Sample records for rule-based semantic integration

  1. Towards a Semantically-Enabled Control Strategy for Building Simulations: Integration of Semantic Technologies and Model Predictive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delgoshaei, Parastoo; Austin, Mark A.; Pertzborn, Amanda J.

    State-of-the-art building simulation control methods incorporate physical constraints into their mathematical models, but omit implicit constraints associated with policies of operation and dependency relationships among rules representing those constraints. To overcome these shortcomings, there is a recent trend in enabling the control strategies with inference-based rule checking capabilities. One solution is to exploit semantic web technologies in building simulation control. Such approaches provide the tools for semantic modeling of domains, and the ability to deduce new information based on the models through use of Description Logic (DL). In a step toward enabling this capability, this paper presents a cross-disciplinary data-drivenmore » control strategy for building energy management simulation that integrates semantic modeling and formal rule checking mechanisms into a Model Predictive Control (MPC) formulation. The results show that MPC provides superior levels of performance when initial conditions and inputs are derived from inference-based rules.« less

  2. Rule groupings in expert systems using nearest neighbour decision rules, and convex hulls

    NASA Technical Reports Server (NTRS)

    Anastasiadis, Stergios

    1991-01-01

    Expert System shells are lacking in many areas of software engineering. Large rule based systems are not semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of rules found in CLIPS (C Language Integrated Production System) into groups of rules which reflect the underlying semantic subdomains of the problem, will address adequately the concerns stated above. Techniques are introduced to structure a CLIPS rule base into groups of rules that inherently have common semantic information. The concepts involved are imported from the field of A.I., Pattern Recognition, and Statistical Inference. Techniques focus on the areas of feature selection, classification, and a criteria of how 'good' the classification technique is, based on Bayesian Decision Theory. A variety of distance metrics are discussed for measuring the 'closeness' of CLIPS rules and various Nearest Neighbor classification algorithms are described based on the above metric.

  3. Specification and Enforcement of Semantic Integrity Constraints in Microsoft Access

    ERIC Educational Resources Information Center

    Dadashzadeh, Mohammad

    2007-01-01

    Semantic integrity constraints are business-specific rules that limit the permissible values in a database. For example, a university rule dictating that an "incomplete" grade cannot be changed to an A constrains the possible states of the database. To maintain database integrity, business rules should be identified in the course of database…

  4. The neural basis for novel semantic categorization.

    PubMed

    Koenig, Phyllis; Smith, Edward E; Glosser, Guila; DeVita, Chris; Moore, Peachie; McMillan, Corey; Gee, Jim; Grossman, Murray

    2005-01-15

    We monitored regional cerebral activity with BOLD fMRI during acquisition of a novel semantic category and subsequent categorization of test stimuli by a rule-based strategy or a similarity-based strategy. We observed different patterns of activation in direct comparisons of rule- and similarity-based categorization. During rule-based category acquisition, subjects recruited anterior cingulate, thalamic, and parietal regions to support selective attention to perceptual features, and left inferior frontal cortex to helps maintain rules in working memory. Subsequent rule-based categorization revealed anterior cingulate and parietal activation while judging stimuli whose conformity with the rules was readily apparent, and left inferior frontal recruitment during judgments of stimuli whose conformity was less apparent. By comparison, similarity-based category acquisition showed recruitment of anterior prefrontal and posterior cingulate regions, presumably to support successful retrieval of previously encountered exemplars from long-term memory, and bilateral temporal-parietal activation for perceptual feature integration. Subsequent similarity-based categorization revealed temporal-parietal, posterior cingulate, and anterior prefrontal activation. These findings suggest that large-scale networks support relatively distinct categorization processes during the acquisition and judgment of semantic category knowledge.

  5. Developing a semantic web model for medical differential diagnosis recommendation.

    PubMed

    Mohammed, Osama; Benlamri, Rachid

    2014-10-01

    In this paper we describe a novel model for differential diagnosis designed to make recommendations by utilizing semantic web technologies. The model is a response to a number of requirements, ranging from incorporating essential clinical diagnostic semantics to the integration of data mining for the process of identifying candidate diseases that best explain a set of clinical features. We introduce two major components, which we find essential to the construction of an integral differential diagnosis recommendation model: the evidence-based recommender component and the proximity-based recommender component. Both approaches are driven by disease diagnosis ontologies designed specifically to enable the process of generating diagnostic recommendations. These ontologies are the disease symptom ontology and the patient ontology. The evidence-based diagnosis process develops dynamic rules based on standardized clinical pathways. The proximity-based component employs data mining to provide clinicians with diagnosis predictions, as well as generates new diagnosis rules from provided training datasets. This article describes the integration between these two components along with the developed diagnosis ontologies to form a novel medical differential diagnosis recommendation model. This article also provides test cases from the implementation of the overall model, which shows quite promising diagnostic recommendation results.

  6. Distributed semantic networks and CLIPS

    NASA Technical Reports Server (NTRS)

    Snyder, James; Rodriguez, Tony

    1991-01-01

    Semantic networks of frames are commonly used as a method of reasoning in many problems. In most of these applications the semantic network exists as a single entity in a single process environment. Advances in workstation hardware provide support for more sophisticated applications involving multiple processes, interacting in a distributed environment. In these applications the semantic network may well be distributed over several concurrently executing tasks. This paper describes the design and implementation of a frame based, distributed semantic network in which frames are accessed both through C Language Integrated Production System (CLIPS) expert systems and procedural C++ language programs. The application area is a knowledge based, cooperative decision making model utilizing both rule based and procedural experts.

  7. Integrating reasoning and clinical archetypes using OWL ontologies and SWRL rules.

    PubMed

    Lezcano, Leonardo; Sicilia, Miguel-Angel; Rodríguez-Solano, Carlos

    2011-04-01

    Semantic interoperability is essential to facilitate the computerized support for alerts, workflow management and evidence-based healthcare across heterogeneous electronic health record (EHR) systems. Clinical archetypes, which are formal definitions of specific clinical concepts defined as specializations of a generic reference (information) model, provide a mechanism to express data structures in a shared and interoperable way. However, currently available archetype languages do not provide direct support for mapping to formal ontologies and then exploiting reasoning on clinical knowledge, which are key ingredients of full semantic interoperability, as stated in the SemanticHEALTH report [1]. This paper reports on an approach to translate definitions expressed in the openEHR Archetype Definition Language (ADL) to a formal representation expressed using the Ontology Web Language (OWL). The formal representations are then integrated with rules expressed with Semantic Web Rule Language (SWRL) expressions, providing an approach to apply the SWRL rules to concrete instances of clinical data. Sharing the knowledge expressed in the form of rules is consistent with the philosophy of open sharing, encouraged by archetypes. Our approach also allows the reuse of formal knowledge, expressed through ontologies, and extends reuse to propositions of declarative knowledge, such as those encoded in clinical guidelines. This paper describes the ADL-to-OWL translation approach, describes the techniques to map archetypes to formal ontologies, and demonstrates how rules can be applied to the resulting representation. We provide examples taken from a patient safety alerting system to illustrate our approach. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Rule-based support system for multiple UMLS semantic type assignments

    PubMed Central

    Geller, James; He, Zhe; Perl, Yehoshua; Morrey, C. Paul; Xu, Julia

    2012-01-01

    Background When new concepts are inserted into the UMLS, they are assigned one or several semantic types from the UMLS Semantic Network by the UMLS editors. However, not every combination of semantic types is permissible. It was observed that many concepts with rare combinations of semantic types have erroneous semantic type assignments or prohibited combinations of semantic types. The correction of such errors is resource-intensive. Objective We design a computational system to inform UMLS editors as to whether a specific combination of two, three, four, or five semantic types is permissible or prohibited or questionable. Methods We identify a set of inclusion and exclusion instructions in the UMLS Semantic Network documentation and derive corresponding rule-categories as well as rule-categories from the UMLS concept content. We then design an algorithm adviseEditor based on these rule-categories. The algorithm specifies rules for an editor how to proceed when considering a tuple (pair, triple, quadruple, quintuple) of semantic types to be assigned to a concept. Results Eight rule-categories were identified. A Web-based system was developed to implement the adviseEditor algorithm, which returns for an input combination of semantic types whether it is permitted, prohibited or (in a few cases) requires more research. The numbers of semantic type pairs assigned to each rule-category are reported. Interesting examples for each rule-category are illustrated. Cases of semantic type assignments that contradict rules are listed, including recently introduced ones. Conclusion The adviseEditor system implements explicit and implicit knowledge available in the UMLS in a system that informs UMLS editors about the permissibility of a desired combination of semantic types. Using adviseEditor might help accelerate the work of the UMLS editors and prevent erroneous semantic type assignments. PMID:23041716

  9. Constructing a Geology Ontology Using a Relational Database

    NASA Astrophysics Data System (ADS)

    Hou, W.; Yang, L.; Yin, S.; Ye, J.; Clarke, K.

    2013-12-01

    In geology community, the creation of a common geology ontology has become a useful means to solve problems of data integration, knowledge transformation and the interoperation of multi-source, heterogeneous and multiple scale geological data. Currently, human-computer interaction methods and relational database-based methods are the primary ontology construction methods. Some human-computer interaction methods such as the Geo-rule based method, the ontology life cycle method and the module design method have been proposed for applied geological ontologies. Essentially, the relational database-based method is a reverse engineering of abstracted semantic information from an existing database. The key is to construct rules for the transformation of database entities into the ontology. Relative to the human-computer interaction method, relational database-based methods can use existing resources and the stated semantic relationships among geological entities. However, two problems challenge the development and application. One is the transformation of multiple inheritances and nested relationships and their representation in an ontology. The other is that most of these methods do not measure the semantic retention of the transformation process. In this study, we focused on constructing a rule set to convert the semantics in a geological database into a geological ontology. According to the relational schema of a geological database, a conversion approach is presented to convert a geological spatial database to an OWL-based geological ontology, which is based on identifying semantics such as entities, relationships, inheritance relationships, nested relationships and cluster relationships. The semantic integrity of the transformation was verified using an inverse mapping process. In a geological ontology, an inheritance and union operations between superclass and subclass were used to present the nested relationship in a geochronology and the multiple inheritances relationship. Based on a Quaternary database of downtown of Foshan city, Guangdong Province, in Southern China, a geological ontology was constructed using the proposed method. To measure the maintenance of semantics in the conversation process and the results, an inverse mapping from the ontology to a relational database was tested based on a proposed conversation rule. The comparison of schema and entities and the reduction of tables between the inverse database and the original database illustrated that the proposed method retains the semantic information well during the conversation process. An application for abstracting sandstone information showed that semantic relationships among concepts in the geological database were successfully reorganized in the constructed ontology. Key words: geological ontology; geological spatial database; multiple inheritance; OWL Acknowledgement: This research is jointly funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (RFDP) (20100171120001), NSFC (41102207) and the Fundamental Research Funds for the Central Universities (12lgpy19).

  10. Organizational Knowledge Transfer Using Ontologies and a Rule-Based System

    NASA Astrophysics Data System (ADS)

    Okabe, Masao; Yoshioka, Akiko; Kobayashi, Keido; Yamaguchi, Takahira

    In recent automated and integrated manufacturing, so-called intelligence skill is becoming more and more important and its efficient transfer to next-generation engineers is one of the urgent issues. In this paper, we propose a new approach without costly OJT (on-the-job training), that is, combinational usage of a domain ontology, a rule ontology and a rule-based system. Intelligence skill can be decomposed into pieces of simple engineering rules. A rule ontology consists of these engineering rules as primitives and the semantic relations among them. A domain ontology consists of technical terms in the engineering rules and the semantic relations among them. A rule ontology helps novices get the total picture of the intelligence skill and a domain ontology helps them understand the exact meanings of the engineering rules. A rule-based system helps domain experts externalize their tacit intelligence skill to ontologies and also helps novices internalize them. As a case study, we applied our proposal to some actual job at a remote control and maintenance office of hydroelectric power stations in Tokyo Electric Power Co., Inc. We also did an evaluation experiment for this case study and the result supports our proposal.

  11. KaBOB: ontology-based semantic integration of biomedical databases.

    PubMed

    Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E

    2015-04-23

    The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for formal reasoning over a wealth of integrated biomedical data.

  12. Developing a modular architecture for creation of rule-based clinical diagnostic criteria.

    PubMed

    Hong, Na; Pathak, Jyotishman; Chute, Christopher G; Jiang, Guoqian

    2016-01-01

    With recent advances in computerized patient records system, there is an urgent need for producing computable and standards-based clinical diagnostic criteria. Notably, constructing rule-based clinical diagnosis criteria has become one of the goals in the International Classification of Diseases (ICD)-11 revision. However, few studies have been done in building a unified architecture to support the need for diagnostic criteria computerization. In this study, we present a modular architecture for enabling the creation of rule-based clinical diagnostic criteria leveraging Semantic Web technologies. The architecture consists of two modules: an authoring module that utilizes a standards-based information model and a translation module that leverages Semantic Web Rule Language (SWRL). In a prototype implementation, we created a diagnostic criteria upper ontology (DCUO) that integrates ICD-11 content model with the Quality Data Model (QDM). Using the DCUO, we developed a transformation tool that converts QDM-based diagnostic criteria into Semantic Web Rule Language (SWRL) representation. We evaluated the domain coverage of the upper ontology model using randomly selected diagnostic criteria from broad domains (n = 20). We also tested the transformation algorithms using 6 QDM templates for ontology population and 15 QDM-based criteria data for rule generation. As the results, the first draft of DCUO contains 14 root classes, 21 subclasses, 6 object properties and 1 data property. Investigation Findings, and Signs and Symptoms are the two most commonly used element types. All 6 HQMF templates are successfully parsed and populated into their corresponding domain specific ontologies and 14 rules (93.3 %) passed the rule validation. Our efforts in developing and prototyping a modular architecture provide useful insight into how to build a scalable solution to support diagnostic criteria representation and computerization.

  13. Age-Related Brain Activation Changes during Rule Repetition in Word-Matching.

    PubMed

    Methqal, Ikram; Pinsard, Basile; Amiri, Mahnoush; Wilson, Maximiliano A; Monchi, Oury; Provost, Jean-Sebastien; Joanette, Yves

    2017-01-01

    Objective: The purpose of this study was to explore the age-related brain activation changes during a word-matching semantic-category-based task, which required either repeating or changing a semantic rule to be applied. In order to do so, a word-semantic rule-based task was adapted from the Wisconsin Sorting Card Test, involving the repeated feedback-driven selection of given pairs of words based on semantic category-based criteria. Method: Forty healthy adults (20 younger and 20 older) performed a word-matching task while undergoing a fMRI scan in which they were required to pair a target word with another word from a group of three words. The required pairing is based on three word-pair semantic rules which correspond to different levels of semantic control demands: functional relatedness, moderately typical-relatedness (which were considered as low control demands), and atypical-relatedness (high control demands). The sorting period consisted of a continuous execution of the same sorting rule and an inferred trial-by-trial feedback was given. Results: Behavioral performance revealed increases in response times and decreases of correct responses according to the level of semantic control demands (functional vs. typical vs. atypical) for both age groups (younger and older) reflecting graded differences in the repetition of the application of a given semantic rule. Neuroimaging findings of significant brain activation showed two main results: (1) Greater task-related activation changes for the repetition of the application of atypical rules relative to typical and functional rules, and (2) Changes (older > younger) in the inferior prefrontal regions for functional rules and more extensive and bilateral activations for typical and atypical rules. Regarding the inter-semantic rules comparison, only task-related activation differences were observed for functional > typical (e.g., inferior parietal and temporal regions bilaterally) and atypical > typical (e.g., prefrontal, inferior parietal, posterior temporal, and subcortical regions). Conclusion: These results suggest that healthy cognitive aging relies on the adaptive changes of inferior prefrontal resources involved in the repetitive execution of semantic rules, thus reflecting graded differences in support of task demands.

  14. Graph-Based Semantic Web Service Composition for Healthcare Data Integration.

    PubMed

    Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.

  15. Graph-Based Semantic Web Service Composition for Healthcare Data Integration

    PubMed Central

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement. PMID:29065602

  16. Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

    NASA Astrophysics Data System (ADS)

    Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.

    Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

  17. Semantics by analogy for illustrative volume visualization☆

    PubMed Central

    Gerl, Moritz; Rautek, Peter; Isenberg, Tobias; Gröller, Eduard

    2012-01-01

    We present an interactive graphical approach for the explicit specification of semantics for volume visualization. This explicit and graphical specification of semantics for volumetric features allows us to visually assign meaning to both input and output parameters of the visualization mapping. This is in contrast to the implicit way of specifying semantics using transfer functions. In particular, we demonstrate how to realize a dynamic specification of semantics which allows to flexibly explore a wide range of mappings. Our approach is based on three concepts. First, we use semantic shader augmentation to automatically add rule-based rendering functionality to static visualization mappings in a shader program, while preserving the visual abstraction that the initial shader encodes. With this technique we extend recent developments that define a mapping between data attributes and visual attributes with rules, which are evaluated using fuzzy logic. Second, we let users define the semantics by analogy through brushing on renderings of the data attributes of interest. Third, the rules are specified graphically in an interface that provides visual clues for potential modifications. Together, the presented methods offer a high degree of freedom in the specification and exploration of rule-based mappings and avoid the limitations of a linguistic rule formulation. PMID:23576827

  18. From Cues to Nudge: A Knowledge-Based Framework for Surveillance of Healthcare-Associated Infections.

    PubMed

    Shaban-Nejad, Arash; Mamiya, Hiroshi; Riazanov, Alexandre; Forster, Alan J; Baker, Christopher J O; Tamblyn, Robyn; Buckeridge, David L

    2016-01-01

    We propose an integrated semantic web framework consisting of formal ontologies, web services, a reasoner and a rule engine that together recommend appropriate level of patient-care based on the defined semantic rules and guidelines. The classification of healthcare-associated infections within the HAIKU (Hospital Acquired Infections - Knowledge in Use) framework enables hospitals to consistently follow the standards along with their routine clinical practice and diagnosis coding to improve quality of care and patient safety. The HAI ontology (HAIO) groups over thousands of codes into a consistent hierarchy of concepts, along with relationships and axioms to capture knowledge on hospital-associated infections and complications with focus on the big four types, surgical site infections (SSIs), catheter-associated urinary tract infection (CAUTI); hospital-acquired pneumonia, and blood stream infection. By employing statistical inferencing in our study we use a set of heuristics to define the rule axioms to improve the SSI case detection. We also demonstrate how the occurrence of an SSI is identified using semantic e-triggers. The e-triggers will be used to improve our risk assessment of post-operative surgical site infections (SSIs) for patients undergoing certain type of surgeries (e.g., coronary artery bypass graft surgery (CABG)).

  19. A neural network simulation package in CLIPS

    NASA Technical Reports Server (NTRS)

    Bhatnagar, Himanshu; Krolak, Patrick D.; Mcgee, Brenda J.; Coleman, John

    1990-01-01

    The intrinsic similarity between the firing of a rule and the firing of a neuron has been captured in this research to provide a neural network development system within an existing production system (CLIPS). A very important by-product of this research has been the emergence of an integrated technique of using rule based systems in conjunction with the neural networks to solve complex problems. The systems provides a tool kit for an integrated use of the two techniques and is also extendible to accommodate other AI techniques like the semantic networks, connectionist networks, and even the petri nets. This integrated technique can be very useful in solving complex AI problems.

  20. An HL7-CDA wrapper for facilitating semantic interoperability to rule-based Clinical Decision Support Systems.

    PubMed

    Sáez, Carlos; Bresó, Adrián; Vicente, Javier; Robles, Montserrat; García-Gómez, Juan Miguel

    2013-03-01

    The success of Clinical Decision Support Systems (CDSS) greatly depends on its capability of being integrated in Health Information Systems (HIS). Several proposals have been published up to date to permit CDSS gathering patient data from HIS. Some base the CDSS data input on the HL7 reference model, however, they are tailored to specific CDSS or clinical guidelines technologies, or do not focus on standardizing the CDSS resultant knowledge. We propose a solution for facilitating semantic interoperability to rule-based CDSS focusing on standardized input and output documents conforming an HL7-CDA wrapper. We define the HL7-CDA restrictions in a HL7-CDA implementation guide. Patient data and rule inference results are mapped respectively to and from the CDSS by means of a binding method based on an XML binding file. As an independent clinical document, the results of a CDSS can present clinical and legal validity. The proposed solution is being applied in a CDSS for providing patient-specific recommendations for the care management of outpatients with diabetes mellitus. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. SCALEUS: Semantic Web Services Integration for Biomedical Applications.

    PubMed

    Sernadela, Pedro; González-Castro, Lorena; Oliveira, José Luís

    2017-04-01

    In recent years, we have witnessed an explosion of biological data resulting largely from the demands of life science research. The vast majority of these data are freely available via diverse bioinformatics platforms, including relational databases and conventional keyword search applications. This type of approach has achieved great results in the last few years, but proved to be unfeasible when information needs to be combined or shared among different and scattered sources. During recent years, many of these data distribution challenges have been solved with the adoption of semantic web. Despite the evident benefits of this technology, its adoption introduced new challenges related with the migration process, from existent systems to the semantic level. To facilitate this transition, we have developed Scaleus, a semantic web migration tool that can be deployed on top of traditional systems in order to bring knowledge, inference rules, and query federation to the existent data. Targeted at the biomedical domain, this web-based platform offers, in a single package, straightforward data integration and semantic web services that help developers and researchers in the creation process of new semantically enhanced information systems. SCALEUS is available as open source at http://bioinformatics-ua.github.io/scaleus/ .

  2. Syntactic processing in the absence of awareness and semantics.

    PubMed

    Hung, Shao-Min; Hsieh, Po-Jang

    2015-10-01

    The classical view that multistep rule-based operations require consciousness has recently been challenged by findings that both multiword semantic processing and multistep arithmetic equations can be processed unconsciously. It remains unclear, however, whether pure rule-based cognitive processes can occur unconsciously in the absence of semantics. Here, after presenting 2 words consciously, we suppressed the third with continuous flash suppression. First, we showed that the third word in the subject-verb-verb format (syntactically incongruent) broke suppression significantly faster than the third word in the subject-verb-object format (syntactically congruent). Crucially, the same effect was observed even with sentences composed of pseudowords (pseudo subject-verb-adjective vs. pseudo subject-verb-object) without any semantic information. This is the first study to show that syntactic congruency can be processed unconsciously in the complete absence of semantics. Our findings illustrate how abstract rule-based processing (e.g., syntactic categories) can occur in the absence of visual awareness, even when deprived of semantics. (c) 2015 APA, all rights reserved).

  3. CNN-based ranking for biomedical entity normalization.

    PubMed

    Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong

    2017-10-03

    Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.

  4. Parsing GML data based on integrative GML syntactic and semantic schemas database

    NASA Astrophysics Data System (ADS)

    Miao, Lizhi; Zhang, Shuliang; Lu, Guonian; Gao, Xiaoli; Jiao, Donglai; Gan, Jiayan

    2007-06-01

    This paper proposes a new method to parse various application schemas of Geography Markup Language (GML) for understanding syntax and semantic of their element and type in order to implement uniform interpretation of the same GML instance data among diverse users. The proposed method generates an Integrative GML Syntactic and Semantic Schemas Database (IGSSSDB) from GML3.1 core schemas and corresponding application schema. This paper parses GML data based on IGSSSDB, which is composed of syntactic and semantic information, nesting information and mapping rules of GML core schemas and application schemas. Three kinds of relational tables are designed for storing information from schemas when constructing IGSSSDB. Those are info tables for schemas included and namespace imported in application schemas, tables for information related to schemas and catalog tables of core schemas. In relational tables, we propose to use homologous regular expression to describe model of elements and complex types in schemas, which can ensure model complete and readable. Based on IGSSSDB, we design and develop many APIs to implement GML data parsing, and can process syntactic and semantic information of GML data from diverse fields and users. At the latter part of this paper, test study is implemented to show that the proposed method is feasible and appropriate for parsing GML data. Also, it founds a good basis for future GML data studies such as storage, index and query etc.

  5. RuleML-Based Learning Object Interoperability on the Semantic Web

    ERIC Educational Resources Information Center

    Biletskiy, Yevgen; Boley, Harold; Ranganathan, Girish R.

    2008-01-01

    Purpose: The present paper aims to describe an approach for building the Semantic Web rules for interoperation between heterogeneous learning objects, namely course outlines from different universities, and one of the rule uses: identifying (in)compatibilities between course descriptions. Design/methodology/approach: As proof of concept, a rule…

  6. Differential contributions of dorso-ventral and rostro-caudal prefrontal white matter tracts to cognitive control in healthy older adults.

    PubMed

    Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.

  7. Accident/Mishap Investigation System

    NASA Technical Reports Server (NTRS)

    Keller, Richard; Wolfe, Shawn; Gawdiak, Yuri; Carvalho, Robert; Panontin, Tina; Williams, James; Sturken, Ian

    2007-01-01

    InvestigationOrganizer (IO) is a Web-based collaborative information system that integrates the generic functionality of a database, a document repository, a semantic hypermedia browser, and a rule-based inference system with specialized modeling and visualization functionality to support accident/mishap investigation teams. This accessible, online structure is designed to support investigators by allowing them to make explicit, shared, and meaningful links among evidence, causal models, findings, and recommendations.

  8. An Integrated Children Disease Prediction Tool within a Special Social Network.

    PubMed

    Apostolova Trpkovska, Marika; Yildirim Yayilgan, Sule; Besimi, Adrian

    2016-01-01

    This paper proposes a social network with an integrated children disease prediction system developed by the use of the specially designed Children General Disease Ontology (CGDO). This ontology consists of children diseases and their relationship with symptoms and Semantic Web Rule Language (SWRL rules) that are specially designed for predicting diseases. The prediction process starts by filling data about the appeared signs and symptoms by the user which are after that mapped with the CGDO ontology. Once the data are mapped, the prediction results are presented. The phase of prediction executes the rules which extract the predicted disease details based on the SWRL rule specified. The motivation behind the development of this system is to spread knowledge about the children diseases and their symptoms in a very simple way using the specialized social networking website www.emama.mk.

  9. Toward semantic-based retrieval of visual information: a model-based approach

    NASA Astrophysics Data System (ADS)

    Park, Youngchoon; Golshani, Forouzan; Panchanathan, Sethuraman

    2002-07-01

    This paper center around the problem of automated visual content classification. To enable classification based image or visual object retrieval, we propose a new image representation scheme called visual context descriptor (VCD) that is a multidimensional vector in which each element represents the frequency of a unique visual property of an image or a region. VCD utilizes the predetermined quality dimensions (i.e., types of features and quantization level) and semantic model templates mined in priori. Not only observed visual cues, but also contextually relevant visual features are proportionally incorporated in VCD. Contextual relevance of a visual cue to a semantic class is determined by using correlation analysis of ground truth samples. Such co-occurrence analysis of visual cues requires transformation of a real-valued visual feature vector (e.g., color histogram, Gabor texture, etc.,) into a discrete event (e.g., terms in text). Good-feature to track, rule of thirds, iterative k-means clustering and TSVQ are involved in transformation of feature vectors into unified symbolic representations called visual terms. Similarity-based visual cue frequency estimation is also proposed and used for ensuring the correctness of model learning and matching since sparseness of sample data causes the unstable results of frequency estimation of visual cues. The proposed method naturally allows integration of heterogeneous visual or temporal or spatial cues in a single classification or matching framework, and can be easily integrated into a semantic knowledge base such as thesaurus, and ontology. Robust semantic visual model template creation and object based image retrieval are demonstrated based on the proposed content description scheme.

  10. Semantic processing of EHR data for clinical research.

    PubMed

    Sun, Hong; Depraetere, Kristof; De Roo, Jos; Mels, Giovanni; De Vloed, Boris; Twagirumukiza, Marc; Colaert, Dirk

    2015-12-01

    There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Applying Semantic Web Services and Wireless Sensor Networks for System Integration

    NASA Astrophysics Data System (ADS)

    Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente

    In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.

  12. Conceptual Model Formalization in a Semantic Interoperability Service Framework: Transforming Relational Database Schemas to OWL.

    PubMed

    Bravo, Carlos; Suarez, Carlos; González, Carolina; López, Diego; Blobel, Bernd

    2014-01-01

    Healthcare information is distributed through multiple heterogeneous and autonomous systems. Access to, and sharing of, distributed information sources are a challenging task. To contribute to meeting this challenge, this paper presents a formal, complete and semi-automatic transformation service from Relational Databases to Web Ontology Language. The proposed service makes use of an algorithm that allows to transform several data models of different domains by deploying mainly inheritance rules. The paper emphasizes the relevance of integrating the proposed approach into an ontology-based interoperability service to achieve semantic interoperability.

  13. An Emotion Aware Task Automation Architecture Based on Semantic Technologies for Smart Offices

    PubMed Central

    2018-01-01

    The evolution of the Internet of Things leads to new opportunities for the contemporary notion of smart offices, where employees can benefit from automation to maximize their productivity and performance. However, although extensive research has been dedicated to analyze the impact of workers’ emotions on their job performance, there is still a lack of pervasive environments that take into account emotional behaviour. In addition, integrating new components in smart environments is not straightforward. To face these challenges, this article proposes an architecture for emotion aware automation platforms based on semantic event-driven rules to automate the adaptation of the workplace to the employee’s needs. The main contributions of this paper are: (i) the design of an emotion aware automation platform architecture for smart offices; (ii) the semantic modelling of the system; and (iii) the implementation and evaluation of the proposed architecture in a real scenario. PMID:29748468

  14. An Emotion Aware Task Automation Architecture Based on Semantic Technologies for Smart Offices.

    PubMed

    Muñoz, Sergio; Araque, Oscar; Sánchez-Rada, J Fernando; Iglesias, Carlos A

    2018-05-10

    The evolution of the Internet of Things leads to new opportunities for the contemporary notion of smart offices, where employees can benefit from automation to maximize their productivity and performance. However, although extensive research has been dedicated to analyze the impact of workers’ emotions on their job performance, there is still a lack of pervasive environments that take into account emotional behaviour. In addition, integrating new components in smart environments is not straightforward. To face these challenges, this article proposes an architecture for emotion aware automation platforms based on semantic event-driven rules to automate the adaptation of the workplace to the employee’s needs. The main contributions of this paper are: (i) the design of an emotion aware automation platform architecture for smart offices; (ii) the semantic modelling of the system; and (iii) the implementation and evaluation of the proposed architecture in a real scenario.

  15. Translating standards into practice - one Semantic Web API for Gene Expression.

    PubMed

    Deus, Helena F; Prud'hommeaux, Eric; Miller, Michael; Zhao, Jun; Malone, James; Adamusiak, Tomasz; McCusker, Jim; Das, Sudeshna; Rocca Serra, Philippe; Fox, Ronan; Marshall, M Scott

    2012-08-01

    Sharing and describing experimental results unambiguously with sufficient detail to enable replication of results is a fundamental tenet of scientific research. In today's cluttered world of "-omics" sciences, data standards and standardized use of terminologies and ontologies for biomedical informatics play an important role in reporting high-throughput experiment results in formats that can be interpreted by both researchers and analytical tools. Increasing adoption of Semantic Web and Linked Data technologies for the integration of heterogeneous and distributed health care and life sciences (HCLSs) datasets has made the reuse of standards even more pressing; dynamic semantic query federation can be used for integrative bioinformatics when ontologies and identifiers are reused across data instances. We present here a methodology to integrate the results and experimental context of three different representations of microarray-based transcriptomic experiments: the Gene Expression Atlas, the W3C BioRDF task force approach to reporting Provenance of Microarray Experiments, and the HSCI blood genomics project. Our approach does not attempt to improve the expressivity of existing standards for genomics but, instead, to enable integration of existing datasets published from microarray-based transcriptomic experiments. SPARQL Construct is used to create a posteriori mappings of concepts and properties and linking rules that match entities based on query constraints. We discuss how our integrative approach can encourage reuse of the Experimental Factor Ontology (EFO) and the Ontology for Biomedical Investigations (OBIs) for the reporting of experimental context and results of gene expression studies. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Hierarchy-associated semantic-rule inference framework for classifying indoor scenes

    NASA Astrophysics Data System (ADS)

    Yu, Dan; Liu, Peng; Ye, Zhipeng; Tang, Xianglong; Zhao, Wei

    2016-03-01

    Typically, the initial task of classifying indoor scenes is challenging, because the spatial layout and decoration of a scene can vary considerably. Recent efforts at classifying object relationships commonly depend on the results of scene annotation and predefined rules, making classification inflexible. Furthermore, annotation results are easily affected by external factors. Inspired by human cognition, a scene-classification framework was proposed using the empirically based annotation (EBA) and a match-over rule-based (MRB) inference system. The semantic hierarchy of images is exploited by EBA to construct rules empirically for MRB classification. The problem of scene classification is divided into low-level annotation and high-level inference from a macro perspective. Low-level annotation involves detecting the semantic hierarchy and annotating the scene with a deformable-parts model and a bag-of-visual-words model. In high-level inference, hierarchical rules are extracted to train the decision tree for classification. The categories of testing samples are generated from the parts to the whole. Compared with traditional classification strategies, the proposed semantic hierarchy and corresponding rules reduce the effect of a variable background and improve the classification performance. The proposed framework was evaluated on a popular indoor scene dataset, and the experimental results demonstrate its effectiveness.

  17. Interoperable cross-domain semantic and geospatial framework for automatic change detection

    NASA Astrophysics Data System (ADS)

    Kuo, Chiao-Ling; Hong, Jung-Hong

    2016-01-01

    With the increasingly diverse types of geospatial data established over the last few decades, semantic interoperability in integrated applications has attracted much interest in the field of Geographic Information System (GIS). This paper proposes a new strategy and framework to process cross-domain geodata at the semantic level. This framework leverages the semantic equivalence of concepts between domains through bridge ontology and facilitates the integrated use of different domain data, which has been long considered as an essential superiority of GIS, but is impeded by the lack of understanding about the semantics implicitly hidden in the data. We choose the task of change detection to demonstrate how the introduction of ontology concept can effectively make the integration possible. We analyze the common properties of geodata and change detection factors, then construct rules and summarize possible change scenario for making final decisions. The use of topographic map data to detect changes in land use shows promising success, as far as the improvement of efficiency and level of automation is concerned. We believe the ontology-oriented approach will enable a new way for data integration across different domains from the perspective of semantic interoperability, and even open a new dimensionality for the future GIS.

  18. Semantic integration of gene expression analysis tools and data sources using software connectors

    PubMed Central

    2013-01-01

    Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data. PMID:24341380

  19. Semantic integration of gene expression analysis tools and data sources using software connectors.

    PubMed

    Miyazaki, Flávia A; Guardia, Gabriela D A; Vêncio, Ricardo Z N; de Farias, Cléver R G

    2013-10-25

    The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heterogeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The methodology can be used in the development of connectors supporting both simple and nontrivial processing requirements, thus assuring accurate data exchange and information interpretation from exchanged data.

  20. Systematic reconstruction of TRANSPATH data into Cell System Markup Language

    PubMed Central

    Nagasaki, Masao; Saito, Ayumu; Li, Chen; Jeong, Euna; Miyano, Satoru

    2008-01-01

    Background Many biological repositories store information based on experimental study of the biological processes within a cell, such as protein-protein interactions, metabolic pathways, signal transduction pathways, or regulations of transcription factors and miRNA. Unfortunately, it is difficult to directly use such information when generating simulation-based models. Thus, modeling rules for encoding biological knowledge into system-dynamics-oriented standardized formats would be very useful for fully understanding cellular dynamics at the system level. Results We selected the TRANSPATH database, a manually curated high-quality pathway database, which provides a plentiful source of cellular events in humans, mice, and rats, collected from over 31,500 publications. In this work, we have developed 16 modeling rules based on hybrid functional Petri net with extension (HFPNe), which is suitable for graphical representing and simulating biological processes. In the modeling rules, each Petri net element is incorporated with Cell System Ontology to enable semantic interoperability of models. As a formal ontology for biological pathway modeling with dynamics, CSO also defines biological terminology and corresponding icons. By combining HFPNe with the CSO features, it is possible to make TRANSPATH data to simulation-based and semantically valid models. The results are encoded into a biological pathway format, Cell System Markup Language (CSML), which eases the exchange and integration of biological data and models. Conclusion By using the 16 modeling rules, 97% of the reactions in TRANSPATH are converted into simulation-based models represented in CSML. This reconstruction demonstrates that it is possible to use our rules to generate quantitative models from static pathway descriptions. PMID:18570683

  1. Systematic reconstruction of TRANSPATH data into cell system markup language.

    PubMed

    Nagasaki, Masao; Saito, Ayumu; Li, Chen; Jeong, Euna; Miyano, Satoru

    2008-06-23

    Many biological repositories store information based on experimental study of the biological processes within a cell, such as protein-protein interactions, metabolic pathways, signal transduction pathways, or regulations of transcription factors and miRNA. Unfortunately, it is difficult to directly use such information when generating simulation-based models. Thus, modeling rules for encoding biological knowledge into system-dynamics-oriented standardized formats would be very useful for fully understanding cellular dynamics at the system level. We selected the TRANSPATH database, a manually curated high-quality pathway database, which provides a plentiful source of cellular events in humans, mice, and rats, collected from over 31,500 publications. In this work, we have developed 16 modeling rules based on hybrid functional Petri net with extension (HFPNe), which is suitable for graphical representing and simulating biological processes. In the modeling rules, each Petri net element is incorporated with Cell System Ontology to enable semantic interoperability of models. As a formal ontology for biological pathway modeling with dynamics, CSO also defines biological terminology and corresponding icons. By combining HFPNe with the CSO features, it is possible to make TRANSPATH data to simulation-based and semantically valid models. The results are encoded into a biological pathway format, Cell System Markup Language (CSML), which eases the exchange and integration of biological data and models. By using the 16 modeling rules, 97% of the reactions in TRANSPATH are converted into simulation-based models represented in CSML. This reconstruction demonstrates that it is possible to use our rules to generate quantitative models from static pathway descriptions.

  2. Application of artifical intelligence principles to the analysis of "crazy" speech.

    PubMed

    Garfield, D A; Rapp, C

    1994-04-01

    Artificial intelligence computer simulation methods can be used to investigate psychotic or "crazy" speech. Here, symbolic reasoning algorithms establish semantic networks that schematize speech. These semantic networks consist of two main structures: case frames and object taxonomies. Node-based reasoning rules apply to object taxonomies and pathway-based reasoning rules apply to case frames. Normal listeners may recognize speech as "crazy talk" based on violations of node- and pathway-based reasoning rules. In this article, three separate segments of schizophrenic speech illustrate violations of these rules. This artificial intelligence approach is compared and contrasted with other neurolinguistic approaches and is discussed as a conceptual link between neurobiological and psychodynamic understandings of psychopathology.

  3. Differential Contributions of Dorso-Ventral and Rostro-Caudal Prefrontal White Matter Tracts to Cognitive Control in Healthy Older Adults

    PubMed Central

    Strenziok, Maren; Greenwood, Pamela M.; Santa Cruz, Sophia A.; Thompson, James C.; Parasuraman, Raja

    2013-01-01

    Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity. PMID:24312550

  4. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  5. Inferring Metadata for a Semantic Web Peer-to-Peer Environment

    ERIC Educational Resources Information Center

    Brase, Jan; Painter, Mark

    2004-01-01

    Learning Objects Metadata (LOM) aims at describing educational resources in order to allow better reusability and retrieval. In this article we show how additional inference rules allows us to derive additional metadata from existing ones. Additionally, using these rules as integrity constraints helps us to define the constraints on LOM elements,…

  6. Ontology Based Quality Evaluation for Spatial Data

    NASA Astrophysics Data System (ADS)

    Yılmaz, C.; Cömert, Ç.

    2015-08-01

    Many institutions will be providing data to the National Spatial Data Infrastructure (NSDI). Current technical background of the NSDI is based on syntactic web services. It is expected that this will be replaced by semantic web services. The quality of the data provided is important in terms of the decision-making process and the accuracy of transactions. Therefore, the data quality needs to be tested. This topic has been neglected in Turkey. Data quality control for NSDI may be done by private or public "data accreditation" institutions. A methodology is required for data quality evaluation. There are studies for data quality including ISO standards, academic studies and software to evaluate spatial data quality. ISO 19157 standard defines the data quality elements. Proprietary software such as, 1Spatial's 1Validate and ESRI's Data Reviewer offers quality evaluation based on their own classification of rules. Commonly, rule based approaches are used for geospatial data quality check. In this study, we look for the technical components to devise and implement a rule based approach with ontologies using free and open source software in semantic web context. Semantic web uses ontologies to deliver well-defined web resources and make them accessible to end-users and processes. We have created an ontology conforming to the geospatial data and defined some sample rules to show how to test data with respect to data quality elements including; attribute, topo-semantic and geometrical consistency using free and open source software. To test data against rules, sample GeoSPARQL queries are created, associated with specifications.

  7. Atmosphere-based image classification through luminance and hue

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Zhang, Yujin

    2005-07-01

    In this paper a novel image classification system is proposed. Atmosphere serves an important role in generating the scene"s topic or in conveying the message behind the scene"s story, which belongs to abstract attribute level in semantic levels. At first, five atmosphere semantic categories are defined according to rules of photo and film grammar, followed by global luminance and hue features. Then the hierarchical SVM classifiers are applied. In each classification stage, corresponding features are extracted and the trained linear SVM is implemented, resulting in two classes. After three stages of classification, five atmosphere categories are obtained. At last, the text annotation of the atmosphere semantics and the corresponding features by Extensible Markup Language (XML) in MPEG-7 is defined, which can be integrated into more multimedia applications (such as searching, indexing and accessing of multimedia content). The experiment is performed on Corel images and film frames. The classification results prove the effectiveness of the definition of atmosphere semantic classes and the corresponding features.

  8. Phase synchronization of delta and theta oscillations increase during the detection of relevant lexical information.

    PubMed

    Brunetti, Enzo; Maldonado, Pedro E; Aboitiz, Francisco

    2013-01-01

    During monitoring of the discourse, the detection of the relevance of incoming lexical information could be critical for its incorporation to update mental representations in memory. Because, in these situations, the relevance for lexical information is defined by abstract rules that are maintained in memory, a central aspect to elucidate is how an abstract level of knowledge maintained in mind mediates the detection of the lower-level semantic information. In the present study, we propose that neuronal oscillations participate in the detection of relevant lexical information, based on "kept in mind" rules deriving from more abstract semantic information. We tested our hypothesis using an experimental paradigm that restricted the detection of relevance to inferences based on explicit information, thus controlling for ambiguities derived from implicit aspects. We used a categorization task, in which the semantic relevance was previously defined based on the congruency between a kept in mind category (abstract knowledge), and the lexical semantic information presented. Our results show that during the detection of the relevant lexical information, phase synchronization of neuronal oscillations selectively increases in delta and theta frequency bands during the interval of semantic analysis. These increments occurred irrespective of the semantic category maintained in memory, had a temporal profile specific for each subject, and were mainly induced, as they had no effect on the evoked mean global field power. Also, recruitment of an increased number of pairs of electrodes was a robust observation during the detection of semantic contingent words. These results are consistent with the notion that the detection of relevant lexical information based on a particular semantic rule, could be mediated by increasing the global phase synchronization of neuronal oscillations, which may contribute to the recruitment of an extended number of cortical regions.

  9. Semantics-Based Interoperability Framework for the Geosciences

    NASA Astrophysics Data System (ADS)

    Sinha, A.; Malik, Z.; Raskin, R.; Barnes, C.; Fox, P.; McGuinness, D.; Lin, K.

    2008-12-01

    Interoperability between heterogeneous data, tools and services is required to transform data to knowledge. To meet geoscience-oriented societal challenges such as forcing of climate change induced by volcanic eruptions, we suggest the need to develop semantic interoperability for data, services, and processes. Because such scientific endeavors require integration of multiple data bases associated with global enterprises, implicit semantic-based integration is impossible. Instead, explicit semantics are needed to facilitate interoperability and integration. Although different types of integration models are available (syntactic or semantic) we suggest that semantic interoperability is likely to be the most successful pathway. Clearly, the geoscience community would benefit from utilization of existing XML-based data models, such as GeoSciML, WaterML, etc to rapidly advance semantic interoperability and integration. We recognize that such integration will require a "meanings-based search, reasoning and information brokering", which will be facilitated through inter-ontology relationships (ontologies defined for each discipline). We suggest that Markup languages (MLs) and ontologies can be seen as "data integration facilitators", working at different abstraction levels. Therefore, we propose to use an ontology-based data registration and discovery approach to compliment mark-up languages through semantic data enrichment. Ontologies allow the use of formal and descriptive logic statements which permits expressive query capabilities for data integration through reasoning. We have developed domain ontologies (EPONT) to capture the concept behind data. EPONT ontologies are associated with existing ontologies such as SUMO, DOLCE and SWEET. Although significant efforts have gone into developing data (object) ontologies, we advance the idea of developing semantic frameworks for additional ontologies that deal with processes and services. This evolutionary step will facilitate the integrative capabilities of scientists as we examine the relationships between data and external factors such as processes that may influence our understanding of "why" certain events happen. We emphasize the need to go from analysis of data to concepts related to scientific principles of thermodynamics, kinetics, heat flow, mass transfer, etc. Towards meeting these objectives, we report on a pair of related service engines: DIA (Discovery, integration and analysis), and SEDRE (Semantically-Enabled Data Registration Engine) that utilize ontologies for semantic interoperability and integration.

  10. Ontology based heterogeneous materials database integration and semantic query

    NASA Astrophysics Data System (ADS)

    Zhao, Shuai; Qian, Quan

    2017-10-01

    Materials digital data, high throughput experiments and high throughput computations are regarded as three key pillars of materials genome initiatives. With the fast growth of materials data, the integration and sharing of data is very urgent, that has gradually become a hot topic of materials informatics. Due to the lack of semantic description, it is difficult to integrate data deeply in semantic level when adopting the conventional heterogeneous database integration approaches such as federal database or data warehouse. In this paper, a semantic integration method is proposed to create the semantic ontology by extracting the database schema semi-automatically. Other heterogeneous databases are integrated to the ontology by means of relational algebra and the rooted graph. Based on integrated ontology, semantic query can be done using SPARQL. During the experiments, two world famous First Principle Computational databases, OQMD and Materials Project are used as the integration targets, which show the availability and effectiveness of our method.

  11. Formalization of treatment guidelines using Fuzzy Cognitive Maps and semantic web tools.

    PubMed

    Papageorgiou, Elpiniki I; Roo, Jos De; Huszka, Csaba; Colaert, Dirk

    2012-02-01

    Therapy decision making and support in medicine deals with uncertainty and needs to take into account the patient's clinical parameters, the context of illness and the medical knowledge of the physician and guidelines to recommend a treatment therapy. This research study is focused on the formalization of medical knowledge using a cognitive process, called Fuzzy Cognitive Maps (FCMs) and semantic web approach. The FCM technique is capable of dealing with situations including uncertain descriptions using similar procedure such as human reasoning does. Thus, it was selected for the case of modeling and knowledge integration of clinical practice guidelines. The semantic web tools were established to implement the FCM approach. The knowledge base was constructed from the clinical guidelines as the form of if-then fuzzy rules. These fuzzy rules were transferred to FCM modeling technique and, through the semantic web tools, the whole formalization was accomplished. The problem of urinary tract infection (UTI) in adult community was examined for the proposed approach. Forty-seven clinical concepts and eight therapy concepts were identified for the antibiotic treatment therapy problem of UTIs. A preliminary pilot-evaluation study with 55 patient cases showed interesting findings; 91% of the antibiotic treatments proposed by the implemented approach were in fully agreement with the guidelines and physicians' opinions. The results have shown that the suggested approach formalizes medical knowledge efficiently and gives a front-end decision on antibiotics' suggestion for cystitis. Concluding, modeling medical knowledge/therapeutic guidelines using cognitive methods and web semantic tools is both reliable and useful. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Ubiquitous Computing Services Discovery and Execution Using a Novel Intelligent Web Services Algorithm

    PubMed Central

    Choi, Okkyung; Han, SangYong

    2007-01-01

    Ubiquitous Computing makes it possible to determine in real time the location and situations of service requesters in a web service environment as it enables access to computers at any time and in any place. Though research on various aspects of ubiquitous commerce is progressing at enterprises and research centers, both domestically and overseas, analysis of a customer's personal preferences based on semantic web and rule based services using semantics is not currently being conducted. This paper proposes a Ubiquitous Computing Services System that enables a rule based search as well as semantics based search to support the fact that the electronic space and the physical space can be combined into one and the real time search for web services and the construction of efficient web services thus become possible.

  13. Ontology-Based Method for Fault Diagnosis of Loaders.

    PubMed

    Xu, Feixiang; Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-02-28

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study.

  14. Ontology-Based Method for Fault Diagnosis of Loaders

    PubMed Central

    Liu, Xinhui; Chen, Wei; Zhou, Chen; Cao, Bingwei

    2018-01-01

    This paper proposes an ontology-based fault diagnosis method which overcomes the difficulty of understanding complex fault diagnosis knowledge of loaders and offers a universal approach for fault diagnosis of all loaders. This method contains the following components: (1) An ontology-based fault diagnosis model is proposed to achieve the integrating, sharing and reusing of fault diagnosis knowledge for loaders; (2) combined with ontology, CBR (case-based reasoning) is introduced to realize effective and accurate fault diagnoses following four steps (feature selection, case-retrieval, case-matching and case-updating); and (3) in order to cover the shortages of the CBR method due to the lack of concerned cases, ontology based RBR (rule-based reasoning) is put forward through building SWRL (Semantic Web Rule Language) rules. An application program is also developed to implement the above methods to assist in finding the fault causes, fault locations and maintenance measures of loaders. In addition, the program is validated through analyzing a case study. PMID:29495646

  15. Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office

    PubMed Central

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-01

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability. PMID:25608216

  16. Integrated semantics service platform for the Internet of Things: a case study of a smart office.

    PubMed

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-19

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.

  17. HyQue: evaluating hypotheses using Semantic Web technologies.

    PubMed

    Callahan, Alison; Dumontier, Michel; Shah, Nigam H

    2011-05-17

    Key to the success of e-Science is the ability to computationally evaluate expert-composed hypotheses for validity against experimental data. Researchers face the challenge of collecting, evaluating and integrating large amounts of diverse information to compose and evaluate a hypothesis. Confronted with rapidly accumulating data, researchers currently do not have the software tools to undertake the required information integration tasks. We present HyQue, a Semantic Web tool for querying scientific knowledge bases with the purpose of evaluating user submitted hypotheses. HyQue features a knowledge model to accommodate diverse hypotheses structured as events and represented using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated against experimental and literature-sourced evidence through a combination of SPARQL queries and evaluation rules. Inference over OWL ontologies (for type specifications, subclass assertions and parthood relations) and retrieval of facts stored as Bio2RDF linked data provide support for a given hypothesis. We evaluate hypotheses of varying levels of detail about the genetic network controlling galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of deploying such semantic computing tools over a growing body of structured knowledge in Bio2RDF. HyQue is a query-based hypothesis evaluation system that can currently evaluate hypotheses about the galactose metabolism in S. cerevisiae. Hypotheses as well as the supporting or refuting data are represented in RDF and directly linked to one another allowing scientists to browse from data to hypothesis and vice versa. HyQue hypotheses and data are available at http://semanticscience.org/projects/hyque.

  18. Applying Semantic-based Probabilistic Context-Free Grammar to Medical Language Processing – A Preliminary Study on Parsing Medication Sentences

    PubMed Central

    Xu, Hua; AbdelRahman, Samir; Lu, Yanxin; Denny, Joshua C.; Doan, Son

    2011-01-01

    Semantic-based sublanguage grammars have been shown to be an efficient method for medical language processing. However, given the complexity of the medical domain, parsers using such grammars inevitably encounter ambiguous sentences, which could be interpreted by different groups of production rules and consequently result in two or more parse trees. One possible solution, which has not been extensively explored previously, is to augment productions in medical sublanguage grammars with probabilities to resolve the ambiguity. In this study, we associated probabilities with production rules in a semantic-based grammar for medication findings and evaluated its performance on reducing parsing ambiguity. Using the existing data set from 2009 i2b2 NLP (Natural Language Processing) challenge for medication extraction, we developed a semantic-based CFG (Context Free Grammar) for parsing medication sentences and manually created a Treebank of 4,564 medication sentences from discharge summaries. Using the Treebank, we derived a semantic-based PCFG (probabilistic Context Free Grammar) for parsing medication sentences. Our evaluation using a 10-fold cross validation showed that the PCFG parser dramatically improved parsing performance when compared to the CFG parser. PMID:21856440

  19. FleXConf: A Flexible Conference Assistant Using Context-Aware Notification Services

    NASA Astrophysics Data System (ADS)

    Armenatzoglou, Nikos; Marketakis, Yannis; Kriara, Lito; Apostolopoulos, Elias; Papavasiliou, Vicky; Kampas, Dimitris; Kapravelos, Alexandros; Kartsonakis, Eythimis; Linardakis, Giorgos; Nikitaki, Sofia; Bikakis, Antonis; Antoniou, Grigoris

    Integrating context-aware notification services to ubiquitous computing systems aims at the provision of the right information to the right users, at the right time, in the right place, and on the right device, and constitutes a significant step towards the realization of the Ambient Intelligence vision. In this paper, we present FlexConf, a semantics-based system that supports location-based, personalized notification services for the assistance of conference attendees. Its special features include an ontology-based representation model, rule-based context-aware reasoning, and a novel positioning system for indoor environments.

  20. Challenges for Rule Systems on the Web

    NASA Astrophysics Data System (ADS)

    Hu, Yuh-Jong; Yeh, Ching-Long; Laun, Wolfgang

    The RuleML Challenge started in 2007 with the objective of inspiring the issues of implementation for management, integration, interoperation and interchange of rules in an open distributed environment, such as the Web. Rules are usually classified as three types: deductive rules, normative rules, and reactive rules. The reactive rules are further classified as ECA rules and production rules. The study of combination rule and ontology is traced back to an earlier active rule system for relational and object-oriented (OO) databases. Recently, this issue has become one of the most important research problems in the Semantic Web. Once we consider a computer executable policy as a declarative set of rules and ontologies that guides the behavior of entities within a system, we have a flexible way to implement real world policies without rewriting the computer code, as we did before. Fortunately, we have de facto rule markup languages, such as RuleML or RIF to achieve the portability and interchange of rules for different rule systems. Otherwise, executing real-life rule-based applications on the Web is almost impossible. Several commercial or open source rule engines are available for the rule-based applications. However, we still need a standard rule language and benchmark for not only to compare the rule systems but also to measure the progress in the field. Finally, a number of real-life rule-based use cases will be investigated to demonstrate the applicability of current rule systems on the Web.

  1. Semantic Segmentation of Building Elements Using Point Cloud Hashing

    NASA Astrophysics Data System (ADS)

    Chizhova, M.; Gurianov, A.; Hess, M.; Luhmann, T.; Brunn, A.; Stilla, U.

    2018-05-01

    For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).

  2. Towards Semantic e-Science for Traditional Chinese Medicine

    PubMed Central

    Chen, Huajun; Mao, Yuxin; Zheng, Xiaoqing; Cui, Meng; Feng, Yi; Deng, Shuiguang; Yin, Aining; Zhou, Chunying; Tang, Jinming; Jiang, Xiaohong; Wu, Zhaohui

    2007-01-01

    Background Recent advances in Web and information technologies with the increasing decentralization of organizational structures have resulted in massive amounts of information resources and domain-specific services in Traditional Chinese Medicine. The massive volume and diversity of information and services available have made it difficult to achieve seamless and interoperable e-Science for knowledge-intensive disciplines like TCM. Therefore, information integration and service coordination are two major challenges in e-Science for TCM. We still lack sophisticated approaches to integrate scientific data and services for TCM e-Science. Results We present a comprehensive approach to build dynamic and extendable e-Science applications for knowledge-intensive disciplines like TCM based on semantic and knowledge-based techniques. The semantic e-Science infrastructure for TCM supports large-scale database integration and service coordination in a virtual organization. We use domain ontologies to integrate TCM database resources and services in a semantic cyberspace and deliver a semantically superior experience including browsing, searching, querying and knowledge discovering to users. We have developed a collection of semantic-based toolkits to facilitate TCM scientists and researchers in information sharing and collaborative research. Conclusion Semantic and knowledge-based techniques are suitable to knowledge-intensive disciplines like TCM. It's possible to build on-demand e-Science system for TCM based on existing semantic and knowledge-based techniques. The presented approach in the paper integrates heterogeneous distributed TCM databases and services, and provides scientists with semantically superior experience to support collaborative research in TCM discipline. PMID:17493289

  3. Combining the Generic Entity-Attribute-Value Model and Terminological Models into a Common Ontology to Enable Data Integration and Decision Support.

    PubMed

    Bouaud, Jacques; Guézennec, Gilles; Séroussi, Brigitte

    2018-01-01

    The integration of clinical information models and termino-ontological models into a unique ontological framework is highly desirable for it facilitates data integration and management using the same formal mechanisms for both data concepts and information model components. This is particularly true for knowledge-based decision support tools that aim to take advantage of all facets of semantic web technologies in merging ontological reasoning, concept classification, and rule-based inferences. We present an ontology template that combines generic data model components with (parts of) existing termino-ontological resources. The approach is developed for the guideline-based decision support module on breast cancer management within the DESIREE European project. The approach is based on the entity attribute value model and could be extended to other domains.

  4. Semantic Classification of Diseases in Discharge Summaries Using a Context-aware Rule-based Classifier

    PubMed Central

    Solt, Illés; Tikk, Domonkos; Gál, Viktor; Kardkovács, Zsolt T.

    2009-01-01

    Objective Automated and disease-specific classification of textual clinical discharge summaries is of great importance in human life science, as it helps physicians to make medical studies by providing statistically relevant data for analysis. This can be further facilitated if, at the labeling of discharge summaries, semantic labels are also extracted from text, such as whether a given disease is present, absent, questionable in a patient, or is unmentioned in the document. The authors present a classification technique that successfully solves the semantic classification task. Design The authors introduce a context-aware rule-based semantic classification technique for use on clinical discharge summaries. The classification is performed in subsequent steps. First, some misleading parts are removed from the text; then the text is partitioned into positive, negative, and uncertain context segments, then a sequence of binary classifiers is applied to assign the appropriate semantic labels. Measurement For evaluation the authors used the documents of the i2b2 Obesity Challenge and adopted its evaluation measures: F1-macro and F1-micro for measurements. Results On the two subtasks of the Obesity Challenge (textual and intuitive classification) the system performed very well, and achieved a F1-macro = 0.80 for the textual and F1-macro = 0.67 for the intuitive tasks, and obtained second place at the textual and first place at the intuitive subtasks of the challenge. Conclusions The authors show in the paper that a simple rule-based classifier can tackle the semantic classification task more successfully than machine learning techniques, if the training data are limited and some semantic labels are very sparse. PMID:19390101

  5. TARA: Tool Assisted Requirements Analysis

    DTIC Science & Technology

    1988-05-01

    provided during the project and to aid tool integration . Chapter 6 provides a brief discussion of the experience of specifying the ASET case study in CORE...set of Prolog clauses. This includes the context-free grammar rules depicted in Figure 2.1, integrity constraints such as those defining the binding...Jeremaes (1986). This was developed originally for specifying database management ". semantics (for example, the preservation of integrity constraints

  6. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment

    PubMed Central

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-01-01

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service. PMID:26393609

  7. A User-Centric Knowledge Creation Model in a Web of Object-Enabled Internet of Things Environment.

    PubMed

    Kibria, Muhammad Golam; Fattah, Sheik Mohammad Mostakim; Jeong, Kwanghyeon; Chong, Ilyoung; Jeong, Youn-Kwae

    2015-09-18

    User-centric service features in a Web of Object-enabled Internet of Things environment can be provided by using a semantic ontology that classifies and integrates objects on the World Wide Web as well as shares and merges context-aware information and accumulated knowledge. The semantic ontology is applied on a Web of Object platform to virtualize the real world physical devices and information to form virtual objects that represent the features and capabilities of devices in the virtual world. Detailed information and functionalities of multiple virtual objects are combined with service rules to form composite virtual objects that offer context-aware knowledge-based services, where context awareness plays an important role in enabling automatic modification of the system to reconfigure the services based on the context. Converting the raw data into meaningful information and connecting the information to form the knowledge and storing and reusing the objects in the knowledge base can both be expressed by semantic ontology. In this paper, a knowledge creation model that synchronizes a service logistic model and a virtual world knowledge model on a Web of Object platform has been proposed. To realize the context-aware knowledge-based service creation and execution, a conceptual semantic ontology model has been developed and a prototype has been implemented for a use case scenario of emergency service.

  8. The Fusion Model of Intelligent Transportation Systems Based on the Urban Traffic Ontology

    NASA Astrophysics Data System (ADS)

    Yang, Wang-Dong; Wang, Tao

    On these issues unified representation of urban transport information using urban transport ontology, it defines the statute and the algebraic operations of semantic fusion in ontology level in order to achieve the fusion of urban traffic information in the semantic completeness and consistency. Thus this paper takes advantage of the semantic completeness of the ontology to build urban traffic ontology model with which we resolve the problems as ontology mergence and equivalence verification in semantic fusion of traffic information integration. Information integration in urban transport can increase the function of semantic fusion, and reduce the amount of data integration of urban traffic information as well enhance the efficiency and integrity of traffic information query for the help, through the practical application of intelligent traffic information integration platform of Changde city, the paper has practically proved that the semantic fusion based on ontology increases the effect and efficiency of the urban traffic information integration, reduces the storage quantity, and improve query efficiency and information completeness.

  9. Creating personalised clinical pathways by semantic interoperability with electronic health records.

    PubMed

    Wang, Hua-Qiong; Li, Jing-Song; Zhang, Yi-Fan; Suzuki, Muneou; Araki, Kenji

    2013-06-01

    There is a growing realisation that clinical pathways (CPs) are vital for improving the treatment quality of healthcare organisations. However, treatment personalisation is one of the main challenges when implementing CPs, and the inadequate dynamic adaptability restricts the practicality of CPs. The purpose of this study is to improve the practicality of CPs using semantic interoperability between knowledge-based CPs and semantic electronic health records (EHRs). Simple protocol and resource description framework query language is used to gather patient information from semantic EHRs. The gathered patient information is entered into the CP ontology represented by web ontology language. Then, after reasoning over rules described by semantic web rule language in the Jena semantic framework, we adjust the standardised CPs to meet different patients' practical needs. A CP for acute appendicitis is used as an example to illustrate how to achieve CP customisation based on the semantic interoperability between knowledge-based CPs and semantic EHRs. A personalised care plan is generated by comprehensively analysing the patient's personal allergy history and past medical history, which are stored in semantic EHRs. Additionally, by monitoring the patient's clinical information, an exception is recorded and handled during CP execution. According to execution results of the actual example, the solutions we present are shown to be technically feasible. This study contributes towards improving the clinical personalised practicality of standardised CPs. In addition, this study establishes the foundation for future work on the research and development of an independent CP system. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. HyQue: evaluating hypotheses using Semantic Web technologies

    PubMed Central

    2011-01-01

    Background Key to the success of e-Science is the ability to computationally evaluate expert-composed hypotheses for validity against experimental data. Researchers face the challenge of collecting, evaluating and integrating large amounts of diverse information to compose and evaluate a hypothesis. Confronted with rapidly accumulating data, researchers currently do not have the software tools to undertake the required information integration tasks. Results We present HyQue, a Semantic Web tool for querying scientific knowledge bases with the purpose of evaluating user submitted hypotheses. HyQue features a knowledge model to accommodate diverse hypotheses structured as events and represented using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated against experimental and literature-sourced evidence through a combination of SPARQL queries and evaluation rules. Inference over OWL ontologies (for type specifications, subclass assertions and parthood relations) and retrieval of facts stored as Bio2RDF linked data provide support for a given hypothesis. We evaluate hypotheses of varying levels of detail about the genetic network controlling galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of deploying such semantic computing tools over a growing body of structured knowledge in Bio2RDF. Conclusions HyQue is a query-based hypothesis evaluation system that can currently evaluate hypotheses about the galactose metabolism in S. cerevisiae. Hypotheses as well as the supporting or refuting data are represented in RDF and directly linked to one another allowing scientists to browse from data to hypothesis and vice versa. HyQue hypotheses and data are available at http://semanticscience.org/projects/hyque. PMID:21624158

  11. Unambiguous UML Composite Structures: The OMEGA2 Experience

    NASA Astrophysics Data System (ADS)

    Ober, Iulian; Dragomir, Iulia

    Starting from version 2.0, UML introduced hierarchical composite structures, which are a very expressive way of defining complex software architectures, but which have a very loosely defined semantics in the standard. In this paper we propose a set of consistency rules that ensure UML composite structures are unambiguous and can be given a precise semantics. Our primary application of the static consistency rules defined in this paper is within the OMEGA UML profile [6], but these rules are general and applicable to other hierarchical component models based on the same concepts, such as MARTE GCM or SysML. The rule set has been formalized in OCL and is currently used in the OMEGA UML compiler.

  12. Mediator infrastructure for information integration and semantic data integration environment for biomedical research.

    PubMed

    Grethe, Jeffrey S; Ross, Edward; Little, David; Sanders, Brian; Gupta, Amarnath; Astakhov, Vadim

    2009-01-01

    This paper presents current progress in the development of semantic data integration environment which is a part of the Biomedical Informatics Research Network (BIRN; http://www.nbirn.net) project. BIRN is sponsored by the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH). A goal is the development of a cyberinfrastructure for biomedical research that supports advance data acquisition, data storage, data management, data integration, data mining, data visualization, and other computing and information processing services over the Internet. Each participating institution maintains storage of their experimental or computationally derived data. Mediator-based data integration system performs semantic integration over the databases to enable researchers to perform analyses based on larger and broader datasets than would be available from any single institution's data. This paper describes recent revision of the system architecture, implementation, and capabilities of the semantically based data integration environment for BIRN.

  13. An expert system for natural language processing

    NASA Technical Reports Server (NTRS)

    Hennessy, John F.

    1988-01-01

    A solution to the natural language processing problem that uses a rule based system, written in OPS5, to replace the traditional parsing method is proposed. The advantage to using a rule based system are explored. Specifically, the extensibility of a rule based solution is discussed as well as the value of maintaining rules that function independently. Finally, the power of using semantics to supplement the syntactic analysis of a sentence is considered.

  14. ELE: An Ontology-Based System Integrating Semantic Search and E-Learning Technologies

    ERIC Educational Resources Information Center

    Barbagallo, A.; Formica, A.

    2017-01-01

    ELSE (E-Learning for the Semantic ECM) is an ontology-based system which integrates semantic search methodologies and e-learning technologies. It has been developed within a project of the CME (Continuing Medical Education) program--ECM (Educazione Continua nella Medicina) for Italian participants. ELSE allows the creation of e-learning courses…

  15. Ontology based decision system for breast cancer diagnosis

    NASA Astrophysics Data System (ADS)

    Trabelsi Ben Ameur, Soumaya; Cloppet, Florence; Wendling, Laurent; Sellami, Dorra

    2018-04-01

    In this paper, we focus on analysis and diagnosis of breast masses inspired by expert concepts and rules. Accordingly, a Bag of Words is built based on the ontology of breast cancer diagnosis, accurately described in the Breast Imaging Reporting and Data System. To fill the gap between low level knowledge and expert concepts, a semantic annotation is developed using a machine learning tool. Then, breast masses are classified into benign or malignant according to expert rules implicitly modeled with a set of classifiers (KNN, ANN, SVM and Decision Tree). This semantic context of analysis offers a frame where we can include external factors and other meta-knowledge such as patient risk factors as well as exploiting more than one modality. Based on MRI and DECEDM modalities, our developed system leads a recognition rate of 99.7% with Decision Tree where an improvement of 24.7 % is obtained owing to semantic analysis.

  16. Supporting spatial data harmonization process with the use of ontologies and Semantic Web technologies

    NASA Astrophysics Data System (ADS)

    Strzelecki, M.; Iwaniak, A.; Łukowicz, J.; Kaczmarek, I.

    2013-10-01

    Nowadays, spatial information is not only used by professionals, but also by common citizens, who uses it for their daily activities. Open Data initiative states that data should be freely and unreservedly available for all users. It also applies to spatial data. As spatial data becomes widely available it is essential to publish it in form which guarantees the possibility of integrating it with other, heterogeneous data sources. Interoperability is the possibility to combine spatial data sets from different sources in a consistent way as well as providing access to it. Providing syntactic interoperability based on well-known data formats is relatively simple, unlike providing semantic interoperability, due to the multiple possible data interpretation. One of the issues connected with the problem of achieving interoperability is data harmonization. It is a process of providing access to spatial data in a representation that allows combining it with other harmonized data in a coherent way by using a common set of data product specification. Spatial data harmonization is performed by creating definition of reclassification and transformation rules (mapping schema) for source application schema. Creation of those rules is a very demanding task which requires wide domain knowledge and a detailed look into application schemas. The paper focuses on proposing methods for supporting data harmonization process, by automated or supervised creation of mapping schemas with the use of ontologies, ontology matching methods and Semantic Web technologies.

  17. Context-rich semantic framework for effective data-to-decisions in coalition networks

    NASA Astrophysics Data System (ADS)

    Grueneberg, Keith; de Mel, Geeth; Braines, Dave; Wang, Xiping; Calo, Seraphin; Pham, Tien

    2013-05-01

    In a coalition context, data fusion involves combining of soft (e.g., field reports, intelligence reports) and hard (e.g., acoustic, imagery) sensory data such that the resulting output is better than what it would have been if the data are taken individually. However, due to the lack of explicit semantics attached with such data, it is difficult to automatically disseminate and put the right contextual data in the hands of the decision makers. In order to understand the data, explicit meaning needs to be added by means of categorizing and/or classifying the data in relationship to each other from base reference sources. In this paper, we present a semantic framework that provides automated mechanisms to expose real-time raw data effectively by presenting appropriate information needed for a given situation so that an informed decision could be made effectively. The system utilizes controlled natural language capabilities provided by the ITA (International Technology Alliance) Controlled English (CE) toolkit to provide a human-friendly semantic representation of messages so that the messages can be directly processed in human/machine hybrid environments. The Real-time Semantic Enrichment (RTSE) service adds relevant contextual information to raw data streams from domain knowledge bases using declarative rules. The rules define how the added semantics and context information are derived and stored in a semantic knowledge base. The software framework exposes contextual information from a variety of hard and soft data sources in a fast, reliable manner so that an informed decision can be made using semantic queries in intelligent software systems.

  18. Ontology-based knowledge representation for resolution of semantic heterogeneity in GIS

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xiao, Han; Wang, Limin; Han, Jialing

    2017-07-01

    Lack of semantic interoperability in geographical information systems has been identified as the main obstacle for data sharing and database integration. The new method should be found to overcome the problems of semantic heterogeneity. Ontologies are considered to be one approach to support geographic information sharing. This paper presents an ontology-driven integration approach to help in detecting and possibly resolving semantic conflicts. Its originality is that each data source participating in the integration process contains an ontology that defines the meaning of its own data. This approach ensures the automation of the integration through regulation of semantic integration algorithm. Finally, land classification in field GIS is described as the example.

  19. Spatio-Temporal Data Model for Integrating Evolving Nation-Level Datasets

    NASA Astrophysics Data System (ADS)

    Sorokine, A.; Stewart, R. N.

    2017-10-01

    Ability to easily combine the data from diverse sources in a single analytical workflow is one of the greatest promises of the Big Data technologies. However, such integration is often challenging as datasets originate from different vendors, governments, and research communities that results in multiple incompatibilities including data representations, formats, and semantics. Semantics differences are hardest to handle: different communities often use different attribute definitions and associate the records with different sets of evolving geographic entities. Analysis of global socioeconomic variables across multiple datasets over prolonged time is often complicated by the difference in how boundaries and histories of countries or other geographic entities are represented. Here we propose an event-based data model for depicting and tracking histories of evolving geographic units (countries, provinces, etc.) and their representations in disparate data. The model addresses the semantic challenge of preserving identity of geographic entities over time by defining criteria for the entity existence, a set of events that may affect its existence, and rules for mapping between different representations (datasets). Proposed model is used for maintaining an evolving compound database of global socioeconomic and environmental data harvested from multiple sources. Practical implementation of our model is demonstrated using PostgreSQL object-relational database with the use of temporal, geospatial, and NoSQL database extensions.

  20. A semantic-based method for extracting concept definitions from scientific publications: evaluation in the autism phenotype domain.

    PubMed

    Hassanpour, Saeed; O'Connor, Martin J; Das, Amar K

    2013-08-12

    A variety of informatics approaches have been developed that use information retrieval, NLP and text-mining techniques to identify biomedical concepts and relations within scientific publications or their sentences. These approaches have not typically addressed the challenge of extracting more complex knowledge such as biomedical definitions. In our efforts to facilitate knowledge acquisition of rule-based definitions of autism phenotypes, we have developed a novel semantic-based text-mining approach that can automatically identify such definitions within text. Using an existing knowledge base of 156 autism phenotype definitions and an annotated corpus of 26 source articles containing such definitions, we evaluated and compared the average rank of correctly identified rule definition or corresponding rule template using both our semantic-based approach and a standard term-based approach. We examined three separate scenarios: (1) the snippet of text contained a definition already in the knowledge base; (2) the snippet contained an alternative definition for a concept in the knowledge base; and (3) the snippet contained a definition not in the knowledge base. Our semantic-based approach had a higher average rank than the term-based approach for each of the three scenarios (scenario 1: 3.8 vs. 5.0; scenario 2: 2.8 vs. 4.9; and scenario 3: 4.5 vs. 6.2), with each comparison significant at the p-value of 0.05 using the Wilcoxon signed-rank test. Our work shows that leveraging existing domain knowledge in the information extraction of biomedical definitions significantly improves the correct identification of such knowledge within sentences. Our method can thus help researchers rapidly acquire knowledge about biomedical definitions that are specified and evolving within an ever-growing corpus of scientific publications.

  1. The Use of Marking Rules in Semantic Systems. Working Papers of the Language Behavior Research Laboratory, No. 26.

    ERIC Educational Resources Information Center

    Geoghegan, William H.

    This paper discusses the type of marking rule normally used in the production and interpretation of message forms for which semantic marking is possible. The structure and use of such rules is illustrated through a recent study of the semantics of personal address among the Balangingi' Samal, a Muslim group of the southern Philippines. The rule…

  2. A Pilot Study on Modeling of Diagnostic Criteria Using OWL and SWRL.

    PubMed

    Hong, Na; Jiang, Guoqian; Pathak, Jyotishiman; Chute, Christopher G

    2015-01-01

    The objective of this study is to describe our efforts in a pilot study on modeling diagnostic criteria using a Semantic Web-based approach. We reused the basic framework of the ICD-11 content model and refined it into an operational model in the Web Ontology Language (OWL). The refinement is based on a bottom-up analysis method, in which we analyzed data elements (including value sets) in a collection (n=20) of randomly selected diagnostic criteria. We also performed a case study to formalize rule logic in the diagnostic criteria of metabolic syndrome using the Semantic Web Rule Language (SWRL). The results demonstrated that it is feasible to use OWL and SWRL to formalize the diagnostic criteria knowledge, and to execute the rules through reasoning.

  3. eFSM--a novel online neural-fuzzy semantic memory model.

    PubMed

    Tung, Whye Loon; Quek, Chai

    2010-01-01

    Fuzzy rule-based systems (FRBSs) have been successfully applied to many areas. However, traditional fuzzy systems are often manually crafted, and their rule bases that represent the acquired knowledge are static and cannot be trained to improve the modeling performance. This subsequently leads to intensive research on the autonomous construction and tuning of a fuzzy system directly from the observed training data to address the knowledge acquisition bottleneck, resulting in well-established hybrids such as neural-fuzzy systems (NFSs) and genetic fuzzy systems (GFSs). However, the complex and dynamic nature of real-world problems demands that fuzzy rule-based systems and models be able to adapt their parameters and ultimately evolve their rule bases to address the nonstationary (time-varying) characteristics of their operating environments. Recently, considerable research efforts have been directed to the study of evolving Tagaki-Sugeno (T-S)-type NFSs based on the concept of incremental learning. In contrast, there are very few incremental learning Mamdani-type NFSs reported in the literature. Hence, this paper presents the evolving neural-fuzzy semantic memory (eFSM) model, a neural-fuzzy Mamdani architecture with a data-driven progressively adaptive structure (i.e., rule base) based on incremental learning. Issues related to the incremental learning of the eFSM rule base are carefully investigated, and a novel parameter learning approach is proposed for the tuning of the fuzzy set parameters in eFSM. The proposed eFSM model elicits highly interpretable semantic knowledge in the form of Mamdani-type if-then fuzzy rules from low-level numeric training data. These Mamdani fuzzy rules define the computing structure of eFSM and are incrementally learned with the arrival of each training data sample. New rules are constructed from the emergence of novel training data and obsolete fuzzy rules that no longer describe the recently observed data trends are pruned. This enables eFSM to maintain a current and compact set of Mamdani-type if-then fuzzy rules that collectively generalizes and describes the salient associative mappings between the inputs and outputs of the underlying process being modeled. The learning and modeling performances of the proposed eFSM are evaluated using several benchmark applications and the results are encouraging.

  4. A Semantic Approach with Decision Support for Safety Service in Smart Home Management

    PubMed Central

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-01-01

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate. PMID:27527170

  5. A Semantic Approach with Decision Support for Safety Service in Smart Home Management.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-08-03

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate.

  6. Automatic event recognition and anomaly detection with attribute grammar by learning scene semantics

    NASA Astrophysics Data System (ADS)

    Qi, Lin; Yao, Zhenyu; Li, Li; Dong, Junyu

    2007-11-01

    In this paper we present a novel framework for automatic event recognition and abnormal behavior detection with attribute grammar by learning scene semantics. This framework combines learning scene semantics by trajectory analysis and constructing attribute grammar-based event representation. The scene and event information is learned automatically. Abnormal behaviors that disobey scene semantics or event grammars rules are detected. By this method, an approach to understanding video scenes is achieved. Further more, with this prior knowledge, the accuracy of abnormal event detection is increased.

  7. Usage of the Jess Engine, Rules and Ontology to Query a Relational Database

    NASA Astrophysics Data System (ADS)

    Bak, Jaroslaw; Jedrzejek, Czeslaw; Falkowski, Maciej

    We present a prototypical implementation of a library tool, the Semantic Data Library (SDL), which integrates the Jess (Java Expert System Shell) engine, rules and ontology to query a relational database. The tool extends functionalities of previous OWL2Jess with SWRL implementations and takes full advantage of the Jess engine, by separating forward and backward reasoning. The optimization of integration of all these technologies is an advancement over previous tools. We discuss the complexity of the query algorithm. As a demonstration of capability of the SDL library, we execute queries using crime ontology which is being developed in the Polish PPBW project.

  8. A Semantic Parsing Method for Mapping Clinical Questions to Logical Forms

    PubMed Central

    Roberts, Kirk; Patra, Braja Gopal

    2017-01-01

    This paper presents a method for converting natural language questions about structured data in the electronic health record (EHR) into logical forms. The logical forms can then subsequently be converted to EHR-dependent structured queries. The natural language processing task, known as semantic parsing, has the potential to convert questions to logical forms with extremely high precision, resulting in a system that is usable and trusted by clinicians for real-time use in clinical settings. We propose a hybrid semantic parsing method, combining rule-based methods with a machine learning-based classifier. The overall semantic parsing precision on a set of 212 questions is 95.6%. The parser’s rules furthermore allow it to “know what it does not know”, enabling the system to indicate when unknown terms prevent it from understanding the question’s full logical structure. When combined with a module for converting a logical form into an EHR-dependent query, this high-precision approach allows for a question answering system to provide a user with a single, verifiably correct answer. PMID:29854217

  9. An Advanced IoT-based System for Intelligent Energy Management in Buildings.

    PubMed

    Marinakis, Vangelis; Doukas, Haris

    2018-02-16

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings' energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building's data (e.g., energy management systems), energy production, energy prices, weather data and end-users' behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information.

  10. An Advanced IoT-based System for Intelligent Energy Management in Buildings

    PubMed Central

    Doukas, Haris

    2018-01-01

    The energy sector is closely interconnected with the building sector and integrated Information and Communication Technologies (ICT) solutions for effective energy management supporting decision-making at building, district and city level are key fundamental elements for making a city Smart. The available systems are designed and intended exclusively for a predefined number of cases and systems without allowing for expansion and interoperability with other applications that is partially due to the lack of semantics. This paper presents an advanced Internet of Things (IoT) based system for intelligent energy management in buildings. A semantic framework is introduced aiming at the unified and standardised modelling of the entities that constitute the building environment. Suitable rules are formed, aiming at the intelligent energy management and the general modus operandi of Smart Building. In this context, an IoT-based system was implemented, which enhances the interactivity of the buildings’ energy management systems. The results from its pilot application are presented and discussed. The proposed system extends existing approaches and integrates cross-domain data, such as the building’s data (e.g., energy management systems), energy production, energy prices, weather data and end-users’ behaviour, in order to produce daily and weekly action plans for the energy end-users with actionable personalised information. PMID:29462957

  11. Integrating Syntax, Semantics, and Discourse DARPA Natural Language Understanding Program. Volume 2. Documentation

    DTIC Science & Technology

    1989-09-30

    Please choose a list of switches, or type ’"ok.’’ -- [3,5,7]. Changed the switch: parse-. tree --------------------------------- > ON Changed the switch...argument of the verb, especially in the passive (The car was found parked on Elm Street). Other verbs are clearer: They reported the car stolen doesn’t...object slot in the passive object passobj, as in the tree above. Strings, LXiRs and Disjunctive Rules In general, there are three basic types of rules in

  12. Common-Sense Rule Inference

    NASA Astrophysics Data System (ADS)

    Lombardi, Ilaria; Console, Luca

    In the paper we show how rule-based inference can be made more flexible by exploiting semantic information associated with the concepts involved in the rules. We introduce flexible forms of common sense reasoning in which whenever no rule applies to a given situation, the inference engine can fire rules that apply to more general or to similar situations. This can be obtained by defining new forms of match between rules and the facts in the working memory and new forms of conflict resolution. We claim that in this way we can overcome some of the brittleness problems that are common in rule-based systems.

  13. Automated geospatial Web Services composition based on geodata quality requirements

    NASA Astrophysics Data System (ADS)

    Cruz, Sérgio A. B.; Monteiro, Antonio M. V.; Santos, Rafael

    2012-10-01

    Service-Oriented Architecture and Web Services technologies improve the performance of activities involved in geospatial analysis with a distributed computing architecture. However, the design of the geospatial analysis process on this platform, by combining component Web Services, presents some open issues. The automated construction of these compositions represents an important research topic. Some approaches to solving this problem are based on AI planning methods coupled with semantic service descriptions. This work presents a new approach using AI planning methods to improve the robustness of the produced geospatial Web Services composition. For this purpose, we use semantic descriptions of geospatial data quality requirements in a rule-based form. These rules allow the semantic annotation of geospatial data and, coupled with the conditional planning method, this approach represents more precisely the situations of nonconformities with geodata quality that may occur during the execution of the Web Service composition. The service compositions produced by this method are more robust, thus improving process reliability when working with a composition of chained geospatial Web Services.

  14. Using the LOINC Semantic Structure to Integrate Community-based Survey Items into a Concept-based Enterprise Data Dictionary to Support Comparative Effectiveness Research.

    PubMed

    Co, Manuel C; Boden-Albala, Bernadette; Quarles, Leigh; Wilcox, Adam; Bakken, Suzanne

    2012-01-01

    In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies.

  15. A neural network model of semantic memory linking feature-based object representation and words.

    PubMed

    Cuppini, C; Magosso, E; Ursino, M

    2009-06-01

    Recent theories in cognitive neuroscience suggest that semantic memory is a distributed process, which involves many cortical areas and is based on a multimodal representation of objects. The aim of this work is to extend a previous model of object representation to realize a semantic memory, in which sensory-motor representations of objects are linked with words. The model assumes that each object is described as a collection of features, coded in different cortical areas via a topological organization. Features in different objects are segmented via gamma-band synchronization of neural oscillators. The feature areas are further connected with a lexical area, devoted to the representation of words. Synapses among the feature areas, and among the lexical area and the feature areas are trained via a time-dependent Hebbian rule, during a period in which individual objects are presented together with the corresponding words. Simulation results demonstrate that, during the retrieval phase, the network can deal with the simultaneous presence of objects (from sensory-motor inputs) and words (from acoustic inputs), can correctly associate objects with words and segment objects even in the presence of incomplete information. Moreover, the network can realize some semantic links among words representing objects with shared features. These results support the idea that semantic memory can be described as an integrated process, whose content is retrieved by the co-activation of different multimodal regions. In perspective, extended versions of this model may be used to test conceptual theories, and to provide a quantitative assessment of existing data (for instance concerning patients with neural deficits).

  16. The Evidence-base for Using Ontologies and Semantic Integration Methodologies to Support Integrated Chronic Disease Management in Primary and Ambulatory Care: Realist Review. Contribution of the IMIA Primary Health Care Informatics WG.

    PubMed

    Liyanage, H; Liaw, S-T; Kuziemsky, C; Terry, A L; Jones, S; Soler, J K; de Lusignan, S

    2013-01-01

    Most chronic diseases are managed in primary and ambulatory care. The chronic care model (CCM) suggests a wide range of community, technological, team and patient factors contribute to effective chronic disease management. Ontologies have the capability to enable formalised linkage of heterogeneous data sources as might be found across the elements of the CCM. To describe the evidence base for using ontologies and other semantic integration methods to support chronic disease management. We reviewed the evidence-base for the use of ontologies and other semantic integration methods within and across the elements of the CCM. We report them using a realist review describing the context in which the mechanism was applied, and any outcome measures. Most evidence was descriptive with an almost complete absence of empirical research and important gaps in the evidence-base. We found some use of ontologies and semantic integration methods for community support of the medical home and for care in the community. Ubiquitous information technology (IT) and other IT tools were deployed to support self-management support, use of shared registries, health behavioural models and knowledge discovery tools to improve delivery system design. Data quality issues restricted the use of clinical data; however there was an increased use of interoperable data and health system integration. Ontologies and semantic integration methods are emergent with limited evidence-base for their implementation. However, they have the potential to integrate the disparate community wide data sources to provide the information necessary for effective chronic disease management.

  17. Using the LOINC Semantic Structure to Integrate Community-based Survey Items into a Concept-based Enterprise Data Dictionary to Support Comparative Effectiveness Research

    PubMed Central

    Co, Manuel C.; Boden-Albala, Bernadette; Quarles, Leigh; Wilcox, Adam; Bakken, Suzanne

    2012-01-01

    In designing informatics infrastructure to support comparative effectiveness research (CER), it is necessary to implement approaches for integrating heterogeneous data sources such as clinical data typically stored in clinical data warehouses and those that are normally stored in separate research databases. One strategy to support this integration is the use of a concept-oriented data dictionary with a set of semantic terminology models. The aim of this paper is to illustrate the use of the semantic structure of Clinical LOINC (Logical Observation Identifiers, Names, and Codes) in integrating community-based survey items into the Medical Entities Dictionary (MED) to support the integration of survey data with clinical data for CER studies. PMID:24199059

  18. Integrating HL7 RIM and ontology for unified knowledge and data representation in clinical decision support systems.

    PubMed

    Zhang, Yi-Fan; Tian, Yu; Zhou, Tian-Shu; Araki, Kenji; Li, Jing-Song

    2016-01-01

    The broad adoption of clinical decision support systems within clinical practice has been hampered mainly by the difficulty in expressing domain knowledge and patient data in a unified formalism. This paper presents a semantic-based approach to the unified representation of healthcare domain knowledge and patient data for practical clinical decision making applications. A four-phase knowledge engineering cycle is implemented to develop a semantic healthcare knowledge base based on an HL7 reference information model, including an ontology to model domain knowledge and patient data and an expression repository to encode clinical decision making rules and queries. A semantic clinical decision support system is designed to provide patient-specific healthcare recommendations based on the knowledge base and patient data. The proposed solution is evaluated in the case study of type 2 diabetes mellitus inpatient management. The knowledge base is successfully instantiated with relevant domain knowledge and testing patient data. Ontology-level evaluation confirms model validity. Application-level evaluation of diagnostic accuracy reaches a sensitivity of 97.5%, a specificity of 100%, and a precision of 98%; an acceptance rate of 97.3% is given by domain experts for the recommended care plan orders. The proposed solution has been successfully validated in the case study as providing clinical decision support at a high accuracy and acceptance rate. The evaluation results demonstrate the technical feasibility and application prospect of our approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Linguistic and Non-Linguistic Semantic Processing in Individuals with Autism Spectrum Disorders: An ERP Study.

    PubMed

    Coderre, Emily L; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry

    2017-03-01

    Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we compared event-related potentials (ERPs) in response to lexico-semantic processing (written words) and visuo-semantic processing (pictures) in adults with ASD and adults with typical development (TD). The ASD group showed successful lexico-semantic and visuo-semantic processing, indicated by similar N400 effects between groups for word and picture stimuli. However, differences in N400 latency and topography in word conditions suggested different lexico-semantic processing mechanisms: an expectancy-based strategy for the TD group but a controlled post-lexical integration strategy for the ASD group.

  20. Toward Webscale, Rule-Based Inference on the Semantic Web Via Data Parallelism

    DTIC Science & Technology

    2013-02-01

    Another work distinct from its peers is the work on approximate reasoning by Rudolph et al. [34] in which multiple inference sys- tems were combined not...Workshop Scalable Semantic Web Knowledge Base Systems, 2010, pp. 17–31. [34] S. Rudolph , T. Tserendorj, and P. Hitzler, “What is approximate reasoning...2013] [55] M. Duerst and M. Suignard. (2005, Jan .). RFC 3987 – internationalized resource identifiers (IRIs). IETF. [Online]. Available: http

  1. Context-Based Tourism Information Filtering with a Semantic Rule Engine

    PubMed Central

    Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio

    2012-01-01

    This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction. PMID:22778584

  2. Context-based tourism information filtering with a semantic rule engine.

    PubMed

    Lamsfus, Carlos; Martin, David; Alzua-Sorzabal, Aurkene; López-de-Ipiña, Diego; Torres-Manzanera, Emilio

    2012-01-01

    This paper presents the CONCERT framework, a push/filter information consumption paradigm, based on a rule-based semantic contextual information system for tourism. CONCERT suggests a specific insight of the notion of context from a human mobility perspective. It focuses on the particular characteristics and requirements of travellers and addresses the drawbacks found in other approaches. Additionally, CONCERT suggests the use of digital broadcasting as push communication technology, whereby tourism information is disseminated to mobile devices. This information is then automatically filtered by a network of ontologies and offered to tourists on the screen. The results obtained in the experiments carried out show evidence that the information disseminated through digital broadcasting can be manipulated by the network of ontologies, providing contextualized information that produces user satisfaction.

  3. A Metadata Model for E-Learning Coordination through Semantic Web Languages

    ERIC Educational Resources Information Center

    Elci, Atilla

    2005-01-01

    This paper reports on a study aiming to develop a metadata model for e-learning coordination based on semantic web languages. A survey of e-learning modes are done initially in order to identify content such as phases, activities, data schema, rules and relations, etc. relevant for a coordination model. In this respect, the study looks into the…

  4. ADEpedia: a scalable and standardized knowledge base of Adverse Drug Events using semantic web technology.

    PubMed

    Jiang, Guoqian; Solbrig, Harold R; Chute, Christopher G

    2011-01-01

    A source of semantically coded Adverse Drug Event (ADE) data can be useful for identifying common phenotypes related to ADEs. We proposed a comprehensive framework for building a standardized ADE knowledge base (called ADEpedia) through combining ontology-based approach with semantic web technology. The framework comprises four primary modules: 1) an XML2RDF transformation module; 2) a data normalization module based on NCBO Open Biomedical Annotator; 3) a RDF store based persistence module; and 4) a front-end module based on a Semantic Wiki for the review and curation. A prototype is successfully implemented to demonstrate the capability of the system to integrate multiple drug data and ontology resources and open web services for the ADE data standardization. A preliminary evaluation is performed to demonstrate the usefulness of the system, including the performance of the NCBO annotator. In conclusion, the semantic web technology provides a highly scalable framework for ADE data source integration and standard query service.

  5. Annotation of rule-based models with formal semantics to enable creation, analysis, reuse and visualization.

    PubMed

    Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil

    2016-03-15

    Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. The annotation ontology for rule-based models can be found at http://purl.org/rbm/rbmo The krdf tool and associated executable examples are available at http://purl.org/rbm/rbmo/krdf anil.wipat@newcastle.ac.uk or vdanos@inf.ed.ac.uk. © The Author 2015. Published by Oxford University Press.

  6. Integrating semantic dimension into openEHR archetypes for the management of cerebral palsy electronic medical records.

    PubMed

    Ellouze, Afef Samet; Bouaziz, Rafik; Ghorbel, Hanen

    2016-10-01

    Integrating semantic dimension into clinical archetypes is necessary once modeling medical records. First, it enables semantic interoperability and, it offers applying semantic activities on clinical data and provides a higher design quality of Electronic Medical Record (EMR) systems. However, to obtain these advantages, designers need to use archetypes that cover semantic features of clinical concepts involved in their specific applications. In fact, most of archetypes filed within open repositories are expressed in the Archetype Definition Language (ALD) which allows defining only the syntactic structure of clinical concepts weakening semantic activities on the EMR content in the semantic web environment. This paper focuses on the modeling of an EMR prototype for infants affected by Cerebral Palsy (CP), using the dual model approach and integrating semantic web technologies. Such a modeling provides a better delivery of quality of care and ensures semantic interoperability between all involved therapies' information systems. First, data to be documented are identified and collected from the involved therapies. Subsequently, data are analyzed and arranged into archetypes expressed in accordance of ADL. During this step, open archetype repositories are explored, in order to find the suitable archetypes. Then, ADL archetypes are transformed into archetypes expressed in OWL-DL (Ontology Web Language - Description Language). Finally, we construct an ontological source related to these archetypes enabling hence their annotation to facilitate data extraction and providing possibility to exercise semantic activities on such archetypes. Semantic dimension integration into EMR modeled in accordance to the archetype approach. The feasibility of our solution is shown through the development of a prototype, baptized "CP-SMS", which ensures semantic exploitation of CP EMR. This prototype provides the following features: (i) creation of CP EMR instances and their checking by using a knowledge base which we have constructed by interviews with domain experts, (ii) translation of initially CP ADL archetypes into CP OWL-DL archetypes, (iii) creation of an ontological source which we can use to annotate obtained archetypes and (vi) enrichment and supply of the ontological source and integration of semantic relations by providing hence fueling the ontology with new concepts, ensuring consistency and eliminating ambiguity between concepts. The degree of semantic interoperability that could be reached between EMR systems depends strongly on the quality of the used archetypes. Thus, the integration of semantic dimension in archetypes modeling process is crucial. By creating an ontological source and annotating archetypes, we create a supportive platform ensuring semantic interoperability between archetypes-based EMR-systems. Copyright © 2016. Published by Elsevier Inc.

  7. Integrating semantic information into multiple kernels for protein-protein interaction extraction from biomedical literatures.

    PubMed

    Li, Lishuang; Zhang, Panpan; Zheng, Tianfu; Zhang, Hongying; Jiang, Zhenchao; Huang, Degen

    2014-01-01

    Protein-Protein Interaction (PPI) extraction is an important task in the biomedical information extraction. Presently, many machine learning methods for PPI extraction have achieved promising results. However, the performance is still not satisfactory. One reason is that the semantic resources were basically ignored. In this paper, we propose a multiple-kernel learning-based approach to extract PPIs, combining the feature-based kernel, tree kernel and semantic kernel. Particularly, we extend the shortest path-enclosed tree kernel (SPT) by a dynamic extended strategy to retrieve the richer syntactic information. Our semantic kernel calculates the protein-protein pair similarity and the context similarity based on two semantic resources: WordNet and Medical Subject Heading (MeSH). We evaluate our method with Support Vector Machine (SVM) and achieve an F-score of 69.40% and an AUC of 92.00%, which show that our method outperforms most of the state-of-the-art systems by integrating semantic information.

  8. Semantic web data warehousing for caGrid.

    PubMed

    McCusker, James P; Phillips, Joshua A; González Beltrán, Alejandra; Finkelstein, Anthony; Krauthammer, Michael

    2009-10-01

    The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges.

  9. Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.

    PubMed

    Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng

    2018-04-20

    Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.

  10. Scene Integration Without Awareness: No Conclusive Evidence for Processing Scene Congruency During Continuous Flash Suppression.

    PubMed

    Moors, Pieter; Boelens, David; van Overwalle, Jaana; Wagemans, Johan

    2016-07-01

    A recent study showed that scenes with an object-background relationship that is semantically incongruent break interocular suppression faster than scenes with a semantically congruent relationship. These results implied that semantic relations between the objects and the background of a scene could be extracted in the absence of visual awareness of the stimulus. In the current study, we assessed the replicability of this finding and tried to rule out an alternative explanation dependent on low-level differences between the stimuli. Furthermore, we used a Bayesian analysis to quantify the evidence in favor of the presence or absence of a scene-congruency effect. Across three experiments, we found no convincing evidence for a scene-congruency effect or a modulation of scene congruency by scene inversion. These findings question the generalizability of previous observations and cast doubt on whether genuine semantic processing of object-background relationships in scenes can manifest during interocular suppression. © The Author(s) 2016.

  11. ODMedit: uniform semantic annotation for data integration in medicine based on a public metadata repository.

    PubMed

    Dugas, Martin; Meidt, Alexandra; Neuhaus, Philipp; Storck, Michael; Varghese, Julian

    2016-06-01

    The volume and complexity of patient data - especially in personalised medicine - is steadily increasing, both regarding clinical data and genomic profiles: Typically more than 1,000 items (e.g., laboratory values, vital signs, diagnostic tests etc.) are collected per patient in clinical trials. In oncology hundreds of mutations can potentially be detected for each patient by genomic profiling. Therefore data integration from multiple sources constitutes a key challenge for medical research and healthcare. Semantic annotation of data elements can facilitate to identify matching data elements in different sources and thereby supports data integration. Millions of different annotations are required due to the semantic richness of patient data. These annotations should be uniform, i.e., two matching data elements shall contain the same annotations. However, large terminologies like SNOMED CT or UMLS don't provide uniform coding. It is proposed to develop semantic annotations of medical data elements based on a large-scale public metadata repository. To achieve uniform codes, semantic annotations shall be re-used if a matching data element is available in the metadata repository. A web-based tool called ODMedit ( https://odmeditor.uni-muenster.de/ ) was developed to create data models with uniform semantic annotations. It contains ~800,000 terms with semantic annotations which were derived from ~5,800 models from the portal of medical data models (MDM). The tool was successfully applied to manually annotate 22 forms with 292 data items from CDISC and to update 1,495 data models of the MDM portal. Uniform manual semantic annotation of data models is feasible in principle, but requires a large-scale collaborative effort due to the semantic richness of patient data. A web-based tool for these annotations is available, which is linked to a public metadata repository.

  12. Semantic SenseLab: implementing the vision of the Semantic Web in neuroscience

    PubMed Central

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2011-01-01

    Summary Objective Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Methods Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. Conclusion We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/ PMID:20006477

  13. Semantic SenseLab: Implementing the vision of the Semantic Web in neuroscience.

    PubMed

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2010-01-01

    Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/. 2009 Elsevier B.V. All rights reserved.

  14. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of Cerebrotendinous xanthomatosis.

    PubMed

    Taboada, María; Martínez, Diego; Pilo, Belén; Jiménez-Escrig, Adriano; Robinson, Peter N; Sobrido, María J

    2012-07-31

    Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research.

  15. A Hybrid Approach to Finding Relevant Social Media Content for Complex Domain Specific Information Needs.

    PubMed

    Cameron, Delroy; Sheth, Amit P; Jaykumar, Nishita; Thirunarayan, Krishnaprasad; Anand, Gaurish; Smith, Gary A

    2014-12-01

    While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and "intelligible constructs" not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems.

  16. A Hybrid Approach to Finding Relevant Social Media Content for Complex Domain Specific Information Needs

    PubMed Central

    Cameron, Delroy; Sheth, Amit P.; Jaykumar, Nishita; Thirunarayan, Krishnaprasad; Anand, Gaurish; Smith, Gary A.

    2015-01-01

    While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and “intelligible constructs” not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems. PMID:25814917

  17. Automatic information extraction from unstructured mammography reports using distributed semantics.

    PubMed

    Gupta, Anupama; Banerjee, Imon; Rubin, Daniel L

    2018-02-01

    To date, the methods developed for automated extraction of information from radiology reports are mainly rule-based or dictionary-based, and, therefore, require substantial manual effort to build these systems. Recent efforts to develop automated systems for entity detection have been undertaken, but little work has been done to automatically extract relations and their associated named entities in narrative radiology reports that have comparable accuracy to rule-based methods. Our goal is to extract relations in a unsupervised way from radiology reports without specifying prior domain knowledge. We propose a hybrid approach for information extraction that combines dependency-based parse tree with distributed semantics for generating structured information frames about particular findings/abnormalities from the free-text mammography reports. The proposed IE system obtains a F 1 -score of 0.94 in terms of completeness of the content in the information frames, which outperforms a state-of-the-art rule-based system in this domain by a significant margin. The proposed system can be leveraged in a variety of applications, such as decision support and information retrieval, and may also easily scale to other radiology domains, since there is no need to tune the system with hand-crafted information extraction rules. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A Semantic Grid Oriented to E-Tourism

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao Ming

    With increasing complexity of tourism business models and tasks, there is a clear need of the next generation e-Tourism infrastructure to support flexible automation, integration, computation, storage, and collaboration. Currently several enabling technologies such as semantic Web, Web service, agent and grid computing have been applied in the different e-Tourism applications, however there is no a unified framework to be able to integrate all of them. So this paper presents a promising e-Tourism framework based on emerging semantic grid, in which a number of key design issues are discussed including architecture, ontologies structure, semantic reconciliation, service and resource discovery, role based authorization and intelligent agent. The paper finally provides the implementation of the framework.

  19. Topic categorisation of statements in suicide notes with integrated rules and machine learning.

    PubMed

    Kovačević, Aleksandar; Dehghan, Azad; Keane, John A; Nenadic, Goran

    2012-01-01

    We describe and evaluate an automated approach used as part of the i2b2 2011 challenge to identify and categorise statements in suicide notes into one of 15 topics, including Love, Guilt, Thankfulness, Hopelessness and Instructions. The approach combines a set of lexico-syntactic rules with a set of models derived by machine learning from a training dataset. The machine learning models rely on named entities, lexical, lexico-semantic and presentation features, as well as the rules that are applicable to a given statement. On a testing set of 300 suicide notes, the approach showed the overall best micro F-measure of up to 53.36%. The best precision achieved was 67.17% when only rules are used, whereas best recall of 50.57% was with integrated rules and machine learning. While some topics (eg, Sorrow, Anger, Blame) prove challenging, the performance for relatively frequent (eg, Love) and well-scoped categories (eg, Thankfulness) was comparatively higher (precision between 68% and 79%), suggesting that automated text mining approaches can be effective in topic categorisation of suicide notes.

  20. Building the Knowledge Base to Support the Automatic Animation Generation of Chinese Traditional Architecture

    NASA Astrophysics Data System (ADS)

    Wei, Gongjin; Bai, Weijing; Yin, Meifang; Zhang, Songmao

    We present a practice of applying the Semantic Web technologies in the domain of Chinese traditional architecture. A knowledge base consisting of one ontology and four rule bases is built to support the automatic generation of animations that demonstrate the construction of various Chinese timber structures based on the user's input. Different Semantic Web formalisms are used, e.g., OWL DL, SWRL and Jess, to capture the domain knowledge, including the wooden components needed for a given building, construction sequence, and the 3D size and position of every piece of wood. Our experience in exploiting the current Semantic Web technologies in real-world application systems indicates their prominent advantages (such as the reasoning facilities and modeling tools) as well as the limitations (such as low efficiency).

  1. Semantic web data warehousing for caGrid

    PubMed Central

    McCusker, James P; Phillips, Joshua A; Beltrán, Alejandra González; Finkelstein, Anthony; Krauthammer, Michael

    2009-01-01

    The National Cancer Institute (NCI) is developing caGrid as a means for sharing cancer-related data and services. As more data sets become available on caGrid, we need effective ways of accessing and integrating this information. Although the data models exposed on caGrid are semantically well annotated, it is currently up to the caGrid client to infer relationships between the different models and their classes. In this paper, we present a Semantic Web-based data warehouse (Corvus) for creating relationships among caGrid models. This is accomplished through the transformation of semantically-annotated caBIG® Unified Modeling Language (UML) information models into Web Ontology Language (OWL) ontologies that preserve those semantics. We demonstrate the validity of the approach by Semantic Extraction, Transformation and Loading (SETL) of data from two caGrid data sources, caTissue and caArray, as well as alignment and query of those sources in Corvus. We argue that semantic integration is necessary for integration of data from distributed web services and that Corvus is a useful way of accomplishing this. Our approach is generalizable and of broad utility to researchers facing similar integration challenges. PMID:19796399

  2. Standardized Semantic Markup for Reference Terminologies, Thesauri and Coding Systems: Benefits for distributed E-Health Applications.

    PubMed

    Hoelzer, Simon; Schweiger, Ralf K; Liu, Raymond; Rudolf, Dirk; Rieger, Joerg; Dudeck, Joachim

    2005-01-01

    With the introduction of the ICD-10 as the standard for diagnosis, the development of an electronic representation of its complete content, inherent semantics and coding rules is necessary. Our concept refers to current efforts of the CEN/TC 251 to establish a European standard for hierarchical classification systems in healthcare. We have developed an electronic representation of the ICD-10 with the extensible Markup Language (XML) that facilitates the integration in current information systems or coding software taking into account different languages and versions. In this context, XML offers a complete framework of related technologies and standard tools for processing that helps to develop interoperable applications.

  3. ER2OWL: Generating OWL Ontology from ER Diagram

    NASA Astrophysics Data System (ADS)

    Fahad, Muhammad

    Ontology is the fundamental part of Semantic Web. The goal of W3C is to bring the web into (its full potential) a semantic web with reusing previous systems and artifacts. Most legacy systems have been documented in structural analysis and structured design (SASD), especially in simple or Extended ER Diagram (ERD). Such systems need up-gradation to become the part of semantic web. In this paper, we present ERD to OWL-DL ontology transformation rules at concrete level. These rules facilitate an easy and understandable transformation from ERD to OWL. The set of rules for transformation is tested on a structured analysis and design example. The framework provides OWL ontology for semantic web fundamental. This framework helps software engineers in upgrading the structured analysis and design artifact ERD, to components of semantic web. Moreover our transformation tool, ER2OWL, reduces the cost and time for building OWL ontologies with the reuse of existing entity relationship models.

  4. A knowledge-based, concept-oriented view generation system for clinical data.

    PubMed

    Zeng, Q; Cimino, J J

    2001-04-01

    Information overload is a well-known problem for clinicians who must review large amounts of data in patient records. Concept-oriented views, which organize patient data around clinical concepts such as diagnostic strategies and therapeutic goals, may offer a solution to the problem of information overload. However, although concept-oriented views are desirable, they are difficult to create and maintain. We have developed a general-purpose, knowledge-based approach to the generation of concept-oriented views and have developed a system to test our approach. The system creates concept-oriented views through automated identification of relevant patient data. The knowledge in the system is represented by both a semantic network and rules. The key relevant data identification function is accomplished by a rule-based traversal of the semantic network. This paper focuses on the design and implementation of the system; an evaluation of the system is reported separately.

  5. An ontology-driven semantic mash-up of gene and biological pathway information: Application to the domain of nicotine dependence

    PubMed Central

    Sahoo, Satya S.; Bodenreider, Olivier; Rutter, Joni L.; Skinner, Karen J.; Sheth, Amit P.

    2008-01-01

    Objectives This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. Methods We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Results Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Conclusion Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. Resource page http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/ PMID:18395495

  6. An ontology-driven semantic mashup of gene and biological pathway information: application to the domain of nicotine dependence.

    PubMed

    Sahoo, Satya S; Bodenreider, Olivier; Rutter, Joni L; Skinner, Karen J; Sheth, Amit P

    2008-10-01

    This paper illustrates how Semantic Web technologies (especially RDF, OWL, and SPARQL) can support information integration and make it easy to create semantic mashups (semantically integrated resources). In the context of understanding the genetic basis of nicotine dependence, we integrate gene and pathway information and show how three complex biological queries can be answered by the integrated knowledge base. We use an ontology-driven approach to integrate two gene resources (Entrez Gene and HomoloGene) and three pathway resources (KEGG, Reactome and BioCyc), for five organisms, including humans. We created the Entrez Knowledge Model (EKoM), an information model in OWL for the gene resources, and integrated it with the extant BioPAX ontology designed for pathway resources. The integrated schema is populated with data from the pathway resources, publicly available in BioPAX-compatible format, and gene resources for which a population procedure was created. The SPARQL query language is used to formulate queries over the integrated knowledge base to answer the three biological queries. Simple SPARQL queries could easily identify hub genes, i.e., those genes whose gene products participate in many pathways or interact with many other gene products. The identification of the genes expressed in the brain turned out to be more difficult, due to the lack of a common identification scheme for proteins. Semantic Web technologies provide a valid framework for information integration in the life sciences. Ontology-driven integration represents a flexible, sustainable and extensible solution to the integration of large volumes of information. Additional resources, which enable the creation of mappings between information sources, are required to compensate for heterogeneity across namespaces. RESOURCE PAGE: http://knoesis.wright.edu/research/lifesci/integration/structured_data/JBI-2008/

  7. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration.

    PubMed

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-07-08

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) BACKGROUND: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) METHODS: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) RESULTS: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) CONCLUSION: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database.

  8. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    PubMed Central

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-01-01

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database. PMID:27399717

  9. Semantic information extracting system for classification of radiological reports in radiology information system (RIS)

    NASA Astrophysics Data System (ADS)

    Shi, Liehang; Ling, Tonghui; Zhang, Jianguo

    2016-03-01

    Radiologists currently use a variety of terminologies and standards in most hospitals in China, and even there are multiple terminologies being used for different sections in one department. In this presentation, we introduce a medical semantic comprehension system (MedSCS) to extract semantic information about clinical findings and conclusion from free text radiology reports so that the reports can be classified correctly based on medical terms indexing standards such as Radlex or SONMED-CT. Our system (MedSCS) is based on both rule-based methods and statistics-based methods which improve the performance and the scalability of MedSCS. In order to evaluate the over all of the system and measure the accuracy of the outcomes, we developed computation methods to calculate the parameters of precision rate, recall rate, F-score and exact confidence interval.

  10. Toward Semantic Interoperability in Home Health Care: Formally Representing OASIS Items for Integration into a Concept-oriented Terminology

    PubMed Central

    Choi, Jeungok; Jenkins, Melinda L.; Cimino, James J.; White, Thomas M.; Bakken, Suzanne

    2005-01-01

    Objective: The authors aimed to (1) formally represent OASIS-B1 concepts using the Logical Observation Identifiers, Names, and Codes (LOINC) semantic structure; (2) demonstrate integration of OASIS-B1 concepts into a concept-oriented terminology, the Medical Entities Dictionary (MED); (3) examine potential hierarchical structures within LOINC among OASIS-B1 and other nursing terms; and (4) illustrate a Web-based implementation for OASIS-B1 data entry using Dialogix, a software tool with a set of functions that supports complex data entry. Design and Measurements: Two hundred nine OASIS-B1 items were dissected into the six elements of the LOINC semantic structure and then integrated into the MED hierarchy. Each OASIS-B1 term was matched to LOINC-coded nursing terms, Home Health Care Classification, the Omaha System, and the Sign and Symptom Check-List for Persons with HIV, and the extent of the match was judged based on a scale of 0 (no match) to 4 (exact match). OASIS-B1 terms were implemented as a Web-based survey using Dialogix. Results: Of 209 terms, 204 were successfully dissected into the elements of the LOINC semantics structure and integrated into the MED with minor revisions of MED semantics. One hundred fifty-one OASIS-B1 terms were mapped to one or more of the LOINC-coded nursing terms. Conclusion: The LOINC semantic structure offers a standard way to add home health care data to a comprehensive patient record to facilitate data sharing for monitoring outcomes across sites and to further terminology management, decision support, and accurate information retrieval for evidence-based practice. The cross-mapping results support the possibility of a hierarchical structure of the OASIS-B1 concepts within nursing terminologies in the LOINC database. PMID:15802480

  11. Toward semantic interoperability in home health care: formally representing OASIS items for integration into a concept-oriented terminology.

    PubMed

    Choi, Jeungok; Jenkins, Melinda L; Cimino, James J; White, Thomas M; Bakken, Suzanne

    2005-01-01

    The authors aimed to (1) formally represent OASIS-B1 concepts using the Logical Observation Identifiers, Names, and Codes (LOINC) semantic structure; (2) demonstrate integration of OASIS-B1 concepts into a concept-oriented terminology, the Medical Entities Dictionary (MED); (3) examine potential hierarchical structures within LOINC among OASIS-B1 and other nursing terms; and (4) illustrate a Web-based implementation for OASIS-B1 data entry using Dialogix, a software tool with a set of functions that supports complex data entry. Two hundred nine OASIS-B1 items were dissected into the six elements of the LOINC semantic structure and then integrated into the MED hierarchy. Each OASIS-B1 term was matched to LOINC-coded nursing terms, Home Health Care Classification, the Omaha System, and the Sign and Symptom Check-List for Persons with HIV, and the extent of the match was judged based on a scale of 0 (no match) to 4 (exact match). OASIS-B1 terms were implemented as a Web-based survey using Dialogix. Of 209 terms, 204 were successfully dissected into the elements of the LOINC semantics structure and integrated into the MED with minor revisions of MED semantics. One hundred fifty-one OASIS-B1 terms were mapped to one or more of the LOINC-coded nursing terms. The LOINC semantic structure offers a standard way to add home health care data to a comprehensive patient record to facilitate data sharing for monitoring outcomes across sites and to further terminology management, decision support, and accurate information retrieval for evidence-based practice. The cross-mapping results support the possibility of a hierarchical structure of the OASIS-B1 concepts within nursing terminologies in the LOINC database.

  12. Rule Extracting based on MCG with its Application in Helicopter Power Train Fault Diagnosis

    NASA Astrophysics Data System (ADS)

    Wang, M.; Hu, N. Q.; Qin, G. J.

    2011-07-01

    In order to extract decision rules for fault diagnosis from incomplete historical test records for knowledge-based damage assessment of helicopter power train structure. A method that can directly extract the optimal generalized decision rules from incomplete information based on GrC was proposed. Based on semantic analysis of unknown attribute value, the granule was extended to handle incomplete information. Maximum characteristic granule (MCG) was defined based on characteristic relation, and MCG was used to construct the resolution function matrix. The optimal general decision rule was introduced, with the basic equivalent forms of propositional logic, the rules were extracted and reduction from incomplete information table. Combined with a fault diagnosis example of power train, the application approach of the method was present, and the validity of this method in knowledge acquisition was proved.

  13. Querying phenotype-genotype relationships on patient datasets using semantic web technology: the example of cerebrotendinous xanthomatosis

    PubMed Central

    2012-01-01

    Background Semantic Web technology can considerably catalyze translational genetics and genomics research in medicine, where the interchange of information between basic research and clinical levels becomes crucial. This exchange involves mapping abstract phenotype descriptions from research resources, such as knowledge databases and catalogs, to unstructured datasets produced through experimental methods and clinical practice. This is especially true for the construction of mutation databases. This paper presents a way of harmonizing abstract phenotype descriptions with patient data from clinical practice, and querying this dataset about relationships between phenotypes and genetic variants, at different levels of abstraction. Methods Due to the current availability of ontological and terminological resources that have already reached some consensus in biomedicine, a reuse-based ontology engineering approach was followed. The proposed approach uses the Ontology Web Language (OWL) to represent the phenotype ontology and the patient model, the Semantic Web Rule Language (SWRL) to bridge the gap between phenotype descriptions and clinical data, and the Semantic Query Web Rule Language (SQWRL) to query relevant phenotype-genotype bidirectional relationships. The work tests the use of semantic web technology in the biomedical research domain named cerebrotendinous xanthomatosis (CTX), using a real dataset and ontologies. Results A framework to query relevant phenotype-genotype bidirectional relationships is provided. Phenotype descriptions and patient data were harmonized by defining 28 Horn-like rules in terms of the OWL concepts. In total, 24 patterns of SWQRL queries were designed following the initial list of competency questions. As the approach is based on OWL, the semantic of the framework adapts the standard logical model of an open world assumption. Conclusions This work demonstrates how semantic web technologies can be used to support flexible representation and computational inference mechanisms required to query patient datasets at different levels of abstraction. The open world assumption is especially good for describing only partially known phenotype-genotype relationships, in a way that is easily extensible. In future, this type of approach could offer researchers a valuable resource to infer new data from patient data for statistical analysis in translational research. In conclusion, phenotype description formalization and mapping to clinical data are two key elements for interchanging knowledge between basic and clinical research. PMID:22849591

  14. Integration of Neuroimaging and Microarray Datasets through Mapping and Model-Theoretic Semantic Decomposition of Unstructured Phenotypes

    PubMed Central

    Pantazatos, Spiro P.; Li, Jianrong; Pavlidis, Paul; Lussier, Yves A.

    2009-01-01

    An approach towards heterogeneous neuroscience dataset integration is proposed that uses Natural Language Processing (NLP) and a knowledge-based phenotype organizer system (PhenOS) to link ontology-anchored terms to underlying data from each database, and then maps these terms based on a computable model of disease (SNOMED CT®). The approach was implemented using sample datasets from fMRIDC, GEO, The Whole Brain Atlas and Neuronames, and allowed for complex queries such as “List all disorders with a finding site of brain region X, and then find the semantically related references in all participating databases based on the ontological model of the disease or its anatomical and morphological attributes”. Precision of the NLP-derived coding of the unstructured phenotypes in each dataset was 88% (n = 50), and precision of the semantic mapping between these terms across datasets was 98% (n = 100). To our knowledge, this is the first example of the use of both semantic decomposition of disease relationships and hierarchical information found in ontologies to integrate heterogeneous phenotypes across clinical and molecular datasets. PMID:20495688

  15. Neural bases of event knowledge and syntax integration in comprehension of complex sentences.

    PubMed

    Malaia, Evie; Newman, Sharlene

    2015-01-01

    Comprehension of complex sentences is necessarily supported by both syntactic and semantic knowledge, but what linguistic factors trigger a readers' reliance on a specific system? This functional neuroimaging study orthogonally manipulated argument plausibility and verb event type to investigate cortical bases of the semantic effect on argument comprehension during reading. The data suggest that telic verbs facilitate online processing by means of consolidating the event schemas in episodic memory and by easing the computation of syntactico-thematic hierarchies in the left inferior frontal gyrus. The results demonstrate that syntax-semantics integration relies on trade-offs among a distributed network of regions for maximum comprehension efficiency.

  16. Semantically Interoperable XML Data

    PubMed Central

    Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel

    2013-01-01

    XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups. PMID:25298789

  17. Verbal fluency in bilingual Spanish/English Alzheimer's disease patients.

    PubMed

    Salvatierra, Judy; Rosselli, Monica; Acevedo, Amarilis; Duara, Ranjan

    2007-01-01

    Studies have demonstrated that in verbal fluency tests, monolinguals with Alzheimer's disease (AD) show greater difficulties retrieving words based on semantic rather than phonemic rules. The present study aimed to determine whether this difficulty was reproduced in both languages of Spanish/English bilinguals with mild to moderate AD whose primary language was Spanish. Performance on semantic and phonemic verbal fluency of 11 bilingual AD patients was compared to the performance of 11 cognitively normal, elderly bilingual individuals matched for gender, age, level of education, and degree of bilingualism. Cognitively normal subjects retrieved significantly more items under the semantic condition compared to the phonemic, whereas the performance of AD patients was similar under both conditions, suggesting greater decline in semantic verbal fluency tests. This pattern was produced in both languages, implying a related semantic decline in both languages. Results from this study should be considered preliminary because of the small sample size.

  18. InvestigationOrganizer: The Development and Testing of a Web-based Tool to Support Mishap Investigations

    NASA Technical Reports Server (NTRS)

    Carvalho, Robert F.; Williams, James; Keller, Richard; Sturken, Ian; Panontin, Tina

    2004-01-01

    InvestigationOrganizer (IO) is a collaborative web-based system designed to support the conduct of mishap investigations. IO provides a common repository for a wide range of mishap related information, and allows investigators to make explicit, shared, and meaningful links between evidence, causal models, findings and recommendations. It integrates the functionality of a database, a common document repository, a semantic knowledge network, a rule-based inference engine, and causal modeling and visualization. Thus far, IO has been used to support four mishap investigations within NASA, ranging from a small property damage case to the loss of the Space Shuttle Columbia. This paper describes how the functionality of IO supports mishap investigations and the lessons learned from the experience of supporting two of the NASA mishap investigations: the Columbia Accident Investigation and the CONTOUR Loss Investigation.

  19. A Semantic Transformation Methodology for the Secondary Use of Observational Healthcare Data in Postmarketing Safety Studies.

    PubMed

    Pacaci, Anil; Gonul, Suat; Sinaci, A Anil; Yuksel, Mustafa; Laleci Erturkmen, Gokce B

    2018-01-01

    Background: Utilization of the available observational healthcare datasets is key to complement and strengthen the postmarketing safety studies. Use of common data models (CDM) is the predominant approach in order to enable large scale systematic analyses on disparate data models and vocabularies. Current CDM transformation practices depend on proprietarily developed Extract-Transform-Load (ETL) procedures, which require knowledge both on the semantics and technical characteristics of the source datasets and target CDM. Purpose: In this study, our aim is to develop a modular but coordinated transformation approach in order to separate semantic and technical steps of transformation processes, which do not have a strict separation in traditional ETL approaches. Such an approach would discretize the operations to extract data from source electronic health record systems, alignment of the source, and target models on the semantic level and the operations to populate target common data repositories. Approach: In order to separate the activities that are required to transform heterogeneous data sources to a target CDM, we introduce a semantic transformation approach composed of three steps: (1) transformation of source datasets to Resource Description Framework (RDF) format, (2) application of semantic conversion rules to get the data as instances of ontological model of the target CDM, and (3) population of repositories, which comply with the specifications of the CDM, by processing the RDF instances from step 2. The proposed approach has been implemented on real healthcare settings where Observational Medical Outcomes Partnership (OMOP) CDM has been chosen as the common data model and a comprehensive comparative analysis between the native and transformed data has been conducted. Results: Health records of ~1 million patients have been successfully transformed to an OMOP CDM based database from the source database. Descriptive statistics obtained from the source and target databases present analogous and consistent results. Discussion and Conclusion: Our method goes beyond the traditional ETL approaches by being more declarative and rigorous. Declarative because the use of RDF based mapping rules makes each mapping more transparent and understandable to humans while retaining logic-based computability. Rigorous because the mappings would be based on computer readable semantics which are amenable to validation through logic-based inference methods.

  20. Semantic enrichment of clinical models towards semantic interoperability. The heart failure summary use case.

    PubMed

    Martínez-Costa, Catalina; Cornet, Ronald; Karlsson, Daniel; Schulz, Stefan; Kalra, Dipak

    2015-05-01

    To improve semantic interoperability of electronic health records (EHRs) by ontology-based mediation across syntactically heterogeneous representations of the same or similar clinical information. Our approach is based on a semantic layer that consists of: (1) a set of ontologies supported by (2) a set of semantic patterns. The first aspect of the semantic layer helps standardize the clinical information modeling task and the second shields modelers from the complexity of ontology modeling. We applied this approach to heterogeneous representations of an excerpt of a heart failure summary. Using a set of finite top-level patterns to derive semantic patterns, we demonstrate that those patterns, or compositions thereof, can be used to represent information from clinical models. Homogeneous querying of the same or similar information, when represented according to heterogeneous clinical models, is feasible. Our approach focuses on the meaning embedded in EHRs, regardless of their structure. This complex task requires a clear ontological commitment (ie, agreement to consistently use the shared vocabulary within some context), together with formalization rules. These requirements are supported by semantic patterns. Other potential uses of this approach, such as clinical models validation, require further investigation. We show how an ontology-based representation of a clinical summary, guided by semantic patterns, allows homogeneous querying of heterogeneous information structures. Whether there are a finite number of top-level patterns is an open question. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Breast Mass Detection in Digital Mammogram Based on Gestalt Psychology

    PubMed Central

    Bu, Qirong; Liu, Feihong; Zhang, Min; Ren, Yu; Lv, Yi

    2018-01-01

    Inspired by gestalt psychology, we combine human cognitive characteristics with knowledge of radiologists in medical image analysis. In this paper, a novel framework is proposed to detect breast masses in digitized mammograms. It can be divided into three modules: sensation integration, semantic integration, and verification. After analyzing the progress of radiologist's mammography screening, a series of visual rules based on the morphological characteristics of breast masses are presented and quantified by mathematical methods. The framework can be seen as an effective trade-off between bottom-up sensation and top-down recognition methods. This is a new exploratory method for the automatic detection of lesions. The experiments are performed on Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM) data sets. The sensitivity reached to 92% at 1.94 false positive per image (FPI) on MIAS and 93.84% at 2.21 FPI on DDSM. Our framework has achieved a better performance compared with other algorithms. PMID:29854359

  2. A-DaGO-Fun: an adaptable Gene Ontology semantic similarity-based functional analysis tool.

    PubMed

    Mazandu, Gaston K; Chimusa, Emile R; Mbiyavanga, Mamana; Mulder, Nicola J

    2016-02-01

    Gene Ontology (GO) semantic similarity measures are being used for biological knowledge discovery based on GO annotations by integrating biological information contained in the GO structure into data analyses. To empower users to quickly compute, manipulate and explore these measures, we introduce A-DaGO-Fun (ADaptable Gene Ontology semantic similarity-based Functional analysis). It is a portable software package integrating all known GO information content-based semantic similarity measures and relevant biological applications associated with these measures. A-DaGO-Fun has the advantage not only of handling datasets from the current high-throughput genome-wide applications, but also allowing users to choose the most relevant semantic similarity approach for their biological applications and to adapt a given module to their needs. A-DaGO-Fun is freely available to the research community at http://web.cbio.uct.ac.za/ITGOM/adagofun. It is implemented in Linux using Python under free software (GNU General Public Licence). gmazandu@cbio.uct.ac.za or Nicola.Mulder@uct.ac.za Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Articulation Management for Intelligent Integration of Information

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Tran, Peter B.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    When combining data from distinct sources, there is a need to share meta-data and other knowledge about various source domains. Due to semantic inconsistencies and heterogeneity of representations, problems arise in combining multiple domains when the domains are merged. The knowledge that is irrelevant to the task of interoperation will be included, making the result unnecessarily complex. This heterogeneity problem can be eliminated by mediating the conflicts and managing the intersections of the domains. For interoperation and intelligent access to heterogeneous information, the focus is on the intersection of the knowledge, since intersection will define the required articulation rules. An algebra over domain has been proposed to use articulation rules to support disciplined manipulation of domain knowledge resources. The objective of a domain algebra is to provide the capability for interrogating many domain knowledge resources, which are largely semantically disjoint. The algebra supports formally the tasks of selecting, combining, extending, specializing, and modifying Components from a diverse set of domains. This paper presents a domain algebra and demonstrates the use of articulation rules to link declarative interfaces for Internet and enterprise applications. In particular, it discusses the articulation implementation as part of a production system capable of operating over the domain described by the IDL (interface description language) of objects registered in multiple CORBA servers.

  4. Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation

    PubMed Central

    Peelle, Jonathan E.; Bonner, Michael F.; Grossman, Murray

    2016-01-01

    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., “leaf” and “wet” can be combined into the more complex representation “wet leaf”). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. PMID:27030767

  5. Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation.

    PubMed

    Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F; Grossman, Murray; Hamilton, Roy H

    2016-03-30

    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend "plaid" and "jacket" as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of "plaid jacket." Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like "tiny radish" relative to non-meaningful combinations, such as "fast blueberry," when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic constituents (e.g., "leaf" and "wet" can be combined into the more complex representation "wet leaf"). Here, we present a novel approach to studying integrative processes in semantic memory by applying focal brain stimulation to a heteromodal cortical hub implicated in semantic processing. Our findings demonstrate a causal role of the left angular gyrus in lexical-semantic integration and provide motivation for novel therapeutic applications in patients with lexical-semantic deficits. Copyright © 2016 the authors 0270-6474/16/363829-10$15.00/0.

  6. GalenOWL: Ontology-based drug recommendations discovery

    PubMed Central

    2012-01-01

    Background Identification of drug-drug and drug-diseases interactions can pose a difficult problem to cope with, as the increasingly large number of available drugs coupled with the ongoing research activities in the pharmaceutical domain, make the task of discovering relevant information difficult. Although international standards, such as the ICD-10 classification and the UNII registration, have been developed in order to enable efficient knowledge sharing, medical staff needs to be constantly updated in order to effectively discover drug interactions before prescription. The use of Semantic Web technologies has been proposed in earlier works, in order to tackle this problem. Results This work presents a semantic-enabled online service, named GalenOWL, capable of offering real time drug-drug and drug-diseases interaction discovery. For enabling this kind of service, medical information and terminology had to be translated to ontological terms and be appropriately coupled with medical knowledge of the field. International standards such as the aforementioned ICD-10 and UNII, provide the backbone of the common representation of medical data, while the medical knowledge of drug interactions is represented by a rule base which makes use of the aforementioned standards. Details of the system architecture are presented while also giving an outline of the difficulties that had to be overcome. A comparison of the developed ontology-based system with a similar system developed using a traditional business logic rule engine is performed, giving insights on the advantages and drawbacks of both implementations. Conclusions The use of Semantic Web technologies has been found to be a good match for developing drug recommendation systems. Ontologies can effectively encapsulate medical knowledge and rule-based reasoning can capture and encode the drug interactions knowledge. PMID:23256945

  7. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases.

    PubMed

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-07-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.

  8. The OceanLink Project

    NASA Astrophysics Data System (ADS)

    Narock, T.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Finin, T.; Hitzler, P.; Krisnadhi, A.; Raymond, L. M.; Shepherd, A.; Wiebe, P. H.

    2014-12-01

    A wide spectrum of maturing methods and tools, collectively characterized as the Semantic Web, is helping to vastly improve the dissemination of scientific research. Creating semantic integration requires input from both domain and cyberinfrastructure scientists. OceanLink, an NSF EarthCube Building Block, is demonstrating semantic technologies through the integration of geoscience data repositories, library holdings, conference abstracts, and funded research awards. Meeting project objectives involves applying semantic technologies to support data representation, discovery, sharing and integration. Our semantic cyberinfrastructure components include ontology design patterns, Linked Data collections, semantic provenance, and associated services to enhance data and knowledge discovery, interoperation, and integration. We discuss how these components are integrated, the continued automated and semi-automated creation of semantic metadata, and techniques we have developed to integrate ontologies, link resources, and preserve provenance and attribution.

  9. Semantic-Web Technology: Applications at NASA

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2004-01-01

    We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.

  10. Integrating Semantic Information in Metadata Descriptions for a Geoscience-wide Resource Inventory.

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Richard, S. M.; Gupta, A.; Valentine, D.; Whitenack, T.; Ozyurt, I. B.; Grethe, J. S.; Schachne, A.

    2016-12-01

    Integrating semantic information into legacy metadata catalogs is a challenging issue and so far has been mostly done on a limited scale. We present experience of CINERGI (Community Inventory of Earthcube Resources for Geoscience Interoperability), an NSF Earthcube Building Block project, in creating a large cross-disciplinary catalog of geoscience information resources to enable cross-domain discovery. The project developed a pipeline for automatically augmenting resource metadata, in particular generating keywords that describe metadata documents harvested from multiple geoscience information repositories or contributed by geoscientists through various channels including surveys and domain resource inventories. The pipeline examines available metadata descriptions using text parsing, vocabulary management and semantic annotation and graph navigation services of GeoSciGraph. GeoSciGraph, in turn, relies on a large cross-domain ontology of geoscience terms, which bridges several independently developed ontologies or taxonomies including SWEET, ENVO, YAGO, GeoSciML, GCMD, SWO, and CHEBI. The ontology content enables automatic extraction of keywords reflecting science domains, equipment used, geospatial features, measured properties, methods, processes, etc. We specifically focus on issues of cross-domain geoscience ontology creation, resolving several types of semantic conflicts among component ontologies or vocabularies, and constructing and managing facets for improved data discovery and navigation. The ontology and keyword generation rules are iteratively improved as pipeline results are presented to data managers for selective manual curation via a CINERGI Annotator user interface. We present lessons learned from applying CINERGI metadata augmentation pipeline to a number of federal agency and academic data registries, in the context of several use cases that require data discovery and integration across multiple earth science data catalogs of varying quality and completeness. The inventory is accessible at http://cinergi.sdsc.edu, and the CINERGI project web page is http://earthcube.org/group/cinergi

  11. Automatic markerless registration of point clouds with semantic-keypoint-based 4-points congruent sets

    NASA Astrophysics Data System (ADS)

    Ge, Xuming

    2017-08-01

    The coarse registration of point clouds from urban building scenes has become a key topic in applications of terrestrial laser scanning technology. Sampling-based algorithms in the random sample consensus (RANSAC) model have emerged as mainstream solutions to address coarse registration problems. In this paper, we propose a novel combined solution to automatically align two markerless point clouds from building scenes. Firstly, the method segments non-ground points from ground points. Secondly, the proposed method detects feature points from each cross section and then obtains semantic keypoints by connecting feature points with specific rules. Finally, the detected semantic keypoints from two point clouds act as inputs to a modified 4PCS algorithm. Examples are presented and the results compared with those of K-4PCS to demonstrate the main contributions of the proposed method, which are the extension of the original 4PCS to handle heavy datasets and the use of semantic keypoints to improve K-4PCS in relation to registration accuracy and computational efficiency.

  12. Algorithms and semantic infrastructure for mutation impact extraction and grounding.

    PubMed

    Laurila, Jonas B; Naderi, Nona; Witte, René; Riazanov, Alexandre; Kouznetsov, Alexandre; Baker, Christopher J O

    2010-12-02

    Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend on manually curated genomic variation databases. We present the first rule-based approach for the extraction of mutation impacts on protein properties, categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration) framework. We address the problem of access to legacy mutation data in unstructured form through the creation of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing to a broad spectrum of consumers.

  13. The use and limits of scientific names in biological informatics.

    PubMed

    Remsen, David

    2016-01-01

    Scientific names serve to label biodiversity information: information related to species. Names, and their underlying taxonomic definitions, however, are unstable and ambiguous. This negatively impacts the utility of names as identifiers and as effective indexing tools in biological informatics where names are commonly utilized for searching, retrieving and integrating information about species. Semiotics provides a general model for describing the relationship between taxon names and taxon concepts. It distinguishes syntactics, which governs relationships among names, from semantics, which represents the relations between those labels and the taxa to which they refer. In the semiotic context, changes in semantics (i.e., taxonomic circumscription) do not consistently result in a corresponding and reflective change in syntax. Further, when syntactic changes do occur, they may be in response to semantic changes or in response to syntactic rules. This lack of consistency in the cardinal relationship between names and taxa places limits on how scientific names may be used in biological informatics in initially anchoring, and in the subsequent retrieval and integration, of relevant biodiversity information. Precision and recall are two measures of relevance. In biological taxonomy, recall is negatively impacted by changes or ambiguity in syntax while precision is negatively impacted when there are changes or ambiguity in semantics. Because changes in syntax are not correlated with changes in semantics, scientific names may be used, singly or conflated into synonymous sets, to improve recall in pattern recognition or search and retrieval. Names cannot be used, however, to improve precision. This is because changes in syntax do not uniquely identify changes in circumscription. These observations place limits on the utility of scientific names within biological informatics applications that rely on names as identifiers for taxa. Taxonomic systems and services used to organize and integrate information about taxa must accommodate the inherent semantic ambiguity of scientific names. The capture and articulation of circumscription differences (i.e., multiple taxon concepts) within such systems must be accompanied with distinct concept identifiers that can be employed in association with, or in replacement of, traditional scientific names.

  14. SAS- Semantic Annotation Service for Geoscience resources on the web

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.; Marini, L.; Li, R.; Jiang, P.

    2015-12-01

    There is a growing need for increased integration across the data and model resources that are disseminated on the web to advance their reuse across different earth science applications. Meaningful reuse of resources requires semantic metadata to realize the semantic web vision for allowing pragmatic linkage and integration among resources. Semantic metadata associates standard metadata with resources to turn them into semantically-enabled resources on the web. However, the lack of a common standardized metadata framework as well as the uncoordinated use of metadata fields across different geo-information systems, has led to a situation in which standards and related Standard Names abound. To address this need, we have designed SAS to provide a bridge between the core ontologies required to annotate resources and information systems in order to enable queries and analysis over annotation from a single environment (web). SAS is one of the services that are provided by the Geosematnic framework, which is a decentralized semantic framework to support the integration between models and data and allow semantically heterogeneous to interact with minimum human intervention. Here we present the design of SAS and demonstrate its application for annotating data and models. First we describe how predicates and their attributes are extracted from standards and ingested in the knowledge-base of the Geosemantic framework. Then we illustrate the application of SAS in annotating data managed by SEAD and annotating simulation models that have web interface. SAS is a step in a broader approach to raise the quality of geoscience data and models that are published on the web and allow users to better search, access, and use of the existing resources based on standard vocabularies that are encoded and published using semantic technologies.

  15. Enhancing acronym/abbreviation knowledge bases with semantic information.

    PubMed

    Torii, Manabu; Liu, Hongfang

    2007-10-11

    In the biomedical domain, a terminology knowledge base that associates acronyms/abbreviations (denoted as SFs) with the definitions (denoted as LFs) is highly needed. For the construction such terminology knowledge base, we investigate the feasibility to build a system automatically assigning semantic categories to LFs extracted from text. Given a collection of pairs (SF,LF) derived from text, we i) assess the coverage of LFs and pairs (SF,LF) in the UMLS and justify the need of a semantic category assignment system; and ii) automatically derive name phrases annotated with semantic category and construct a system using machine learning. Utilizing ADAM, an existing collection of (SF,LF) pairs extracted from MEDLINE, our system achieved an f-measure of 87% when assigning eight UMLS-based semantic groups to LFs. The system has been incorporated into a web interface which integrates SF knowledge from multiple SF knowledge bases. Web site: http://gauss.dbb.georgetown.edu/liblab/SFThesurus.

  16. Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara

    Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.

  17. Architecture and prototypical implementation of a semantic querying system for big Earth observation image bases

    PubMed Central

    Tiede, Dirk; Baraldi, Andrea; Sudmanns, Martin; Belgiu, Mariana; Lang, Stefan

    2017-01-01

    ABSTRACT Spatiotemporal analytics of multi-source Earth observation (EO) big data is a pre-condition for semantic content-based image retrieval (SCBIR). As a proof of concept, an innovative EO semantic querying (EO-SQ) subsystem was designed and prototypically implemented in series with an EO image understanding (EO-IU) subsystem. The EO-IU subsystem is automatically generating ESA Level 2 products (scene classification map, up to basic land cover units) from optical satellite data. The EO-SQ subsystem comprises a graphical user interface (GUI) and an array database embedded in a client server model. In the array database, all EO images are stored as a space-time data cube together with their Level 2 products generated by the EO-IU subsystem. The GUI allows users to (a) develop a conceptual world model based on a graphically supported query pipeline as a combination of spatial and temporal operators and/or standard algorithms and (b) create, save and share within the client-server architecture complex semantic queries/decision rules, suitable for SCBIR and/or spatiotemporal EO image analytics, consistent with the conceptual world model. PMID:29098143

  18. Entrez Neuron RDFa: a pragmatic semantic web application for data integration in neuroscience research.

    PubMed

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2009-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present "Entrez Neuron", a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the 'HCLS knowledgebase' developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrate how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup.

  19. Anatomy of Data Integration

    PubMed Central

    Brazhnik, Olga; Jones, John F.

    2007-01-01

    Producing reliable information is the ultimate goal of data processing. The ocean of data created with the advances of science and technologies calls for integration of data coming from heterogeneous sources that are diverse in their purposes, business rules, underlying models and enabling technologies. Reference models, Semantic Web, standards, ontology, and other technologies enable fast and efficient merging of heterogeneous data, while the reliability of produced information is largely defined by how well the data represent the reality. In this paper we initiate a framework for assessing the informational value of data that includes data dimensions; aligning data quality with business practices; identifying authoritative sources and integration keys; merging models; uniting updates of varying frequency and overlapping or gapped data sets. PMID:17071142

  20. A Framework of Knowledge Integration and Discovery for Supporting Pharmacogenomics Target Predication of Adverse Drug Events: A Case Study of Drug-Induced Long QT Syndrome.

    PubMed

    Jiang, Guoqian; Wang, Chen; Zhu, Qian; Chute, Christopher G

    2013-01-01

    Knowledge-driven text mining is becoming an important research area for identifying pharmacogenomics target genes. However, few of such studies have been focused on the pharmacogenomics targets of adverse drug events (ADEs). The objective of the present study is to build a framework of knowledge integration and discovery that aims to support pharmacogenomics target predication of ADEs. We integrate a semantically annotated literature corpus Semantic MEDLINE with a semantically coded ADE knowledgebase known as ADEpedia using a semantic web based framework. We developed a knowledge discovery approach combining a network analysis of a protein-protein interaction (PPI) network and a gene functional classification approach. We performed a case study of drug-induced long QT syndrome for demonstrating the usefulness of the framework in predicting potential pharmacogenomics targets of ADEs.

  1. Modularising ontology and designing inference patterns to personalise health condition assessment: the case of obesity.

    PubMed

    Sojic, Aleksandra; Terkaj, Walter; Contini, Giorgia; Sacco, Marco

    2016-05-04

    The public health initiatives for obesity prevention are increasingly exploiting the advantages of smart technologies that can register various kinds of data related to physical, physiological, and behavioural conditions. Since individual features and habits vary among people, the design of appropriate intervention strategies for motivating changes in behavioural patterns towards a healthy lifestyle requires the interpretation and integration of collected information, while considering individual profiles in a personalised manner. The ontology-based modelling is recognised as a promising approach in facing the interoperability and integration of heterogeneous information related to characterisation of personal profiles. The presented ontology captures individual profiles across several obesity-related knowledge-domains structured into dedicated modules in order to support inference about health condition, physical features, behavioural habits associated with a person, and relevant changes over time. The modularisation strategy is designed to facilitate ontology development, maintenance, and reuse. The domain-specific modules formalised in the Web Ontology Language (OWL) integrate the domain-specific sets of rules formalised in the Semantic Web Rule Language (SWRL). The inference rules follow a modelling pattern designed to support personalised assessment of health condition as age- and gender-specific. The test cases exemplify a personalised assessment of the obesity-related health conditions for the population of teenagers. The paper addresses several issues concerning the modelling of normative concepts related to obesity and depicts how the public health concern impacts classification of teenagers according to their phenotypes. The modelling choices regarding the ontology-structure are explained in the context of the modelling goal to integrate multiple knowledge-domains and support reasoning about the individual changes over time. The presented modularisation pattern enhances reusability of the domain-specific modules across various health care domains.

  2. Semantics based approach for analyzing disease-target associations.

    PubMed

    Kaalia, Rama; Ghosh, Indira

    2016-08-01

    A complex disease is caused by heterogeneous biological interactions between genes and their products along with the influence of environmental factors. There have been many attempts for understanding the cause of these diseases using experimental, statistical and computational methods. In the present work the objective is to address the challenge of representation and integration of information from heterogeneous biomedical aspects of a complex disease using semantics based approach. Semantic web technology is used to design Disease Association Ontology (DAO-db) for representation and integration of disease associated information with diabetes as the case study. The functional associations of disease genes are integrated using RDF graphs of DAO-db. Three semantic web based scoring algorithms (PageRank, HITS (Hyperlink Induced Topic Search) and HITS with semantic weights) are used to score the gene nodes on the basis of their functional interactions in the graph. Disease Association Ontology for Diabetes (DAO-db) provides a standard ontology-driven platform for describing genes, proteins, pathways involved in diabetes and for integrating functional associations from various interaction levels (gene-disease, gene-pathway, gene-function, gene-cellular component and protein-protein interactions). An automatic instance loader module is also developed in present work that helps in adding instances to DAO-db on a large scale. Our ontology provides a framework for querying and analyzing the disease associated information in the form of RDF graphs. The above developed methodology is used to predict novel potential targets involved in diabetes disease from the long list of loose (statistically associated) gene-disease associations. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A Wireless Sensor Network-Based Approach with Decision Support for Monitoring Lake Water Quality.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Chen, Shaoli; Zhu, Xiaomin

    2015-11-19

    Online monitoring and water quality analysis of lakes are urgently needed. A feasible and effective approach is to use a Wireless Sensor Network (WSN). Lake water environments, like other real world environments, present many changing and unpredictable situations. To ensure flexibility in such an environment, the WSN node has to be prepared to deal with varying situations. This paper presents a WSN self-configuration approach for lake water quality monitoring. The approach is based on the integration of a semantic framework, where a reasoner can make decisions on the configuration of WSN services. We present a WSN ontology and the relevant water quality monitoring context information, which considers its suitability in a pervasive computing environment. We also propose a rule-based reasoning engine that is used to conduct decision support through reasoning techniques and context-awareness. To evaluate the approach, we conduct usability experiments and performance benchmarks.

  4. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2001-01-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  5. Knowledge-based approach to video content classification

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Wong, Edward K.

    2000-12-01

    A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video classification is encoded as a set of rules in the rule base. The left-hand-sides of rules contain high level and low level features, while the right-hand-sides of rules contain intermediate results or conclusions. Our current implementation includes features computed from motion, color, and text extracted from video frames. Our current rule set allows us to classify input video into one of five classes: news, weather, reporting, commercial, basketball and football. We use MYCIN's inexact reasoning method for combining evidences, and to handle the uncertainties in the features and in the classification results. We obtained good results in a preliminary experiment, and it demonstrated the validity of the proposed approach.

  6. Archetype-based semantic integration and standardization of clinical data.

    PubMed

    Moner, David; Maldonado, Jose A; Bosca, Diego; Fernandez, Jesualdo T; Angulo, Carlos; Crespo, Pere; Vivancos, Pedro J; Robles, Montserrat

    2006-01-01

    One of the basic needs for any healthcare professional is to be able to access to clinical information of patients in an understandable and normalized way. The lifelong clinical information of any person supported by electronic means configures his/her Electronic Health Record (EHR). This information is usually distributed among several independent and heterogeneous systems that may be syntactically or semantically incompatible. The Dual Model architecture has appeared as a new proposal for maintaining a homogeneous representation of the EHR with a clear separation between information and knowledge. Information is represented by a Reference Model which describes common data structures with minimal semantics. Knowledge is specified by archetypes, which are formal representations of clinical concepts built upon a particular Reference Model. This kind of architecture is originally thought for implantation of new clinical information systems, but archetypes can be also used for integrating data of existing and not normalized systems, adding at the same time a semantic meaning to the integrated data. In this paper we explain the possible use of a Dual Model approach for semantic integration and standardization of heterogeneous clinical data sources and present LinkEHR-Ed, a tool for developing archetypes as elements for integration purposes. LinkEHR-Ed has been designed to be easily used by the two main participants of the creation process of archetypes for clinical data integration: the Health domain expert and the Information Technologies domain expert.

  7. Knowledge management for systems biology a general and visually driven framework applied to translational medicine.

    PubMed

    Maier, Dieter; Kalus, Wenzel; Wolff, Martin; Kalko, Susana G; Roca, Josep; Marin de Mas, Igor; Turan, Nil; Cascante, Marta; Falciani, Francesco; Hernandez, Miguel; Villà-Freixa, Jordi; Losko, Sascha

    2011-03-05

    To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype-phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene--disease and gene--compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.

  8. Knowledge management for systems biology a general and visually driven framework applied to translational medicine

    PubMed Central

    2011-01-01

    Background To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development. PMID:21375767

  9. Auto-Generated Semantic Processing Services

    NASA Technical Reports Server (NTRS)

    Davis, Rodney; Hupf, Greg

    2009-01-01

    Auto-Generated Semantic Processing (AGSP) Services is a suite of software tools for automated generation of other computer programs, denoted cross-platform semantic adapters, that support interoperability of computer-based communication systems that utilize a variety of both new and legacy communication software running in a variety of operating- system/computer-hardware combinations. AGSP has numerous potential uses in military, space-exploration, and other government applications as well as in commercial telecommunications. The cross-platform semantic adapters take advantage of common features of computer- based communication systems to enforce semantics, messaging protocols, and standards of processing of streams of binary data to ensure integrity of data and consistency of meaning among interoperating systems. The auto-generation aspect of AGSP Services reduces development time and effort by emphasizing specification and minimizing implementation: In effect, the design, building, and debugging of software for effecting conversions among complex communication protocols, custom device mappings, and unique data-manipulation algorithms is replaced with metadata specifications that map to an abstract platform-independent communications model. AGSP Services is modular and has been shown to be easily integrable into new and legacy NASA flight and ground communication systems.

  10. Hybrid Semantic Analysis for Mapping Adverse Drug Reaction Mentions in Tweets to Medical Terminology.

    PubMed

    Emadzadeh, Ehsan; Sarker, Abeed; Nikfarjam, Azadeh; Gonzalez, Graciela

    2017-01-01

    Social networks, such as Twitter, have become important sources for active monitoring of user-reported adverse drug reactions (ADRs). Automatic extraction of ADR information can be crucial for healthcare providers, drug manufacturers, and consumers. However, because of the non-standard nature of social media language, automatically extracted ADR mentions need to be mapped to standard forms before they can be used by operational pharmacovigilance systems. We propose a modular natural language processing pipeline for mapping (normalizing) colloquial mentions of ADRs to their corresponding standardized identifiers. We seek to accomplish this task and enable customization of the pipeline so that distinct unlabeled free text resources can be incorporated to use the system for other normalization tasks. Our approach, which we call Hybrid Semantic Analysis (HSA), sequentially employs rule-based and semantic matching algorithms for mapping user-generated mentions to concept IDs in the Unified Medical Language System vocabulary. The semantic matching component of HSA is adaptive in nature and uses a regression model to combine various measures of semantic relatedness and resources to optimize normalization performance on the selected data source. On a publicly available corpus, our normalization method achieves 0.502 recall and 0.823 precision (F-measure: 0.624). Our proposed method outperforms a baseline based on latent semantic analysis and another that uses MetaMap.

  11. Building validation tools for knowledge-based systems

    NASA Technical Reports Server (NTRS)

    Stachowitz, R. A.; Chang, C. L.; Stock, T. S.; Combs, J. B.

    1987-01-01

    The Expert Systems Validation Associate (EVA), a validation system under development at the Lockheed Artificial Intelligence Center for more than a year, provides a wide range of validation tools to check the correctness, consistency and completeness of a knowledge-based system. A declarative meta-language (higher-order language), is used to create a generic version of EVA to validate applications written in arbitrary expert system shells. The architecture and functionality of EVA are presented. The functionality includes Structure Check, Logic Check, Extended Structure Check (using semantic information), Extended Logic Check, Semantic Check, Omission Check, Rule Refinement, Control Check, Test Case Generation, Error Localization, and Behavior Verification.

  12. Use of standard vocabulary services in validation of water resources data

    NASA Astrophysics Data System (ADS)

    Yu, Jonathan; Cox, Simon; Ratcliffe, David

    2010-05-01

    Ontology repositories are increasingly being exposed through vocabulary and concept services. Primarily this is in support of resource discovery. Thesaurus functionality and even more sophisticated reasoning offers the possibility of overcoming the limitations of simple text-matching and tagging which is the basis of most search. However, controlled vocabularies have other important roles in distributed systems: in particular in constraining content validity. A national water information system established by the Australian Bureau of Meterorology ('the Bureau') has deployed a system for ingestion of data from multiple providers. This uses a http interface onto separately maintained vocabulary services as part of the quality assurance chain. With over 200 data providers potentially transferring data to the Bureau, a standard XML-based Water Data Transfer Format (WDTF) was developed for receipt of data into an integrated national water information system. The WDTF schema was built upon standards from the Open Geospatial Consortium (OGC). The structure and syntax specified by a W3C XML Schema is complemented by additional constraints described using Schematron. These implement important content requirements and business rules including: • Restricted cardinality: where optional elements and attributes inherited from the base standards become mandatory in the application, or repeatable elements or attributes are limited to one or omitted. For example, the sampledFeature element from O&M is optional but is mandatory for a samplingPoint element in WDTF. • Vocabulary checking: WDTF data use seventeen vocabularies or code lists derived from Regulations under the Commonwealth Water Act 2007. Examples of codelists are the Australian Water Regulations list, observed property vocabulary, and units of measures. • Contextual constraints: in many places, the permissible value is dependent on the value of another field. For example, within observations the unit of measure must be commensurate with the observed property type Validation of data submitted in WDTF uses a two-pass approach. First, syntax and structural validation is performed by standard XML Schema validation tools. Second, validation of contextual constraints and code list checking is performed using a hybrid method combining context-sensitive rule-based validation (allowing the rules to be expressed within a given context) and semantic vocabulary services. Schematron allows rules to incorporate assertions of XPath expressions to access and constrain element content, therefore enabling contextual constraints. Schematron is also used to perform element cardinality checking. The vocabularies or code lists are formalized in SKOS (Simple Knowledge Organization System), an RDF-based language. SKOS provides mechanisms to define concepts, associate them with (multi-lingual) labels or terms, and record thesaurus-like relationships between them. The vocabularies are managed in a RDF database or semantic triple store. Querying is implemented as a semantic vocabulary service, with an http-based API that allows queries to be issued from rules written in Schematron. WDTF has required development and deployment of some ontologies whose scope is much more general than this application, in particular covering 'observed properties' and 'units of measure', which also have to be related to each other and consistent with the dimensional analysis. Separation of the two validation passes reflects the separate governance and stability of the structural and content rules, and allows an organisation's business rules to be moved out of the XML schema definition and the XML schema to be reused by other businesses with their own specific rules. With the general approach proven, harmonization opportunities with more generic services are being explored, such as the GEMET API for SKOS, developed by the European Environment Agency. Acknowledgements: The authors would like to thank the AUSCOPE team for their development and support provided of the vocabulary services.

  13. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases

    PubMed Central

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-01-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org. PMID:21632604

  14. Ambient-aware continuous care through semantic context dissemination.

    PubMed

    Ongenae, Femke; Famaey, Jeroen; Verstichel, Stijn; De Zutter, Saar; Latré, Steven; Ackaert, Ann; Verhoeve, Piet; De Turck, Filip

    2014-12-04

    The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e.g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate.The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results.

  15. Neural Substrates of Semantic Prospection – Evidence from the Dementias

    PubMed Central

    Irish, Muireann; Eyre, Nadine; Dermody, Nadene; O’Callaghan, Claire; Hodges, John R.; Hornberger, Michael; Piguet, Olivier

    2016-01-01

    The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts. PMID:27252632

  16. Panacea, a semantic-enabled drug recommendations discovery framework.

    PubMed

    Doulaverakis, Charalampos; Nikolaidis, George; Kleontas, Athanasios; Kompatsiaris, Ioannis

    2014-03-06

    Personalized drug prescription can be benefited from the use of intelligent information management and sharing. International standard classifications and terminologies have been developed in order to provide unique and unambiguous information representation. Such standards can be used as the basis of automated decision support systems for providing drug-drug and drug-disease interaction discovery. Additionally, Semantic Web technologies have been proposed in earlier works, in order to support such systems. The paper presents Panacea, a semantic framework capable of offering drug-drug and drug-diseases interaction discovery. For enabling this kind of service, medical information and terminology had to be translated to ontological terms and be appropriately coupled with medical knowledge of the field. International standard classifications and terminologies, provide the backbone of the common representation of medical data while the medical knowledge of drug interactions is represented by a rule base which makes use of the aforementioned standards. Representation is based on a lightweight ontology. A layered reasoning approach is implemented where at the first layer ontological inference is used in order to discover underlying knowledge, while at the second layer a two-step rule selection strategy is followed resulting in a computationally efficient reasoning approach. Details of the system architecture are presented while also giving an outline of the difficulties that had to be overcome. Panacea is evaluated both in terms of quality of recommendations against real clinical data and performance. The quality recommendation gave useful insights regarding requirements for real world deployment and revealed several parameters that affected the recommendation results. Performance-wise, Panacea is compared to a previous published work by the authors, a service for drug recommendations named GalenOWL, and presents their differences in modeling and approach to the problem, while also pinpointing the advantages of Panacea. Overall, the paper presents a framework for providing an efficient drug recommendations service where Semantic Web technologies are coupled with traditional business rule engines.

  17. Semantic Theme Analysis of Pilot Incident Reports

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar

    2009-01-01

    Pilots report accidents or incidents during take-off, on flight and landing to airline authorities and Federal aviation authority as well. The description of pilot reports for an incident contains technical terms related to Flight instruments and operations. Normal text mining approaches collect keywords from text documents and relate them among documents that are stored in database. Present approach will extract specific theme analysis of incident reports and semantically relate hierarchy of terms assigning weights of themes. Once the theme extraction has been performed for a given document, a unique key can be assigned to that document to cross linking the documents. Semantic linking will be used to categorize the documents based on specific rules that can help an end-user to analyze certain types of accidents. This presentation outlines the architecture of text mining for pilot incident reports for autonomous categorization of pilot incident reports using semantic theme analysis.

  18. Using Semantic Web technologies for the generation of domain-specific templates to support clinical study metadata standards.

    PubMed

    Jiang, Guoqian; Evans, Julie; Endle, Cory M; Solbrig, Harold R; Chute, Christopher G

    2016-01-01

    The Biomedical Research Integrated Domain Group (BRIDG) model is a formal domain analysis model for protocol-driven biomedical research, and serves as a semantic foundation for application and message development in the standards developing organizations (SDOs). The increasing sophistication and complexity of the BRIDG model requires new approaches to the management and utilization of the underlying semantics to harmonize domain-specific standards. The objective of this study is to develop and evaluate a Semantic Web-based approach that integrates the BRIDG model with ISO 21090 data types to generate domain-specific templates to support clinical study metadata standards development. We developed a template generation and visualization system based on an open source Resource Description Framework (RDF) store backend, a SmartGWT-based web user interface, and a "mind map" based tool for the visualization of generated domain-specific templates. We also developed a RESTful Web Service informed by the Clinical Information Modeling Initiative (CIMI) reference model for access to the generated domain-specific templates. A preliminary usability study is performed and all reviewers (n = 3) had very positive responses for the evaluation questions in terms of the usability and the capability of meeting the system requirements (with the average score of 4.6). Semantic Web technologies provide a scalable infrastructure and have great potential to enable computable semantic interoperability of models in the intersection of health care and clinical research.

  19. Semantic web for integrated network analysis in biomedicine.

    PubMed

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  20. Ontology-Based Retrieval of Spatially Related Objects for Location Based Services

    NASA Astrophysics Data System (ADS)

    Haav, Hele-Mai; Kaljuvee, Aivi; Luts, Martin; Vajakas, Toivo

    Advanced Location Based Service (LBS) applications have to integrate information stored in GIS, information about users' preferences (profile) as well as contextual information and information about application itself. Ontology engineering provides methods to semantically integrate several data sources. We propose an ontology-driven LBS development framework: the paper describes the architecture of ontologies and their usage for retrieval of spatially related objects relevant to the user. Our main contribution is to enable personalised ontology driven LBS by providing a novel approach for defining personalised semantic spatial relationships by means of ontologies. The approach is illustrated by an industrial case study.

  1. Does "a picture is worth 1000 words" apply to iconic Chinese words? Relationship of Chinese words and pictures.

    PubMed

    Lo, Shih-Yu; Yeh, Su-Ling

    2018-05-29

    The meaning of a picture can be extracted rapidly, but the form-to-meaning relationship is less obvious for printed words. In contrast to English words that follow grapheme-to-phoneme correspondence rule, the iconic nature of Chinese words might predispose them to activate their semantic representations more directly from their orthographies. By using the paradigm of repetition blindness (RB) that taps into the early level of word processing, we examined whether Chinese words activate their semantic representations as directly as pictures do. RB refers to the failure to detect the second occurrence of an item when it is presented twice in temporal proximity. Previous studies showed RB for semantically related pictures, suggesting that pictures activate their semantic representations directly from their shapes and thus two semantically related pictures are represented as repeated. However, this does not apply to English words since no RB was found for English synonyms. In this study, we replicated the semantic RB effect for pictures, and further showed the absence of semantic RB for Chinese synonyms. Based on our findings, it is suggested that Chinese words are processed like English words, which do not activate their semantic representations as directly as pictures do.

  2. OrganismTagger: detection, normalization and grounding of organism entities in biomedical documents.

    PubMed

    Naderi, Nona; Kappler, Thomas; Baker, Christopher J O; Witte, René

    2011-10-01

    Semantic tagging of organism mentions in full-text articles is an important part of literature mining and semantic enrichment solutions. Tagged organism mentions also play a pivotal role in disambiguating other entities in a text, such as proteins. A high-precision organism tagging system must be able to detect the numerous forms of organism mentions, including common names as well as the traditional taxonomic groups: genus, species and strains. In addition, such a system must resolve abbreviations and acronyms, assign the scientific name and if possible link the detected mention to the NCBI Taxonomy database for further semantic queries and literature navigation. We present the OrganismTagger, a hybrid rule-based/machine learning system to extract organism mentions from the literature. It includes tools for automatically generating lexical and ontological resources from a copy of the NCBI Taxonomy database, thereby facilitating system updates by end users. Its novel ontology-based resources can also be reused in other semantic mining and linked data tasks. Each detected organism mention is normalized to a canonical name through the resolution of acronyms and abbreviations and subsequently grounded with an NCBI Taxonomy database ID. In particular, our system combines a novel machine-learning approach with rule-based and lexical methods for detecting strain mentions in documents. On our manually annotated OT corpus, the OrganismTagger achieves a precision of 95%, a recall of 94% and a grounding accuracy of 97.5%. On the manually annotated corpus of Linnaeus-100, the results show a precision of 99%, recall of 97% and grounding accuracy of 97.4%. The OrganismTagger, including supporting tools, resources, training data and manual annotations, as well as end user and developer documentation, is freely available under an open-source license at http://www.semanticsoftware.info/organism-tagger. witte@semanticsoftware.info.

  3. Knowledge-guided mutation in classification rules for autism treatment efficacy.

    PubMed

    Engle, Kelley; Rada, Roy

    2017-03-01

    Data mining methods in biomedical research might benefit by combining genetic algorithms with domain-specific knowledge. The objective of this research is to show how the evolution of treatment rules for autism might be guided. The semantic distance between two concepts in the taxonomy is measured by the number of relationships separating the concepts in the taxonomy. The hypothesis is that replacing a concept in a treatment rule will change the accuracy of the rule in direct proportion to the semantic distance between the concepts. The method uses a patient database and autism taxonomies. Treatment rules are developed with an algorithm that exploits the taxonomies. The results support the hypothesis. This research should both advance the understanding of autism data mining in particular and of knowledge-guided evolutionary search in biomedicine in general.

  4. Architectural approaches for HL7-based health information systems implementation.

    PubMed

    López, D M; Blobel, B

    2010-01-01

    Information systems integration is hard, especially when semantic and business process interoperability requirements need to be met. To succeed, a unified methodology, approaching different aspects of systems architecture such as business, information, computational, engineering and technology viewpoints, has to be considered. The paper contributes with an analysis and demonstration on how the HL7 standard set can support health information systems integration. Based on the Health Information Systems Development Framework (HIS-DF), common architectural models for HIS integration are analyzed. The framework is a standard-based, consistent, comprehensive, customizable, scalable methodology that supports the design of semantically interoperable health information systems and components. Three main architectural models for system integration are analyzed: the point to point interface, the messages server and the mediator models. Point to point interface and messages server models are completely supported by traditional HL7 version 2 and version 3 messaging. The HL7 v3 standard specification, combined with service-oriented, model-driven approaches provided by HIS-DF, makes the mediator model possible. The different integration scenarios are illustrated by describing a proof-of-concept implementation of an integrated public health surveillance system based on Enterprise Java Beans technology. Selecting the appropriate integration architecture is a fundamental issue of any software development project. HIS-DF provides a unique methodological approach guiding the development of healthcare integration projects. The mediator model - offered by the HIS-DF and supported in HL7 v3 artifacts - is the more promising one promoting the development of open, reusable, flexible, semantically interoperable, platform-independent, service-oriented and standard-based health information systems.

  5. SEMPATH Ontology: modeling multidisciplinary treatment schemes utilizing semantics.

    PubMed

    Alexandrou, Dimitrios Al; Pardalis, Konstantinos V; Bouras, Thanassis D; Karakitsos, Petros; Mentzas, Gregoris N

    2012-03-01

    A dramatic increase of demand for provided treatment quality has occurred during last decades. The main challenge to be confronted, so as to increase treatment quality, is the personalization of treatment, since each patient constitutes a unique case. Healthcare provision encloses a complex environment since healthcare provision organizations are highly multidisciplinary. In this paper, we present the conceptualization of the domain of clinical pathways (CP). The SEMPATH (SEMantic PATHways) Oontology comprises three main parts: 1) the CP part; 2) the business and finance part; and 3) the quality assurance part. Our implementation achieves the conceptualization of the multidisciplinary domain of healthcare provision, in order to be further utilized for the implementation of a Semantic Web Rules (SWRL rules) repository. Finally, SEMPATH Ontology is utilized for the definition of a set of SWRL rules for the human papillomavirus) disease and its treatment scheme. © 2012 IEEE

  6. Automatic image orientation detection via confidence-based integration of low-level and semantic cues.

    PubMed

    Luo, Jiebo; Boutell, Matthew

    2005-05-01

    Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.

  7. Personalization of Rule-based Web Services.

    PubMed

    Choi, Okkyung; Han, Sang Yong

    2008-04-04

    Nowadays Web users have clearly expressed their wishes to receive personalized services directly. Personalization is the way to tailor services directly to the immediate requirements of the user. However, the current Web Services System does not provide any features supporting this such as consideration of personalization of services and intelligent matchmaking. In this research a flexible, personalized Rule-based Web Services System to address these problems and to enable efficient search, discovery and construction across general Web documents and Semantic Web documents in a Web Services System is proposed. This system utilizes matchmaking among service requesters', service providers' and users' preferences using a Rule-based Search Method, and subsequently ranks search results. A prototype of efficient Web Services search and construction for the suggested system is developed based on the current work.

  8. Deriving a probabilistic syntacto-semantic grammar for biomedicine based on domain-specific terminologies

    PubMed Central

    Fan, Jung-Wei; Friedman, Carol

    2011-01-01

    Biomedical natural language processing (BioNLP) is a useful technique that unlocks valuable information stored in textual data for practice and/or research. Syntactic parsing is a critical component of BioNLP applications that rely on correctly determining the sentence and phrase structure of free text. In addition to dealing with the vast amount of domain-specific terms, a robust biomedical parser needs to model the semantic grammar to obtain viable syntactic structures. With either a rule-based or corpus-based approach, the grammar engineering process requires substantial time and knowledge from experts, and does not always yield a semantically transferable grammar. To reduce the human effort and to promote semantic transferability, we propose an automated method for deriving a probabilistic grammar based on a training corpus consisting of concept strings and semantic classes from the Unified Medical Language System (UMLS), a comprehensive terminology resource widely used by the community. The grammar is designed to specify noun phrases only due to the nominal nature of the majority of biomedical terminological concepts. Evaluated on manually parsed clinical notes, the derived grammar achieved a recall of 0.644, precision of 0.737, and average cross-bracketing of 0.61, which demonstrated better performance than a control grammar with the semantic information removed. Error analysis revealed shortcomings that could be addressed to improve performance. The results indicated the feasibility of an approach which automatically incorporates terminology semantics in the building of an operational grammar. Although the current performance of the unsupervised solution does not adequately replace manual engineering, we believe once the performance issues are addressed, it could serve as an aide in a semi-supervised solution. PMID:21549857

  9. Entrez Neuron RDFa: a pragmatic Semantic Web application for data integration in neuroscience research

    PubMed Central

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2013-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present “Entrez Neuron”, a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the ‘HCLS knowledgebase’ developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrates how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup. PMID:19745321

  10. Does Temporal Integration Occur for Unrecognizable Words in Visual Crowding?

    PubMed Central

    Zhou, Jifan; Lee, Chia-Lin; Li, Kuei-An; Tien, Yung-Hsuan; Yeh, Su-Ling

    2016-01-01

    Visual crowding—the inability to see an object when it is surrounded by flankers in the periphery—does not block semantic activation: unrecognizable words due to visual crowding still generated robust semantic priming in subsequent lexical decision tasks. Based on the previous finding, the current study further explored whether unrecognizable crowded words can be temporally integrated into a phrase. By showing one word at a time, we presented Chinese four-word idioms with either a congruent or incongruent ending word in order to examine whether the three preceding crowded words can be temporally integrated to form a semantic context so as to affect the processing of the ending word. Results from both behavioral (Experiment 1) and Event-Related Potential (Experiment 2 and 3) measures showed congruency effect in only the non-crowded condition, which does not support the existence of unconscious multi-word integration. Aside from four-word idioms, we also found that two-word (modifier + adjective combination) integration—the simplest kind of temporal semantic integration—did not occur in visual crowding (Experiment 4). Our findings suggest that integration of temporally separated words might require conscious awareness, at least under the timing conditions tested in the current study. PMID:26890366

  11. Ontology-based approaches for cross-enterprise collaboration: a literature review on semantic business process management

    NASA Astrophysics Data System (ADS)

    Hoang, Hanh H.; Jung, Jason J.; Tran, Chi P.

    2014-11-01

    Based on an in-depth analysis of the existing approaches in applying semantic technologies to business process management (BPM) research in the perspective of cross-enterprise collaboration or so-called business-to-business integration, we analyse, discuss and compare methodologies, applications and best practices of the surveyed approaches with the proposed criteria. This article identifies various relevant research directions in semantic BPM (SBPM). Founded on the result of our investigation, we summarise the state of art of SBPM. We also address areas and directions for further research activities.

  12. Semantic-based crossmodal processing during visual suppression.

    PubMed

    Cox, Dustin; Hong, Sang Wook

    2015-01-01

    To reveal the mechanisms underpinning the influence of auditory input on visual awareness, we examine, (1) whether purely semantic-based multisensory integration facilitates the access to visual awareness for familiar visual events, and (2) whether crossmodal semantic priming is the mechanism responsible for the semantic auditory influence on visual awareness. Using continuous flash suppression, we rendered dynamic and familiar visual events (e.g., a video clip of an approaching train) inaccessible to visual awareness. We manipulated the semantic auditory context of the videos by concurrently pairing them with a semantically matching soundtrack (congruent audiovisual condition), a semantically non-matching soundtrack (incongruent audiovisual condition), or with no soundtrack (neutral video-only condition). We found that participants identified the suppressed visual events significantly faster (an earlier breakup of suppression) in the congruent audiovisual condition compared to the incongruent audiovisual condition and video-only condition. However, this facilitatory influence of semantic auditory input was only observed when audiovisual stimulation co-occurred. Our results suggest that the enhanced visual processing with a semantically congruent auditory input occurs due to audiovisual crossmodal processing rather than semantic priming, which may occur even when visual information is not available to visual awareness.

  13. An Ontology-based Architecture for Integration of Clinical Trials Management Applications

    PubMed Central

    Shankar, Ravi D.; Martins, Susana B.; O’Connor, Martin; Parrish, David B.; Das, Amar K.

    2007-01-01

    Management of complex clinical trials involves coordinated-use of a myriad of software applications by trial personnel. The applications typically use distinct knowledge representations and generate enormous amount of information during the course of a trial. It becomes vital that the applications exchange trial semantics in order for efficient management of the trials and subsequent analysis of clinical trial data. Existing model-based frameworks do not address the requirements of semantic integration of heterogeneous applications. We have built an ontology-based architecture to support interoperation of clinical trial software applications. Central to our approach is a suite of clinical trial ontologies, which we call Epoch, that define the vocabulary and semantics necessary to represent information on clinical trials. We are continuing to demonstrate and validate our approach with different clinical trials management applications and with growing number of clinical trials. PMID:18693919

  14. Methods for automated semantic definition of manufacturing structures (mBOM) in mechanical engineering companies

    NASA Astrophysics Data System (ADS)

    Stekolschik, Alexander, Prof.

    2017-10-01

    The bill of materials (BOM), which involves all parts and assemblies of the product, is the core of any mechanical or electronic product. The flexible and integrated management of engineering (Engineering Bill of Materials [eBOM]) and manufacturing (Manufacturing Bill of Materials [mBOM]) structures is the key to the creation of modern products in mechanical engineering companies. This paper presents a method framework for the creation and control of e- and, especially, mBOM. The requirements, resulting from the process of differentiation between companies that produce serialized or engineered-to-order products, are considered in the analysis phase. The main part of the paper describes different approaches to fully or partly automated creation of mBOM. The first approach is the definition of part selection rules in the generic mBOM templates. The mBOM can be derived from the eBOM for partly standardized products by using this method. Another approach is the simultaneous use of semantic rules, options, and parameters in both structures. The implementation of the method framework (selection of use cases) in a standard product lifecycle management (PLM) system is part of the research.

  15. Semantic Agent-Based Service Middleware and Simulation for Smart Cities

    PubMed Central

    Liu, Ming; Xu, Yang; Hu, Haixiao; Mohammed, Abdul-Wahid

    2016-01-01

    With the development of Machine-to-Machine (M2M) technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C), Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design. PMID:28009818

  16. Semantic Agent-Based Service Middleware and Simulation for Smart Cities.

    PubMed

    Liu, Ming; Xu, Yang; Hu, Haixiao; Mohammed, Abdul-Wahid

    2016-12-21

    With the development of Machine-to-Machine (M2M) technology, a variety of embedded and mobile devices is integrated to interact via the platform of the Internet of Things, especially in the domain of smart cities. One of the primary challenges is that selecting the appropriate services or service combination for upper layer applications is hard, which is due to the absence of a unified semantical service description pattern, as well as the service selection mechanism. In this paper, we define a semantic service representation model from four key properties: Capability (C), Deployment (D), Resource (R) and IOData (IO). Based on this model, an agent-based middleware is built to support semantic service enablement. In this middleware, we present an efficient semantic service discovery and matching approach for a service combination process, which calculates the semantic similarity between services, and a heuristic algorithm to search the service candidates for a specific service request. Based on this design, we propose a simulation of virtual urban fire fighting, and the experimental results manifest the feasibility and efficiency of our design.

  17. CI-Miner: A Semantic Methodology to Integrate Scientists, Data and Documents through the Use of Cyber-Infrastructure

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; CyberShARE Center of Excellence

    2011-12-01

    Scientists today face the challenge of rethinking the manner in which they document and make available their processes and data in an international cyber-infrastructure of shared resources. Some relevant examples of new scientific practices in the realm of computational and data extraction sciences include: large scale data discovery; data integration; data sharing across distinct scientific domains, systematic management of trust and uncertainty; and comprehensive support for explaining processes and results. This talk introduces CI-Miner - an innovative hands-on, open-source, community-driven methodology to integrate these new scientific practices. It has been developed in collaboration with scientists, with the purpose of capturing, storing and retrieving knowledge about scientific processes and their products, thereby further supporting a new generation of science techniques based on data exploration. CI-Miner uses semantic annotations in the form of W3C Ontology Web Language-based ontologies and Proof Markup Language (PML)-based provenance to represent knowledge. This methodology specializes in general-purpose ontologies, projected into workflow-driven ontologies(WDOs) and into semantic abstract workflows (SAWs). Provenance in PML is CI-Miner's integrative component, which allows scientists to retrieve and reason with the knowledge represented in these new semantic documents. It serves additionally as a platform to share such collected knowledge with the scientific community participating in the international cyber-infrastructure. The integrated semantic documents that are tailored for the use of human epistemic agents may also be utilized by machine epistemic agents, since the documents are based on W3C Resource Description Framework (RDF) notation. This talk is grounded upon interdisciplinary lessons learned through the use of CI-Miner in support of government-funded national and international cyber-infrastructure initiatives in the areas of geo-sciences (NSF-GEON and NSF-EarthScope), environmental sciences (CEON, NSF NEON, NSF-LTER and DOE-Ameri-Flux), and solar physics (VSTO and NSF-SPCDIS). The discussion on provenance is based on the use of PML in support of projects in collaboration with government organizations (DARPA, ARDA, NSF, DHS and DOE), research organizations (NCAR and PNNL), and industries (IBM and SRI International).

  18. Towards Automatic Semantic Labelling of 3D City Models

    NASA Astrophysics Data System (ADS)

    Rook, M.; Biljecki, F.; Diakité, A. A.

    2016-10-01

    The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes, are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to generate the correct output in CityGML. The results show an accuracy between 85 % and 99 % in the automatic semantic labelling on four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.

  19. Progress toward a Semantic eScience Framework; building on advanced cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    McGuinness, D. L.; Fox, P. A.; West, P.; Rozell, E.; Zednik, S.; Chang, C.

    2010-12-01

    The configurable and extensible semantic eScience framework (SESF) has begun development and implementation of several semantic application components. Extensions and improvements to several ontologies have been made based on distinct interdisciplinary use cases ranging from solar physics, to biologicl and chemical oceanography. Importantly, these semantic representations mediate access to a diverse set of existing and emerging cyberinfrastructure. Among the advances are the population of triple stores with web accessible query services. A triple store is akin to a relational data store where the basic stored unit is a subject-predicate-object tuple. Access via a query is provided by the W3 Recommendation language specification SPARQL. Upon this middle tier of semantic cyberinfrastructure, we have developed several forms of semantic faceted search, including provenance-awareness. We report on the rapid advances in semantic technologies and tools and how we are sustaining the software path for the required technical advances as well as the ontology improvements and increased functionality of the semantic applications including how they are integrated into web-based portals (e.g. Drupal) and web services. Lastly, we indicate future work direction and opportunities for collaboration.

  20. KOJAK: Scalable Semantic Link Discovery Via Integrated Knowledge-Based and Statistical Reasoning

    DTIC Science & Technology

    2006-11-01

    program can find interesting connections in a network without having to learn the patterns of interestingness beforehand. The key advantage of our...Interesting Instances in Semantic Graphs Below we describe how the UNICORN framework can discover interesting instances in a multi-relational dataset...We can now describe how UNICORN solves the first problem of finding the top interesting nodes in a semantic net by ranking them according to

  1. Two Interpretive Systems for Natural Language?

    ERIC Educational Resources Information Center

    Frazier, Lyn

    2015-01-01

    It is proposed that humans have available to them two systems for interpreting natural language. One system is familiar from formal semantics. It is a type based system that pairs a syntactic form with its interpretation using grammatical rules of composition. This system delivers both plausible and implausible meanings. The other proposed system…

  2. Separate Brain Circuits Support Integrative and Semantic Priming in the Human Language System.

    PubMed

    Feng, Gangyi; Chen, Qi; Zhu, Zude; Wang, Suiping

    2016-07-01

    Semantic priming is a crucial phenomenon to study the organization of semantic memory. A novel type of priming effect, integrative priming, has been identified behaviorally, whereby a prime word facilitates recognition of a target word when the 2 concepts can be combined to form a unitary representation. We used both functional and anatomical imaging approaches to investigate the neural substrates supporting such integrative priming, and compare them with those in semantic priming. Similar behavioral priming effects for both semantic (Bread-Cake) and integrative conditions (Cherry-Cake) were observed when compared with an unrelated condition. However, a clearly dissociated brain response was observed between these 2 types of priming. The semantic-priming effect was localized to the posterior superior temporal and middle temporal gyrus. In contrast, the integrative-priming effect localized to the left anterior inferior frontal gyrus and left anterior temporal cortices. Furthermore, fiber tractography showed that the integrative-priming regions were connected via uncinate fasciculus fiber bundle forming an integrative circuit, whereas the semantic-priming regions connected to the posterior frontal cortex via separated pathways. The results point to dissociable neural pathways underlying the 2 distinct types of priming, illuminating the neural circuitry organization of semantic representation and integration. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. The Neural Correlates of Infant and Adult Goal Prediction: Evidence for Semantic Processing Systems

    ERIC Educational Resources Information Center

    Reid, Vincent M.; Hoehl, Stefanie; Grigutsch, Maren; Groendahl, Anna; Parise, Eugenio; Striano, Tricia

    2009-01-01

    The sequential nature of action ensures that an individual can anticipate the conclusion of an observed action via the use of semantic rules. The semantic processing of language and action has been linked to the N400 component of the event-related potential (ERP). The authors developed an ERP paradigm in which infants and adults observed simple…

  4. A grammar-based semantic similarity algorithm for natural language sentences.

    PubMed

    Lee, Ming Che; Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to "artificial language", such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure.

  5. The Role of Semantics in Next-Generation Online Virtual World-Based Retail Store

    NASA Astrophysics Data System (ADS)

    Sharma, Geetika; Anantaram, C.; Ghosh, Hiranmay

    Online virtual environments are increasingly becoming popular for entrepreneurship. While interactions are primarily between avatars, some interactions could occur through intelligent chatbots. Such interactions require connecting to backend business applications to obtain information, carry out real-world transactions etc. In this paper, we focus on integrating business application systems with virtual worlds. We discuss the probable features of a next-generation online virtual world-based retail store and the technologies involved in realizing the features of such a store. In particular, we examine the role of semantics in integrating popular virtual worlds with business applications to provide natural language based interactions.

  6. Exploiting Semantic Web Technologies to Develop OWL-Based Clinical Practice Guideline Execution Engines.

    PubMed

    Jafarpour, Borna; Abidi, Samina Raza; Abidi, Syed Sibte Raza

    2016-01-01

    Computerizing paper-based CPG and then executing them can provide evidence-informed decision support to physicians at the point of care. Semantic web technologies especially web ontology language (OWL) ontologies have been profusely used to represent computerized CPG. Using semantic web reasoning capabilities to execute OWL-based computerized CPG unties them from a specific custom-built CPG execution engine and increases their shareability as any OWL reasoner and triple store can be utilized for CPG execution. However, existing semantic web reasoning-based CPG execution engines suffer from lack of ability to execute CPG with high levels of expressivity, high cognitive load of computerization of paper-based CPG and updating their computerized versions. In order to address these limitations, we have developed three CPG execution engines based on OWL 1 DL, OWL 2 DL and OWL 2 DL + semantic web rule language (SWRL). OWL 1 DL serves as the base execution engine capable of executing a wide range of CPG constructs, however for executing highly complex CPG the OWL 2 DL and OWL 2 DL + SWRL offer additional executional capabilities. We evaluated the technical performance and medical correctness of our execution engines using a range of CPG. Technical evaluations show the efficiency of our CPG execution engines in terms of CPU time and validity of the generated recommendation in comparison to existing CPG execution engines. Medical evaluations by domain experts show the validity of the CPG-mediated therapy plans in terms of relevance, safety, and ordering for a wide range of patient scenarios.

  7. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  8. Intelligent Information Fusion in the Aviation Domain: A Semantic-Web based Approach

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen; Goforth, Andre

    2005-01-01

    Information fusion from multiple sources is a critical requirement for System Wide Information Management in the National Airspace (NAS). NASA and the FAA envision creating an "integrated pool" of information originally coming from different sources, which users, intelligent agents and NAS decision support tools can tap into. In this paper we present the results of our initial investigations into the requirements and prototype development of such an integrated information pool for the NAS. We have attempted to ascertain key requirements for such an integrated pool based on a survey of DSS tools that will benefit from this integrated pool. We then advocate key technologies from computer science research areas such as the semantic web, information integration, and intelligent agents that we believe are well suited to achieving the envisioned system wide information management capabilities.

  9. Enrichment and Ranking of the YouTube Tag Space and Integration with the Linked Data Cloud

    NASA Astrophysics Data System (ADS)

    Choudhury, Smitashree; Breslin, John G.; Passant, Alexandre

    The increase of personal digital cameras with video functionality and video-enabled camera phones has increased the amount of user-generated videos on the Web. People are spending more and more time viewing online videos as a major source of entertainment and "infotainment". Social websites allow users to assign shared free-form tags to user-generated multimedia resources, thus generating annotations for objects with a minimum amount of effort. Tagging allows communities to organise their multimedia items into browseable sets, but these tags may be poorly chosen and related tags may be omitted. Current techniques to retrieve, integrate and present this media to users are deficient and could do with improvement. In this paper, we describe a framework for semantic enrichment, ranking and integration of web video tags using Semantic Web technologies. Semantic enrichment of folksonomies can bridge the gap between the uncontrolled and flat structures typically found in user-generated content and structures provided by the Semantic Web. The enhancement of tag spaces with semantics has been accomplished through two major tasks: (1) a tag space expansion and ranking step; and (2) through concept matching and integration with the Linked Data cloud. We have explored social, temporal and spatial contexts to enrich and extend the existing tag space. The resulting semantic tag space is modelled via a local graph based on co-occurrence distances for ranking. A ranked tag list is mapped and integrated with the Linked Data cloud through the DBpedia resource repository. Multi-dimensional context filtering for tag expansion means that tag ranking is much easier and it provides less ambiguous tag to concept matching.

  10. Semantics-based plausible reasoning to extend the knowledge coverage of medical knowledge bases for improved clinical decision support.

    PubMed

    Mohammadhassanzadeh, Hossein; Van Woensel, William; Abidi, Samina Raza; Abidi, Syed Sibte Raza

    2017-01-01

    Capturing complete medical knowledge is challenging-often due to incomplete patient Electronic Health Records (EHR), but also because of valuable, tacit medical knowledge hidden away in physicians' experiences. To extend the coverage of incomplete medical knowledge-based systems beyond their deductive closure, and thus enhance their decision-support capabilities, we argue that innovative, multi-strategy reasoning approaches should be applied. In particular, plausible reasoning mechanisms apply patterns from human thought processes, such as generalization, similarity and interpolation, based on attributional, hierarchical, and relational knowledge. Plausible reasoning mechanisms include inductive reasoning , which generalizes the commonalities among the data to induce new rules, and analogical reasoning , which is guided by data similarities to infer new facts. By further leveraging rich, biomedical Semantic Web ontologies to represent medical knowledge, both known and tentative, we increase the accuracy and expressivity of plausible reasoning, and cope with issues such as data heterogeneity, inconsistency and interoperability. In this paper, we present a Semantic Web-based, multi-strategy reasoning approach, which integrates deductive and plausible reasoning and exploits Semantic Web technology to solve complex clinical decision support queries. We evaluated our system using a real-world medical dataset of patients with hepatitis, from which we randomly removed different percentages of data (5%, 10%, 15%, and 20%) to reflect scenarios with increasing amounts of incomplete medical knowledge. To increase the reliability of the results, we generated 5 independent datasets for each percentage of missing values, which resulted in 20 experimental datasets (in addition to the original dataset). The results show that plausibly inferred knowledge extends the coverage of the knowledge base by, on average, 2%, 7%, 12%, and 16% for datasets with, respectively, 5%, 10%, 15%, and 20% of missing values. This expansion in the KB coverage allowed solving complex disease diagnostic queries that were previously unresolvable, without losing the correctness of the answers. However, compared to deductive reasoning, data-intensive plausible reasoning mechanisms yield a significant performance overhead. We observed that plausible reasoning approaches, by generating tentative inferences and leveraging domain knowledge of experts, allow us to extend the coverage of medical knowledge bases, resulting in improved clinical decision support. Second, by leveraging OWL ontological knowledge, we are able to increase the expressivity and accuracy of plausible reasoning methods. Third, our approach is applicable to clinical decision support systems for a range of chronic diseases.

  11. Usage and applications of Semantic Web techniques and technologies to support chemistry research

    PubMed Central

    2014-01-01

    Background The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. Results This paper presents three examples of how Semantic Web techniques and technologies can be used in order to support chemistry research: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. Conclusions We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild’s fourth “grand challenge”. PMID:24855494

  12. Usage and applications of Semantic Web techniques and technologies to support chemistry research.

    PubMed

    Borkum, Mark I; Frey, Jeremy G

    2014-01-01

    The drug discovery process is now highly dependent on the management, curation and integration of large amounts of potentially useful data. Semantics are necessary in order to interpret the information and derive knowledge. Advances in recent years have mitigated concerns that the lack of robust, usable tools has inhibited the adoption of methodologies based on semantics. THIS PAPER PRESENTS THREE EXAMPLES OF HOW SEMANTIC WEB TECHNIQUES AND TECHNOLOGIES CAN BE USED IN ORDER TO SUPPORT CHEMISTRY RESEARCH: a controlled vocabulary for quantities, units and symbols in physical chemistry; a controlled vocabulary for the classification and labelling of chemical substances and mixtures; and, a database of chemical identifiers. This paper also presents a Web-based service that uses the datasets in order to assist with the completion of risk assessment forms, along with a discussion of the legal implications and value-proposition for the use of such a service. We have introduced the Semantic Web concepts, technologies, and methodologies that can be used to support chemistry research, and have demonstrated the application of those techniques in three areas very relevant to modern chemistry research, generating three new datasets that we offer as exemplars of an extensible portfolio of advanced data integration facilities. We have thereby established the importance of Semantic Web techniques and technologies for meeting Wild's fourth "grand challenge".

  13. Construction of an ortholog database using the semantic web technology for integrative analysis of genomic data.

    PubMed

    Chiba, Hirokazu; Nishide, Hiroyo; Uchiyama, Ikuo

    2015-01-01

    Recently, various types of biological data, including genomic sequences, have been rapidly accumulating. To discover biological knowledge from such growing heterogeneous data, a flexible framework for data integration is necessary. Ortholog information is a central resource for interlinking corresponding genes among different organisms, and the Semantic Web provides a key technology for the flexible integration of heterogeneous data. We have constructed an ortholog database using the Semantic Web technology, aiming at the integration of numerous genomic data and various types of biological information. To formalize the structure of the ortholog information in the Semantic Web, we have constructed the Ortholog Ontology (OrthO). While the OrthO is a compact ontology for general use, it is designed to be extended to the description of database-specific concepts. On the basis of OrthO, we described the ortholog information from our Microbial Genome Database for Comparative Analysis (MBGD) in the form of Resource Description Framework (RDF) and made it available through the SPARQL endpoint, which accepts arbitrary queries specified by users. In this framework based on the OrthO, the biological data of different organisms can be integrated using the ortholog information as a hub. Besides, the ortholog information from different data sources can be compared with each other using the OrthO as a shared ontology. Here we show some examples demonstrating that the ortholog information described in RDF can be used to link various biological data such as taxonomy information and Gene Ontology. Thus, the ortholog database using the Semantic Web technology can contribute to biological knowledge discovery through integrative data analysis.

  14. A computational modeling of semantic knowledge in reading comprehension: Integrating the landscape model with latent semantic analysis.

    PubMed

    Yeari, Menahem; van den Broek, Paul

    2016-09-01

    It is a well-accepted view that the prior semantic (general) knowledge that readers possess plays a central role in reading comprehension. Nevertheless, computational models of reading comprehension have not integrated the simulation of semantic knowledge and online comprehension processes under a unified mathematical algorithm. The present article introduces a computational model that integrates the landscape model of comprehension processes with latent semantic analysis representation of semantic knowledge. In three sets of simulations of previous behavioral findings, the integrated model successfully simulated the activation and attenuation of predictive and bridging inferences during reading, as well as centrality estimations and recall of textual information after reading. Analyses of the computational results revealed new theoretical insights regarding the underlying mechanisms of the various comprehension phenomena.

  15. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System.

    PubMed

    Çelik, Duygu

    2015-01-01

    An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient's life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki).

  16. Semantic Priming in Dutch Children: Word Meaning Integration and Study Modality Effects

    ERIC Educational Resources Information Center

    van der Ven, Frauke; Takashima, Atsuko; Segers, Eliane; Verhoeven, Ludo

    2017-01-01

    Research in adults has shown that novel words are encoded rather swiftly but that their semantic integration occurs more slowly and that studying definitions presented in a written modality may benefit integration. It is unclear, however, how semantic integration proceeds in children, who (compared to adults) have more malleable brains and less…

  17. Why Can You "Have a Drink" When You Can't "*Have an Eat?"

    ERIC Educational Resources Information Center

    Wierzbicka, Anna

    1982-01-01

    Argues that sentences in the "have a V" frame are not idiosyncratic, but exhibit orderly and systematic behavior and are governed by strict semantic rules. Discusses 10 subtypes, each with a slightly different semantic formula. (EKN)

  18. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    PubMed Central

    2011-01-01

    Background The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. Description SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. Conclusions SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies. PMID:22024447

  19. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation.

    PubMed

    Wilkinson, Mark D; Vandervalk, Benjamin; McCarthy, Luke

    2011-10-24

    The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies.

  20. Semantic integration of information about orthologs and diseases: the OGO system.

    PubMed

    Miñarro-Gimenez, Jose Antonio; Egaña Aranguren, Mikel; Martínez Béjar, Rodrigo; Fernández-Breis, Jesualdo Tomás; Madrid, Marisa

    2011-12-01

    Semantic Web technologies like RDF and OWL are currently applied in life sciences to improve knowledge management by integrating disparate information. Many of the systems that perform such task, however, only offer a SPARQL query interface, which is difficult to use for life scientists. We present the OGO system, which consists of a knowledge base that integrates information of orthologous sequences and genetic diseases, providing an easy to use ontology-constrain driven query interface. Such interface allows the users to define SPARQL queries through a graphical process, therefore not requiring SPARQL expertise. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing.

    PubMed

    Fan, Jianping; Luo, Hangzai; Elmagarmid, Ahmed K

    2004-07-01

    Digital video now plays an important role in medical education, health care, telemedicine and other medical applications. Several content-based video retrieval (CBVR) systems have been proposed in the past, but they still suffer from the following challenging problems: semantic gap, semantic video concept modeling, semantic video classification, and concept-oriented video database indexing and access. In this paper, we propose a novel framework to make some advances toward the final goal to solve these problems. Specifically, the framework includes: 1) a semantic-sensitive video content representation framework by using principal video shots to enhance the quality of features; 2) semantic video concept interpretation by using flexible mixture model to bridge the semantic gap; 3) a novel semantic video-classifier training framework by integrating feature selection, parameter estimation, and model selection seamlessly in a single algorithm; and 4) a concept-oriented video database organization technique through a certain domain-dependent concept hierarchy to enable semantic-sensitive video retrieval and browsing.

  2. The MMI Semantic Framework: Rosetta Stones for Earth Sciences

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L. E.; Graybeal, J.; Alexander, P.

    2009-12-01

    Semantic interoperability—the exchange of meaning among computer systems—is needed to successfully share data in Ocean Science and across all Earth sciences. The best approach toward semantic interoperability requires a designed framework, and operationally tested tools and infrastructure within that framework. Currently available technologies make a scientific semantic framework feasible, but its development requires sustainable architectural vision and development processes. This presentation outlines the MMI Semantic Framework, including recent progress on it and its client applications. The MMI Semantic Framework consists of tools, infrastructure, and operational and community procedures and best practices, to meet short-term and long-term semantic interoperability goals. The design and prioritization of the semantic framework capabilities are based on real-world scenarios in Earth observation systems. We describe some key uses cases, as well as the associated requirements for building the overall infrastructure, which is realized through the MMI Ontology Registry and Repository. This system includes support for community creation and sharing of semantic content, ontology registration, version management, and seamless integration of user-friendly tools and application programming interfaces. The presentation describes the architectural components for semantic mediation, registry and repository for vocabularies, ontology, and term mappings. We show how the technologies and approaches in the framework can address community needs for managing and exchanging semantic information. We will demonstrate how different types of users and client applications exploit the tools and services for data aggregation, visualization, archiving, and integration. Specific examples from OOSTethys (http://www.oostethys.org) and the Ocean Observatories Initiative Cyberinfrastructure (http://www.oceanobservatories.org) will be cited. Finally, we show how semantic augmentation of web services standards could be performed using framework tools.

  3. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  4. SPARQLGraph: a web-based platform for graphically querying biological Semantic Web databases.

    PubMed

    Schweiger, Dominik; Trajanoski, Zlatko; Pabinger, Stephan

    2014-08-15

    Semantic Web has established itself as a framework for using and sharing data across applications and database boundaries. Here, we present a web-based platform for querying biological Semantic Web databases in a graphical way. SPARQLGraph offers an intuitive drag & drop query builder, which converts the visual graph into a query and executes it on a public endpoint. The tool integrates several publicly available Semantic Web databases, including the databases of the just recently released EBI RDF platform. Furthermore, it provides several predefined template queries for answering biological questions. Users can easily create and save new query graphs, which can also be shared with other researchers. This new graphical way of creating queries for biological Semantic Web databases considerably facilitates usability as it removes the requirement of knowing specific query languages and database structures. The system is freely available at http://sparqlgraph.i-med.ac.at.

  5. Using knowledge rules for pharmacy mapping.

    PubMed

    Shakib, Shaun C; Che, Chengjian; Lau, Lee Min

    2006-01-01

    The 3M Health Information Systems (HIS) Healthcare Data Dictionary (HDD) is used to encode and structure patient medication data for the Electronic Health Record (EHR) of the Department of Defense's (DoD's) Armed Forces Health Longitudinal Technology Application (AHLTA). HDD Subject Matter Experts (SMEs) are responsible for initial and maintenance mapping of disparate, standalone medication master files from all 100 DoD host sites worldwide to a single concept-based vocabulary, to accomplish semantic interoperability. To achieve higher levels of automation, SMEs began defining a growing set of knowledge rules. These knowledge rules were implemented in a pharmacy mapping tool, which enhanced consistency through automation and increased mapping rate by 29%.

  6. XSemantic: An Extension of LCA Based XML Semantic Search

    NASA Astrophysics Data System (ADS)

    Supasitthimethee, Umaporn; Shimizu, Toshiyuki; Yoshikawa, Masatoshi; Porkaew, Kriengkrai

    One of the most convenient ways to query XML data is a keyword search because it does not require any knowledge of XML structure or learning a new user interface. However, the keyword search is ambiguous. The users may use different terms to search for the same information. Furthermore, it is difficult for a system to decide which node is likely to be chosen as a return node and how much information should be included in the result. To address these challenges, we propose an XML semantic search based on keywords called XSemantic. On the one hand, we give three definitions to complete in terms of semantics. Firstly, the semantic term expansion, our system is robust from the ambiguous keywords by using the domain ontology. Secondly, to return semantic meaningful answers, we automatically infer the return information from the user queries and take advantage of the shortest path to return meaningful connections between keywords. Thirdly, we present the semantic ranking that reflects the degree of similarity as well as the semantic relationship so that the search results with the higher relevance are presented to the users first. On the other hand, in the LCA and the proximity search approaches, we investigated the problem of information included in the search results. Therefore, we introduce the notion of the Lowest Common Element Ancestor (LCEA) and define our simple rule without any requirement on the schema information such as the DTD or XML Schema. The first experiment indicated that XSemantic not only properly infers the return information but also generates compact meaningful results. Additionally, the benefits of our proposed semantics are demonstrated by the second experiment.

  7. A Semantic Rule-Based Framework for Efficient Retrieval of Educational Materials

    ERIC Educational Resources Information Center

    Mahmoudi, Maryam Tayefeh; Taghiyareh, Fattaneh; Badie, Kambiz

    2013-01-01

    Retrieving resources in an appropriate manner has a promising role in increasing the performance of educational support systems. A variety of works have been done to organize materials for educational purposes using tagging techniques. Despite the effectiveness of these techniques within certain domains, organizing resources in a way being…

  8. Evaluation of an expert system for fault detection, isolation, and recovery in the manned maneuvering unit

    NASA Technical Reports Server (NTRS)

    Rushby, John; Crow, Judith

    1990-01-01

    The authors explore issues in the specification, verification, and validation of artificial intelligence (AI) based software, using a prototype fault detection, isolation and recovery (FDIR) system for the Manned Maneuvering Unit (MMU). They use this system as a vehicle for exploring issues in the semantics of C-Language Integrated Production System (CLIPS)-style rule-based languages, the verification of properties relating to safety and reliability, and the static and dynamic analysis of knowledge based systems. This analysis reveals errors and shortcomings in the MMU FDIR system and raises a number of issues concerning software engineering in CLIPs. The authors came to realize that the MMU FDIR system does not conform to conventional definitions of AI software, despite the fact that it was intended and indeed presented as an AI system. The authors discuss this apparent disparity and related questions such as the role of AI techniques in space and aircraft operations and the suitability of CLIPS for critical applications.

  9. BioPortal: An Open-Source Community-Based Ontology Repository

    NASA Astrophysics Data System (ADS)

    Noy, N.; NCBO Team

    2011-12-01

    Advances in computing power and new computational techniques have changed the way researchers approach science. In many fields, one of the most fruitful approaches has been to use semantically aware software to break down the barriers among disparate domains, systems, data sources, and technologies. Such software facilitates data aggregation, improves search, and ultimately allows the detection of new associations that were previously not detectable. Achieving these analyses requires software systems that take advantage of the semantics and that can intelligently negotiate domains and knowledge sources, identifying commonality across systems that use different and conflicting vocabularies, while understanding apparent differences that may be concealed by the use of superficially similar terms. An ontology, a semantically rich vocabulary for a domain of interest, is the cornerstone of software for bridging systems, domains, and resources. However, as ontologies become the foundation of all semantic technologies in e-science, we must develop an infrastructure for sharing ontologies, finding and evaluating them, integrating and mapping among them, and using ontologies in applications that help scientists process their data. BioPortal [1] is an open-source on-line community-based ontology repository that has been used as a critical component of semantic infrastructure in several domains, including biomedicine and bio-geochemical data. BioPortal, uses the social approaches in the Web 2.0 style to bring structure and order to the collection of biomedical ontologies. It enables users to provide and discuss a wide array of knowledge components, from submitting the ontologies themselves, to commenting on and discussing classes in the ontologies, to reviewing ontologies in the context of their own ontology-based projects, to creating mappings between overlapping ontologies and discussing and critiquing the mappings. Critically, it provides web-service access to all its content, enabling its integration in semantically enriched applications. [1] Noy, N.F., Shah, N.H., et al., BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Res, 2009. 37(Web Server issue): p. W170-3.

  10. A Grammar-Based Semantic Similarity Algorithm for Natural Language Sentences

    PubMed Central

    Chang, Jia Wei; Hsieh, Tung Cheng

    2014-01-01

    This paper presents a grammar and semantic corpus based similarity algorithm for natural language sentences. Natural language, in opposition to “artificial language”, such as computer programming languages, is the language used by the general public for daily communication. Traditional information retrieval approaches, such as vector models, LSA, HAL, or even the ontology-based approaches that extend to include concept similarity comparison instead of cooccurrence terms/words, may not always determine the perfect matching while there is no obvious relation or concept overlap between two natural language sentences. This paper proposes a sentence similarity algorithm that takes advantage of corpus-based ontology and grammatical rules to overcome the addressed problems. Experiments on two famous benchmarks demonstrate that the proposed algorithm has a significant performance improvement in sentences/short-texts with arbitrary syntax and structure. PMID:24982952

  11. Combining infobuttons and semantic web rules for identifying patterns and delivering highly-personalized education materials.

    PubMed

    Hulse, Nathan C; Long, Jie; Tao, Cui

    2013-01-01

    Infobuttons have been established to be an effective resource for addressing information needs at the point of care, as evidenced by recent research and their inclusion in government-based electronic health record incentive programs in the United States. Yet their utility has been limited to wide success for only a specific set of domains (lab data, medication orders, and problem lists) and only for discrete, singular concepts that are already documented in the electronic medical record. In this manuscript, we present an effort to broaden their utility by connecting a semantic web-based phenotyping engine with an infobutton framework in order to identify and address broader issues in patient data, derived from multiple data sources. We have tested these patterns by defining and testing semantic definitions of pre-diabetes and metabolic syndrome. We intend to carry forward relevant information to the infobutton framework to present timely, relevant education resources to patients and providers.

  12. UBioLab: a web-LABoratory for Ubiquitous in-silico experiments.

    PubMed

    Bartocci, E; Di Berardini, M R; Merelli, E; Vito, L

    2012-03-01

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  13. Privacy Preservation in Context-Aware Systems

    DTIC Science & Technology

    2011-01-01

    Policies and the Semantic Web The Semantic Web refers to both a vision and a set of technologies. The vision was first articulated by Tim Berners - Lee ... Berners - lee 2005) is a distributed framework for describing and reasoning over policies in the Semantic Web. It supports N3 rules ( Berners - Lee ...Connolly 2008), ( Berners - Lee et al. 2005) for representing intercon- nections between policies and resources and uses the CWM forward-chaining reasoning

  14. A natural language interface plug-in for cooperative query answering in biological databases.

    PubMed

    Jamil, Hasan M

    2012-06-11

    One of the many unique features of biological databases is that the mere existence of a ground data item is not always a precondition for a query response. It may be argued that from a biologist's standpoint, queries are not always best posed using a structured language. By this we mean that approximate and flexible responses to natural language like queries are well suited for this domain. This is partly due to biologists' tendency to seek simpler interfaces and partly due to the fact that questions in biology involve high level concepts that are open to interpretations computed using sophisticated tools. In such highly interpretive environments, rigidly structured databases do not always perform well. In this paper, our goal is to propose a semantic correspondence plug-in to aid natural language query processing over arbitrary biological database schema with an aim to providing cooperative responses to queries tailored to users' interpretations. Natural language interfaces for databases are generally effective when they are tuned to the underlying database schema and its semantics. Therefore, changes in database schema become impossible to support, or a substantial reorganization cost must be absorbed to reflect any change. We leverage developments in natural language parsing, rule languages and ontologies, and data integration technologies to assemble a prototype query processor that is able to transform a natural language query into a semantically equivalent structured query over the database. We allow knowledge rules and their frequent modifications as part of the underlying database schema. The approach we adopt in our plug-in overcomes some of the serious limitations of many contemporary natural language interfaces, including support for schema modifications and independence from underlying database schema. The plug-in introduced in this paper is generic and facilitates connecting user selected natural language interfaces to arbitrary databases using a semantic description of the intended application. We demonstrate the feasibility of our approach with a practical example.

  15. Addressing the Challenges of Multi-Domain Data Integration with the SemantEco Framework

    NASA Astrophysics Data System (ADS)

    Patton, E. W.; Seyed, P.; McGuinness, D. L.

    2013-12-01

    Data integration across multiple domains will continue to be a challenge with the proliferation of big data in the sciences. Data origination issues and how data are manipulated are critical to enable scientists to understand and consume disparate datasets as research becomes more multidisciplinary. We present the SemantEco framework as an exemplar for designing an integrative portal for data discovery, exploration, and interpretation that uses best practice W3C Recommendations. We use the Resource Description Framework (RDF) with extensible ontologies described in the Web Ontology Language (OWL) to provide graph-based data representation. Furthermore, SemantEco ingests data via the software package csv2rdf4lod, which generates data provenance using the W3C provenance recommendation (PROV). Our presentation will discuss benefits and challenges of semantic integration, their effect on runtime performance, and how the SemantEco framework assisted in identifying performance issues and improved query performance across multiple domains by an order of magnitude. SemantEco benefits from a semantic approach that provides an 'open world', which allows data to incrementally change just as it does in the real world. SemantEco modules may load new ontologies and data using the W3C's SPARQL Protocol and RDF Query Language via HTTP. Modules may also provide user interface elements for applications and query capabilities to support new use cases. Modules can associate with domains, which are first-class objects in SemantEco. This enables SemantEco to perform integration and reasoning both within and across domains on module-provided data. The SemantEco framework has been used to construct a web portal for environmental and ecological data. The portal includes water and air quality data from the U.S. Geological Survey (USGS) and Environmental Protection Agency (EPA) and species observation counts for birds and fish from the Avian Knowledge Network and the Santa Barbara Long Term Ecological Research, respectively. We provide regulation ontologies using OWL2 datatype facets to detect out-of-range measurements for environmental standards set by the EPA, i.a. Users adjust queries using module-defined facets and a map presents the resulting measurement sites. Custom icons identify sites that violate regulations, making them easy to locate. Selecting a site gives the option of charting spatially proximate data from different domains over time. Our portal currently provides 1.6 billion triples of scientific data in RDF. We segment data by ZIP code and reasoning over 2157 measurements with our EPA regulation ontology that contains 131 regulations takes 2.5 seconds on a 2.4 GHz Intel Core 2 Quad with 8 GB of RAM. SemantEco's modular design and reasoning capabilities make it an exemplar for building multidisciplinary data integration tools that provide data access to scientists and the general population alike. Its provenance tracking provides accountability and its reasoning services can assist users in interpreting data. Future work includes support for geographical queries using the Open Geospatial Consortium's GeoSPARQL standard.

  16. Parallel State Space Construction for a Model Checking Based on Maximality Semantics

    NASA Astrophysics Data System (ADS)

    El Abidine Bouneb, Zine; Saīdouni, Djamel Eddine

    2009-03-01

    The main limiting factor of the model checker integrated in the concurrency verification environment FOCOVE [1, 2], which use the maximality based labeled transition system (noted MLTS) as a true concurrency model[3, 4], is currently the amount of available physical memory. Many techniques have been developed to reduce the size of a state space. An interesting technique among them is the alpha equivalence reduction. Distributed memory execution environment offers yet another choice. The main contribution of the paper is to show that the parallel state space construction algorithm proposed in [5], which is based on interleaving semantics using LTS as semantic model, may be adapted easily to the distributed implementation of the alpha equivalence reduction for the maximality based labeled transition systems.

  17. A service relation model for web-based land cover change detection

    NASA Astrophysics Data System (ADS)

    Xing, Huaqiao; Chen, Jun; Wu, Hao; Zhang, Jun; Li, Songnian; Liu, Boyu

    2017-10-01

    Change detection with remotely sensed imagery is a critical step in land cover monitoring and updating. Although a variety of algorithms or models have been developed, none of them can be universal for all cases. The selection of appropriate algorithms and construction of processing workflows depend largely on the expertise of experts about the "algorithm-data" relations among change detection algorithms and the imagery data used. This paper presents a service relation model for land cover change detection by integrating the experts' knowledge about the "algorithm-data" relations into the web-based geo-processing. The "algorithm-data" relations are mapped into a set of web service relations with the analysis of functional and non-functional service semantics. These service relations are further classified into three different levels, i.e., interface, behavior and execution levels. A service relation model is then established using the Object and Relation Diagram (ORD) approach to represent the multi-granularity services and their relations for change detection. A set of semantic matching rules are built and used for deriving on-demand change detection service chains from the service relation model. A web-based prototype system is developed in .NET development environment, which encapsulates nine change detection and pre-processing algorithms and represents their service relations as an ORD. Three test areas from Shandong and Hebei provinces, China with different imagery conditions are selected for online change detection experiments, and the results indicate that on-demand service chains can be generated according to different users' demands.

  18. Learning Semantic Tags from Big Data for Clinical Text Representation.

    PubMed

    Li, Yanpeng; Liu, Hongfang

    2015-01-01

    In clinical text mining, it is one of the biggest challenges to represent medical terminologies and n-gram terms in sparse medical reports using either supervised or unsupervised methods. Addressing this issue, we propose a novel method for word and n-gram representation at semantic level. We first represent each word by its distance with a set of reference features calculated by reference distance estimator (RDE) learned from labeled and unlabeled data, and then generate new features using simple techniques of discretization, random sampling and merging. The new features are a set of binary rules that can be interpreted as semantic tags derived from word and n-grams. We show that the new features significantly outperform classical bag-of-words and n-grams in the task of heart disease risk factor extraction in i2b2 2014 challenge. It is promising to see that semantics tags can be used to replace the original text entirely with even better prediction performance as well as derive new rules beyond lexical level.

  19. Age-related reduction of adaptive brain response during semantic integration is associated with gray matter reduction.

    PubMed

    Zhu, Zude; Yang, Fengjun; Li, Dongning; Zhou, Lianjun; Liu, Ying; Zhang, Ying; Chen, Xuezhi

    2017-01-01

    While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC) and low cloze (LC) probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC) was found in several regions, especially the left middle frontal gyrus (MFG) and right inferior frontal gyrus (IFG), which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.

  20. Semantic Representation of Newly Learned L2 Words and Their Integration in the L2 Lexicon

    ERIC Educational Resources Information Center

    Bordag, Denisa; Kirschenbaum, Amit; Rogahn, Maria; Opitz, Andreas

    2017-01-01

    The present semantic priming study explores the integration of newly learnt L2 German words into the L2 semantic network of German advanced learners. It provides additional evidence in support of earlier findings reporting semantic inhibition effects for emergent representations. An inhibitory mechanism is proposed that temporarily decreases the…

  1. Revisiting the Procedures for the Vector Data Quality Assurance in Practice

    NASA Astrophysics Data System (ADS)

    Erdoğan, M.; Torun, A.; Boyacı, D.

    2012-07-01

    Immense use of topographical data in spatial data visualization, business GIS (Geographic Information Systems) solutions and applications, mobile and location-based services forced the topo-data providers to create standard, up-to-date and complete data sets in a sustainable frame. Data quality has been studied and researched for more than two decades. There have been un-countable numbers of references on its semantics, its conceptual logical and representations and many applications on spatial databases and GIS. However, there is a gap between research and practice in the sense of spatial data quality which increases the costs and decreases the efficiency of data production. Spatial data quality is well-known by academia and industry but usually in different context. The research on spatial data quality stated several issues having practical use such as descriptive information, metadata, fulfillment of spatial relationships among data, integrity measures, geometric constraints etc. The industry and data producers realize them in three stages; pre-, co- and post data capturing. The pre-data capturing stage covers semantic modelling, data definition, cataloguing, modelling, data dictionary and schema creation processes. The co-data capturing stage covers general rules of spatial relationships, data and model specific rules such as topologic and model building relationships, geometric threshold, data extraction guidelines, object-object, object-belonging class, object-non-belonging class, class-class relationships to be taken into account during data capturing. And post-data capturing stage covers specified QC (quality check) benchmarks and checking compliance to general and specific rules. The vector data quality criteria are different from the views of producers and users. But these criteria are generally driven by the needs, expectations and feedbacks of the users. This paper presents a practical method which closes the gap between theory and practice. Development of spatial data quality concepts into developments and application requires existence of conceptual, logical and most importantly physical existence of data model, rules and knowledge of realization in a form of geo-spatial data. The applicable metrics and thresholds are determined on this concrete base. This study discusses application of geo-spatial data quality issues and QA (quality assurance) and QC procedures in the topographic data production. Firstly we introduce MGCP (Multinational Geospatial Co-production Program) data profile of NATO (North Atlantic Treaty Organization) DFDD (DGIWG Feature Data Dictionary), the requirements of data owner, the view of data producers for both data capturing and QC and finally QA to fulfil user needs. Then, our practical and new approach which divides the quality into three phases is introduced. Finally, implementation of our approach to accomplish metrics, measures and thresholds of quality definitions is discussed. In this paper, especially geometry and semantics quality and quality control procedures that can be performed by the producers are discussed. Some applicable best-practices that we experienced on techniques of quality control, defining regulations that define the objectives and data production procedures are given in the final remarks. These quality control procedures should include the visual checks over the source data, captured vector data and printouts, some automatic checks that can be performed by software and some semi-automatic checks by the interaction with quality control personnel. Finally, these quality control procedures should ensure the geometric, semantic, attribution and metadata quality of vector data.

  2. Generation of open biomedical datasets through ontology-driven transformation and integration processes.

    PubMed

    Carmen Legaz-García, María Del; Miñarro-Giménez, José Antonio; Menárguez-Tortosa, Marcos; Fernández-Breis, Jesualdo Tomás

    2016-06-03

    Biomedical research usually requires combining large volumes of data from multiple heterogeneous sources, which makes difficult the integrated exploitation of such data. The Semantic Web paradigm offers a natural technological space for data integration and exploitation by generating content readable by machines. Linked Open Data is a Semantic Web initiative that promotes the publication and sharing of data in machine readable semantic formats. We present an approach for the transformation and integration of heterogeneous biomedical data with the objective of generating open biomedical datasets in Semantic Web formats. The transformation of the data is based on the mappings between the entities of the data schema and the ontological infrastructure that provides the meaning to the content. Our approach permits different types of mappings and includes the possibility of defining complex transformation patterns. Once the mappings are defined, they can be automatically applied to datasets to generate logically consistent content and the mappings can be reused in further transformation processes. The results of our research are (1) a common transformation and integration process for heterogeneous biomedical data; (2) the application of Linked Open Data principles to generate interoperable, open, biomedical datasets; (3) a software tool, called SWIT, that implements the approach. In this paper we also describe how we have applied SWIT in different biomedical scenarios and some lessons learned. We have presented an approach that is able to generate open biomedical repositories in Semantic Web formats. SWIT is able to apply the Linked Open Data principles in the generation of the datasets, so allowing for linking their content to external repositories and creating linked open datasets. SWIT datasets may contain data from multiple sources and schemas, thus becoming integrated datasets.

  3. A pool of pairs of related objects (POPORO) for investigating visual semantic integration: behavioral and electrophysiological validation.

    PubMed

    Kovalenko, Lyudmyla Y; Chaumon, Maximilien; Busch, Niko A

    2012-07-01

    Semantic processing of verbal and visual stimuli has been investigated in semantic violation or semantic priming paradigms in which a stimulus is either related or unrelated to a previously established semantic context. A hallmark of semantic priming is the N400 event-related potential (ERP)--a deflection of the ERP that is more negative for semantically unrelated target stimuli. The majority of studies investigating the N400 and semantic integration have used verbal material (words or sentences), and standardized stimulus sets with norms for semantic relatedness have been published for verbal but not for visual material. However, semantic processing of visual objects (as opposed to words) is an important issue in research on visual cognition. In this study, we present a set of 800 pairs of semantically related and unrelated visual objects. The images were rated for semantic relatedness by a sample of 132 participants. Furthermore, we analyzed low-level image properties and matched the two semantic categories according to these features. An ERP study confirmed the suitability of this image set for evoking a robust N400 effect of semantic integration. Additionally, using a general linear modeling approach of single-trial data, we also demonstrate that low-level visual image properties and semantic relatedness are in fact only minimally overlapping. The image set is available for download from the authors' website. We expect that the image set will facilitate studies investigating mechanisms of semantic and contextual processing of visual stimuli.

  4. Spatiotemporal-Thematic Data Processing for the Semantic Web

    NASA Astrophysics Data System (ADS)

    Hakimpour, Farshad; Aleman-Meza, Boanerges; Perry, Matthew; Sheth, Amit

    This chapter presents practical approaches to data processing in the space, time and theme dimensions using existing Semantic Web technologies. It describes how we obtain geographic and event data from Internet sources and also how we integrate them into an RDF store. We briefly introduce a set of functionalities in space, time and semantics. These functionalities are implemented based on our existing technology for main-memory-based RDF data processing developed at the LSDIS Lab. A number of these functionalities are exposed as REST Web services. We present two sample client-side applications that are developed using a combination of our services with Google Maps service.

  5. Extracting business vocabularies from business process models: SBVR and BPMN standards-based approach

    NASA Astrophysics Data System (ADS)

    Skersys, Tomas; Butleris, Rimantas; Kapocius, Kestutis

    2013-10-01

    Approaches for the analysis and specification of business vocabularies and rules are very relevant topics in both Business Process Management and Information Systems Development disciplines. However, in common practice of Information Systems Development, the Business modeling activities still are of mostly empiric nature. In this paper, basic aspects of the approach for business vocabularies' semi-automated extraction from business process models are presented. The approach is based on novel business modeling-level OMG standards "Business Process Model and Notation" (BPMN) and "Semantics for Business Vocabularies and Business Rules" (SBVR), thus contributing to OMG's vision about Model-Driven Architecture (MDA) and to model-driven development in general.

  6. Centrality-based Selection of Semantic Resources for Geosciences

    NASA Astrophysics Data System (ADS)

    Cerba, Otakar; Jedlicka, Karel

    2017-04-01

    Semantical questions intervene almost in all disciplines dealing with geographic data and information, because relevant semantics is crucial for any way of communication and interaction among humans as well as among machines. But the existence of such a large number of different semantic resources (such as various thesauri, controlled vocabularies, knowledge bases or ontologies) makes the process of semantics implementation much more difficult and complicates the use of the advantages of semantics. This is because in many cases users are not able to find the most suitable resource for their purposes. The research presented in this paper introduces a methodology consisting of an analysis of identical relations in Linked Data space, which covers a majority of semantic resources, to find a suitable resource of semantic information. Identical links interconnect representations of an object or a concept in various semantic resources. Therefore this type of relations is considered to be crucial from the view of Linked Data, because these links provide new additional information, including various views on one concept based on different cultural or regional aspects (so-called social role of Linked Data). For these reasons it is possible to declare that one reasonable criterion for feasible semantic resources for almost all domains, including geosciences, is their position in a network of interconnected semantic resources and level of linking to other knowledge bases and similar products. The presented methodology is based on searching of mutual connections between various instances of one concept using "follow your nose" approach. The extracted data on interconnections between semantic resources are arranged to directed graphs and processed by various metrics patterned on centrality computing (degree, closeness or betweenness centrality). Semantic resources recommended by the research could be used for providing semantically described keywords for metadata records or as names of items in data models. Such an approach enables much more efficient data harmonization, integration, sharing and exploitation. * * * * This publication was supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports. This publication was supported by project Data-Driven Bioeconomy (DataBio) from the ICT-15-2016-2017, Big Data PPP call.

  7. Alpha and Beta Oscillations Index Semantic Congruency between Speech and Gestures in Clear and Degraded Speech.

    PubMed

    Drijvers, Linda; Özyürek, Asli; Jensen, Ole

    2018-06-19

    Previous work revealed that visual semantic information conveyed by gestures can enhance degraded speech comprehension, but the mechanisms underlying these integration processes under adverse listening conditions remain poorly understood. We used MEG to investigate how oscillatory dynamics support speech-gesture integration when integration load is manipulated by auditory (e.g., speech degradation) and visual semantic (e.g., gesture congruency) factors. Participants were presented with videos of an actress uttering an action verb in clear or degraded speech, accompanied by a matching (mixing gesture + "mixing") or mismatching (drinking gesture + "walking") gesture. In clear speech, alpha/beta power was more suppressed in the left inferior frontal gyrus and motor and visual cortices when integration load increased in response to mismatching versus matching gestures. In degraded speech, beta power was less suppressed over posterior STS and medial temporal lobe for mismatching compared with matching gestures, showing that integration load was lowest when speech was degraded and mismatching gestures could not be integrated and disambiguate the degraded signal. Our results thus provide novel insights on how low-frequency oscillatory modulations in different parts of the cortex support the semantic audiovisual integration of gestures in clear and degraded speech: When speech is clear, the left inferior frontal gyrus and motor and visual cortices engage because higher-level semantic information increases semantic integration load. When speech is degraded, posterior STS/middle temporal gyrus and medial temporal lobe are less engaged because integration load is lowest when visual semantic information does not aid lexical retrieval and speech and gestures cannot be integrated.

  8. Hierarchical structure for audio-video based semantic classification of sports video sequences

    NASA Astrophysics Data System (ADS)

    Kolekar, M. H.; Sengupta, S.

    2005-07-01

    A hierarchical structure for sports event classification based on audio and video content analysis is proposed in this paper. Compared to the event classifications in other games, those of cricket are very challenging and yet unexplored. We have successfully solved cricket video classification problem using a six level hierarchical structure. The first level performs event detection based on audio energy and Zero Crossing Rate (ZCR) of short-time audio signal. In the subsequent levels, we classify the events based on video features using a Hidden Markov Model implemented through Dynamic Programming (HMM-DP) using color or motion as a likelihood function. For some of the game-specific decisions, a rule-based classification is also performed. Our proposed hierarchical structure can easily be applied to any other sports. Our results are very promising and we have moved a step forward towards addressing semantic classification problems in general.

  9. Finding gene regulatory network candidates using the gene expression knowledge base.

    PubMed

    Venkatesan, Aravind; Tripathi, Sushil; Sanz de Galdeano, Alejandro; Blondé, Ward; Lægreid, Astrid; Mironov, Vladimir; Kuiper, Martin

    2014-12-10

    Network-based approaches for the analysis of large-scale genomics data have become well established. Biological networks provide a knowledge scaffold against which the patterns and dynamics of 'omics' data can be interpreted. The background information required for the construction of such networks is often dispersed across a multitude of knowledge bases in a variety of formats. The seamless integration of this information is one of the main challenges in bioinformatics. The Semantic Web offers powerful technologies for the assembly of integrated knowledge bases that are computationally comprehensible, thereby providing a potentially powerful resource for constructing biological networks and network-based analysis. We have developed the Gene eXpression Knowledge Base (GeXKB), a semantic web technology based resource that contains integrated knowledge about gene expression regulation. To affirm the utility of GeXKB we demonstrate how this resource can be exploited for the identification of candidate regulatory network proteins. We present four use cases that were designed from a biological perspective in order to find candidate members relevant for the gastrin hormone signaling network model. We show how a combination of specific query definitions and additional selection criteria derived from gene expression data and prior knowledge concerning candidate proteins can be used to retrieve a set of proteins that constitute valid candidates for regulatory network extensions. Semantic web technologies provide the means for processing and integrating various heterogeneous information sources. The GeXKB offers biologists such an integrated knowledge resource, allowing them to address complex biological questions pertaining to gene expression. This work illustrates how GeXKB can be used in combination with gene expression results and literature information to identify new potential candidates that may be considered for extending a gene regulatory network.

  10. A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.

    PubMed

    El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M

    2015-11-01

    Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Levels of processing and picture memory: the physical superiority effect.

    PubMed

    Intraub, H; Nicklos, S

    1985-04-01

    Six experiments studied the effect of physical orienting questions (e.g., "Is this angular?") and semantic orienting questions (e.g., "Is this edible?") on memory for unrelated pictures at stimulus durations ranging from 125-2,000 ms. Results ran contrary to the semantic superiority "rule of thumb," which is based primarily on verbal memory experiments. Physical questions were associated with better free recall and cued recall of a diverse set of visual scenes (Experiments 1, 2, and 4). This occurred both when general and highly specific semantic questions were used (Experiments 1 and 2). Similar results were obtained when more simplistic visual stimuli--photographs of single objects--were used (Experiments 5 and 6). As in the case of the semantic superiority effect with words, the physical superiority effect for pictures was eliminated or reversed when the same physical questions were repeated throughout the session (Experiments 4 and 6). Conflicts with results of previous levels of processing experiments with words and nonverbal stimuli (e.g., faces) are explained in terms of the sensory-semantic model (Nelson, Reed, & McEvoy, 1977). Implications for picture memory research and the levels of processing viewpoint are discussed.

  12. The cognitive and neural expression of semantic memory impairment in mild cognitive impairment and early Alzheimer's disease.

    PubMed

    Joubert, Sven; Brambati, Simona M; Ansado, Jennyfer; Barbeau, Emmanuel J; Felician, Olivier; Didic, Mira; Lacombe, Jacinthe; Goldstein, Rachel; Chayer, Céline; Kergoat, Marie-Jeanne

    2010-03-01

    Semantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to healthy older subjects; (ii) investigate the association between naming and semantic knowledge in aMCI and AD; (iii) examine if the semantic impairment was present in different modalities; and (iv) study the relationship between semantic performance and grey matter volume using voxel-based morphometry. Results indicate that both naming and semantic knowledge of objects and famous people were impaired in aMCI and early AD groups, when compared to healthy age- and education-matched controls. Item-by-item analyses showed that anomia in aMCI and early AD was significantly associated with underlying semantic knowledge of famous people but not with semantic knowledge of objects. Moreover, semantic knowledge of the same concepts was impaired in both the visual and the verbal modalities. Finally, voxel-based morphometry analyses revealed that semantic impairment in aMCI and AD was associated with cortical atrophy in the anterior temporal lobe (ATL) region as well as in the inferior prefrontal cortex (IPC), some of the key regions of the semantic cognition network. These findings suggest that the semantic impairment in aMCI may result from a breakdown of semantic knowledge of famous people and objects, combined with difficulties in the selection, manipulation and retrieval of this knowledge. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. A DNA-based semantic fusion model for remote sensing data.

    PubMed

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology.

  14. A DNA-Based Semantic Fusion Model for Remote Sensing Data

    PubMed Central

    Sun, Heng; Weng, Jian; Yu, Guangchuang; Massawe, Richard H.

    2013-01-01

    Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many researchers use ontology to collect and organize data's semantic information in order to maximize research productivity. In this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships. However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening operations instead of the ontology. PMID:24116207

  15. A semantic problem solving environment for integrative parasite research: identification of intervention targets for Trypanosoma cruzi.

    PubMed

    Parikh, Priti P; Minning, Todd A; Nguyen, Vinh; Lalithsena, Sarasi; Asiaee, Amir H; Sahoo, Satya S; Doshi, Prashant; Tarleton, Rick; Sheth, Amit P

    2012-01-01

    Research on the biology of parasites requires a sophisticated and integrated computational platform to query and analyze large volumes of data, representing both unpublished (internal) and public (external) data sources. Effective analysis of an integrated data resource using knowledge discovery tools would significantly aid biologists in conducting their research, for example, through identifying various intervention targets in parasites and in deciding the future direction of ongoing as well as planned projects. A key challenge in achieving this objective is the heterogeneity between the internal lab data, usually stored as flat files, Excel spreadsheets or custom-built databases, and the external databases. Reconciling the different forms of heterogeneity and effectively integrating data from disparate sources is a nontrivial task for biologists and requires a dedicated informatics infrastructure. Thus, we developed an integrated environment using Semantic Web technologies that may provide biologists the tools for managing and analyzing their data, without the need for acquiring in-depth computer science knowledge. We developed a semantic problem-solving environment (SPSE) that uses ontologies to integrate internal lab data with external resources in a Parasite Knowledge Base (PKB), which has the ability to query across these resources in a unified manner. The SPSE includes Web Ontology Language (OWL)-based ontologies, experimental data with its provenance information represented using the Resource Description Format (RDF), and a visual querying tool, Cuebee, that features integrated use of Web services. We demonstrate the use and benefit of SPSE using example queries for identifying gene knockout targets of Trypanosoma cruzi for vaccine development. Answers to these queries involve looking up multiple sources of data, linking them together and presenting the results. The SPSE facilitates parasitologists in leveraging the growing, but disparate, parasite data resources by offering an integrative platform that utilizes Semantic Web techniques, while keeping their workload increase minimal.

  16. A Process Algebraic Approach to Software Architecture Design

    NASA Astrophysics Data System (ADS)

    Aldini, Alessandro; Bernardo, Marco; Corradini, Flavio

    Process algebra is a formal tool for the specification and the verification of concurrent and distributed systems. It supports compositional modeling through a set of operators able to express concepts like sequential composition, alternative composition, and parallel composition of action-based descriptions. It also supports mathematical reasoning via a two-level semantics, which formalizes the behavior of a description by means of an abstract machine obtained from the application of structural operational rules and then introduces behavioral equivalences able to relate descriptions that are syntactically different. In this chapter, we present the typical behavioral operators and operational semantic rules for a process calculus in which no notion of time, probability, or priority is associated with actions. Then, we discuss the three most studied approaches to the definition of behavioral equivalences - bisimulation, testing, and trace - and we illustrate their congruence properties, sound and complete axiomatizations, modal logic characterizations, and verification algorithms. Finally, we show how these behavioral equivalences and some of their variants are related to each other on the basis of their discriminating power.

  17. Using the Unified Modelling Language (UML) to guide the systemic description of biological processes and systems.

    PubMed

    Roux-Rouquié, Magali; Caritey, Nicolas; Gaubert, Laurent; Rosenthal-Sabroux, Camille

    2004-07-01

    One of the main issues in Systems Biology is to deal with semantic data integration. Previously, we examined the requirements for a reference conceptual model to guide semantic integration based on the systemic principles. In the present paper, we examine the usefulness of the Unified Modelling Language (UML) to describe and specify biological systems and processes. This makes unambiguous representations of biological systems, which would be suitable for translation into mathematical and computational formalisms, enabling analysis, simulation and prediction of these systems behaviours.

  18. Instantaneous Coastline Extraction from LIDAR Point Cloud and High Resolution Remote Sensing Imagery

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhoing, L.; Lai, Z.; Gan, Z.

    2018-04-01

    A new method was proposed for instantaneous waterline extraction in this paper, which combines point cloud geometry features and image spectral characteristics of the coastal zone. The proposed method consists of follow steps: Mean Shift algorithm is used to segment the coastal zone of high resolution remote sensing images into small regions containing semantic information;Region features are extracted by integrating LiDAR data and the surface area of the image; initial waterlines are extracted by α-shape algorithm; a region growing algorithm with is taking into coastline refinement, with a growth rule integrating the intensity and topography of LiDAR data; moothing the coastline. Experiments are conducted to demonstrate the efficiency of the proposed method.

  19. FoodWiki: a Mobile App Examines Side Effects of Food Additives Via Semantic Web.

    PubMed

    Çelik Ertuğrul, Duygu

    2016-02-01

    In this article, a research project on mobile safe food consumption system (FoodWiki) is discussed that performs its own inferencing rules in its own knowledge base. Currently, the developed rules examines the side effects that are causing some health risks: heart disease, diabetes, allergy, and asthma as initial. There are thousands compounds added to the processed food by food producers with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. Those commonly used ingredients or compounds in manufactured foods may have many side effects that cause several health risks such as heart disease, hypertension, cholesterol, asthma, diabetes, allergies, alzheimer etc. according to World Health Organization. Safety in food consumption, especially by patients in these risk groups, has become crucial, given that such health problems are ranked in the top ten health risks around the world. It is needed personal e-health knowledge base systems to help patients take control of their safe food consumption. The systems with advanced semantic knowledge base can provide recommendations of appropriate foods before consumption by individuals. The proposed FoodWiki system is using a concept based search mechanism that performs on thousands food compounds to provide more relevant information.

  20. The price of your soul: neural evidence for the non-utilitarian representation of sacred values

    PubMed Central

    Berns, Gregory S.; Bell, Emily; Capra, C. Monica; Prietula, Michael J.; Moore, Sara; Anderson, Brittany; Ginges, Jeremy; Atran, Scott

    2012-01-01

    Sacred values, such as those associated with religious or ethnic identity, underlie many important individual and group decisions in life, and individuals typically resist attempts to trade off their sacred values in exchange for material benefits. Deontological theory suggests that sacred values are processed based on rights and wrongs irrespective of outcomes, while utilitarian theory suggests that they are processed based on costs and benefits of potential outcomes, but which mode of processing an individual naturally uses is unknown. The study of decisions over sacred values is difficult because outcomes cannot typically be realized in a laboratory, and hence little is known about the neural representation and processing of sacred values. We used an experimental paradigm that used integrity as a proxy for sacredness and which paid real money to induce individuals to sell their personal values. Using functional magnetic resonance imaging (fMRI), we found that values that people refused to sell (sacred values) were associated with increased activity in the left temporoparietal junction and ventrolateral prefrontal cortex, regions previously associated with semantic rule retrieval. This suggests that sacred values affect behaviour through the retrieval and processing of deontic rules and not through a utilitarian evaluation of costs and benefits. PMID:22271790

  1. The price of your soul: neural evidence for the non-utilitarian representation of sacred values.

    PubMed

    Berns, Gregory S; Bell, Emily; Capra, C Monica; Prietula, Michael J; Moore, Sara; Anderson, Brittany; Ginges, Jeremy; Atran, Scott

    2012-03-05

    Sacred values, such as those associated with religious or ethnic identity, underlie many important individual and group decisions in life, and individuals typically resist attempts to trade off their sacred values in exchange for material benefits. Deontological theory suggests that sacred values are processed based on rights and wrongs irrespective of outcomes, while utilitarian theory suggests that they are processed based on costs and benefits of potential outcomes, but which mode of processing an individual naturally uses is unknown. The study of decisions over sacred values is difficult because outcomes cannot typically be realized in a laboratory, and hence little is known about the neural representation and processing of sacred values. We used an experimental paradigm that used integrity as a proxy for sacredness and which paid real money to induce individuals to sell their personal values. Using functional magnetic resonance imaging (fMRI), we found that values that people refused to sell (sacred values) were associated with increased activity in the left temporoparietal junction and ventrolateral prefrontal cortex, regions previously associated with semantic rule retrieval. This suggests that sacred values affect behaviour through the retrieval and processing of deontic rules and not through a utilitarian evaluation of costs and benefits.

  2. COEUS: “semantic web in a box” for biomedical applications

    PubMed Central

    2012-01-01

    Background As the “omics” revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter’s complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. Results COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a “semantic web in a box” approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. Conclusions The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/. PMID:23244467

  3. Ontology Alignment Architecture for Semantic Sensor Web Integration

    PubMed Central

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R.; Alarcos, Bernardo

    2013-01-01

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall. PMID:24051523

  4. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  5. COEUS: "semantic web in a box" for biomedical applications.

    PubMed

    Lopes, Pedro; Oliveira, José Luís

    2012-12-17

    As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.

  6. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services

    PubMed Central

    Gessler, Damian DG; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-01-01

    Background SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. Results There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at , developer tools at , and a portal to third-party ontologies at (a "swap meet"). Conclusion SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs. PMID:19775460

  7. Semantics-enabled service discovery framework in the SIMDAT pharma grid.

    PubMed

    Qu, Cangtao; Zimmermann, Falk; Kumpf, Kai; Kamuzinzi, Richard; Ledent, Valérie; Herzog, Robert

    2008-03-01

    We present the design and implementation of a semantics-enabled service discovery framework in the data Grids for process and product development using numerical simulation and knowledge discovery (SIMDAT) Pharma Grid, an industry-oriented Grid environment for integrating thousands of Grid-enabled biological data services and analysis services. The framework consists of three major components: the Web ontology language (OWL)-description logic (DL)-based biological domain ontology, OWL Web service ontology (OWL-S)-based service annotation, and semantic matchmaker based on the ontology reasoning. Built upon the framework, workflow technologies are extensively exploited in the SIMDAT to assist biologists in (semi)automatically performing in silico experiments. We present a typical usage scenario through the case study of a biological workflow: IXodus.

  8. Using Knowledge Rules for Pharmacy Mapping

    PubMed Central

    Shakib, Shaun C.; Che, Chengjian; Lau, Lee Min

    2006-01-01

    The 3M Health Information Systems (HIS) Healthcare Data Dictionary (HDD) is used to encode and structure patient medication data for the Electronic Health Record (EHR) of the Department of Defense’s (DoD’s) Armed Forces Health Longitudinal Technology Application (AHLTA). HDD Subject Matter Experts (SMEs) are responsible for initial and maintenance mapping of disparate, standalone medication master files from all 100 DoD host sites worldwide to a single concept-based vocabulary, to accomplish semantic interoperability. To achieve higher levels of automation, SMEs began defining a growing set of knowledge rules. These knowledge rules were implemented in a pharmacy mapping tool, which enhanced consistency through automation and increased mapping rate by 29%. PMID:17238709

  9. UBioLab: a web-laboratory for ubiquitous in-silico experiments.

    PubMed

    Bartocci, Ezio; Cacciagrano, Diletta; Di Berardini, Maria Rita; Merelli, Emanuela; Vito, Leonardo

    2012-07-09

    The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists –for what concerns their management and visualization– and for bioinformaticians –for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle –and possibly to handle in a transparent and uniform way– aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features –as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques– give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.

  10. Developing a kidney and urinary pathway knowledge base

    PubMed Central

    2011-01-01

    Background Chronic renal disease is a global health problem. The identification of suitable biomarkers could facilitate early detection and diagnosis and allow better understanding of the underlying pathology. One of the challenges in meeting this goal is the necessary integration of experimental results from multiple biological levels for further analysis by data mining. Data integration in the life science is still a struggle, and many groups are looking to the benefits promised by the Semantic Web for data integration. Results We present a Semantic Web approach to developing a knowledge base that integrates data from high-throughput experiments on kidney and urine. A specialised KUP ontology is used to tie the various layers together, whilst background knowledge from external databases is incorporated by conversion into RDF. Using SPARQL as a query mechanism, we are able to query for proteins expressed in urine and place these back into the context of genes expressed in regions of the kidney. Conclusions The KUPKB gives KUP biologists the means to ask queries across many resources in order to aggregate knowledge that is necessary for answering biological questions. The Semantic Web technologies we use, together with the background knowledge from the domain’s ontologies, allows both rapid conversion and integration of this knowledge base. The KUPKB is still relatively small, but questions remain about scalability, maintenance and availability of the knowledge itself. Availability The KUPKB may be accessed via http://www.e-lico.eu/kupkb. PMID:21624162

  11. FoodWiki: Ontology-Driven Mobile Safe Food Consumption System

    PubMed Central

    Çelik, Duygu

    2015-01-01

    An ontology-driven safe food consumption mobile system is considered. Over 3,000 compounds are being added to processed food, with numerous effects on the food: to add color, stabilize, texturize, preserve, sweeten, thicken, add flavor, soften, emulsify, and so forth. According to World Health Organization, governments have lately focused on legislation to reduce such ingredients or compounds in manufactured foods as they may have side effects causing health risks such as heart disease, cancer, diabetes, allergens, and obesity. By supervising what and how much to eat as well as what not to eat, we can maximize a patient's life quality through avoidance of unhealthy ingredients. Smart e-health systems with powerful knowledge bases can provide suggestions of appropriate foods to individuals. Next-generation smart knowledgebase systems will not only include traditional syntactic-based search, which limits the utility of the search results, but will also provide semantics for rich searching. In this paper, performance of concept matching of food ingredients is semantic-based, meaning that it runs its own semantic based rule set to infer meaningful results through the proposed Ontology-Driven Mobile Safe Food Consumption System (FoodWiki). PMID:26221624

  12. Landscape features, standards, and semantics in U.S. national topographic mapping databases

    USGS Publications Warehouse

    Varanka, Dalia

    2009-01-01

    The objective of this paper is to examine the contrast between local, field-surveyed topographical representation and feature representation in digital, centralized databases and to clarify their ontological implications. The semantics of these two approaches are contrasted by examining the categorization of features by subject domains inherent to national topographic mapping. When comparing five USGS topographic mapping domain and feature lists, results indicate that multiple semantic meanings and ontology rules were applied to the initial digital database, but were lost as databases became more centralized at national scales, and common semantics were replaced by technological terms.

  13. Integrated Syntactic/Semantic XML Data Validation with a Reusable Software Component

    ERIC Educational Resources Information Center

    Golikov, Steven

    2013-01-01

    Data integration is a critical component of enterprise system integration, and XML data validation is the foundation for sound data integration of XML-based information systems. Since B2B e-commerce relies on data validation as one of the critical components for enterprise integration, it is imperative for financial industries and e-commerce…

  14. Towards computerizing intensive care sedation guidelines: design of a rule-based architecture for automated execution of clinical guidelines

    PubMed Central

    2010-01-01

    Background Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs. The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase. Methods A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA). Results The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows. Conclusions The framework is an effective solution for computerizing clinical guidelines as it allows for quick development, evaluation and human-readable visualization of the Rules and has a good performance. By monitoring the parameters of the patient to automatically detect exceptional situations and problems and by notifying the medical staff of tasks that need to be performed, the computerized sedation guideline improves the execution of the guideline. PMID:20082700

  15. Towards computerizing intensive care sedation guidelines: design of a rule-based architecture for automated execution of clinical guidelines.

    PubMed

    Ongenae, Femke; De Backere, Femke; Steurbaut, Kristof; Colpaert, Kirsten; Kerckhove, Wannes; Decruyenaere, Johan; De Turck, Filip

    2010-01-18

    Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs.The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase. A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA). The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows. The framework is an effective solution for computerizing clinical guidelines as it allows for quick development, evaluation and human-readable visualization of the Rules and has a good performance. By monitoring the parameters of the patient to automatically detect exceptional situations and problems and by notifying the medical staff of tasks that need to be performed, the computerized sedation guideline improves the execution of the guideline.

  16. Does GEM-encoding clinical practice guidelines improve the quality of knowledge bases? A study with the rule-based formalism.

    PubMed

    Georg, Georg; Séroussi, Brigitte; Bouaud, Jacques

    2003-01-01

    The aim of this work was to determine whether the GEM-encoding step could improve the representation of clinical practice guidelines as formalized knowledge bases. We used the 1999 Canadian recommendations for the management of hypertension, chosen as the knowledge source in the ASTI project. We first clarified semantic ambiguities of therapeutic sequences recommended in the guideline by proposing an interpretative framework of therapeutic strategies. Then, after a formalization step to standardize the terms used to characterize clinical situations, we created the GEM-encoded instance of the guideline. We developed a module for the automatic derivation of a rule base, BR-GEM, from the instance. BR-GEM was then compared to the rule base, BR-ASTI, embedded within the critic mode of ASTI, and manually built by two physicians from the same Canadian guideline. As compared to BR-ASTI, BR-GEM is more specific and covers more clinical situations. When evaluated on 10 patient cases, the GEM-based approach led to promising results.

  17. A Formal Theory for Modular ERDF Ontologies

    NASA Astrophysics Data System (ADS)

    Analyti, Anastasia; Antoniou, Grigoris; Damásio, Carlos Viegas

    The success of the Semantic Web is impossible without any form of modularity, encapsulation, and access control. In an earlier paper, we extended RDF graphs with weak and strong negation, as well as derivation rules. The ERDF #n-stable model semantics of the extended RDF framework (ERDF) is defined, extending RDF(S) semantics. In this paper, we propose a framework for modular ERDF ontologies, called modular ERDF framework, which enables collaborative reasoning over a set of ERDF ontologies, while support for hidden knowledge is also provided. In particular, the modular ERDF stable model semantics of modular ERDF ontologies is defined, extending the ERDF #n-stable model semantics. Our proposed framework supports local semantics and different points of view, local closed-world and open-world assumptions, and scoped negation-as-failure. Several complexity results are provided.

  18. A delta-rule model of numerical and non-numerical order processing.

    PubMed

    Verguts, Tom; Van Opstal, Filip

    2014-06-01

    Numerical and non-numerical order processing share empirical characteristics (distance effect and semantic congruity), but there are also important differences (in size effect and end effect). At the same time, models and theories of numerical and non-numerical order processing developed largely separately. Currently, we combine insights from 2 earlier models to integrate them in a common framework. We argue that the same learning principle underlies numerical and non-numerical orders, but that environmental features determine the empirical differences. Implications for current theories on order processing are pointed out. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  20. Temporal and Location Based RFID Event Data Management and Processing

    NASA Astrophysics Data System (ADS)

    Wang, Fusheng; Liu, Peiya

    Advance of sensor and RFID technology provides significant new power for humans to sense, understand and manage the world. RFID provides fast data collection with precise identification of objects with unique IDs without line of sight, thus it can be used for identifying, locating, tracking and monitoring physical objects. Despite these benefits, RFID poses many challenges for data processing and management. RFID data are temporal and history oriented, multi-dimensional, and carrying implicit semantics. Moreover, RFID applications are heterogeneous. RFID data management or data warehouse systems need to support generic and expressive data modeling for tracking and monitoring physical objects, and provide automated data interpretation and processing. We develop a powerful temporal and location oriented data model for modeling and queryingRFID data, and a declarative event and rule based framework for automated complex RFID event processing. The approach is general and can be easily adapted for different RFID-enabled applications, thus significantly reduces the cost of RFID data integration.

  1. The role of sleep spindles and slow-wave activity in integrating new information in semantic memory.

    PubMed

    Tamminen, Jakke; Lambon Ralph, Matthew A; Lewis, Penelope A

    2013-09-25

    Assimilating new information into existing knowledge is a fundamental part of consolidating new memories and allowing them to guide behavior optimally and is vital for conceptual knowledge (semantic memory), which is accrued over many years. Sleep is important for memory consolidation, but its impact upon assimilation of new information into existing semantic knowledge has received minimal examination. Here, we examined the integration process by training human participants on novel words with meanings that fell into densely or sparsely populated areas of semantic memory in two separate sessions. Overnight sleep was polysomnographically monitored after each training session and recall was tested immediately after training, after a night of sleep, and 1 week later. Results showed that participants learned equal numbers of both word types, thus equating amount and difficulty of learning across the conditions. Measures of word recognition speed showed a disadvantage for novel words in dense semantic neighborhoods, presumably due to interference from many semantically related concepts, suggesting that the novel words had been successfully integrated into semantic memory. Most critically, semantic neighborhood density influenced sleep architecture, with participants exhibiting more sleep spindles and slow-wave activity after learning the sparse compared with the dense neighborhood words. These findings provide the first evidence that spindles and slow-wave activity mediate integration of new information into existing semantic networks.

  2. From moral to legal judgment: the influence of normative context in lawyers and other academics

    PubMed Central

    Spranger, Tade M.; Erk, Susanne; Walter, Henrik

    2011-01-01

    Various kinds of normative judgments are an integral part of everyday life. We extended the scrutiny of social cognitive neuroscience into the domain of legal decisions, investigating two groups, lawyers and other academics, during moral and legal decision-making. While we found activation of brain areas comprising the so-called ‘moral brain’ in both conditions, there was stronger activation in the left dorsolateral prefrontal cortex and middle temporal gyrus particularly when subjects made legal decisions, suggesting that these were made in respect to more explicit rules and demanded more complex semantic processing. Comparing both groups, our data show that behaviorally lawyers conceived themselves as emotionally less involved during normative decision-making in general. A group × condition interaction in the dorsal anterior cingulate cortex suggests a modulation of normative decision-making by attention based on subjects’ normative expertise. PMID:20194515

  3. From moral to legal judgment: the influence of normative context in lawyers and other academics.

    PubMed

    Schleim, Stephan; Spranger, Tade M; Erk, Susanne; Walter, Henrik

    2011-01-01

    Various kinds of normative judgments are an integral part of everyday life. We extended the scrutiny of social cognitive neuroscience into the domain of legal decisions, investigating two groups, lawyers and other academics, during moral and legal decision-making. While we found activation of brain areas comprising the so-called 'moral brain' in both conditions, there was stronger activation in the left dorsolateral prefrontal cortex and middle temporal gyrus particularly when subjects made legal decisions, suggesting that these were made in respect to more explicit rules and demanded more complex semantic processing. Comparing both groups, our data show that behaviorally lawyers conceived themselves as emotionally less involved during normative decision-making in general. A group × condition interaction in the dorsal anterior cingulate cortex suggests a modulation of normative decision-making by attention based on subjects' normative expertise.

  4. First Steps Towards AN Integrated Citygml-Based 3d Model of Vienna

    NASA Astrophysics Data System (ADS)

    Agugiaro, G.

    2016-06-01

    This paper presents and discusses the results regarding the initial steps (selection, analysis, preparation and eventual integration of a number of datasets) for the creation of an integrated, semantic, three-dimensional, and CityGML-based virtual model of the city of Vienna. CityGML is an international standard conceived specifically as information and data model for semantic city models at urban and territorial scale. It is being adopted by more and more cities all over the world. The work described in this paper is embedded within the European Marie-Curie ITN project "Ci-nergy, Smart cities with sustainable energy systems", which aims, among the rest, at developing urban decision making and operational optimisation software tools to minimise non-renewable energy use in cities. Given the scope and scale of the project, it is therefore vital to set up a common, unique and spatio-semantically coherent urban model to be used as information hub for all applications being developed. This paper reports about the experiences done so far, it describes the test area and the available data sources, it shows and exemplifies the data integration issues, the strategies developed to solve them in order to obtain the integrated 3D city model. The first results as well as some comments about their quality and limitations are presented, together with the discussion regarding the next steps and some planned improvements.

  5. Blob-level active-passive data fusion for Benthic classification

    NASA Astrophysics Data System (ADS)

    Park, Joong Yong; Kalluri, Hemanth; Mathur, Abhinav; Ramnath, Vinod; Kim, Minsu; Aitken, Jennifer; Tuell, Grady

    2012-06-01

    We extend the data fusion pixel level to the more semantically meaningful blob level, using the mean-shift algorithm to form labeled blobs having high similarity in the feature domain, and connectivity in the spatial domain. We have also developed Bhattacharyya Distance (BD) and rule-based classifiers, and have implemented these higher-level data fusion algorithms into the CZMIL Data Processing System. Applying these new algorithms to recent SHOALS and CASI data at Plymouth Harbor, Massachusetts, we achieved improved benthic classification accuracies over those produced with either single sensor, or pixel-level fusion strategies. These results appear to validate the hypothesis that classification accuracy may be generally improved by adopting higher spatial and semantic levels of fusion.

  6. Multiscale corner detection and classification using local properties and semantic patterns

    NASA Astrophysics Data System (ADS)

    Gallo, Giovanni; Giuoco, Alessandro L.

    2002-05-01

    A new technique to detect, localize and classify corners in digital closed curves is proposed. The technique is based on correct estimation of support regions for each point. We compute multiscale curvature to detect and to localize corners. As a further step, with the aid of some local features, it's possible to classify corners into seven distinct types. Classification is performed using a set of rules, which describe corners according to preset semantic patterns. Compared with existing techniques, the proposed approach inscribes itself into the family of algorithms that try to explain the curve, instead of simple labeling. Moreover, our technique works in manner similar to what is believed are typical mechanisms of human perception.

  7. Integrating a Hypernymic Proposition Interpreter into a Semantic Processor for Biomedical Texts

    PubMed Central

    Fiszman, Marcelo; Rindflesch, Thomas C.; Kilicoglu, Halil

    2003-01-01

    Semantic processing provides the potential for producing high quality results in natural language processing (NLP) applications in the biomedical domain. In this paper, we address a specific semantic phenomenon, the hypernymic proposition, and concentrate on integrating the interpretation of such predications into a more general semantic processor in order to improve overall accuracy. A preliminary evaluation assesses the contribution of hypernymic propositions in providing more specific semantic predications and thus improving effectiveness in retrieving treatment propositions in MEDLINE abstracts. Finally, we discuss the generalization of this methodology to additional semantic propositions as well as other types of biomedical texts. PMID:14728170

  8. Information integration from heterogeneous data sources: a Semantic Web approach.

    PubMed

    Kunapareddy, Narendra; Mirhaji, Parsa; Richards, David; Casscells, S Ward

    2006-01-01

    Although the decentralized and autonomous implementation of health information systems has made it possible to extend the reach of surveillance systems to a variety of contextually disparate domains, public health use of data from these systems is not primarily anticipated. The Semantic Web has been proposed to address both representational and semantic heterogeneity in distributed and collaborative environments. We introduce a semantic approach for the integration of health data using the Resource Definition Framework (RDF) and the Simple Knowledge Organization System (SKOS) developed by the Semantic Web community.

  9. An ERP study on whether semantic integration exists in processing ecologically unrelated audio-visual information.

    PubMed

    Liu, Baolin; Meng, Xianyao; Wang, Zhongning; Wu, Guangning

    2011-11-14

    In the present study, we used event-related potentials (ERPs) to examine whether semantic integration occurs for ecologically unrelated audio-visual information. Videos with synchronous audio-visual information were used as stimuli, where the auditory stimuli were sine wave sounds with different sound levels, and the visual stimuli were simple geometric figures with different areas. In the experiment, participants were shown an initial display containing a single shape (drawn from a set of 6 shapes) with a fixed size (14cm(2)) simultaneously with a 3500Hz tone of a fixed intensity (80dB). Following a short delay, another shape/tone pair was presented and the relationship between the size of the shape and the intensity of the tone varied across trials: in the V+A- condition, a large shape was paired with a soft tone; in the V+A+ condition, a large shape was paired with a loud tone, and so forth. The ERPs results revealed that N400 effect was elicited under the VA- condition (V+A- and V-A+) as compared to the VA+ condition (V+A+ and V-A-). It was shown that semantic integration would occur when simultaneous, ecologically unrelated auditory and visual stimuli enter the human brain. We considered that this semantic integration was based on semantic constraint of audio-visual information, which might come from the long-term learned association stored in the human brain and short-term experience of incoming information. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Evolving Agents: Communication and Cognition

    DTIC Science & Technology

    2005-06-01

    systems [11] and the first Chomsky ideas concerning mechanisms of language grammar related to deep structure [12] encountered CC of rules. Model-based...Perennial (2000) 3. Jackendoff, R.: Foundations of Language: Brain, Meaning, Grammar , Evolution. Oxford University Press, New York, NY (2002) 4. Pinker, S... University Press, Princeton, NJ (1961) 11. Minsky, M.L.: Semantic Information Processing. The MIT Press, Cambridge, MA (1968) 12. Chomsky , N

  11. Semantic similarity measure in biomedical domain leverage web search engine.

    PubMed

    Chen, Chi-Huang; Hsieh, Sheau-Ling; Weng, Yung-Ching; Chang, Wen-Yung; Lai, Feipei

    2010-01-01

    Semantic similarity measure plays an essential role in Information Retrieval and Natural Language Processing. In this paper we propose a page-count-based semantic similarity measure and apply it in biomedical domains. Previous researches in semantic web related applications have deployed various semantic similarity measures. Despite the usefulness of the measurements in those applications, measuring semantic similarity between two terms remains a challenge task. The proposed method exploits page counts returned by the Web Search Engine. We define various similarity scores for two given terms P and Q, using the page counts for querying P, Q and P AND Q. Moreover, we propose a novel approach to compute semantic similarity using lexico-syntactic patterns with page counts. These different similarity scores are integrated adapting support vector machines, to leverage the robustness of semantic similarity measures. Experimental results on two datasets achieve correlation coefficients of 0.798 on the dataset provided by A. Hliaoutakis, 0.705 on the dataset provide by T. Pedersen with physician scores and 0.496 on the dataset provided by T. Pedersen et al. with expert scores.

  12. Semantic layers for illustrative volume rendering.

    PubMed

    Rautek, Peter; Bruckner, Stefan; Gröller, Eduard

    2007-01-01

    Direct volume rendering techniques map volumetric attributes (e.g., density, gradient magnitude, etc.) to visual styles. Commonly this mapping is specified by a transfer function. The specification of transfer functions is a complex task and requires expert knowledge about the underlying rendering technique. In the case of multiple volumetric attributes and multiple visual styles the specification of the multi-dimensional transfer function becomes more challenging and non-intuitive. We present a novel methodology for the specification of a mapping from several volumetric attributes to multiple illustrative visual styles. We introduce semantic layers that allow a domain expert to specify the mapping in the natural language of the domain. A semantic layer defines the mapping of volumetric attributes to one visual style. Volumetric attributes and visual styles are represented as fuzzy sets. The mapping is specified by rules that are evaluated with fuzzy logic arithmetics. The user specifies the fuzzy sets and the rules without special knowledge about the underlying rendering technique. Semantic layers allow for a linguistic specification of the mapping from attributes to visual styles replacing the traditional transfer function specification.

  13. A Role Calculus for ORM

    NASA Astrophysics Data System (ADS)

    Curland, Matthew; Halpin, Terry; Stirewalt, Kurt

    A conceptual schema of an information system specifies the fact structures of interest as well as related business rules that are either constraints or derivation rules. Constraints restrict the possible or permitted states or state transitions, while derivation rules enable some facts to be derived from others. Graphical languages are commonly used to specify conceptual schemas, but often need to be supplemented by more expressive textual languages to capture additional business rules, as well as conceptual queries that enable conceptual models to be queried directly. This paper describes research to provide a role calculus to underpin textual languages for Object-Role Modeling (ORM), to enable business rules and queries to be formulated in a language intelligible to business users. The role-based nature of this calculus, which exploits the attribute-free nature of ORM, appears to offer significant advantages over other proposed approaches, especially in the area of semantic stability.

  14. Semantically Enriched Data Access Policies in eHealth.

    PubMed

    Drozdowicz, Michał; Ganzha, Maria; Paprzycki, Marcin

    2016-11-01

    Internet of Things (IoT) requires novel solutions to facilitate autonomous, though controlled, resource access. Access policies have to facilitate interactions between heterogeneous entities (devices and humans). Here, we focus our attention on access control in eHealth. We propose an approach based on enriching policies, based on well-known and widely-used eXtensible Access Control Markup Language, with semantics. In the paper we describe an implementation of a Policy Information Point integrated with the HL7 Security and Privacy Ontology.

  15. Productive extension of semantic memory in school-aged children: Relations with reading comprehension and deployment of cognitive resources.

    PubMed

    Bauer, Patricia J; Blue, Shala N; Xu, Aoxiang; Esposito, Alena G

    2016-07-01

    We investigated 7- to 10-year-old children's productive extension of semantic memory through self-generation of new factual knowledge derived through integration of separate yet related facts learned through instruction or through reading. In Experiment 1, an experimenter read the to-be-integrated facts. Children successfully learned and integrated the information and used it to further extend their semantic knowledge, as evidenced by high levels of correct responses in open-ended and forced-choice testing. In Experiment 2, on half of the trials, the to-be-integrated facts were read by an experimenter (as in Experiment 1) and on half of the trials, children read the facts themselves. Self-generation performance was high in both conditions (experimenter- and self-read); in both conditions, self-generation of new semantic knowledge was related to an independent measure of children's reading comprehension. In Experiment 3, the way children deployed cognitive resources during reading was predictive of their subsequent recall of newly learned information derived through integration. These findings indicate self-generation of new semantic knowledge through integration in school-age children as well as relations between this productive means of extension of semantic memory and cognitive processes engaged during reading. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Productive Extension of Semantic Memory in School-aged Children: Relations with Reading Comprehension and Deployment of Cognitive Resources

    PubMed Central

    Bauer, Patricia J.; Blue, Shala N.; Xu, Aoxiang; Esposito, Alena G.

    2016-01-01

    We investigated 7- to 10-year-old children’s productive extension of semantic memory through self-generation of new factual knowledge derived through integration of separate yet related facts learned through instruction or through reading. In Experiment 1, an experimenter read the to-be-integrated facts. Children successfully learned and integrated the information and used it to further extend their semantic knowledge, as evidenced by high levels of correct responses in open-ended and forced-choice testing. In Experiment 2, on half of the trials, the to-be-integrated facts were read by an experimenter (as in Experiment 1) and on half of the trials, children read the facts themselves. Self-generation performance was high in both conditions (experimenter- and self-read); in both conditions, self-generation of new semantic knowledge was related to an independent measure of children’s reading comprehension. In Experiment 3, the way children deployed cognitive resources during reading was predictive of their subsequent recall of newly learned information derived through integration. These findings indicate self-generation of new semantic knowledge through integration in school-age children as well as relations between this productive means of extension of semantic memory and cognitive processes engaged during reading. PMID:27253263

  17. Foundations for Streaming Model Transformations by Complex Event Processing.

    PubMed

    Dávid, István; Ráth, István; Varró, Dániel

    2018-01-01

    Streaming model transformations represent a novel class of transformations to manipulate models whose elements are continuously produced or modified in high volume and with rapid rate of change. Executing streaming transformations requires efficient techniques to recognize activated transformation rules over a live model and a potentially infinite stream of events. In this paper, we propose foundations of streaming model transformations by innovatively integrating incremental model query, complex event processing (CEP) and reactive (event-driven) transformation techniques. Complex event processing allows to identify relevant patterns and sequences of events over an event stream. Our approach enables event streams to include model change events which are automatically and continuously populated by incremental model queries. Furthermore, a reactive rule engine carries out transformations on identified complex event patterns. We provide an integrated domain-specific language with precise semantics for capturing complex event patterns and streaming transformations together with an execution engine, all of which is now part of the Viatra reactive transformation framework. We demonstrate the feasibility of our approach with two case studies: one in an advanced model engineering workflow; and one in the context of on-the-fly gesture recognition.

  18. Spatiotemporal integration of molecular and anatomical data in virtual reality using semantic mapping.

    PubMed

    Soh, Jung; Turinsky, Andrei L; Trinh, Quang M; Chang, Jasmine; Sabhaney, Ajay; Dong, Xiaoli; Gordon, Paul Mk; Janzen, Ryan Pw; Hau, David; Xia, Jianguo; Wishart, David S; Sensen, Christoph W

    2009-01-01

    We have developed a computational framework for spatiotemporal integration of molecular and anatomical datasets in a virtual reality environment. Using two case studies involving gene expression data and pharmacokinetic data, respectively, we demonstrate how existing knowledge bases for molecular data can be semantically mapped onto a standardized anatomical context of human body. Our data mapping methodology uses ontological representations of heterogeneous biomedical datasets and an ontology reasoner to create complex semantic descriptions of biomedical processes. This framework provides a means to systematically combine an increasing amount of biomedical imaging and numerical data into spatiotemporally coherent graphical representations. Our work enables medical researchers with different expertise to simulate complex phenomena visually and to develop insights through the use of shared data, thus paving the way for pathological inference, developmental pattern discovery and biomedical hypothesis testing.

  19. Computable visually observed phenotype ontological framework for plants

    PubMed Central

    2011-01-01

    Background The ability to search for and precisely compare similar phenotypic appearances within and across species has vast potential in plant science and genetic research. The difficulty in doing so lies in the fact that many visual phenotypic data, especially visually observed phenotypes that often times cannot be directly measured quantitatively, are in the form of text annotations, and these descriptions are plagued by semantic ambiguity, heterogeneity, and low granularity. Though several bio-ontologies have been developed to standardize phenotypic (and genotypic) information and permit comparisons across species, these semantic issues persist and prevent precise analysis and retrieval of information. A framework suitable for the modeling and analysis of precise computable representations of such phenotypic appearances is needed. Results We have developed a new framework called the Computable Visually Observed Phenotype Ontological Framework for plants. This work provides a novel quantitative view of descriptions of plant phenotypes that leverages existing bio-ontologies and utilizes a computational approach to capture and represent domain knowledge in a machine-interpretable form. This is accomplished by means of a robust and accurate semantic mapping module that automatically maps high-level semantics to low-level measurements computed from phenotype imagery. The framework was applied to two different plant species with semantic rules mined and an ontology constructed. Rule quality was evaluated and showed high quality rules for most semantics. This framework also facilitates automatic annotation of phenotype images and can be adopted by different plant communities to aid in their research. Conclusions The Computable Visually Observed Phenotype Ontological Framework for plants has been developed for more efficient and accurate management of visually observed phenotypes, which play a significant role in plant genomics research. The uniqueness of this framework is its ability to bridge the knowledge of informaticians and plant science researchers by translating descriptions of visually observed phenotypes into standardized, machine-understandable representations, thus enabling the development of advanced information retrieval and phenotype annotation analysis tools for the plant science community. PMID:21702966

  20. Logic-based assessment of the compatibility of UMLS ontology sources

    PubMed Central

    2011-01-01

    Background The UMLS Metathesaurus (UMLS-Meta) is currently the most comprehensive effort for integrating independently-developed medical thesauri and ontologies. UMLS-Meta is being used in many applications, including PubMed and ClinicalTrials.gov. The integration of new sources combines automatic techniques, expert assessment, and auditing protocols. The automatic techniques currently in use, however, are mostly based on lexical algorithms and often disregard the semantics of the sources being integrated. Results In this paper, we argue that UMLS-Meta’s current design and auditing methodologies could be significantly enhanced by taking into account the logic-based semantics of the ontology sources. We provide empirical evidence suggesting that UMLS-Meta in its 2009AA version contains a significant number of errors; these errors become immediately apparent if the rich semantics of the ontology sources is taken into account, manifesting themselves as unintended logical consequences that follow from the ontology sources together with the information in UMLS-Meta. We then propose general principles and specific logic-based techniques to effectively detect and repair such errors. Conclusions Our results suggest that the methodologies employed in the design of UMLS-Meta are not only very costly in terms of human effort, but also error-prone. The techniques presented here can be useful for both reducing human effort in the design and maintenance of UMLS-Meta and improving the quality of its contents. PMID:21388571

  1. When More Is Less: Feedback Effects in Perceptual Category Learning

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent

    2008-01-01

    Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether…

  2. Transparent ICD and DRG coding using information technology: linking and associating information sources with the eXtensible Markup Language.

    PubMed

    Hoelzer, Simon; Schweiger, Ralf K; Dudeck, Joachim

    2003-01-01

    With the introduction of ICD-10 as the standard for diagnostics, it becomes necessary to develop an electronic representation of its complete content, inherent semantics, and coding rules. The authors' design relates to the current efforts by the CEN/TC 251 to establish a European standard for hierarchical classification systems in health care. The authors have developed an electronic representation of ICD-10 with the eXtensible Markup Language (XML) that facilitates integration into current information systems and coding software, taking different languages and versions into account. In this context, XML provides a complete processing framework of related technologies and standard tools that helps develop interoperable applications. XML provides semantic markup. It allows domain-specific definition of tags and hierarchical document structure. The idea of linking and thus combining information from different sources is a valuable feature of XML. In addition, XML topic maps are used to describe relationships between different sources, or "semantically associated" parts of these sources. The issue of achieving a standardized medical vocabulary becomes more and more important with the stepwise implementation of diagnostically related groups, for example. The aim of the authors' work is to provide a transparent and open infrastructure that can be used to support clinical coding and to develop further software applications. The authors are assuming that a comprehensive representation of the content, structure, inherent semantics, and layout of medical classification systems can be achieved through a document-oriented approach.

  3. Transparent ICD and DRG Coding Using Information Technology: Linking and Associating Information Sources with the eXtensible Markup Language

    PubMed Central

    Hoelzer, Simon; Schweiger, Ralf K.; Dudeck, Joachim

    2003-01-01

    With the introduction of ICD-10 as the standard for diagnostics, it becomes necessary to develop an electronic representation of its complete content, inherent semantics, and coding rules. The authors' design relates to the current efforts by the CEN/TC 251 to establish a European standard for hierarchical classification systems in health care. The authors have developed an electronic representation of ICD-10 with the eXtensible Markup Language (XML) that facilitates integration into current information systems and coding software, taking different languages and versions into account. In this context, XML provides a complete processing framework of related technologies and standard tools that helps develop interoperable applications. XML provides semantic markup. It allows domain-specific definition of tags and hierarchical document structure. The idea of linking and thus combining information from different sources is a valuable feature of XML. In addition, XML topic maps are used to describe relationships between different sources, or “semantically associated” parts of these sources. The issue of achieving a standardized medical vocabulary becomes more and more important with the stepwise implementation of diagnostically related groups, for example. The aim of the authors' work is to provide a transparent and open infrastructure that can be used to support clinical coding and to develop further software applications. The authors are assuming that a comprehensive representation of the content, structure, inherent semantics, and layout of medical classification systems can be achieved through a document-oriented approach. PMID:12807813

  4. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.

  5. When more is less: Feedback effects in perceptual category learning ☆

    PubMed Central

    Maddox, W. Todd; Love, Bradley C.; Glass, Brian D.; Filoteo, J. Vincent

    2008-01-01

    Rule-based and information-integration category learning were compared under minimal and full feedback conditions. Rule-based category structures are those for which the optimal rule is verbalizable. Information-integration category structures are those for which the optimal rule is not verbalizable. With minimal feedback subjects are told whether their response was correct or incorrect, but are not informed of the correct category assignment. With full feedback subjects are informed of the correctness of their response and are also informed of the correct category assignment. An examination of the distinct neural circuits that subserve rule-based and information-integration category learning leads to the counterintuitive prediction that full feedback should facilitate rule-based learning but should also hinder information-integration learning. This prediction was supported in the experiment reported below. The implications of these results for theories of learning are discussed. PMID:18455155

  6. Music models aberrant rule decoding and reward valuation in dementia

    PubMed Central

    Clark, Camilla N; Golden, Hannah L; McCallion, Oliver; Nicholas, Jennifer M; Cohen, Miriam H; Slattery, Catherine F; Paterson, Ross W; Fletcher, Phillip D; Mummery, Catherine J; Rohrer, Jonathan D; Crutch, Sebastian J; Warren, Jason D

    2018-01-01

    Abstract Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer’s disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved (‘finished’) or unresolved (‘unfinished’); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias. PMID:29186630

  7. Semantic querying of relational data for clinical intelligence: a semantic web services-based approach

    PubMed Central

    2013-01-01

    Background Clinical Intelligence, as a research and engineering discipline, is dedicated to the development of tools for data analysis for the purposes of clinical research, surveillance, and effective health care management. Self-service ad hoc querying of clinical data is one desirable type of functionality. Since most of the data are currently stored in relational or similar form, ad hoc querying is problematic as it requires specialised technical skills and the knowledge of particular data schemas. Results A possible solution is semantic querying where the user formulates queries in terms of domain ontologies that are much easier to navigate and comprehend than data schemas. In this article, we are exploring the possibility of using SADI Semantic Web services for semantic querying of clinical data. We have developed a prototype of a semantic querying infrastructure for the surveillance of, and research on, hospital-acquired infections. Conclusions Our results suggest that SADI can support ad-hoc, self-service, semantic queries of relational data in a Clinical Intelligence context. The use of SADI compares favourably with approaches based on declarative semantic mappings from data schemas to ontologies, such as query rewriting and RDFizing by materialisation, because it can easily cope with situations when (i) some computation is required to turn relational data into RDF or OWL, e.g., to implement temporal reasoning, or (ii) integration with external data sources is necessary. PMID:23497556

  8. A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications

    PubMed Central

    Cameron, Delroy; Bodenreider, Olivier; Yalamanchili, Hima; Danh, Tu; Vallabhaneni, Sreeram; Thirunarayan, Krishnaprasad; Sheth, Amit P.; Rindflesch, Thomas C.

    2014-01-01

    Objectives This paper presents a methodology for recovering and decomposing Swanson’s Raynaud Syndrome–Fish Oil Hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson’s manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature. Methods Semantic predications obtained from biomedical literature allow the construction of labeled directed graphs which contain various associations among concepts from the literature. By aggregating such associations into informative subgraphs, some of the relevant details originally articulated by Swanson has been uncovered. However, by leveraging background knowledge to bridge important knowledge gaps in the literature, a methodology for semi-automatically capturing the detailed associations originally explicated in natural language by Swanson has been developed. Results Our methodology not only recovered the 3 associations commonly recognized as Swanson’s Hypothesis, but also decomposed them into an additional 16 detailed associations, formulated as chains of semantic predications. Altogether, 14 out of the 19 associations that can be attributed to Swanson were retrieved using our approach. To the best of our knowledge, such an in-depth recovery and decomposition of Swanson’s Hypothesis has never been attempted. Conclusion In this work therefore, we presented a methodology for semi- automatically recovering and decomposing Swanson’s RS-DFO Hypothesis using semantic representations and graph algorithms. Our methodology provides new insights into potential prerequisites for semantics-driven Literature-Based Discovery (LBD). These suggest that three critical aspects of LBD include: 1) the need for more expressive representations beyond Swanson’s ABC model; 2) an ability to accurately extract semantic information from text; and 3) the semantic integration of scientific literature with structured background knowledge. PMID:23026233

  9. Ontology driven integration platform for clinical and translational research

    PubMed Central

    Mirhaji, Parsa; Zhu, Min; Vagnoni, Mattew; Bernstam, Elmer V; Zhang, Jiajie; Smith, Jack W

    2009-01-01

    Semantic Web technologies offer a promising framework for integration of disparate biomedical data. In this paper we present the semantic information integration platform under development at the Center for Clinical and Translational Sciences (CCTS) at the University of Texas Health Science Center at Houston (UTHSC-H) as part of our Clinical and Translational Science Award (CTSA) program. We utilize the Semantic Web technologies not only for integrating, repurposing and classification of multi-source clinical data, but also to construct a distributed environment for information sharing, and collaboration online. Service Oriented Architecture (SOA) is used to modularize and distribute reusable services in a dynamic and distributed environment. Components of the semantic solution and its overall architecture are described. PMID:19208190

  10. SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services

    USDA-ARS?s Scientific Manuscript database

    SSWAP (Simple Semantic Web Architecture and Protocol) is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP is the driving technology behind the Virtual Plant Information Network, an NSF-funded semantic w...

  11. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.

    PubMed

    Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-09-23

    SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://sswapmeet.sswap.info (a "swap meet"). SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing the concept of a canonical yet mutable OWL DL graph that allows data and service providers to describe their resources, to allow discovery servers to offer semantically rich search engines, to allow clients to discover and invoke those resources, and to allow providers to respond with semantically tagged data. SSWAP allows for a mix-and-match of terms from both new and legacy third-party ontologies in these graphs.

  12. Beyond the Subject: The Interaction of Syntax and Semantics in the Production of English Verb Agreement

    ERIC Educational Resources Information Center

    Duffield, Cecily Jill

    2013-01-01

    A key debate in the psycholinguistic study of grammatical language production is whether the process is a syntactocentric one, driven by grammatical information and grammatical rules, or a dynamic, interactive one, involving both semantic and syntactic information. Examining how speakers produce subject-verb number agreement has been useful in…

  13. Do Adults Show an Effect of Delayed First Language Acquisition When Calculating Scalar Implicatures?

    ERIC Educational Resources Information Center

    Davidson, Kathryn; Mayberry, Rachel I.

    2015-01-01

    Language acquisition involves learning not only grammatical rules and a lexicon but also what people are intending to convey with their utterances: the semantic/pragmatic component of language. In this article we separate the contributions of linguistic development and cognitive maturity to the acquisition of the semantic/pragmatic component of…

  14. Rule-violations sensitise towards negative and authority-related stimuli.

    PubMed

    Wirth, Robert; Foerster, Anna; Rendel, Hannah; Kunde, Wilfried; Pfister, Roland

    2018-05-01

    Rule violations have usually been studied from a third-person perspective, identifying situational factors that render violations more or less likely. A first-person perspective of the agent that actively violates the rules, on the other hand, is only just beginning to emerge. Here we show that committing a rule violation sensitises towards subsequent negative stimuli as well as subsequent authority-related stimuli. In a Prime-Probe design, we used an instructed rule-violation task as the Prime and a word categorisation task as the Probe. Also, we employed a control condition that used a rule inversion task as the Prime (instead of rule violations). Probe targets were categorised faster after a violation relative to after a rule-based response if they related to either, negative valence or authority. Inversions, however, primed only negative stimuli and did not accelerate the categorisation of authority-related stimuli. A heightened sensitivity towards authority-related targets thus seems to be specific to rule violations. A control experiment showed that these effects cannot be explained in terms of semantic priming. Therefore, we propose that rule violations necessarily activate authority-related representations that make rule violations qualitatively different from simple rule inversions.

  15. A neural mechanism of cognitive control for resolving conflict between abstract task rules.

    PubMed

    Sheu, Yi-Shin; Courtney, Susan M

    2016-12-01

    Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex (PFC). However, population codes in the PFC also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multi-voxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A neural mechanism of cognitive control for resolving conflict between abstract task rules

    PubMed Central

    Sheu, Yi-Shin; Courtney, Susan M.

    2016-01-01

    Conflict between multiple sensory stimuli or potential motor responses is thought to be resolved via bias signals from prefrontal cortex. However, population codes in the prefrontal cortex also represent abstract information, such as task rules. How is conflict between active abstract representations resolved? We used functional neuroimaging to investigate the mechanism responsible for resolving conflict between abstract representations of task rules. Participants performed two different tasks based on a cue. We manipulated the degree of conflict at the task-rule level by training participants to associate the color and shape dimensions of the cue with either the same task rule (congruent cues) or different ones (incongruent cues). Phonological and semantic tasks were used in which performance depended on learned, abstract representations of information, rather than sensory features of the target stimulus or on any habituated stimulus-response associations. In addition, these tasks activate distinct regions that allowed us to measure magnitude of conflict between tasks. We found that incongruent cues were associated with increased activity in several cognitive control areas, including the inferior frontal gyrus, inferior parietal lobule, insula, and subcortical regions. Conflict between abstract representations appears to be resolved by rule-specific activity in the inferior frontal gyrus that is correlated with enhanced activity related to the relevant information. Furthermore, multivoxel pattern analysis of the activity in the inferior frontal gyrus was shown to carry information about both the currently relevant rule (semantic/phonological) and the currently relevant cue context (color/shape). Similar to models of attentional selection of conflicting sensory or motor representations, the current findings indicate part of the frontal cortex provides a bias signal, representing task rules, that enhances task-relevant information. However, the frontal cortex can also be the target of these bias signals in order to enhance abstract representations that are independent of particular stimuli or motor responses. PMID:27771559

  17. Improving integrative searching of systems chemical biology data using semantic annotation.

    PubMed

    Chen, Bin; Ding, Ying; Wild, David J

    2012-03-08

    Systems chemical biology and chemogenomics are considered critical, integrative disciplines in modern biomedical research, but require data mining of large, integrated, heterogeneous datasets from chemistry and biology. We previously developed an RDF-based resource called Chem2Bio2RDF that enabled querying of such data using the SPARQL query language. Whilst this work has proved useful in its own right as one of the first major resources in these disciplines, its utility could be greatly improved by the application of an ontology for annotation of the nodes and edges in the RDF graph, enabling a much richer range of semantic queries to be issued. We developed a generalized chemogenomics and systems chemical biology OWL ontology called Chem2Bio2OWL that describes the semantics of chemical compounds, drugs, protein targets, pathways, genes, diseases and side-effects, and the relationships between them. The ontology also includes data provenance. We used it to annotate our Chem2Bio2RDF dataset, making it a rich semantic resource. Through a series of scientific case studies we demonstrate how this (i) simplifies the process of building SPARQL queries, (ii) enables useful new kinds of queries on the data and (iii) makes possible intelligent reasoning and semantic graph mining in chemogenomics and systems chemical biology. Chem2Bio2OWL is available at http://chem2bio2rdf.org/owl. The document is available at http://chem2bio2owl.wikispaces.com.

  18. Constructing Adverse Outcome Pathways: a Demonstration of ...

    EPA Pesticide Factsheets

    Adverse outcome pathway (AOP) provides a conceptual framework to evaluate and integrate chemical toxicity and its effects across the levels of biological organization. As such, it is essential to develop a resource-efficient and effective approach to extend molecular initiating events (MIEs) of chemicals to their downstream phenotypes of a greater regulatory relevance. A number of ongoing public phenomics (high throughput phenotyping) efforts have been generating abundant phenotypic data annotated with ontology terms. These phenotypes can be analyzed semantically and linked to MIEs of interest, all in the context of a knowledge base integrated from a variety of ontologies for various species and knowledge domains. In such analyses, two phenotypic profiles (PPs; anchored by genes or diseases) each characterized by multiple ontology terms are compared for their semantic similarities within a common ontology graph, but across boundaries of species and knowledge domains. Taking advantage of publicly available ontologies and software tool kits, we have implemented an OS-Mapping (Ontology-based Semantics Mapping) approach as a Java application, and constructed a network of 19383 PPs as nodes with edges weighed by their pairwise semantic similarity scores. Individual PPs were assembled from public phenomics data. Out of possible 1.87×108 pairwise connections among these nodes, about 71% of them have similarity scores between 0.2 and the maximum possible of 1.0.

  19. UNITRAN (UNIversal TRANslator): A Principle-Based Approach to Machine Translation.

    DTIC Science & Technology

    1987-12-01

    C*TENDONOSLA*) C*YENDO NOS LA *))) 0 %4 APPENDIX D. TRANSLATION SYSTEM PARAMETERS 222 0 1 :MERGES I ((A EL LADO DE ) (AL-.LADO- DE )) ((ACERCA DE ...not only permits a language to be de - ’Slocuim’s system ( 1994a) relies on a separate set of context-free language-specific rules for each source and...requirements as small subject domain, narrow linguistic coverage, and enormous lexical entries (as found in exclusively semantic-based systems). Thus

  20. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    PubMed

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  1. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control

    PubMed Central

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-01-01

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM2.5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM2.5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web. PMID:28397776

  2. Using Semantic Components to Represent Dynamics of an Interdisciplinary Healthcare Team in a Multi-Agent Decision Support System.

    PubMed

    Wilk, Szymon; Kezadri-Hamiaz, Mounira; Rosu, Daniela; Kuziemsky, Craig; Michalowski, Wojtek; Amyot, Daniel; Carrier, Marc

    2016-02-01

    In healthcare organizations, clinical workflows are executed by interdisciplinary healthcare teams (IHTs) that operate in ways that are difficult to manage. Responding to a need to support such teams, we designed and developed the MET4 multi-agent system that allows IHTs to manage patients according to presentation-specific clinical workflows. In this paper, we describe a significant extension of the MET4 system that allows for supporting rich team dynamics (understood as team formation, management and task-practitioner allocation), including selection and maintenance of the most responsible physician and more complex rules of selecting practitioners for the workflow tasks. In order to develop this extension, we introduced three semantic components: (1) a revised ontology describing concepts and relations pertinent to IHTs, workflows, and managed patients, (2) a set of behavioral rules describing the team dynamics, and (3) an instance base that stores facts corresponding to instances of concepts from the ontology and to relations between these instances. The semantic components are represented in first-order logic and they can be automatically processed using theorem proving and model finding techniques. We employ these techniques to find models that correspond to specific decisions controlling the dynamics of IHT. In the paper, we present the design of extended MET4 with a special focus on the new semantic components. We then describe its proof-of-concept implementation using the WADE multi-agent platform and the Z3 solver (theorem prover/model finder). We illustrate the main ideas discussed in the paper with a clinical scenario of an IHT managing a patient with chronic kidney disease.

  3. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  4. A ubiquitous sensor network platform for integrating smart devices into the semantic sensor web.

    PubMed

    de Vera, David Díaz Pardo; Izquierdo, Alvaro Sigüenza; Vercher, Jesús Bernat; Hernández Gómez, Luis Alfonso

    2014-06-18

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs.

  5. Context-Awareness Based Personalized Recommendation of Anti-Hypertension Drugs.

    PubMed

    Chen, Dexin; Jin, Dawei; Goh, Tiong-Thye; Li, Na; Wei, Leiru

    2016-09-01

    The World Health Organization estimates that almost one-third of the world's adult population are suffering from hypertension which has gradually become a "silent killer". Due to the varieties of anti-hypertensive drugs, patients are interested in how these drugs can be selected to match their respective conditions. This study provides a personalized recommendation service system of anti-hypertensive drugs based on context-awareness and designs a context ontology framework of the service. In addition, this paper introduces a Semantic Web Rule Language (SWRL)-based rule to provide high-level context reasoning and information recommendation and to overcome the limitation of ontology reasoning. To make the information recommendation of the drugs more personalized, this study also devises three categories of information recommendation rules that match different priority levels and uses a ranking algorithm to optimize the recommendation. The experiment conducted shows that combining the anti-hypertensive drugs personalized recommendation service context ontology (HyRCO) with the optimized rule reasoning can achieve a higher-quality personalized drug recommendation service. Accordingly this exploratory study of the personalized recommendation service for hypertensive drugs and its method can be easily adopted for other diseases.

  6. Distinct neuroanatomical bases of episodic and semantic memory performance in Alzheimer's disease.

    PubMed

    Hirni, Daniela I; Kivisaari, Sasa L; Monsch, Andreas U; Taylor, Kirsten I

    2013-04-01

    Alzheimer's disease (AD) neurofibrillary pathology begins in the medial perirhinal cortex (mPRC) before spreading to the entorhinal cortex (ERC) and hippocampus (HP) in anterior medial temporal lobe (aMTL). While the role of the ERC/HP complex in episodic memory formation is well-established, recent research suggests that the PRC is required to form semantic memories of individual objects. We aimed to test whether commonly used clinical measures of episodic and semantic memory are distinctly associated with ERC/HP and mPRC integrity, respectively, in healthy mature individuals and very early AD patients. One hundred thirty normal controls, 32 amnestic mild cognitive impairment patients, some of whom are in the earliest (i.e., preclinical) stages of AD, and ten early-stage AD patients received neuropsychological testing and high-resolution anatomic and diffusion MRI. Voxel-based regression analyses tested for regions where episodic memory (delayed recall scores on the California Verbal Learning and Rey Osterrieth Complex Figure Tests) and semantic memory (Boston Naming Test, category fluency) performance correlated with gray matter (GM) regions of interest and whole-brain fractional anisotropy (FA) voxel values. When controlling for the opposing memory performance, poorer episodic memory performance was associated with reduced bilateral ERC/HP GM volume and related white matter integrity, but not with mPRC GM volume. Poor semantic memory performance was associated with both reduced left mPRC and ERC/HP GM volume, as well as reduced FA values in white matter tracts leading to the PRC. These results indicate a partial division of labor within the aMTL and suggest that mPRC damage in very early AD may be detectable with common clinical tests of semantic memory if episodic memory performance is controlled. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The representation of semantic knowledge in a child with Williams syndrome.

    PubMed

    Robinson, Sally J; Temple, Christine M

    2009-05-01

    This study investigated whether there are distinct types of semantic knowledge with distinct representational bases during development. The representation of semantic knowledge in a teenage child (S.T.) with Williams syndrome was explored for the categories of animals, fruit, and vegetables, manipulable objects, and nonmanipulable objects. S.T.'s lexical stores were of a normal size but the volume of "sensory feature" semantic knowledge she generated in oral descriptions was reduced. In visual recognition decisions, S.T. made more false positives to nonitems than did controls. Although overall naming of pictures was unimpaired, S.T. exhibited a category-specific anomia for nonmanipulable objects and impaired naming of visual-feature descriptions of animals. S.T.'s performance was interpreted as reflecting the impaired integration of distinctive features from perceptual input, which may impact upon nonmanipulable objects to a greater extent than the other knowledge categories. Performance was used to inform adult-based models of semantic representation, with category structure proposed to emerge due to differing degrees of dependency upon underlying knowledge types, feature correlations, and the acquisition of information from modality-specific processing modules.

  8. Semantic integration of data on transcriptional regulation

    PubMed Central

    Baitaluk, Michael; Ponomarenko, Julia

    2010-01-01

    Motivation: Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a ‘one-stop shop’ experience for users seeking information essential for deciphering and modeling gene regulatory networks. Results: IntegromeDB, a semantic graph-based ‘deep-web’ data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. Availability: IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org Contact: baitaluk@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20427517

  9. Semantic integration of data on transcriptional regulation.

    PubMed

    Baitaluk, Michael; Ponomarenko, Julia

    2010-07-01

    Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a 'one-stop shop' experience for users seeking information essential for deciphering and modeling gene regulatory networks. IntegromeDB, a semantic graph-based 'deep-web' data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org baitaluk@sdsc.edu Supplementary data are available at Bioinformatics online.

  10. Syntactic and semantic processing of Chinese middle sentences: evidence from event-related potentials.

    PubMed

    Zeng, Tao; Mao, Wen; Lu, Qing

    2016-05-25

    Scalp-recorded event-related potentials are known to be sensitive to particular aspects of sentence processing. The N400 component is widely recognized as an effect closely related to lexical-semantic processing. The absence of an N400 effect in participants performing tasks in Indo-European languages has been considered evidence that failed syntactic category processing appears to block lexical-semantic integration and that syntactic structure building is a prerequisite of semantic analysis. An event-related potential experiment was designed to investigate whether such syntactic primacy can be considered to apply equally to Chinese sentence processing. Besides correct middles, sentences with either single semantic or single syntactic violation as well as double syntactic and semantic anomaly were used in the present research. Results showed that both purely semantic and combined violation induced a broad negativity in the time window 300-500 ms, indicating the independence of lexical-semantic integration. These findings provided solid evidence that lexical-semantic parsing plays a crucial role in Chinese sentence comprehension.

  11. The organization and dissolution of semantic-conceptual knowledge: is the 'amodal hub' the only plausible model?

    PubMed

    Gainotti, Guido

    2011-04-01

    In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval

    PubMed Central

    Bonnici, Heidi M.; Richter, Franziska R.; Yazar, Yasemin

    2016-01-01

    Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. SIGNIFICANCE STATEMENT Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (AnG) contribute to the retrieval of episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering. PMID:27194327

  13. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval.

    PubMed

    Bonnici, Heidi M; Richter, Franziska R; Yazar, Yasemin; Simons, Jon S

    2016-05-18

    Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (AnG) contribute to the retrieval of episodic and semantic memories. Our multivariate pattern classifier could distinguish episodic memory representations in AnG according to whether they were multimodal (audio-visual) or unimodal (auditory or visual) in nature, whereas statistically equivalent AnG activity was observed during retrieval of unimodal and multimodal semantic memories. Classification accuracy during episodic retrieval scaled with the trial-by-trial vividness with which participants experienced their recollections. Therefore, the findings offer new insights into the integrative processes subserved by AnG and how its function may contribute to our subjective experience of remembering. Copyright © 2016 Bonnici, Richter, et al.

  14. Rewriting Logic Semantics of a Plan Execution Language

    NASA Technical Reports Server (NTRS)

    Dowek, Gilles; Munoz, Cesar A.; Rocha, Camilo

    2009-01-01

    The Plan Execution Interchange Language (PLEXIL) is a synchronous language developed by NASA to support autonomous spacecraft operations. In this paper, we propose a rewriting logic semantics of PLEXIL in Maude, a high-performance logical engine. The rewriting logic semantics is by itself a formal interpreter of the language and can be used as a semantic benchmark for the implementation of PLEXIL executives. The implementation in Maude has the additional benefit of making available to PLEXIL designers and developers all the formal analysis and verification tools provided by Maude. The formalization of the PLEXIL semantics in rewriting logic poses an interesting challenge due to the synchronous nature of the language and the prioritized rules defining its semantics. To overcome this difficulty, we propose a general procedure for simulating synchronous set relations in rewriting logic that is sound and, for deterministic relations, complete. We also report on the finding of two issues at the design level of the original PLEXIL semantics that were identified with the help of the executable specification in Maude.

  15. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources

    PubMed Central

    Waagmeester, Andra; Pico, Alexander R.

    2016-01-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457

  16. e-Science and biological pathway semantics

    PubMed Central

    Luciano, Joanne S; Stevens, Robert D

    2007-01-01

    Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science. PMID:17493286

  17. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    PubMed

    Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R

    2016-06-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.

  18. Linguistic and Non-Linguistic Semantic Processing in Individuals with Autism Spectrum Disorders: An ERP Study

    ERIC Educational Resources Information Center

    Coderre, Emily L.; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry

    2017-01-01

    Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we…

  19. Semantic relations differentially impact associative recognition memory: electrophysiological evidence.

    PubMed

    Kriukova, Olga; Bridger, Emma; Mecklinger, Axel

    2013-10-01

    Though associative recognition memory is thought to rely primarily on recollection, recent research indicates that familiarity might also make a substantial contribution when to-be-learned items are integrated into a coherent structure by means of an existing semantic relation. It remains unclear how different types of semantic relations, such as categorical (e.g., dancer-singer) and thematic (e.g., dancer-stage) relations might affect associative recognition, however. Using event-related potentials (ERPs), we addressed this question by manipulating the type of semantic link between paired words in an associative recognition memory experiment. An early midfrontal old/new effect, typically linked to familiarity, was observed across the relation types. In contrast, a robust left parietal old/new effect was found in the categorical condition only, suggesting a clear contribution of recollection to associative recognition for this kind of pairs. One interpretation of this pattern is that familiarity was sufficiently diagnostic for associative recognition of thematic relations, which could result from the integrative nature of the thematic relatedness compared to the similarity-based nature of categorical pairs. The present study suggests that the extent to which recollection and familiarity are involved in associative recognition is at least in part determined by the properties of semantic relations between the paired associates. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Rule-Based and Information-Integration Category Learning in Normal Aging

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M.

    2010-01-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated…

  1. Enriched Video Semantic Metadata: Authorization, Integration, and Presentation.

    ERIC Educational Resources Information Center

    Mu, Xiangming; Marchionini, Gary

    2003-01-01

    Presents an enriched video metadata framework including video authorization using the Video Annotation and Summarization Tool (VAST)-a video metadata authorization system that integrates both semantic and visual metadata-- metadata integration, and user level applications. Results demonstrated that the enriched metadata were seamlessly…

  2. Robust point cloud classification based on multi-level semantic relationships for urban scenes

    NASA Astrophysics Data System (ADS)

    Zhu, Qing; Li, Yuan; Hu, Han; Wu, Bo

    2017-07-01

    The semantic classification of point clouds is a fundamental part of three-dimensional urban reconstruction. For datasets with high spatial resolution but significantly more noises, a general trend is to exploit more contexture information to surmount the decrease of discrimination of features for classification. However, previous works on adoption of contexture information are either too restrictive or only in a small region and in this paper, we propose a point cloud classification method based on multi-level semantic relationships, including point-homogeneity, supervoxel-adjacency and class-knowledge constraints, which is more versatile and incrementally propagate the classification cues from individual points to the object level and formulate them as a graphical model. The point-homogeneity constraint clusters points with similar geometric and radiometric properties into regular-shaped supervoxels that correspond to the vertices in the graphical model. The supervoxel-adjacency constraint contributes to the pairwise interactions by providing explicit adjacent relationships between supervoxels. The class-knowledge constraint operates at the object level based on semantic rules, guaranteeing the classification correctness of supervoxel clusters at that level. International Society of Photogrammetry and Remote Sensing (ISPRS) benchmark tests have shown that the proposed method achieves state-of-the-art performance with an average per-area completeness and correctness of 93.88% and 95.78%, respectively. The evaluation of classification of photogrammetric point clouds and DSM generated from aerial imagery confirms the method's reliability in several challenging urban scenes.

  3. An ontological system for interoperable spatial generalisation in biodiversity monitoring

    NASA Astrophysics Data System (ADS)

    Nieland, Simon; Moran, Niklas; Kleinschmit, Birgit; Förster, Michael

    2015-11-01

    Semantic heterogeneity remains a barrier to data comparability and standardisation of results in different fields of spatial research. Because of its thematic complexity, differing acquisition methods and national nomenclatures, interoperability of biodiversity monitoring information is especially difficult. Since data collection methods and interpretation manuals broadly vary there is a need for automatised, objective methodologies for the generation of comparable data-sets. Ontology-based applications offer vast opportunities in data management and standardisation. This study examines two data-sets of protected heathlands in Germany and Belgium which are based on remote sensing image classification and semantically formalised in an OWL2 ontology. The proposed methodology uses semantic relations of the two data-sets, which are (semi-)automatically derived from remote sensing imagery, to generate objective and comparable information about the status of protected areas by utilising kernel-based spatial reclassification. This automatised method suggests a generalisation approach, which is able to generate delineation of Special Areas of Conservation (SAC) of the European biodiversity Natura 2000 network. Furthermore, it is able to transfer generalisation rules between areas surveyed with varying acquisition methods in different countries by taking into account automated inference of the underlying semantics. The generalisation results were compared with the manual delineation of terrestrial monitoring. For the different habitats in the two sites an accuracy of above 70% was detected. However, it has to be highlighted that the delineation of the ground-truth data inherits a high degree of uncertainty, which is discussed in this study.

  4. OlyMPUS - The Ontology-based Metadata Portal for Unified Semantics

    NASA Astrophysics Data System (ADS)

    Huffer, E.; Gleason, J. L.

    2015-12-01

    The Ontology-based Metadata Portal for Unified Semantics (OlyMPUS), funded by the NASA Earth Science Technology Office Advanced Information Systems Technology program, is an end-to-end system designed to support data consumers and data providers, enabling the latter to register their data sets and provision them with the semantically rich metadata that drives the Ontology-Driven Interactive Search Environment for Earth Sciences (ODISEES). OlyMPUS leverages the semantics and reasoning capabilities of ODISEES to provide data producers with a semi-automated interface for producing the semantically rich metadata needed to support ODISEES' data discovery and access services. It integrates the ODISEES metadata search system with multiple NASA data delivery tools to enable data consumers to create customized data sets for download to their computers, or for NASA Advanced Supercomputing (NAS) facility registered users, directly to NAS storage resources for access by applications running on NAS supercomputers. A core function of NASA's Earth Science Division is research and analysis that uses the full spectrum of data products available in NASA archives. Scientists need to perform complex analyses that identify correlations and non-obvious relationships across all types of Earth System phenomena. Comprehensive analytics are hindered, however, by the fact that many Earth science data products are disparate and hard to synthesize. Variations in how data are collected, processed, gridded, and stored, create challenges for data interoperability and synthesis, which are exacerbated by the sheer volume of available data. Robust, semantically rich metadata can support tools for data discovery and facilitate machine-to-machine transactions with services such as data subsetting, regridding, and reformatting. Such capabilities are critical to enabling the research activities integral to NASA's strategic plans. However, as metadata requirements increase and competing standards emerge, metadata provisioning becomes increasingly burdensome to data producers. The OlyMPUS system helps data providers produce semantically rich metadata, making their data more accessible to data consumers, and helps data consumers quickly discover and download the right data for their research.

  5. Does GEM-Encoding Clinical Practice Guidelines Improve the Quality of Knowledge Bases? A Study with the Rule-Based Formalism

    PubMed Central

    Georg, Gersende; Séroussi, Brigitte; Bouaud, Jacques

    2003-01-01

    The aim of this work was to determine whether the GEM-encoding step could improve the representation of clinical practice guidelines as formalized knowledge bases. We used the 1999 Canadian recommendations for the management of hypertension, chosen as the knowledge source in the ASTI project. We first clarified semantic ambiguities of therapeutic sequences recommended in the guideline by proposing an interpretative framework of therapeutic strategies. Then, after a formalization step to standardize the terms used to characterize clinical situations, we created the GEM-encoded instance of the guideline. We developed a module for the automatic derivation of a rule base, BR-GEM, from the instance. BR-GEM was then compared to the rule base, BR-ASTI, embedded within the critic mode of ASTI, and manually built by two physicians from the same Canadian guideline. As compared to BR-ASTI, BR-GEM is more specific and covers more clinical situations. When evaluated on 10 patient cases, the GEM-based approach led to promising results. PMID:14728173

  6. SemMat: Federated Semantic Services Platform for Open materials Science and Engineering

    DTIC Science & Technology

    2017-01-01

    identified the following two important tasks to remedy the data heterogeneity challenge to promote data integration: (1) creating the semantic...sourced from the structural and bio -materials domains. For structural materials data, we reviewed and used MIL-HDBK-5J [11] and MIL-HDBK-17. Furthermore...documents about composite materials provided by our domain expert. Based on the suggestions given by domain experts in bio -materials, the following

  7. A semantic web framework to integrate cancer omics data with biological knowledge.

    PubMed

    Holford, Matthew E; McCusker, James P; Cheung, Kei-Hoi; Krauthammer, Michael

    2012-01-25

    The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.

  8. Creating Shareable Clinical Decision Support Rules for a Pharmacogenomics Clinical Guideline Using Structured Knowledge Representation.

    PubMed

    Linan, Margaret K; Sottara, Davide; Freimuth, Robert R

    2015-01-01

    Pharmacogenomics (PGx) guidelines contain drug-gene relationships, therapeutic and clinical recommendations from which clinical decision support (CDS) rules can be extracted, rendered and then delivered through clinical decision support systems (CDSS) to provide clinicians with just-in-time information at the point of care. Several tools exist that can be used to generate CDS rules that are based on computer interpretable guidelines (CIG), but none have been previously applied to the PGx domain. We utilized the Unified Modeling Language (UML), the Health Level 7 virtual medical record (HL7 vMR) model, and standard terminologies to represent the semantics and decision logic derived from a PGx guideline, which were then mapped to the Health eDecisions (HeD) schema. The modeling and extraction processes developed here demonstrate how structured knowledge representations can be used to support the creation of shareable CDS rules from PGx guidelines.

  9. The Translational Medicine Ontology and Knowledge Base: driving personalized medicine by bridging the gap between bench and bedside

    PubMed Central

    2011-01-01

    Background Translational medicine requires the integration of knowledge using heterogeneous data from health care to the life sciences. Here, we describe a collaborative effort to produce a prototype Translational Medicine Knowledge Base (TMKB) capable of answering questions relating to clinical practice and pharmaceutical drug discovery. Results We developed the Translational Medicine Ontology (TMO) as a unifying ontology to integrate chemical, genomic and proteomic data with disease, treatment, and electronic health records. We demonstrate the use of Semantic Web technologies in the integration of patient and biomedical data, and reveal how such a knowledge base can aid physicians in providing tailored patient care and facilitate the recruitment of patients into active clinical trials. Thus, patients, physicians and researchers may explore the knowledge base to better understand therapeutic options, efficacy, and mechanisms of action. Conclusions This work takes an important step in using Semantic Web technologies to facilitate integration of relevant, distributed, external sources and progress towards a computational platform to support personalized medicine. Availability TMO can be downloaded from http://code.google.com/p/translationalmedicineontology and TMKB can be accessed at http://tm.semanticscience.org/sparql. PMID:21624155

  10. A journey to Semantic Web query federation in the life sciences.

    PubMed

    Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian

    2009-10-01

    As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community.

  11. A journey to Semantic Web query federation in the life sciences

    PubMed Central

    Cheung, Kei-Hoi; Frost, H Robert; Marshall, M Scott; Prud'hommeaux, Eric; Samwald, Matthias; Zhao, Jun; Paschke, Adrian

    2009-01-01

    Background As interest in adopting the Semantic Web in the biomedical domain continues to grow, Semantic Web technology has been evolving and maturing. A variety of technological approaches including triplestore technologies, SPARQL endpoints, Linked Data, and Vocabulary of Interlinked Datasets have emerged in recent years. In addition to the data warehouse construction, these technological approaches can be used to support dynamic query federation. As a community effort, the BioRDF task force, within the Semantic Web for Health Care and Life Sciences Interest Group, is exploring how these emerging approaches can be utilized to execute distributed queries across different neuroscience data sources. Methods and results We have created two health care and life science knowledge bases. We have explored a variety of Semantic Web approaches to describe, map, and dynamically query multiple datasets. We have demonstrated several federation approaches that integrate diverse types of information about neurons and receptors that play an important role in basic, clinical, and translational neuroscience research. Particularly, we have created a prototype receptor explorer which uses OWL mappings to provide an integrated list of receptors and executes individual queries against different SPARQL endpoints. We have also employed the AIDA Toolkit, which is directed at groups of knowledge workers who cooperatively search, annotate, interpret, and enrich large collections of heterogeneous documents from diverse locations. We have explored a tool called "FeDeRate", which enables a global SPARQL query to be decomposed into subqueries against the remote databases offering either SPARQL or SQL query interfaces. Finally, we have explored how to use the vocabulary of interlinked Datasets (voiD) to create metadata for describing datasets exposed as Linked Data URIs or SPARQL endpoints. Conclusion We have demonstrated the use of a set of novel and state-of-the-art Semantic Web technologies in support of a neuroscience query federation scenario. We have identified both the strengths and weaknesses of these technologies. While Semantic Web offers a global data model including the use of Uniform Resource Identifiers (URI's), the proliferation of semantically-equivalent URI's hinders large scale data integration. Our work helps direct research and tool development, which will be of benefit to this community. PMID:19796394

  12. Knowledge acquisition is governed by striatal prediction errors.

    PubMed

    Pine, Alex; Sadeh, Noa; Ben-Yakov, Aya; Dudai, Yadin; Mendelsohn, Avi

    2018-04-26

    Discrepancies between expectations and outcomes, or prediction errors, are central to trial-and-error learning based on reward and punishment, and their neurobiological basis is well characterized. It is not known, however, whether the same principles apply to declarative memory systems, such as those supporting semantic learning. Here, we demonstrate with fMRI that the brain parametrically encodes the degree to which new factual information violates expectations based on prior knowledge and beliefs-most prominently in the ventral striatum, and cortical regions supporting declarative memory encoding. These semantic prediction errors determine the extent to which information is incorporated into long-term memory, such that learning is superior when incoming information counters strong incorrect recollections, thereby eliciting large prediction errors. Paradoxically, by the same account, strong accurate recollections are more amenable to being supplanted by misinformation, engendering false memories. These findings highlight a commonality in brain mechanisms and computational rules that govern declarative and nondeclarative learning, traditionally deemed dissociable.

  13. Ontology-Driven Knowledge-Based Health-Care System, An Emerging Area - Challenges And Opportunities - Indian Scenario

    NASA Astrophysics Data System (ADS)

    Sunitha, A.; Babu, G. Suresh

    2014-11-01

    Recent studies in the decision making efforts in the area of public healthcare systems have been tremendously inspired and influenced by the entry of ontology. Ontology driven systems results in the effective implementation of healthcare strategies for the policy makers. The central source of knowledge is the ontology containing all the relevant domain concepts such as locations, diseases, environments and their domain sensitive inter-relationships which is the prime objective, concern and the motivation behind this paper. The paper further focuses on the development of a semantic knowledge-base for public healthcare system. This paper describes the approach and methodologies in bringing out a novel conceptual theme in establishing a firm linkage between three different ontologies related to diseases, places and environments in one integrated platform. This platform correlates the real-time mechanisms prevailing within the semantic knowledgebase and establishing their inter-relationships for the first time in India. This is hoped to formulate a strong foundation for establishing a much awaited basic need for a meaningful healthcare decision making system in the country. Introduction through a wide range of best practices facilitate the adoption of this approach for better appreciation, understanding and long term outcomes in the area. The methods and approach illustrated in the paper relate to health mapping methods, reusability of health applications, and interoperability issues based on mapping of the data attributes with ontology concepts in generating semantic integrated data driving an inference engine for user-interfaced semantic queries.

  14. JPRS Report, Soviet Union, Foreign Military Review, No. 5, May 1988

    DTIC Science & Technology

    1988-10-31

    nology, Carnegie-Mellon University, and Stanford Uni- versity taking the lead. New constructive ideas were advanced in this period for simulating human...for representing stereotyped situations), products (logical constructions according to rules such as "if..., then..."), semantic networks (formal...battle). A prototype of the expert system, OB.l KB (Order of Battlefield [sic] Variant No. 1 Knowledge Base), was constructed as a result of

  15. Towards an ontology for data quality in integrated chronic disease management: a realist review of the literature.

    PubMed

    Liaw, S T; Rahimi, A; Ray, P; Taggart, J; Dennis, S; de Lusignan, S; Jalaludin, B; Yeo, A E T; Talaei-Khoei, A

    2013-01-01

    Effective use of routine data to support integrated chronic disease management (CDM) and population health is dependent on underlying data quality (DQ) and, for cross system use of data, semantic interoperability. An ontological approach to DQ is a potential solution but research in this area is limited and fragmented. Identify mechanisms, including ontologies, to manage DQ in integrated CDM and whether improved DQ will better measure health outcomes. A realist review of English language studies (January 2001-March 2011) which addressed data quality, used ontology-based approaches and is relevant to CDM. We screened 245 papers, excluded 26 duplicates, 135 on abstract review and 31 on full-text review; leaving 61 papers for critical appraisal. Of the 33 papers that examined ontologies in chronic disease management, 13 defined data quality and 15 used ontologies for DQ. Most saw DQ as a multidimensional construct, the most used dimensions being completeness, accuracy, correctness, consistency and timeliness. The majority of studies reported tool design and development (80%), implementation (23%), and descriptive evaluations (15%). Ontological approaches were used to address semantic interoperability, decision support, flexibility of information management and integration/linkage, and complexity of information models. DQ lacks a consensus conceptual framework and definition. DQ and ontological research is relatively immature with little rigorous evaluation studies published. Ontology-based applications could support automated processes to address DQ and semantic interoperability in repositories of routinely collected data to deliver integrated CDM. We advocate moving to ontology-based design of information systems to enable more reliable use of routine data to measure health mechanisms and impacts. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Syntax does not necessarily precede semantics in sentence processing: ERP evidence from Chinese.

    PubMed

    Zhang, Yaxu; Li, Ping; Piao, Qiuhong; Liu, Youyi; Huang, Yongjing; Shu, Hua

    2013-07-01

    Two event-related potential experiments were conducted to examine whether the processing of syntactic category or syntactic subcategorization frame always needs to temporally precede semantic processing during the reading of Chinese sentences of object-subject-verb construction. The sentences contained (a) no anomalies, (b) semantic only anomalies, (c) syntactic category plus semantic anomalies, or (d) transitivity plus semantic anomalies. In both experiments, all three types of anomalies elicited a broad negativity between 300 and 500 ms. This negativity included an N400 effect, given its distribution. Moreover, syntactic category plus semantic anomalies elicited a P600 response, whereas the other two types of anomalies did not. The finding of N400 effects suggests that semantic integration can be attempted even when the processing of syntactic category or syntactic subcategorization frame is unsuccessful. Thus, syntactic processing is not a necessary prerequisite for the initiation of semantic integration in Chinese. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. A memory learning framework for effective image retrieval.

    PubMed

    Han, Junwei; Ngan, King N; Li, Mingjing; Zhang, Hong-Jiang

    2005-04-01

    Most current content-based image retrieval systems are still incapable of providing users with their desired results. The major difficulty lies in the gap between low-level image features and high-level image semantics. To address the problem, this study reports a framework for effective image retrieval by employing a novel idea of memory learning. It forms a knowledge memory model to store the semantic information by simply accumulating user-provided interactions. A learning strategy is then applied to predict the semantic relationships among images according to the memorized knowledge. Image queries are finally performed based on a seamless combination of low-level features and learned semantics. One important advantage of our framework is its ability to efficiently annotate images and also propagate the keyword annotation from the labeled images to unlabeled images. The presented algorithm has been integrated into a practical image retrieval system. Experiments on a collection of 10,000 general-purpose images demonstrate the effectiveness of the proposed framework.

  18. When Sufficiently Processed, Semantically Related Distractor Pictures Hamper Picture Naming.

    PubMed

    Matushanskaya, Asya; Mädebach, Andreas; Müller, Matthias M; Jescheniak, Jörg D

    2016-11-01

    Prominent speech production models view lexical access as a competitive process. According to these models, a semantically related distractor picture should interfere with target picture naming more strongly than an unrelated one. However, several studies failed to obtain such an effect. Here, we demonstrate that semantic interference is obtained, when the distractor picture is sufficiently processed. Participants named one of two pictures presented in close temporal succession, with color cueing the target. Experiment 1 induced the prediction that the target appears first. When this prediction was violated (distractor first), semantic interference was observed. Experiment 2 ruled out that the time available for distractor processing was the driving force. These results show that semantically related distractor pictures interfere with the naming response when they are sufficiently processed. The data thus provide further support for models viewing lexical access as a competitive process.

  19. Hybrid ontology for semantic information retrieval model using keyword matching indexing system.

    PubMed

    Uthayan, K R; Mala, G S Anandha

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology.

  20. Hybrid Ontology for Semantic Information Retrieval Model Using Keyword Matching Indexing System

    PubMed Central

    Uthayan, K. R.; Anandha Mala, G. S.

    2015-01-01

    Ontology is the process of growth and elucidation of concepts of an information domain being common for a group of users. Establishing ontology into information retrieval is a normal method to develop searching effects of relevant information users require. Keywords matching process with historical or information domain is significant in recent calculations for assisting the best match for specific input queries. This research presents a better querying mechanism for information retrieval which integrates the ontology queries with keyword search. The ontology-based query is changed into a primary order to predicate logic uncertainty which is used for routing the query to the appropriate servers. Matching algorithms characterize warm area of researches in computer science and artificial intelligence. In text matching, it is more dependable to study semantics model and query for conditions of semantic matching. This research develops the semantic matching results between input queries and information in ontology field. The contributed algorithm is a hybrid method that is based on matching extracted instances from the queries and information field. The queries and information domain is focused on semantic matching, to discover the best match and to progress the executive process. In conclusion, the hybrid ontology in semantic web is sufficient to retrieve the documents when compared to standard ontology. PMID:25922851

  1. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery

    PubMed Central

    2014-01-01

    The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org. PMID:24602174

  2. Design and Applications of a GeoSemantic Framework for Integration of Data and Model Resources in Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2016-12-01

    Hydrologists today have to integrate resources such as data and models, which originate and reside in multiple autonomous and heterogeneous repositories over the Web. Several resource management systems have emerged within geoscience communities for sharing long-tail data, which are collected by individual or small research groups, and long-tail models, which are developed by scientists or small modeling communities. While these systems have increased the availability of resources within geoscience domains, deficiencies remain due to the heterogeneity in the methods, which are used to describe, encode, and publish information about resources over the Web. This heterogeneity limits our ability to access the right information in the right context so that it can be efficiently retrieved and understood without the Hydrologist's mediation. A primary challenge of the Web today is the lack of the semantic interoperability among the massive number of resources, which already exist and are continually being generated at rapid rates. To address this challenge, we have developed a decentralized GeoSemantic (GS) framework, which provides three sets of micro-web services to support (i) semantic annotation of resources, (ii) semantic alignment between the metadata of two resources, and (iii) semantic mediation among Standard Names. Here we present the design of the framework and demonstrate its application for semantic integration between data and models used in the IML-CZO. First we show how the IML-CZO data are annotated using the Semantic Annotation Services. Then we illustrate how the Resource Alignment Services and Knowledge Integration Services are used to create a semantic workflow among TopoFlow model, which is a spatially-distributed hydrologic model and the annotated data. Results of this work are (i) a demonstration of how the GS framework advances the integration of heterogeneous data and models of water-related disciplines by seamless handling of their semantic heterogeneity, (ii) an introduction of new paradigm for reusing existing and new standards as well as tools and models without the need of their implementation in the Cyberinfrastructures of water-related disciplines, and (iii) an investigation of a methodology by which distributed models can be coupled in a workflow using the GS services.

  3. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System.

    PubMed

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-02-20

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed.

  4. A model-driven privacy compliance decision support for medical data sharing in Europe.

    PubMed

    Boussi Rahmouni, H; Solomonides, T; Casassa Mont, M; Shiu, S; Rahmouni, M

    2011-01-01

    Clinical practitioners and medical researchers often have to share health data with other colleagues across Europe. Privacy compliance in this context is very important but challenging. Automated privacy guidelines are a practical way of increasing users' awareness of privacy obligations and help eliminating unintentional breaches of privacy. In this paper we present an ontology-plus-rules based approach to privacy decision support for the sharing of patient data across European platforms. We use ontologies to model the required domain and context information about data sharing and privacy requirements. In addition, we use a set of Semantic Web Rule Language rules to reason about legal privacy requirements that are applicable to a specific context of data disclosure. We make the complete set invocable through the use of a semantic web application acting as an interactive privacy guideline system can then invoke the full model in order to provide decision support. When asked, the system will generate privacy reports applicable to a specific case of data disclosure described by the user. Also reports showing guidelines per Member State may be obtained. The advantage of this approach lies in the expressiveness and extensibility of the modelling and inference languages adopted and the ability they confer to reason with complex requirements interpreted from high level regulations. However, the system cannot at this stage fully simulate the role of an ethics committee or review board.

  5. Semantic modeling and structural synthesis of onboard electronics protection means as open information system

    NASA Astrophysics Data System (ADS)

    Zhevnerchuk, D. V.; Surkova, A. S.; Lomakina, L. S.; Golubev, A. S.

    2018-05-01

    The article describes the component representation approach and semantic models of on-board electronics protection from ionizing radiation of various nature. Semantic models are constructed, the feature of which is the representation of electronic elements, protection modules, sources of impact in the form of blocks with interfaces. The rules of logical inference and algorithms for synthesizing the object properties of the semantic network, imitating the interface between the components of the protection system and the sources of radiation, are developed. The results of the algorithm are considered using the example of radiation-resistant microcircuits 1645RU5U, 1645RT2U and the calculation and experimental method for estimating the durability of on-board electronics.

  6. A semantic web framework to integrate cancer omics data with biological knowledge

    PubMed Central

    2012-01-01

    Background The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. Results For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. Conclusions We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily. PMID:22373303

  7. A Generic Evaluation Model for Semantic Web Services

    NASA Astrophysics Data System (ADS)

    Shafiq, Omair

    Semantic Web Services research has gained momentum over the last few Years and by now several realizations exist. They are being used in a number of industrial use-cases. Soon software developers will be expected to use this infrastructure to build their B2B applications requiring dynamic integration. However, there is still a lack of guidelines for the evaluation of tools developed to realize Semantic Web Services and applications built on top of them. In normal software engineering practice such guidelines can already be found for traditional component-based systems. Also some efforts are being made to build performance models for servicebased systems. Drawing on these related efforts in component-oriented and servicebased systems, we identified the need for a generic evaluation model for Semantic Web Services applicable to any realization. The generic evaluation model will help users and customers to orient their systems and solutions towards using Semantic Web Services. In this chapter, we have presented the requirements for the generic evaluation model for Semantic Web Services and further discussed the initial steps that we took to sketch such a model. Finally, we discuss related activities for evaluating semantic technologies.

  8. About External Geographic Information and Knowledge in Smart Cities

    NASA Astrophysics Data System (ADS)

    Laurinia, R.; Favetta, F.

    2017-09-01

    Any territory can easily be considered as an open system in which external effects can greatly influence its evolution in addition to inner dynamics. However, in practically all local authorities, their so-called geographic information or knowledge systems are bounded by the jurisdiction's limit, and therefore are closed systems. In this paper, we advocate the necessity not only to consider but also to include external influences within any GIS or GKS. Therefore, among external influences, we will consider beyond intra muros knowledge, extra muros knowledge divided in two categories, nearby neighboring knowledge, for instance located in an outer crown around the jurisdiction territory, but also farther knowledge for instance from technology watch. After having analyzed the semantics of borderlines, we suggest some element for the design of the crown and we analyze how the various components of a geographic knowledge base (objects, relations, ontologies, gazetteers, rules, etc.) can be integrated. Then some aspects regarding updating external knowledge are rapidly sketched. As a conclusion, we evoke the necessity of designing administrative protocols so that administration can negotiate the exchange of external knowledge bunches. In other words, this is an attempt to fully integrate the so-called Tobler's first law of geography.

  9. An ontology for Autism Spectrum Disorder (ASD) to infer ASD phenotypes from Autism Diagnostic Interview-Revised data.

    PubMed

    Mugzach, Omri; Peleg, Mor; Bagley, Steven C; Guter, Stephen J; Cook, Edwin H; Altman, Russ B

    2015-08-01

    Our goal is to create an ontology that will allow data integration and reasoning with subject data to classify subjects, and based on this classification, to infer new knowledge on Autism Spectrum Disorder (ASD) and related neurodevelopmental disorders (NDD). We take a first step toward this goal by extending an existing autism ontology to allow automatic inference of ASD phenotypes and Diagnostic & Statistical Manual of Mental Disorders (DSM) criteria based on subjects' Autism Diagnostic Interview-Revised (ADI-R) assessment data. Knowledge regarding diagnostic instruments, ASD phenotypes and risk factors was added to augment an existing autism ontology via Ontology Web Language class definitions and semantic web rules. We developed a custom Protégé plugin for enumerating combinatorial OWL axioms to support the many-to-many relations of ADI-R items to diagnostic categories in the DSM. We utilized a reasoner to infer whether 2642 subjects, whose data was obtained from the Simons Foundation Autism Research Initiative, meet DSM-IV-TR (DSM-IV) and DSM-5 diagnostic criteria based on their ADI-R data. We extended the ontology by adding 443 classes and 632 rules that represent phenotypes, along with their synonyms, environmental risk factors, and frequency of comorbidities. Applying the rules on the data set showed that the method produced accurate results: the true positive and true negative rates for inferring autistic disorder diagnosis according to DSM-IV criteria were 1 and 0.065, respectively; the true positive rate for inferring ASD based on DSM-5 criteria was 0.94. The ontology allows automatic inference of subjects' disease phenotypes and diagnosis with high accuracy. The ontology may benefit future studies by serving as a knowledge base for ASD. In addition, by adding knowledge of related NDDs, commonalities and differences in manifestations and risk factors could be automatically inferred, contributing to the understanding of ASD pathophysiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The power and limits of a rule-based morpho-semantic parser.

    PubMed Central

    Baud, R. H.; Rassinoux, A. M.; Ruch, P.; Lovis, C.; Scherrer, J. R.

    1999-01-01

    The venue of Electronic Patient Record (EPR) implies an increasing amount of medical texts readily available for processing, as soon as convenient tools are made available. The chief application is text analysis, from which one can drive other disciplines like indexing for retrieval, knowledge representation, translation and inferencing for medical intelligent systems. Prerequisites for a convenient analyzer of medical texts are: building the lexicon, developing semantic representation of the domain, having a large corpus of texts available for statistical analysis, and finally mastering robust and powerful parsing techniques in order to satisfy the constraints of the medical domain. This article aims at presenting an easy-to-use parser ready to be adapted in different settings. It describes its power together with its practical limitations as experienced by the authors. PMID:10566313

  11. The power and limits of a rule-based morpho-semantic parser.

    PubMed

    Baud, R H; Rassinoux, A M; Ruch, P; Lovis, C; Scherrer, J R

    1999-01-01

    The venue of Electronic Patient Record (EPR) implies an increasing amount of medical texts readily available for processing, as soon as convenient tools are made available. The chief application is text analysis, from which one can drive other disciplines like indexing for retrieval, knowledge representation, translation and inferencing for medical intelligent systems. Prerequisites for a convenient analyzer of medical texts are: building the lexicon, developing semantic representation of the domain, having a large corpus of texts available for statistical analysis, and finally mastering robust and powerful parsing techniques in order to satisfy the constraints of the medical domain. This article aims at presenting an easy-to-use parser ready to be adapted in different settings. It describes its power together with its practical limitations as experienced by the authors.

  12. An agent-based peer-to-peer architecture for semantic discovery of manufacturing services across virtual enterprises

    NASA Astrophysics Data System (ADS)

    Zhang, Wenyu; Zhang, Shuai; Cai, Ming; Jian, Wu

    2015-04-01

    With the development of virtual enterprise (VE) paradigm, the usage of serviceoriented architecture (SOA) is increasingly being considered for facilitating the integration and utilisation of distributed manufacturing resources. However, due to the heterogeneous nature among VEs, the dynamic nature of a VE and the autonomous nature of each VE member, the lack of both sophisticated coordination mechanism in the popular centralised infrastructure and semantic expressivity in the existing SOA standards make the current centralised, syntactic service discovery method undesirable. This motivates the proposed agent-based peer-to-peer (P2P) architecture for semantic discovery of manufacturing services across VEs. Multi-agent technology provides autonomous and flexible problemsolving capabilities in dynamic and adaptive VE environments. Peer-to-peer overlay provides highly scalable coupling across decentralised VEs, each of which exhibiting as a peer composed of multiple agents dealing with manufacturing services. The proposed architecture utilises a novel, efficient, two-stage search strategy - semantic peer discovery and semantic service discovery - to handle the complex searches of manufacturing services across VEs through fast peer filtering. The operation and experimental evaluation of the prototype system are presented to validate the implementation of the proposed approach.

  13. Energy Consumption Forecasting Using Semantic-Based Genetic Programming with Local Search Optimizer.

    PubMed

    Castelli, Mauro; Trujillo, Leonardo; Vanneschi, Leonardo

    2015-01-01

    Energy consumption forecasting (ECF) is an important policy issue in today's economies. An accurate ECF has great benefits for electric utilities and both negative and positive errors lead to increased operating costs. The paper proposes a semantic based genetic programming framework to address the ECF problem. In particular, we propose a system that finds (quasi-)perfect solutions with high probability and that generates models able to produce near optimal predictions also on unseen data. The framework blends a recently developed version of genetic programming that integrates semantic genetic operators with a local search method. The main idea in combining semantic genetic programming and a local searcher is to couple the exploration ability of the former with the exploitation ability of the latter. Experimental results confirm the suitability of the proposed method in predicting the energy consumption. In particular, the system produces a lower error with respect to the existing state-of-the art techniques used on the same dataset. More importantly, this case study has shown that including a local searcher in the geometric semantic genetic programming system can speed up the search process and can result in fitter models that are able to produce an accurate forecasting also on unseen data.

  14. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.

    PubMed

    Jiang, Min; Chen, Yukun; Liu, Mei; Rosenbloom, S Trent; Mani, Subramani; Denny, Joshua C; Xu, Hua

    2011-01-01

    The authors' goal was to develop and evaluate machine-learning-based approaches to extracting clinical entities-including medical problems, tests, and treatments, as well as their asserted status-from hospital discharge summaries written using natural language. This project was part of the 2010 Center of Informatics for Integrating Biology and the Bedside/Veterans Affairs (VA) natural-language-processing challenge. The authors implemented a machine-learning-based named entity recognition system for clinical text and systematically evaluated the contributions of different types of features and ML algorithms, using a training corpus of 349 annotated notes. Based on the results from training data, the authors developed a novel hybrid clinical entity extraction system, which integrated heuristic rule-based modules with the ML-base named entity recognition module. The authors applied the hybrid system to the concept extraction and assertion classification tasks in the challenge and evaluated its performance using a test data set with 477 annotated notes. Standard measures including precision, recall, and F-measure were calculated using the evaluation script provided by the Center of Informatics for Integrating Biology and the Bedside/VA challenge organizers. The overall performance for all three types of clinical entities and all six types of assertions across 477 annotated notes were considered as the primary metric in the challenge. Systematic evaluation on the training set showed that Conditional Random Fields outperformed Support Vector Machines, and semantic information from existing natural-language-processing systems largely improved performance, although contributions from different types of features varied. The authors' hybrid entity extraction system achieved a maximum overall F-score of 0.8391 for concept extraction (ranked second) and 0.9313 for assertion classification (ranked fourth, but not statistically different than the first three systems) on the test data set in the challenge.

  15. Disruption of Semantic Network in Mild Alzheimer’s Disease Revealed by Resting-State fMRI

    PubMed Central

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-01-01

    Subtle semantic deficits can be observed in Alzheimer’s disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke’s area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. PMID:29197559

  16. Mining heart disease risk factors in clinical text with named entity recognition and distributional semantic models.

    PubMed

    Urbain, Jay

    2015-12-01

    We present the design, and analyze the performance of a multi-stage natural language processing system employing named entity recognition, Bayesian statistics, and rule logic to identify and characterize heart disease risk factor events in diabetic patients over time. The system was originally developed for the 2014 i2b2 Challenges in Natural Language in Clinical Data. The system's strengths included a high level of accuracy for identifying named entities associated with heart disease risk factor events. The system's primary weakness was due to inaccuracies when characterizing the attributes of some events. For example, determining the relative time of an event with respect to the record date, whether an event is attributable to the patient's history or the patient's family history, and differentiating between current and prior smoking status. We believe these inaccuracies were due in large part to the lack of an effective approach for integrating context into our event detection model. To address these inaccuracies, we explore the addition of a distributional semantic model for characterizing contextual evidence of heart disease risk factor events. Using this semantic model, we raise our initial 2014 i2b2 Challenges in Natural Language of Clinical data F1 score of 0.838 to 0.890 and increased precision by 10.3% without use of any lexicons that might bias our results. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Differential electrophysiological signatures of semantic and syntactic scene processing.

    PubMed

    Võ, Melissa L-H; Wolfe, Jeremy M

    2013-09-01

    In sentence processing, semantic and syntactic violations elicit differential brain responses observable in event-related potentials: An N400 signals semantic violations, whereas a P600 marks inconsistent syntactic structure. Does the brain register similar distinctions in scene perception? To address this question, we presented participants with semantic inconsistencies, in which an object was incongruent with a scene's meaning, and syntactic inconsistencies, in which an object violated structural rules. We found a clear dissociation between semantic and syntactic processing: Semantic inconsistencies produced negative deflections in the N300-N400 time window, whereas mild syntactic inconsistencies elicited a late positivity resembling the P600 found for syntactic inconsistencies in sentence processing. Extreme syntactic violations, such as a hovering beer bottle defying gravity, were associated with earlier perceptual processing difficulties reflected in the N300 response, but failed to produce a P600 effect. We therefore conclude that different neural populations are active during semantic and syntactic processing of scenes, and that syntactically impossible object placements are processed in a categorically different manner than are syntactically resolvable object misplacements.

  18. Integrating the automatic and the controlled: Strategies in Semantic Priming in an Attractor Network with Latching Dynamics

    PubMed Central

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2014-01-01

    Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261

  19. The BiSciCol Triplifier: bringing biodiversity data to the Semantic Web.

    PubMed

    Stucky, Brian J; Deck, John; Conlin, Tom; Ziemba, Lukasz; Cellinese, Nico; Guralnick, Robert

    2014-07-29

    Recent years have brought great progress in efforts to digitize the world's biodiversity data, but integrating data from many different providers, and across research domains, remains challenging. Semantic Web technologies have been widely recognized by biodiversity scientists for their potential to help solve this problem, yet these technologies have so far seen little use for biodiversity data. Such slow uptake has been due, in part, to the relative complexity of Semantic Web technologies along with a lack of domain-specific software tools to help non-experts publish their data to the Semantic Web. The BiSciCol Triplifier is new software that greatly simplifies the process of converting biodiversity data in standard, tabular formats, such as Darwin Core-Archives, into Semantic Web-ready Resource Description Framework (RDF) representations. The Triplifier uses a vocabulary based on the popular Darwin Core standard, includes both Web-based and command-line interfaces, and is fully open-source software. Unlike most other RDF conversion tools, the Triplifier does not require detailed familiarity with core Semantic Web technologies, and it is tailored to a widely popular biodiversity data format and vocabulary standard. As a result, the Triplifier can often fully automate the conversion of biodiversity data to RDF, thereby making the Semantic Web much more accessible to biodiversity scientists who might otherwise have relatively little knowledge of Semantic Web technologies. Easy availability of biodiversity data as RDF will allow researchers to combine data from disparate sources and analyze them with powerful linked data querying tools. However, before software like the Triplifier, and Semantic Web technologies in general, can reach their full potential for biodiversity science, the biodiversity informatics community must address several critical challenges, such as the widespread failure to use robust, globally unique identifiers for biodiversity data.

  20. [Knowing without remembering: the contribution of developmental amnesia].

    PubMed

    Lebrun-Givois, C; Guillery-Girard, B; Thomas-Anterion, C; Laurent, B

    2008-05-01

    The organization of episodic and semantic memory is currently debated, and especially the rule of the hippocampus in the functioning of these two systems. Since theories derived from the observation of the famous patient HM, that highlighted the involvement of this structure in these two systems, numerous studies questioned the implication of the hippocampus in learning a new semantic knowledge. Among these studies, we found Vargha-Kadem's cases of developmental amnesia. In spite of their clear hippocampal atrophy and a massive impairment of episodic memory, these children were able to acquire de novo new semantic knowledge. In the present paper, we describe a new case of developmental amnesia characteristic of this syndrome. In conclusion, the whole published data question the implication of the hippocampus in every semantic learning and suggest the existence of a neocortical network, slower and that needs more exposures to semantic stimuli than the hippocampal one, which can supply a massive hippocampal impairment.

  1. Combining Multiple Knowledge Sources for Continuous Speech Recognition

    DTIC Science & Technology

    1989-08-01

    derived by estimating probabilities from a training set, or a linguistically -based model that uses syntactic and semantic information explicitly. The...into a hierarchical set of rules tha’ wouA. :over a much larger percentage of new sentences than the original sentence patteiis. We applied this tool...statistical grammars typically used by the use of linguistic knowledge. In particular, we group the different words in the vocabulary into classes, under the

  2. Protein-protein interaction inference based on semantic similarity of Gene Ontology terms.

    PubMed

    Zhang, Shu-Bo; Tang, Qiang-Rong

    2016-07-21

    Identifying protein-protein interactions is important in molecular biology. Experimental methods to this issue have their limitations, and computational approaches have attracted more and more attentions from the biological community. The semantic similarity derived from the Gene Ontology (GO) annotation has been regarded as one of the most powerful indicators for protein interaction. However, conventional methods based on GO similarity fail to take advantage of the specificity of GO terms in the ontology graph. We proposed a GO-based method to predict protein-protein interaction by integrating different kinds of similarity measures derived from the intrinsic structure of GO graph. We extended five existing methods to derive the semantic similarity measures from the descending part of two GO terms in the GO graph, then adopted a feature integration strategy to combines both the ascending and the descending similarity scores derived from the three sub-ontologies to construct various kinds of features to characterize each protein pair. Support vector machines (SVM) were employed as discriminate classifiers, and five-fold cross validation experiments were conducted on both human and yeast protein-protein interaction datasets to evaluate the performance of different kinds of integrated features, the experimental results suggest the best performance of the feature that combines information from both the ascending and the descending parts of the three ontologies. Our method is appealing for effective prediction of protein-protein interaction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Multidatabase Query Processing with Uncertainty in Global Keys and Attribute Values.

    ERIC Educational Resources Information Center

    Scheuermann, Peter; Li, Wen-Syan; Clifton, Chris

    1998-01-01

    Presents an approach for dynamic database integration and query processing in the absence of information about attribute correspondences and global IDs. Defines different types of equivalence conditions for the construction of global IDs. Proposes a strategy based on ranked role-sets that makes use of an automated semantic integration procedure…

  4. Using Web Ontology Language to Integrate Heterogeneous Databases in the Neurosciences

    PubMed Central

    Lam, Hugo Y.K.; Marenco, Luis; Shepherd, Gordon M.; Miller, Perry L.; Cheung, Kei-Hoi

    2006-01-01

    Integrative neuroscience involves the integration and analysis of diverse types of neuroscience data involving many different experimental techniques. This data will increasingly be distributed across many heterogeneous databases that are web-accessible. Currently, these databases do not expose their schemas (database structures) and their contents to web applications/agents in a standardized, machine-friendly way. This limits database interoperation. To address this problem, we describe a pilot project that illustrates how neuroscience databases can be expressed using the Web Ontology Language, which is a semantically-rich ontological language, as a common data representation language to facilitate complex cross-database queries. In this pilot project, an existing tool called “D2RQ” was used to translate two neuroscience databases (NeuronDB and CoCoDat) into OWL, and the resulting OWL ontologies were then merged. An OWL-based reasoner (Racer) was then used to provide a sophisticated query language (nRQL) to perform integrated queries across the two databases based on the merged ontology. This pilot project is one step toward exploring the use of semantic web technologies in the neurosciences. PMID:17238384

  5. Protein linguistics - a grammar for modular protein assembly?

    PubMed

    Gimona, Mario

    2006-01-01

    The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?

  6. 75 FR 48393 - Self-Regulatory Organizations; National Futures Association; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-10

    ... the proposed rule change is available on NFA's Web site at http://www.nfa.futures.org , at the... same results and any differences between them are largely semantic. The Committees noted, however, that... Commission's Internet Web site ( http://www.sec.gov/rules/sro.shtml ). Copies of the submission, all...

  7. Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning.

    PubMed

    Hoehndorf, Robert; Dumontier, Michel; Oellrich, Anika; Rebholz-Schuhmann, Dietrich; Schofield, Paul N; Gkoutos, Georgios V

    2011-01-01

    Researchers design ontologies as a means to accurately annotate and integrate experimental data across heterogeneous and disparate data- and knowledge bases. Formal ontologies make the semantics of terms and relations explicit such that automated reasoning can be used to verify the consistency of knowledge. However, many biomedical ontologies do not sufficiently formalize the semantics of their relations and are therefore limited with respect to automated reasoning for large scale data integration and knowledge discovery. We describe a method to improve automated reasoning over biomedical ontologies and identify several thousand contradictory class definitions. Our approach aligns terms in biomedical ontologies with foundational classes in a top-level ontology and formalizes composite relations as class expressions. We describe the semi-automated repair of contradictions and demonstrate expressive queries over interoperable ontologies. Our work forms an important cornerstone for data integration, automatic inference and knowledge discovery based on formal representations of knowledge. Our results and analysis software are available at http://bioonto.de/pmwiki.php/Main/ReasonableOntologies.

  8. A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis

    PubMed Central

    Guardia, Gabriela D. A.; Pires, Luís Ferreira; Vêncio, Ricardo Z. N.; Malmegrim, Kelen C. R.; de Farias, Cléver R. G.

    2015-01-01

    Gene expression studies are generally performed through multi-step analysis processes, which require the integrated use of a number of analysis tools. In order to facilitate tool/data integration, an increasing number of analysis tools have been developed as or adapted to semantic web services. In recent years, some approaches have been defined for the development and semantic annotation of web services created from legacy software tools, but these approaches still present many limitations. In addition, to the best of our knowledge, no suitable approach has been defined for the functional genomics domain. Therefore, this paper aims at defining an integrated methodology for the implementation of RESTful semantic web services created from gene expression analysis tools and the semantic annotation of such services. We have applied our methodology to the development of a number of services to support the analysis of different types of gene expression data, including microarray and RNASeq. All developed services are publicly available in the Gene Expression Analysis Services (GEAS) Repository at http://dcm.ffclrp.usp.br/lssb/geas. Additionally, we have used a number of the developed services to create different integrated analysis scenarios to reproduce parts of two gene expression studies documented in the literature. The first study involves the analysis of one-color microarray data obtained from multiple sclerosis patients and healthy donors. The second study comprises the analysis of RNA-Seq data obtained from melanoma cells to investigate the role of the remodeller BRG1 in the proliferation and morphology of these cells. Our methodology provides concrete guidelines and technical details in order to facilitate the systematic development of semantic web services. Moreover, it encourages the development and reuse of these services for the creation of semantically integrated solutions for gene expression analysis. PMID:26207740

  9. A Methodology for the Development of RESTful Semantic Web Services for Gene Expression Analysis.

    PubMed

    Guardia, Gabriela D A; Pires, Luís Ferreira; Vêncio, Ricardo Z N; Malmegrim, Kelen C R; de Farias, Cléver R G

    2015-01-01

    Gene expression studies are generally performed through multi-step analysis processes, which require the integrated use of a number of analysis tools. In order to facilitate tool/data integration, an increasing number of analysis tools have been developed as or adapted to semantic web services. In recent years, some approaches have been defined for the development and semantic annotation of web services created from legacy software tools, but these approaches still present many limitations. In addition, to the best of our knowledge, no suitable approach has been defined for the functional genomics domain. Therefore, this paper aims at defining an integrated methodology for the implementation of RESTful semantic web services created from gene expression analysis tools and the semantic annotation of such services. We have applied our methodology to the development of a number of services to support the analysis of different types of gene expression data, including microarray and RNASeq. All developed services are publicly available in the Gene Expression Analysis Services (GEAS) Repository at http://dcm.ffclrp.usp.br/lssb/geas. Additionally, we have used a number of the developed services to create different integrated analysis scenarios to reproduce parts of two gene expression studies documented in the literature. The first study involves the analysis of one-color microarray data obtained from multiple sclerosis patients and healthy donors. The second study comprises the analysis of RNA-Seq data obtained from melanoma cells to investigate the role of the remodeller BRG1 in the proliferation and morphology of these cells. Our methodology provides concrete guidelines and technical details in order to facilitate the systematic development of semantic web services. Moreover, it encourages the development and reuse of these services for the creation of semantically integrated solutions for gene expression analysis.

  10. A web-based system architecture for ontology-based data integration in the domain of IT benchmarking

    NASA Astrophysics Data System (ADS)

    Pfaff, Matthias; Krcmar, Helmut

    2018-03-01

    In the domain of IT benchmarking (ITBM), a variety of data and information are collected. Although these data serve as the basis for business analyses, no unified semantic representation of such data yet exists. Consequently, data analysis across different distributed data sets and different benchmarks is almost impossible. This paper presents a system architecture and prototypical implementation for an integrated data management of distributed databases based on a domain-specific ontology. To preserve the semantic meaning of the data, the ITBM ontology is linked to data sources and functions as the central concept for database access. Thus, additional databases can be integrated by linking them to this domain-specific ontology and are directly available for further business analyses. Moreover, the web-based system supports the process of mapping ontology concepts to external databases by introducing a semi-automatic mapping recommender and by visualizing possible mapping candidates. The system also provides a natural language interface to easily query linked databases. The expected result of this ontology-based approach of knowledge representation and data access is an increase in knowledge and data sharing in this domain, which will enhance existing business analysis methods.

  11. Selective Attention to Semantic and Syntactic Features Modulates Sentence Processing Networks in Anterior Temporal Cortex

    PubMed Central

    Rogalsky, Corianne

    2009-01-01

    Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589

  12. A Non-Cognitive Formal Approach to Knowledge Representation in Artificial Intelligence.

    DTIC Science & Technology

    1986-06-01

    example, Duda and others translated production rules into a partitioned semantic network (73). Representations were also translated into production...153. Berlin: Springer-Verlag, 1982. 38. Blikle, Andrzej . "Equational Languages," Information and Control, 21: 134-147 (September 1972). 285 39. Ezawa...Conference on Artificial Intelligence, IJCAI-75. 115-121. William Kaufmann, Inc., Los Altos CA, 1975. 73. Duda , Richard 0. and others. "Semantic

  13. Multi-tiered S-SOA, Parameter-Driven New Islamic Syariah Products of Holistic Islamic Banking System (HiCORE): Virtual Banking Environment

    NASA Astrophysics Data System (ADS)

    Halimah, B. Z.; Azlina, A.; Sembok, T. M.; Sufian, I.; Sharul Azman, M. N.; Azuraliza, A. B.; Zulaiha, A. O.; Nazlia, O.; Salwani, A.; Sanep, A.; Hailani, M. T.; Zaher, M. Z.; Azizah, J.; Nor Faezah, M. Y.; Choo, W. O.; Abdullah, Chew; Sopian, B.

    The Holistic Islamic Banking System (HiCORE), a banking system suitable for virtual banking environment, created based on universityindustry collaboration initiative between Universiti Kebangsaan Malaysia (UKM) and Fuziq Software Sdn Bhd. HiCORE was modeled on a multitiered Simple - Services Oriented Architecture (S-SOA), using the parameterbased semantic approach. HiCORE's existence is timely as the financial world is looking for a new approach to creating banking and financial products that are interest free or based on the Islamic Syariah principles and jurisprudence. An interest free banking system has currently caught the interest of bankers and financiers all over the world. HiCORE's Parameter-based module houses the Customer-information file (CIF), Deposit and Financing components. The Parameter based module represents the third tier of the multi-tiered Simple SOA approach. This paper highlights the multi-tiered parameter- driven approach to the creation of new Islamiic products based on the 'dalil' (Quran), 'syarat' (rules) and 'rukun' (procedures) as required by the syariah principles and jurisprudence reflected by the semantic ontology embedded in the parameter module of the system.

  14. Semantic representation of CDC-PHIN vocabulary using Simple Knowledge Organization System.

    PubMed

    Zhu, Min; Mirhaji, Parsa

    2008-11-06

    PHIN Vocabulary Access and Distribution System (VADS) promotes the use of standards based vocabulary within CDC information systems. However, the current PHIN vocabulary representation hinders its wide adoption. Simple Knowledge Organization System (SKOS) is a W3C draft specification to support the formal representation of Knowledge Organization Systems (KOS) within the framework of the Semantic Web. We present a method of adopting SKOS to represent PHIN vocabulary in order to enable automated information sharing and integration.

  15. SCEGRAM: An image database for semantic and syntactic inconsistencies in scenes.

    PubMed

    Öhlschläger, Sabine; Võ, Melissa Le-Hoa

    2017-10-01

    Our visual environment is not random, but follows compositional rules according to what objects are usually found where. Despite the growing interest in how such semantic and syntactic rules - a scene grammar - enable effective attentional guidance and object perception, no common image database containing highly-controlled object-scene modifications has been publically available. Such a database is essential in minimizing the risk that low-level features drive high-level effects of interest, which is being discussed as possible source of controversial study results. To generate the first database of this kind - SCEGRAM - we took photographs of 62 real-world indoor scenes in six consistency conditions that contain semantic and syntactic (both mild and extreme) violations as well as their combinations. Importantly, always two scenes were paired, so that an object was semantically consistent in one scene (e.g., ketchup in kitchen) and inconsistent in the other (e.g., ketchup in bathroom). Low-level salience did not differ between object-scene conditions and was generally moderate. Additionally, SCEGRAM contains consistency ratings for every object-scene condition, as well as object-absent scenes and object-only images. Finally, a cross-validation using eye-movements replicated previous results of longer dwell times for both semantic and syntactic inconsistencies compared to consistent controls. In sum, the SCEGRAM image database is the first to contain well-controlled semantic and syntactic object-scene inconsistencies that can be used in a broad range of cognitive paradigms (e.g., verbal and pictorial priming, change detection, object identification, etc.) including paradigms addressing developmental aspects of scene grammar. SCEGRAM can be retrieved for research purposes from http://www.scenegrammarlab.com/research/scegram-database/ .

  16. From data to analysis: linking NWChem and Avogadro with the syntax and semantics of Chemical Markup Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Jong, Wibe A.; Walker, Andrew M.; Hanwell, Marcus D.

    Background Multidisciplinary integrated research requires the ability to couple the diverse sets of data obtained from a range of complex experiments and computer simulations. Integrating data requires semantically rich information. In this paper the generation of semantically rich data from the NWChem computational chemistry software is discussed within the Chemical Markup Language (CML) framework. Results The NWChem computational chemistry software has been modified and coupled to the FoX library to write CML compliant XML data files. The FoX library was expanded to represent the lexical input files used by the computational chemistry software. Conclusions The production of CML compliant XMLmore » files for the computational chemistry software NWChem can be relatively easily accomplished using the FoX library. A unified computational chemistry or CompChem convention and dictionary needs to be developed through a community-based effort. The long-term goal is to enable a researcher to do Google-style chemistry and physics searches.« less

  17. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration

    PubMed Central

    2011-01-01

    Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research. PMID:21595881

  18. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration.

    PubMed

    Chepelev, Leonid L; Dumontier, Michel

    2011-05-19

    Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full preservation of data correspondence and provenance. Our representation builds on existing cheminformatics technologies and, by the virtue of RDF specification, remains flexible and amenable to application- and domain-specific annotations without compromising chemical data integration. We conclude that the adoption of a consistent and semantically-enabled chemical specification is imperative for surviving the coming chemical data deluge and supporting systems science research.

  19. Ssk or Esw? -- the Bloor-Lynch Debate Revisited

    NASA Astrophysics Data System (ADS)

    Cheng, Kai-Yuan

    2014-03-01

    Philosophical discussions of rule-following in the later Wittgenstein (1953, 1967) are an important source of inspiration for the development of views on the social nature of scientific knowledge. Two major opposing views in this inquiry -- Bloor's sociology of scientific knowledge (SSK) (1983, 1991, 1992, 1997) and Lynch's (1992, 1993) ethnomethodological studies of work (ESW) -- represent two positions derived from two different readings of Wittgenstein's later writings on rule-following. The aim of this paper is two-fold. One is to re-examine the noted Bloor-Lynch debate by considering Kusch's (2004) recent discussion of this debate. Another is to show that a new semantic framework of rule-following ascriptions based on a cognitive approach to the study of generics can be provided such that SSK and ESW are compatible in it (Leslie, 2009; Cheng, 2011).

  20. Semantic Typicality Effects in Acquired Dyslexia: Evidence for Semantic Impairment in Deep Dyslexia.

    PubMed

    Riley, Ellyn A; Thompson, Cynthia K

    2010-06-01

    BACKGROUND: Acquired deep dyslexia is characterized by impairment in grapheme-phoneme conversion and production of semantic errors in oral reading. Several theories have attempted to explain the production of semantic errors in deep dyslexia, some proposing that they arise from impairments in both grapheme-phoneme and lexical-semantic processing, and others proposing that such errors stem from a deficit in phonological production. Whereas both views have gained some acceptance, the limited evidence available does not clearly eliminate the possibility that semantic errors arise from a lexical-semantic input processing deficit. AIMS: To investigate semantic processing in deep dyslexia, this study examined the typicality effect in deep dyslexic individuals, phonological dyslexic individuals, and controls using an online category verification paradigm. This task requires explicit semantic access without speech production, focusing observation on semantic processing from written or spoken input. METHODS #ENTITYSTARTX00026; PROCEDURES: To examine the locus of semantic impairment, the task was administered in visual and auditory modalities with reaction time as the primary dependent measure. Nine controls, six phonological dyslexic participants, and five deep dyslexic participants completed the study. OUTCOMES #ENTITYSTARTX00026; RESULTS: Controls and phonological dyslexic participants demonstrated a typicality effect in both modalities, while deep dyslexic participants did not demonstrate a typicality effect in either modality. CONCLUSIONS: These findings suggest that deep dyslexia is associated with a semantic processing deficit. Although this does not rule out the possibility of concomitant deficits in other modules of lexical-semantic processing, this finding suggests a direction for treatment of deep dyslexia focused on semantic processing.

  1. Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access

    NASA Astrophysics Data System (ADS)

    Yang, C.; Huang, T.; Armstrong, E. M.; Moroni, D. F.; Liu, K.; Gui, Z.

    2013-12-01

    Abstract: We present a Semantically optiMize the dAta seRvice operaTion (SMART) system for better data discovery and access across the NASA data systems, Global Earth Observation System of Systems (GEOSS) Clearinghouse and Data.gov to facilitate scientists to select Earth observation data that fit better their needs in four aspects: 1. Integrating and interfacing the SMART system to include the functionality of a) semantic reasoning based on Jena, an open source semantic reasoning engine, b) semantic similarity calculation, c) recommendation based on spatiotemporal, semantic, and user workflow patterns, and d) ranking results based on similarity between search terms and data ontology. 2. Collaborating with data user communities to a) capture science data ontology and record relevant ontology triple stores, b) analyze and mine user search and download patterns, c) integrate SMART into metadata-centric discovery system for community-wide usage and feedback, and d) customizing data discovery, search and access user interface to include the ranked results, recommendation components, and semantic based navigations. 3. Laying the groundwork to interface the SMART system with other data search and discovery systems as an open source data search and discovery solution. The SMART systems leverages NASA, GEO, FGDC data discovery, search and access for the Earth science community by enabling scientists to readily discover and access data appropriate to their endeavors, increasing the efficiency of data exploration and decreasing the time that scientists must spend on searching, downloading, and processing the datasets most applicable to their research. By incorporating the SMART system, it is a likely aim that the time being devoted to discovering the most applicable dataset will be substantially reduced, thereby reducing the number of user inquiries and likewise reducing the time and resources expended by a data center in addressing user inquiries. Keywords: EarthCube; ECHO, DAACs, GeoPlatform; Geospatial Cyberinfrastructure References: 1. Yang, P., Evans, J., Cole, M., Alameh, N., Marley, S., & Bambacus, M., (2007). The Emerging Concepts and Applications of the Spatial Web Portal. Photogrammetry Engineering &Remote Sensing,73(6):691-698. 2. Zhang, C, Zhao, T. and W. Li. (2010). The Framework of a Geospatial Semantic Web based Spatial Decision Support System for Digital Earth. International Journal of Digital Earth. 3(2):111-134. 3. Yang C., Raskin R., Goodchild M.F., Gahegan M., 2010, Geospatial Cyberinfrastructure: Past, Present and Future,Computers, Environment, and Urban Systems, 34(4):264-277. 4. Liu K., Yang C., Li W., Gui Z., Xu C., Xia J., 2013. Using ontology and similarity calculations to rank Earth science data searching results, International Journal of Geospatial Information Applications. (in press)

  2. The evolution of meaning: spatio-temporal dynamics of visual object recognition.

    PubMed

    Clarke, Alex; Taylor, Kirsten I; Tyler, Lorraine K

    2011-08-01

    Research on the spatio-temporal dynamics of visual object recognition suggests a recurrent, interactive model whereby an initial feedforward sweep through the ventral stream to prefrontal cortex is followed by recurrent interactions. However, critical questions remain regarding the factors that mediate the degree of recurrent interactions necessary for meaningful object recognition. The novel prediction we test here is that recurrent interactivity is driven by increasing semantic integration demands as defined by the complexity of semantic information required by the task and driven by the stimuli. To test this prediction, we recorded magnetoencephalography data while participants named living and nonliving objects during two naming tasks. We found that the spatio-temporal dynamics of neural activity were modulated by the level of semantic integration required. Specifically, source reconstructed time courses and phase synchronization measures showed increased recurrent interactions as a function of semantic integration demands. These findings demonstrate that the cortical dynamics of object processing are modulated by the complexity of semantic information required from the visual input.

  3. Dialog detection in narrative video by shot and face analysis

    NASA Astrophysics Data System (ADS)

    Kroon, B.; Nesvadba, J.; Hanjalic, A.

    2007-01-01

    The proliferation of captured personal and broadcast content in personal consumer archives necessitates comfortable access to stored audiovisual content. Intuitive retrieval and navigation solutions require however a semantic level that cannot be reached by generic multimedia content analysis alone. A fusion with film grammar rules can help to boost the reliability significantly. The current paper describes the fusion of low-level content analysis cues including face parameters and inter-shot similarities to segment commercial content into film grammar rule-based entities and subsequently classify those sequences into so-called shot reverse shots, i.e. dialog sequences. Moreover shot reverse shot specific mid-level cues are analyzed augmenting the shot reverse shot information with dialog specific descriptions.

  4. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    McGuinness, Deborah; Fox, Peter; Hendler, James

    2010-05-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?. http://tw.rpi.edu/portal/SESF

  5. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; McGuinness, D. L.

    2009-12-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?.

  6. Clever generation of rich SPARQL queries from annotated relational schema: application to Semantic Web Service creation for biological databases.

    PubMed

    Wollbrett, Julien; Larmande, Pierre; de Lamotte, Frédéric; Ruiz, Manuel

    2013-04-15

    In recent years, a large amount of "-omics" data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic.

  7. Clever generation of rich SPARQL queries from annotated relational schema: application to Semantic Web Service creation for biological databases

    PubMed Central

    2013-01-01

    Background In recent years, a large amount of “-omics” data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. Results We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. Conclusions BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic. PMID:23586394

  8. Semantic Web Research Trends and Directions

    DTIC Science & Technology

    2006-01-01

    workflow templates. Workflow templates are used for various different tasks such as en- coding business rules in a B2B application, specifying domain...recently suggest that rules are desirable in this space, both in terms of their expressivity, and in some cases, due to their attractive computational...of OWL documents. However, in most cases, a more attractive solution is to simply write a rule that captures the inference needed, as it is reusable

  9. Reply to David Kemmerer's "a critique of Mark D. Allen's 'the preservation of verb subcategory knowledge in a spoken language comprehension deficit'".

    PubMed

    Allen, Mark D; Owens, Tyler E

    2008-07-01

    Allen [Allen, M. D. (2005). The preservation of verb subcategory knowledge in a spoken language comprehension deficit. Brain and Language, 95, 255-264] presents evidence from a single patient, WBN, to motivate a theory of lexical processing and representation in which syntactic information may be encoded and retrieved independently of semantic information. In his critique, Kemmerer argues that because Allen depended entirely on preposition-based verb subcategory violations to test WBN's knowledge of correct argument structure, his results, at best, address a "strawman" theory. This argument rests on the assumption that preposition subcategory options are superficial syntactic phenomena which are not represented by argument structure proper. We demonstrate that preposition subcategory is in fact treated as semantically determined argument structure in the theories that Allen evaluated, and thus far from irrelevant. In further discussion of grammatically relevant versus irrelevant semantic features, Kemmerer offers a review of his own studies. However, due to an important design shortcoming in these experiments, we remain unconvinced. Reemphasizing the fact the Allen (2005) never claimed to rule out all semantic contributions to syntax, we propose an improvement in Kemmerer's approach that might provide more satisfactory evidence on the distinction between the kinds of relevant versus irrelevant features his studies have addressed.

  10. Semantic Elaboration through Integration: Hints Both Facilitate and Inform the Process

    ERIC Educational Resources Information Center

    Bauer, Patricia J.; Varga, Nicole L.; King, Jessica E.; Nolen, Ayla M.; White, Elizabeth A.

    2015-01-01

    Semantic knowledge can be extended in a variety of ways, including self-generation of new facts through integration of separate yet related episodes. We sought to promote integration and self-generation by providing "hints" to help 6-year-olds (Experiment 1) and 4-year-olds (Experiment 2) see the relevance of separate episodes to one…

  11. Ontology of Earth's nonlinear dynamic complex systems

    NASA Astrophysics Data System (ADS)

    Babaie, Hassan; Davarpanah, Armita

    2017-04-01

    As a complex system, Earth and its major integrated and dynamically interacting subsystems (e.g., hydrosphere, atmosphere) display nonlinear behavior in response to internal and external influences. The Earth Nonlinear Dynamic Complex Systems (ENDCS) ontology formally represents the semantics of the knowledge about the nonlinear system element (agent) behavior, function, and structure, inter-agent and agent-environment feedback loops, and the emergent collective properties of the whole complex system as the result of interaction of the agents with other agents and their environment. It also models nonlinear concepts such as aperiodic, random chaotic behavior, sensitivity to initial conditions, bifurcation of dynamic processes, levels of organization, self-organization, aggregated and isolated functionality, and emergence of collective complex behavior at the system level. By incorporating several existing ontologies, the ENDCS ontology represents the dynamic system variables and the rules of transformation of their state, emergent state, and other features of complex systems such as the trajectories in state (phase) space (attractor and strange attractor), basins of attractions, basin divide (separatrix), fractal dimension, and system's interface to its environment. The ontology also defines different object properties that change the system behavior, function, and structure and trigger instability. ENDCS will help to integrate the data and knowledge related to the five complex subsystems of Earth by annotating common data types, unifying the semantics of shared terminology, and facilitating interoperability among different fields of Earth science.

  12. Methodology for the inference of gene function from phenotype data.

    PubMed

    Ascensao, Joao A; Dolan, Mary E; Hill, David P; Blake, Judith A

    2014-12-12

    Biomedical ontologies are increasingly instrumental in the advancement of biological research primarily through their use to efficiently consolidate large amounts of data into structured, accessible sets. However, ontology development and usage can be hampered by the segregation of knowledge by domain that occurs due to independent development and use of the ontologies. The ability to infer data associated with one ontology to data associated with another ontology would prove useful in expanding information content and scope. We here focus on relating two ontologies: the Gene Ontology (GO), which encodes canonical gene function, and the Mammalian Phenotype Ontology (MP), which describes non-canonical phenotypes, using statistical methods to suggest GO functional annotations from existing MP phenotype annotations. This work is in contrast to previous studies that have focused on inferring gene function from phenotype primarily through lexical or semantic similarity measures. We have designed and tested a set of algorithms that represents a novel methodology to define rules for predicting gene function by examining the emergent structure and relationships between the gene functions and phenotypes rather than inspecting the terms semantically. The algorithms inspect relationships among multiple phenotype terms to deduce if there are cases where they all arise from a single gene function. We apply this methodology to data about genes in the laboratory mouse that are formally represented in the Mouse Genome Informatics (MGI) resource. From the data, 7444 rule instances were generated from five generalized rules, resulting in 4818 unique GO functional predictions for 1796 genes. We show that our method is capable of inferring high-quality functional annotations from curated phenotype data. As well as creating inferred annotations, our method has the potential to allow for the elucidation of unforeseen, biologically significant associations between gene function and phenotypes that would be overlooked by a semantics-based approach. Future work will include the implementation of the described algorithms for a variety of other model organism databases, taking full advantage of the abundance of available high quality curated data.

  13. Model for Semantically Rich Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Poux, F.; Neuville, R.; Hallot, P.; Billen, R.

    2017-10-01

    This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  14. Semantic Web Applications and Tools for the Life Sciences: SWAT4LS 2010

    PubMed Central

    2012-01-01

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data. PMID:22373274

  15. Semantic Web applications and tools for the life sciences: SWAT4LS 2010.

    PubMed

    Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott; Splendiani, Andrea

    2012-01-25

    As Semantic Web technologies mature and new releases of key elements, such as SPARQL 1.1 and OWL 2.0, become available, the Life Sciences continue to push the boundaries of these technologies with ever more sophisticated tools and applications. Unsurprisingly, therefore, interest in the SWAT4LS (Semantic Web Applications and Tools for the Life Sciences) activities have remained high, as was evident during the third international SWAT4LS workshop held in Berlin in December 2010. Contributors to this workshop were invited to submit extended versions of their papers, the best of which are now made available in the special supplement of BMC Bioinformatics. The papers reflect the wide range of work in this area, covering the storage and querying of Life Sciences data in RDF triple stores, tools for the development of biomedical ontologies and the semantics-based integration of Life Sciences as well as clinicial data.

  16. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mei Y.; Eshow, Michelle M.

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  17. Electrophysiological correlates of cross-linguistic semantic integration in hearing signers: N400 and LPC.

    PubMed

    Zachau, Swantje; Korpilahti, Pirjo; Hämäläinen, Jarmo A; Ervast, Leena; Heinänen, Kaisu; Suominen, Kalervo; Lehtihalmes, Matti; Leppänen, Paavo H T

    2014-07-01

    We explored semantic integration mechanisms in native and non-native hearing users of sign language and non-signing controls. Event-related brain potentials (ERPs) were recorded while participants performed a semantic decision task for priming lexeme pairs. Pairs were presented either within speech or across speech and sign language. Target-related ERP responses were subjected to principal component analyses (PCA), and neurocognitive basis of semantic integration processes were assessed by analyzing the N400 and the late positive complex (LPC) components in response to spoken (auditory) and signed (visual) antonymic and unrelated targets. Semantically-related effects triggered across modalities would indicate a similar tight interconnection between the signers׳ two languages like that described for spoken language bilinguals. Remarkable structural similarity of the N400 and LPC components with varying group differences between the spoken and signed targets were found. The LPC was the dominant response. The controls׳ LPC differed from the LPC of the two signing groups. It was reduced to the auditory unrelated targets and was less frontal for all the visual targets. The visual LPC was more broadly distributed in native than non-native signers and was left-lateralized for the unrelated targets in the native hearing signers only. Semantic priming effects were found for the auditory N400 in all groups, but only native hearing signers revealed a clear N400 effect to the visual targets. Surprisingly, the non-native signers revealed no semantically-related processing effect to the visual targets reflected in the N400 or the LPC; instead they appeared to rely more on visual post-lexical analyzing stages than native signers. We conclude that native and non-native signers employed different processing strategies to integrate signed and spoken semantic content. It appeared that the signers׳ semantic processing system was affected by group-specific factors like language background and/or usage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The COPD Knowledge Base: enabling data analysis and computational simulation in translational COPD research.

    PubMed

    Cano, Isaac; Tényi, Ákos; Schueller, Christine; Wolff, Martin; Huertas Migueláñez, M Mercedes; Gomez-Cabrero, David; Antczak, Philipp; Roca, Josep; Cascante, Marta; Falciani, Francesco; Maier, Dieter

    2014-11-28

    Previously we generated a chronic obstructive pulmonary disease (COPD) specific knowledge base (http://www.copdknowledgebase.eu) from clinical and experimental data, text-mining results and public databases. This knowledge base allowed the retrieval of specific molecular networks together with integrated clinical and experimental data. The COPDKB has now been extended to integrate over 40 public data sources on functional interaction (e.g. signal transduction, transcriptional regulation, protein-protein interaction, gene-disease association). In addition we integrated COPD-specific expression and co-morbidity networks connecting over 6 000 genes/proteins with physiological parameters and disease states. Three mathematical models describing different aspects of systemic effects of COPD were connected to clinical and experimental data. We have completely redesigned the technical architecture of the user interface and now provide html and web browser-based access and form-based searches. A network search enables the use of interconnecting information and the generation of disease-specific sub-networks from general knowledge. Integration with the Synergy-COPD Simulation Environment enables multi-scale integrated simulation of individual computational models while integration with a Clinical Decision Support System allows delivery into clinical practice. The COPD Knowledge Base is the only publicly available knowledge resource dedicated to COPD and combining genetic information with molecular, physiological and clinical data as well as mathematical modelling. Its integrated analysis functions provide overviews about clinical trends and connections while its semantically mapped content enables complex analysis approaches. We plan to further extend the COPDKB by offering it as a repository to publish and semantically integrate data from relevant clinical trials. The COPDKB is freely available after registration at http://www.copdknowledgebase.eu.

  19. A semantically-aided architecture for a web-based monitoring system for carotid atherosclerosis.

    PubMed

    Kolias, Vassileios D; Stamou, Giorgos; Golemati, Spyretta; Stoitsis, Giannis; Gkekas, Christos D; Liapis, Christos D; Nikita, Konstantina S

    2015-08-01

    Carotid atherosclerosis is a multifactorial disease and its clinical diagnosis depends on the evaluation of heterogeneous clinical data, such as imaging exams, biochemical tests and the patient's clinical history. The lack of interoperability between Health Information Systems (HIS) does not allow the physicians to acquire all the necessary data for the diagnostic process. In this paper, a semantically-aided architecture is proposed for a web-based monitoring system for carotid atherosclerosis that is able to gather and unify heterogeneous data with the use of an ontology and to create a common interface for data access enhancing the interoperability of HIS. The architecture is based on an application ontology of carotid atherosclerosis that is used to (a) integrate heterogeneous data sources on the basis of semantic representation and ontological reasoning and (b) access the critical information using SPARQL query rewriting and ontology-based data access services. The architecture was tested over a carotid atherosclerosis dataset consisting of the imaging exams and the clinical profile of 233 patients, using a set of complex queries, constructed by the physicians. The proposed architecture was evaluated with respect to the complexity of the queries that the physicians could make and the retrieval speed. The proposed architecture gave promising results in terms of interoperability, data integration of heterogeneous sources with an ontological way and expanded capabilities of query and retrieval in HIS.

  20. Towards a Semantic Web of Things: A Hybrid Semantic Annotation, Extraction, and Reasoning Framework for Cyber-Physical System

    PubMed Central

    Wu, Zhenyu; Xu, Yuan; Yang, Yunong; Zhang, Chunhong; Zhu, Xinning; Ji, Yang

    2017-01-01

    Web of Things (WoT) facilitates the discovery and interoperability of Internet of Things (IoT) devices in a cyber-physical system (CPS). Moreover, a uniform knowledge representation of physical resources is quite necessary for further composition, collaboration, and decision-making process in CPS. Though several efforts have integrated semantics with WoT, such as knowledge engineering methods based on semantic sensor networks (SSN), it still could not represent the complex relationships between devices when dynamic composition and collaboration occur, and it totally depends on manual construction of a knowledge base with low scalability. In this paper, to addresses these limitations, we propose the semantic Web of Things (SWoT) framework for CPS (SWoT4CPS). SWoT4CPS provides a hybrid solution with both ontological engineering methods by extending SSN and machine learning methods based on an entity linking (EL) model. To testify to the feasibility and performance, we demonstrate the framework by implementing a temperature anomaly diagnosis and automatic control use case in a building automation system. Evaluation results on the EL method show that linking domain knowledge to DBpedia has a relative high accuracy and the time complexity is at a tolerant level. Advantages and disadvantages of SWoT4CPS with future work are also discussed. PMID:28230725

  1. Semantic integration of audio-visual information of polyphonic characters in a sentence context: an event-related potential study.

    PubMed

    Liu, Hong; Zhang, Gaoyan; Liu, Baolin

    2017-04-01

    In the Chinese language, a polyphone is a kind of special character that has more than one pronunciation, with each pronunciation corresponding to a different meaning. Here, we aimed to reveal the cognitive processing of audio-visual information integration of polyphones in a sentence context using the event-related potential (ERP) method. Sentences ending with polyphones were presented to subjects simultaneously in both an auditory and a visual modality. Four experimental conditions were set in which the visual presentations were the same, but the pronunciations of the polyphones were: the correct pronunciation; another pronunciation of the polyphone; a semantically appropriate pronunciation but not the pronunciation of the polyphone; or a semantically inappropriate pronunciation but also not the pronunciation of the polyphone. The behavioral results demonstrated significant differences in response accuracies when judging the semantic meanings of the audio-visual sentences, which reflected the different demands on cognitive resources. The ERP results showed that in the early stage, abnormal pronunciations were represented by the amplitude of the P200 component. Interestingly, because the phonological information mediated access to the lexical semantics, the amplitude and latency of the N400 component changed linearly across conditions, which may reflect the gradually increased semantic mismatch in the four conditions when integrating the auditory pronunciation with the visual information. Moreover, the amplitude of the late positive shift (LPS) showed a significant correlation with the behavioral response accuracies, demonstrating that the LPS component reveals the demand of cognitive resources for monitoring and resolving semantic conflicts when integrating the audio-visual information.

  2. The semantic web in translational medicine: current applications and future directions

    PubMed Central

    Machado, Catia M.; Rebholz-Schuhmann, Dietrich; Freitas, Ana T.; Couto, Francisco M.

    2015-01-01

    Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. PMID:24197933

  3. The semantic web in translational medicine: current applications and future directions.

    PubMed

    Machado, Catia M; Rebholz-Schuhmann, Dietrich; Freitas, Ana T; Couto, Francisco M

    2015-01-01

    Semantic web technologies offer an approach to data integration and sharing, even for resources developed independently or broadly distributed across the web. This approach is particularly suitable for scientific domains that profit from large amounts of data that reside in the public domain and that have to be exploited in combination. Translational medicine is such a domain, which in addition has to integrate private data from the clinical domain with proprietary data from the pharmaceutical domain. In this survey, we present the results of our analysis of translational medicine solutions that follow a semantic web approach. We assessed these solutions in terms of their target medical use case; the resources covered to achieve their objectives; and their use of existing semantic web resources for the purposes of data sharing, data interoperability and knowledge discovery. The semantic web technologies seem to fulfill their role in facilitating the integration and exploration of data from disparate sources, but it is also clear that simply using them is not enough. It is fundamental to reuse resources, to define mappings between resources, to share data and knowledge. All these aspects allow the instantiation of translational medicine at the semantic web-scale, thus resulting in a network of solutions that can share resources for a faster transfer of new scientific results into the clinical practice. The envisioned network of translational medicine solutions is on its way, but it still requires resolving the challenges of sharing protected data and of integrating semantic-driven technologies into the clinical practice. © The Author 2013. Published by Oxford University Press.

  4. Semi-automated ontology generation and evolution

    NASA Astrophysics Data System (ADS)

    Stirtzinger, Anthony P.; Anken, Craig S.

    2009-05-01

    Extending the notion of data models or object models, ontology can provide rich semantic definition not only to the meta-data but also to the instance data of domain knowledge, making these semantic definitions available in machine readable form. However, the generation of an effective ontology is a difficult task involving considerable labor and skill. This paper discusses an Ontology Generation and Evolution Processor (OGEP) aimed at automating this process, only requesting user input when un-resolvable ambiguous situations occur. OGEP directly attacks the main barrier which prevents automated (or self learning) ontology generation: the ability to understand the meaning of artifacts and the relationships the artifacts have to the domain space. OGEP leverages existing lexical to ontological mappings in the form of WordNet, and Suggested Upper Merged Ontology (SUMO) integrated with a semantic pattern-based structure referred to as the Semantic Grounding Mechanism (SGM) and implemented as a Corpus Reasoner. The OGEP processing is initiated by a Corpus Parser performing a lexical analysis of the corpus, reading in a document (or corpus) and preparing it for processing by annotating words and phrases. After the Corpus Parser is done, the Corpus Reasoner uses the parts of speech output to determine the semantic meaning of a word or phrase. The Corpus Reasoner is the crux of the OGEP system, analyzing, extrapolating, and evolving data from free text into cohesive semantic relationships. The Semantic Grounding Mechanism provides a basis for identifying and mapping semantic relationships. By blending together the WordNet lexicon and SUMO ontological layout, the SGM is given breadth and depth in its ability to extrapolate semantic relationships between domain entities. The combination of all these components results in an innovative approach to user assisted semantic-based ontology generation. This paper will describe the OGEP technology in the context of the architectural components referenced above and identify a potential technology transition path to Scott AFB's Tanker Airlift Control Center (TACC) which serves as the Air Operations Center (AOC) for the Air Mobility Command (AMC).

  5. Semantic Framework of Internet of Things for Smart Cities: Case Studies.

    PubMed

    Zhang, Ningyu; Chen, Huajun; Chen, Xi; Chen, Jiaoyan

    2016-09-14

    In recent years, the advancement of sensor technology has led to the generation of heterogeneous Internet-of-Things (IoT) data by smart cities. Thus, the development and deployment of various aspects of IoT-based applications are necessary to mine the potential value of data to the benefit of people and their lives. However, the variety, volume, heterogeneity, and real-time nature of data obtained from smart cities pose considerable challenges. In this paper, we propose a semantic framework that integrates the IoT with machine learning for smart cities. The proposed framework retrieves and models urban data for certain kinds of IoT applications based on semantic and machine-learning technologies. Moreover, we propose two case studies: pollution detection from vehicles and traffic pattern detection. The experimental results show that our system is scalable and capable of accommodating a large number of urban regions with different types of IoT applications.

  6. Semantic Framework of Internet of Things for Smart Cities: Case Studies

    PubMed Central

    Zhang, Ningyu; Chen, Huajun; Chen, Xi; Chen, Jiaoyan

    2016-01-01

    In recent years, the advancement of sensor technology has led to the generation of heterogeneous Internet-of-Things (IoT) data by smart cities. Thus, the development and deployment of various aspects of IoT-based applications are necessary to mine the potential value of data to the benefit of people and their lives. However, the variety, volume, heterogeneity, and real-time nature of data obtained from smart cities pose considerable challenges. In this paper, we propose a semantic framework that integrates the IoT with machine learning for smart cities. The proposed framework retrieves and models urban data for certain kinds of IoT applications based on semantic and machine-learning technologies. Moreover, we propose two case studies: pollution detection from vehicles and traffic pattern detection. The experimental results show that our system is scalable and capable of accommodating a large number of urban regions with different types of IoT applications. PMID:27649185

  7. A Method for Transforming Existing Web Service Descriptions into an Enhanced Semantic Web Service Framework

    NASA Astrophysics Data System (ADS)

    Du, Xiaofeng; Song, William; Munro, Malcolm

    Web Services as a new distributed system technology has been widely adopted by industries in the areas, such as enterprise application integration (EAI), business process management (BPM), and virtual organisation (VO). However, lack of semantics in the current Web Service standards has been a major barrier in service discovery and composition. In this chapter, we propose an enhanced context-based semantic service description framework (CbSSDF+) that tackles the problem and improves the flexibility of service discovery and the correctness of generated composite services. We also provide an agile transformation method to demonstrate how the various formats of Web Service descriptions on the Web can be managed and renovated step by step into CbSSDF+ based service description without large amount of engineering work. At the end of the chapter, we evaluate the applicability of the transformation method and the effectiveness of CbSSDF+ through a series of experiments.

  8. The agent-based spatial information semantic grid

    NASA Astrophysics Data System (ADS)

    Cui, Wei; Zhu, YaQiong; Zhou, Yong; Li, Deren

    2006-10-01

    Analyzing the characteristic of multi-Agent and geographic Ontology, The concept of the Agent-based Spatial Information Semantic Grid (ASISG) is defined and the architecture of the ASISG is advanced. ASISG is composed with Multi-Agents and geographic Ontology. The Multi-Agent Systems are composed with User Agents, General Ontology Agent, Geo-Agents, Broker Agents, Resource Agents, Spatial Data Analysis Agents, Spatial Data Access Agents, Task Execution Agent and Monitor Agent. The architecture of ASISG have three layers, they are the fabric layer, the grid management layer and the application layer. The fabric layer what is composed with Data Access Agent, Resource Agent and Geo-Agent encapsulates the data of spatial information system so that exhibits a conceptual interface for the Grid management layer. The Grid management layer, which is composed with General Ontology Agent, Task Execution Agent and Monitor Agent and Data Analysis Agent, used a hybrid method to manage all resources that were registered in a General Ontology Agent that is described by a General Ontology System. The hybrid method is assembled by resource dissemination and resource discovery. The resource dissemination push resource from Local Ontology Agent to General Ontology Agent and the resource discovery pull resource from the General Ontology Agent to Local Ontology Agents. The Local Ontology Agent is derived from special domain and describes the semantic information of local GIS. The nature of the Local Ontology Agents can be filtrated to construct a virtual organization what could provides a global scheme. The virtual organization lightens the burdens of guests because they need not search information site by site manually. The application layer what is composed with User Agent, Geo-Agent and Task Execution Agent can apply a corresponding interface to a domain user. The functions that ASISG should provide are: 1) It integrates different spatial information systems on the semantic The Grid management layer establishes a virtual environment that integrates seamlessly all GIS notes. 2) When the resource management system searches data on different spatial information systems, it transfers the meaning of different Local Ontology Agents rather than access data directly. So the ability of search and query can be said to be on the semantic level. 3) The data access procedure is transparent to guests, that is, they could access the information from remote site as current disk because the General Ontology Agent could automatically link data by the Data Agents that link the Ontology concept to GIS data. 4) The capability of processing massive spatial data. Storing, accessing and managing massive spatial data from TB to PB; efficiently analyzing and processing spatial data to produce model, information and knowledge; and providing 3D and multimedia visualization services. 5) The capability of high performance computing and processing on spatial information. Solving spatial problems with high precision, high quality, and on a large scale; and process spatial information in real time or on time, with high-speed and high efficiency. 6) The capability of sharing spatial resources. The distributed heterogeneous spatial information resources are Shared and realizing integrated and inter-operated on semantic level, so as to make best use of spatial information resources,such as computing resources, storage devices, spatial data (integrating from GIS, RS and GPS), spatial applications and services, GIS platforms, 7) The capability of integrating legacy GIS system. A ASISG can not only be used to construct new advanced spatial application systems, but also integrate legacy GIS system, so as to keep extensibility and inheritance and guarantee investment of users. 8) The capability of collaboration. Large-scale spatial information applications and services always involve different departments in different geographic places, so remote and uniform services are needed. 9) The capability of supporting integration of heterogeneous systems. Large-scale spatial information systems are always synthetically applications, so ASISG should provide interoperation and consistency through adopting open and applied technology standards. 10) The capability of adapting dynamic changes. Business requirements, application patterns, management strategies, and IT products always change endlessly for any departments, so ASISG should be self-adaptive. Two examples are provided in this paper, those examples provide a detailed way on how you design your semantic grid based on Multi-Agent systems and Ontology. In conclusion, the semantic grid of spatial information system could improve the ability of the integration and interoperability of spatial information grid.

  9. Integrating Reading and the English-Language Arts in the Geography Curriculum.

    ERIC Educational Resources Information Center

    Rushdoony, Haig A.

    Suggested activities for integrating language concepts and comprehension skills into elementary school geography instruction are presented. The activities focus on concept formation through semantic mapping and making analogies, and on comprehension through recalling, generalizing, interpreting, and making inferences. Semantic maps indicate spoke…

  10. A case study of data integration for aquatic resources using semantic web technologies

    USGS Publications Warehouse

    Gordon, Janice M.; Chkhenkeli, Nina; Govoni, David L.; Lightsom, Frances L.; Ostroff, Andrea C.; Schweitzer, Peter N.; Thongsavanh, Phethala; Varanka, Dalia E.; Zednik, Stephan

    2015-01-01

    Use cases, information modeling, and linked data techniques are Semantic Web technologies used to develop a prototype system that integrates scientific observations from four independent USGS and cooperator data systems. The techniques were tested with a use case goal of creating a data set for use in exploring potential relationships among freshwater fish populations and environmental factors. The resulting prototype extracts data from the BioData Retrieval System, the Multistate Aquatic Resource Information System, the National Geochemical Survey, and the National Hydrography Dataset. A prototype user interface allows a scientist to select observations from these data systems and combine them into a single data set in RDF format that includes explicitly defined relationships and data definitions. The project was funded by the USGS Community for Data Integration and undertaken by the Community for Data Integration Semantic Web Working Group in order to demonstrate use of Semantic Web technologies by scientists. This allows scientists to simultaneously explore data that are available in multiple, disparate systems beyond those they traditionally have used.

  11. Disruption of Semantic Network in Mild Alzheimer's Disease Revealed by Resting-State fMRI.

    PubMed

    Mascali, Daniele; DiNuzzo, Mauro; Serra, Laura; Mangia, Silvia; Maraviglia, Bruno; Bozzali, Marco; Giove, Federico

    2018-02-10

    Subtle semantic deficits can be observed in Alzheimer's disease (AD) patients even in the early stages of the illness. In this work, we tested the hypothesis that the semantic control network is deregulated in mild AD patients. We assessed the integrity of the semantic control system using resting-state functional magnetic resonance imaging in a cohort of patients with mild AD (n = 38; mean mini-mental state examination = 20.5) and in a group of age-matched healthy controls (n = 19). Voxel-wise analysis spatially constrained in the left fronto-temporal semantic control network identified two regions with altered functional connectivity (FC) in AD patients, specifically in the pars opercularis (POp, BA44) and in the posterior middle temporal gyrus (pMTG, BA21). Using whole-brain seed-based analysis, we demonstrated that these two regions have altered FC even beyond the semantic control network. In particular, the pMTG displayed a wide-distributed pattern of lower connectivity to several brain regions involved in language-semantic processing, along with a possibly compensatory higher connectivity to the Wernicke's area. We conclude that in mild AD brain regions belonging to the semantic control network are abnormally connected not only within the network, but also to other areas known to be critical for language processing. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  12. Oxytocin Modulates Semantic Integration in Speech Comprehension.

    PubMed

    Ye, Zheng; Stolk, Arjen; Toni, Ivan; Hagoort, Peter

    2017-02-01

    Listeners interpret utterances by integrating information from multiple sources including word level semantics and world knowledge. When the semantics of an expression is inconsistent with their knowledge about the world, the listener may have to search through the conceptual space for alternative possible world scenarios that can make the expression more acceptable. Such cognitive exploration requires considerable computational resources and might depend on motivational factors. This study explores whether and how oxytocin, a neuropeptide known to influence social motivation by reducing social anxiety and enhancing affiliative tendencies, can modulate the integration of world knowledge and sentence meanings. The study used a between-participant double-blind randomized placebo-controlled design. Semantic integration, indexed with magnetoencephalography through the N400m marker, was quantified while 45 healthy male participants listened to sentences that were either congruent or incongruent with facts of the world, after receiving intranasally delivered oxytocin or placebo. Compared with congruent sentences, world knowledge incongruent sentences elicited a stronger N400m signal from the left inferior frontal and anterior temporal regions and medial pFC (the N400m effect) in the placebo group. Oxytocin administration significantly attenuated the N400m effect at both sensor and cortical source levels throughout the experiment, in a state-like manner. Additional electrophysiological markers suggest that the absence of the N400m effect in the oxytocin group is unlikely due to the lack of early sensory or semantic processing or a general downregulation of attention. These findings suggest that oxytocin drives listeners to resolve challenges of semantic integration, possibly by promoting the cognitive exploration of alternative possible world scenarios.

  13. Semantic Similarity in Biomedical Ontologies

    PubMed Central

    Pesquita, Catia; Faria, Daniel; Falcão, André O.; Lord, Phillip; Couto, Francisco M.

    2009-01-01

    In recent years, ontologies have become a mainstream topic in biomedical research. When biological entities are described using a common schema, such as an ontology, they can be compared by means of their annotations. This type of comparison is called semantic similarity, since it assesses the degree of relatedness between two entities by the similarity in meaning of their annotations. The application of semantic similarity to biomedical ontologies is recent; nevertheless, several studies have been published in the last few years describing and evaluating diverse approaches. Semantic similarity has become a valuable tool for validating the results drawn from biomedical studies such as gene clustering, gene expression data analysis, prediction and validation of molecular interactions, and disease gene prioritization. We review semantic similarity measures applied to biomedical ontologies and propose their classification according to the strategies they employ: node-based versus edge-based and pairwise versus groupwise. We also present comparative assessment studies and discuss the implications of their results. We survey the existing implementations of semantic similarity measures, and we describe examples of applications to biomedical research. This will clarify how biomedical researchers can benefit from semantic similarity measures and help them choose the approach most suitable for their studies. Biomedical ontologies are evolving toward increased coverage, formality, and integration, and their use for annotation is increasingly becoming a focus of both effort by biomedical experts and application of automated annotation procedures to create corpora of higher quality and completeness than are currently available. Given that semantic similarity measures are directly dependent on these evolutions, we can expect to see them gaining more relevance and even becoming as essential as sequence similarity is today in biomedical research. PMID:19649320

  14. Semantic Technologies for Re-Use of Clinical Routine Data.

    PubMed

    Kreuzthaler, Markus; Martínez-Costa, Catalina; Kaiser, Peter; Schulz, Stefan

    2017-01-01

    Routine patient data in electronic patient records are only partly structured, and an even smaller segment is coded, mainly for administrative purposes. Large parts are only available as free text. Transforming this content into a structured and semantically explicit form is a prerequisite for querying and information extraction. The core of the system architecture presented in this paper is based on SAP HANA in-memory database technology using the SAP Connected Health platform for data integration as well as for clinical data warehousing. A natural language processing pipeline analyses unstructured content and maps it to a standardized vocabulary within a well-defined information model. The resulting semantically standardized patient profiles are used for a broad range of clinical and research application scenarios.

  15. NeuroRDF: semantic integration of highly curated data to prioritize biomarker candidates in Alzheimer's disease.

    PubMed

    Iyappan, Anandhi; Kawalia, Shweta Bagewadi; Raschka, Tamara; Hofmann-Apitius, Martin; Senger, Philipp

    2016-07-08

    Neurodegenerative diseases are incurable and debilitating indications with huge social and economic impact, where much is still to be learnt about the underlying molecular events. Mechanistic disease models could offer a knowledge framework to help decipher the complex interactions that occur at molecular and cellular levels. This motivates the need for the development of an approach integrating highly curated and heterogeneous data into a disease model of different regulatory data layers. Although several disease models exist, they often do not consider the quality of underlying data. Moreover, even with the current advancements in semantic web technology, we still do not have cure for complex diseases like Alzheimer's disease. One of the key reasons accountable for this could be the increasing gap between generated data and the derived knowledge. In this paper, we describe an approach, called as NeuroRDF, to develop an integrative framework for modeling curated knowledge in the area of complex neurodegenerative diseases. The core of this strategy lies in the usage of well curated and context specific data for integration into one single semantic web-based framework, RDF. This increases the probability of the derived knowledge to be novel and reliable in a specific disease context. This infrastructure integrates highly curated data from databases (Bind, IntAct, etc.), literature (PubMed), and gene expression resources (such as GEO and ArrayExpress). We illustrate the effectiveness of our approach by asking real-world biomedical questions that link these resources to prioritize the plausible biomarker candidates. Among the 13 prioritized candidate genes, we identified MIF to be a potential emerging candidate due to its role as a pro-inflammatory cytokine. We additionally report on the effort and challenges faced during generation of such an indication-specific knowledge base comprising of curated and quality-controlled data. Although many alternative approaches have been proposed and practiced for modeling diseases, the semantic web technology is a flexible and well established solution for harmonized aggregation. The benefit of this work, to use high quality and context specific data, becomes apparent in speculating previously unattended biomarker candidates around a well-known mechanism, further leveraged for experimental investigations.

  16. Structural Group-based Auditing of Missing Hierarchical Relationships in UMLS

    PubMed Central

    Chen, Yan; Gu, Huanying(Helen); Perl, Yehoshua; Geller, James

    2009-01-01

    The Metathesaurus of the UMLS was created by integrating various source terminologies. The inter-concept relationships were either integrated into the UMLS from the source terminologies or specially generated. Due to the extensive size and inherent complexity of the Metathesaurus, the accidental omission of some hierarchical relationships was inevitable. We present a recursive procedure which allows a human expert, with the support of an algorithm, to locate missing hierarchical relationships. The procedure starts with a group of concepts with exactly the same (correct) semantic type assignments. It then partitions the concepts, based on child-of hierarchical relationships, into smaller, singly rooted, hierarchically connected subgroups. The auditor only needs to focus on the subgroups with very few concepts and their concepts with semantic type reassignments. The procedure was evaluated by comparing it with a comprehensive manual audit and it exhibits a perfect error recall. PMID:18824248

  17. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases.

    PubMed

    Neal, Maxwell L; Carlson, Brian E; Thompson, Christopher T; James, Ryan C; Kim, Karam G; Tran, Kenneth; Crampin, Edmund J; Cook, Daniel L; Gennari, John H

    2015-01-01

    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen's semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the "Pandit-Hinch-Niederer" (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach.

  18. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases

    PubMed Central

    Neal, Maxwell L.; Carlson, Brian E.; Thompson, Christopher T.; James, Ryan C.; Kim, Karam G.; Tran, Kenneth; Crampin, Edmund J.; Cook, Daniel L.; Gennari, John H.

    2015-01-01

    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen’s semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the “Pandit-Hinch-Niederer” (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach. PMID:26716837

  19. The Balance-Scale Task Revisited: A Comparison of Statistical Models for Rule-Based and Information-Integration Theories of Proportional Reasoning

    PubMed Central

    Hofman, Abe D.; Visser, Ingmar; Jansen, Brenda R. J.; van der Maas, Han L. J.

    2015-01-01

    We propose and test three statistical models for the analysis of children’s responses to the balance scale task, a seminal task to study proportional reasoning. We use a latent class modelling approach to formulate a rule-based latent class model (RB LCM) following from a rule-based perspective on proportional reasoning and a new statistical model, the Weighted Sum Model, following from an information-integration approach. Moreover, a hybrid LCM using item covariates is proposed, combining aspects of both a rule-based and information-integration perspective. These models are applied to two different datasets, a standard paper-and-pencil test dataset (N = 779), and a dataset collected within an online learning environment that included direct feedback, time-pressure, and a reward system (N = 808). For the paper-and-pencil dataset the RB LCM resulted in the best fit, whereas for the online dataset the hybrid LCM provided the best fit. The standard paper-and-pencil dataset yielded more evidence for distinct solution rules than the online data set in which quantitative item characteristics are more prominent in determining responses. These results shed new light on the discussion on sequential rule-based and information-integration perspectives of cognitive development. PMID:26505905

  20. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer

    PubMed Central

    González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Taruscio, Domenica; Lochmüller, Hanns

    2017-01-01

    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries. PMID:29214177

  1. Linked Registries: Connecting Rare Diseases Patient Registries through a Semantic Web Layer.

    PubMed

    Sernadela, Pedro; González-Castro, Lorena; Carta, Claudio; van der Horst, Eelke; Lopes, Pedro; Kaliyaperumal, Rajaram; Thompson, Mark; Thompson, Rachel; Queralt-Rosinach, Núria; Lopez, Estrella; Wood, Libby; Robertson, Agata; Lamanna, Claudia; Gilling, Mette; Orth, Michael; Merino-Martinez, Roxana; Posada, Manuel; Taruscio, Domenica; Lochmüller, Hanns; Robinson, Peter; Roos, Marco; Oliveira, José Luís

    2017-01-01

    Patient registries are an essential tool to increase current knowledge regarding rare diseases. Understanding these data is a vital step to improve patient treatments and to create the most adequate tools for personalized medicine. However, the growing number of disease-specific patient registries brings also new technical challenges. Usually, these systems are developed as closed data silos, with independent formats and models, lacking comprehensive mechanisms to enable data sharing. To tackle these challenges, we developed a Semantic Web based solution that allows connecting distributed and heterogeneous registries, enabling the federation of knowledge between multiple independent environments. This semantic layer creates a holistic view over a set of anonymised registries, supporting semantic data representation, integrated access, and querying. The implemented system gave us the opportunity to answer challenging questions across disperse rare disease patient registries. The interconnection between those registries using Semantic Web technologies benefits our final solution in a way that we can query single or multiple instances according to our needs. The outcome is a unique semantic layer, connecting miscellaneous registries and delivering a lightweight holistic perspective over the wealth of knowledge stemming from linked rare disease patient registries.

  2. The Cognitive and Neural Expression of Semantic Memory Impairment in Mild Cognitive Impairment and Early Alzheimer's Disease

    ERIC Educational Resources Information Center

    Joubert, Sven; Brambati, Simona M.; Ansado, Jennyfer; Barbeau, Emmanuel J.; Felician, Olivier; Didic, Mira; Lacombe, Jacinthe; Goldstein, Rachel; Chayer, Celine; Kergoat, Marie-Jeanne

    2010-01-01

    Semantic deficits in Alzheimer's disease have been widely documented, but little is known about the integrity of semantic memory in the prodromal stage of the illness. The aims of the present study were to: (i) investigate naming abilities and semantic memory in amnestic mild cognitive impairment (aMCI), early Alzheimer's disease (AD) compared to…

  3. A Rules-Based Service for Suggesting Visualizations to Analyze Earth Science Phenomena.

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Zednik, S.; Fox, P. A.; Ramachandran, R.; Maskey, M.; Shie, C. L.; Shen, S.

    2016-12-01

    Current Earth Science Information Systems lack support for new or interdisciplinary researchers, who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. We need to evolve the current information systems, to reduce the time required for data preparation, processing and analysis. This can be done by effectively salvaging the "dark" resources in Earth Science. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. In order to effectively use these dark resources, especially for data processing and visualization, we need a combination of domain, data product and processing knowledge, i.e. a knowledge base from which specific data operations can be performed. In this presentation, we describe a semantic, rules based approach to provide i.e. a service to visualize Earth Science phenomena, based on the data variables extracted using the "dark" metadata resources. We use Jena rules to make assertions about compatibility between a phenomena and various visualizations based on multiple factors. We created separate orthogonal rulesets to map each of these factors to the various phenomena. Some of the factors we have considered include measurements, spatial resolution and time intervals. This approach enables easy additions and deletions based on newly obtained domain knowledge or phenomena related information and thus improving the accuracy of the rules service overall.

  4. Taxonomy, Ontology and Semantics at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Berndt, Sarah Ann

    2011-01-01

    At NASA Johnson Space Center (JSC), the Chief Knowledge Officer has been developing the JSC Taxonomy to capitalize on the accomplishments of yesterday while maintaining the flexibility needed for the evolving information environment of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seemless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.

  5. Semantic retrieval and navigation in clinical document collections.

    PubMed

    Kreuzthaler, Markus; Daumke, Philipp; Schulz, Stefan

    2015-01-01

    Patients with chronic diseases undergo numerous in- and outpatient treatment periods, and therefore many documents accumulate in their electronic records. We report on an on-going project focussing on the semantic enrichment of medical texts, in order to support recall-oriented navigation across a patient's complete documentation. A document pool of 1,696 de-identified discharge summaries was used for prototyping. A natural language processing toolset for document annotation (based on the text-mining framework UIMA) and indexing (Solr) was used to support a browser-based platform for document import, search and navigation. The integrated search engine combines free text and concept-based querying, supported by dynamically generated facets (diagnoses, procedures, medications, lab values, and body parts). The prototype demonstrates the feasibility of semantic document enrichment within document collections of a single patient. Originally conceived as an add-on for the clinical workplace, this technology could also be adapted to support personalised health record platforms, as well as cross-patient search for cohort building and other secondary use scenarios.

  6. From Science to e-Science to Semantic e-Science: A Heliosphysics Case Study

    NASA Technical Reports Server (NTRS)

    Narock, Thomas; Fox, Peter

    2011-01-01

    The past few years have witnessed unparalleled efforts to make scientific data web accessible. The Semantic Web has proven invaluable in this effort; however, much of the literature is devoted to system design, ontology creation, and trials and tribulations of current technologies. In order to fully develop the nascent field of Semantic e-Science we must also evaluate systems in real-world settings. We describe a case study within the field of Heliophysics and provide a comparison of the evolutionary stages of data discovery, from manual to semantically enable. We describe the socio-technical implications of moving toward automated and intelligent data discovery. In doing so, we highlight how this process enhances what is currently being done manually in various scientific disciplines. Our case study illustrates that Semantic e-Science is more than just semantic search. The integration of search with web services, relational databases, and other cyberinfrastructure is a central tenet of our case study and one that we believe has applicability as a generalized research area within Semantic e-Science. This case study illustrates a specific example of the benefits, and limitations, of semantically replicating data discovery. We show examples of significant reductions in time and effort enable by Semantic e-Science; yet, we argue that a "complete" solution requires integrating semantic search with other research areas such as data provenance and web services.

  7. Content Integration across Multiple Documents Reduces Memory for Sources

    ERIC Educational Resources Information Center

    Braasch, Jason L. G.; McCabe, Rebecca M.; Daniel, Frances

    2016-01-01

    The current experiments systematically examined semantic content integration as a mechanism for explaining source inattention and forgetting when reading-to-remember multiple texts. For all 3 experiments, degree of semantic overlap was manipulated amongst messages provided by various information sources. In Experiment 1, readers' source…

  8. Semantic Web repositories for genomics data using the eXframe platform.

    PubMed

    Merrill, Emily; Corlosquet, Stéphane; Ciccarese, Paolo; Clark, Tim; Das, Sudeshna

    2014-01-01

    With the advent of inexpensive assay technologies, there has been an unprecedented growth in genomics data as well as the number of databases in which it is stored. In these databases, sample annotation using ontologies and controlled vocabularies is becoming more common. However, the annotation is rarely available as Linked Data, in a machine-readable format, or for standardized queries using SPARQL. This makes large-scale reuse, or integration with other knowledge bases very difficult. To address this challenge, we have developed the second generation of our eXframe platform, a reusable framework for creating online repositories of genomics experiments. This second generation model now publishes Semantic Web data. To accomplish this, we created an experiment model that covers provenance, citations, external links, assays, biomaterials used in the experiment, and the data collected during the process. The elements of our model are mapped to classes and properties from various established biomedical ontologies. Resource Description Framework (RDF) data is automatically produced using these mappings and indexed in an RDF store with a built-in Sparql Protocol and RDF Query Language (SPARQL) endpoint. Using the open-source eXframe software, institutions and laboratories can create Semantic Web repositories of their experiments, integrate it with heterogeneous resources and make it interoperable with the vast Semantic Web of biomedical knowledge.

  9. Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts

    PubMed Central

    Fernández-Breis, Jesualdo Tomás; Maldonado, José Alberto; Marcos, Mar; Legaz-García, María del Carmen; Moner, David; Torres-Sospedra, Joaquín; Esteban-Gil, Angel; Martínez-Salvador, Begoña; Robles, Montserrat

    2013-01-01

    Background The secondary use of electronic healthcare records (EHRs) often requires the identification of patient cohorts. In this context, an important problem is the heterogeneity of clinical data sources, which can be overcome with the combined use of standardized information models, virtual health records, and semantic technologies, since each of them contributes to solving aspects related to the semantic interoperability of EHR data. Objective To develop methods allowing for a direct use of EHR data for the identification of patient cohorts leveraging current EHR standards and semantic web technologies. Materials and methods We propose to take advantage of the best features of working with EHR standards and ontologies. Our proposal is based on our previous results and experience working with both technological infrastructures. Our main principle is to perform each activity at the abstraction level with the most appropriate technology available. This means that part of the processing will be performed using archetypes (ie, data level) and the rest using ontologies (ie, knowledge level). Our approach will start working with EHR data in proprietary format, which will be first normalized and elaborated using EHR standards and then transformed into a semantic representation, which will be exploited by automated reasoning. Results We have applied our approach to protocols for colorectal cancer screening. The results comprise the archetypes, ontologies, and datasets developed for the standardization and semantic analysis of EHR data. Anonymized real data have been used and the patients have been successfully classified by the risk of developing colorectal cancer. Conclusions This work provides new insights in how archetypes and ontologies can be effectively combined for EHR-driven phenotyping. The methodological approach can be applied to other problems provided that suitable archetypes, ontologies, and classification rules can be designed. PMID:23934950

  10. Leveraging electronic healthcare record standards and semantic web technologies for the identification of patient cohorts.

    PubMed

    Fernández-Breis, Jesualdo Tomás; Maldonado, José Alberto; Marcos, Mar; Legaz-García, María del Carmen; Moner, David; Torres-Sospedra, Joaquín; Esteban-Gil, Angel; Martínez-Salvador, Begoña; Robles, Montserrat

    2013-12-01

    The secondary use of electronic healthcare records (EHRs) often requires the identification of patient cohorts. In this context, an important problem is the heterogeneity of clinical data sources, which can be overcome with the combined use of standardized information models, virtual health records, and semantic technologies, since each of them contributes to solving aspects related to the semantic interoperability of EHR data. To develop methods allowing for a direct use of EHR data for the identification of patient cohorts leveraging current EHR standards and semantic web technologies. We propose to take advantage of the best features of working with EHR standards and ontologies. Our proposal is based on our previous results and experience working with both technological infrastructures. Our main principle is to perform each activity at the abstraction level with the most appropriate technology available. This means that part of the processing will be performed using archetypes (ie, data level) and the rest using ontologies (ie, knowledge level). Our approach will start working with EHR data in proprietary format, which will be first normalized and elaborated using EHR standards and then transformed into a semantic representation, which will be exploited by automated reasoning. We have applied our approach to protocols for colorectal cancer screening. The results comprise the archetypes, ontologies, and datasets developed for the standardization and semantic analysis of EHR data. Anonymized real data have been used and the patients have been successfully classified by the risk of developing colorectal cancer. This work provides new insights in how archetypes and ontologies can be effectively combined for EHR-driven phenotyping. The methodological approach can be applied to other problems provided that suitable archetypes, ontologies, and classification rules can be designed.

  11. Response to traumatic brain injury neurorehabilitation through an artificial intelligence and statistics hybrid knowledge discovery from databases methodology.

    PubMed

    Gibert, Karina; García-Rudolph, Alejandro; García-Molina, Alberto; Roig-Rovira, Teresa; Bernabeu, Montse; Tormos, José María

    2008-01-01

    Develop a classificatory tool to identify different populations of patients with Traumatic Brain Injury based on the characteristics of deficit and response to treatment. A KDD framework where first, descriptive statistics of every variable was done, data cleaning and selection of relevant variables. Then data was mined using a generalization of Clustering based on rules (CIBR), an hybrid AI and Statistics technique which combines inductive learning (AI) and clustering (Statistics). A prior Knowledge Base (KB) is considered to properly bias the clustering; semantic constraints implied by the KB hold in final clusters, guaranteeing interpretability of the resultis. A generalization (Exogenous Clustering based on rules, ECIBR) is presented, allowing to define the KB in terms of variables which will not be considered in the clustering process itself, to get more flexibility. Several tools as Class panel graph are introduced in the methodology to assist final interpretation. A set of 5 classes was recommended by the system and interpretation permitted profiles labeling. From the medical point of view, composition of classes is well corresponding with different patterns of increasing level of response to rehabilitation treatments. All the patients initially assessable conform a single group. Severe impaired patients are subdivided in four profiles which clearly distinct response patterns. Particularly interesting the partial response profile, where patients could not improve executive functions. Meaningful classes were obtained and, from a semantics point of view, the results were sensibly improved regarding classical clustering, according to our opinion that hybrid AI & Stats techniques are more powerful for KDD than pure ones.

  12. Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach

    PubMed Central

    2012-01-01

    Background Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. Methods We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. Results We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. Conclusions We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data. PMID:22759462

  13. Event extraction of bacteria biotopes: a knowledge-intensive NLP-based approach.

    PubMed

    Ratkovic, Zorana; Golik, Wiktoria; Warnier, Pierre

    2012-06-26

    Bacteria biotopes cover a wide range of diverse habitats including animal and plant hosts, natural, medical and industrial environments. The high volume of publications in the microbiology domain provides a rich source of up-to-date information on bacteria biotopes. This information, as found in scientific articles, is expressed in natural language and is rarely available in a structured format, such as a database. This information is of great importance for fundamental research and microbiology applications (e.g., medicine, agronomy, food, bioenergy). The automatic extraction of this information from texts will provide a great benefit to the field. We present a new method for extracting relationships between bacteria and their locations using the Alvis framework. Recognition of bacteria and their locations was achieved using a pattern-based approach and domain lexical resources. For the detection of environment locations, we propose a new approach that combines lexical information and the syntactic-semantic analysis of corpus terms to overcome the incompleteness of lexical resources. Bacteria location relations extend over sentence borders, and we developed domain-specific rules for dealing with bacteria anaphors. We participated in the BioNLP 2011 Bacteria Biotope (BB) task with the Alvis system. Official evaluation results show that it achieves the best performance of participating systems. New developments since then have increased the F-score by 4.1 points. We have shown that the combination of semantic analysis and domain-adapted resources is both effective and efficient for event information extraction in the bacteria biotope domain. We plan to adapt the method to deal with a larger set of location types and a large-scale scientific article corpus to enable microbiologists to integrate and use the extracted knowledge in combination with experimental data.

  14. Informatics in radiology: radiology gamuts ontology: differential diagnosis for the Semantic Web.

    PubMed

    Budovec, Joseph J; Lam, Cesar A; Kahn, Charles E

    2014-01-01

    The Semantic Web is an effort to add semantics, or "meaning," to empower automated searching and processing of Web-based information. The overarching goal of the Semantic Web is to enable users to more easily find, share, and combine information. Critical to this vision are knowledge models called ontologies, which define a set of concepts and formalize the relations between them. Ontologies have been developed to manage and exploit the large and rapidly growing volume of information in biomedical domains. In diagnostic radiology, lists of differential diagnoses of imaging observations, called gamuts, provide an important source of knowledge. The Radiology Gamuts Ontology (RGO) is a formal knowledge model of differential diagnoses in radiology that includes 1674 differential diagnoses, 19,017 terms, and 52,976 links between terms. Its knowledge is used to provide an interactive, freely available online reference of radiology gamuts ( www.gamuts.net ). A Web service allows its content to be discovered and consumed by other information systems. The RGO integrates radiologic knowledge with other biomedical ontologies as part of the Semantic Web. © RSNA, 2014.

  15. EHR-based disease registries to support integrated care in a health neighbourhood: an ontology-based methodology.

    PubMed

    Liaw, Siaw-Teng; Taggart, Jane; Yu, Hairong

    2014-01-01

    Disease registries derived from Electronic Health Records (EHRs) are widely used for chronic disease management. We approached registries from the perspective of integrated care in a health neighbourhood, considering data quality issues such as semantic interoperability (consistency), accuracy, completeness and duplication. Our proposition is that a realist ontological approach is required to accurately identify patients in an EHR or data repository, assess data quality and fitness for use by the multidisciplinary integrated care team. We report on this approach with routinely collected data in a practice based research network in Australia.

  16. Children's and Adults' Abilities To Use Episodic and Semantic Information To Derive Inferences.

    ERIC Educational Resources Information Center

    Bourg, Tammy M.; And Others

    A study investigated children's and adults' abilities to derive inferences requiring the integration of two episodic premises (episodic inferences) and inferences requiring the integration of one episodic premise with extra-stimulus, semantic knowledge. Subjects, 95 kindergarten, third grade, seventh grade, and college students, watched either an…

  17. Morphological Decomposition and Semantic Integration in Word Processing

    ERIC Educational Resources Information Center

    Meunier, Fanny; Longtin, Catherine-Marie

    2007-01-01

    In the present study, we looked at cross-modal priming effects produced by auditory presentation of morphologically complex pseudowords in order to investigate semantic integration during the processing of French morphologically complex items. In Experiment 1, we used as primes pseudowords consisting of a non-interpretable combination of roots and…

  18. Verbal and Non-verbal Fluency in Adults with Developmental Dyslexia: Phonological Processing or Executive Control Problems?

    PubMed

    Smith-Spark, James H; Henry, Lucy A; Messer, David J; Zięcik, Adam P

    2017-08-01

    The executive function of fluency describes the ability to generate items according to specific rules. Production of words beginning with a certain letter (phonemic fluency) is impaired in dyslexia, while generation of words belonging to a certain semantic category (semantic fluency) is typically unimpaired. However, in dyslexia, verbal fluency has generally been studied only in terms of overall words produced. Furthermore, performance of adults with dyslexia on non-verbal design fluency tasks has not been explored but would indicate whether deficits could be explained by executive control, rather than phonological processing, difficulties. Phonemic, semantic and design fluency tasks were presented to adults with dyslexia and without dyslexia, using fine-grained performance measures and controlling for IQ. Hierarchical regressions indicated that dyslexia predicted lower phonemic fluency, but not semantic or design fluency. At the fine-grained level, dyslexia predicted a smaller number of switches between subcategories on phonemic fluency, while dyslexia did not predict the size of phonemically related clusters of items. Overall, the results suggested that phonological processing problems were at the root of dyslexia-related fluency deficits; however, executive control difficulties could not be completely ruled out as an alternative explanation. Developments in research methodology, equating executive demands across fluency tasks, may resolve this issue. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. QTLTableMiner++: semantic mining of QTL tables in scientific articles.

    PubMed

    Singh, Gurnoor; Kuzniar, Arnold; van Mulligen, Erik M; Gavai, Anand; Bachem, Christian W; Visser, Richard G F; Finkers, Richard

    2018-05-25

    A quantitative trait locus (QTL) is a genomic region that correlates with a phenotype. Most of the experimental information about QTL mapping studies is described in tables of scientific publications. Traditional text mining techniques aim to extract information from unstructured text rather than from tables. We present QTLTableMiner ++ (QTM), a table mining tool that extracts and semantically annotates QTL information buried in (heterogeneous) tables of plant science literature. QTM is a command line tool written in the Java programming language. This tool takes scientific articles from the Europe PMC repository as input, extracts QTL tables using keyword matching and ontology-based concept identification. The tables are further normalized using rules derived from table properties such as captions, column headers and table footers. Furthermore, table columns are classified into three categories namely column descriptors, properties and values based on column headers and data types of cell entries. Abbreviations found in the tables are expanded using the Schwartz and Hearst algorithm. Finally, the content of QTL tables is semantically enriched with domain-specific ontologies (e.g. Crop Ontology, Plant Ontology and Trait Ontology) using the Apache Solr search platform and the results are stored in a relational database and a text file. The performance of the QTM tool was assessed by precision and recall based on the information retrieved from two manually annotated corpora of open access articles, i.e. QTL mapping studies in tomato (Solanum lycopersicum) and in potato (S. tuberosum). In summary, QTM detected QTL statements in tomato with 74.53% precision and 92.56% recall and in potato with 82.82% precision and 98.94% recall. QTM is a unique tool that aids in providing QTL information in machine-readable and semantically interoperable formats.

  20. Semantic Congruence Accelerates the Onset of the Neural Signals of Successful Memory Encoding.

    PubMed

    Packard, Pau A; Rodríguez-Fornells, Antoni; Bunzeck, Nico; Nicolás, Berta; de Diego-Balaguer, Ruth; Fuentemilla, Lluís

    2017-01-11

    As the stream of experience unfolds, our memory system rapidly transforms current inputs into long-lasting meaningful memories. A putative neural mechanism that strongly influences how input elements are transformed into meaningful memory codes relies on the ability to integrate them with existing structures of knowledge or schemas. However, it is not yet clear whether schema-related integration neural mechanisms occur during online encoding. In the current investigation, we examined the encoding-dependent nature of this phenomenon in humans. We showed that actively integrating words with congruent semantic information provided by a category cue enhances memory for words and increases false recall. The memory effect of such active integration with congruent information was robust, even with an interference task occurring right after each encoding word list. In addition, via electroencephalography, we show in 2 separate studies that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. That the neural signals of successful encoding of congruent and incongruent information followed similarly ∼200 ms later suggests that this earlier neural response contributed to memory formation. We propose that the encoding of events that are congruent with readily available contextual semantics can trigger an accelerated onset of the neural mechanisms, supporting the integration of semantic information with the event input. This faster onset would result in a long-lasting and meaningful memory trace for the event but, at the same time, make it difficult to distinguish it from plausible but never encoded events (i.e., related false memories). Conceptual or schema congruence has a strong influence on long-term memory. However, the question of whether schema-related integration neural mechanisms occur during online encoding has yet to be clarified. We investigated the neural mechanisms reflecting how the active integration of words with congruent semantic categories enhances memory for words and increases false recall of semantically related words. We analyzed event-related potentials during encoding and showed that the onset of the neural signals of successful encoding appeared early (∼400 ms) during the encoding of congruent words. Our findings indicate that congruent events can trigger an accelerated onset of neural encoding mechanisms supporting the integration of semantic information with the event input. Copyright © 2017 the authors 0270-6474/17/370291-11$15.00/0.

  1. DTFP-Growth: Dynamic Threshold-Based FP-Growth Rule Mining Algorithm Through Integrating Gene Expression, Methylation, and Protein-Protein Interaction Profiles.

    PubMed

    Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan; Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan; Mallik, Saurav; Bhadra, Tapas; Mukherji, Ayan

    2018-04-01

    Association rule mining is an important technique for identifying interesting relationships between gene pairs in a biological data set. Earlier methods basically work for a single biological data set, and, in maximum cases, a single minimum support cutoff can be applied globally, i.e., across all genesets/itemsets. To overcome this limitation, in this paper, we propose dynamic threshold-based FP-growth rule mining algorithm that integrates gene expression, methylation and protein-protein interaction profiles based on weighted shortest distance to find the novel associations among different pairs of genes in multi-view data sets. For this purpose, we introduce three new thresholds, namely, Distance-based Variable/Dynamic Supports (DVS), Distance-based Variable Confidences (DVC), and Distance-based Variable Lifts (DVL) for each rule by integrating co-expression, co-methylation, and protein-protein interactions existed in the multi-omics data set. We develop the proposed algorithm utilizing these three novel multiple threshold measures. In the proposed algorithm, the values of , , and are computed for each rule separately, and subsequently it is verified whether the support, confidence, and lift of each evolved rule are greater than or equal to the corresponding individual , , and values, respectively, or not. If all these three conditions for a rule are found to be true, the rule is treated as a resultant rule. One of the major advantages of the proposed method compared with other related state-of-the-art methods is that it considers both the quantitative and interactive significance among all pairwise genes belonging to each rule. Moreover, the proposed method generates fewer rules, takes less running time, and provides greater biological significance for the resultant top-ranking rules compared to previous methods.

  2. "Truth be told" - Semantic memory as the scaffold for veridical communication.

    PubMed

    Hayes, Brett K; Ramanan, Siddharth; Irish, Muireann

    2018-01-01

    Theoretical accounts placing episodic memory as central to constructive and communicative functions neglect the role of semantic memory. We argue that the decontextualized nature of semantic schemas largely supersedes the computational bottleneck and error-prone nature of episodic memory. Rather, neuroimaging and neuropsychological evidence of episodic-semantic interactions suggest that an integrative framework more accurately captures the mechanisms underpinning social communication.

  3. AlzPharm: integration of neurodegeneration data using RDF.

    PubMed

    Lam, Hugo Y K; Marenco, Luis; Clark, Tim; Gao, Yong; Kinoshita, June; Shepherd, Gordon; Miller, Perry; Wu, Elizabeth; Wong, Gwendolyn T; Liu, Nian; Crasto, Chiquito; Morse, Thomas; Stephens, Susie; Cheung, Kei-Hoi

    2007-05-09

    Neuroscientists often need to access a wide range of data sets distributed over the Internet. These data sets, however, are typically neither integrated nor interoperable, resulting in a barrier to answering complex neuroscience research questions. Domain ontologies can enable the querying heterogeneous data sets, but they are not sufficient for neuroscience since the data of interest commonly span multiple research domains. To this end, e-Neuroscience seeks to provide an integrated platform for neuroscientists to discover new knowledge through seamless integration of the very diverse types of neuroscience data. Here we present a Semantic Web approach to building this e-Neuroscience framework by using the Resource Description Framework (RDF) and its vocabulary description language, RDF Schema (RDFS), as a standard data model to facilitate both representation and integration of the data. We have constructed a pilot ontology for BrainPharm (a subset of SenseLab) using RDFS and then converted a subset of the BrainPharm data into RDF according to the ontological structure. We have also integrated the converted BrainPharm data with existing RDF hypothesis and publication data from a pilot version of SWAN (Semantic Web Applications in Neuromedicine). Our implementation uses the RDF Data Model in Oracle Database 10g release 2 for data integration, query, and inference, while our Web interface allows users to query the data and retrieve the results in a convenient fashion. Accessing and integrating biomedical data which cuts across multiple disciplines will be increasingly indispensable and beneficial to neuroscience researchers. The Semantic Web approach we undertook has demonstrated a promising way to semantically integrate data sets created independently. It also shows how advanced queries and inferences can be performed over the integrated data, which are hard to achieve using traditional data integration approaches. Our pilot results suggest that our Semantic Web approach is suitable for realizing e-Neuroscience and generic enough to be applied in other biomedical fields.

  4. AlzPharm: integration of neurodegeneration data using RDF

    PubMed Central

    Lam, Hugo YK; Marenco, Luis; Clark, Tim; Gao, Yong; Kinoshita, June; Shepherd, Gordon; Miller, Perry; Wu, Elizabeth; Wong, Gwendolyn T; Liu, Nian; Crasto, Chiquito; Morse, Thomas; Stephens, Susie; Cheung, Kei-Hoi

    2007-01-01

    Background Neuroscientists often need to access a wide range of data sets distributed over the Internet. These data sets, however, are typically neither integrated nor interoperable, resulting in a barrier to answering complex neuroscience research questions. Domain ontologies can enable the querying heterogeneous data sets, but they are not sufficient for neuroscience since the data of interest commonly span multiple research domains. To this end, e-Neuroscience seeks to provide an integrated platform for neuroscientists to discover new knowledge through seamless integration of the very diverse types of neuroscience data. Here we present a Semantic Web approach to building this e-Neuroscience framework by using the Resource Description Framework (RDF) and its vocabulary description language, RDF Schema (RDFS), as a standard data model to facilitate both representation and integration of the data. Results We have constructed a pilot ontology for BrainPharm (a subset of SenseLab) using RDFS and then converted a subset of the BrainPharm data into RDF according to the ontological structure. We have also integrated the converted BrainPharm data with existing RDF hypothesis and publication data from a pilot version of SWAN (Semantic Web Applications in Neuromedicine). Our implementation uses the RDF Data Model in Oracle Database 10g release 2 for data integration, query, and inference, while our Web interface allows users to query the data and retrieve the results in a convenient fashion. Conclusion Accessing and integrating biomedical data which cuts across multiple disciplines will be increasingly indispensable and beneficial to neuroscience researchers. The Semantic Web approach we undertook has demonstrated a promising way to semantically integrate data sets created independently. It also shows how advanced queries and inferences can be performed over the integrated data, which are hard to achieve using traditional data integration approaches. Our pilot results suggest that our Semantic Web approach is suitable for realizing e-Neuroscience and generic enough to be applied in other biomedical fields. PMID:17493287

  5. Semantic Integration for Marine Science Interoperability Using Web Technologies

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L.; Graybeal, J.; Isenor, A. W.

    2008-12-01

    The Marine Metadata Interoperability Project, MMI (http://marinemetadata.org) promotes the exchange, integration, and use of marine data through enhanced data publishing, discovery, documentation, and accessibility. A key effort is the definition of an Architectural Framework and Operational Concept for Semantic Interoperability (http://marinemetadata.org/sfc), which is complemented with the development of tools that realize critical use cases in semantic interoperability. In this presentation, we describe a set of such Semantic Web tools that allow performing important interoperability tasks, ranging from the creation of controlled vocabularies and the mapping of terms across multiple ontologies, to the online registration, storage, and search services needed to work with the ontologies (http://mmisw.org). This set of services uses Web standards and technologies, including Resource Description Framework (RDF), Web Ontology language (OWL), Web services, and toolkits for Rich Internet Application development. We will describe the following components: MMI Ontology Registry: The MMI Ontology Registry and Repository provides registry and storage services for ontologies. Entries in the registry are associated with projects defined by the registered users. Also, sophisticated search functions, for example according to metadata items and vocabulary terms, are provided. Client applications can submit search requests using the WC3 SPARQL Query Language for RDF. Voc2RDF: This component converts an ASCII comma-delimited set of terms and definitions into an RDF file. Voc2RDF facilitates the creation of controlled vocabularies by using a simple form-based user interface. Created vocabularies and their descriptive metadata can be submitted to the MMI Ontology Registry for versioning and community access. VINE: The Vocabulary Integration Environment component allows the user to map vocabulary terms across multiple ontologies. Various relationships can be established, for example exactMatch, narrowerThan, and subClassOf. VINE can compute inferred mappings based on the given associations. Attributes about each mapping, like comments and a confidence level, can also be included. VINE also supports registering and storing resulting mapping files in the Ontology Registry. The presentation will describe the application of semantic technologies in general, and our planned applications in particular, to solve data management problems in the marine and environmental sciences.

  6. Research of Litchi Diseases Diagnosis Expertsystem Based on Rbr and Cbr

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Liu, Liqun

    To conquer the bottleneck problems existing in the traditional rule-based reasoning diseases diagnosis system, such as low reasoning efficiency and lack of flexibility, etc.. It researched the integrated case-based reasoning (CBR) and rule-based reasoning (RBR) technology, and put forward a litchi diseases diagnosis expert system (LDDES) with integrated reasoning method. The method use data mining and knowledge obtaining technology to establish knowledge base and case library. It adopt rules to instruct the retrieval and matching for CBR, and use association rule and decision trees algorithm to calculate case similarity.The experiment shows that the method can increase the system's flexibility and reasoning ability, and improve the accuracy of litchi diseases diagnosis.

  7. Gazetteer Brokering through Semantic Mediation

    NASA Astrophysics Data System (ADS)

    Hobona, G.; Bermudez, L. E.; Brackin, R.

    2013-12-01

    A gazetteer is a geographical directory containing some information regarding places. It provides names, location and other attributes for places which may include points of interest (e.g. buildings, oilfields and boreholes), and other features. These features can be published via web services conforming to the Gazetteer Application Profile of the Web Feature Service (WFS) standard of the Open Geospatial Consortium (OGC). Against the backdrop of advances in geophysical surveys, there has been a significant increase in the amount of data referenced to locations. Gazetteers services have played a significant role in facilitating access to such data, including through provision of specialized queries such as text, spatial and fuzzy search. Recent developments in the OGC have led to advances in gazetteers such as support for multilingualism, diacritics, and querying via advanced spatial constraints (e.g. search by radial search and nearest neighbor). A challenge remaining however, is that gazetteers produced by different organizations have typically been modeled differently. Inconsistencies from gazetteers produced by different organizations may include naming the same feature in a different way, naming the attributes differently, locating the feature in a different location, and providing fewer or more attributes than the other services. The Gazetteer application profile of the WFS is a starting point to address such inconsistencies by providing a standardized interface based on rules specified in ISO 19112, the international standard for spatial referencing by geographic identifiers. The profile, however, does not provide rules to deal with semantic inconsistencies. The USGS and NGA commissioned research into the potential for a Single Point of Entry Global Gazetteer (SPEGG). The research was conducted by the Cross Community Interoperability thread of the OGC testbed, referenced OWS-9. The testbed prototyped approaches for brokering gazetteers through use of semantic web technologies, including ontologies and a semantic mediator. The semantically-enhanced SPEGG allowed a client to submit a single query (e.g. ';hills') and to retrieve data from two separate gazetteers with different vocabularies (e.g. where one refers to ';summits' another refers to ';hills'). Supporting the SPEGG was a SPARQL server that held the ontologies and processed queries on them. Earth Science surveys and forecast always have a place on Earth. Being able to share the information about a place and solve inconsistencies about that place from different sources will enable geoscientists to better do their research. In the advent of mobile geo computing and location based services (LBS), brokering gazetteers will provide geoscientists with access to gazetteer services rich with information and functionality beyond that offered by current generic gazetteers.

  8. GraDit: graph-based data repair algorithm for multiple data edits rule violations

    NASA Astrophysics Data System (ADS)

    Ode Zuhayeni Madjida, Wa; Gusti Bagus Baskara Nugraha, I.

    2018-03-01

    Constraint-based data cleaning captures data violation to a set of rule called data quality rules. The rules consist of integrity constraint and data edits. Structurally, they are similar, where the rule contain left hand side and right hand side. Previous research proposed a data repair algorithm for integrity constraint violation. The algorithm uses undirected hypergraph as rule violation representation. Nevertheless, this algorithm can not be applied for data edits because of different rule characteristics. This study proposed GraDit, a repair algorithm for data edits rule. First, we use bipartite-directed hypergraph as model representation of overall defined rules. These representation is used for getting interaction between violation rules and clean rules. On the other hand, we proposed undirected graph as violation representation. Our experimental study showed that algorithm with undirected graph as violation representation model gave better data quality than algorithm with undirected hypergraph as representation model.

  9. Matching Alternative Addresses: a Semantic Web Approach

    NASA Astrophysics Data System (ADS)

    Ariannamazi, S.; Karimipour, F.; Hakimpour, F.

    2015-12-01

    Rapid development of crowd-sourcing or volunteered geographic information (VGI) provides opportunities for authoritatives that deal with geospatial information. Heterogeneity of multiple data sources and inconsistency of data types is a key characteristics of VGI datasets. The expansion of cities resulted in the growing number of POIs in the OpenStreetMap, a well-known VGI source, which causes the datasets to outdate in short periods of time. These changes made to spatial and aspatial attributes of features such as names and addresses might cause confusion or ambiguity in the processes that require feature's literal information like addressing and geocoding. VGI sources neither will conform specific vocabularies nor will remain in a specific schema for a long period of time. As a result, the integration of VGI sources is crucial and inevitable in order to avoid duplication and the waste of resources. Information integration can be used to match features and qualify different annotation alternatives for disambiguation. This study enhances the search capabilities of geospatial tools with applications able to understand user terminology to pursuit an efficient way for finding desired results. Semantic web is a capable tool for developing technologies that deal with lexical and numerical calculations and estimations. There are a vast amount of literal-spatial data representing the capability of linguistic information in knowledge modeling, but these resources need to be harmonized based on Semantic Web standards. The process of making addresses homogenous generates a helpful tool based on spatial data integration and lexical annotation matching and disambiguating.

  10. Current Standardization and Cooperative Efforts Related to Industrial Information Infrastructures.

    DTIC Science & Technology

    1993-05-01

    Data Management Systems: Components used to store, manage, and retrieve data. Data management includes knowledge bases, database management...Application Development Tools and Methods X/Open and POSIX APIs Integrated Design Support System (IDS) Knowledge -Based Systems (KBS) Application...IDEFlx) Yourdon Jackson System Design (JSD) Knowledge -Based Systems (KBSs) Structured Systems Development (SSD) Semantic Unification Meta-Model

  11. Incorporation of negative rules and evolution of a fuzzy controller for yeast fermentation process.

    PubMed

    Birle, Stephan; Hussein, Mohamed Ahmed; Becker, Thomas

    2016-08-01

    The control of bioprocesses can be very challenging due to the fact that these kinds of processes are highly affected by various sources of uncertainty like the intrinsic behavior of the used microorganisms. Due to the reason that these kinds of process uncertainties are not directly measureable in most cases, the overall control is either done manually because of the experience of the operator or intelligent expert systems are applied, e.g., on the basis of fuzzy logic theory. In the latter case, however, the control concept is mainly represented by using merely positive rules, e.g., "If A then do B". As this is not straightforward with respect to the semantics of the human decision-making process that also includes negative experience in form of constraints or prohibitions, the incorporation of negative rules for process control based on fuzzy logic is emphasized. In this work, an approach of fuzzy logic control of the yeast propagation process based on a combination of positive and negative rules is presented. The process is guided along a reference trajectory for yeast cell concentration by alternating the process temperature. The incorporation of negative rules leads to a much more stable and accurate control of the process as the root mean squared error of reference trajectory and system response could be reduced by an average of 62.8 % compared to the controller using only positive rules.

  12. Famous face identification in temporal lobe epilepsy: Support for a multimodal integration model of semantic memory

    PubMed Central

    Drane, Daniel L.; Ojemann, Jeffrey G.; Phatak, Vaishali; Loring, David W.; Gross, Robert E.; Hebb, Adam O.; Silbergeld, Daniel L.; Miller, John W.; Voets, Natalie L.; Saindane, Amit M.; Barsalou, Lawrence; Meador, Kimford J.; Ojemann, George A.; Tranel, Daniel

    2012-01-01

    This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre-and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts. PMID:23040175

  13. Famous face identification in temporal lobe epilepsy: support for a multimodal integration model of semantic memory.

    PubMed

    Drane, Daniel L; Ojemann, Jeffrey G; Phatak, Vaishali; Loring, David W; Gross, Robert E; Hebb, Adam O; Silbergeld, Daniel L; Miller, John W; Voets, Natalie L; Saindane, Amit M; Barsalou, Lawrence; Meador, Kimford J; Ojemann, George A; Tranel, Daniel

    2013-06-01

    This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre- and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Varieties of semantic cognition revealed through simultaneous decomposition of intrinsic brain connectivity and behaviour.

    PubMed

    Vatansever, Deniz; Bzdok, Danilo; Wang, Hao-Ting; Mollo, Giovanna; Sormaz, Mladen; Murphy, Charlotte; Karapanagiotidis, Theodoros; Smallwood, Jonathan; Jefferies, Elizabeth

    2017-09-01

    Contemporary theories assume that semantic cognition emerges from a neural architecture in which different component processes are combined to produce aspects of conceptual thought and behaviour. In addition to the state-level, momentary variation in brain connectivity, individuals may also differ in their propensity to generate particular configurations of such components, and these trait-level differences may relate to individual differences in semantic cognition. We tested this view by exploring how variation in intrinsic brain functional connectivity between semantic nodes in fMRI was related to performance on a battery of semantic tasks in 154 healthy participants. Through simultaneous decomposition of brain functional connectivity and semantic task performance, we identified distinct components of semantic cognition at rest. In a subsequent validation step, these data-driven components demonstrated explanatory power for neural responses in an fMRI-based semantic localiser task and variation in self-generated thoughts during the resting-state scan. Our findings showed that good performance on harder semantic tasks was associated with relative segregation at rest between frontal brain regions implicated in controlled semantic retrieval and the default mode network. Poor performance on easier tasks was linked to greater coupling between the same frontal regions and the anterior temporal lobe; a pattern associated with deliberate, verbal thematic thoughts at rest. We also identified components that related to qualities of semantic cognition: relatively good performance on pictorial semantic tasks was associated with greater separation of angular gyrus from frontal control sites and greater integration with posterior cingulate and anterior temporal cortex. In contrast, good speech production was linked to the separation of angular gyrus, posterior cingulate and temporal lobe regions. Together these data show that quantitative and qualitative variation in semantic cognition across individuals emerges from variations in the interaction of nodes within distinct functional brain networks. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Metadata Standard and Data Exchange Specifications to Describe, Model, and Integrate Complex and Diverse High-Throughput Screening Data from the Library of Integrated Network-based Cellular Signatures (LINCS).

    PubMed

    Vempati, Uma D; Chung, Caty; Mader, Chris; Koleti, Amar; Datar, Nakul; Vidović, Dušica; Wrobel, David; Erickson, Sean; Muhlich, Jeremy L; Berriz, Gabriel; Benes, Cyril H; Subramanian, Aravind; Pillai, Ajay; Shamu, Caroline E; Schürer, Stephan C

    2014-06-01

    The National Institutes of Health Library of Integrated Network-based Cellular Signatures (LINCS) program is generating extensive multidimensional data sets, including biochemical, genome-wide transcriptional, and phenotypic cellular response signatures to a variety of small-molecule and genetic perturbations with the goal of creating a sustainable, widely applicable, and readily accessible systems biology knowledge resource. Integration and analysis of diverse LINCS data sets depend on the availability of sufficient metadata to describe the assays and screening results and on their syntactic, structural, and semantic consistency. Here we report metadata specifications for the most important molecular and cellular components and recommend them for adoption beyond the LINCS project. We focus on the minimum required information to model LINCS assays and results based on a number of use cases, and we recommend controlled terminologies and ontologies to annotate assays with syntactic consistency and semantic integrity. We also report specifications for a simple annotation format (SAF) to describe assays and screening results based on our metadata specifications with explicit controlled vocabularies. SAF specifically serves to programmatically access and exchange LINCS data as a prerequisite for a distributed information management infrastructure. We applied the metadata specifications to annotate large numbers of LINCS cell lines, proteins, and small molecules. The resources generated and presented here are freely available. © 2014 Society for Laboratory Automation and Screening.

  16. SPECTRa-T: machine-based data extraction and semantic searching of chemistry e-theses.

    PubMed

    Downing, Jim; Harvey, Matt J; Morgan, Peter B; Murray-Rust, Peter; Rzepa, Henry S; Stewart, Diana C; Tonge, Alan P; Townsend, Joe A

    2010-02-22

    The SPECTRa-T project has developed text-mining tools to extract named chemical entities (NCEs), such as chemical names and terms, and chemical objects (COs), e.g., experimental spectral assignments and physical chemistry properties, from electronic theses (e-theses). Although NCEs were readily identified within the two major document formats studied, only the use of structured documents enabled identification of chemical objects and their association with the relevant chemical entity (e.g., systematic chemical name). A corpus of theses was analyzed and it is shown that a high degree of semantic information can be extracted from structured documents. This integrated information has been deposited in a persistent Resource Description Framework (RDF) triple-store that allows users to conduct semantic searches. The strength and weaknesses of several document formats are reviewed.

  17. Semantic Mediation via Access Broker: the OWS-9 experiment

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Papeschi, Fabrizio; Craglia, Massimo; Nativi, Stefano

    2013-04-01

    Even with the use of common data models standards to publish and share geospatial data, users may still face semantic inconsistencies when they use Spatial Data Infrastructures - especially in multidisciplinary contexts. Several semantic mediation solutions exist to address this issue; they span from simple XSLT documents to transform from one data model schema to another, to more complex services based on the use of ontologies. This work presents the activity done in the context of the OGC Web Services Phase 9 (OWS-9) Cross Community Interoperability to develop a semantic mediation solution by enhancing the GEOSS Discovery and Access Broker (DAB). This is a middleware component that provides harmonized access to geospatial datasets according to client applications preferred service interface (Nativi et al. 2012, Vaccari et al. 2012). Given a set of remote feature data encoded in different feature schemas, the objective of the activity was to use the DAB to enable client applications to transparently access the feature data according to one single schema. Due to the flexible architecture of the Access Broker, it was possible to introduce a new transformation type in the configured chain of transformations. In fact, the Access Broker already provided the following transformations: Coordinate Reference System (CRS), spatial resolution, spatial extent (e.g., a subset of a data set), and data encoding format. A new software module was developed to invoke the needed external semantic mediation service and harmonize the accessed features. In OWS-9 the Access Broker invokes a SPARQL WPS to retrieve mapping rules for the OWS-9 schemas: USGS, and NGA schema. The solution implemented to address this problem shows the flexibility and extensibility of the brokering framework underpinning the GEO DAB: new services can be added to augment the number of supported schemas without the need to modify other components and/or software modules. Moreover, all other transformations (CRS, format, etc.) are available for client applications in a transparent way. Notwithstanding the encouraging results of this experiment, some issues (e.g. the automatic discovery of semantic mediation services to be invoked) still need to be solved. Future work will consider new semantic mediation services to broker, and compliance tests with the INSPIRE transformation service. References: Nativi S., Craglia M. and Pearlman J. 2012. The Brokering Approach for Multidisciplinary Interoperability: A Position Paper. International Journal of Spatial Data Infrastructures Research, Vol. 7, 1-15. http://ijsdir.jrc.ec.europa.eu/index.php/ijsdir/article/view/281/319 Vaccari L., Craglia M., Fugazza C. Nativi S. and Santoro M. 2012. Integrative Research: The EuroGEOSS Experience. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 5 (6) 1603-1611. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6187671&contentType=Journals+%26+Magazines&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6383184%29

  18. Cross-modal integration of lexical-semantic features during word processing: evidence from oscillatory dynamics during EEG.

    PubMed

    van Ackeren, Markus J; Rueschemeyer, Shirley-Ann

    2014-01-01

    In recent years, numerous studies have provided converging evidence that word meaning is partially stored in modality-specific cortical networks. However, little is known about the mechanisms supporting the integration of this distributed semantic content into coherent conceptual representations. In the current study we aimed to address this issue by using EEG to look at the spatial and temporal dynamics of feature integration during word comprehension. Specifically, participants were presented with two modality-specific features (i.e., visual or auditory features such as silver and loud) and asked to verify whether these two features were compatible with a subsequently presented target word (e.g., WHISTLE). Each pair of features described properties from either the same modality (e.g., silver, tiny  =  visual features) or different modalities (e.g., silver, loud  =  visual, auditory). Behavioral and EEG data were collected. The results show that verifying features that are putatively represented in the same modality-specific network is faster than verifying features across modalities. At the neural level, integrating features across modalities induces sustained oscillatory activity around the theta range (4-6 Hz) in left anterior temporal lobe (ATL), a putative hub for integrating distributed semantic content. In addition, enhanced long-range network interactions in the theta range were seen between left ATL and a widespread cortical network. These results suggest that oscillatory dynamics in the theta range could be involved in integrating multimodal semantic content by creating transient functional networks linking distributed modality-specific networks and multimodal semantic hubs such as left ATL.

  19. Considering the role of semantic memory in episodic future thinking: evidence from semantic dementia.

    PubMed

    Irish, Muireann; Addis, Donna Rose; Hodges, John R; Piguet, Olivier

    2012-07-01

    Semantic dementia is a progressive neurodegenerative condition characterized by the profound and amodal loss of semantic memory in the context of relatively preserved episodic memory. In contrast, patients with Alzheimer's disease typically display impairments in episodic memory, but with semantic deficits of a much lesser magnitude than in semantic dementia. Our understanding of episodic memory retrieval in these cohorts has greatly increased over the last decade, however, we know relatively little regarding the ability of these patients to imagine and describe possible future events, and whether episodic future thinking is mediated by divergent neural substrates contingent on dementia subtype. Here, we explored episodic future thinking in patients with semantic dementia (n=11) and Alzheimer's disease (n=11), in comparison with healthy control participants (n=10). Participants completed a battery of tests designed to probe episodic and semantic thinking across past and future conditions, as well as standardized tests of episodic and semantic memory. Further, all participants underwent magnetic resonance imaging. Despite their relatively intact episodic retrieval for recent past events, the semantic dementia cohort showed significant impairments for episodic future thinking. In contrast, the group with Alzheimer's disease showed parallel deficits across past and future episodic conditions. Voxel-based morphometry analyses confirmed that atrophy in the left inferior temporal gyrus and bilateral temporal poles, regions strongly implicated in semantic memory, correlated significantly with deficits in episodic future thinking in semantic dementia. Conversely, episodic future thinking performance in Alzheimer's disease correlated with atrophy in regions associated with episodic memory, namely the posterior cingulate, parahippocampal gyrus and frontal pole. These distinct neuroanatomical substrates contingent on dementia group were further qualified by correlational analyses that confirmed the relation between semantic memory deficits and episodic future thinking in semantic dementia, in contrast with the role of episodic memory deficits and episodic future thinking in Alzheimer's disease. Our findings demonstrate that semantic knowledge is critical for the construction of novel future events, providing the necessary scaffolding into which episodic details can be integrated. Further research is necessary to elucidate the precise contribution of semantic memory to future thinking, and to explore how deficits in self-projection manifest on behavioural and social levels in different dementia subtypes.

  20. Spatial Data Integration Using Ontology-Based Approach

    NASA Astrophysics Data System (ADS)

    Hasani, S.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.

    2015-12-01

    In today's world, the necessity for spatial data for various organizations is becoming so crucial that many of these organizations have begun to produce spatial data for that purpose. In some circumstances, the need to obtain real time integrated data requires sustainable mechanism to process real-time integration. Case in point, the disater management situations that requires obtaining real time data from various sources of information. One of the problematic challenges in the mentioned situation is the high degree of heterogeneity between different organizations data. To solve this issue, we introduce an ontology-based method to provide sharing and integration capabilities for the existing databases. In addition to resolving semantic heterogeneity, better access to information is also provided by our proposed method. Our approach is consisted of three steps, the first step is identification of the object in a relational database, then the semantic relationships between them are modelled and subsequently, the ontology of each database is created. In a second step, the relative ontology will be inserted into the database and the relationship of each class of ontology will be inserted into the new created column in database tables. Last step is consisted of a platform based on service-oriented architecture, which allows integration of data. This is done by using the concept of ontology mapping. The proposed approach, in addition to being fast and low cost, makes the process of data integration easy and the data remains unchanged and thus takes advantage of the legacy application provided.

  1. Semantic Integration Processes at Different Levels of Syntactic Hierarchy during Sentence Comprehension: An ERP Study

    ERIC Educational Resources Information Center

    Zhou, Xiaolin; Jiang, Xiaoming; Ye, Zheng; Zhang, Yaxu; Lou, Kaiyang; Zhan, Weidong

    2010-01-01

    An event-related potential (ERP) study was conducted to investigate the temporal neural dynamics of semantic integration processes at different levels of syntactic hierarchy during Chinese sentence reading. In a hierarchical structure, "subject noun" + "verb" + "numeral" + "classifier" + "object noun," the object noun is constrained by selectional…

  2. Neural correlates of three cognitive processes involved in theory of mind and discourse comprehension.

    PubMed

    Lin, Nan; Yang, Xiaohong; Li, Jing; Wang, Shaonan; Hua, Huimin; Ma, Yujun; Li, Xingshan

    2018-04-01

    Neuroimaging studies have found that theory of mind (ToM) and discourse comprehension involve similar brain regions. These brain regions may be associated with three cognitive components that are necessarily or frequently involved in ToM and discourse comprehension, including social concept representation and retrieval, domain-general semantic integration, and domain-specific integration of social semantic contents. Using fMRI, we investigated the neural correlates of these three cognitive components by exploring how discourse topic (social/nonsocial) and discourse processing period (ending/beginning) modulate brain activation in a discourse comprehension (and also ToM) task. Different sets of brain areas showed sensitivity to discourse topic, discourse processing period, and the interaction between them, respectively. The most novel finding was that the right temporoparietal junction and middle temporal gyrus showed sensitivity to discourse processing period only during social discourse comprehension, indicating that they selectively contribute to domain-specific semantic integration. Our finding indicates how different domains of semantic information are processed and integrated in the brain and provides new insights into the neural correlates of ToM and discourse comprehension.

  3. Topic Structure Affects Semantic Integration: Evidence from Event-Related Potentials

    PubMed Central

    Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang

    2013-01-01

    This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated. PMID:24348994

  4. Topic structure affects semantic integration: evidence from event-related potentials.

    PubMed

    Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang

    2013-01-01

    This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated.

  5. A Semantic Sensor Web for Environmental Decision Support Applications

    PubMed Central

    Gray, Alasdair J. G.; Sadler, Jason; Kit, Oles; Kyzirakos, Kostis; Karpathiotakis, Manos; Calbimonte, Jean-Paul; Page, Kevin; García-Castro, Raúl; Frazer, Alex; Galpin, Ixent; Fernandes, Alvaro A. A.; Paton, Norman W.; Corcho, Oscar; Koubarakis, Manolis; De Roure, David; Martinez, Kirk; Gómez-Pérez, Asunción

    2011-01-01

    Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England. PMID:22164110

  6. Quality evaluation of value sets from cancer study common data elements using the UMLS semantic groups

    PubMed Central

    Solbrig, Harold R; Chute, Christopher G

    2012-01-01

    Objective The objective of this study is to develop an approach to evaluate the quality of terminological annotations on the value set (ie, enumerated value domain) components of the common data elements (CDEs) in the context of clinical research using both unified medical language system (UMLS) semantic types and groups. Materials and methods The CDEs of the National Cancer Institute (NCI) Cancer Data Standards Repository, the NCI Thesaurus (NCIt) concepts and the UMLS semantic network were integrated using a semantic web-based framework for a SPARQL-enabled evaluation. First, the set of CDE-permissible values with corresponding meanings in external controlled terminologies were isolated. The corresponding value meanings were then evaluated against their NCI- or UMLS-generated semantic network mapping to determine whether all of the meanings fell within the same semantic group. Results Of the enumerated CDEs in the Cancer Data Standards Repository, 3093 (26.2%) had elements drawn from more than one UMLS semantic group. A random sample (n=100) of this set of elements indicated that 17% of them were likely to have been misclassified. Discussion The use of existing semantic web tools can support a high-throughput mechanism for evaluating the quality of large CDE collections. This study demonstrates that the involvement of multiple semantic groups in an enumerated value domain of a CDE is an effective anchor to trigger an auditing point for quality evaluation activities. Conclusion This approach produces a useful quality assurance mechanism for a clinical study CDE repository. PMID:22511016

  7. HCLS 2.0/3.0: health care and life sciences data mashup using Web 2.0/3.0.

    PubMed

    Cheung, Kei-Hoi; Yip, Kevin Y; Townsend, Jeffrey P; Scotch, Matthew

    2008-10-01

    We describe the potential of current Web 2.0 technologies to achieve data mashup in the health care and life sciences (HCLS) domains, and compare that potential to the nascent trend of performing semantic mashup. After providing an overview of Web 2.0, we demonstrate two scenarios of data mashup, facilitated by the following Web 2.0 tools and sites: Yahoo! Pipes, Dapper, Google Maps and GeoCommons. In the first scenario, we exploited Dapper and Yahoo! Pipes to implement a challenging data integration task in the context of DNA microarray research. In the second scenario, we exploited Yahoo! Pipes, Google Maps, and GeoCommons to create a geographic information system (GIS) interface that allows visualization and integration of diverse categories of public health data, including cancer incidence and pollution prevalence data. Based on these two scenarios, we discuss the strengths and weaknesses of these Web 2.0 mashup technologies. We then describe Semantic Web, the mainstream Web 3.0 technology that enables more powerful data integration over the Web. We discuss the areas of intersection of Web 2.0 and Semantic Web, and describe the potential benefits that can be brought to HCLS research by combining these two sets of technologies.

  8. HCLS 2.0/3.0: Health Care and Life Sciences Data Mashup Using Web 2.0/3.0

    PubMed Central

    Cheung, Kei-Hoi; Yip, Kevin Y.; Townsend, Jeffrey P.; Scotch, Matthew

    2010-01-01

    We describe the potential of current Web 2.0 technologies to achieve data mashup in the health care and life sciences (HCLS) domains, and compare that potential to the nascent trend of performing semantic mashup. After providing an overview of Web 2.0, we demonstrate two scenarios of data mashup, facilitated by the following Web 2.0 tools and sites: Yahoo! Pipes, Dapper, Google Maps and GeoCommons. In the first scenario, we exploited Dapper and Yahoo! Pipes to implement a challenging data integration task in the context of DNA microarray research. In the second scenario, we exploited Yahoo! Pipes, Google Maps, and GeoCommons to create a geographic information system (GIS) interface that allows visualization and integration of diverse categories of public health data, including cancer incidence and pollution prevalence data. Based on these two scenarios, we discuss the strengths and weaknesses of these Web 2.0 mashup technologies. We then describe Semantic Web, the mainstream Web 3.0 technology that enables more powerful data integration over the Web. We discuss the areas of intersection of Web 2.0 and Semantic Web, and describe the potential benefits that can be brought to HCLS research by combining these two sets of technologies. PMID:18487092

  9. A user-centred evaluation framework for the Sealife semantic web browsers

    PubMed Central

    Oliver, Helen; Diallo, Gayo; de Quincey, Ed; Alexopoulou, Dimitra; Habermann, Bianca; Kostkova, Patty; Schroeder, Michael; Jupp, Simon; Khelif, Khaled; Stevens, Robert; Jawaheer, Gawesh; Madle, Gemma

    2009-01-01

    Background Semantically-enriched browsing has enhanced the browsing experience by providing contextualised dynamically generated Web content, and quicker access to searched-for information. However, adoption of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Furthermore, little attention has been given to evaluating semantic browsers with real users to demonstrate the enhancements and obtain valuable feedback. The Sealife project investigates semantic browsing and its application to the life science domain. Sealife's main objective is to develop the notion of context-based information integration by extending three existing Semantic Web browsers (SWBs) to link the existing Web to the eScience infrastructure. Methods This paper describes a user-centred evaluation framework that was developed to evaluate the Sealife SWBs that elicited feedback on users' perceptions on ease of use and information findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured interviews were analysed and comparisons made between each browser and a control system. Results It was found that the evaluation framework used successfully elicited users' perceptions of the three distinct SWBs. The results indicate that the browser with the most mature and polished interface was rated higher for usability, and semantic links were used by the users of all three browsers. Conclusion Confirmation or contradiction of our original hypotheses with relation to SWBs is detailed along with observations of implementation issues. PMID:19796398

  10. Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: Patterns of functional MRI activation

    PubMed Central

    SAYKIN, ANDREW J.; FLASHMAN, LAURA A.; FRUTIGER, SALLY A.; JOHNSON, STERLING C.; MAMOURIAN, ALEXANDER C.; MORITZ, CHAD H.; O’JILE, JUDITH R.; RIORDAN, HENRY J.; SANTULLI, ROBERT B.; SMITH, CYNTHIA A.; WEAVER, JOHN B.

    2015-01-01

    Impairment in semantic processing occurs early in Alzheimer’s disease (AD) and differential impact on subtypes of semantic relations have been reported, yet there is little data on the neuroanatomic basis of these deficits. Patients with mild AD and healthy controls underwent 3 functional MRI auditory stimulation tasks requiring semantic or phonological decisions (match–mismatch) about word pairs (category–exemplar, category–function, pseudoword). Patients showed a significant performance deficit only on the exemplar task. On voxel-based fMRI activation analyses, controls showed a clear activation focus in the left superior temporal gyrus for the phonological task; patients showed additional foci in the left dorsolateral prefrontal and bilateral cingulate areas. On the semantic tasks, predominant activation foci were seen in the inferior and middle frontal gyrus (left greater than right) in both groups but patients showed additional activation suggesting compensatory recruitment of locally expanded foci and remote regions, for example, right frontal activation during the exemplar task. Covariance analyses indicated that exemplar task performance was strongly related to signal increase in bilateral medial prefrontal cortex. The authors conclude that fMRI can reveal similarities and differences in functional neuroanatomical processing of semantic and phonological information in mild AD compared to healthy elderly, and can help to bridge cognitive and neural investigations of the integrity of semantic networks in AD. PMID:10439584

  11. A user-centred evaluation framework for the Sealife semantic web browsers.

    PubMed

    Oliver, Helen; Diallo, Gayo; de Quincey, Ed; Alexopoulou, Dimitra; Habermann, Bianca; Kostkova, Patty; Schroeder, Michael; Jupp, Simon; Khelif, Khaled; Stevens, Robert; Jawaheer, Gawesh; Madle, Gemma

    2009-10-01

    Semantically-enriched browsing has enhanced the browsing experience by providing contextualized dynamically generated Web content, and quicker access to searched-for information. However, adoption of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Furthermore, little attention has been given to evaluating semantic browsers with real users to demonstrate the enhancements and obtain valuable feedback. The Sealife project investigates semantic browsing and its application to the life science domain. Sealife's main objective is to develop the notion of context-based information integration by extending three existing Semantic Web browsers (SWBs) to link the existing Web to the eScience infrastructure. This paper describes a user-centred evaluation framework that was developed to evaluate the Sealife SWBs that elicited feedback on users' perceptions on ease of use and information findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured interviews were analysed and comparisons made between each browser and a control system. It was found that the evaluation framework used successfully elicited users' perceptions of the three distinct SWBs. The results indicate that the browser with the most mature and polished interface was rated higher for usability, and semantic links were used by the users of all three browsers. Confirmation or contradiction of our original hypotheses with relation to SWBs is detailed along with observations of implementation issues.

  12. Strategic Industrial Alliances in Paper Industry: XML- vs Ontology-Based Integration Platforms

    ERIC Educational Resources Information Center

    Naumenko, Anton; Nikitin, Sergiy; Terziyan, Vagan; Zharko, Andriy

    2005-01-01

    Purpose: To identify cases related to design of ICT platforms for industrial alliances, where the use of Ontology-driven architectures based on Semantic web standards is more advantageous than application of conventional modeling together with XML standards. Design/methodology/approach: A comparative analysis of the two latest and the most obvious…

  13. Formalized description and construction of semantic dictionary of graphic-text spatial relationship

    NASA Astrophysics Data System (ADS)

    Sun, Yizhong; Xue, Xiaolei; Zhao, Xiaoqin

    2008-10-01

    Graphic and text are two major elements in exhibiting of the results of urban planning and land administration. In combination, they convey the complex relationship resulting from spatial analysis and decision-making. Accurately interpreting and representing these relationships are important steps towards an intelligent GIS for urban planning. This paper employs concept-hierarchy-tree to formalize graphic-text relationships through a framework of spatial object lexicon, spatial relationship lexicon, restriction lexicon, applied pattern base, and word segmentation rule base. The methodology is further verified and shown effective on several urban planning archives.

  14. Development of Semantic Web - Markup Languages, Web Services, Rules, Explanation, Querying, Proof and Reasoning

    DTIC Science & Technology

    2008-07-01

    Study. WWW2006 Workshop on the Models of Trust for the Web (MTW󈧊), Edinburgh, Scotland, May 22, 2006. • Daniel J. Weitzner, Hal Abelson, Tim Berners ...McGuinness gave an invited talk on ontologies in Intel’s Semantic web day. Other invited speakers were Hendler and Berners - Lee . February 4, 2002...Burke (DARPA) concerning ontology tools. July 19-20, 2000. McGuinness met with W3C representatives ( Berners - Lee , Connolly, Lassila) and other

  15. Modeling and formal representation of geospatial knowledge for the Geospatial Semantic Web

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Gong, Jianya

    2008-12-01

    GML can only achieve geospatial interoperation at syntactic level. However, it is necessary to resolve difference of spatial cognition in the first place in most occasions, so ontology was introduced to describe geospatial information and services. But it is obviously difficult and improper to let users to find, match and compose services, especially in some occasions there are complicated business logics. Currently, with the gradual introduction of Semantic Web technology (e.g., OWL, SWRL), the focus of the interoperation of geospatial information has shifted from syntactic level to Semantic and even automatic, intelligent level. In this way, Geospatial Semantic Web (GSM) can be put forward as an augmentation to the Semantic Web that additionally includes geospatial abstractions as well as related reasoning, representation and query mechanisms. To advance the implementation of GSM, we first attempt to construct the mechanism of modeling and formal representation of geospatial knowledge, which are also two mostly foundational phases in knowledge engineering (KE). Our attitude in this paper is quite pragmatical: we argue that geospatial context is a formal model of the discriminate environment characters of geospatial knowledge, and the derivation, understanding and using of geospatial knowledge are located in geospatial context. Therefore, first, we put forward a primitive hierarchy of geospatial knowledge referencing first order logic, formal ontologies, rules and GML. Second, a metamodel of geospatial context is proposed and we use the modeling methods and representation languages of formal ontologies to process geospatial context. Thirdly, we extend Web Process Service (WPS) to be compatible with local DLL for geoprocessing and possess inference capability based on OWL.

  16. Application of Semantic Tagging to Generate Superimposed Information on a Digital Encyclopedia

    NASA Astrophysics Data System (ADS)

    Garrido, Piedad; Tramullas, Jesus; Martinez, Francisco J.

    We can find in the literature several works regarding the automatic or semi-automatic processing of textual documents with historic information using free software technologies. However, more research work is needed to integrate the analysis of the context and provide coverage to the peculiarities of the Spanish language from a semantic point of view. This research work proposes a novel knowledge-based strategy based on combining subject-centric computing, a topic-oriented approach, and superimposed information. It subsequent combination with artificial intelligence techniques led to an automatic analysis after implementing a made-to-measure interpreted algorithm which, in turn, produced a good number of associations and events with 90% reliability.

  17. Integrated layout based Monte-Carlo simulation for design arc optimization

    NASA Astrophysics Data System (ADS)

    Shao, Dongbing; Clevenger, Larry; Zhuang, Lei; Liebmann, Lars; Wong, Robert; Culp, James

    2016-03-01

    Design rules are created considering a wafer fail mechanism with the relevant design levels under various design cases, and the values are set to cover the worst scenario. Because of the simplification and generalization, design rule hinders, rather than helps, dense device scaling. As an example, SRAM designs always need extensive ground rule waivers. Furthermore, dense design also often involves "design arc", a collection of design rules, the sum of which equals critical pitch defined by technology. In design arc, a single rule change can lead to chain reaction of other rule violations. In this talk we present a methodology using Layout Based Monte-Carlo Simulation (LBMCS) with integrated multiple ground rule checks. We apply this methodology on SRAM word line contact, and the result is a layout that has balanced wafer fail risks based on Process Assumptions (PAs). This work was performed at the IBM Microelectronics Div, Semiconductor Research and Development Center, Hopewell Junction, NY 12533

  18. Prefrontal Contributions to Rule-Based and Information-Integration Category Learning

    ERIC Educational Resources Information Center

    Schnyer, David M.; Maddox, W. Todd; Ell, Shawn; Davis, Sarah; Pacheco, Jenni; Verfaellie, Mieke

    2009-01-01

    Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W., Marchant, N. L., & Ivry, R. B. (2006). "Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks." "Neuropsychologia", 44(10), 1737-1751; Maddox, W. T. & Filoteo, J.…

  19. Mining integrated semantic networks for drug repositioning opportunities

    PubMed Central

    Mullen, Joseph; Tipney, Hannah

    2016-01-01

    Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which 14 are novel and 6 are supported by the literature. We also show that our approach better prioritizes known drug-target interactions, than other state-of-the art approaches for predicting such interactions. PMID:26844016

  20. Getting connected: Both associative and semantic links structure semantic memory for newly learned persons.

    PubMed

    Wiese, Holger; Schweinberger, Stefan R

    2015-01-01

    The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.

Top