such as AQUA-Tool, Elbe-DSS, and HD were introduced. It was suggested that the accuracy and stability of simulated results, the succinctness of working process, and the high degree of user visualization would be the focuses in developing the DSS in the future, and the optimization of program-selecting models and 3D visualization tools, the research and development of inter-basin integrated management DSS, and the improvement of stakeholder participation would be the development trend for the future watershed management DSS.

  15. Clinical Decision Support Systems (CDSS) in GRID Environments.

    PubMed

    Blanquer, Ignacio; Hernández, Vicente; Segrelles, Damià; Robles, Montserrat; García, Juan Miguel; Robledo, Javier Vicente

    2005-01-01

    This paper presents an architecture defined for searching and executing Clinical Decision Support Systems (CDSS) in a LCG2/GT2 Grid environment, using web-based protocols. A CDSS is a system that provides a classification of the patient illness according to the knowledge extracted from clinical practice and using the patient's information in a structured format. The CDSS classification engines can be installed in any site and can be used by different medical users from a Virtual Organization (VO). All users in a VO can consult and execute different classification engines that have been installed in the Grid independently of the platform, architecture or site where the engines are installed or the users are located. The present paper present a solution to requirements such as short-job execution, reducing the response delay on LCG2 environments and providing grid-enabled authenticated access through web portals. Resource discovering and job submission is performed through web services, which are also described in the article.

  16. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  17. A Semantic Sensor Web for Environmental Decision Support Applications

    PubMed Central

    Gray, Alasdair J. G.; Sadler, Jason; Kit, Oles; Kyzirakos, Kostis; Karpathiotakis, Manos; Calbimonte, Jean-Paul; Page, Kevin; García-Castro, Raúl; Frazer, Alex; Galpin, Ixent; Fernandes, Alvaro A. A.; Paton, Norman W.; Corcho, Oscar; Koubarakis, Manolis; De Roure, David; Martinez, Kirk; Gómez-Pérez, Asunción

    2011-01-01

    Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England. PMID:22164110

  18. Clinical Decision Support for Early Recognition of Sepsis

    PubMed Central

    Amland, Robert C.; Hahn-Cover, Kristin E.

    2014-01-01

    Sepsis is an inflammatory response triggered by infection, with a high in-hospital mortality rate. Early recognition and treatment can reverse the inflammatory response, with evidence of improved patient outcomes. One challenge clinicians face is identifying the inflammatory syndrome against the background of the patient’s infectious illness and comorbidities. An approach to this problem is implementation of computerized early warning tools for sepsis. This multicenter retrospective study sought to determine clinimetric performance of a cloud-based computerized sepsis clinical decision support system (CDS), understand the epidemiology of sepsis, and identify opportunities for quality improvement. Data encompassed 6200 adult hospitalizations from 2012 through 2013. Of 13% patients screened-in, 51% were already suspected to have an infection when the system activated. This study focused on a patient cohort screened-in before infection was suspected; median time from arrival to CDS activation was 3.5 hours, and system activation to diagnostic collect was another 8.6 hours. PMID:25385815

  19. A Rule-Based Industrial Boiler Selection System

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  20. The Use of Decision Support Systems in Social Work: A Scoping Study Literature Review.

    PubMed

    Liedgren, Pernilla; Elvhage, Gudrun; Ehrenberg, Anna; Kullberg, Christian

    2016-01-01

    Decision support systems are known to be helpful for professionals in many medical professions. In social work, decision support systems have had modest use, accompanied by strong criticism from the profession but often by praise from political management. In this study the aim of the authors was to collect and report on the published evidence on decision support systems in social work. The conclusion of the authors is that a decision support system gives support to social workers in conducting a thorough investigation, but at the same time gives them the freedom to make autonomous decisions that might be the most helpful for and used by social workers. Their results also indicate that decision support systems focusing on atypical rather than typical cases are perceived as the most useful among experienced staff.

  1. Transforming Fleet Network Operations with Collaborative Decision Support and Augmented Reality Technologies

    DTIC Science & Technology

    2004-03-01

    NETWORK OPERATIONS WITH COLLABORATIVE DECISION SUPPORT AND AUGMENTED REALITY TECHNOLOGIES by John J. Fay March 2004 Thesis Advisor: Alex...Network Operations with Collaborative Decision Support and Augmented Reality Technologies 6. AUTHOR(S) John J Fay 5. FUNDING NUMBERS 7. PERFORMING...management for distributed sea-based forces using existing technologies. Combining a collaborative tool, Decision Support System (DSS), and Augmented Reality (AR

  2. Simulation of large-scale rule-based models

    SciTech Connect

    Hlavacek, William S; Monnie, Michael I; Colvin, Joshua; Faseder, James

    2008-01-01

    Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein-protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of STOCHSIM. DYNSTOC differs from STOCHSIM by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at .

  3. Clinical Decision Support Systems for the Practice of Evidence-based Medicine

    PubMed Central

    Sim, Ida; Gorman, Paul; Greenes, Robert A.; Haynes, R. Brian; Kaplan, Bonnie; Lehmann, Harold; Tang, Paul C.

    2001-01-01

    Background: The use of clinical decision support systems to facilitate the practice of evidence-based medicine promises to substantially improve health care quality. Objective: To describe, on the basis of the proceedings of the Evidence and Decision Support track at the 2000 AMIA Spring Symposium, the research and policy challenges for capturing research and practice-based evidence in machine-interpretable repositories, and to present recommendations for accelerating the development and adoption of clinical decision support systems for evidence-based medicine. Results: The recommendations fall into five broad areas—capture literature-based and practice-based evidence in machine-interpretable knowledge bases; develop maintainable technical and methodological foundations for computer-based decision support; evaluate the clinical effects and costs of clinical decision support systems and the ways clinical decision support systems affect and are affected by professional and organizational practices; identify and disseminate best practices for work flow–sensitive implementations of clinical decision support systems; and establish public policies that provide incentives for implementing clinical decision support systems to improve health care quality. Conclusions: Although the promise of clinical decision support system–facilitated evidence-based medicine is strong, substantial work remains to be done to realize the potential benefits. PMID:11687560

  4. SANDS: a service-oriented architecture for clinical decision support in a National Health Information Network.

    PubMed

    Wright, Adam; Sittig, Dean F

    2008-12-01

    In this paper, we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. The SANDS architecture for decision support has several significant advantages over other architectures for clinical decision support. The most salient of these are:

  5. A decision support framework for sustainable urban water planning and management in new urban areas.

    PubMed

    Makropoulos, C K; Morley, M; Memon, F A; Butler, D; Savic, D; Ashley, R A

    2006-01-01

    The paper discusses issues of decision support within the context of sustainable development and more specifically sustainable water cycle management to provide a context and a rationale for the decision support approach adopted within an on-going U.K. EPSRC-funded project, WaND. The paper proposes a set-up for a flexible, upgradeable, efficient and modular decision support framework and associated tools. Furthermore, the paper presents early prototypes of three decision support tools developed within the proposed framework including initial results for one of them.

  6. Designing Real-time Decision Support for Trauma Resuscitations

    PubMed Central

    Yadav, Kabir; Chamberlain, James M.; Lewis, Vicki R.; Abts, Natalie; Chawla, Shawn; Hernandez, Angie; Johnson, Justin; Tuveson, Genevieve; Burd, Randall S.

    2016-01-01

    Background Use of electronic clinical decision support (eCDS) has been recommended to improve implementation of clinical decision rules. Many eCDS tools, however, are designed and implemented without taking into account the context in which clinical work is performed. Implementation of the pediatric traumatic brain injury (TBI) clinical decision rule at one Level I pediatric emergency department includes an electronic questionnaire triggered when ordering a head computed tomography using computerized physician order entry (CPOE). Providers use this CPOE tool in less than 20% of trauma resuscitation cases. A human factors engineering approach could identify the implementation barriers that are limiting the use of this tool. Objectives The objective was to design a pediatric TBI eCDS tool for trauma resuscitation using a human factors approach. The hypothesis was that clinical experts will rate a usability-enhanced eCDS tool better than the existing CPOE tool for user interface design and suitability for clinical use. Methods This mixed-methods study followed usability evaluation principles. Pediatric emergency physicians were surveyed to identify barriers to using the existing eCDS tool. Using standard trauma resuscitation protocols, a hierarchical task analysis of pediatric TBI evaluation was developed. Five clinical experts, all board-certified pediatric emergency medicine faculty members, then iteratively modified the hierarchical task analysis until reaching consensus. The software team developed a prototype eCDS display using the hierarchical task analysis. Three human factors engineers provided feedback on the prototype through a heuristic evaluation, and the software team refined the eCDS tool using a rapid prototyping process. The eCDS tool then underwent iterative usability evaluations by the five clinical experts using video review of 50 trauma resuscitation cases. A final eCDS tool was created based on their feedback, with content analysis of the

  7. Development of a Mixed Scanning Interactive System for Decision Support.

    DTIC Science & Technology

    1984-07-01

    Spetzler and C. A. von Holstein . "Probability encoding in [3871 R. D. Tweney, M. E. Doherty. W. 1. Warner, D. B. Pliske. C.. . . decision analysis...different frames of the decision The significance of this observation is that a situation as indicated in Figure 10, which is cow - knowledge of information

  8. Virtual Beach: Decision Support Tools for Beach Pathogen Prediction

    EPA Science Inventory

    The Virtual Beach Managers Tool (VB) is decision-making software developed to help local beach managers make decisions as to when beaches should be closed due to predicted high levels of water borne pathogens. The tool is being developed under the umbrella of EPA's Advanced Monit...

  9. Clinical Decision Support and Closed-Loop Control for Cardiopulmonary Management and Intensive Care Unit Sedation Using Expert Systems

    PubMed Central

    Gholami, Behnood; Bailey, James M.; Haddad, Wassim M.; Tannenbaum, Allen R.

    2013-01-01

    Patients in the intensive care unit (ICU) who require mechanical ventilation due to acute respiratory failure also frequently require the administration of sedative agents. The need for sedation arises both from patient anxiety due to the loss of personal control and the unfamiliar and intrusive environment of the ICU, and also due to pain or other variants of noxious stimuli. While physicians select the agent(s) used for sedation and cardiovascular function, the actual administration of these agents is the responsibility of the nursing staff. If clinical decision support systems and closed-loop control systems could be developed for critical care monitoring and lifesaving interventions as well as the administration of sedation and cardiopulmonary management, the ICU nurse could be released from the intense monitoring of sedation, allowing her/him to focus on other critical tasks. One particularly attractive strategy is to utilize the knowledge and experience of skilled clinicians, capturing explicitly the rules expert clinicians use to decide on how to titrate drug doses depending on the level of sedation. In this paper, we extend the deterministic rule-based expert system for cardiopulmonary management and ICU sedation framework presented in [1] to a stochastic setting by using probability theory to quantify uncertainty and hence deal with more realistic clinical situations. PMID:23620646

  10. An Oceanographic Decision Support System for Scientific Field Experiments

    NASA Astrophysics Data System (ADS)

    Maughan, T.; Das, J.; McCann, M. P.; Rajan, K.

    2011-12-01

    Thom Maughan, Jnaneshwar Das, Mike McCann, Danelle Cline, Mike Godin, Fred Bahr, Kevin Gomes, Tom O'Reilly, Frederic Py, Monique Messie, John Ryan, Francisco Chavez, Jim Bellingham, Maria Fox, Kanna Rajan Monterey Bay Aquarium Research Institute Moss Lading, California, United States Many of the coastal ocean processes we wish to observe in order to characterize marine ecosystems have large spatial extant (tens of square km) and are dynamic moving kilometers in a day with biological processes spanning anywhere from minutes to days. Some like harmful algal blooms generate toxins which can significantly impact human health and coastal economies. In order to obtain a viable understanding of the biogeochemical processes which define their dynamics and ecology, it is necessary to persistently observe, track and sample within and near the dynamic fields using augmented methods of observation such as autonomous platforms like AUVs, gliders and surface craft. Field experiments to plan, execute and manage such multitude of assets are challenging. To alleviate this problem the autonomous systems group with its collaborators at MBARI and USC designed, built and fielded a prototype Oceanographic Decision Support System (ODSS) that provides situational awareness and a single portal to visualize and plan deployments for the large scale October 2010 CANON field program as well as a series of 2 week field programs in 2011. The field programs were conducted in Monterey Bay, a known 'red tide' incubator, and varied from as many as twenty autonomous platforms, four ships and 2 manned airplanes to coordinated AUV operations, drifters and a single ship. The ODSS web-based portal was used to assimilate information from a collection of sources at sea, including AUVs, moorings, radar data as well as remote sensing products generated by partner organizations to provide a synthesis of views useful to predict the movement of a chlorophyll patch in the confines of the northern Monterey Bay

  11. Air Traffic Control Decision Support Tools for Noise Mitigation

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    2001-01-01

    NASA has initiated a new five year program this year, the Quiet Aircraft Technology (QAT) Program, a program which will investigate airframe and engine system noise reduction. QAT will also address community noise impact. As part of this community noise impact component, NASA will investigate air traffic management (ATM) challenges in reducing noise. In particular, controller advisory automation aids will be developed to aid the air traffic controller in addressing noise concerns as he/she manages traffic in busy terminal areas. NASA has developed controller automation tools to address capacity concerns and the QAT strategy for ATM Low Noise Operations is to build upon this tool set to create added advisories for noise mitigation. The tools developed for capacity will be briefly reviewed, followed by the QAT plans to address ATM noise concerns. A major NASA goal in global civil aviation is to triple the aviation system throughput in all-weather conditions while maintaining safety. A centerpiece of this activity is the Center/TRACON Automation System (CTAS), an evolving suite of air traffic controller decision support tools (DSTs) to enhance capacity of arrivals and departures in both the enroute center and the TRACON. Two of these DSTs, the Traffic Management Advisor (TMA) and the passive Final approach Spacing Tool (pFAST), are in daily use at the Fort Worth Center and the Dallas/Fort Worth (DFW) TRACON, respectively, where capacity gains of 5-13% have been reported in recent NASA evaluations. Under the Federal Aviation Administration's (FAA) Free Flight Phase One Program, TMA and pFAST are each being implemented at six to eight additional sites. In addition, other DSTs are being developed by NASA under the umbrella of CTAS. This means that new software will be built upon CTAS, and the paradigm of real-time simulation evaluation followed by field site development and evaluation will be the pathway for the new tools. Additional information is included in the

  12. Assessing the sensibility of two clinical decision support systems.

    PubMed

    Graham, Timothy A D; Bullard, Michael J; Kushniruk, Andre W; Holroyd, Brian R; Rowe, Brian H

    2008-10-01

    Clinicians in Emergency Medicine (EM) are increasingly exposed to guidelines and treatment recommendations. To help access and recall these recommendations, electronic Clinical Decision Support Systems (CDSS) have been developed. This study examined the use and sensibility of two CDSS designed for emergency physicians. CDDS for community acquired pneumonia (CAP) and neutropenic fever (NF) were developed by multidisciplinary teams and have been accessed via an intranet-based homepage (eCPG) for several years. Sensibility is a term coined by Feinstein that describes common sense aspects of a survey instrument. It was modified by emergency researchers to include four main headings: (1) Appropriateness; (2) Objectivity; (3) Content; and (4) Discriminative Power. Sensibility surveys were developed using an iterative approach for both the CAP and NF CDSS and distributed to all 25 emergency physicians at one Canadian site. The overall response rate was 88%. Respondents were 88% male and 83% were less than 40; all were attending EM physicians with specialty designations. A number reported never having used the CAP (21%) or NF (33%) CDSS; 54% (CAP) and 21% (NF) of respondents had used the respective CDSS less than 10 times. Overall, both CDSS were rated highly by users with a mean response of 4.95 (SD 0.56) for CAP and 5.62 (SD 0.62) for NF on a seven-point Likert scale. The majority or respondents (CAP 59%, NF 80%) felt that the NF CDSS was more likely than the CAP CDSS to decrease the chances of making a medical error in medication dose, antibiotic choice or patient disposition (4.61 vs. 5.81, p=0.008). Despite being in place for several years, CDSS for CAP and NF are not used by all EM clinicians. Users were generally satisfied with the CDSS and felt that the NF was more likely than the CAP CDSS to decrease medical errors. Additional research is required to determine the barriers to CDSS use.

  13. Interactive decision support system to predict print quality.

    PubMed

    Leman, Sugani; Lehto, Mark R

    2003-01-15

    Customers using printers occasionally experience problems such as fuzzy images, bands, or streaks. The customer may call or otherwise contact the manufacturer, who attempts to diagnose the problem based on the customer's description of the problem. This study evaluated Bayesian inference as a tool for identifying or diagnosing 16 different types of print defects from such descriptions. The Bayesian model was trained using 1701 narrative descriptions of print defects obtained from 60 subjects with varying technical backgrounds. The Bayesian model was then implemented as an interactive decision support system, which was used by eight 'agents' to diagnose print defects reported by 16 'customers' in a simulated call centre. The 'agents' and 'customers' in the simulated call centre were all students at Purdue University. Each customer made eight telephone calls, resulting in a total of 128 telephone calls in which the customer reported defects to the agents. The results showed that the Bayesian model closely fitted the data in the training set of narratives. Overall, the model correctly predicted the actual defect category with its top prediction 70% of the time. The actual defect was in the top five predictions 94% of the time. The model in the simulated call centre performed nearly as well for the test subjects. The top prediction was correct 50% of the time, and the defect was one of the top five predictions 80% of the time. Agent accuracy in diagnosing the problem improved when using the tool. These results demonstrated that the Bayesian system learned enough from the existing narratives to accurately classify print defect categories.

  14. A decision support system for managing forest fire casualties.

    PubMed

    Bonazountas, Marc; Kallidromitou, Despina; Kassomenos, Pavlos; Passas, Nikos

    2007-09-01

    Southern Europe is exposed to anthropogenic and natural forest fires. These result in loss of lives, goods and infrastructure, but also deteriorate the natural environment and degrade ecosystems. The early detection and combating of such catastrophes requires the use of a decision support system (DSS) for emergency management. The current literature reports on a series of efforts aimed to deliver DSSs for the management of the forest fires by utilising technologies like remote sensing and geographical information systems (GIS), yet no integrated system exists. This manuscript presents the results of scientific research aiming to the development of a DSS for managing forest fires. The system provides a series of software tools for the assessment of the propagation and combating of forest fires based on Arc/Info, ArcView, Arc Spatial Analyst, Arc Avenue, and Visual C++ technologies. The system integrates GIS technologies under the same data environment and utilises a common user interface to produce an integrated computer system based on semi-automatic satellite image processing (fuel maps), socio-economic risk modelling and probabilistic models that would serve as a useful tool for forest fire prevention, planning and management. Its performance has been demonstrated via real time up-to-date accurate information on the position and evolution of the fire. The system can assist emergency assessment, management and combating of the incident. A site demonstration and validation has been accomplished for the island of Evoia, Greece, an area particularly vulnerable to forest fires due to its ecological characteristics and prevailing wind patterns.

  15. Sustaining the Army Training Mission by Re-Thinking Decision Support Systems: Shifting from Decision-Making Individuals to Sense-Making Agents

    DTIC Science & Technology

    2004-12-01

    traditional concept of decision making as a basically rational process ( Simon 1960). In an effort to reconceptualize decision making, this paper...originates in organization science ( Simon 1960). Decision Support Systems are computer technologies used to support complex decision making in...technical tools supporting the traditional concept of decision making as a basically rational process ( Simon 1960). The techno-centric character of DSS

  16. Wind Prediction Accuracy for Air Traffic Management Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Cole, Rod; Green, Steve; Jardin, Matt; Schwartz, Barry; Benjamin, Stan

    2000-01-01

    The performance of Air Traffic Management and flight deck decision support tools depends in large part on the accuracy of the supporting 4D trajectory predictions. This is particularly relevant to conflict prediction and active advisories for the resolution of conflicts and the conformance with of traffic-flow management flow-rate constraints (e.g., arrival metering / required time of arrival). Flight test results have indicated that wind prediction errors may represent the largest source of trajectory prediction error. The tests also discovered relatively large errors (e.g., greater than 20 knots), existing in pockets of space and time critical to ATM DST performance (one or more sectors, greater than 20 minutes), are inadequately represented by the classic RMS aggregate prediction-accuracy studies of the past. To facilitate the identification and reduction of DST-critical wind-prediction errors, NASA has lead a collaborative research and development activity with MIT Lincoln Laboratories and the Forecast Systems Lab of the National Oceanographic and Atmospheric Administration (NOAA). This activity, begun in 1996, has focussed on the development of key metrics for ATM DST performance, assessment of wind-prediction skill for state of the art systems, and development/validation of system enhancements to improve skill. A 13 month study was conducted for the Denver Center airspace in 1997. Two complementary wind-prediction systems were analyzed and compared to the forecast performance of the then standard 60 km Rapid Update Cycle - version 1 (RUC-1). One system, developed by NOAA, was the prototype 40-km RUC-2 that became operational at NCEP in 1999. RUC-2 introduced a faster cycle (1 hr vs. 3 hr) and improved mesoscale physics. The second system, Augmented Winds (AW), is a prototype en route wind application developed by MITLL based on the Integrated Terminal Wind System (ITWS). AW is run at a local facility (Center) level, and updates RUC predictions based on an

  17. Decision Support Model for Municipal Solid Waste Management at Department of Defense Installations.

    DTIC Science & Technology

    1995-12-01

    This research focuses on the development of a decision support model to identify the preferred strategy for managing municipal solid waste using the...principles of decision analysis theory. The model provides an effective decision making tool to evaluate and compare different municipal solid waste management

  18. Real-time decision support and information gathering system for financial domain

    NASA Astrophysics Data System (ADS)

    Tseng, Chiu-Che; Gmytrasiewicz, Piotr J.

    2006-05-01

    The challenge of the investment domain is that a large amount of diverse information can be potentially relevant to an investment decision, and that, frequently, the decisions have to be made in a timely manner. This presents the potential for better decision support, but poses the challenge of building a decision support agent that gathers information from different sources and incorporates it for timely decision support. These problems motivate us to investigate ways in which the investors can be equipped with a flexible real-time decision support system to be practical in time-critical situations. The flexible real-time decision support system considers a tradeoff between decision quality and computation cost. For this purpose, we propose a system that uses the object oriented Bayesian knowledge base (OOBKB) design to create a decision model at the most suitable level of detail to guide the information gathering activities, and to produce an investment recommendation within a reasonable length of time. The decision models our system uses are implemented as influence diagrams. We validate our system with experiments in a simplified investment domain. The experiments show that our system produces a quality recommendation under different urgency situations. The contribution of our system is that it provides the flexible decision recommendation for an investor under time constraints in a complex environment.

  19. Fuzzification of ASAT's rule based aimpoint selection

    NASA Astrophysics Data System (ADS)

    Weight, Thomas H.

    1993-06-01

    The aimpoint algorithms being developed at Dr. Weight and Associates are based on the concept of fuzzy logic. This approach does not require a particular type of sensor data or algorithm type, but allows the user to develop a fuzzy logic algorithm based on existing aimpoint algorithms and models. This provides an opportunity for the user to upgrade an existing system design to achieve higher performance at minimal cost. Many projects have aimpoint algorithms which are based on 'crisp' logic rule based algorithms. These algorithms are sensitive to glint, corner reflectors, or intermittent thruster firings, and to uncertainties in the a priori estimates of angle of attack. If these projects are continued through to a demonstration involving a launch to hit a target, it is quite possible that the crisp logic approaches will need to be upgraded to handle these important error sources.

  20. SADA: Ecological Risk Based Decision Support System for Selective Remediation

    EPA Science Inventory

    Spatial Analysis and Decision Assistance (SADA) is freeware that implements terrestrial ecological risk assessment and yields a selective remediation design using its integral geographical information system, based on ecological and risk assessment inputs. Selective remediation ...

  1. Development and description of a decision analysis based decision support tool for stroke prevention in atrial fibrillation

    PubMed Central

    Thomson, R.; Robinson, A.; Greenaway, J.; Lowe, P.

    2002-01-01

    Background: There is an increasing move towards clinical decision making that engages the patient, which has led to the development and use of decision aids to support better decisions. The treatment of patients in atrial fibrillation (AF) with warfarin to prevent stroke is a decision that is sensitive to patient preferences as shown by a previous decision analysis. Aim: To develop a computerised decision support tool, building upon a previous decision analysis, which would engage individual patient preferences in reaching a shared decision on whether to take warfarin to prevent stroke. Methods: The development process had two main phases: (1) the development phase which employed focus groups and repeated interviews with GPs/practice nurses and patients alongside an iterative development of a computerised tool; (2) the training and testing phase in which GPs and practice nurses underwent training in the use of the tool, including the use of simulated patients. The tool was then used in a feasibility study in a small number of patients with AF to inform the design of a subsequent randomised controlled trial. Results: The prototype tool had three components: (1) derivation of an individual patient's values for relevant health states using a standard gamble; (2) presentation/discussion of a patient's risks of stroke using the Framingham equation and the benefits/risks of warfarin from a systematic literature review; and (3) decision making component incorporating the outcome of a Markov decision analysis model. Older patients could be taken through the decision analysis based computerised tool, and patients and clinicians welcomed information on risks and benefits of treatments. The tool required time and training to use. Patients' decisions in the feasibility phase did not necessarily coincide with the output of the decision analysis model, but decision conflict appeared to be reduced and both patients and GPs were satisfied with the process. Conclusions: It is

  2. Extracting clinical information to support medical decision based on standards.

    PubMed

    Gomoi, Valentin; Vida, Mihaela; Stoicu-Tivadar, Lăcrămioara; Stoicu-Tivadar, Vasile

    2011-01-01

    The paper presents a method connecting medical databases to a medical decision system, and describes a service created to extract the necessary information that is transferred based on standards. The medical decision can be improved based on many inputs from different medical locations. The developed solution is described for a concrete case concerning the management for chronic pelvic pain, based on the information retrieved from diverse healthcare databases.

  3. Knowledge-Based Decision Support in Department of Defense Acquisitions

    DTIC Science & Technology

    2010-09-01

    2005) reviewed and analyzed the National Aeronautics and Space Administration ( NASA ) project management policies and compared them to the GAO’s best...practices on knowledge-based decision making. The study was primarily focused on the Goddard Space Flight Center, the Jet Propulsion Lab, Johnson ...Space Center, and Marshall Space Flight Center. During its investigation, the GAO found NASA deficient in key criteria and decision reviews to fully

  4. Visualization support for risk-informed decision making when planning and managing software developments

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.; Kiper, James D.; Menzies, Tim

    2005-01-01

    Key decisions are made in the early stages of planning and management of software developments. The information basis for these decisions is often a mix of analogy with past developments, and the best judgments of domain experts. Visualization of this information can support to such decision making by clarifying the status of the information and yielding insights into the ramifications of that information vis-a-vis decision alternatives.

  5. Academic Support Services and Career Decision-Making Self-Efficacy in Student Athletes

    ERIC Educational Resources Information Center

    Burns, Gary N.; Jasinski, Dale; Dunn, Steve; Fletcher, Duncan

    2013-01-01

    This study examined the relationship between evaluations of academic support services and student athletes' career decision-making self-efficacy. One hundred and fifty-eight NCAA athletes (68% male) from 11 Division I teams completed measures of satisfaction with their academic support services, career decision-making self-efficacy, general…

  6. Introduction to Decision Support Systems for Risk Based Management of Contaminated Sites

    EPA Science Inventory

    A book on Decision Support Systems for Risk-based Management of contaminated sites is appealing for two reasons. First, it addresses the problem of contaminated sites, which has worldwide importance. Second, it presents Decision Support Systems (DSSs), which are powerful comput...

  7. Validation of a decision support system for improving irrigation system performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To address water shortage and improve water delivery operations, decision support systems have been developed and utilized throughout the United States and the world. One critical aspect that is often neglected during the development and implementation of decision support systems is validation, whi...

  8. Decision Support Tool Prototype for the Enlistment Incentive Review Board: Phase 2

    DTIC Science & Technology

    2014-07-01

    51 ARMY ENLISTMENT INCENTIVE REVIEW BOARD DECISION SUPPORT TOOL .........53 Introduction ...50 ARMY ENLISTMENT INCENTIVE REVIEW BOARD DECISION SUPPORT TOOL Introduction One of the objectives of this...application to travel demand. Cambridge, MA: MIT Press. Bierlaire, M. (2003). An introduction to BIOGEME (Version 1.3) http://roso.epfl.ch/biogeme

  9. Methodology for the use of DSSAT Models for Precision Agriculture Decision Support

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype decision support system (DSS) called Apollo was developed to assist researchers in using the Decision Support System for Agrotechnology Transfer (DSSAT) crop growth models to analyze precision farming datasets. Because the DSSAT models are written to simulate crop growth and development...

  10. Structured decision making as a framework for linking quantitative decision support to community values

    EPA Science Inventory

    Community-level decisions can have large impacts on production and delivery of ecosystem services, which ultimately affects community well-being. But engaging stakeholders in a process to explore these impacts is a significant challenge. The principles of Structured Decision Ma...

  11. Decision support systems in water and wastewater treatment process selection and design: a review.

    PubMed

    Hamouda, M A; Anderson, W B; Huck, P M

    2009-01-01

    The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.

  12. An integrated decision support system for diagnosing and managing patients with community-acquired pneumonia.

    PubMed Central

    Aronsky, D.; Haug, P. J.

    1999-01-01

    Decision support systems that integrate guidelines have become popular applications to reduce variation and deliver cost-effective care. However, adverse characteristics of decision support systems, such as additional and time-consuming data entry or manually identifying eligible patients, result in a "behavioral bottleneck" that prevents decision support systems to become part of the clinical routine. This paper describes the design and the implementation of an integrated decision support system that explores a novel approach for bypassing the behavioral bottleneck. The real-time decision support system does not require health care providers to enter additional data and consists of a diagnostic and a management component. Images Fig. 1 Fig. 2 Fig. 3 PMID:10566348

  13. Decision Support Services provided by the NWS Alaska Regional Operations Center in 2015

    NASA Astrophysics Data System (ADS)

    van Breukelen, C. M.; Osiensky, J. M.

    2015-12-01

    The NWS Alaska Region's Regional Operations Center (AR ROC) provides a variety of decision support services to partners and customers across the state. The AR ROC is virtual most times but can flex to stand up support for partners as needed. Support can vary from briefings over the phone or in person to dedicated virtual support to providing on-site meteorologist at an Emergency Operations Center or Incident Command Post to provide tailored support services. During 2015 there have been a number of situations where the AR ROC provided unique support services. This presentation will outline a few examples of how these unique support services benefitted partner agency decisions.

  14. Multi-agent System for Rapid TST Decision Support

    DTIC Science & Technology

    2008-06-01

    13th ICCRTS: C2 for Complex Endeavors “ Multi - agent System for Rapid TST Decision Support” Topic #5, #8 and #9 Joseph Barker, Dr. Robert...OMB control number. 1. REPORT DATE JUN 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Multi - agent System for...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 13th ICCRTS: C2 for Complex Endeavors Multi - agent System for Rapid TST Decision

  15. Mountaineer`s gas facilities decision support system

    SciTech Connect

    1997-02-01

    Mountaineer Gas Co. of Charleston, W.Va., is justifiably proud of its capacity to combine electronic maps with a full database of information about its facilities and customers, and use that mix to make the decisions required in operating a gas company with better information and more quickly. Determining when a pipeline needs replacement or repair used to take several days at Mountaineer. With the new system in place, the decision can be made in a matter of minutes. The paper describes the system and its development, then discusses adding customer information as the next step.

  16. Developing a framework to support shared decision making for youth mental health medication treatment.

    PubMed

    Crickard, Elizabeth L; O'Brien, Megan S; Rapp, Charles A; Holmes, Cheryl L

    2010-10-01

    Medical shared decision making has demonstrated success in increasing collaboration between clients and practitioners for various health decisions. As the importance of a shared decision making approach becomes increasingly valued in the adult mental health arena, transfer of these ideals to youth and families of youth in the mental health system is a logical next step. A review of the literature and preliminary, formative feedback from families and staff at a Midwestern urban community mental health center guided the development of a framework for youth shared decision making. The framework includes three functional areas (1) setting the stage for youth shared decision making, (2) facilitating youth shared decision making, and (3) supporting youth shared decision making. While still in the formative stages, the value of a specific framework for a youth model in support of moving from a client-practitioner value system to a systematic, intentional process is evident.

  17. Haunted by a doppelgänger: irrelevant facial similarity affects rule-based judgments.

    PubMed

    von Helversen, Bettina; Herzog, Stefan M; Rieskamp, Jörg

    2014-01-01

    Judging other people is a common and important task. Every day professionals make decisions that affect the lives of other people when they diagnose medical conditions, grant parole, or hire new employees. To prevent discrimination, professional standards require that decision makers render accurate and unbiased judgments solely based on relevant information. Facial similarity to previously encountered persons can be a potential source of bias. Psychological research suggests that people only rely on similarity-based judgment strategies if the provided information does not allow them to make accurate rule-based judgments. Our study shows, however, that facial similarity to previously encountered persons influences judgment even in situations in which relevant information is available for making accurate rule-based judgments and where similarity is irrelevant for the task and relying on similarity is detrimental. In two experiments in an employment context we show that applicants who looked similar to high-performing former employees were judged as more suitable than applicants who looked similar to low-performing former employees. This similarity effect was found despite the fact that the participants used the relevant résumé information about the applicants by following a rule-based judgment strategy. These findings suggest that similarity-based and rule-based processes simultaneously underlie human judgment.

  18. A rule-based software test data generator

    NASA Technical Reports Server (NTRS)

    Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II

    1991-01-01

    Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.

  19. Implementation of workflow engine technology to deliver basic clinical decision support functionality

    PubMed Central

    2011-01-01

    Background Workflow engine technology represents a new class of software with the ability to graphically model step-based knowledge. We present application of this novel technology to the domain of clinical decision support. Successful implementation of decision support within an electronic health record (EHR) remains an unsolved research challenge. Previous research efforts were mostly based on healthcare-specific representation standards and execution engines and did not reach wide adoption. We focus on two challenges in decision support systems: the ability to test decision logic on retrospective data prior prospective deployment and the challenge of user-friendly representation of clinical logic. Results We present our implementation of a workflow engine technology that addresses the two above-described challenges in delivering clinical decision support. Our system is based on a cross-industry standard of XML (extensible markup language) process definition language (XPDL). The core components of the system are a workflow editor for modeling clinical scenarios and a workflow engine for execution of those scenarios. We demonstrate, with an open-source and publicly available workflow suite, that clinical decision support logic can be executed on retrospective data. The same flowchart-based representation can also function in a prospective mode where the system can be integrated with an EHR system and respond to real-time clinical events. We limit the scope of our implementation to decision support content generation (which can be EHR system vendor independent). We do not focus on supporting complex decision support content delivery mechanisms due to lack of standardization of EHR systems in this area. We present results of our evaluation of the flowchart-based graphical notation as well as architectural evaluation of our implementation using an established evaluation framework for clinical decision support architecture. Conclusions We describe an implementation of

  20. Improving Information Products for System 2 Decision Support

    ERIC Educational Resources Information Center

    Gibson, Neal

    2010-01-01

    The creation, maintenance, and management of Information Product (IP) systems that are used by organizations for complex decisions represent a unique set of challenges. These challenges are compounded when the purpose of such a systems is also for knowledge creation and dissemination. Information quality research to date has focused mainly upon…

  1. Managerial Analysis and Decision Support: A Guidebook and Case Studies

    ERIC Educational Resources Information Center

    National Association of College and University Business Officers (NJ3), 2004

    2004-01-01

    Developed and edited by the National Association of College and University Business Officers' (NACUBO's) Accounting Principles Council, this guidebook, written by highly experienced, seasoned college and university leaders, is designed to help readers make sense of today's world and provide the right tools to make the right decisions. The book,…

  2. Fuzzy Comprehensive Evaluation (FCE) in Military Decision Support Processes

    DTIC Science & Technology

    2013-12-01

    Fuzzy logic , Fuzzy Comprehensive Evaluation (FCE), Decision Making, simulation 15. NUMBER OF PAGES 69 16. PRICE CODE 17. SECURITY CLASSIFICATION...COMPREHENSIVE ANALYSIS (FCE) METHOD ....................... 5   A.   FUZZY LOGIC ...as well as military applications (Li, Ma, & Liu, 2004). Lotfi A. Zadeh, the creator of fuzzy logic , noted in a 1994 interview with Azerbaijan

  3. ENVIRONMENTAL FEATURE FINDER: A REMOTE SENSING DECISION SUPPORT TOOL

    EPA Science Inventory

    Land cover maps are essential to sound environmental stewardship and EPA’s mission to protect human health and the environment, but existing maps are not always sufficiently current, detailed, or appropriate for a given application. Consequently, we are developing a decision sup...

  4. Estimating Supply-Chain Burdens in Support of Acquisition Decisions

    DTIC Science & Technology

    2013-03-20

    Acquisition decisions drive supply - chain requirements that incur financial costs and other critical impacts. To account properly for the resource...operational scenario. This research uses economic input/output analysis to model the Department of Defense supply chain to estimate the fully burdened cost

  5. A high-level language for rule-based modelling.

    PubMed

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages.

  6. Approaches to the verification of rule-based expert systems

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Riley, Gary; Savely, Robert T.

    1987-01-01

    Expert systems are a highly useful spinoff of artificial intelligence research. One major stumbling block to extended use of expert systems is the lack of well-defined verification and validation (V and V) methodologies. Since expert systems are computer programs, the definitions of verification and validation from conventional software are applicable. The primary difficulty with expert systems is the use of development methodologies which do not support effective V and V. If proper techniques are used to document requirements, V and V of rule-based expert systems is possible, and may be easier than with conventional code. For NASA applications, the flight technique panels used in previous programs should provide an excellent way to verify the rules used in expert systems. There are, however, some inherent differences in expert systems that will affect V and V considerations.

  7. Decision support: Applying climate information for practical insights and actionable information (Invited)

    NASA Astrophysics Data System (ADS)

    Moss, R. H.

    2013-12-01

    A wide range of decision-makers - including policy makers and many categories of professionals - should be considering climate information in their decisions and plans. AGU members may increasingly be called on to provide this information. This presentation will explore the importance of a broad approach to developing information of use in decision making. Traditional climate research must be supplemented with climate change decision science that incorporates climate information and includes decision analysis and qualitative research on institutions, perceptions, and other socioeconomic processes essential to implementing adaptation and mitigation decisions. Adoption of this broader paradigm and development of partnerships with decision and social scientists is essential to render climate data into actionable insights. The talk will draw on recent experience with applying modeling in decision support and introduce some practical suggestions.

  8. Hydrologic Drought Decision Support System (HyDroDSS)

    USGS Publications Warehouse

    Granato, Gregory E.

    2014-01-01

    The hydrologic drought decision support system (HyDroDSS) was developed by the U.S. Geological Survey (USGS) in cooperation with the Rhode Island Water Resources Board (RIWRB) for use in the analysis of hydrologic variables that may indicate the risk for streamflows to be below user-defined flow targets at a designated site of interest, which is defined herein as data-collection site on a stream that may be adversely affected by pumping. Hydrologic drought is defined for this study as a period of lower than normal streamflows caused by precipitation deficits and (or) water withdrawals. The HyDroDSS is designed to provide water managers with risk-based information for balancing water-supply needs and aquatic-habitat protection goals to mitigate potential effects of hydrologic drought. This report describes the theory and methods for retrospective streamflow-depletion analysis, rank correlation analysis, and drought-projection analysis. All three methods are designed to inform decisions made by drought steering committees and decisionmakers on the basis of quantitative risk assessment. All three methods use estimates of unaltered streamflow, which is the measured or modeled flow without major withdrawals or discharges, to approximate a natural low-flow regime. Retrospective streamflow-depletion analysis can be used by water-resource managers to evaluate relations between withdrawal plans and the potential effects of withdrawal plans on streams at one or more sites of interest in an area. Retrospective streamflow-depletion analysis indicates the historical risk of being below user-defined flow targets if different pumping plans were implemented for the period of record. Retrospective streamflow-depletion analysis also indicates the risk for creating hydrologic drought conditions caused by use of a pumping plan. Retrospective streamflow-depletion analysis is done by calculating the net streamflow depletions from withdrawals and discharges and applying these depletions

  9. Interventions to support children’s engagement in health-related decisions: a systematic review

    PubMed Central

    2014-01-01

    Background Children often need support in health decision-making. The objective of this study was to review characteristics and effectiveness of interventions that support health decision-making of children. Methods A systematic review. Electronic databases (PubMed, the Cochrane Library, Web of Science, Scopus, ProQuest Dissertations and Theses, CINAHL, PsycINFO, MEDLINE, and EMBASE) were searched from inception until March 2012. Two independent reviewers screened eligibility: a) intervention studies; b) involved supporting children (≤18 years) considering health-related decision(s); and c) measured decision quality or decision-making process outcomes. Data extraction and quality appraisal were conducted by one author and verified by another using a standardized data extraction form. Quality appraisal was based on the Cochrane Risk of Bias tool. Results Of 4313 citations, 5 studies were eligible. Interventions focused on supporting decisions about risk behaviors (n = 3), psycho-educational services (n = 1), and end of life (n = 1). Two of 5 studies had statistically significant findings: i) compared to attention placebo, decision coaching alone increased values congruence between child and parent, and child satisfaction with decision-making process (lower risk of bias); ii) compared to no intervention, a workshop with weekly assignments increased overall decision-making quality (higher risk of bias). Conclusions Few studies have focused on interventions to support children’s participation in decisions about their health. More research is needed to determine effective methods for supporting children’s health decision-making. PMID:24758566

  10. The Use of Computer-Aided Decision Support Systems for Complex Source Selection Decisions

    DTIC Science & Technology

    1989-09-01

    making processes under which virtually all decisions can be categorized. Optimizing. To optimize is to make the best possible decision under the... community ; 45 AFIT students may not be a representative sample. A subjective case may be made, however, that these subjects were relatively typical...career paths of the population studied, compared with that which apparently exists in the acquisition community . Discussion of Variables Major Constructs

  11. Decision support models for solid waste management: Review and game-theoretic approaches

    SciTech Connect

    Karmperis, Athanasios C.; Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios

    2013-05-15

    Highlights: ► The mainly used decision support frameworks for solid waste management are reviewed. ► The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ► The game-theoretic approach in a solid waste management context is presented. ► The waste management bargaining game is introduced as a specific decision support framework. ► Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the cost–benefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  12. SANDS: A Service-Oriented Architecture for Clinical Decision Support in a National Health Information Network

    PubMed Central

    Wright, Adam; Sittig, Dean F.

    2008-01-01

    In this paper we describe and evaluate a new distributed architecture for clinical decision support called SANDS (Service-oriented Architecture for NHIN Decision Support), which leverages current health information exchange efforts and is based on the principles of a service-oriented architecture. The architecture allows disparate clinical information systems and clinical decision support systems to be seamlessly integrated over a network according to a set of interfaces and protocols described in this paper. The architecture described is fully defined and developed, and six use cases have been developed and tested using a prototype electronic health record which links to one of the existing prototype National Health Information Networks (NHIN): drug interaction checking, syndromic surveillance, diagnostic decision support, inappropriate prescribing in older adults, information at the point of care and a simple personal health record. Some of these use cases utilize existing decision support systems, which are either commercially or freely available at present, and developed outside of the SANDS project, while other use cases are based on decision support systems developed specifically for the project. Open source code for many of these components is available, and an open source reference parser is also available for comparison and testing of other clinical information systems and clinical decision support systems that wish to implement the SANDS architecture. PMID:18434256

  13. Design Evolution of a Fighter Training Scheduling Decision Support System.

    DTIC Science & Technology

    1987-03-01

    Holloman schedule includes classroom lecture, simulator training, and flying sorties. Second, cyclical scheduling literature does not consider leave...produces - a road map from blank paper to com- pleted schedule. It outlines the scheduling decision pro- cess using words or concepts and linking words or...questionnaire of multiple - choice, short statement, or open-ended questions should be used throughout the DSS implementation and development. Rating and

  14. Estimating Logistics Burdens in Support of Acquisition Decisions

    DTIC Science & Technology

    2012-04-30

    supply for fuel batteries , water, and other consumables as a function of variables that may be modeled during early (up to and including Milestone A...saved) by a given acquisition decision. This work explores methods to estimate the fully burdened cost of supply for fuel, batteries , water, and other...rich with applications to life cycle assessment ( LCA ), which is the estimation of the environmental impacts of consumption of products and services

  15. Risk Management for Weapon Systems Acquisition: A Decision Support System

    DTIC Science & Technology

    1985-02-28

    identification purposes. As another example, consider the well-known multiattribute utility theory approach. Such a method may be an appropriate risk...provide comprcbensive and balanced asseisnient unlcsted. B-25 B.5.1 Decision Analysis/Multiactribute Utility Theory (DA/ MAUT ) (Keeney and Raiffa...Perspective, Addison-Wesley, Boston, 1978. Keeney, R.L., "An Illustrated Procedure for Assessing Multiattributed Utility Functions," Sloan Management

  16. Developing Climate Resilience Toolkit Decision Support Training Sectio

    NASA Astrophysics Data System (ADS)

    Livezey, M. M.; Herring, D.; Keck, J.; Meyers, J. C.

    2014-12-01

    The Climate Resilience Toolkit (CRT) is a Federal government effort to address the U.S. President's Climate Action Plan and Executive Order for Climate Preparedness. The toolkit will provide access to tools and products useful for climate-sensitive decision making. To optimize the user experience, the toolkit will also provide access to training materials. The National Oceanic and Atmospheric Administration (NOAA) has been building a climate training capability for 15 years. The target audience for the training has historically been mainly NOAA staff with some modified training programs for external users and stakeholders. NOAA is now using this climate training capacity for the CRT. To organize the CRT training section, we collaborated with the Association of Climate Change Officers to determine the best strategy and identified four additional complimentary skills needed for successful decision making: climate literacy, environmental literacy, risk assessment and management, and strategic execution and monitoring. Developing the climate literacy skills requires knowledge of climate variability and change, as well as an introduction to the suite of available products and services. For the development of an environmental literacy category, specific topics needed include knowledge of climate impacts on specific environmental systems. Climate risk assessment and management introduces a process for decision making and provides knowledge on communication of climate information and integration of climate information in planning processes. The strategic execution and monitoring category provides information on use of NOAA climate products, services, and partnership opportunities for decision making. In order to use the existing training modules, it was necessary to assess their level of complexity, catalog them, and develop guidance for users on a curriculum to take advantage of the training resources to enhance their learning experience. With the development of this CRT

  17. Economic Evaluation of Environmental Health Interventions to Support Decision Making

    PubMed Central

    Hutton, Guy

    2008-01-01

    Environmental burden of disease represents one quarter of overall disease burden, hence necessitating greater attention from decision makers both inside and outside the health sector. Economic evaluation techniques such as cost-effectiveness analysis and cost-benefit analysis provide key information to health decision makers on the efficiency of environmental health interventions, assisting them in choosing interventions which give the greatest social return on limited public budgets and private resources. The aim of this article is to review economic evaluation studies in three environmental health areas—water, sanitation, hygiene (WSH), vector control, and air pollution—and to critically examine the policy relevance and scientific quality of the studies for selecting and funding public programmers. A keyword search of Medline from 1990–2008 revealed 32 studies, and gathering of articles from other sources revealed a further 18 studies, giving a total of 50 economic evaluation studies (13 WSH interventions, 16 vector control and 21 air pollution). Overall, the economic evidence base on environmental health interventions remains relatively weak—too few studies per intervention, of variable scientific quality and from diverse locations which limits generalisability of findings. Importantly, there still exists a disconnect between economic research, decision making and programmer implementation. This can be explained by the lack of translation of research findings into accessible documentation for policy makers and limited relevance of research findings, and the often low importance of economic evidence in budgeting decisions. These findings underline the importance of involving policy makers in the defining of research agendas and commissioning of research, and improving the awareness of researchers of the policy environment into which their research feeds. PMID:21572840

  18. Ensemble modelling and structured decision-making to support Emergency Disease Management.

    PubMed

    Webb, Colleen T; Ferrari, Matthew; Lindström, Tom; Carpenter, Tim; Dürr, Salome; Garner, Graeme; Jewell, Chris; Stevenson, Mark; Ward, Michael P; Werkman, Marleen; Backer, Jantien; Tildesley, Michael

    2017-03-01

    Epidemiological models in animal health are commonly used as decision-support tools to understand the impact of various control actions on infection spread in susceptible populations. Different models contain different assumptions and parameterizations, and policy decisions might be improved by considering outputs from multiple models. However, a transparent decision-support framework to integrate outputs from multiple models is nascent in epidemiology. Ensemble modelling and structured decision-making integrate the outputs of multiple models, compare policy actions and support policy decision-making. We briefly review the epidemiological application of ensemble modelling and structured decision-making and illustrate the potential of these methods using foot and mouth disease (FMD) models. In case study one, we apply structured decision-making to compare five possible control actions across three FMD models and show which control actions and outbreak costs are robustly supported and which are impacted by model uncertainty. In case study two, we develop a methodology for weighting the outputs of different models and show how different weighting schemes may impact the choice of control action. Using these case studies, we broadly illustrate the potential of ensemble modelling and structured decision-making in epidemiology to provide better information for decision-making and outline necessary development of these methods for their further application.

  19. Translating Knowledge into Action: Supporting Adaptation in Australia's Coastal Zone through Information Provision and Decision Support

    NASA Astrophysics Data System (ADS)

    Palutikof, J. P.; Rissik, D.; Tonmoy, F. N.; Boulter, S.

    2015-12-01

    Adaptation to risks from climate change and sea-level rise is particularly important in Australia, where 70% of the population live in major coastal cities and 85% within 50km of the coast. Adaptation activity focuses at local government level and, in the absence of strong leadership from central government, the extent to which local councils have taken action to adapt is highly variable across the nation. Also, although a number of councils have proceeded as far as identifying their exposure to risk and considering adaptation options, this fails to translate into action. A principal reason for this is concern over the response from coastal residents to actions which may affect property values, and fear of litigation. A project is underway to support councils to understand their risks, evaluate adaptation options and proceed to action. This support will consist of a three-pronged framework: provision of information, a tool to support decision-making, and a community forum. Delivery involves research to understand the barriers to adaptation and how these may be overcome, optimal methods for delivery of information, and the information needs of organizations, action-takers and communities. The presentation will focus on the results of consultation undertaken to understand users' information needs around content and delivery, and how understanding of these needs has translated into design of the framework. A strongly preference was expressed to learn from peers, and a challenge for the framework is to understand how to inject adaptation knowledge which is up-to-date and accurate into peer-to-peer conversations. The community forum is one mechanism to achieve this. The basic structure and delivery mechanisms of the framework are shown in the attached.

  20. Ecosystem Decision Support: A Living Database of Existing Tools, Approaches and Techniques for Supporting Decisions Related to Ecosystem Services

    EPA Science Inventory

    Planners and decision makers are challenged to consider not only direct market costs, but also ecological externalities. There is an increasing emphasis on ecosystem services in the context of human well-being, and therefore the valuation and accounting of ecosystem services is b...

  1. Cyborg practices: call-handlers and computerised decision support systems in urgent and emergency care.

    PubMed

    Pope, Catherine; Halford, Susan; Turnbull, Joanne; Prichard, Jane

    2014-06-01

    This article draws on data collected during a 2-year project examining the deployment of a computerised decision support system. This computerised decision support system was designed to be used by non-clinical staff for dealing with calls to emergency (999) and urgent care (out-of-hours) services. One of the promises of computerised decisions support technologies is that they can 'hold' vast amounts of sophisticated clinical knowledge and combine it with decision algorithms to enable standardised decision-making by non-clinical (clerical) staff. This article draws on our ethnographic study of this computerised decision support system in use, and we use our analysis to question the 'automated' vision of decision-making in healthcare call-handling. We show that embodied and experiential (human) expertise remains central and highly salient in this work, and we propose that the deployment of the computerised decision support system creates something new, that this conjunction of computer and human creates a cyborg practice.

  2. Big-Data Based Decision-Support Systems to Improve Clinicians’ Cognition

    PubMed Central

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians’ cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems. PMID:27990498

  3. Big-Data Based Decision-Support Systems to Improve Clinicians' Cognition.

    PubMed

    Roosan, Don; Samore, Matthew; Jones, Makoto; Livnat, Yarden; Clutter, Justin

    2016-01-01

    Complex clinical decision-making could be facilitated by using population health data to inform clinicians. In two previous studies, we interviewed 16 infectious disease experts to understand complex clinical reasoning. For this study, we focused on answers from the experts on how clinical reasoning can be supported by population-based Big-Data. We found cognitive strategies such as trajectory tracking, perspective taking, and metacognition has the potential to improve clinicians' cognition to deal with complex problems. These cognitive strategies could be supported by population health data, and all have important implications for the design of Big-Data based decision-support tools that could be embedded in electronic health records. Our findings provide directions for task allocation and design of decision-support applications for health care industry development of Big data based decision-support systems.

  4. Image-assisted knowledge discovery and decision support in radiation therapy planning.

    PubMed

    Liu, Brent J; Law, Maria Y Y; Documet, Jorge; Gertych, Arkadiusz

    2007-01-01

    The need for quantified knowledge and decision-support tools to handle complex radiation therapy (RT) imaging and informatics data is becoming steadily apparent. Lessons can be learned from current CAD applications in radiology. This paper proposes a methodology to develop this quantified knowledge and decision-support tools to facilitate RT treatment planning. The methodology is applied to cancer patient cases treated by intensity modulated radiation therapy (IMRT). The use of the "inverse treatment planning" and imaging intensive nature of IMRT allows for the development of such image-assisted tools for supporting decision-making thus providing better workflow efficiency and more precise dose predictions.

  5. An Agent-Based Framework for Building Decision Support System in Supply Chain Management

    NASA Astrophysics Data System (ADS)

    Kazemi, A.; Fazel Zarandi, M. H.

    In this study, two scenarios are presented for solving Production-Distribution Panning Problem (PDPP) in a Decision Support System (DSS) framework. In the first scenario, a Traditional Decision Support System (TDSS) is presented for PDPP and a Genetic Algorithm (GA) is used for solving it. In the second scenario, a Multi-agent Decision Support System (MADSS) is considered for PDPP and three algorithms are used for solving it: Genetic Algorithm (GA), Tabu Search (TS) and Simulated Annealing (SA). Then an algorithm is suggested by using multi-agent system and A Teams concept. The obtained results reveal that the use of MADSS delivers better solutions to us.

  6. Implementing an integrative multi-agent clinical decision support system with open source software.

    PubMed

    Sayyad Shirabad, Jelber; Wilk, Szymon; Michalowski, Wojtek; Farion, Ken

    2012-02-01

    Clinical decision making is a complex multi-stage process. Decision support can play an important role at each stage of this process. At present, the majority of clinical decision support systems have been focused on supporting only certain stages. In this paper we present the design and implementation of MET3-a prototype multi-agent system providing an integrative decision support that spans over the entire decision making process. The system helps physicians with data collection, diagnosis formulation, treatment planning and finding supporting evidence. MET3 integrates with external hospital information systems via HL7 messages and runs on various computing platforms available at the point of care (e.g., tablet computers, mobile phones). Building MET3 required sophisticated and reliable software technologies. In the past decade the open source software movement has produced mature, stable, industrial strength software systems with a large user base. Therefore, one of the decisions that should be considered before developing or acquiring a decision support system is whether or not one could use open source technologies instead of proprietary ones. We believe MET3 shows that the answer to this question is positive.

  7. Acutely-bereaved Surrogates' Stories about the Decision to Limit Life Support in the ICU

    PubMed Central

    Nunez, Eduardo R.; Schenker, Yael; Joel, Ian D.; Reynolds, Charles F.; Dew, Mary Amanda; Arnold, Robert M.; Barnato, Amber E.

    2015-01-01

    Objective Participating in a decision to limit life support for a loved one in the intensive care unit (ICU) is associated with adverse mental health consequences for surrogate decision makers. We sought to describe acutely-bereaved surrogates' experiences surrounding this decision. Design and setting Secondary analysis of interviews with surrogates approximately 4 weeks after a patient's death in one of 6 ICUs at 4 hospitals in Pittsburgh, Pennsylvania. Subjects Adults who participated in decisions about life support in the ICU. Interventions n/a Measurements We collected participant demographics, prior advance care planning, and decision control preferences. We used qualitative content analysis of transcribed interviews to identify themes in surrogates' experiences. Main results The 23 participants included the spouse (n=7), child/step-child (7), sibling (5), parent (3), or other relation (1) of the deceased patient. Their mean age was 55, 61% were women, all were white, 74% had prior treatment preferences discussions with the patient and 43% of patients had written advance directives. 15/23 (65%) surrogates preferred an active decision-making role, 8/23 (35%) preferred to share responsibility with the physician and no surrogates preferred a passive role. Surrogates report that key stressors in the ICU are the uncertainty and witnessed or empathic suffering. These factors contributed to surrogates' sense of helplessness in the ICU. Involvement in the decision to limit life support allowed surrogates to regain a sense of agency by making a decision consistent with the patient's wishes and values, counteracting surrogates' helplessness and ending the uncertainty and suffering. Conclusions In this all-white sample of surrogates with non-passive decision control preferences from a single US region, participating in decision making allowed surrogates to regain control, counteract feelings of helplessness, and end their empathic suffering. While prior research

  8. CHAMPION: Intelligent Hierarchical Reasoning Agents for Enhanced Decision Support

    SciTech Connect

    Hohimer, Ryan E.; Greitzer, Frank L.; Noonan, Christine F.; Strasburg, Jana D.

    2011-11-15

    We describe the design and development of an advanced reasoning framework employing semantic technologies, organized within a hierarchy of computational reasoning agents that interpret domain specific information. Designed based on an inspirational metaphor of the pattern recognition functions performed by the human neocortex, the CHAMPION reasoning framework represents a new computational modeling approach that derives invariant knowledge representations through memory-prediction belief propagation processes that are driven by formal ontological language specification and semantic technologies. The CHAMPION framework shows promise for enhancing complex decision making in diverse problem domains including cyber security, nonproliferation and energy consumption analysis.

  9. Coordinated machine learning and decision support for situation awareness.

    SciTech Connect

    Draelos, Timothy John; Zhang, Peng-Chu.; Wunsch, Donald C.; Seiffertt, John; Conrad, Gregory N.; Brannon, Nathan Gregory

    2007-09-01

    For applications such as force protection, an effective decision maker needs to maintain an unambiguous grasp of the environment. Opportunities exist to leverage computational mechanisms for the adaptive fusion of diverse information sources. The current research employs neural networks and Markov chains to process information from sources including sensors, weather data, and law enforcement. Furthermore, the system operator's input is used as a point of reference for the machine learning algorithms. More detailed features of the approach are provided, along with an example force protection scenario.

  10. In and out of home care decisions: The influence of confirmation bias in developing decision supportive reasoning.

    PubMed

    Spratt, Trevor; Devaney, John; Hayes, David

    2015-11-01

    The aims of this study were to identify the themes Social Workers regard as important in supporting decisions to remove children from, or return them to, the care of their parents. To further elicit underlying hypotheses that are discernible in interpretation of evidence. A case study, comprising a two-part vignette with a questionnaire, recorded demographic information, child welfare attitudes and risk assessments, using scales derived from standardised instruments, was completed by 202 Social Workers in Northern Ireland. There were two manipulated variables, mother's attitude to removal and child's attitude to reunification 2 years later. In this paper we use data derived from respondents' qualitative comments explaining their reasoning for in and out of home care decisions. Some 60.9% of respondent's chose the parental care option at part one, with 94% choosing to have the child remain in foster care at part two. The manipulated variables were found to have no significant statistical effect. However, three underlying hypotheses were found to underpin decisions; (a) child rescue, (b) kinship defence and (c) a hedged position on calculation of risk subject to further assessment. Reasoning strategies utilised by social workers to support their decision making suggest that they tend to selectively interpret information either positively or negatively to support pre-existing underlying hypotheses. This finding is in keeping with the literature on 'confirmation bias.' The research further draws attention to the need to incorporate open questions in quantitative studies, to help guard against surface reading of data, which often does not 'speak for itself.'

  11. Multi Criteria Decision Support Model for the Turkish Air Force Personnel Course/Education Planning System

    DTIC Science & Technology

    2011-03-01

    Making, Multiattribute Utility Theory : The Next Ten Years”. Management Science, 38(5):645–654, 1992. Fulop, Janos. “Introduction to Decision Making... Utility Theory . . . . . . . . . . . . . . . . . 21 2.2.4 ELECTRE Method . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.5 PROMETHEE Method...10 DSS Decision Support Systems . . . . . . . . . . . . . . . . . . . . 16 MAUT Multi-Attribute Utility Theory

  12. Factors Predicting Oncology Care Providers' Behavioral Intention to Adopt Clinical Decision Support Systems

    ERIC Educational Resources Information Center

    Wolfenden, Andrew

    2012-01-01

    The purpose of this quantitative correlation study was to examine the predictors of user behavioral intention on the decision of oncology care providers to adopt or reject the clinical decision support system. The Unified Theory of Acceptance and Use of Technology (UTAUT) formed the foundation of the research model and survey instrument. The…

  13. AN INTEGRATED DECISION SUPPORT FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN-WATERSHEDS

    EPA Science Inventory

    This paper will present an on-going development of an integrated decision support framework (IDSF) for cost-effective placement of best management practices (BMPs) for managing wet weather flows (WWF) in urban watersheds. This decision tool will facilitate the selection and plac...

  14. Assessing Sustainability of Coral Reef Ecosystem Services using a Spatially-Explicit Decision Support Tool

    EPA Science Inventory

    Forecasting and communicating the potential outcomes of decision options requires support tools that aid in evaluating alternative scenarios in a user-friendly context and that highlight variables relevant to the decision options and valuable stakeholders. Envision is a GIS-base...

  15. Decision Support Systems (DSSs) For Contaminated Land Management - Gaps And Challenges

    EPA Science Inventory

    A plethora of information is available when considering decision support systems for risk-based management of contaminated land. Broad issues of what is contaminated land, what is a brownfield, and what is remediation are discussed in EU countries and the U.S. Making decisions ...

  16. A Web-Based Tool to Support Data-Based Early Intervention Decision Making

    ERIC Educational Resources Information Center

    Buzhardt, Jay; Greenwood, Charles; Walker, Dale; Carta, Judith; Terry, Barbara; Garrett, Matthew

    2010-01-01

    Progress monitoring and data-based intervention decision making have become key components of providing evidence-based early childhood special education services. Unfortunately, there is a lack of tools to support early childhood service providers' decision-making efforts. The authors describe a Web-based system that guides service providers…

  17. DEVELOPMENT OF A DECISION SUPPORT FRAMEWORK FOR PLACEMENT OF BMPS IN URBAN-WATERSHEDS

    EPA Science Inventory

    This paper will present an on-going development of an integrated decision support framework (IDSF) for cost-effective placement of best management practices (BMPs) for managing wet weather flows (WWF) in urban watersheds. This decision tool will facilitate the selection and plac...

  18. EWall - Electronic Card Wall: Computational Support for Decision-Making in Collaborative Environments

    DTIC Science & Technology

    2007-12-17

    Support for Decision-Making in Collaborative Environments Final Report Grant Number: N000140410569 December 2007 Submitted to...4.2.1. Decision-Making Constructs in Distributed Environments ............................ 15 4.2.2. Collaborative Knowledge in Asynchronous...work environments . We developed an experimental computational environment referred to as the EWall system. The EWall system is designed to be used for

  19. Effectiveness of an Electronic Performance Support System on Computer Ethics and Ethical Decision-Making Education

    ERIC Educational Resources Information Center

    Kert, Serhat Bahadir; Uz, Cigdem; Gecu, Zeynep

    2014-01-01

    This study examined the effectiveness of an electronic performance support system (EPSS) on computer ethics education and the ethical decision-making processes. There were five different phases to this ten month study: (1) Writing computer ethics scenarios, (2) Designing a decision-making framework (3) Developing EPSS software (4) Using EPSS in a…

  20. GREENER CHEMICAL PROCESS DESIGN ALTERNATIVES ARE REVEALED USING THE WASTE REDUCTION DECISION SUPPORT SYSTEM (WAR DSS)

    EPA Science Inventory

    The Waste Reduction Decision Support System (WAR DSS) is a Java-based software product providing comprehensive modeling of potential adverse environmental impacts (PEI) predicted to result from newly designed or redesigned chemical manufacturing processes. The purpose of this so...

  1. Developing Evidence-Based Care Standards and a Decision-Making Support System for Pain Management.

    PubMed

    Feng, Rung-Chuang; Chang, Polun

    2016-01-01

    Pain is a crucial sign and symptom in hospitalised patients. This paper describes how a medical centre created a knowledge-based, computerised pain management decision-making process to support nurses in personalising preventive interventions based on patient requirements.

  2. Archetypes as interface between patient data and a decision support system.

    PubMed

    Niès, Julie; Steichen, Olivier; Jaulent, Marie-Christine

    2007-10-11

    We propose an experiment to validate the hypothesis that archetypes enable better access and reliable use of patient data by a decision support system, mainly because they are designed to consistently link patient data with terminological systems and metadata.

  3. GET SMARTE: A DECISION SUPPORT SYSTEM TO REVITALIZE COMMUNITIES - CABERNET 2007

    EPA Science Inventory

    Sustainable Management Approaches and Revitalization Tools - electronic (SMARTe), is an open-source, web-based, decision support system for developing and evaluating future reuse scenarios for potentially contaminated land. SMARTe contains information and analysis tools for all a...

  4. The Integrated Medical Model: A Decision Support Tool for In-flight Crew Health Care

    NASA Technical Reports Server (NTRS)

    Butler, Doug

    2009-01-01

    This viewgraph presentation reviews the development of an Integrated Medical Model (IMM) decision support tool for in-flight crew health care safety. Clinical methods, resources, and case scenarios are also addressed.

  5. A Decision Support System for Managing a Diverse Portfolio of Technology Resources

    NASA Technical Reports Server (NTRS)

    Smith, J.

    2000-01-01

    This paper describes an automated decision support system designed to facilitate the management of a continuously changing portfolio of technologies as new technologies are deployed and older technologies are decommissioned.

  6. A Decision Support Framework For Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    EPA Science Inventory

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environ...

  7. Pharmaceutical expenditure forecast model to support health policy decision making

    PubMed Central

    Rémuzat, Cécile; Urbinati, Duccio; Kornfeld, Åsa; Vataire, Anne-Lise; Cetinsoy, Laurent; Aballéa, Samuel; Mzoughi, Olfa; Toumi, Mondher

    2014-01-01

    Background and objective With constant incentives for healthcare payers to contain their pharmaceutical budgets, modelling policy decision impact became critical. The objective of this project was to test the impact of various policy decisions on pharmaceutical budget (developed for the European Commission for the project ‘European Union (EU) Pharmaceutical expenditure forecast’ – http://ec.europa.eu/health/healthcare/key_documents/index_en.htm). Methods A model was built to assess policy scenarios’ impact on the pharmaceutical budgets of seven member states of the EU, namely France, Germany, Greece, Hungary, Poland, Portugal, and the United Kingdom. The following scenarios were tested: expanding the UK policies to EU, changing time to market access, modifying generic price and penetration, shifting the distribution chain of biosimilars (retail/hospital). Results Applying the UK policy resulted in dramatic savings for Germany (10 times the base case forecast) and substantial additional savings for France and Portugal (2 and 4 times the base case forecast, respectively). Delaying time to market was found be to a very powerful tool to reduce pharmaceutical expenditure. Applying the EU transparency directive (6-month process for pricing and reimbursement) increased pharmaceutical expenditure for all countries (from 1.1 to 4 times the base case forecast), except in Germany (additional savings). Decreasing the price of generics and boosting the penetration rate, as well as shifting distribution of biosimilars through hospital chain were also key methods to reduce pharmaceutical expenditure. Change in the level of reimbursement rate to 100% in all countries led to an important increase in the pharmaceutical budget. Conclusions Forecasting pharmaceutical expenditure is a critical exercise to inform policy decision makers. The most important leverages identified by the model on pharmaceutical budget were driven by generic and biosimilar prices, penetration rate

  8. The online community based decision making support system for mitigating biased decision making

    NASA Astrophysics Data System (ADS)

    Kang, Sunghyun; Seo, Jiwan; Choi, Seungjin; Kim, Junho; Han, Sangyong

    2016-10-01

    As the Internet technology and social media advance, various information and opinions are shared and distributed through the online communities. However, the existence of implicit and explicit bias of opinions may have a potential influence on the outcomes. Compared to the importance of mitigating biased information, the study in this field is relatively young and does not address many important issues. In this paper we propose the noble approach to mitigate the biased opinions using conventional machine learning methods. The proposed method extracts the useful features such as inclination and sentiment of the community members. They are classified based on their previous behavior, and the propensity of the members is understood. This information on each community and its members is very useful and improve the ability to make an unbiased decision. The proposed method presented in this paper is shown to have the ability to assist optimal, fair and good decision making while also reducing the influence of implicit bias.

  9. Assessing environmental conditions of Antarctic footpaths to support management decisions.

    PubMed

    Tejedo, Pablo; Benayas, Javier; Cajiao, Daniela; Albertos, Belén; Lara, Francisco; Pertierra, Luis R; Andrés-Abellán, Manuela; Wic, Consuelo; Luciáñez, Maria José; Enríquez, Natalia; Justel, Ana; Reck, Günther K

    2016-07-15

    Thousands of tourists visit certain Antarctic sites each year, generating a wide variety of environmental impacts. Scientific knowledge of human activities and their impacts can help in the effective design of management measures and impact mitigation. We present a case study from Barrientos Island in which a management measure was originally put in place with the goal of minimizing environmental impacts but resulted in new undesired impacts. Two alternative footpaths used by tourist groups were compared. Both affected extensive moss carpets that cover the middle part of the island and that are very vulnerable to trampling. The first path has been used by tourists and scientists since over a decade and is a marked route that is clearly visible. The second one was created more recently. Several physical and biological indicators were measured in order to assess the environmental conditions for both paths. Some physical variables related to human impact were lower for the first path (e.g. soil penetration resistance and secondary treads), while other biochemical and microbiological variables were higher for the second path (e.g. β-glucosidase and phosphatase activities, soil respiration). Moss communities located along the new path were also more diverse and sensitive to trampling. Soil biota (Collembola) was also more abundant and richer. These data indicate that the decision to adopt the second path did not lead to the reduction of environmental impacts as this path runs over a more vulnerable area with more outstanding biological features (e.g. microbiota activity, flora and soil fauna diversity). In addition, the adoption of a new route effectively doubles the human footprint on the island. We propose using only the original path that is less vulnerable to the impacts of trampling. Finally from this process, we identify several key issues that may be taken into account when carrying out impact assessment and environmental management decision-making in the

  10. Lifting Off of the Digital Plateau with Military Decision Support Systems

    DTIC Science & Technology

    2013-05-23

    System IBM International Business Machines NEWS Navy Electronic Warfare Simulator NHS National Hurricane Center NYMEX New York Mercantile ...LIFTING OFF OF THE DIGITAL PLATEAU WITH MILITARY DECISION SUPPORT SYSTEMS A Monograph by MAJ Stephen J. Banks United States Army...Plateau With Military Decision Support Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Banks, Stephen

  11. Development and Validation of a Portable Platform for Deploying Decision-Support Algorithms in Prehospital Settings

    DTIC Science & Technology

    2013-08-21

    Advanced decision-support capabilities for prehospital trauma care may prove effec- tive at improving patient care. Such functionality would be possible...illustrate two sets of important questions: are the individual com- ponents reliable (e.g., physical integrity, power, core functionality , and end-user...challenges may be relevant to broader efforts in de- ploying automated decision-support functionality in prehospital environments. In addition, the ex

  12. A Decision Support System for Evaluating Systems of Undersea Sensors and Weapons

    DTIC Science & Technology

    2015-12-01

    distribution is unlimited A DECISION SUPPORT SYSTEM FOR EVALUATING SYSTEMS OF UNDERSEA SENSORS AND WEAPONS by Team Mental Focus Cohort 142O...A DECISION SUPPORT SYSTEM FOR EVALUATING SYSTEMS OF UNDERSEA SENSORS AND WEAPONS 5. FUNDING NUMBERS 6. AUTHOR(S) Systems Engineering Cohort...in the Navy’s capability to simulate mine warfare scenarios involving arrays of distributed sensors linked with autonomous mobile weapons by reviewing

  13. Design and Implementation of a Decision Support System for Assigning Human Resources in the Hellenic Navy

    DTIC Science & Technology

    2006-09-01

    IMPLEMENTATION OF A DECISION SUPPORT SYSTEM FOR ASSIGNING HUMAN RESOURCES IN THE HELLENIC NAVY by Konstantinos Agas September 2006 Thesis Advisor...Implementation of a Decision Support System for Assigning Human Resources in the Hellenic Navy 6. AUTHOR(S) Konstantinos Agas 5. FUNDING NUMBERS 7...SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/ A 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed

  14. Computer-based tools for decision support at the Hanford Site

    SciTech Connect

    Doctor, P.G.; Mahaffey, J.A.; Cowley, P.J.; Freshley, M.D.; Hassig, N.L.; Brothers, J.W.; Glantz, C.S.; Strachan, D.M.

    1992-11-01

    To help integrate activities in the environmental restoration and waste management mission of the Hanford Site, the Hanford Integrated Planning Project (HIPP) was established and funded by the US Department of Energy. The project is divided into three key program elements, the first focusing on an explicit, defensible and comprehensive method for evaluating technical options. Based on the premise that computer technology can be used to support the decision-making process and facilitate integration among programs and activities, the Decision Support Tools Task was charged with assessing the status of computer technology for those purposes at the Site. The task addressed two types of tools: tools need to provide technical information and management support tools. Technical tools include performance and risk assessment models, information management systems, data and the computer infrastructure to supports models, data, and information management systems. Management decision support tools are used to synthesize information at a high` level to assist with making decisions. The major conclusions resulting from the assessment are that there is much technical information available, but it is not reaching the decision-makers in a form to be used. Many existing tools provide components that are needed to integrate site activities; however, some components are missing and, more importantly, the ``glue`` or connections to tie the components together to answer decision-makers questions is largely absent. Top priority should be given to decision support tools that support activities given in the TPA. Other decision tools are needed to facilitate and support the environmental restoration and waste management mission.

  15. Computer-based tools for decision support at the Hanford Site

    SciTech Connect

    Doctor, P.G.; Mahaffey, J.A.; Cowley, P.J.; Freshley, M.D.; Hassig, N.L.; Brothers, J.W.; Glantz, C.S.; Strachan, D.M.

    1992-11-01

    To help integrate activities in the environmental restoration and waste management mission of the Hanford Site, the Hanford Integrated Planning Project (HIPP) was established and funded by the US Department of Energy. The project is divided into three key program elements, the first focusing on an explicit, defensible and comprehensive method for evaluating technical options. Based on the premise that computer technology can be used to support the decision-making process and facilitate integration among programs and activities, the Decision Support Tools Task was charged with assessing the status of computer technology for those purposes at the Site. The task addressed two types of tools: tools need to provide technical information and management support tools. Technical tools include performance and risk assessment models, information management systems, data and the computer infrastructure to supports models, data, and information management systems. Management decision support tools are used to synthesize information at a high' level to assist with making decisions. The major conclusions resulting from the assessment are that there is much technical information available, but it is not reaching the decision-makers in a form to be used. Many existing tools provide components that are needed to integrate site activities; however, some components are missing and, more importantly, the glue'' or connections to tie the components together to answer decision-makers questions is largely absent. Top priority should be given to decision support tools that support activities given in the TPA. Other decision tools are needed to facilitate and support the environmental restoration and waste management mission.

  16. Decision-support systems for natural-hazards and land-management issues

    USGS Publications Warehouse

    Dinitz, Laura; Forney, William; Byrd, Kristin

    2012-01-01

    Scientists at the USGS Western Geographic Science Center are developing decision-support systems (DSSs) for natural-hazards and land-management issues. DSSs are interactive computer-based tools that use data and models to help identify and solve problems. These systems can provide crucial support to policymakers, planners, and communities for making better decisions about long-term natural hazards mitigation and land-use planning.

  17. Designing a Graphical Decision Support Tool to Improve System Acquisition Decisions

    DTIC Science & Technology

    2009-06-01

    acquisition decision through the Internet . It also allows organizations to search for buyers or sellers of systems. It has been identified that the...following things : ♦ Be equipped with an adjustable head-mounted eye tracker. The eye tracker will be explained and calibrated. ♦ Complete a baseline...p. 47-62. 7. Mukhopadhyay, T. and S. Kekre, Strategic and Operational Benefits of Electronic Integration in B2B Procurement Processes. Management

  18. An Integrated Web-based Decision Support System in Disaster Risk Management

    NASA Astrophysics Data System (ADS)

    Aye, Z. C.; Jaboyedoff, M.; Derron, M. H.

    2012-04-01

    Nowadays, web based decision support systems (DSS) play an essential role in disaster risk management because of their supporting abilities which help the decision makers to improve their performances and make better decisions without needing to solve complex problems while reducing human resources and time. Since the decision making process is one of the main factors which highly influence the damages and losses of society, it is extremely important to make right decisions at right time by combining available risk information with advanced web technology of Geographic Information System (GIS) and Decision Support System (DSS). This paper presents an integrated web-based decision support system (DSS) of how to use risk information in risk management efficiently and effectively while highlighting the importance of a decision support system in the field of risk reduction. Beyond the conventional systems, it provides the users to define their own strategies starting from risk identification to the risk reduction, which leads to an integrated approach in risk management. In addition, it also considers the complexity of changing environment from different perspectives and sectors with diverse stakeholders' involvement in the development process. The aim of this platform is to contribute a part towards the natural hazards and geosciences society by developing an open-source web platform where the users can analyze risk profiles and make decisions by performing cost benefit analysis, Environmental Impact Assessment (EIA) and Strategic Environmental Assessment (SEA) with the support of others tools and resources provided. There are different access rights to the system depending on the user profiles and their responsibilities. The system is still under development and the current version provides maps viewing, basic GIS functionality, assessment of important infrastructures (e.g. bridge, hospital, etc.) affected by landslides and visualization of the impact

  19. Decision Support for Installations of the United States Army.

    DTIC Science & Technology

    1993-06-25

    McArdle, Office of the Deputy Chief of Staff for Personnel; Mr. Tim Whyte, U.S. Army Community & Family Support Center; MAT Bill Cross and MAJ Rick ... Riordan , Timothy H., Maria E Oria, and Joseph P. Tuss, "Dayton’s Capital Allocations Process," Government Finance Review, Vol. 4, No. 2, April 1987

  20. Using Anticipative Malware Analysis to Support Decision Making

    DTIC Science & Technology

    2010-11-01

    malware behaviour from a network point of view. The AES supports the execution of malware in a customisable virtual network that aims to emulate a...necessary to demonstrate the usefulness of the AES. We used virtualisation to facilitate mass analysis. However, this strategy presents the

  1. CorRECTreatment: A Web-based Decision Support Tool for Rectal Cancer Treatment that Uses the Analytic Hierarchy Process and Decision Tree

    PubMed Central

    Karakülah, G.; Dicle, O.; Sökmen, S.; Çelikoğlu, C.C.

    2015-01-01

    Summary Background The selection of appropriate rectal cancer treatment is a complex multi-criteria decision making process, in which clinical decision support systems might be used to assist and enrich physicians’ decision making. Objective The objective of the study was to develop a web-based clinical decision support tool for physicians in the selection of potentially beneficial treatment options for patients with rectal cancer. Methods The updated decision model contained 8 and 10 criteria in the first and second steps respectively. The decision support model, developed in our previous study by combining the Analytic Hierarchy Process (AHP) method which determines the priority of criteria and decision tree that formed using these priorities, was updated and applied to 388 patients data collected retrospectively. Later, a web-based decision support tool named corRECTreatment was developed. The compatibility of the treatment recommendations by the expert opinion and the decision support tool was examined for its consistency. Two surgeons were requested to recommend a treatment and an overall survival value for the treatment among 20 different cases that we selected and turned into a scenario among the most common and rare treatment options in the patient data set. Results In the AHP analyses of the criteria, it was found that the matrices, generated for both decision steps, were consistent (consistency ratio<0.1). Depending on the decisions of experts, the consistency value for the most frequent cases was found to be 80% for the first decision step and 100% for the second decision step. Similarly, for rare cases consistency was 50% for the first decision step and 80% for the second decision step. Conclusions The decision model and corRECTreatment, developed by applying these on real patient data, are expected to provide potential users with decision support in rectal cancer treatment processes and facilitate them in making projections about treatment options

  2. Prioritization of information using decision support systems for seismic risk in Bucharest city

    NASA Astrophysics Data System (ADS)

    Armas, Iuliana; Gheorghe, Diana

    2014-05-01

    Nowadays, because of the ever increasing volume of information, policymakers are faced with decision making problems. Achieving an objective and suitable decision making may become a challenge. In such situations decision support systems (DSS) have been developed. DSS can assist in the decision making process, offering support on how a decision should be made, rather than what decision should be made (Simon, 1979). This in turn potentially involves a huge number of stakeholders and criteria. Regarding seismic risk, Bucharest City is highly vulnerable (Mandrescu et al., 2007). The aim of this study is to implement a spatial decision support system in order to secure a suitable shelter in case of an earthquake occurrence in the historical centre of Bucharest City. In case of a seismic risk, a shelter is essential for sheltering people who lost their homes or whose homes are in danger of collapsing while people at risk receive first aid in the post-disaster phase. For the present study, the SMCE Module for ILWIS 3.4 was used. The methodology included structuring the problem by creating a decision tree, standardizing and weighting of the criteria. The results showed that the most suitable buildings are Tania Hotel, Hanul lui Manuc, The National Bank of Romania, The Romanian Commercial Bank and The National History Museum.

  3. [Knowledge management system for laboratory work and clinical decision support].

    PubMed

    Inada, Masanori; Sato, Mayumi; Yoneyama, Akiko

    2011-05-01

    This paper discusses a knowledge management system for clinical laboratories. In the clinical laboratory of Toranomon Hospital, we receive about 20 questions relevant to laboratory tests per day from medical doctors or co-medical staff. These questions mostly involve the essence to appropriately accomplish laboratory tests. We have to answer them carefully and suitably because an incorrect answer may cause a medical accident. Up to now, no method has been in place to achieve a rapid response and standardized answers. For this reason, the laboratory staff have responded to various questions based on their individual knowledge. We began to develop a knowledge management system to promote the knowledge of staff working for the laboratory. This system is a type of knowledge base for assisting the work, such as inquiry management, laboratory consultation, process management, and clinical support. It consists of several functions: guiding laboratory test information, managing inquiries from medical staff, reporting results of patient consultation, distributing laboratory staffs notes, and recording guidelines for laboratory medicine. The laboratory test information guide has 2,000 records of medical test information registered in the database with flexible retrieval. The inquiry management tool provides a methos to record all questions, answer easily, and retrieve cases. It helps staff to respond appropriately in a short period of time. The consulting report system treats patients' claims regarding medical tests. The laboratory staffs notes enter a file management system so they can be accessed to aid in clinical support. Knowledge sharing using this function can achieve the transition from individual to organizational learning. Storing guidelines for laboratory medicine will support EBM. Finally, it is expected that this system will support intellectual activity concerning laboratory work and contribute to the practice of knowledge management for clinical work support.

  4. A decision-support system for off-site nuclear emergencies.

    PubMed

    Yihua, X; Lin, G; Su, P; Tiefu, L; Honghui, X; Yongxing, Z; Xinzeng, S

    1998-03-01

    In the case of a nuclear emergency, quick, well-founded decisions must be made about the type of protective action, its region of application, and initiation time. These typically are tasks for computer-based systems. Even with emergency-preparedness, exercises, and training, the decision-support system is one of great importance. This paper describes a decision-support system recently developed by the China Institute of Atomic Energy; it can optimally rank actions during the early phase of an accident using multiattribute utility analysis, and for the intermediate and later phases by cost-benefit analysis. This system runs both on MICRO VAX II and PC systems.

  5. A Cercla-Based Decision Support System for Environmental Remediation Strategy Selection.

    DTIC Science & Technology

    1997-03-01

    A CERCLA -BASED DECISION SUPPORT SYSTEM FOR ENVIRONMENTAL REMEDIATION STRATEGY SELECTION 2Lt Brian J. Grelk AFIT/GORI97M- 10 DEPARTMENT OF THE AIR...FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio vimC ’QEjA BP3f AFIT/GOR/ENS/97M- 10 A CERCLA -BASED DECISION...unlimited MC QULM TnpEOM1 AFIT/GOR/ENS/97M- 10 A CERCLA -BASED DECISION SUPPORT SYSTEM FOR ENVIRONMENTAL REMEDIATION STRATEGY SELECTION THESIS Presented to

  6. Methodical Approach to Developing a Decision Support System for Well Interventions Planning

    NASA Astrophysics Data System (ADS)

    Silich, V. A.; Savelev, A. O.; Isaev, A. N.

    2016-04-01

    The paper contains aspects of developing a decision support systems aimed for well interventions planning within the process of oil production engineering. The specific approach described by authors is based on system analysis methods and object model for system design. Declared number of problem-decision principles as follows: the principle of consolidated information area, the principle of integrated control, the principle of development process transparency. Also observed a set of models (class model, object model, attribute interdependence model, component model, coordination model) specified for designing decision support system for well intervention planning.

  7. An engineering approach to modelling, decision support and control for sustainable systems.

    PubMed

    Day, W; Audsley, E; Frost, A R

    2008-02-12

    Engineering research and development contributes to the advance of sustainable agriculture both through innovative methods to manage and control processes, and through quantitative understanding of the operation of practical agricultural systems using decision models. This paper describes how an engineering approach, drawing on mathematical models of systems and processes, contributes new methods that support decision making at all levels from strategy and planning to tactics and real-time control. The ability to describe the system or process by a simple and robust mathematical model is critical, and the outputs range from guidance to policy makers on strategic decisions relating to land use, through intelligent decision support to farmers and on to real-time engineering control of specific processes. Precision in decision making leads to decreased use of inputs, less environmental emissions and enhanced profitability-all essential to sustainable systems.

  8. Supporting Shared Decision-making for Children's Complex Behavioral Problems: Development and User Testing of an Option Grid™ Decision Aid.

    PubMed

    Barnett, Erin R; Boucher, Elizabeth A; Daviss, William B; Elwyn, Glyn

    2017-04-11

    There is a lack of research to guide collaborative treatment decision-making for children who have complex behavioral problems, despite the extensive use of mental health services in this population. We developed and pilot-tested a one-page Option Grid™ patient decision aid to facilitate shared decision-making for these situations. An editorial team of parents, child psychiatrists, researchers, and other stakeholders developed the scope and structure of the decision aid. Researchers included information about a carefully chosen number of psychosocial and pharmacological treatment options, using descriptions based on the best available evidence. Using semi-structured qualitative interviews (n = 18), we conducted user testing with four parents and four clinical prescribers and field testing with four parents, four clinical prescribers, and two clinic administrators. The researchers coded and synthesized the interview responses using mixed inductive and deductive methods. Parents, clinicians, and administrators felt the Option Grid had significant value, although they reported that additional training and other support would be required in order to successfully implement the Option Grid and achieve shared decision-making in clinical practice.

  9. A DECISION SUPPORT TOOL (DST) FOR DISPOSAL OF ...

    EPA Pesticide Factsheets

    Symposium Paper AFTER A BUILDING OR WATER TREATMENT/DISTRIBUTION FACILITY HAS GONE THROUGH DECONTAMINATION ACTIVITIES FOLLOWING A CONTAMINATION EVENT WITH CHEMICAL/BIOLOGICAL WARFARE AGENTS OR TOXIC INDUSTRIAL CHEMICAL, THERE WILL BE A SIGNIFICANT AMOUNT OF RESIDUAL MATERIAL AND WASTE TO BE DISPOSED. A CONTAMINATION EVENT COULD OCCUR FROM TERRORIST ACTIVITY OR FROM A NATURAL DISASTER SUCH AS THE RECENT HURRICANE EVENTS IN THE GULF COAST WHERE MOLD AND POLLUTANTS FROM DAMAGED CHEMICAL AND INDUSTRIAL FACILITIES HAVE RESULTED IN SIGNIFICANT QUANTITIES OF CONTAMINATED MATERIALS. IT iS LIKELY THAT MUCH OF THIS MATERIAL WILL BE DISPOSED OF IN PERMITTED LANDFILLS OR HIGH TEMPERATURE THERMAL INCINERATION FACILITIES. DATA HAS BEEN COLLECTED FROM THE OPEN LITERATURE, FROM STATE AND FEDERAL REGULATORY AGENCIES, AND FROM WASTE MANAGEMENT AND WATER UTILITY INDUSTRY STAKEHOLDER GROUPS, TO DEVELOP TECHNICAL GUIDANCE FOR DISPOSAL OF THESe RESIDUES. THE INFORMATION BECOMES AVAILABLE, AND OLD INFORMATION (SUCH AS CONTACT INFORMATION FOR KEY PERSONNEL) CHANGES. THE PRiMARY AUDIENCE FOR THIS TOOL WILL BE: 1) EMERGENCY RESPONSE AUTHORITIES WHO HAVE TO DECIDE THE MOST APPROPRIATE DECONTAMINATION METHODS AND DISPOSAL OF THE RESULTING RESIDUES; 2)STATE AND LOCAL PERMITTING AGENCIES, WHO HAVE TO MAKE DECISIONS ABOUT WHICH FACILITIES WILL BE ALLOWED TO DISPOSE OF THE MATERIALS: AND 3) THE WASTE MANAGEMENT AND WATER UTILITY INDUSTRY, THAT NEEDS TO SAFELY DISPOSE OF DECONTAMINATION RESIDUE

  10. Decision support and data warehousing tools boost competitive advantage.

    PubMed

    Waldo, B H

    1998-01-01

    The ability to communicate across the care continuum is fast becoming an integral component of the successful health enterprise. As integrated delivery systems are formed and patient care delivery is restructured, health care professionals must be able to distribute, access, and evaluate information across departments and care settings. The Aberdeen Group, a computer and communications research and consulting organization, believes that "the single biggest challenge for next-generation health care providers is to improve on how they consolidate and manage information across the continuum of care. This involves building a strategic warehouse of clinical and financial information that can be shared and leveraged by health care professionals, regardless of the location or type of care setting" (Aberdeen Group, Inc., 1997). The value and importance of data and systems integration are growing. Organizations that create a strategy and implement DSS tools to provide decision-makers with the critical information they need to face the competition and maintain quality and costs will have the advantage.

  11. International online support to process optimisation and operation decisions.

    PubMed

    Onnerth, T B; Eriksson, J

    2002-01-01

    The information level at all technical facilities has developed from almost nothing 30-40 years ago to advanced IT--Information Technology--systems based on both chemical and mechanical on-line sensors for process and equipment. Still the basic part of information is to get the right data at the right time for the decision to be made. Today a large amount of operational data is available at almost any European wastewater treatment plant, from laboratory and SCADA. The difficult part is to determine which data to keep, which to use in calculations and how and where to make data available. With the STARcontrol system it is possible to separate only process relevant data to use for on-line control and reporting at engineering level, to optimise operation. Furthermore, the use of IT makes it possible to communicate internationally, with full access to the whole amount of data on the single plant. In this way, expert supervision can be both very local in local language e.g. Polish and at the same time very professional with Danish experts advising on Danish processes in Poland or Sweden where some of the 12 STARcontrol systems are running.

  12. Tolkku - a toolbox for decision support from condition monitoring data

    NASA Astrophysics Data System (ADS)

    Saarela, Olli; Lehtonen, Mikko; Halme, Jari; Aikala, Antti; Raivio, Kimmo

    2012-05-01

    This paper describes a software toolbox (a software library) designed for condition monitoring and diagnosis of machines. This toolbox implements both new methods and prior art and is aimed for practical down-to-earth data analysis work. The target is to improve knowledge of the operation and behaviour of machines and processes throughout their entire life-cycles. The toolbox supports different phases of condition based maintenance with tools that extract essential information and automate data processing. The paper discusses principles that have guided toolbox design and the implemented toolbox structure. Case examples are used to illustrate how condition monitoring applications can be built using the toolbox. In the first case study the toolbox is applied to fault detection of industrial centrifuges based on measured electrical current. The second case study outlines an application for centralized monitoring of a fleet of machines that supports organizational learning.

  13. Multi-Criteria Decision Making for a Spatial Decision Support System on the Analysis of Changing Risk

    NASA Astrophysics Data System (ADS)

    Olyazadeh, Roya; van Westen, Cees; Bakker, Wim H.; Aye, Zar Chi; Jaboyedoff, Michel; Derron, Marc-Henri

    2014-05-01

    Natural hazard risk management requires decision making in several stages. Decision making on alternatives for risk reduction planning starts with an intelligence phase for recognition of the decision problems and identifying the objectives. Development of the alternatives and assigning the variable by decision makers to each alternative are employed to the design phase. Final phase evaluates the optimal choice by comparing the alternatives, defining indicators, assigning a weight to each and ranking them. This process is referred to as Multi-Criteria Decision Making analysis (MCDM), Multi-Criteria Evaluation (MCE) or Multi-Criteria Analysis (MCA). In the framework of the ongoing 7th Framework Program "CHANGES" (2011-2014, Grant Agreement No. 263953) of the European Commission, a Spatial Decision Support System is under development, that has the aim to analyse changes in hydro-meteorological risk and provide support to selecting the best risk reduction alternative. This paper describes the module for Multi-Criteria Decision Making analysis (MCDM) that incorporates monetary and non-monetary criteria in the analysis of the optimal alternative. The MCDM module consists of several components. The first step is to define criteria (or Indicators) which are subdivided into disadvantages (criteria that indicate the difficulty for implementing the risk reduction strategy, also referred to as Costs) and advantages (criteria that indicate the favorability, also referred to as benefits). In the next step the stakeholders can use the developed web-based tool for prioritizing criteria and decision matrix. Public participation plays a role in decision making and this is also planned through the use of a mobile web-version where the general local public can indicate their agreement on the proposed alternatives. The application is being tested through a case study related to risk reduction of a mountainous valley in the Alps affected by flooding. Four alternatives are evaluated in

  14. LAMDA at TREC CDS track 2015: Clinical Decision Support Track

    DTIC Science & Technology

    2015-11-20

    full texts of each document that is XML encoded using the NLM Journal Archiving and Interchange Tag Library. Then, NXML Parser using both XML Path...outperforms all the other vector space models supported by Elasticsearch. MetaMap is the online tool that maps biomedical text to the Metathesaurus, and...medical knowledge. The information is stored using MongoDB. B. Indexing We have tried to make an experiment with two tokenization methods, Unicode text

  15. Mixed Methodology to Predict Social Meaning for Decision Support

    DTIC Science & Technology

    2013-09-01

    demographics of those gang-hosting areas. Such demographics vary widely. We identified gang culture differences that corresponded with defined...be applied to code-switched African language social media data in Zulu and Swahili to support the Army’s needs and to understand how identity in...20 implicit tracking of language use and demographic associations between physical and virtual cultures . Tuning techniques for Army-relevant

  16. Probabilistic Ontology Architecture for a Terrorist Identification Decision Support System

    DTIC Science & Technology

    2014-06-01

    Ontology in Protégé. The Support Layer consists of technological artifacts highlighted by the OWL and MEBN languages used to represent the ontology and...additional individuals for an extended knowledge base. 6) Ontology. The Terrorist Identification Ontology is created in OWL using Protégé. The...application areas. 2) Modeling Languages. Ontological engineering was conducted in the Web Ontology Language ( OWL ) due to its incorporation within Protégé

  17. Atigeo at TREC 2014 Clinical Decision Support Task

    DTIC Science & Technology

    2014-11-01

    configurable suite of natural language processing ( NLP ) compo- nents, to compute a relevance score for each article and topic. We describe our ensemble...approach, the strategies and tools we use to create labeled data to support this approach, the components in our IR / NLP pipeline, and our results on...Indri/Lemur5 – and includes several text processing and natural lan- guage processing ( NLP ) modules, such as negation tagging, age grouping, and

  18. Software Development Outsourcing Decision Support Tool with Neural Network Learning

    DTIC Science & Technology

    2004-03-01

    software domain, enterprise scripting software domain, and outsourcing ( maintenance and training) processes found to be included in the new model but not in...accounting and order entry) software domains, and outsourcing ( maintenance , configuration management and software engineer support) processes were...found in the original model but not in the new model included: enterprise (scripting and order entry) software domains and outsourcing maintenance process

  19. The Experiences of Using a Computerized Decision Support System

    PubMed Central

    Fossum, Mariann; Ehnfors, Margareta; Fruhling, Ann; Ehrenberg, Anna

    2012-01-01

    The aim was to describe the facilitators and barriers influencing the ability of nursing personnel to effectively use a CDSS for planning and treating pressure ulcers and malnutrition in nursing homes. Usability evaluations and group interviews were conducted. Facilitators were ease of use, usefulness and a supportive work environment. Lack of training, resistance to using computers and limited integration of the CDSS with the electronic health record system were reported. PMID:24199144

  20. Identifying the decision to be supported: a review of papers from environmental modelling and software

    USGS Publications Warehouse

    Sojda, Richard S.; Chen, Serena H.; El Sawah, Sondoss; Guillaume, Joseph H.A.; Jakeman, A.J.; Lautenbach, Sven; McIntosh, Brian S.; Rizzoli, A.E.; Seppelt, Ralf; Struss, Peter; Voinov, Alexey; Volk, Martin

    2012-01-01

    Two of the basic tenets of decision support system efforts are to help identify and structure the decisions to be supported, and to then provide analysis in how those decisions might be best made. One example from wetland management would be that wildlife biologists must decide when to draw down water levels to optimise aquatic invertebrates as food for breeding ducks. Once such a decision is identified, a system or tool to help them make that decision in the face of current and projected climate conditions could be developed. We examined a random sample of 100 papers published from 2001-2011 in Environmental Modelling and Software that used the phrase “decision support system” or “decision support tool”, and which are characteristic of different sectors. In our review, 41% of the systems and tools related to the water resources sector, 34% were related to agriculture, and 22% to the conservation of fish, wildlife, and protected area management. Only 60% of the papers were deemed to be reporting on DSS. This was based on the papers reviewed not having directly identified a specific decision to be supported. We also report on the techniques that were used to identify the decisions, such as formal survey, focus group, expert opinion, or sole judgment of the author(s). The primary underlying modelling system, e.g., expert system, agent based model, Bayesian belief network, geographical information system (GIS), and the like was categorised next. Finally, since decision support typically should target some aspect of unstructured decisions, we subjectively determined to what degree this was the case. In only 23% of the papers reviewed, did the system appear to tackle unstructured decisions. This knowledge should be useful in helping workers in the field develop more effective systems and tools, especially by being exposed to the approaches in different, but related, disciplines. We propose that a standard blueprint for reporting on DSS be developed for

  1. Rule-based and information-integration category learning in normal aging.

    PubMed

    Maddox, W Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M

    2010-08-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated processes, whereas information-integration is thought to involve implicit, striatally mediated processes. As a group, older adults showed rule-based and information-integration deficits. A series of models were applied that provided insights onto the type of strategy used to solve the task. Interestingly, when the analyses focused only on participants who used the task appropriate strategy in the final block of trials, the age-related rule-based deficit disappeared whereas the information-integration deficit remained. For this group of individuals, the final block information-integration deficit was due to less consistent application of the task appropriate strategy by older adults, and over the course of learning these older adults shifted from an explicit hypothesis-testing strategy to the task appropriate strategy later in learning. In addition, the use of the task appropriate strategy was associated with less interference and better inhibitory control for rule-based and information-information learning, whereas use of the task appropriate strategy was associated with greater working memory and better new verbal learning only for the rule-based task. These results suggest that normal aging impacts both forms of category learning and that there are some important similarities and differences in the explanatory locus of these deficits. The data also support a two-component model of information-integration category learning that includes a striatal component that mediated procedural-based learning, and a prefrontal cortical component that mediates the transition from hypothesis-testing to procedural-based strategies

  2. Creating Shareable Clinical Decision Support Rules for a Pharmacogenomics Clinical Guideline Using Structured Knowledge Representation.

    PubMed

    Linan, Margaret K; Sottara, Davide; Freimuth, Robert R

    2015-01-01

    Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines.

  3. Creating Shareable Clinical Decision Support Rules for a Pharmacogenomics Clinical Guideline Using Structured Knowledge Representation

    PubMed Central

    Linan, Margaret K.; Sottara, Davide; Freimuth, Robert R.

    2015-01-01

    Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines. PMID:26958298

  4. LANL Institutional Decision Support By Process Modeling and Analysis Group (AET-2)

    SciTech Connect

    Booth, Steven Richard

    2016-04-04

    AET-2 has expertise in process modeling, economics, business case analysis, risk assessment, Lean/Six Sigma tools, and decision analysis to provide timely decision support to LANS leading to continuous improvement. This capability is critical during the current tight budgetary environment as LANS pushes to identify potential areas of cost savings and efficiencies. An important arena is business systems and operations, where processes can impact most or all laboratory employees. Lab-wide efforts are needed to identify and eliminate inefficiencies to accomplish Director McMillan’s charge of “doing more with less.” LANS faces many critical and potentially expensive choices that require sound decision support to ensure success. AET-2 is available to provide this analysis support to expedite the decisions at hand.

  5. Land resource sustainability for urban development: spatial decision support system prototype.

    PubMed

    Banai, Reza

    2005-08-01

    Land resource sustainability for urban development characterizes the problem of decision-making with multiplicity and uncertainty. A decision support system prototype aids in the assessment of incremental land development plan proposals put forth within the long-term community priority of a sustainable growth. Facilitating this assessment is the analytic hierarchy process (AHP), a multi-criteria evaluation and decision support system. The decision support system incorporates multiple sustainability criteria, weighted strategically responsive to local public policy priorities and community-specific situations and values, while gauging and directing desirable future courses of development. Furthermore, the decision support system uses a GIS, which facilitates an assessment of urban form with multiple indicators of sustainability as spatial criteria thematically. The resultant land-use sustainability scores indicate, on the ratio-scale of AHP, whether or not a desirable urban form is likely in the long run, and if so, to what degree. The two alternative modes of synthesis in AHP-ideal and distributive-provide assessments of a land development plan incrementally (short-term) and city-wide pattern comprehensively (long-term), respectively. Thus, the spatial decision support system facilitates proactive and collective public policy determination of land resource for future sustainable urban development.

  6. Agricultural climate impacts assessment for economic modeling and decision support

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Beach, R.; Zhang, X.; Zhao, K.; Monier, E.

    2013-12-01

    A range of approaches can be used in the application of climate change projections to agricultural impacts assessment. Climate projections can be used directly to drive crop models, which in turn can be used to provide inputs for agricultural economic or integrated assessment models. These model applications, and the transfer of information between models, must be guided by the state of the science. But the methodology must also account for the specific needs of stakeholders and the intended use of model results beyond pure scientific inquiry, including meeting the requirements of agencies responsible for designing and assessing policies, programs, and regulations. Here we present methodology and results of two climate impacts studies that applied climate model projections from CMIP3 and from the EPA Climate Impacts and Risk Analysis (CIRA) project in a crop model (EPIC - Environmental Policy Indicator Climate) in order to generate estimates of changes in crop productivity for use in an agricultural economic model for the United States (FASOM - Forest and Agricultural Sector Optimization Model). The FASOM model is a forward-looking dynamic model of the US forest and agricultural sector used to assess market responses to changing productivity of alternative land uses. The first study, focused on climate change impacts on the UDSA crop insurance program, was designed to use available daily climate projections from the CMIP3 archive. The decision to focus on daily data for this application limited the climate model and time period selection significantly; however for the intended purpose of assessing impacts on crop insurance payments, consideration of extreme event frequency was critical for assessing periodic crop failures. In a second, coordinated impacts study designed to assess the relative difference in climate impacts under a no-mitigation policy and different future climate mitigation scenarios, the stakeholder specifically requested an assessment of a

  7. Investigating Habitat Value in Support of Contaminant Remediation Decisions: Approach

    SciTech Connect

    Efroymson, Rebecca Ann; Peterson, Mark J; Welsh, Christopher John Edward; Druckenbrod, Daniel L; Ryon, Michael G; Smith, John G; Hargrove, William Walter; Giffen, Neil R; Roy, W Kelly; Quarles III, Harry Dewitt

    2008-01-01

    Habitat valuation methods are most often developed and used to prioritize candidate lands for conservation. In this study the intent of habitat valuation was to inform the decision-making process for remediation of chemical contaminants on specific lands or surface water bodies. Methods were developed to summarize dimensions of habitat value for six representative aquatic and terrestrial contaminated sites at the East Tennessee Technology Park (ETTP) on the US Department of Energy Oak Ridge Reservation in Oak Ridge, TN, USA. Several general valuation metrics were developed for three broad categories: site use by groups of organisms, site rarity, and use value added from spatial context. Examples of use value metrics are taxa richness, a direct measure of number of species that inhabit an area, complexity of habitat structure, an indirect measure of potential number of species that may use the area, and land use designation, a measure of the length of time that the area will be available for use. Measures of rarity included presence of rare species or communities. Examples of metrics for habitat use value added from spatial context included similarity or complementarity of neighboring habitat patches and presence of habitat corridors. More specific metrics were developed for groups of organisms in contaminated streams, ponds, and terrestrial ecosystems. For each of these metrics, cutoff values for high, medium, and low habitat value were suggested, based on available information on distributions of organisms and landscape features, as well as habitat use information. A companion paper describes the implementation of these habitat valuation metrics and scoring criteria in the remedial investigation for ETTP.

  8. Decision-support tools for the assessment process

    SciTech Connect

    Whelan, Gene; Pelton, Mitch A.; Dorow, Kevin E.

    2004-06-14

    A new software system is under development that provides a framework to link disparate assessment software and databases for site-specific, regional, or national analyses. This system represents the merger of the Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES), which performs site-specific assessments, and Multi-media, Multi-pathway, Multi-receptor Risk Assessment (3MRA) methodology, which performs regional and national assessments. This Merged System is an icon-driven, site-layout platform, which represents an interactive means by which the user graphically constructs a conceptualization of the problem by visually expressing the assessment, indicating sources of contamination, contaminant travel pathways through the environment, linkages between contamination and people or wildlife, and impacts associated with the contamination. It processes data as part of a systems-based assessment and is an open-architecture, object-oriented framework, which contains ''sockets'' for a collection of databases and computer codes that will transparently simulate elements of transport, exposure, and risk assessment, including contaminant source and release to and through overland soils, vadose and saturated zones, air, surface water, food supply, intake human health impacts, sensitivity/uncertainty, ecological impacts, with the ability to expand into areas including Geographical Information System (GIS), remediation technology, cost analysis, Data Quality Objectives, life-cycle management, and conceptual site design. A user can choose from a list of models, and the assessment path forward can be visually presented, which describes the models and their linkages from source through receptor to the decision-making endpoint.

  9. Geospatial Data Fusion and Multigroup Decision Support for Surface Water Quality Management

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Osidele, O.; Green, R. T.; Xie, H.

    2010-12-01

    Social networking and social media have gained significant popularity and brought fundamental changes to many facets of our everyday life. With the ever-increasing adoption of GPS-enabled gadgets and technology, location-based content is likely to play a central role in social networking sites. While location-based content is not new to the geoscience community, where geographic information systems (GIS) are extensively used, the delivery of useful geospatial data to targeted user groups for decision support is new. Decision makers and modelers ought to make more effective use of the new web-based tools to expand the scope of environmental awareness education, public outreach, and stakeholder interaction. Environmental decision processes are often rife with uncertainty and controversy, requiring integration of multiple sources of information and compromises between diverse interests. Fusing of multisource, multiscale environmental data for multigroup decision support is a challenging task. Toward this goal, a multigroup decision support platform should strive to achieve transparency, impartiality, and timely synthesis of information. The latter criterion often constitutes a major technical bottleneck to traditional GIS-based media, featuring large file or image sizes and requiring special processing before web deployment. Many tools and design patterns have appeared in recent years to ease the situation somewhat. In this project, we explore the use of Web 2.0 technologies for “pushing” location-based content to multigroups involved in surface water quality management and decision making. In particular, our granular bottom-up approach facilitates effective delivery of information to most relevant user groups. Our location-based content includes in-situ and remotely sensed data disseminated by NASA and other national and local agencies. Our project is demonstrated for managing the total maximum daily load (TMDL) program in the Arroyo Colorado coastal river basin

  10. Information System Engineering Supporting Observation, Orientation, Decision, and Compliant Action

    NASA Astrophysics Data System (ADS)

    Georgakopoulos, Dimitrios

    The majority of today's software systems and organizational/business structures have been built on the foundation of solving problems via long-term data collection, analysis, and solution design. This traditional approach of solving problems and building corresponding software systems and business processes, falls short in providing the necessary solutions needed to deal with many problems that require agility as the main ingredient of their solution. For example, such agility is needed in responding to an emergency, in military command control, physical security, price-based competition in business, investing in the stock market, video gaming, network monitoring and self-healing, diagnosis in emergency health care, and many other areas that are too numerous to list here. The concept of Observe, Orient, Decide, and Act (OODA) loops is a guiding principal that captures the fundamental issues and approach for engineering information systems that deal with many of these problem areas. However, there are currently few software systems that are capable of supporting OODA. In this talk, we provide a tour of the research issues and state of the art solutions for supporting OODA. In addition, we provide specific examples of OODA solutions we have developed for the video surveillance and emergency response domains.

  11. The Effects of Management Support on the Successful Implementation of Group Decision Support Systems

    DTIC Science & Technology

    1990-05-23

    influence the decision process. 6) Stabilizes adoption and prevents discontinuances. Positive reinforcement is needed at this stage, if the user’s decision...First, the initial message to use the new technology. Second, the positive reinforcement for the use of the technology. Innovators and early adopters...to proceed to experimental use. Important factors for 33 their initial use are the availability of the technology and positive reinforcement for

  12. Supporting parents' decision making surrounding the anticipated birth of an extremely premature infant.

    PubMed

    Kavanaugh, Karen; Moro, Teresa T; Savage, Teresa A; Reyes, Maria; Wydra, Marguerite

    2009-01-01

    Parents who are at risk for giving birth to an extremely premature infant, defined as 22 to 25 weeks' gestation, can find themselves faced with urgent treatment decisions for their unborn infant that have life-altering consequences. Despite the recommendation for involving parents in decision making for these infants, there is limited evidence regarding guidelines for involving parents. In this article, we describe a case from a larger collective case study that examines the decision making and the decision support needs of parents regarding life support decisions made over time (prenatally and postnatally) for extremely premature infants from the perceptions of parents, physicians, and nurses. For this case study, we describe decisions that were made during the antenatal hospitalization of the mother whose infant was stillborn, the support the parents received, and advice for healthcare professionals for improving care to families. For this case, the mother and father, a physician, and 2 nurses were interviewed before the birth of the infant. The findings in this case study demonstrate the importance of the nurse being present when information is given to parents, of informing with compassion, and helping parents to understand treatment options and decisions.

  13. Enabling cross-platform clinical decision support through Web-based decision support in commercial electronic health record systems: proposal and evaluation of initial prototype implementations.

    PubMed

    Zhang, Mingyuan; Velasco, Ferdinand T; Musser, R Clayton; Kawamoto, Kensaku

    2013-01-01

    Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale.

  14. A Decision Support Framework for Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    NASA Astrophysics Data System (ADS)

    Rehr, Amanda P.; Small, Mitchell J.; Bradley, Patricia; Fisher, William S.; Vega, Ann; Black, Kelly; Stockton, Tom

    2012-12-01

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environmental stressors, processes, and outcomes; and a Decision Landscape analysis to depict the legal, social, and institutional dimensions of environmental decisions. The Decision Landscape incorporates interactions among government agencies, regulated businesses, non-government organizations, and other stakeholders. It also identifies where scientific information regarding environmental processes is collected and transmitted to improve knowledge about elements of the DPSIR and to improve the scientific basis for decisions. Our application of the decision support framework to coral reef protection and restoration in the Florida Keys focusing on anthropogenic stressors, such as wastewater, proved to be successful and offered several insights. Using information from a management plan, it was possible to capture the current state of the science with a DPSIR analysis as well as important decision options, decision makers and applicable laws with a the Decision Landscape analysis. A structured elicitation of values and beliefs conducted at a coral reef management workshop held in Key West, Florida provided a diversity of opinion and also indicated a prioritization of several environmental stressors affecting coral reef health. The integrated DPSIR/Decision landscape framework for the Florida Keys developed based on the elicited opinion and the DPSIR analysis can be used to inform management decisions, to reveal the role that further scientific information and research might play to populate the framework, and to facilitate better-informed agreement among participants.

  15. Development of a scalable pharmacogenomic clinical decision support service.

    PubMed

    Fusaro, Vincent A; Brownstein, Catherine; Wolf, Wendy; Clinton, Catherine; Savage, Sarah; Mandl, Kenneth D; Margulies, David; Manzi, Shannon

    2013-01-01

    Advances in sequencing technology are making genomic data more accessible within the healthcare environment. Published pharmacogenetic guidelines attempt to provide a clinical context for specific genomic variants; however, the actual implementation to convert genomic data into a clinical report integrated within an electronic medical record system is a major challenge for any hospital. We created a two-part solution that integrates with the medical record system and converts genetic variant results into an interpreted clinical report based on published guidelines. We successfully developed a scalable infrastructure to support TPMT genetic testing and are currently testing approximately two individuals per week in our production version. We plan to release an online variant to clinical interpretation reporting system in order to facilitate translation of pharmacogenetic information into clinical practice.

  16. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  17. A modelling approach to support dynamic decision-making in the control of FMD epidemics.

    PubMed

    Ge, Lan; Mourits, Monique C M; Kristensen, Anders R; Huirne, Ruud B M

    2010-07-01

    Most studies on control strategies for contagious diseases such as foot-and-mouth disease (FMD) evaluate pre-defined control strategies and imply static decision-making during epidemic control. Such a static approach contradicts the dynamic nature of the decision-making process during epidemic control. This paper presents an integrated epidemic-economic modelling approach to support dynamic decision-making in controlling FMD epidemics. This new modelling approach reflects ongoing uncertainty about epidemic growth during epidemic control and provides information required by a dynamic decision process. As demonstrated for a Dutch FMD-case, the modelling approach outperforms static evaluation of pre-fixed control strategies by: (1) providing guidance to decision-making during the entire control process; and (2) generating more realistic estimation of the costs of overreacting or underreacting in choosing control options.

  18. Fuzzy Cognitive Map scenario-based medical decision support systems for education.

    PubMed

    Georgopoulos, Voula C; Chouliara, Spyridoula; Stylios, Chrysostomos D

    2014-01-01

    Soft Computing (SC) techniques are based on exploiting human knowledge and experience and they are extremely useful to model any complex decision making procedure. Thus, they have a key role in the development of Medical Decision Support Systems (MDSS). The soft computing methodology of Fuzzy Cognitive Maps has successfully been used to represent human reasoning and to infer conclusions and decisions in a human-like way and thus, FCM-MDSSs have been developed. Such systems are able to assist in critical decision-making, support diagnosis procedures and consult medical professionals. Here a new methodology is introduced to expand the utilization of FCM-MDSS for learning and educational purposes using a scenario-based learning (SBL) approach. This is particularly important in medical education since it allows future medical professionals to safely explore extensive "what-if" scenarios in case studies and prepare for dealing with critical adverse events.

  19. The application of decision analysis to life support research and technology development

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.

    1994-01-01

    Applied research and technology development is often characterized by uncertainty, risk, and significant delays before tangible returns are obtained. Decision making regarding which technologies to advance and what resources to devote to them is a challenging but essential task. In the application of life support technology to future manned space flight, new technology concepts typically are characterized by nonexistent data and rough approximations of technology performance, uncertain future flight program needs, and a complex, time-intensive process to develop technology to a flight-ready status. Decision analysis is a quantitative, logic-based discipline that imposes formalism and structure to complex problems. It also accounts for the limits of knowledge that may be available at the time a decision is needed. The utility of decision analysis to life support technology R & D was evaluated by applying it to two case studies. The methodology was found to provide insight that is not possible from more traditional analysis approaches.

  20. Modelling Vague Knowledge for Decision Support in Planning Archaeological Prospections

    NASA Astrophysics Data System (ADS)

    Boos, S.; Hornung, S.; Müller, H.

    2012-07-01

    Most archaeological predictive models lack significance because fuzziness of data and uncertainty in knowledge about human behaviour and natural processes are hardly ever considered. One possibility to cope with such uncertainties is utilization of probability based approaches like Bayes Theorem or Dempster-Shafer-Theory. We analyzed an area of 50 km2 in Rhineland Palatinate (Germany) near a Celtic oppidum by use of Dempster-Shafer's theory of evidence for predicting spatial probability distribution of archaeological sites. This technique incorporates uncertainty by assigning various weights of evidence to defined variables, in that way estimating the probability for supporting a specific hypothesis (in our case the hypothesis presence or absence of a site). Selection of variables for our model relied both on assumptions about settlement patterns and on statistically tested relationships between known archaeological sites and environmental factors. The modelling process was conducted in a Geographic Information System (GIS) by generating raster-based likelihood surfaces. The corresponding likelihood surfaces were aggregated to a final weight of evidence surface, which resulted in a likelihood value for every single cell of being a site or a non-site. Finally the result was tested against a database of known archaeological sites for evaluating the gain of the model. For the purpose of enhancing the gain of our model and sharpening our criteria we used a two-step approach to improve the modelling of former settlement strategies in our study area. Applying the developed model finally yielded a 100 percent success rate of known archaeological sites located in predicted high potential areas.

  1. Use of Simulation to Study Nurses' Acceptance and Nonacceptance of Clinical Decision Support Suggestions.

    PubMed

    Sousa, Vanessa E C; Lopez, Karen Dunn; Febretti, Alessandro; Stifter, Janet; Yao, Yingwei; Johnson, Andrew; Wilkie, Diana J; Keenan, Gail M

    2015-10-01

    Our long-term goal was to ensure nurse clinical decision support works as intended before full deployment in clinical practice. As part of a broader effort, this pilot project explored factors influencing acceptance/nonacceptance of eight clinical decision support suggestions displayed in an electronic health record-based nursing plan of care software prototype. A diverse sample of 21 nurses participated in this high-fidelity clinical simulation experience and completed a questionnaire to assess reasons for accepting/not accepting the clinical decision support suggestions. Of 168 total suggestions displayed during the experiment (eight for each of the 21 nurses), 123 (73.2%) were accepted, and 45 (26.8%) were not accepted. The mode number of acceptances by nurses was seven of eight, with only two of 21 nurses accepting all. The main reason for clinical decision support acceptance was the nurse's belief that the suggestions were good for the patient (100%), with other features providing secondary reinforcement. Reasons for nonacceptance were less clear, with fewer than half of the subjects indicating low confidence in the evidence. This study provides preliminary evidence that high-quality simulation and targeted questionnaires about specific clinical decision support selections offer a cost-effective means for testing before full deployment in clinical practice.

  2. Integrating conflict analysis and consensus reaching in a decision support system for water resource management.

    PubMed

    Giordano, R; Passarella, G; Uricchio, V F; Vurro, M

    2007-07-01

    The importance of shared decision processes in water management derives from the awareness of the inadequacy of traditional--i.e. engineering--approaches in dealing with complex and ill-structured problems. It is becoming increasingly obvious that traditional problem solving and decision support techniques, based on optimisation and factual knowledge, have to be combined with stakeholder based policy design and implementation. The aim of our research is the definition of an integrated decision support system for consensus achievement (IDSS-C) able to support a participative decision-making process in all its phases: problem definition and structuring, identification of the possible alternatives, formulation of participants' judgments, and consensus achievement. Furthermore, the IDSS-C aims at structuring, i.e. systematising the knowledge which has emerged during the participative process in order to make it comprehensible for the decision-makers and functional for the decision process. Problem structuring methods (PSM) and multi-group evaluation methods (MEM) have been integrated in the IDSS-C. PSM are used to support the stakeholders in providing their perspective of the problem and to elicit their interests and preferences, while MEM are used to define not only the degree of consensus for each alternative, highlighting those where the agreement is high, but also the consensus label for each alternative and the behaviour of individuals during the participative decision-making. The IDSS-C is applied experimentally to a decision process regarding the use of treated wastewater for agricultural irrigation in the Apulia Region (southern Italy).

  3. GELLO: An Object-Oriented Query and Expression Language for Clinical Decision Support

    PubMed Central

    Sordo, Margarita; Ogunyemi, Omolola; Boxwala, Aziz A.; Greenes, Robert A.

    2003-01-01

    GELLO is a purpose-specific, object-oriented (OO) query and expression language [1]. GELLO is the result of a concerted effort of the Decision Systems Group (DSG) working with the HL7 Clinical Decision Support Technical Committee (CDSTC) to provide the HL7 community with a common format for data encoding and manipulation. GELLO will soon be submitted for ballot to the HL7 CDSTC for consideration as a standard. PMID:14728515

  4. A Decision-Support System for Sustainable Water Distribution System Planning.

    PubMed

    Freund, Alina; Aydin, Nazli Yonca; Zeckzer, Dirk; Hagen, Hans

    2017-01-01

    An interactive decision-support system (DSS) can help experts prepare water resource management plans for decision makers and stakeholders. The design of the proposed prototype incorporates visualization techniques such as circle views, grid layout, small multiple maps, and node simplification to improve the data readability of water distribution systems. A case study with three urban water management and sanitary engineering experts revealed that the proposed DSS is satisfactory, efficient, and effective.

  5. NASA's past, current and potential future support in bringing climate projection information to the decision support level

    NASA Astrophysics Data System (ADS)

    Lee, T. J.

    2015-12-01

    It is common that we use global climate models or Earth system models to perform climate projection into the future. Because of the long integration time and the tremendous computing resources required for such a projection, the model resolution is typically not at a spatial scale fine enough for climate assessment or decision support purposes. A number of "downscaling technologies" have been developed over the years to bring the climate projection information to the local level for management and policy decision support purposes. In the past couple of years, NASA supported a number of regional to local climate projection activities: NASA Climate Adaption Science Investigators focused on climate resilience at NASA center level, National Climate Assessment (NCA) Capacity Building focused on data sets and tools to support NCA, NCA Indicators focused on creating simple indicators specifically designed for decision support, Assessing the Fidelity of Dynamical Downscaling with the NASA Unifies-WRF Model focused on understanding the credibility of dynamical downscaling technique using a regional climate model. All of these projects have a component in creating or using downscaled climate information. With the consequence of climate change beginning to emerge, there is a continuous need to better quantify the quality of downscaled climate projections. In this talk I will give an overview on NASA's efforts to understand the various techniques, the limitations including the risks of using these techniques, and finally, I will provide a view on possible future researches in this area.

  6. Biomedical informatics for computer-aided decision support systems: a survey.

    PubMed

    Belle, Ashwin; Kon, Mark A; Najarian, Kayvan

    2013-01-01

    The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest.

  7. Biomedical Informatics for Computer-Aided Decision Support Systems: A Survey

    PubMed Central

    Belle, Ashwin; Kon, Mark A.; Najarian, Kayvan

    2013-01-01

    The volumes of current patient data as well as their complexity make clinical decision making more challenging than ever for physicians and other care givers. This situation calls for the use of biomedical informatics methods to process data and form recommendations and/or predictions to assist such decision makers. The design, implementation, and use of biomedical informatics systems in the form of computer-aided decision support have become essential and widely used over the last two decades. This paper provides a brief review of such systems, their application protocols and methodologies, and the future challenges and directions they suggest. PMID:23431259

  8. Can computerized clinical decision support systems improve practitioners' diagnostic test ordering behavior? A decision-maker-researcher partnership systematic review

    PubMed Central

    2011-01-01

    Background Underuse and overuse of diagnostic tests have important implications for health outcomes and costs. Decision support technology purports to optimize the use of diagnostic tests in clinical practice. The objective of this review was to assess whether computerized clinical decision support systems (CCDSSs) are effective at improving ordering of tests for diagnosis, monitoring of disease, or monitoring of treatment. The outcome of interest was effect on the diagnostic test-ordering behavior of practitioners. Methods We conducted a decision-maker-researcher partnership systematic review. We searched MEDLINE, EMBASE, Ovid's EBM Reviews database, Inspec, and reference lists for eligible articles published up to January 2010. We included randomized controlled trials comparing the use of CCDSSs to usual practice or non-CCDSS controls in clinical care settings. Trials were eligible if at least one component of the CCDSS gave suggestions for ordering or performing a diagnostic procedure. We considered studies 'positive' if they showed a statistically significant improvement in at least 50% of test ordering outcomes. Results Thirty-five studies were identified, with significantly higher methodological quality in those published after the year 2000 (p = 0.002). Thirty-three trials reported evaluable data on diagnostic test ordering, and 55% (18/33) of CCDSSs improved testing behavior overall, including 83% (5/6) for diagnosis, 63% (5/8) for treatment monitoring, 35% (6/17) for disease monitoring, and 100% (3/3) for other purposes. Four of the systems explicitly attempted to reduce test ordering rates and all succeeded. Factors of particular interest to decision makers include costs, user satisfaction, and impact on workflow but were rarely investigated or reported. Conclusions Some CCDSSs can modify practitioner test-ordering behavior. To better inform development and implementation efforts, studies should describe in more detail potentially important factors such

  9. Rule-based Cross-matching of Very Large Catalogs

    NASA Astrophysics Data System (ADS)

    Ogle, P. M.; Mazzarella, J.; Ebert, R.; Fadda, D.; Lo, T.; Terek, S.; Schmitz, M.; NED Team

    2015-09-01

    The NASA Extragalactic Database (NED) has deployed a new rule-based cross-matching algorithm called Match Expert (MatchEx), capable of cross-matching very large catalogs (VLCs) with >10 million objects. MatchEx goes beyond traditional position-based cross-matching algorithms by using other available data together with expert logic to determine which candidate match is the best. Furthermore, the local background density of sources is used to determine and minimize the false-positive match rate and to estimate match completeness. The logical outcome and statistical probability of each match decision is stored in the database and may be used to tune the algorithm and adjust match parameter thresholds. For our first production run, we cross-matched the GALEX All Sky Survey Catalog (GASC), containing nearly 40 million NUV-detected sources, against a directory of 180 million objects in NED. Candidate matches were identified for each GASC source within a 7''.5 radius. These candidates were filtered on position-based matching probability and on other criteria including object type and object name. We estimate a match completeness of 97.6% and a match accuracy of 99.75%. Over the next year, we will be cross-matching over 2 billion catalog sources to NED, including the Spitzer Source List, the 2MASS point-source catalog, AllWISE, and SDSS DR 10. We expect to add new capabilities to filter candidate matches based on photometry, redshifts, and refined object classifications. We will also extend MatchEx to handle more heterogenous datasets federated from smaller catalogs through NED's literature pipeline.

  10. Analytical Support Capabilities of Turkish General Staff Scientific Decision Support Centre (SDSC) to Defence Transformation

    DTIC Science & Technology

    2005-04-01

    detail to these models. Operations Research (OR) Community built successively more complicated models, traded verisimilitude for opacity, and in...devices, etc) and make decision to do what next considering its mission and observed situation, and perform its action (dash, open fire, communicate ...education and analysis system for SSC based on modelling and simulation technologies Cost Efectiveness , Concept and Force Strucuture Analysis for

  11. Human Factors in Rule-Based Systems.

    DTIC Science & Technology

    1985-10-14

    recommmend, based on the general thoery , design principles for the user engineering of expert systems. A general discussion of the work performed...the level and type of experience and training of users will vary considerably. (4) Finally, the traditional systems were stand alone. The user entered...our hypothesis was supported. Summarizing these two experiments , it appears that a having a good mental model allowed users to be effective operators of

  12. A rule based computer aided design system

    NASA Technical Reports Server (NTRS)

    Premack, T.

    1986-01-01

    A Computer Aided Design (CAD) system is presented which supports the iterative process of design, the dimensional continuity between mating parts, and the hierarchical structure of the parts in their assembled configuration. Prolog, an interactive logic programming language, is used to represent and interpret the data base. The solid geometry representing the parts is defined in parameterized form using the swept volume method. The system is demonstrated with a design of a spring piston.

  13. Using Multicriteria Decision Analysis to Support Research Priority Setting in Biomedical Translational Research Projects

    PubMed Central

    de Graaf, Gimon; Postmus, Douwe; Buskens, Erik

    2015-01-01

    Translational research is conducted to achieve a predefined set of economic or societal goals. As a result, investment decisions on where available resources have the highest potential in achieving these goals have to be made. In this paper, we first describe how multicriteria decision analysis can assist in defining the decision context and in ensuring that all relevant aspects of the decision problem are incorporated in the decision making process. We then present the results of a case study to support priority setting in a translational research consortium aimed at reducing the burden of disease of type 2 diabetes. During problem structuring, we identified four research alternatives (primary, secondary, tertiary microvascular, and tertiary macrovascular prevention) and a set of six decision criteria. Scoring of these alternatives against the criteria was done using a combination of expert judgement and previously published data. Lastly, decision analysis was performed using stochastic multicriteria acceptability analysis, which allows for the combined use of numerical and ordinal data. We found that the development of novel techniques applied in secondary prevention would be a poor investment of research funds. The ranking of the remaining alternatives was however strongly dependent on the decision maker's preferences for certain criteria. PMID:26495288

  14. The potential for meta-analysis to support decision analysis in ecology.

    PubMed

    Mengersen, Kerrie; MacNeil, M Aaron; Caley, M Julian

    2015-06-01

    Meta-analysis and decision analysis are underpinned by well-developed methods that are commonly applied to a variety of problems and disciplines. While these two fields have been closely linked in some disciplines such as medicine, comparatively little attention has been paid to the potential benefits of linking them in ecology, despite reasonable expectations that benefits would be derived from doing so. Meta-analysis combines information from multiple studies to provide more accurate parameter estimates and to reduce the uncertainty surrounding them. Decision analysis involves selecting among alternative choices using statistical information that helps to shed light on the uncertainties involved. By linking meta-analysis to decision analysis, improved decisions can be made, with quantification of the costs and benefits of alternate decisions supported by a greater density of information. Here, we briefly review concepts of both meta-analysis and decision analysis, illustrating the natural linkage between them and the benefits from explicitly linking one to the other. We discuss some examples in which this linkage has been exploited in the medical arena and how improvements in precision and reduction of structural uncertainty inherent in a meta-analysis can provide substantive improvements to decision analysis outcomes by reducing uncertainty in expected loss and maximising information from across studies. We then argue that these significant benefits could be translated to ecology, in particular to the problem of making optimal ecological decisions in the face of uncertainty.

  15. DECIDE: a Decision Support Tool to Facilitate Parents' Choices Regarding Genome-Wide Sequencing.

    PubMed

    Birch, Patricia; Adam, S; Bansback, N; Coe, R R; Hicklin, J; Lehman, A; Li, K C; Friedman, J M

    2016-12-01

    We describe the rationale, development, and usability testing for an integrated e-learning tool and decision aid for parents facing decisions about genome-wide sequencing (GWS) for their children with a suspected genetic condition. The online tool, DECIDE, is designed to provide decision-support and to promote high quality decisions about undergoing GWS with or without return of optional incidental finding results. DECIDE works by integrating educational material with decision aids. Users may tailor their learning by controlling both the amount of information and its format - text and diagrams and/or short videos. The decision aid guides users to weigh the importance of various relevant factors in their own lives and circumstances. After considering the pros and cons of GWS and return of incidental findings, DECIDE summarizes the user's responses and apparent preferred choices. In a usability study of 16 parents who had already chosen GWS after conventional genetic counselling, all participants found DECIDE to be helpful. Many would have been satisfied to use it alone to guide their GWS decisions, but most would prefer to have the option of consulting a health care professional as well to aid their decision. Further testing is necessary to establish the effectiveness of using DECIDE as an adjunct to or instead of conventional pre-test genetic counselling for clinical genome-wide sequencing.

  16. Using multicriteria decision analysis to support research priority setting in biomedical translational research projects.

    PubMed

    de Graaf, Gimon; Postmus, Douwe; Buskens, Erik

    2015-01-01

    Translational research is conducted to achieve a predefined set of economic or societal goals. As a result, investment decisions on where available resources have the highest potential in achieving these goals have to be made. In this paper, we first describe how multicriteria decision analysis can assist in defining the decision context and in ensuring that all relevant aspects of the decision problem are incorporated in the decision making process. We then present the results of a case study to support priority setting in a translational research consortium aimed at reducing the burden of disease of type 2 diabetes. During problem structuring, we identified four research alternatives (primary, secondary, tertiary microvascular, and tertiary macrovascular prevention) and a set of six decision criteria. Scoring of these alternatives against the criteria was done using a combination of expert judgement and previously published data. Lastly, decision analysis was performed using stochastic multicriteria acceptability analysis, which allows for the combined use of numerical and ordinal data. We found that the development of novel techniques applied in secondary prevention would be a poor investment of research funds. The ranking of the remaining alternatives was however strongly dependent on the decision maker's preferences for certain criteria.

  17. Designing Tools for Supporting User Decision-Making in e-Commerce

    NASA Astrophysics Data System (ADS)

    Sutcliffe, Alistair; Al-Qaed, Faisal

    The paper describes a set of tools designed to support a variety of user decision-making strategies. The tools are complemented by an online advisor so they can be adapted to different domains and users can be guided to adopt appropriate tools for different choices in e-commerce, e.g. purchasing high-value products, exploring product fit to users’ needs, or selecting products which satisfy requirements. The tools range from simple recommenders to decision support by interactive querying and comparison matrices. They were evaluated in a scenario-based experiment which varied the users’ task and motivation, with and without an advisor agent. The results show the tools and advisor were effective in supporting users and agreed with the predictions of ADM (adaptive decision making) theory, on which the design of the tools was based.

  18. Workflow Technology to Enrich a Computerized Clinical Chart with Decision Support Facilities

    PubMed Central

    Panzarasa, Silvia; Quaglini, Silvana; Cavallini, Anna; Micieli, Giuseppe; Pernice, Corrado; Pessina, Mauro; Stefanelli, Mario

    2006-01-01

    Literature results and personal experience show that intrusive modalities of presenting suggestions of computerized clinical practice guidelines are detrimental to the routine use of an information system. This paper describes a solution for smoothly integrating a guideline-based decision support system into an existing computerized clinical chart for patients admitted to a Stroke Unit. Since many years, the healthcare personnel were using a commercial product for the ordinary patients’ data management, and they were satisfied with it. Thus, the decision support system has been integrated keeping attention to minimize changes and preserve existing human-computer interaction. Our decision support system is based on workflow technology. The paper illustrates the middleware layer developed to allow communication between the workflow management system and the clinical chart. At the same time, the consequent modification of the graphical users' interface is illustrated. PMID:17238415

  19. Clinical Decision Support using a Terminology Server to improve Patient Safety.

    PubMed

    Garcia-Jimenez, Alba; Moreno-Conde, Alberto; Martínez-García, Alicia; Marín-León, Ignacio; Medrano-Ortega, Francisco Javier; Parra-Calderón, Carlos L

    2015-01-01

    Clinical Decision Support Systems (CDSS) are software applications that support clinicians in making healthcare decisions providing relevant information for individual patients about their specific conditions. The lack of integration between CDSS and Electronic Health Record (EHR) has been identified as a significant barrier to CDSS development and adoption. Andalusia Healthcare Public System (AHPS) provides an interoperable health information infrastructure based on a Service Oriented Architecture (SOA) that eases CDSS implementation. This paper details the deployment of a CDSS jointly with the deployment of a Terminology Server (TS) within the AHPS infrastructure. It also explains a case study about the application of decision support to thromboembolism patients and its potential impact on improving patient safety. We will apply the inSPECt tool proposal to evaluate the appropriateness of alerts in this scenario.

  20. Uncertainty management, spatial and temporal reasoning, and validation of intelligent environmental decision support systems

    USGS Publications Warehouse

    Sànchez-Marrè, Miquel; Gilbert, Karina; Sojda, Rick S.; Steyer, Jean Philippe; Struss, Peter; Rodríguez-Roda, Ignasi; Voinov, A.A.; Jakeman, A.J.; Rizzoli, A.E.

    2006-01-01

    There are inherent open problems arising when developing and running Intelligent Environmental Decision Support Systems (IEDSS). During daily operation of IEDSS several open challenge problems appear. The uncertainty of data being processed is intrinsic to the environmental system, which is being monitored by several on-line sensors and off-line data. Thus, anomalous data values at data gathering level or even uncertain reasoning process at later levels such as in diagnosis or decision support or planning can lead the environmental process to unsafe critical operation states. At diagnosis level or even at decision support level or planning level, spatial reasoning or temporal reasoning or both aspects can influence the reasoning processes undertaken by the IEDSS. Most of Environmental systems must take into account the spatial relationships between the environmental goal area and the nearby environmental areas and the temporal relationships between the current state and the past states of the environmental system to state accurate and reliable assertions to be used within the diagnosis process or decision support process or planning process. Finally, a related issue is a crucial point: are really reliable and safe the decisions proposed by the IEDSS? Are we sure about the goodness and performance of proposed solutions? How can we ensure a correct evaluation of the IEDSS? Main goal of this paper is to analyse these four issues, review some possible approaches and techniques to cope with them, and study new trends for future research within the IEDSS field.

  1. IONIO Project: Computer-mediated Decision Support System and Communication in Ocean Science

    NASA Astrophysics Data System (ADS)

    Oddo, Paolo; Acierno, Arianna; Cuna, Daniela; Federico, Ivan; Galati, Maria Barbara; Awad, Esam; Korres, Gerasimos; Lecci, Rita; Manzella, Giuseppe M. R.; Merico, Walter; Perivoliotis, Leonidas; Pinardi, Nadia; Shchekinova, Elena; Mannarini, Gianandrea; Vamvakaki, Chrysa; Pecci, Leda; Reseghetti, Franco

    2013-04-01

    A decision Support System is composed by four main steps. The first one is the definition of the problem, the issue to be covered, decisions to be taken. Different causes can provoke different problems, for each of the causes or its effects it is necessary to define a list of information and/or data that are required in order to take the better decision. The second step is the determination of sources from where information/data needed for decision-making can be obtained and who has that information. Furthermore it must be possible to evaluate the quality of the sources to see which of them can provide the best information, and identify the mode and format in which the information is presented. The third step is relying on the processing of knowledge, i.e. if the information/data are fitting for purposes. It has to be decided which parts of the information/data need to be used, what additional data or information is necessary to access, how can information be best presented to be able to understand the situation and take decisions. Finally, the decision making process is an interactive and inclusive process involving all concerned parties, whose different views must be taken into consideration. A knowledge based discussion forum is necessary to reach a consensus. A decision making process need to be examined closely and refined, and modified to meet differing needs over time. The report is presenting legal framework and knowledge base for a scientific based decision support system and a brief exploration of some of the skills that enhances the quality of decisions taken.

  2. Embodying medical expertise in decision support systems for health care management: techniques and benefits.

    PubMed

    Frank, M S

    1998-11-01

    Health care providers and payers are faced with ever-increasing pressures to lower costs, improve quality, and maximize profits. As medical information technology evolves, more medically related data are being collected, stored electronically within a data warehouse, and made available for decision support in the pursuit of lower costs and higher quality in health care. The article describes how medical expertise can be captured and integrated into decision support systems to improve awareness and predictability of disease and disease-associated financial risk within a population of patients, ultimately providing patient-centric and provider-centric opportunities to improve health and decrease costs. The concept of medical logic engineering is introduced.

  3. Potential Information and Decision Support System Applications for a Civil Engineering RED HORSE Squadron.

    DTIC Science & Technology

    1987-09-01

    APPLICATIONS FOR A CIVIL ENGINEERILaG RED HORSE SQUADRON THESIS Arvil E. White III Captain, USAF AFIT/GE:4/LSM/87S-27 .... DEPARTMENT OF THE AIR FORCE...DT1TO-SJAN 0 419880 POTENTIAL INFORMATION AND DECISION SUPPORT SYSTEM APPLICATIONS FOR A CIVIL ENGINEERILiG RED HORSE SQUADRON IAooession For THESIS NI R...INFORMATION AND DECISION SUPPORT SYSTrEM APPLICATIONS FOR A CIVIL ENGINEERINGX :.. 4. RED HORSE SQUADRON - THESIS -4 Presented to the Faculty of the

  4. A decision support system for map projections of small scale data

    USGS Publications Warehouse

    Finn, Michael P.; Usery, E. Lynn; Posch, Stephan T.; Seong, Jeong Chang

    2004-01-01

    The use of commercial geographic information system software to process large raster datasets of terrain elevation, population, land cover, vegetation, soils, temperature, and rainfall requires both projection from spherical coordinates to plane coordinate systems and transformation from one plane system to another. Decision support systems deliver information resulting in knowledge that assists in policies, priorities, or processes. This paper presents an approach to handling the problems of raster dataset projection and transformation through the development of a Web-enabled decision support system to aid users of transformation processes with the selection of appropriate map projections based on data type, areal extent, location, and preservation properties.

  5. Patient factors that influence clinicians’ decision making in self-management support: A clinical vignette study

    PubMed Central

    Bos-Touwen, Irene D.; Trappenburg, Jaap C. A.; van der Wulp, Ineke; Schuurmans, Marieke J.; de Wit, Niek J.

    2017-01-01

    Background and aim Self-management support is an integral part of current chronic care guidelines. The success of self-management interventions varies between individual patients, suggesting a need for tailored self-management support. Understanding the role of patient factors in the current decision making of health professionals can support future tailoring of self-management interventions. The aim of this study is to identify the relative importance of patient factors in health professionals’ decision making regarding self-management support. Method A factorial survey was presented to primary care physicians and nurses. The survey consisted of clinical vignettes (case descriptions), in which 11 patient factors were systematically varied. Each care provider received a set of 12 vignettes. For each vignette, they decided whether they would give this patient self-management support and whether they expected this support to be successful. The associations between respondent decisions and patient factors were explored using ordered logit regression. Results The survey was completed by 60 general practitioners and 80 nurses. Self-management support was unlikely to be provided in a third of the vignettes. The most important patient factor in the decision to provide self-management support as well as in the expectation that self-management support would be successful was motivation, followed by patient-provider relationship and illness perception. Other factors, such as depression or anxiety, education level, self-efficacy and social support, had a small impact on decisions. Disease, disease severity, knowledge of disease, and age were relatively unimportant factors. Conclusion This is the first study to explore the relative importance of patient factors in decision making and the expectations regarding the provision of self-management support to chronic disease patients. By far, the most important factor considered was patient’s motivation; unmotivated patients

  6. Association-rule-based tuberculosis disease diagnosis

    NASA Astrophysics Data System (ADS)

    Asha, T.; Natarajan, S.; Murthy, K. N. B.

    2010-02-01

    Tuberculosis (TB) is a disease caused by bacteria called Mycobacterium tuberculosis. It usually spreads through the air and attacks low immune bodies such as patients with Human Immunodeficiency Virus (HIV). This work focuses on finding close association rules, a promising technique in Data Mining, within TB data. The proposed method first normalizes of raw data from medical records which includes categorical, nominal and continuous attributes and then determines Association Rules from the normalized data with different support and confidence. Association rules are applied on a real data set containing medical records of patients with TB obtained from a state hospital. The rules determined describes close association between one symptom to another; as an example, likelihood that an occurrence of sputum is closely associated with blood cough and HIV.

  7. Extending BPM Environments of Your Choice with Performance Related Decision Support

    NASA Astrophysics Data System (ADS)

    Fritzsche, Mathias; Picht, Michael; Gilani, Wasif; Spence, Ivor; Brown, John; Kilpatrick, Peter

    What-if Simulations have been identified as one solution for business performance related decision support. Such support is especially useful in cases where it can be automatically generated out of Business Process Management (BPM) Environments from the existing business process models and performance parameters monitored from the executed business process instances. Currently, some of the available BPM Environments offer basic-level performance prediction capabilities. However, these functionalities are normally too limited to be generally useful for performance related decision support at business process level. In this paper, an approach is presented which allows the non-intrusive integration of sophisticated tooling for what-if simulations, analytic performance prediction tools, process optimizations or a combination of such solutions into already existing BPM environments. The approach abstracts from process modelling techniques which enable automatic decision support spanning processes across numerous BPM Environments. For instance, this enables end-to-end decision support for composite processes modelled with the Business Process Modelling Notation (BPMN) on top of existing Enterprise Resource Planning (ERP) processes modelled with proprietary languages.

  8. How Nurses Assist Parents Regarding Life Support Decisions for Extremely Premature Infants

    PubMed Central

    Kavanaugh, Karen; Moro, Teresa T.; Savage, Teresa A.

    2010-01-01

    Objective To describe nurse behaviors that assisted parents to make life support decisions for an extremely premature infant before and after the infant’s birth. Design Qualitative, longitudinal, collective case study where interviews were done pre- and postnatally and medical chart data were collected. Setting Interviews were conducted face-to-face in a private room in the hospital, in the mother’s home, or over the telephone. Participants A sample of 40 cases (40 mothers, 14 fathers, 42 physicians, 17 obstetric nurses, 6 neonatal nurses, and 6 neonatal nurse practitioners) was recruited from three hospitals that provided high risk perinatal care. Parents were at least 18 years of age, English speaking, and had participated in a prenatal discussion with a physician regarding treatment decisions for their infant due to threatened preterm delivery. Physicians and nurses were those identified by parents who had spoken to them about life support treatment decisions for the infant. Methods Using a semi-structured interview guide, a total of 203 interviews were conducted (137 prenatal, 51 postnatal, and 15 end-of-life). For this analysis, all coded data related to the nurse’s role were analyzed and summarized. Results Parents and nurses both described several nurse behaviors: providing emotional support; giving information, and meeting the physical care needs of mothers, infants, and fathers. Physicians’ description of the nurse behaviors focused on the way nurses provided emotional support and gave information. Conclusions Nurses play a critical role in assisting parents surrounding life support decisions. PMID:20409115

  9. Supplementing Global Narratives with National to Regional Scale Scenarios for Decision Support (Invited)

    NASA Astrophysics Data System (ADS)

    Moss, R. H.; Patwardhan, A.

    2013-12-01

    This presentation examines decision-making contexts to clarify how globally-oriented scenarios of future demographic, economic, and social conditions (the Shared Socioeconomic Pathways -- SSPs) can be extended or nested with scenarios that are targeted on uncertainties of more immediate concern to decision makers. A number of use cases are explored to identify key uncertainties and the attributes of scenarios that would help decision-makers think through the implications of these uncertainties. These uncertainties concern future conditions at national to regional spatial and governance scales regarding factors outside the locus of control of the decision makers. The exogenous factors that need to be represented in scenarios affect supply and demand of relevant commodities/products, institutional conditions, and vulnerability. They include: demographics & societal conditions; economic growth; policy and institutional context (including public & private responses); technology/resource price and performance; and climate/environmental outcomes. The presentation will explore development of decision-support oriented scenarios that are built from the 'bottom-up' and highlight points of divergence in national/regional social and economic conditions. The authors draw preliminary conclusions regarding methods for nesting decision support scenarios in high-level global narratives.

  10. Translational Cognition for Decision Support in Critical Care Environments: A Review

    PubMed Central

    Patel, Vimla L.; Zhang, Jiajie; Yoskowitz, Nicole A.; Green, Robert; Sayan, Osman R.

    2008-01-01

    The dynamic and distributed work environment in critical care requires a high level of collaboration among clinical team members and a sophisticated task coordination system to deliver safe, timely and effective care. A complex cognitive system underlies the decision-making process in such cooperative workplaces. This methodological review paper addresses the issues of translating cognitive research to clinical practice with a specific focus on decision-making in critical care, and the role of information and communication technology to aid in such decisions. Examples are drawn from studies of critical care in our own research laboratories. Critical care, in this paper, includes both intensive (inpatient) and emergency (outpatient) care. We define translational cognition as the research on basic and applied cognitive issues that contribute to our understanding of how information is stored, retrieved and used for problem-solving and decision-making. The methods and findings are discussed in the context of constraints on decision-making in real world complex environments and implications for supporting the design and evaluation of decision support tools for critical care health providers. PMID:18343731

  11. Foundations for context-aware information retrieval for proactive decision support

    NASA Astrophysics Data System (ADS)

    Mittu, Ranjeev; Lin, Jessica; Li, Qingzhe; Gao, Yifeng; Rangwala, Huzefa; Shargo, Peter; Robinson, Joshua; Rose, Carolyn; Tunison, Paul; Turek, Matt; Thomas, Stephen; Hanselman, Phil

    2016-05-01

    Intelligence analysts and military decision makers are faced with an onslaught of information. From the now ubiquitous presence of intelligence, surveillance, and reconnaissance (ISR) platforms providing large volumes of sensor data, to vast amounts of open source data in the form of news reports, blog postings, or social media postings, the amount of information available to a modern decision maker is staggering. Whether tasked with leading a military campaign or providing support for a humanitarian mission, being able to make sense of all the information available is a challenge. Due to the volume and velocity of this data, automated tools are required to help support reasoned, human decisions. In this paper we describe several automated techniques that are targeted at supporting decision making. Our approaches include modeling the kinematics of moving targets as motifs; developing normalcy models and detecting anomalies in kinematic data; automatically classifying the roles of users in social media; and modeling geo-spatial regions based on the behavior that takes place in them. These techniques cover a wide-range of potential decision maker needs.

  12. Quality of Online Information to Support Patient Decision-Making in Breast Cancer Surgery

    PubMed Central

    Bruce, Jordan G.; Tucholka, Jennifer L.; Steffens, Nicole M.; Neuman, Heather B.

    2015-01-01

    Background Breast cancer patients commonly use the internet as an information resource. Our objective was to evaluate the quality of online information available to support patients facing a decision for breast surgery. Methods Breast cancer surgery-related queries were performed (Google and Bing), and reviewed for content pertinent to breast cancer surgery. The DISCERN instrument was used to evaluate websites’ structural components that influence publication reliability and ability of information to support treatment decision-making. Scores of 4/5 were considered “good”. Results 45 unique websites were identified. Websites satisfied a median 5/9 content questions. Commonly omitted topics included: having a choice between breast conservation and mastectomy (67%) and potential for 2nd surgery to obtain negative margins after breast conservation (60%). Websites had a median DISCERN score of 2.9 (range 2.0–4.5). Websites achieved higher scores on structural criteria (median 3.6 [2.1–4.7]), with 24% rated as “good”. Scores on supporting decision-making questions were lower (2.6 [1.3–4.4]), with only 7% scoring “good”. Conclusion Although numerous breast cancer-related websites exist, most do a poor job providing women with essential information necessary to actively participate in decision-making for breast cancer surgery. Providing easily-accessible, high-quality online information has the potential to significantly improve patients’ experiences with decision-making. PMID:26417898

  13. Developing and validating a practical decision support tool (DST) for biomass selection on marginal land.

    PubMed

    Andersson-Sköld, Y; Bardos, P; Chalot, M; Bert, V; Crutu, G; Phanthavongsa, P; Delplanque, M; Track, T; Cundy, A B

    2014-12-01

    Marginal, often contaminated, sites exist in large areas across the world as a result of historic activities such as industry, transportation and mineral extraction. Remediation, or other improvements, of these sites is typically only considered for sites with high exploitation pressure and those posing the highest risks to human health or the environment. At the same time there is increasing competition for land resources for different needs such as biofuel production. Potentially some of this land requirement could be met by production of biomass on brownfield or other marginal land, thereby improving the land while applying the crop cultivation as part of an integrated management strategy. The design and decision making for such a strategy will be site specific. A decision support framework, the Rejuvenate DST (decision support tool) has been developed with the aim of supporting such site specific decision making. This tool is presented here, and has been tested by applying it to a number of case study sites. The consequent SWOT (strength, weakness, opportunities and threats) analysis is discussed and evaluated. The DST was found to be systematic, transparent, and applicable for diverse sites in France, Romania and Sweden, in addition to the sites to which it was applied through its development. The DST is regarded as especially useful if applied as a checklist in an iterative way throughout the decision process, from identifying potential crops to identifying knowledge gaps, working/non-working management strategies and potential risks. The DST also provides a structure promoting effective stakeholder engagement.

  14. A Decision Making Methodology in Support of the Business Rules Lifecycle

    NASA Technical Reports Server (NTRS)

    Wild, Christopher; Rosca, Daniela

    1998-01-01

    The business rules that underlie an enterprise emerge as a new category of system requirements that represent decisions about how to run the business, and which are characterized by their business-orientation and their propensity for change. In this report, we introduce a decision making methodology which addresses several aspects of the business rules lifecycle: acquisition, deployment and evolution. We describe a meta-model for representing business rules in terms of an enterprise model, and also a decision support submodel for reasoning about and deriving the rules. The possibility for lifecycle automated assistance is demonstrated in terms of the automatic extraction of business rules from the decision structure. A system based on the metamodel has been implemented, including the extraction algorithm. This is the final report for Daniela Rosca's PhD fellowship. It describes the work we have done over the past year, current research and the list of publications associated with her thesis topic.

  15. Balance Sheets versus Decision Dashboards to support patient treatment choices: A comparative analysis

    PubMed Central

    Dolan, James G.; Veazie, Peter J.

    2015-01-01

    Background Growing recognition of the importance of involving patients in preference-driven healthcare decisions has highlighted the need to develop practical strategies to implement patient-centered shared decision making. The use of tabular balance sheets to support clinical decision making is well established. More recent evidence suggests that graphic, interactive decision dashboards can help people derive a deeper understanding of information within a specific decision context. We therefore conducted a non-randomized trial comparing the effects of adding an interactive dashboard to a static tabular balance sheet on patient decision-making. Method The study population consisted of members of the ResearchMatch registry who volunteered to participate in a study of medical decision making. Two separate surveys were conducted: one for the control group and one for the intervention group. All participants were instructed to imagine they were newly diagnosed with a chronic illness and asked to choose between three hypothetical drug treatments that varied with regard to effectiveness, side effects, and out-of-pocket cost. Both groups made an initial treatment choice after reviewing a balance sheet. After a brief washout period, members of the control group made a second treatment choice after reviewing the balance sheet again while intervention group members made a second treatment choice after reviewing an interactive decision dashboard containing the same information. After both choices participants rated their degree of confidence in their choice on a 1–10 scale. Results Members of the dashboard intervention group were more likely to change their choice of preferred drug, (10.2% vs. 7.5%, p=0.054) and had a larger increase in decision confidence than the control group: 0.67 vs. 0.075, p<0.03. There were no statistically significant between group differences in decisional conflict or decision aid acceptability. Conclusion These findings suggest that clinical

  16. From clinical requirement to personalized wellness decision support: a data-driven framework for computer-supported guideline refinement.

    PubMed

    Hsueh, Pei-Yun; Lan, Ci-Wei; Deng, Vincent; Zhu, Xinxin

    2012-01-01

    Personalized wellness decision support has gained significant attention, owing to the shift to a patient-centric paradigm in healthcare domains, and the consequent availability of a wealth of patient-related data. Despite the success of data-driven analytics in improving practice outcome, there is a gap towards their deployment in guideline-based practice. In this paper we report on findings related to computer-supported guideline refinement, which maps a patient's guideline requirements to personalized recommendations that suit the patient's current context. In particular, we present a novel data-driven personalization framework, casting the mapping task as a statistical decision problem in search of a solution to maximize expected utility. The proposed framework is well suited to produce personalized recommendations based on not only clinical factors but contextual factors that reflect individual differences in non-clinical settings. We then describe its implementation within the guideline-based clinical decision support system and discuss opportunities and challenges looking forward.

  17. Toward a multi-objective decision support framework to support regulations of unconventional oil and gas development

    NASA Astrophysics Data System (ADS)

    Alongi, M.; Howard, C.; Kasprzyk, J. R.; Ryan, J. N.

    2015-12-01

    Unconventional oil and gas development (UOGD) using hydraulic fracturing and horizontal drilling has recently fostered an unprecedented acceleration in energy development. Regulations seek to protect environmental quality of areas surrounding UOGD, while maintaining economic benefits. One such regulation is a setback distance, which dictates the minimum proximity between an oil and gas well and an object such as a residential or commercial building, property line, or water source. In general, most setback regulations have been strongly politically motivated without a clear scientific basis for understanding the relationship between the setback distance and various performance outcomes. This presentation discusses a new decision support framework for setback regulations, as part of a large NSF-funded sustainability research network (SRN) on UOGD. The goal of the decision support framework is to integrate a wide array of scientific information from the SRN into a coherent framework that can help inform policy regarding UOGD. The decision support framework employs multiobjective evolutionary algorithm (MOEA) optimization coupled with simulation models of air quality and other performance-based outcomes on UOGD. The result of the MOEA optimization runs are quantitative tradeoff curves among different objectives. For example, one such curve could demonstrate air pollution concentrations versus estimates of energy development profits, for different levels of setback distance. Our results will also inform policy-relevant discussions surrounding UOGD such as comparing single- and multi-well pads, as well as regulations on the density of well development over a spatial area.

  18. Mass casualty modelling: a spatial tool to support triage decision making

    PubMed Central

    2011-01-01

    Background During a mass casualty incident, evacuation of patients to the appropriate health care facility is critical to survival. Despite this, no existing system provides the evidence required to make informed evacuation decisions from the scene of the incident. To mitigate this absence and enable more informed decision making, a web based spatial decision support system (SDSS) was developed. This system supports decision making by providing data regarding hospital proximity, capacity, and treatment specializations to decision makers at the scene of the incident. Methods This web-based SDSS utilizes pre-calculated driving times to estimate the actual driving time to each hospital within the inclusive trauma system of the large metropolitan region within which it is situated. In calculating and displaying its results, the model incorporates both road network and hospital data (e.g. capacity, treatment specialties, etc.), and produces results in a matter of seconds, as is required in a MCI situation. In addition, its application interface allows the user to map the incident location and assists in the execution of triage decisions. Results Upon running the model, driving time from the MCI location to the surrounding hospitals is quickly displayed alongside information regarding hospital capacity and capability, thereby assisting the user in the decision-making process. Conclusions The use of SDSS in the prioritization of MCI evacuation decision making is potentially valuable in cases of mass casualty. The key to this model is the utilization of pre-calculated driving times from each hospital in the region to each point on the road network. The incorporation of real-time traffic and hospital capacity data would further improve this model. PMID:21663636

  19. Clinical Decision Support Systems (CDSS) for preventive management of COPD patients

    PubMed Central

    2014-01-01

    Background The use of information and communication technologies to manage chronic diseases allows the application of integrated care pathways, and the optimization and standardization of care processes. Decision support tools can assist in the adherence to best-practice medicine in critical decision points during the execution of a care pathway. Objectives The objectives are to design, develop, and assess a clinical decision support system (CDSS) offering a suite of services for the early detection and assessment of chronic obstructive pulmonary disease (COPD), which can be easily integrated into a healthcare providers' work-flow. Methods The software architecture model for the CDSS, interoperable clinical-knowledge representation, and inference engine were designed and implemented to form a base CDSS framework. The CDSS functionalities were iteratively developed through requirement-adjustment/development/validation cycles using enterprise-grade software-engineering methodologies and technologies. Within each cycle, clinical-knowledge acquisition was performed by a health-informatics engineer and a clinical-expert team. Results A suite of decision-support web services for (i) COPD early detection and diagnosis, (ii) spirometry quality-control support, (iii) patient stratification, was deployed in a secured environment on-line. The CDSS diagnostic performance was assessed using a validation set of 323 cases with 90% specificity, and 96% sensitivity. Web services were integrated in existing health information system platforms. Conclusions Specialized decision support can be offered as a complementary service to existing policies of integrated care for chronic-disease management. The CDSS was able to issue recommendations that have a high degree of accuracy to support COPD case-finding. Integration into healthcare providers' work-flow can be achieved seamlessly through the use of a modular design and service-oriented architecture that connect to existing health

  20. Knowledge bases, clinical decision support systems, and rapid learning in oncology.

    PubMed

    Yu, Peter Paul

    2015-03-01

    One of the most important benefits of health information technology is to assist the cognitive process of the human mind in the face of vast amounts of health data, limited time for decision making, and the complexity of the patient with cancer. Clinical decision support tools are frequently cited as a technologic solution to this problem, but to date useful clinical decision support systems (CDSS) have been limited in utility and implementation. This article describes three unique sources of health data that underlie fundamentally different types of knowledge bases which feed into CDSS. CDSS themselves comprise a variety of models which are discussed. The relationship of knowledge bases and CDSS to rapid learning health systems design is critical as CDSS are essential drivers of rapid learning in clinical care.

  1. Simulation and modeling efforts to support decision making in healthcare supply chain management.

    PubMed

    AbuKhousa, Eman; Al-Jaroodi, Jameela; Lazarova-Molnar, Sanja; Mohamed, Nader

    2014-01-01

    Recently, most healthcare organizations focus their attention on reducing the cost of their supply chain management (SCM) by improving the decision making pertaining processes' efficiencies. The availability of products through healthcare SCM is often a matter of life or death to the patient; therefore, trial and error approaches are not an option in this environment. Simulation and modeling (SM) has been presented as an alternative approach for supply chain managers in healthcare organizations to test solutions and to support decision making processes associated with various SCM problems. This paper presents and analyzes past SM efforts to support decision making in healthcare SCM and identifies the key challenges associated with healthcare SCM modeling. We also present and discuss emerging technologies to meet these challenges.

  2. Data mashups: potential contribution to decision support on climate change and health.

    PubMed

    Fleming, Lora E; Haines, Andy; Golding, Brian; Kessel, Anthony; Cichowska, Anna; Sabel, Clive E; Depledge, Michael H; Sarran, Christophe; Osborne, Nicholas J; Whitmore, Ceri; Cocksedge, Nicola; Bloomfield, Daniel

    2014-02-04

    Linking environmental, socioeconomic and health datasets provides new insights into the potential associations between climate change and human health and wellbeing, and underpins the development of decision support tools that will promote resilience to climate change, and thus enable more effective adaptation. This paper outlines the challenges and opportunities presented by advances in data collection, storage, analysis, and access, particularly focusing on "data mashups". These data mashups are integrations of different types and sources of data, frequently using open application programming interfaces and data sources, to produce enriched results that were not necessarily the original reason for assembling the raw source data. As an illustration of this potential, this paper describes a recently funded initiative to create such a facility in the UK for use in decision support around climate change and health, and provides examples of suitable sources of data and the purposes to which they can be directed, particularly for policy makers and public health decision makers.

  3. Data Mashups: Potential Contribution to Decision Support on Climate Change and Health

    PubMed Central

    Fleming, Lora E.; Haines, Andy; Golding, Brian; Kessel, Anthony; Cichowska, Anna; Sabel, Clive E.; Depledge, Michael H.; Sarran, Christophe; Osborne, Nicholas J.; Whitmore, Ceri; Cocksedge, Nicola; Bloomfield, Daniel

    2014-01-01

    Linking environmental, socioeconomic and health datasets provides new insights into the potential associations between climate change and human health and wellbeing, and underpins the development of decision support tools that will promote resilience to climate change, and thus enable more effective adaptation. This paper outlines the challenges and opportunities presented by advances in data collection, storage, analysis, and access, particularly focusing on “data mashups”. These data mashups are integrations of different types and sources of data, frequently using open application programming interfaces and data sources, to produce enriched results that were not necessarily the original reason for assembling the raw source data. As an illustration of this potential, this paper describes a recently funded initiative to create such a facility in the UK for use in decision support around climate change and health, and provides examples of suitable sources of data and the purposes to which they can be directed, particularly for policy makers and public health decision makers. PMID:24499879

  4. A web-based decision support system for slopeland hazard warning.

    PubMed

    Yu, Fan-Chieh; Chen, Chien-Yuan; Lin, Sheng-Chi; Lin, Yu-Ching; Wu, Shang-Yu; Cheung, Kei-Wai

    2007-04-01

    A WebGIS decision support system for slopeland hazard warning based on real-time monitored rainfall is introduced herein. This paper presents its framework, database, processes of setting up the threshold line for debris flow triggering and the calculation algorithm implemented in the system. The web-based GIS via the Microsoft Internet Explorer is designed for analysis of areas prone to debris flows outburst and landslides during torrential rain. Its function is to provide suggestions to commander for immediate response to the possibility of slopeland hazards, and determine if pre-evacuation is necessary. The defining characteristics of the internet-based decision support system is not to automatically show the dangerous areas but acts as part of the decision process via information collection to help experts judge the prone debris flow creeks and the tendency of landslides initiation. The combination with real-time rainfall estimation by the QPESUMS radar system is suggested for further enhancement.

  5. Multi-site evaluation of a clinical decision support system for radiation therapy

    NASA Astrophysics Data System (ADS)

    Deshpande, Ruchi; DeMarco, John; Kessel, Kerstin; Liu, Brent J.

    2016-03-01

    We have developed an imaging informatics based decision support system that learns from retrospective treatment plans to provide recommendations for healthy tissue sparing to prospective incoming patients. This system incorporates a model of best practices from previous cases, specific to tumor anatomy. Ultimately, our hope is to improve clinical workflow efficiency, patient outcomes and to increase clinician confidence in decision-making. The success of such a system depends greatly on the training dataset, which in this case, is the knowledge base that the data-mining algorithm employs. The size and heterogeneity of the database is essential for good performance. Since most institutions employ standard protocols and practices for treatment planning, the diversity of this database can be greatly increased by including data from different institutions. This work presents the results of incorporating cross-country, multi-institutional data into our decision support system for evaluation and testing.

  6. Urbanization susceptibility maps: a dynamic spatial decision support system for sustainable land use

    NASA Astrophysics Data System (ADS)

    Cerreta, M.; De Toro, P.

    2012-10-01

    Recent developments in land consumption assessment identify the need to implement integrated evaluative approaches, with particular attention to the identification of multidimensional tools for guiding and managing sustainable land use. Policy decisions defining land use are mostly implemented through spatial planning and related zoning, and this involves trade-offs between many sectoral interests and conflicting challenges aimed at win-win solutions. In order to identify a decision-making process for land use allocation, the paper proposes a methodological approach for a Dynamic Spatial Decision Support System (DSDSS), named Integrated Spatial Assessment (ISA), supported by Geographical Information Systems (GIS) combined with Analytic Hierarchy Process (AHP). Through the empirical investigation in an operative case study, an integrated evaluative approach implemented in a DSDSS helps to elaborate "urbanization susceptibility maps", where spatial analysis combined with a multi-criteria method proved to be useful for facing the main issues related to land consumption and minimizing environmental impacts of spatial planning.

  7. Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use

    NASA Astrophysics Data System (ADS)

    Cerreta, M.; De Toro, P.

    2012-11-01

    Recent developments in land consumption assessment identify the need to implement integrated evaluation approaches, with particular attention to the development of multidimensional tools for guiding and managing sustainable land use. Land use policy decisions are implemented mostly through spatial planning and its related zoning. This involves trade-offs between many sectorial interests and conflicting challenges seeking win-win solutions. In order to identify a decision-making process for land use allocation, this paper proposes a methodological approach for developing a Dynamic Spatial Decision Support System (DSDSS), denominated Integrated Spatial Assessment (ISA), supported by Geographical Information Systems (GIS) combined with the Analytic Hierarchy Process (AHP). Through empirical investigation in an operative case study, an integrated evaluation approach implemented in a DSDSS helps produce "urbanization suitability maps" in which spatial analysis combined with multi-criteria evaluation methods proved to be useful for both facing the main issues relating to land consumption as well as minimizing environmental impacts of spatial planning.

  8. Simulation and Modeling Efforts to Support Decision Making in Healthcare Supply Chain Management

    PubMed Central

    Lazarova-Molnar, Sanja

    2014-01-01

    Recently, most healthcare organizations focus their attention on reducing the cost of their supply chain management (SCM) by improving the decision making pertaining processes' efficiencies. The availability of products through healthcare SCM is often a matter of life or death to the patient; therefore, trial and error approaches are not an option in this environment. Simulation and modeling (SM) has been presented as an alternative approach for supply chain managers in healthcare organizations to test solutions and to support decision making processes associated with various SCM problems. This paper presents and analyzes past SM efforts to support decision making in healthcare SCM and identifies the key challenges associated with healthcare SCM modeling. We also present and discuss emerging technologies to meet these challenges. PMID:24683333

  9. Computer-aided decision support systems for endoscopy in the gastrointestinal tract: a review.

    PubMed

    Liedlgruber, Michael; Uhl, Andreas

    2011-01-01

    Today, medical endoscopy is a widely used procedure to inspect the inner cavities of the human body. The advent of endoscopic imaging techniques-allowing the acquisition of images or videos-created the possibility for the development of the whole new branch of computer-aided decision support systems. Such systems aim at helping physicians to identify possibly malignant abnormalities more accurately. At the beginning of this paper, we give a brief introduction to the history of endoscopy, followed by introducing the main types of endoscopes which emerged so far (flexible endoscope, wireless capsule endoscope, and confocal laser endomicroscope). We then give a brief introduction to computer-aided decision support systems specifically targeted at endoscopy in the gastrointestinal tract. Then we present general facts and figures concerning computer-aided decision support systems and summarize work specifically targeted at computer-aided decision support in the gastrointestinal tract. This summary is followed by a discussion of some common issues concerning the approaches reviewed and suggestions of possible ways to resolve them.

  10. Computer-assisted diagnostic decision support: history, challenges, and possible paths forward.

    PubMed

    Miller, Randolph A

    2009-09-01

    This paper presents a brief history of computer-assisted diagnosis, including challenges and future directions. Some ideas presented in this article on computer-assisted diagnostic decision support systems (CDDSS) derive from prior work by the author and his colleagues (see list in Acknowledgments) on the INTERNIST-1 and QMR projects. References indicate the original sources of many of these ideas.

  11. Enhancement of the EPA Stormwater BMP Decision-Support Tool (SUSTAIN)

    EPA Science Inventory

    U.S. Environmental Protection Agency (EPA) has been developing and improving a decision-support tool for placement of stormwater best management practices (BMPs) at strategic locations in urban watersheds. The tool is called the System for Urban Stormwater Treatment and Analysis...

  12. Enhancement of the EPA Stormwater BMP Decision-Support Tool (SUSTAIN) - slides

    EPA Science Inventory

    U.S. Environmental Protection Agency (EPA) has been developing and improving a decision-support tool for placement of stormwater best management practices (BMPs) at strategic locations in urban watersheds. The tool is called the System for Urban Stormwater Treatment and Analysis...

  13. 77 FR 29620 - Notice of Availability of Record of Decision for TRIDENT Support Facilities Explosives Handling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... Decision for TRIDENT Support Facilities Explosives Handling Wharf at Naval Base Kitsap at Bangor, Kitsap...) adjacent to the existing Explosives Handling Wharf in Hood Canal on the waterfront of Naval Base Kitsap... contacting: Ms. Christine Stevenson, Naval Facilities Engineering Command Northwest, 1101 Tautog...

  14. Development of a Decision Support System to Predict Physicians' Rehabilitation Protocols for Patients with Knee Osteoarthritis

    ERIC Educational Resources Information Center

    Hawamdeh, Ziad M.; Alshraideh, Mohammad A.; Al-Ajlouni, Jihad M.; Salah, Imad K.; Holm, Margo B.; Otom, Ali H.

    2012-01-01

    To design a medical decision support system (MDSS) that would accurately predict the rehabilitation protocols prescribed by the physicians for patients with knee osteoarthritis (OA) using only their demographic and clinical characteristics. The demographic and clinical variables for 170 patients receiving one of three treatment protocols for knee…

  15. Gaps of Decision Support Models for Pipeline Renewal and Recommendations for Improvement

    EPA Science Inventory

    In terms of the development of software for decision support for pipeline renewal, more attention to date has been paid to the development of asset management models that help an owner decide on which portions of a system to prioritize needed actions. There has been much less w...

  16. GAPS OF DECISION SUPPORT MODELS FOR PIPELINE RENEWAL AND RECOMMENDATIONS FOR IMPROVEMENT (SLIDE)

    EPA Science Inventory

    In terms of the development of software for decision support for pipeline renewal, more attention to date has been paid to the development of asset management models that help an owner decide on which portions of a system to prioritize needed actions. There has been much less wor...

  17. The Potato Systems Planner: A Successful Decision Support Tool for Growers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An interdisciplinary team evaluated 14 cropping systems for their impacts on potato yield and quality, nutrient availability, plant diseases, soil microorganisms, potential profitability, economic risk, and other factors. Results were integrated into the “Potato Systems Planner” decision support to...

  18. Strengthening Resiliency in Coastal Watersheds: An Ecosystem Services and Ecological Integrity Decision Support System

    EPA Science Inventory

    This product provides an integrated assessment framework linked to a decision support system (DSS) that incorporates the ecological integrity (EI) principles and goals described in detail in the US EPA’s Office of Water’s Healthy Watersheds Program (HWP), with Ecosyst...

  19. Computer-Assisted Diagnostic Decision Support: History, Challenges, and Possible Paths Forward

    ERIC Educational Resources Information Center

    Miller, Randolph A.

    2009-01-01

    This paper presents a brief history of computer-assisted diagnosis, including challenges and future directions. Some ideas presented in this article on computer-assisted diagnostic decision support systems (CDDSS) derive from prior work by the author and his colleagues (see list in Acknowledgments) on the INTERNIST-1 and QMR projects. References…

  20. Improving Emergency Department Triage Classification with Computerized Clinical Decision Support at a Pediatric Hospital

    ERIC Educational Resources Information Center

    Kunisch, Joseph Martin

    2012-01-01

    Background: The Emergency Severity Index (ESI) is an emergency department (ED) triage classification system based on estimated patient-specific resource utilization. Rules for a computerized clinical decision support (CDS) system based on a patient's chief complaint were developed and tested using a stochastic model for predicting ESI scores.…