Science.gov

Sample records for rule-based semantic integration

  1. Rule-based semantic web services matching strategy

    NASA Astrophysics Data System (ADS)

    Fan, Hong; Wang, Zhihua

    2011-12-01

    With the development of Web services technology, the number of service increases rapidly, and it becomes a challenge task that how to efficiently discovery the services that exactly match the user's requirements from the large scale of services library. Many semantic Web services discovery technologies proposed by the recent literatures only focus on the keyword-based or primary semantic based service's matching. This paper studies the rules and rule reasoning based service matching algorithm in the background of large scale services library. Firstly, the formal descriptions of semantic web services and service matching is presented. The services' matching are divided into four levels: Exact, Plugin, Subsume and Fail and their formal descriptions are also presented. Then, the service matching is regarded as rule-based reasoning issues. A set of match rules are firstly given and the related services set is retrieved from services ontology base through rule-based reasoning, and their matching levels are determined by distinguishing the relationships between service's I/O and user's request I/O. Finally, the experiment based on two services sets show that the proposed services matching strategy can easily implement the smart service discovery and obtains the high service discovery efficiency in comparison with the traditional global traversal strategy.

  2. Semantic classification of diseases in discharge summaries using a context-aware rule-based classifier.

    PubMed

    Solt, Illés; Tikk, Domonkos; Gál, Viktor; Kardkovács, Zsolt T

    2009-01-01

    OBJECTIVE Automated and disease-specific classification of textual clinical discharge summaries is of great importance in human life science, as it helps physicians to make medical studies by providing statistically relevant data for analysis. This can be further facilitated if, at the labeling of discharge summaries, semantic labels are also extracted from text, such as whether a given disease is present, absent, questionable in a patient, or is unmentioned in the document. The authors present a classification technique that successfully solves the semantic classification task. DESIGN The authors introduce a context-aware rule-based semantic classification technique for use on clinical discharge summaries. The classification is performed in subsequent steps. First, some misleading parts are removed from the text; then the text is partitioned into positive, negative, and uncertain context segments, then a sequence of binary classifiers is applied to assign the appropriate semantic labels. Measurement For evaluation the authors used the documents of the i2b2 Obesity Challenge and adopted its evaluation measures: F(1)-macro and F(1)-micro for measurements. RESULTS On the two subtasks of the Obesity Challenge (textual and intuitive classification) the system performed very well, and achieved a F(1)-macro = 0.80 for the textual and F(1)-macro = 0.67 for the intuitive tasks, and obtained second place at the textual and first place at the intuitive subtasks of the challenge. CONCLUSIONS The authors show in the paper that a simple rule-based classifier can tackle the semantic classification task more successfully than machine learning techniques, if the training data are limited and some semantic labels are very sparse.

  3. Annotation of rule-based models with formal semantics to enable creation, analysis, reuse and visualization

    PubMed Central

    Misirli, Goksel; Cavaliere, Matteo; Waites, William; Pocock, Matthew; Madsen, Curtis; Gilfellon, Owen; Honorato-Zimmer, Ricardo; Zuliani, Paolo; Danos, Vincent; Wipat, Anil

    2016-01-01

    Motivation: Biological systems are complex and challenging to model and therefore model reuse is highly desirable. To promote model reuse, models should include both information about the specifics of simulations and the underlying biology in the form of metadata. The availability of computationally tractable metadata is especially important for the effective automated interpretation and processing of models. Metadata are typically represented as machine-readable annotations which enhance programmatic access to information about models. Rule-based languages have emerged as a modelling framework to represent the complexity of biological systems. Annotation approaches have been widely used for reaction-based formalisms such as SBML. However, rule-based languages still lack a rich annotation framework to add semantic information, such as machine-readable descriptions, to the components of a model. Results: We present an annotation framework and guidelines for annotating rule-based models, encoded in the commonly used Kappa and BioNetGen languages. We adapt widely adopted annotation approaches to rule-based models. We initially propose a syntax to store machine-readable annotations and describe a mapping between rule-based modelling entities, such as agents and rules, and their annotations. We then describe an ontology to both annotate these models and capture the information contained therein, and demonstrate annotating these models using examples. Finally, we present a proof of concept tool for extracting annotations from a model that can be queried and analyzed in a uniform way. The uniform representation of the annotations can be used to facilitate the creation, analysis, reuse and visualization of rule-based models. Although examples are given, using specific implementations the proposed techniques can be applied to rule-based models in general. Availability and implementation: The annotation ontology for rule-based models can be found at http

  4. Rule-Based and Information-Integration Category Learning in Normal Aging

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M.

    2010-01-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated…

  5. Rule-based support system for multiple UMLS semantic type assignments

    PubMed Central

    Geller, James; He, Zhe; Perl, Yehoshua; Morrey, C. Paul; Xu, Julia

    2012-01-01

    Background When new concepts are inserted into the UMLS, they are assigned one or several semantic types from the UMLS Semantic Network by the UMLS editors. However, not every combination of semantic types is permissible. It was observed that many concepts with rare combinations of semantic types have erroneous semantic type assignments or prohibited combinations of semantic types. The correction of such errors is resource-intensive. Objective We design a computational system to inform UMLS editors as to whether a specific combination of two, three, four, or five semantic types is permissible or prohibited or questionable. Methods We identify a set of inclusion and exclusion instructions in the UMLS Semantic Network documentation and derive corresponding rule-categories as well as rule-categories from the UMLS concept content. We then design an algorithm adviseEditor based on these rule-categories. The algorithm specifies rules for an editor how to proceed when considering a tuple (pair, triple, quadruple, quintuple) of semantic types to be assigned to a concept. Results Eight rule-categories were identified. A Web-based system was developed to implement the adviseEditor algorithm, which returns for an input combination of semantic types whether it is permitted, prohibited or (in a few cases) requires more research. The numbers of semantic type pairs assigned to each rule-category are reported. Interesting examples for each rule-category are illustrated. Cases of semantic type assignments that contradict rules are listed, including recently introduced ones. Conclusion The adviseEditor system implements explicit and implicit knowledge available in the UMLS in a system that informs UMLS editors about the permissibility of a desired combination of semantic types. Using adviseEditor might help accelerate the work of the UMLS editors and prevent erroneous semantic type assignments. PMID:23041716

  6. Posterror slowing predicts rule-based but not information-integration category learning.

    PubMed

    Tam, Helen; Maddox, W Todd; Huang-Pollock, Cynthia L

    2013-12-01

    We examined whether error monitoring, operationalized as the degree to which individuals slow down after committing an error (i.e., posterror slowing), is differentially important in the learning of rule-based versus information-integration category structures. Rule-based categories are most efficiently solved through the application of an explicit verbal strategy (e.g., "sort by color"). In contrast, information-integration categories are believed to be learned in a trial-by-trial, associative manner. Our results indicated that posterror slowing predicts enhanced rule-based but not information-integration category learning. Implications for multiple category-learning systems are discussed.

  7. Toward Webscale, Rule-Based Inference on the Semantic Web Via Data Parallelism

    DTIC Science & Technology

    2013-02-01

    the next contribution. 4 The second, novel contribution of this thesis is a method – par- tially formal and partially heuristic – that can be used to... Harmelen , and J. Weaver, “ Knowledge representation and reasoning on the semantic web: Web-scale reasoning,” in Handbook of Semantic Web Technologies, 1st ed...SUPERCOMPUTERS 80 5.1 Parameters of Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.1 Software Implementation of Inference Engine

  8. Differential Impact of Visuospatial Working Memory on Rule-based and Information-integration Category Learning.

    PubMed

    Xing, Qiang; Sun, Hailong

    2017-01-01

    Previous studies have indicated that the category learning system is a mechanism with multiple processing systems, and that working memory has different effects on category learning. But how does visuospatial working memory affect perceptual category learning? As there is no definite answer to this question, we conducted three experiments. In Experiment 1, the dual-task paradigm with sequential presentation was adopted to investigate the influence of visuospatial working memory on rule-based and information-integration category learning. The results showed that visuospatial working memory interferes with rule-based but not information-integration category learning. In Experiment 2, the dual-task paradigm with simultaneous presentation was used, in which the categorization task was integrated into the visuospatial working memory task. The results indicated that visuospatial working memory affects information-integration category learning but not rule-based category learning. In Experiment 3, the dual-task paradigm with simultaneous presentation was employed, in which visuospatial working memory was integrated into the category learning task. The results revealed that visuospatial working memory interferes with both rule-based and information-integration category learning. Through these three experiments, we found that, regarding the rule-based category learning, working memory load is the main mechanism by which visuospatial working memory influences the discovery of the category rules. In addition, regarding the information-integration category learning, visual resources mainly operates on the category representation.

  9. Differential Impact of Visuospatial Working Memory on Rule-based and Information-integration Category Learning

    PubMed Central

    Xing, Qiang; Sun, Hailong

    2017-01-01

    Previous studies have indicated that the category learning system is a mechanism with multiple processing systems, and that working memory has different effects on category learning. But how does visuospatial working memory affect perceptual category learning? As there is no definite answer to this question, we conducted three experiments. In Experiment 1, the dual-task paradigm with sequential presentation was adopted to investigate the influence of visuospatial working memory on rule-based and information-integration category learning. The results showed that visuospatial working memory interferes with rule-based but not information-integration category learning. In Experiment 2, the dual-task paradigm with simultaneous presentation was used, in which the categorization task was integrated into the visuospatial working memory task. The results indicated that visuospatial working memory affects information-integration category learning but not rule-based category learning. In Experiment 3, the dual-task paradigm with simultaneous presentation was employed, in which visuospatial working memory was integrated into the category learning task. The results revealed that visuospatial working memory interferes with both rule-based and information-integration category learning. Through these three experiments, we found that, regarding the rule-based category learning, working memory load is the main mechanism by which visuospatial working memory influences the discovery of the category rules. In addition, regarding the information-integration category learning, visual resources mainly operates on the category representation. PMID:28439250

  10. Rule-based and information-integration category learning in normal aging.

    PubMed

    Maddox, W Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M

    2010-08-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated processes, whereas information-integration is thought to involve implicit, striatally mediated processes. As a group, older adults showed rule-based and information-integration deficits. A series of models were applied that provided insights onto the type of strategy used to solve the task. Interestingly, when the analyses focused only on participants who used the task appropriate strategy in the final block of trials, the age-related rule-based deficit disappeared whereas the information-integration deficit remained. For this group of individuals, the final block information-integration deficit was due to less consistent application of the task appropriate strategy by older adults, and over the course of learning these older adults shifted from an explicit hypothesis-testing strategy to the task appropriate strategy later in learning. In addition, the use of the task appropriate strategy was associated with less interference and better inhibitory control for rule-based and information-information learning, whereas use of the task appropriate strategy was associated with greater working memory and better new verbal learning only for the rule-based task. These results suggest that normal aging impacts both forms of category learning and that there are some important similarities and differences in the explanatory locus of these deficits. The data also support a two-component model of information-integration category learning that includes a striatal component that mediated procedural-based learning, and a prefrontal cortical component that mediates the transition from hypothesis-testing to procedural-based strategies

  11. Rule-Based and Information-Integration Category Learning in Normal Aging

    PubMed Central

    Maddox, W. Todd; Pacheco, Jennifer; Reeves, Maia; Zhu, Bo; Schnyer, David M.

    2010-01-01

    The basal ganglia and prefrontal cortex play critical roles in category learning. Both regions evidence age-related structural and functional declines. The current study examined rule-based and information-integration category learning in a group of older and younger adults. Rule-based learning is thought to involve explicit, frontally mediated processes, whereas information-integration is thought to involve implicit, striatally mediated processes. As a group, older adults showed rule-based and information-integration deficits. A series of models were applied that provided insights onto the type of strategy used to solve the task. Interestingly, when the analyses focused only on participants who used the task appropriate strategy in the final block of trials, the age-related rule-based deficit disappeared whereas the information-integration deficit remained. For this group of individuals, the final block information-integration deficit was due to less consistent application of the task appropriate strategy by older adults, and over the course of learning these older adults shifted from an explicit hypothesis-testing strategy to the task appropriate strategy later in learning. In addition, the use of the task appropriate strategy was associated with less interference and better inhibitory control for rule-based and information-information learning, whereas use of the task appropriate strategy was associated with greater working memory and better new verbal learning only for the rule-based task. These results suggest that normal aging impacts both forms of category learning and that there are some important similarities and differences in the explanatory locus of these deficits. The data also support a two-component model of information-integration category learning that includes a striatal component that mediated procedural-based learning, and a prefrontal cortical component that mediates the transition from hypothesis-testing to procedural-based strategies

  12. Automatic extraction of semantic relations between medical entities: a rule based approach.

    PubMed

    Ben Abacha, Asma; Zweigenbaum, Pierre

    2011-10-06

    Information extraction is a complex task which is necessary to develop high-precision information retrieval tools. In this paper, we present the platform MeTAE (Medical Texts Annotation and Exploration). MeTAE allows (i) to extract and annotate medical entities and relationships from medical texts and (ii) to explore semantically the produced RDF annotations. Our annotation approach relies on linguistic patterns and domain knowledge and consists in two steps: (i) recognition of medical entities and (ii) identification of the correct semantic relation between each pair of entities. The first step is achieved by an enhanced use of MetaMap which improves the precision obtained by MetaMap by 19.59% in our evaluation. The second step relies on linguistic patterns which are built semi-automatically from a corpus selected according to semantic criteria. We evaluate our system's ability to identify medical entities of 16 types. We also evaluate the extraction of treatment relations between a treatment (e.g. medication) and a problem (e.g. disease): we obtain 75.72% precision and 60.46% recall. According to our experiments, using an external sentence segmenter and noun phrase chunker may improve the precision of MetaMap-based medical entity recognition. Our pattern-based relation extraction method obtains good precision and recall w.r.t related works. A more precise comparison with related approaches remains difficult however given the differences in corpora and in the exact nature of the extracted relations. The selection of MEDLINE articles through queries related to known drug-disease pairs enabled us to obtain a more focused corpus of relevant examples of treatment relations than a more general MEDLINE query.

  13. Prefrontal Contributions to Rule-Based and Information-Integration Category Learning

    ERIC Educational Resources Information Center

    Schnyer, David M.; Maddox, W. Todd; Ell, Shawn; Davis, Sarah; Pacheco, Jenni; Verfaellie, Mieke

    2009-01-01

    Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W., Marchant, N. L., & Ivry, R. B. (2006). "Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks." "Neuropsychologia", 44(10), 1737-1751; Maddox, W. T. & Filoteo, J.…

  14. Prefrontal Contributions to Rule-Based and Information-Integration Category Learning

    ERIC Educational Resources Information Center

    Schnyer, David M.; Maddox, W. Todd; Ell, Shawn; Davis, Sarah; Pacheco, Jenni; Verfaellie, Mieke

    2009-01-01

    Previous research revealed that the basal ganglia play a critical role in category learning [Ell, S. W., Marchant, N. L., & Ivry, R. B. (2006). "Focal putamen lesions impair learning in rule-based, but not information-integration categorization tasks." "Neuropsychologia", 44(10), 1737-1751; Maddox, W. T. & Filoteo, J.…

  15. A Rule-Based Expert System as an Integrated Resource in an Outpatient Clinic Information System

    PubMed Central

    Wilton, Richard

    1990-01-01

    A rule-based expert system can be integrated in a useful way into a microcomputer-based clinical information system by using symmetric data-communication methods and intuitive user-interface design. To users of the computer system, the expert system appears as one of several distributed information resources, among which are database management systems and a gateway to a mainframe computing system. Transparent access to the expert system is based on the use of both commercial and public-domain data-communication standards.

  16. Integration of object-oriented knowledge representation with the CLIPS rule based system

    NASA Technical Reports Server (NTRS)

    Logie, David S.; Kamil, Hasan

    1990-01-01

    The paper describes a portion of the work aimed at developing an integrated, knowledge based environment for the development of engineering-oriented applications. An Object Representation Language (ORL) was implemented in C++ which is used to build and modify an object-oriented knowledge base. The ORL was designed in such a way so as to be easily integrated with other representation schemes that could effectively reason with the object base. Specifically, the integration of the ORL with the rule based system C Language Production Systems (CLIPS), developed at the NASA Johnson Space Center, will be discussed. The object-oriented knowledge representation provides a natural means of representing problem data as a collection of related objects. Objects are comprised of descriptive properties and interrelationships. The object-oriented model promotes efficient handling of the problem data by allowing knowledge to be encapsulated in objects. Data is inherited through an object network via the relationship links. Together, the two schemes complement each other in that the object-oriented approach efficiently handles problem data while the rule based knowledge is used to simulate the reasoning process. Alone, the object based knowledge is little more than an object-oriented data storage scheme; however, the CLIPS inference engine adds the mechanism to directly and automatically reason with that knowledge. In this hybrid scheme, the expert system dynamically queries for data and can modify the object base with complete access to all the functionality of the ORL from rules.

  17. Feedback can be superior to observational training for both rule-based and information-integration category structures.

    PubMed

    Edmunds, C E R; Milton, Fraser; Wills, Andy J

    2015-01-01

    The effects of two different types of training on rule-based and information-integration category learning were investigated in two experiments. In observational training, a category label is presented, followed by an example of that category and the participant's response. In feedback training, the stimulus is presented, and the participant assigns it to a category and then receives feedback about the accuracy of that decision. Ashby, Maddox, and Bohil (2002. Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30, 666-677) reported that feedback training was superior to observational training when learning information-integration category structures, but that training type had little effect on the acquisition of rule-based category structures. These results were argued to support the COVIS (competition between verbal and implicit systems) dual-process account of category learning. However, a number of nonessential differences between their rule-based and information-integration conditions complicate interpretation of these findings. Experiment 1 controlled between-category structures for participant error rates, category separation, and the number of stimulus dimensions relevant to the categorization. Under these more controlled conditions, rule-based and information-integration category structures both benefited from feedback training to a similar degree. Experiment 2 maintained this difference in training type when learning a rule-based category that had otherwise been matched, in terms of category overlap and overall performance, with the rule-based categories used in Ashby et al. These results indicate that differences in dimensionality between the category structures in Ashby et al. is a more likely explanation for the interaction between training type and category structure than the dual-system explanation that they offered.

  18. Integration Proposal for Description Logic and Attributive Logic - Towards Semantic Web Rules

    NASA Astrophysics Data System (ADS)

    Nalepa, Grzegorz J.; Furmańska, Weronika T.

    The current challenge of the Semantic Web is the development of an expressive yet effective rule language. This paper presents an integration proposal for Description Logics (DL) and Attributive Logics (ALSV) is presented. These two formalisms stem from fields of Knowledge Representation and Artificial Intelligence. However, they are based on different design goals and therefore provide different description and reasoning capabilities. ALSV is the foundation of XTT2, an expressive language for rule-based systems. DL provide formulation for expressive ontology languages such as OWL2. An important research direction is the development of rule languages that can be integrated with ontologies. The contribution of the paper consists in introducing a possible transition from ALSV to DL. This opens up possibilities of using XTT2, a well-founded rule-based system modelling rule language, to improve the design of Semantic Web rules.

  19. Project Integration Architecture: Formulation of Semantic Parameters

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2005-01-01

    One of several key elements of the Project Integration Architecture (PIA) is the intention to formulate parameter objects which convey meaningful semantic information. In so doing, it is expected that a level of automation can be achieved in the consumption of information content by PIA-consuming clients outside the programmatic boundary of a presenting PIA-wrapped application. This paper discusses the steps that have been recently taken in formulating such semantically-meaningful parameters.

  20. Category Number Impacts Rule-Based but Not Information-Integration Category Learning: Further Evidence for Dissociable Category-Learning Systems

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Filoteo, J. Vincent; Hejl, Kelli D.; Ing, A. David

    2004-01-01

    Category number effects on rule-based and information-integration category learning were investigated. Category number affected accuracy and the distribution of best-fitting models in the rule-based task but had no effect on accuracy and little effect on the distribution of best-fining models in the information-integration task. In the 2 category…

  1. HIV-GRADE: a publicly available, rules-based drug resistance interpretation algorithm integrating bioinformatic knowledge.

    PubMed

    Obermeier, Martin; Pironti, Alejandro; Berg, Thomas; Braun, Patrick; Däumer, Martin; Eberle, Josef; Ehret, Robert; Kaiser, Rolf; Kleinkauf, Niels; Korn, Klaus; Kücherer, Claudia; Müller, Harm; Noah, Christian; Stürmer, Martin; Thielen, Alexander; Wolf, Eva; Walter, Hauke

    2012-01-01

    Genotypic drug resistance testing provides essential information for guiding treatment in HIV-infected patients. It may either be used for identifying patients with transmitted drug resistance or to clarify reasons for treatment failure and to check for remaining treatment options. While different approaches for the interpretation of HIV sequence information are already available, no other available rules-based systems specifically have looked into the effects of combinations of drugs. HIV-GRADE (Genotypischer Resistenz Algorithmus Deutschland) was planned as a countrywide approach to establish standardized drug resistance interpretation in Germany and also to introduce rules for estimating the influence of mutations on drug combinations. The rules for HIV-GRADE are taken from the literature, clinical follow-up data and from a bioinformatics-driven interpretation system (geno2pheno([resistance])). HIV-GRADE presents the option of seeing the rules and results of other drug resistance algorithms for a given sequence simultaneously. The HIV-GRADE rules-based interpretation system was developed by the members of the HIV-GRADE registered society. For continuous updates, this expert committee meets twice a year to analyze data from various sources. Besides data from clinical studies and the centers involved, published correlations for mutations with drug resistance and genotype-phenotype correlation data information from the bioinformatic models of geno2pheno are used to generate the rules for the HIV-GRADE interpretation system. A freely available online tool was developed on the basis of the Stanford HIVdb rules interpretation tool using the algorithm specification interface. Clinical validation of the interpretation system was performed on the data of treatment episodes consisting of sequence information, antiretroviral treatment and viral load, before and 3 months after treatment change. Data were analyzed using multiple linear regression. As the developed online

  2. Semantic web for integrated network analysis in biomedicine.

    PubMed

    Chen, Huajun; Ding, Li; Wu, Zhaohui; Yu, Tong; Dhanapalan, Lavanya; Chen, Jake Y

    2009-03-01

    The Semantic Web technology enables integration of heterogeneous data on the World Wide Web by making the semantics of data explicit through formal ontologies. In this article, we survey the feasibility and state of the art of utilizing the Semantic Web technology to represent, integrate and analyze the knowledge in various biomedical networks. We introduce a new conceptual framework, semantic graph mining, to enable researchers to integrate graph mining with ontology reasoning in network data analysis. Through four case studies, we demonstrate how semantic graph mining can be applied to the analysis of disease-causal genes, Gene Ontology category cross-talks, drug efficacy analysis and herb-drug interactions analysis.

  3. Semantic Web meets Integrative Biology: a survey.

    PubMed

    Chen, Huajun; Yu, Tong; Chen, Jake Y

    2013-01-01

    Integrative Biology (IB) uses experimental or computational quantitative technologies to characterize biological systems at the molecular, cellular, tissue and population levels. IB typically involves the integration of the data, knowledge and capabilities across disciplinary boundaries in order to solve complex problems. We identify a series of bioinformatics problems posed by interdisciplinary integration: (i) data integration that interconnects structured data across related biomedical domains; (ii) ontology integration that brings jargons, terminologies and taxonomies from various disciplines into a unified network of ontologies; (iii) knowledge integration that integrates disparate knowledge elements from multiple sources; (iv) service integration that build applications out of services provided by different vendors. We argue that IB can benefit significantly from the integration solutions enabled by Semantic Web (SW) technologies. The SW enables scientists to share content beyond the boundaries of applications and websites, resulting into a web of data that is meaningful and understandable to any computers. In this review, we provide insight into how SW technologies can be used to build open, standardized and interoperable solutions for interdisciplinary integration on a global basis. We present a rich set of case studies in system biology, integrative neuroscience, bio-pharmaceutics and translational medicine, to highlight the technical features and benefits of SW applications in IB.

  4. A Description and Functional Taxonomy of Rule-based Decision Support Content at a Large Integrated Delivery Network

    PubMed Central

    Wright, Adam; Goldberg, Howard; Hongsermeier, Tonya; Middleton, Blackford

    2007-01-01

    Objective This study sought to develop a functional taxonomy of rule-based clinical decision support. Design The rule-based clinical decision support content of a large integrated delivery network with a long history of computer-based point-of-care decision support was reviewed and analyzed along four functional dimensions: trigger, input data elements, interventions, and offered choices. Results A total of 181 rule types were reviewed, comprising 7,120 different instances of rule usage. A total of 42 taxa were identified across the four categories. Many rules fell into multiple taxa in a given category. Entered order and stored laboratory result were the most common triggers; laboratory result, drug list, and hospital unit were the most frequent data elements used. Notify and log were the most common interventions, and write order, defer warning, and override rule were the most common offered choices. Conclusion A relatively small number of taxa successfully described a large body of clinical knowledge. These taxa can be directly mapped to functions of clinical systems and decision support systems, providing feature guidance for developers, implementers, and certifiers of clinical information systems. PMID:17460131

  5. A Comparison of the neural correlates that underlie rule-based and information-integration category learning.

    PubMed

    Carpenter, Kathryn L; Wills, Andy J; Benattayallah, Abdelmalek; Milton, Fraser

    2016-10-01

    The influential competition between verbal and implicit systems (COVIS) model proposes that category learning is driven by two competing neural systems-an explicit, verbal, system, and a procedural-based, implicit, system. In the current fMRI study, participants learned either a conjunctive, rule-based (RB), category structure that is believed to engage the explicit system, or an information-integration category structure that is thought to preferentially recruit the implicit system. The RB and information-integration category structures were matched for participant error rate, the number of relevant stimulus dimensions, and category separation. Under these conditions, considerable overlap in brain activation, including the prefrontal cortex, basal ganglia, and the hippocampus, was found between the RB and information-integration category structures. Contrary to the predictions of COVIS, the medial temporal lobes and in particular the hippocampus, key regions for explicit memory, were found to be more active in the information-integration condition than in the RB condition. No regions were more activated in RB than information-integration category learning. The implications of these results for theories of category learning are discussed. Hum Brain Mapp 37:3557-3574, 2016. © 2016 Wiley Periodicals, Inc.

  6. Transcranial infrared laser stimulation improves rule-based, but not information-integration, category learning in humans.

    PubMed

    Blanco, Nathaniel J; Saucedo, Celeste L; Gonzalez-Lima, F

    2017-03-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation on category learning tasks. Transcranial infrared laser stimulation is a new non-invasive form of brain stimulation that shows promise for wide-ranging experimental and neuropsychological applications. It involves using infrared laser to enhance cerebral oxygenation and energy metabolism through upregulation of the respiratory enzyme cytochrome oxidase, the primary infrared photon acceptor in cells. Previous research found that transcranial infrared laser stimulation aimed at the prefrontal cortex can improve sustained attention, short-term memory, and executive function. In this study, we directly investigated the influence of transcranial infrared laser stimulation on two neurobiologically dissociable systems of category learning: a prefrontal cortex mediated reflective system that learns categories using explicit rules, and a striatally mediated reflexive learning system that forms gradual stimulus-response associations. Participants (n=118) received either active infrared laser to the lateral prefrontal cortex or sham (placebo) stimulation, and then learned one of two category structures-a rule-based structure optimally learned by the reflective system, or an information-integration structure optimally learned by the reflexive system. We found that prefrontal rule-based learning was substantially improved following transcranial infrared laser stimulation as compared to placebo (treatment X block interaction: F(1, 298)=5.117, p=0.024), while information-integration learning did not show significant group differences (treatment X block interaction: F(1, 288)=1.633, p=0.202). These results highlight the exciting potential of transcranial infrared laser stimulation for cognitive enhancement and provide insight into the neurobiological underpinnings of category learning.

  7. Semantic integration of data on transcriptional regulation

    PubMed Central

    Baitaluk, Michael; Ponomarenko, Julia

    2010-01-01

    Motivation: Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a ‘one-stop shop’ experience for users seeking information essential for deciphering and modeling gene regulatory networks. Results: IntegromeDB, a semantic graph-based ‘deep-web’ data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. Availability: IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org Contact: baitaluk@sdsc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20427517

  8. Integrated Estimation of Seismic Physical Vulnerability of Tehran Using Rule Based Granular Computing

    NASA Astrophysics Data System (ADS)

    Sheikhian, H.; Delavar, M. R.; Stein, A.

    2015-08-01

    Tehran, the capital of Iran, is surrounded by the North Tehran fault, the Mosha fault and the Rey fault. This exposes the city to possibly huge earthquakes followed by dramatic human loss and physical damage, in particular as it contains a large number of non-standard constructions and aged buildings. Estimation of the likely consequences of an earthquake facilitates mitigation of these losses. Mitigation of the earthquake fatalities may be achieved by promoting awareness of earthquake vulnerability and implementation of seismic vulnerability reduction measures. In this research, granular computing using generality and absolute support for rule extraction is applied. It uses coverage and entropy for rule prioritization. These rules are combined to form a granule tree that shows the order and relation of the extracted rules. In this way the seismic physical vulnerability is assessed, integrating the effects of the three major known faults. Effective parameters considered in the physical seismic vulnerability assessment are slope, seismic intensity, height and age of the buildings. Experts were asked to predict seismic vulnerability for 100 randomly selected samples among more than 3000 statistical units in Tehran. The integrated experts' point of views serve as input into granular computing. Non-redundant covering rules preserve the consistency in the model, which resulted in 84% accuracy in the seismic vulnerability assessment based on the validation of the predicted test data against expected vulnerability degree. The study concluded that granular computing is a useful method to assess the effects of earthquakes in an earthquake prone area.

  9. Differential impact of relevant and irrelevant dimension primes on rule-based and information-integration category learning.

    PubMed

    Grimm, Lisa R; Maddox, W Todd

    2013-11-01

    Research has identified multiple category-learning systems with each being "tuned" for learning categories with different task demands and each governed by different neurobiological systems. Rule-based (RB) classification involves testing verbalizable rules for category membership while information-integration (II) classification requires the implicit learning of stimulus-response mappings. In the first study to directly test rule priming with RB and II category learning, we investigated the influence of the availability of information presented at the beginning of the task. Participants viewed lines that varied in length, orientation, and position on the screen, and were primed to focus on stimulus dimensions that were relevant or irrelevant to the correct classification rule. In Experiment 1, we used an RB category structure, and in Experiment 2, we used an II category structure. Accuracy and model-based analyses suggested that a focus on relevant dimensions improves RB task performance later in learning while a focus on an irrelevant dimension improves II task performance early in learning. © 2013.

  10. Category Number Impacts Rule-Based "and" Information-Integration Category Learning: A Reassessment of Evidence for Dissociable Category-Learning Systems

    ERIC Educational Resources Information Center

    Stanton, Roger D.; Nosofsky, Robert M.

    2013-01-01

    Researchers have proposed that an explicit reasoning system is responsible for learning rule-based category structures and that a separate implicit, procedural-learning system is responsible for learning information-integration category structures. As evidence for this multiple-system hypothesis, researchers report a dissociation based on…

  11. Category Number Impacts Rule-Based "and" Information-Integration Category Learning: A Reassessment of Evidence for Dissociable Category-Learning Systems

    ERIC Educational Resources Information Center

    Stanton, Roger D.; Nosofsky, Robert M.

    2013-01-01

    Researchers have proposed that an explicit reasoning system is responsible for learning rule-based category structures and that a separate implicit, procedural-learning system is responsible for learning information-integration category structures. As evidence for this multiple-system hypothesis, researchers report a dissociation based on…

  12. Semantic search integration to climate data

    SciTech Connect

    Devarakonda, Ranjeet; Palanisamy, Giri; Pouchard, Line Catherine; Shrestha, Biva

    2014-01-01

    In this paper we present how research projects at Oak Ridge National Laboratory are using Semantic Search capabilities to help scientists perform their research. We will discuss how the Mercury metadata search system, with the help of the semantic search capability, is being used to find, retrieve, and link climate change data. DOI: 10.1109/CTS.2014.6867639

  13. The Balance-Scale Task Revisited: A Comparison of Statistical Models for Rule-Based and Information-Integration Theories of Proportional Reasoning.

    PubMed

    Hofman, Abe D; Visser, Ingmar; Jansen, Brenda R J; van der Maas, Han L J

    2015-01-01

    We propose and test three statistical models for the analysis of children's responses to the balance scale task, a seminal task to study proportional reasoning. We use a latent class modelling approach to formulate a rule-based latent class model (RB LCM) following from a rule-based perspective on proportional reasoning and a new statistical model, the Weighted Sum Model, following from an information-integration approach. Moreover, a hybrid LCM using item covariates is proposed, combining aspects of both a rule-based and information-integration perspective. These models are applied to two different datasets, a standard paper-and-pencil test dataset (N = 779), and a dataset collected within an online learning environment that included direct feedback, time-pressure, and a reward system (N = 808). For the paper-and-pencil dataset the RB LCM resulted in the best fit, whereas for the online dataset the hybrid LCM provided the best fit. The standard paper-and-pencil dataset yielded more evidence for distinct solution rules than the online data set in which quantitative item characteristics are more prominent in determining responses. These results shed new light on the discussion on sequential rule-based and information-integration perspectives of cognitive development.

  14. The Balance-Scale Task Revisited: A Comparison of Statistical Models for Rule-Based and Information-Integration Theories of Proportional Reasoning

    PubMed Central

    Hofman, Abe D.; Visser, Ingmar; Jansen, Brenda R. J.; van der Maas, Han L. J.

    2015-01-01

    We propose and test three statistical models for the analysis of children’s responses to the balance scale task, a seminal task to study proportional reasoning. We use a latent class modelling approach to formulate a rule-based latent class model (RB LCM) following from a rule-based perspective on proportional reasoning and a new statistical model, the Weighted Sum Model, following from an information-integration approach. Moreover, a hybrid LCM using item covariates is proposed, combining aspects of both a rule-based and information-integration perspective. These models are applied to two different datasets, a standard paper-and-pencil test dataset (N = 779), and a dataset collected within an online learning environment that included direct feedback, time-pressure, and a reward system (N = 808). For the paper-and-pencil dataset the RB LCM resulted in the best fit, whereas for the online dataset the hybrid LCM provided the best fit. The standard paper-and-pencil dataset yielded more evidence for distinct solution rules than the online data set in which quantitative item characteristics are more prominent in determining responses. These results shed new light on the discussion on sequential rule-based and information-integration perspectives of cognitive development. PMID:26505905

  15. Semantic integration for mapping the underworld

    NASA Astrophysics Data System (ADS)

    Fu, Gaihua; Cohn, Anthony G.

    2008-10-01

    Utility infrastructure is vital to the daily life of modern society. As the vast majority of urban utility assets are buried underneath public roads, the need to install/repair utility assets often requires opening ground with busy traffic. Unfortunately, at present most excavation works are carried out without knowing exactly what is where, which causes far more street breakings than necessary. This research studies how maximum benefit can be gained from the existing knowledge of buried assets. The key challenge here is that utility data is heterogeneous, which arises due to different domain perceptions and varying data modelling practices. This research investigates factors which prevent utility knowledge from being fully exploited and suggests that integration techniques can be applied for reconciling semantic heterogeneity within the utility domain. In this paper we discuss the feasibility of a common utility ontology to describe underground assets, and present techniques for constructing a basic utility ontology in the form of a thesaurus. The paper also demonstrates how the utility thesaurus developed is employed as a shared ontology for mapping utility data. Experiments have been performed to evaluate the techniques proposed, and feedback from industrial partners is encouraging and shows that techniques work effectively with real world utility data.

  16. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention.

    PubMed

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-13

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features.

  17. Selective Audiovisual Semantic Integration Enabled by Feature-Selective Attention

    PubMed Central

    Li, Yuanqing; Long, Jinyi; Huang, Biao; Yu, Tianyou; Wu, Wei; Li, Peijun; Fang, Fang; Sun, Pei

    2016-01-01

    An audiovisual object may contain multiple semantic features, such as the gender and emotional features of the speaker. Feature-selective attention and audiovisual semantic integration are two brain functions involved in the recognition of audiovisual objects. Humans often selectively attend to one or several features while ignoring the other features of an audiovisual object. Meanwhile, the human brain integrates semantic information from the visual and auditory modalities. However, how these two brain functions correlate with each other remains to be elucidated. In this functional magnetic resonance imaging (fMRI) study, we explored the neural mechanism by which feature-selective attention modulates audiovisual semantic integration. During the fMRI experiment, the subjects were presented with visual-only, auditory-only, or audiovisual dynamical facial stimuli and performed several feature-selective attention tasks. Our results revealed that a distribution of areas, including heteromodal areas and brain areas encoding attended features, may be involved in audiovisual semantic integration. Through feature-selective attention, the human brain may selectively integrate audiovisual semantic information from attended features by enhancing functional connectivity and thus regulating information flows from heteromodal areas to brain areas encoding the attended features. PMID:26759193

  18. Two theories of consciousness: Semantic pointer competition vs. information integration.

    PubMed

    Thagard, Paul; Stewart, Terrence C

    2014-11-01

    Consciousness results from three mechanisms: representation by firing patterns in neural populations, binding of representations into more complex representations called semantic pointers, and competition among semantic pointers to capture the most important aspects of an organism's current state. We contrast the semantic pointer competition (SPC) theory of consciousness with the hypothesis that consciousness is the capacity of a system to integrate information (IIT). We describe computer simulations to show that SPC surpasses IIT in providing better explanations of key aspects of consciousness: qualitative features, onset and cessation, shifts in experiences, differences in kinds across different organisms, unity and diversity, and storage and retrieval. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Chemical Entity Semantic Specification: Knowledge representation for efficient semantic cheminformatics and facile data integration

    PubMed Central

    2011-01-01

    Background Over the past several centuries, chemistry has permeated virtually every facet of human lifestyle, enriching fields as diverse as medicine, agriculture, manufacturing, warfare, and electronics, among numerous others. Unfortunately, application-specific, incompatible chemical information formats and representation strategies have emerged as a result of such diverse adoption of chemistry. Although a number of efforts have been dedicated to unifying the computational representation of chemical information, disparities between the various chemical databases still persist and stand in the way of cross-domain, interdisciplinary investigations. Through a common syntax and formal semantics, Semantic Web technology offers the ability to accurately represent, integrate, reason about and query across diverse chemical information. Results Here we specify and implement the Chemical Entity Semantic Specification (CHESS) for the representation of polyatomic chemical entities, their substructures, bonds, atoms, and reactions using Semantic Web technologies. CHESS provides means to capture aspects of their corresponding chemical descriptors, connectivity, functional composition, and geometric structure while specifying mechanisms for data provenance. We demonstrate that using our readily extensible specification, it is possible to efficiently integrate multiple disparate chemical data sources, while retaining appropriate correspondence of chemical descriptors, with very little additional effort. We demonstrate the impact of some of our representational decisions on the performance of chemically-aware knowledgebase searching and rudimentary reaction candidate selection. Finally, we provide access to the tools necessary to carry out chemical entity encoding in CHESS, along with a sample knowledgebase. Conclusions By harnessing the power of Semantic Web technologies with CHESS, it is possible to provide a means of facile cross-domain chemical knowledge integration with full

  20. Enriched Video Semantic Metadata: Authorization, Integration, and Presentation.

    ERIC Educational Resources Information Center

    Mu, Xiangming; Marchionini, Gary

    2003-01-01

    Presents an enriched video metadata framework including video authorization using the Video Annotation and Summarization Tool (VAST)-a video metadata authorization system that integrates both semantic and visual metadata-- metadata integration, and user level applications. Results demonstrated that the enriched metadata were seamlessly…

  1. Specification and Enforcement of Semantic Integrity Constraints in Microsoft Access

    ERIC Educational Resources Information Center

    Dadashzadeh, Mohammad

    2007-01-01

    Semantic integrity constraints are business-specific rules that limit the permissible values in a database. For example, a university rule dictating that an "incomplete" grade cannot be changed to an A constrains the possible states of the database. To maintain database integrity, business rules should be identified in the course of database…

  2. Specification and Enforcement of Semantic Integrity Constraints in Microsoft Access

    ERIC Educational Resources Information Center

    Dadashzadeh, Mohammad

    2007-01-01

    Semantic integrity constraints are business-specific rules that limit the permissible values in a database. For example, a university rule dictating that an "incomplete" grade cannot be changed to an A constrains the possible states of the database. To maintain database integrity, business rules should be identified in the course of database…

  3. Enriched Video Semantic Metadata: Authorization, Integration, and Presentation.

    ERIC Educational Resources Information Center

    Mu, Xiangming; Marchionini, Gary

    2003-01-01

    Presents an enriched video metadata framework including video authorization using the Video Annotation and Summarization Tool (VAST)-a video metadata authorization system that integrates both semantic and visual metadata-- metadata integration, and user level applications. Results demonstrated that the enriched metadata were seamlessly…

  4. Ontology alignment architecture for semantic sensor Web integration.

    PubMed

    Fernandez, Susel; Marsa-Maestre, Ivan; Velasco, Juan R; Alarcos, Bernardo

    2013-09-18

    Sensor networks are a concept that has become very popular in data acquisition and processing for multiple applications in different fields such as industrial, medicine, home automation, environmental detection, etc. Today, with the proliferation of small communication devices with sensors that collect environmental data, semantic Web technologies are becoming closely related with sensor networks. The linking of elements from Semantic Web technologies with sensor networks has been called Semantic Sensor Web and has among its main features the use of ontologies. One of the key challenges of using ontologies in sensor networks is to provide mechanisms to integrate and exchange knowledge from heterogeneous sources (that is, dealing with semantic heterogeneity). Ontology alignment is the process of bringing ontologies into mutual agreement by the automatic discovery of mappings between related concepts. This paper presents a system for ontology alignment in the Semantic Sensor Web which uses fuzzy logic techniques to combine similarity measures between entities of different ontologies. The proposed approach focuses on two key elements: the terminological similarity, which takes into account the linguistic and semantic information of the context of the entity's names, and the structural similarity, based on both the internal and relational structure of the concepts. This work has been validated using sensor network ontologies and the Ontology Alignment Evaluation Initiative (OAEI) tests. The results show that the proposed techniques outperform previous approaches in terms of precision and recall.

  5. A flexible integration framework for a Semantic Geospatial Web application

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Mei, Kun; Bian, Fuling

    2008-10-01

    With the growth of the World Wide Web technologies, the access to and use of geospatial information changed in the past decade radically. Previously, the data processed by a GIS as well as its methods had resided locally and contained information that was sufficiently unambiguous in the respective information community. Now, both data and methods may be retrieved and combined from anywhere in the world, escaping their local contexts. The last few years have seen a growing interest in the field of semantic geospatial web. With the development of semantic web technologies, we have seen the possibility of solving the heterogeneity/interoperation problem in the GIS community. The semantic geospatial web application can support a wide variety of tasks including data integration, interoperability, knowledge reuse, spatial reasoning and many others. This paper proposes a flexible framework called GeoSWF (short for Geospatial Semantic Web Framework), which supports the semantic integration of the distributed and heterogeneous geospatial information resources and also supports the semantic query and spatial relationship reasoning. We design the architecture of GeoSWF by extending the MVC Pattern. The GeoSWF use the geo-2007.owl proposed by W3C as the reference ontology of the geospatial information and design different application ontologies according to the situation of heterogeneous geospatial information resources. A Geospatial Ontology Creating Algorithm (GOCA) is designed for convert the geospatial information to the ontology instances represented by RDF/OWL. On the top of these ontology instances, the GeoSWF carry out the semantic reasoning by the rule set stored in the knowledge base to generate new system query. The query result will be ranking by ordering the Euclidean distance of each ontology instances. At last, the paper gives the conclusion and future work.

  6. Category number impacts rule-based and information-integration category learning: a reassessment of evidence for dissociable category-learning systems.

    PubMed

    Stanton, Roger D; Nosofsky, Robert M

    2013-07-01

    Researchers have proposed that an explicit reasoning system is responsible for learning rule-based category structures and that a separate implicit, procedural-learning system is responsible for learning information-integration category structures. As evidence for this multiple-system hypothesis, researchers report a dissociation based on category-number manipulations in which rule-based category learning is worse when the category is composed of 4, rather than 2, response categories; however, information-integration category learning is unaffected by category-number manipulations. We argue that within the reported category-number manipulations, there exists a critical confound: Perceptual clusters used to construct the categories are spread apart in the 4-category condition relative to the 2-category one. The present research shows that when this confound is eliminated, performance on information-integration category learning is worse for 4 categories than for 2 categories, and this finding is demonstrated across 2 different information-integration category structures. Furthermore, model-based analyses indicate that a single-system learning model accounts well for both the original findings and the updated experimental findings reported here.

  7. Semantic Integration and Syntactic Planning in Language Production

    ERIC Educational Resources Information Center

    Solomon, Eric S.; Pearlmutter, Neal J.

    2004-01-01

    Five experiments, using a subject-verb agreement error elicitation procedure, investigated syntactic planning processes in production. The experiments examined the influence of semantic integration--the degree to which phrases are tightly linked at the conceptual level--and contrasted two accounts of planning: serial stack-based systems and…

  8. Mining integrated semantic networks for drug repositioning opportunities

    PubMed Central

    Mullen, Joseph; Tipney, Hannah

    2016-01-01

    Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which

  9. Mining integrated semantic networks for drug repositioning opportunities.

    PubMed

    Mullen, Joseph; Cockell, Simon J; Tipney, Hannah; Woollard, Peter M; Wipat, Anil

    2016-01-01

    Current research and development approaches to drug discovery have become less fruitful and more costly. One alternative paradigm is that of drug repositioning. Many marketed examples of repositioned drugs have been identified through serendipitous or rational observations, highlighting the need for more systematic methodologies to tackle the problem. Systems level approaches have the potential to enable the development of novel methods to understand the action of therapeutic compounds, but requires an integrative approach to biological data. Integrated networks can facilitate systems level analyses by combining multiple sources of evidence to provide a rich description of drugs, their targets and their interactions. Classically, such networks can be mined manually where a skilled person is able to identify portions of the graph (semantic subgraphs) that are indicative of relationships between drugs and highlight possible repositioning opportunities. However, this approach is not scalable. Automated approaches are required to systematically mine integrated networks for these subgraphs and bring them to the attention of the user. We introduce a formal framework for the definition of integrated networks and their associated semantic subgraphs for drug interaction analysis and describe DReSMin, an algorithm for mining semantically-rich networks for occurrences of a given semantic subgraph. This algorithm allows instances of complex semantic subgraphs that contain data about putative drug repositioning opportunities to be identified in a computationally tractable fashion, scaling close to linearly with network data. We demonstrate the utility of our approach by mining an integrated drug interaction network built from 11 sources. This work identified and ranked 9,643,061 putative drug-target interactions, showing a strong correlation between highly scored associations and those supported by literature. We discuss the 20 top ranked associations in more detail, of which

  10. SCALEUS: Semantic Web Services Integration for Biomedical Applications.

    PubMed

    Sernadela, Pedro; González-Castro, Lorena; Oliveira, José Luís

    2017-04-01

    In recent years, we have witnessed an explosion of biological data resulting largely from the demands of life science research. The vast majority of these data are freely available via diverse bioinformatics platforms, including relational databases and conventional keyword search applications. This type of approach has achieved great results in the last few years, but proved to be unfeasible when information needs to be combined or shared among different and scattered sources. During recent years, many of these data distribution challenges have been solved with the adoption of semantic web. Despite the evident benefits of this technology, its adoption introduced new challenges related with the migration process, from existent systems to the semantic level. To facilitate this transition, we have developed Scaleus, a semantic web migration tool that can be deployed on top of traditional systems in order to bring knowledge, inference rules, and query federation to the existent data. Targeted at the biomedical domain, this web-based platform offers, in a single package, straightforward data integration and semantic web services that help developers and researchers in the creation process of new semantically enhanced information systems. SCALEUS is available as open source at http://bioinformatics-ua.github.io/scaleus/ .

  11. Towards A Topological Framework for Integrating Semantic Information Sources

    SciTech Connect

    Joslyn, Cliff A.; Hogan, Emilie A.; Robinson, Michael

    2014-09-07

    In this position paper we argue for the role that topological modeling principles can play in providing a framework for sensor integration. While used successfully in standard (quantitative) sensors, we are developing this methodology in new directions to make it appropriate specifically for semantic information sources, including keyterms, ontology terms, and other general Boolean, categorical, ordinal, and partially-ordered data types. We illustrate the basics of the methodology in an extended use case/example, and discuss path forward.

  12. Project Integration Architecture: Formulation of Dimensionality in Semantic Parameters Outline

    NASA Technical Reports Server (NTRS)

    Jones, William Henry

    2005-01-01

    One of several key elements of the Project Integration Architecture (PIA) is the formulation of parameter objects which convey meaningful semantic information. The infusion of measurement dimensionality into such objects is an important part of that effort since it promises to automate the conversion of units between cooperating applications and, thereby, eliminate the mistakes that have occasionally beset other systems of information transport. This paper discusses the conceptualization of dimensionality developed as a result of that effort.

  13. Predicting Protein Function via Semantic Integration of Multiple Networks.

    PubMed

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.

  14. Semantic Representation of Newly Learned L2 Words and Their Integration in the L2 Lexicon

    ERIC Educational Resources Information Center

    Bordag, Denisa; Kirschenbaum, Amit; Rogahn, Maria; Opitz, Andreas

    2017-01-01

    The present semantic priming study explores the integration of newly learnt L2 German words into the L2 semantic network of German advanced learners. It provides additional evidence in support of earlier findings reporting semantic inhibition effects for emergent representations. An inhibitory mechanism is proposed that temporarily decreases the…

  15. Simulation of operating rules and discretional decisions using a fuzzy rule-based system integrated into a water resources management model

    NASA Astrophysics Data System (ADS)

    Macian-Sorribes, Hector; Pulido-Velazquez, Manuel

    2013-04-01

    Water resources systems are operated, mostly, using a set of pre-defined rules not regarding, usually, to an optimal allocation in terms of water use or economic benefits, but to historical and institutional reasons. These operating policies are reproduced, commonly, as hedging rules, pack rules or zone-based operations, and simulation models can be used to test their performance under a wide range of hydrological and/or socio-economic hypothesis. Despite the high degree of acceptation and testing that these models have achieved, the actual operation of water resources systems hardly follows all the time the pre-defined rules with the consequent uncertainty on the system performance. Real-world reservoir operation is very complex, affected by input uncertainty (imprecision in forecast inflow, seepage and evaporation losses, etc.), filtered by the reservoir operator's experience and natural risk-aversion, while considering the different physical and legal/institutional constraints in order to meet the different demands and system requirements. The aim of this work is to expose a fuzzy logic approach to derive and assess the historical operation of a system. This framework uses a fuzzy rule-based system to reproduce pre-defined rules and also to match as close as possible the actual decisions made by managers. After built up, the fuzzy rule-based system can be integrated in a water resources management model, making possible to assess the system performance at the basin scale. The case study of the Mijares basin (eastern Spain) is used to illustrate the method. A reservoir operating curve regulates the two main reservoir releases (operated in a conjunctive way) with the purpose of guaranteeing a high realiability of supply to the traditional irrigation districts with higher priority (more senior demands that funded the reservoir construction). A fuzzy rule-based system has been created to reproduce the operating curve's performance, defining the system state (total

  16. Semantic Integrative Digital Pathology: Insights into Microsemiological Semantics and Image Analysis Scalability.

    PubMed

    Racoceanu, Daniel; Capron, Frédérique

    2016-01-01

    Being able to provide a traceable and dynamic second opinion has become an ethical priority for patients and health care professionals in modern computer-aided medicine. In this perspective, a semantic cognitive virtual microscopy approach has been recently initiated, the MICO project, by focusing on cognitive digital pathology. This approach supports the elaboration of pathology-compliant daily protocols dedicated to breast cancer grading, in particular mitotic counts and nuclear atypia. A proof of concept has thus been elaborated, and an extension of these approaches is now underway in a collaborative digital pathology framework, the FlexMIm project. As important milestones on the way to routine digital pathology, a series of pioneer international benchmarking initiatives have been launched for mitosis detection (MITOS), nuclear atypia grading (MITOS-ATYPIA) and glandular structure detection (GlaS), some of the fundamental grading components in diagnosis and prognosis. These initiatives allow envisaging a consolidated validation referential database for digital pathology in the very near future. This reference database will need coordinated efforts from all major teams working in this area worldwide, and it will certainly represent a critical bottleneck for the acceptance of all future imaging modules in clinical practice. In line with recent advances in molecular imaging and genetics, keeping the microscopic modality at the core of future digital systems in pathology is fundamental to insure the acceptance of these new technologies, as well as for a deeper systemic, structured comprehension of the pathologies. After all, at the scale of routine whole-slide imaging (WSI; ∼0.22 µm/pixel), the microscopic image represents a structured 'genomic cluster', enabling a naturally structured support for integrative digital pathology approaches. In order to accelerate and structure the integration of this heterogeneous information, a major effort is and will continue to

  17. Semantic Web integration of Cheminformatics resources with the SADI framework

    PubMed Central

    2011-01-01

    Background The diversity and the largely independent nature of chemical research efforts over the past half century are, most likely, the major contributors to the current poor state of chemical computational resource and database interoperability. While open software for chemical format interconversion and database entry cross-linking have partially addressed database interoperability, computational resource integration is hindered by the great diversity of software interfaces, languages, access methods, and platforms, among others. This has, in turn, translated into limited reproducibility of computational experiments and the need for application-specific computational workflow construction and semi-automated enactment by human experts, especially where emerging interdisciplinary fields, such as systems chemistry, are pursued. Fortunately, the advent of the Semantic Web, and the very recent introduction of RESTful Semantic Web Services (SWS) may present an opportunity to integrate all of the existing computational and database resources in chemistry into a machine-understandable, unified system that draws on the entirety of the Semantic Web. Results We have created a prototype framework of Semantic Automated Discovery and Integration (SADI) framework SWS that exposes the QSAR descriptor functionality of the Chemistry Development Kit. Since each of these services has formal ontology-defined input and output classes, and each service consumes and produces RDF graphs, clients can automatically reason about the services and available reference information necessary to complete a given overall computational task specified through a simple SPARQL query. We demonstrate this capability by carrying out QSAR analysis backed by a simple formal ontology to determine whether a given molecule is drug-like. Further, we discuss parameter-based control over the execution of SADI SWS. Finally, we demonstrate the value of computational resource envelopment as SADI services through

  18. Integrating Non-Semantic Knowledge into Image Segmentation Processes.

    DTIC Science & Technology

    1984-03-01

    D-A149 571 INTEGRATING NON-SEMANTIC KNOWLEDGE INTO IMAGE 1/2 SEGMENTATION PROCESSES(U) MRSSACHUSETTS UNIV AMHERST DEPT OF COMPUTER AND INFORMATION S... IMAGE SEGMENTATION PROCESSES Ralf R. Kohler COINS Technical Report 84-04 SJAN 1 7 1985) This work was supported in part by the Office of Naval Rearch...RR07048-16. DITPI~rN STTM!4 j~pwvq jx public 7le" Dwtnutlfl nlmited . .. Teatn Non-SanatIC Knowledge into Image Segmentation Proces A Dissertation

  19. Semantic Priming in Dutch Children: Word Meaning Integration and Study Modality Effects

    ERIC Educational Resources Information Center

    van der Ven, Frauke; Takashima, Atsuko; Segers, Eliane; Verhoeven, Ludo

    2017-01-01

    Research in adults has shown that novel words are encoded rather swiftly but that their semantic integration occurs more slowly and that studying definitions presented in a written modality may benefit integration. It is unclear, however, how semantic integration proceeds in children, who (compared to adults) have more malleable brains and less…

  20. Semantic integration and syntactic planning in language production.

    PubMed

    Solomon, Eric S; Pearlmutter, Neal J

    2004-08-01

    Five experiments, using a subject-verb agreement error elicitation procedure, investigated syntactic planning processes in production. The experiments examined the influence of semantic integration--the degree to which phrases are tightly linked at the conceptual level--and contrasted two accounts of planning: serial stack-based systems and parallel activation-based systems. Serial stack-based systems rely on memory-shifting processes to coordinate ongoing planning. Memory-shifting should be easier for more integrated phrases, resulting in fewer errors. Parallel, activation-based systems, on the other hand, maintain multiple representations simultaneously in memory. More integrated phrases will be more likely to be processed together, resulting in increased interference and more errors. Participants completed stimuli like The drawing of/with the flower(s), which varied local noun number (flower(s)) and the relationship between the head (drawing) and local noun. In some constructions, the nouns were tightly integrated (e.g., of), whereas in others the relationship was looser (e.g., with, specifying accompaniment). In addition to the well-established local noun mismatch effect (more errors for plural than for singular local nouns), all experiments revealed larger mismatch error effects following tightly integrated stimuli. These results are compatible with parallel activation-based accounts and cannot be explained by serial, memory-shift-based accounts. The experiments and three meta-analyses also ruled out alternative accounts based on plausibility, argumenthood, conceptual number, clause packaging, or hierarchical feature-passing, reinforcing the general finding that error rates increase with degree of semantic integration.

  1. Semantic Integration for Marine Science Interoperability Using Web Technologies

    NASA Astrophysics Data System (ADS)

    Rueda, C.; Bermudez, L.; Graybeal, J.; Isenor, A. W.

    2008-12-01

    The Marine Metadata Interoperability Project, MMI (http://marinemetadata.org) promotes the exchange, integration, and use of marine data through enhanced data publishing, discovery, documentation, and accessibility. A key effort is the definition of an Architectural Framework and Operational Concept for Semantic Interoperability (http://marinemetadata.org/sfc), which is complemented with the development of tools that realize critical use cases in semantic interoperability. In this presentation, we describe a set of such Semantic Web tools that allow performing important interoperability tasks, ranging from the creation of controlled vocabularies and the mapping of terms across multiple ontologies, to the online registration, storage, and search services needed to work with the ontologies (http://mmisw.org). This set of services uses Web standards and technologies, including Resource Description Framework (RDF), Web Ontology language (OWL), Web services, and toolkits for Rich Internet Application development. We will describe the following components: MMI Ontology Registry: The MMI Ontology Registry and Repository provides registry and storage services for ontologies. Entries in the registry are associated with projects defined by the registered users. Also, sophisticated search functions, for example according to metadata items and vocabulary terms, are provided. Client applications can submit search requests using the WC3 SPARQL Query Language for RDF. Voc2RDF: This component converts an ASCII comma-delimited set of terms and definitions into an RDF file. Voc2RDF facilitates the creation of controlled vocabularies by using a simple form-based user interface. Created vocabularies and their descriptive metadata can be submitted to the MMI Ontology Registry for versioning and community access. VINE: The Vocabulary Integration Environment component allows the user to map vocabulary terms across multiple ontologies. Various relationships can be established, for example

  2. Electrophysiological Evidence for Incremental Lexical-Semantic Integration in Auditory Compound Comprehension

    ERIC Educational Resources Information Center

    Koester, Dirk; Holle, Henning; Gunter, Thomas C.

    2009-01-01

    The present study investigated the time-course of semantic integration in auditory compound word processing. Compounding is a productive mechanism of word formation that is used frequently in many languages. Specifically, we examined whether semantic integration is incremental or is delayed until the head, the last constituent in German, is…

  3. Quantitative Aspects of Single-Word Free Associations to Sentences Varying in Semantic Integration.

    ERIC Educational Resources Information Center

    Rosenberg, Sheldon

    It was anticipated that the single-word free association responses to sentences varying in degree of semantic integration (as indexed by sentence norms) would differ quantitatively. One group of 60 undergraduates was given a list of 16 sentences characterized by high semantic integration (HSI), while another group of 60 undergraduates received a…

  4. Semantic ambiguity within and across languages: an integrative review.

    PubMed

    Degani, Tamar; Tokowicz, Natasha

    2010-07-01

    Semantic ambiguity often occurs within a language (e.g., the word "organ" in English means both a body part and a musical instrument), but it can also cross a language boundary, such that a given word form is shared in two languages, but its meanings are different (e.g., the word "angel" means "sting" in Dutch). Bilingual individuals are therefore faced not only with ambiguity in each of their languages, but also with ambiguity across languages. The current review focuses on studies that explored such cross-language ambiguity and examines how the results from these studies can be integrated with what we have learned about within-language ambiguity resolution. In particular, this review examines how interactions of frequency and context manifest themselves in ambiguity that crosses a language boundary and call for the inclusion of language context as a contributing factor. An extension of the monolingual reordered access model (Duffy, Morris, & Rayner, 1988) is outlined to discuss the interactions between these factors. Furthermore, the effects of the similarity between the two meanings, task differences, and individual differences are explored. This review highlights the need for studies that test within- and cross-language ambiguity in the same individuals before strong conclusions can be made about the nature of interactions between frequency, semantic context, and language context.

  5. Integrated Semantics Service Platform for the Internet of Things: A Case Study of a Smart Office

    PubMed Central

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-01

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability. PMID:25608216

  6. Integrated semantics service platform for the Internet of Things: a case study of a smart office.

    PubMed

    Ryu, Minwoo; Kim, Jaeho; Yun, Jaeseok

    2015-01-19

    The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.

  7. Neural correlates of audiovisual integration of semantic category information.

    PubMed

    Hu, Zhonghua; Zhang, Ruiling; Zhang, Qinglin; Liu, Qiang; Li, Hong

    2012-04-01

    Previous studies have found a late frontal-central audiovisual interaction during the time period about 150-220 ms post-stimulus. However, it is unclear to which process is this audiovisual interaction related: to processing of acoustical features or to classification of stimuli? To investigate this question, event-related potentials were recorded during a words-categorization task with stimuli presented in the auditory-visual modality. In the experiment, congruency of the visual and auditory stimuli was manipulated. Results showed that within the window of about 180-210 ms post-stimulus more positive values were elicited by category-congruent audiovisual stimuli than category-incongruent audiovisual stimuli. This indicates that the late frontal-central audiovisual interaction is related to audiovisual integration of semantic category information. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. A Semantic Web Management Model for Integrative Biomedical Informatics

    PubMed Central

    Deus, Helena F.; Stanislaus, Romesh; Veiga, Diogo F.; Behrens, Carmen; Wistuba, Ignacio I.; Minna, John D.; Garner, Harold R.; Swisher, Stephen G.; Roth, Jack A.; Correa, Arlene M.; Broom, Bradley; Coombes, Kevin; Chang, Allen; Vogel, Lynn H.; Almeida, Jonas S.

    2008-01-01

    Background Data, data everywhere. The diversity and magnitude of the data generated in the Life Sciences defies automated articulation among complementary efforts. The additional need in this field for managing property and access permissions compounds the difficulty very significantly. This is particularly the case when the integration involves multiple domains and disciplines, even more so when it includes clinical and high throughput molecular data. Methodology/Principal Findings The emergence of Semantic Web technologies brings the promise of meaningful interoperation between data and analysis resources. In this report we identify a core model for biomedical Knowledge Engineering applications and demonstrate how this new technology can be used to weave a management model where multiple intertwined data structures can be hosted and managed by multiple authorities in a distributed management infrastructure. Specifically, the demonstration is performed by linking data sources associated with the Lung Cancer SPORE awarded to The University of Texas MDAnderson Cancer Center at Houston and the Southwestern Medical Center at Dallas. A software prototype, available with open source at www.s3db.org, was developed and its proposed design has been made publicly available as an open source instrument for shared, distributed data management. Conclusions/Significance The Semantic Web technologies have the potential to addresses the need for distributed and evolvable representations that are critical for systems Biology and translational biomedical research. As this technology is incorporated into application development we can expect that both general purpose productivity software and domain specific software installed on our personal computers will become increasingly integrated with the relevant remote resources. In this scenario, the acquisition of a new dataset should automatically trigger the delegation of its analysis. PMID:18698353

  9. Distributed semantic networks and CLIPS

    NASA Technical Reports Server (NTRS)

    Snyder, James; Rodriguez, Tony

    1991-01-01

    Semantic networks of frames are commonly used as a method of reasoning in many problems. In most of these applications the semantic network exists as a single entity in a single process environment. Advances in workstation hardware provide support for more sophisticated applications involving multiple processes, interacting in a distributed environment. In these applications the semantic network may well be distributed over several concurrently executing tasks. This paper describes the design and implementation of a frame based, distributed semantic network in which frames are accessed both through C Language Integrated Production System (CLIPS) expert systems and procedural C++ language programs. The application area is a knowledge based, cooperative decision making model utilizing both rule based and procedural experts.

  10. Altered semantic integration in autism beyond language: a cross-modal event-related potentials study.

    PubMed

    Ribeiro, Tatiane C; Valasek, Claudia A; Minati, Ludovico; Boggio, Paulo S

    2013-05-29

    Autism spectrum disorders (ASDs) are characterized by impaired communication, particularly pragmatic and semantic language, resulting in verbal comprehension deficits. Semantic processing in these conditions has been studied extensively, but mostly limited only to linguistic material. Emerging evidence, however, suggests that semantic integration deficits may extend beyond the verbal domain. Here, we explored cross-modal semantic integration using visual targets preceded by musical and linguistic cues. Particularly, we have recorded the event-related potentials to evaluate whether the N400 and late positive potential (LPP) components, two widely studied electrophysiological markers of semantic processing, are differently sensitive to congruence with respect to typically developing children. Seven ASD patients and seven neurotypical participants matched by age, education and intelligence quotient provided usable data. Neuroelectric activity was recorded in response to visual targets that were related or unrelated to a preceding spoken sentence or musical excerpt. The N400 was sensitive to semantic congruence in the controls but not the patients, whereas the LPP showed a complementary pattern. These results suggest that semantic processing in ASD children is also altered in the context of musical and visual stimuli, and point to a functional decoupling between the generators of the N400 and LPP, which may indicate delayed semantic processing. These novel findings underline the importance of exploring semantic integration across multiple modalities in ASDs and provide motivation for further investigation in large clinical samples.

  11. Disease Ontology: a backbone for disease semantic integration

    PubMed Central

    Schriml, Lynn Marie; Arze, Cesar; Nadendla, Suvarna; Chang, Yu-Wei Wayne; Mazaitis, Mark; Felix, Victor; Feng, Gang; Kibbe, Warren Alden

    2012-01-01

    The Disease Ontology (DO) database (http://disease-ontology.org) represents a comprehensive knowledge base of 8043 inherited, developmental and acquired human diseases (DO version 3, revision 2510). The DO web browser has been designed for speed, efficiency and robustness through the use of a graph database. Full-text contextual searching functionality using Lucene allows the querying of name, synonym, definition, DOID and cross-reference (xrefs) with complex Boolean search strings. The DO semantically integrates disease and medical vocabularies through extensive cross mapping and integration of MeSH, ICD, NCI's thesaurus, SNOMED CT and OMIM disease-specific terms and identifiers. The DO is utilized for disease annotation by major biomedical databases (e.g. Array Express, NIF, IEDB), as a standard representation of human disease in biomedical ontologies (e.g. IDO, Cell line ontology, NIFSTD ontology, Experimental Factor Ontology, Influenza Ontology), and as an ontological cross mappings resource between DO, MeSH and OMIM (e.g. GeneWiki). The DO project (http://diseaseontology.sf.net) has been incorporated into open source tools (e.g. Gene Answers, FunDO) to connect gene and disease biomedical data through the lens of human disease. The next iteration of the DO web browser will integrate DO's extended relations and logical definition representation along with these biomedical resource cross-mappings. PMID:22080554

  12. Disease Ontology: a backbone for disease semantic integration.

    PubMed

    Schriml, Lynn Marie; Arze, Cesar; Nadendla, Suvarna; Chang, Yu-Wei Wayne; Mazaitis, Mark; Felix, Victor; Feng, Gang; Kibbe, Warren Alden

    2012-01-01

    The Disease Ontology (DO) database (http://disease-ontology.org) represents a comprehensive knowledge base of 8043 inherited, developmental and acquired human diseases (DO version 3, revision 2510). The DO web browser has been designed for speed, efficiency and robustness through the use of a graph database. Full-text contextual searching functionality using Lucene allows the querying of name, synonym, definition, DOID and cross-reference (xrefs) with complex Boolean search strings. The DO semantically integrates disease and medical vocabularies through extensive cross mapping and integration of MeSH, ICD, NCI's thesaurus, SNOMED CT and OMIM disease-specific terms and identifiers. The DO is utilized for disease annotation by major biomedical databases (e.g. Array Express, NIF, IEDB), as a standard representation of human disease in biomedical ontologies (e.g. IDO, Cell line ontology, NIFSTD ontology, Experimental Factor Ontology, Influenza Ontology), and as an ontological cross mappings resource between DO, MeSH and OMIM (e.g. GeneWiki). The DO project (http://diseaseontology.sf.net) has been incorporated into open source tools (e.g. Gene Answers, FunDO) to connect gene and disease biomedical data through the lens of human disease. The next iteration of the DO web browser will integrate DO's extended relations and logical definition representation along with these biomedical resource cross-mappings.

  13. Role of consciousness in temporal integration of semantic information.

    PubMed

    Yang, Yung-Hao; Tien, Yung-Hsuan; Yang, Pei-Ling; Yeh, Su-Ling

    2017-07-05

    Previous studies found that word meaning can be processed unconsciously. Yet it remains unknown whether temporally segregated words can be integrated into a holistic meaningful phrase without consciousness. The first four experiments were designed to examine this by sequentially presenting the first three words of Chinese four-word idioms as prime to one eye and dynamic Mondrians to the other (i.e., the continuous flash suppression paradigm; CFS). An unmasked target word followed the three masked words in a lexical decision task. Results from such invisible (CFS) condition were compared with the visible condition where the preceding words were superimposed on the Mondrians and presented to both eyes. Lower performance in behavioral experiments and larger N400 event-related potentials (ERP) component for incongruent- than congruent-ending words were found in the visible condition. However, no such congruency effect was found in the invisible condition, even with enhanced statistical power and top-down attention, and with several potential confounding factors (contrast-dependent processing, long interval, no conscious training) excluded. Experiment 5 demonstrated that familiarity of word orientation without temporal integration can be processed unconsciously, excluding the possibility of general insensitivity of our paradigm. The overall result pattern therefore suggests that consciousness plays an important role in semantic temporal integration in the conditions we tested.

  14. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases.

    PubMed

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-07-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.

  15. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases

    PubMed Central

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-01-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org. PMID:21632604

  16. Separate Brain Circuits Support Integrative and Semantic Priming in the Human Language System.

    PubMed

    Feng, Gangyi; Chen, Qi; Zhu, Zude; Wang, Suiping

    2016-07-01

    Semantic priming is a crucial phenomenon to study the organization of semantic memory. A novel type of priming effect, integrative priming, has been identified behaviorally, whereby a prime word facilitates recognition of a target word when the 2 concepts can be combined to form a unitary representation. We used both functional and anatomical imaging approaches to investigate the neural substrates supporting such integrative priming, and compare them with those in semantic priming. Similar behavioral priming effects for both semantic (Bread-Cake) and integrative conditions (Cherry-Cake) were observed when compared with an unrelated condition. However, a clearly dissociated brain response was observed between these 2 types of priming. The semantic-priming effect was localized to the posterior superior temporal and middle temporal gyrus. In contrast, the integrative-priming effect localized to the left anterior inferior frontal gyrus and left anterior temporal cortices. Furthermore, fiber tractography showed that the integrative-priming regions were connected via uncinate fasciculus fiber bundle forming an integrative circuit, whereas the semantic-priming regions connected to the posterior frontal cortex via separated pathways. The results point to dissociable neural pathways underlying the 2 distinct types of priming, illuminating the neural circuitry organization of semantic representation and integration.

  17. Semantic Integration and Age of Acquisition Effects in Code-Blend Comprehension

    PubMed Central

    Emmorey, Karen

    2016-01-01

    Semantic and lexical decision tasks were used to investigate the mechanisms underlying code-blend facilitation: the finding that hearing bimodal bilinguals comprehend signs in American Sign Language (ASL) and spoken English words more quickly when they are presented together simultaneously than when each is presented alone. More robust facilitation effects were observed for semantic decision than for lexical decision, suggesting that lexical integration of signs and words within a code-blend occurs primarily at the semantic level, rather than at the level of form. Early bilinguals exhibited greater facilitation effects than late bilinguals for English (the dominant language) in the semantic decision task, possibly because early bilinguals are better able to process early visual cues from ASL signs and use these to constrain English word recognition. Comprehension facilitation via semantic integration of words and signs is consistent with co-speech gesture research demonstrating facilitative effects of gesture integration on language comprehension. PMID:26657077

  18. Linked Metadata - lightweight semantics for data integration (Invited)

    NASA Astrophysics Data System (ADS)

    Hendler, J. A.

    2013-12-01

    The "Linked Open Data" cloud (http://linkeddata.org) is currently used to show how the linking of datasets, supported by SPARQL endpoints, is creating a growing set of linked data assets. This linked data space has been growing rapidly, and the last version collected is estimated to have had over 35 billion 'triples.' As impressive as this may sound, there is an inherent flaw in the way the linked data story is conceived. The idea is that all of the data is represented in a linked format (generally RDF) and applications will essentially query this cloud and provide mashup capabilities between the various kinds of data that are found. The view of linking in the cloud is fairly simple -links are provided by either shared URIs or by URIs that are asserted to be owl:sameAs. This view of the linking, which primarily focuses on shared objects and subjects in RDF's subject-predicate-object representation, misses a critical aspect of Semantic Web technology. Given triples such as * A:person1 foaf:knows A:person2 * B:person3 foaf:knows B:person4 * C:person5 foaf:name 'John Doe' this view would not consider them linked (barring other assertions) even though they share a common vocabulary. In fact, we get significant clues that there are commonalities in these data items from the shared namespaces and predicates, even if the traditional 'graph' view of RDF doesn't appear to join on these. Thus, it is the linking of the data descriptions, whether as metadata or other vocabularies, that provides the linking in these cases. This observation is crucial to scientific data integration where the size of the datasets, or even the individual relationships within them, can be quite large. (Note that this is not restricted to scientific data - search engines, social networks, and massive multiuser games also create huge amounts of data.) To convert all the triples into RDF and provide individual links is often unnecessary, and is both time and space intensive. Those looking to do on the

  19. ELE: An Ontology-Based System Integrating Semantic Search and E-Learning Technologies

    ERIC Educational Resources Information Center

    Barbagallo, A.; Formica, A.

    2017-01-01

    ELSE (E-Learning for the Semantic ECM) is an ontology-based system which integrates semantic search methodologies and e-learning technologies. It has been developed within a project of the CME (Continuing Medical Education) program--ECM (Educazione Continua nella Medicina) for Italian participants. ELSE allows the creation of e-learning courses…

  20. Integrating Syntax, Semantics, and Discourse DARPA (Defense Advanced Research Projects Agency) Natural Language Understanding Program

    DTIC Science & Technology

    1988-08-01

    resolution of anaphoric references, and an analysis of temporal relations. The resulting data structure is known as the Integrated Discourse Representation... binding procedures * semantics.pl - the Semantic Interpreter * world.pl - general knowledge base procedures - Pragmatics * discourse-rules.pl - manage

  1. SemantEco: a semantically powered modular architecture for integrating distributed environmental and ecological data

    USGS Publications Warehouse

    Patton, Evan W.; Seyed, Patrice; Wang, Ping; Fu, Linyun; Dein, F. Joshua; Bristol, R. Sky; McGuinness, Deborah L.

    2014-01-01

    We aim to inform the development of decision support tools for resource managers who need to examine large complex ecosystems and make recommendations in the face of many tradeoffs and conflicting drivers. We take a semantic technology approach, leveraging background ontologies and the growing body of linked open data. In previous work, we designed and implemented a semantically enabled environmental monitoring framework called SemantEco and used it to build a water quality portal named SemantAqua. Our previous system included foundational ontologies to support environmental regulation violations and relevant human health effects. In this work, we discuss SemantEco’s new architecture that supports modular extensions and makes it easier to support additional domains. Our enhanced framework includes foundational ontologies to support modeling of wildlife observation and wildlife health impacts, thereby enabling deeper and broader support for more holistically examining the effects of environmental pollution on ecosystems. We conclude with a discussion of how, through the application of semantic technologies, modular designs will make it easier for resource managers to bring in new sources of data to support more complex use cases.

  2. A Bayesian framework for knowledge attribution: evidence from semantic integration.

    PubMed

    Powell, Derek; Horne, Zachary; Pinillos, N Ángel; Holyoak, Keith J

    2015-06-01

    We propose a Bayesian framework for the attribution of knowledge, and apply this framework to generate novel predictions about knowledge attribution for different types of "Gettier cases", in which an agent is led to a justified true belief yet has made erroneous assumptions. We tested these predictions using a paradigm based on semantic integration. We coded the frequencies with which participants falsely recalled the word "thought" as "knew" (or a near synonym), yielding an implicit measure of conceptual activation. Our experiments confirmed the predictions of our Bayesian account of knowledge attribution across three experiments. We found that Gettier cases due to counterfeit objects were not treated as knowledge (Experiment 1), but those due to intentionally-replaced evidence were (Experiment 2). Our findings are not well explained by an alternative account focused only on luck, because accidentally-replaced evidence activated the knowledge concept more strongly than did similar false belief cases (Experiment 3). We observed a consistent pattern of results across a number of different vignettes that varied the quality and type of evidence available to agents, the relative stakes involved, and surface details of content. Accordingly, the present findings establish basic phenomena surrounding people's knowledge attributions in Gettier cases, and provide explanations of these phenomena within a Bayesian framework.

  3. Life-Span Differences in Semantic Integration of Pictures and Sentences in Memory.

    ERIC Educational Resources Information Center

    Pezdek, Kathy

    1980-01-01

    Examines life-span developmental differences in spontaneous integration of semantically relevant material presented in pictures and sentences. Elementary school students, high school students, and adults were tested. (Author/SS)

  4. An Application of the Geo-Semantic Micro-services in Seamless Data-Model Integration

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Elag, M.; Kumar, P.; Liu, R.; Hu, Y.; Marini, L.; Peckham, S. D.; Hsu, L.

    2016-12-01

    Seamless data-model integration is usually difficult due to the heterogeneity of the entities (i.e., data and model). These heterogeneities arise from different usages of variable names, units, tempo-spatial property, file formant and programming language. Semantic web technology provides an opportunity to lower the interoperability barrier of data-model integration by enriching the semantics of each entity. In this study, we show an example of seamlessly coupling Model-as-a-Service (MaaS) and Data-as-a-Service (DaaS) by using the micro-services developed in the Geo-Semantic project supported by NSF Earthcube program. The goal of the Geo-Semantic poject is to develop a set of micro-services, which are rooted in the semantic web technology, to couple the heterogeneous data and model. The considered MaaS and DaaS in this application are the web service models developed by adopting the Basic Model Interfaces and Clowder (an online data repository), respectively. Through the Geo-Semantic micro-services, we are able to enrich the semantics of data in Clowder by using the Semantic Annotation Service, find the data file required for the input of the model by using the Knowledge Discovery Service, and transform the data file into the required format for the model's input by using the Resource Alignment Service. The entire orchestration is performed in Experimental Modeling Environment for Linking and Interoperability - Web Application, a web application for integrating the BMI-enabled web service TopoFlow components and Clowder-supported data from Intensely Managed Landscapes Critical Zone Observatory (IMLCZO). We demonstrate that it is possible to efficiently achieve seamless data-model integration by using the Geo-Semantic architecture, therefore potentially saving scientists huge amounts of time in data preparation for models.

  5. Integration of Sentence-Level Semantic Information in Parafovea: Evidence from the RSVP-Flanker Paradigm.

    PubMed

    Zhang, Wenjia; Li, Nan; Wang, Xiaoyue; Wang, Suiping

    2015-01-01

    During text reading, the parafoveal word was usually presented between 2° and 5° from the point of fixation. Whether semantic information of parafoveal words can be processed during sentence reading is a critical and long-standing issue. Recently, studies using the RSVP-flanker paradigm have shown that the incongruent parafoveal word, presented as right flanker, elicited a more negative N400 compared with the congruent parafoveal word. This suggests that the semantic information of parafoveal words can be extracted and integrated during sentence reading, because the N400 effect is a classical index of semantic integration. However, as most previous studies did not control the word-pair congruency of the parafoveal and the foveal words that were presented in the critical triad, it is still unclear whether such integration happened at the sentence level or just at the word-pair level. The present study addressed this question by manipulating verbs in Chinese sentences to yield either a semantically congruent or semantically incongruent context for the critical noun. In particular, the interval between the critical nouns and verbs was controlled to be 4 or 5 characters. Thus, to detect the incongruence of the parafoveal noun, participants had to integrate it with the global sentential context. The results revealed that the N400 time-locked to the critical triads was more negative in incongruent than in congruent sentences, suggesting that parafoveal semantic information can be integrated at the sentence level during Chinese reading.

  6. Towards a Reference Volcano Ontology for Semantic Scientific Data Integration

    NASA Astrophysics Data System (ADS)

    McGuinness, D. L.; Sinha, A. K.; Fox, P.; Raskin, R.; Heiken, G.; Barnes, C.; Wohletz, K.; Venezky, D.; Lin, K.

    2006-05-01

    When scientific progress depends on integration of data across disciplines, it is critical for the users in the diverse disciplines to have access to the data in terms they can understand and use. Ontologies provide a method for encoding terms, term meaning, and term inter-relationships in a machine interpretable format. In a geology setting, this means that ontologies provide a way of representing geologic terms and their associated properties. These encodings can enable interoperability and interdisciplinary data integration by allowing end users and agents to access precise, operational term definitions. In support of a NASA-funded scientific application that needs to share volcano and climate data to investigate relationships between volcanism and global climate, we have begun to generate a volcano ontology. Our goal is to create a reference ontology - an open terminology representation that is meant to be shared and reused by a broad community of users interested in the subject area as well as to provide access to key volcanology databases. At a kickoff ontology workshop in our Semantically Enabled Scientific Data Integration (SESDI) project, we brought together a small group of volcano experts and science ontology experts. The result of our workshop is an initial volcano ontology on which we welcome comments. The initial ontology provides a well defined vocabulary of terms and phrases used to classify volcanoes, volcanic activities, and eruption phenomena. Volcanoes can be classified by composition, tectonic setting, environmental setting, eruption type, activity, geologic setting, and landform. The ontology currently contains upper level terms in these areas and is being expanded according to the needs of the project. A view of the ontology in concept maps is available. Current focus areas include investigation of existing schemas such as WOVOdat as well as existing controlled vocabularies and glossaries such as the USGS/AGI definitions for volcanoes and

  7. A semantic web framework to integrate cancer omics data with biological knowledge

    PubMed Central

    2012-01-01

    Background The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. Results For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. Conclusions We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily. PMID:22373303

  8. A semantic web framework to integrate cancer omics data with biological knowledge.

    PubMed

    Holford, Matthew E; McCusker, James P; Cheung, Kei-Hoi; Krauthammer, Michael

    2012-01-25

    The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily.

  9. Precedency control and other semantic integrity issues in a workbench database

    NASA Technical Reports Server (NTRS)

    Dampney, C. N. G.

    1983-01-01

    Most database systems model the current state of a system of real world discrete and simple entities together with their relationships. By examining instead a database system that is a workbench and models more complicated entities, a fresh perspective is gained. Specifically, semantic integrity is analysed. Four aspects distinct from physical integrity are identified, namely - access, failure, concurrency and precedency. Access control is shown to be the consequence of semantic interdependency between data and its matching semantic routines. Failure, concurrency precedency controls are concerned with preventing processes interfering with each other. Precedency is a new concept in the database context. It expresses a constraint between processes that act on the database. As processes create, update and delete entities they in general obey a partial ordering imposed by the semantics of their actions. Precedency control ensures that data remains consistent with respect to this partial order.

  10. Rules-based correction strategies setup on sub-micrometer line and space patterns for 200mm wafer scale SmartNIL process within an integration process flow

    NASA Astrophysics Data System (ADS)

    Teyssedre, H.; Landis, S.; Brianceau, P.; Mayr, M.; Thanner, C.; Laure, M.; Zorbach, W.; Eibelhuber, M.; Pain, L.; Chouiki, M.; Wimplinger, M.

    2017-03-01

    In this paper the rules-based correction strategies for the nanoimprint lithography (NIL) technology are addressed using complete Scanning Electron Microscopy (SEM) characterizations. Performed onto 200 mm wafers imprinted with the HERCULES NIL equipment platform, Critical Dimension (CD) uniformity analyses are used to measure the evolution of lines and spaces features dimensions from the master to 50 consecutive imprints. The work brings focus on sub micrometer resolution features with duty cycles from 3 to 7. The silicon masters were manufactured with 193 optical lithography and dry etching and were fully characterized prior to the imprint process. Repeatability tests were performed over 50 wafers for two different processes to collect statistical and comparative data. The data revealed that the CD evolutions can be modelled by quadratic functions with respect to the number of imprints and feature dimension (CD and pitch) on the master. These models are used to establish the rules-based corrections for lines arrays in the scope of nanoimprint master manufacturing, and it opens the discussion on the process monitoring through metrology for the nanoimprint soft stamp technologies.

  11. Rule-based simulation models

    NASA Technical Reports Server (NTRS)

    Nieten, Joseph L.; Seraphine, Kathleen M.

    1991-01-01

    Procedural modeling systems, rule based modeling systems, and a method for converting a procedural model to a rule based model are described. Simulation models are used to represent real time engineering systems. A real time system can be represented by a set of equations or functions connected so that they perform in the same manner as the actual system. Most modeling system languages are based on FORTRAN or some other procedural language. Therefore, they must be enhanced with a reaction capability. Rule based systems are reactive by definition. Once the engineering system has been decomposed into a set of calculations using only basic algebraic unary operations, a knowledge network of calculations and functions can be constructed. The knowledge network required by a rule based system can be generated by a knowledge acquisition tool or a source level compiler. The compiler would take an existing model source file, a syntax template, and a symbol table and generate the knowledge network. Thus, existing procedural models can be translated and executed by a rule based system. Neural models can be provide the high capacity data manipulation required by the most complex real time models.

  12. Reduced functional connectivity during controlled semantic integration in schizophrenia: A multivariate approach.

    PubMed

    Woodward, Todd S; Tipper, Christine M; Leung, Alexander L; Lavigne, Katie M; Sanford, Nicole; Metzak, Paul D

    2015-08-01

    Impairment in controlled semantic association is a central feature of schizophrenia, and the goal of the current functional magnetic resonance imaging study was to identify the neural correlates of this impairment. Thirty people with schizophrenia and 30 healthy age- and gender-matched control subjects performed a task requiring participants to match word pairs that varied in semantic distance (distant vs. close). A whole-brain multivariate connectivity analysis revealed three functional brain networks of primary interest engaged by the task: two configurations of a multiple demands network, in which brain activity did not differ between groups, and a semantic integration network, in which coordinated activity was reduced in schizophrenia patients relative to healthy controls, for distantly relative to closely related word pairs. The hypoactivity during controlled semantic integration in schizophrenia reported here, combined with hyperactivity in automatic semantic association reported in the literature, suggests an imbalance between controlled integration and automatic association. This provides a biological basis for Bleuler's concept of schizophrenia as a "split mind" arising from an impaired ability to form coherent associations between semantic concepts.

  13. Integrating Experiential and Distributional Data to Learn Semantic Representations

    ERIC Educational Resources Information Center

    Andrews, Mark; Vigliocco, Gabriella; Vinson, David

    2009-01-01

    The authors identify 2 major types of statistical data from which semantic representations can be learned. These are denoted as "experiential data" and "distributional data". Experiential data are derived by way of experience with the physical world and comprise the sensory-motor data obtained through sense receptors. Distributional data, by…

  14. Integrating Experiential and Distributional Data to Learn Semantic Representations

    ERIC Educational Resources Information Center

    Andrews, Mark; Vigliocco, Gabriella; Vinson, David

    2009-01-01

    The authors identify 2 major types of statistical data from which semantic representations can be learned. These are denoted as "experiential data" and "distributional data". Experiential data are derived by way of experience with the physical world and comprise the sensory-motor data obtained through sense receptors. Distributional data, by…

  15. Towards virtual knowledge broker services for semantic integration of life science literature and data sources.

    PubMed

    Harrow, Ian; Filsell, Wendy; Woollard, Peter; Dix, Ian; Braxenthaler, Michael; Gedye, Richard; Hoole, David; Kidd, Richard; Wilson, Jabe; Rebholz-Schuhmann, Dietrich

    2013-05-01

    Research in the life sciences requires ready access to primary data, derived information and relevant knowledge from a multitude of sources. Integration and interoperability of such resources are crucial for sharing content across research domains relevant to the life sciences. In this article we present a perspective review of data integration with emphasis on a semantics driven approach to data integration that pushes content into a shared infrastructure, reduces data redundancy and clarifies any inconsistencies. This enables much improved access to life science data from numerous primary sources. The Semantic Enrichment of the Scientific Literature (SESL) pilot project demonstrates feasibility for using already available open semantic web standards and technologies to integrate public and proprietary data resources, which span structured and unstructured content. This has been accomplished through a precompetitive consortium, which provides a cost effective approach for numerous stakeholders to work together to solve common problems.

  16. Exploration of SWRL Rule Bases through Visualization, Paraphrasing, and Categorization of Rules

    NASA Astrophysics Data System (ADS)

    Hassanpour, Saeed; O'Connor, Martin J.; Das, Amar K.

    Rule bases are increasingly being used as repositories of knowledge content on the Semantic Web. As the size and complexity of these rule bases increases, developers and end users need methods of rule abstraction to facilitate rule management. In this paper, we describe a rule abstraction method for Semantic Web Rule Language (SWRL) rules that is based on lexical analysis and a set of heuristics. Our method results in a tree data structure that we exploit in creating techniques to visualize, paraphrase, and categorize SWRL rules. We evaluate our approach by applying it to several biomedical ontologies that contain SWRL rules, and show how the results reveal rule patterns within the rule base. We have implemented our method as a plug-in tool for Protégé-OWL, the most widely used ontology modeling software for the Semantic Web. Our tool can allow users to rapidly explore content and patterns in SWRL rule bases, enabling their acquisition and management.

  17. Electrophysiological correlates of cross-linguistic semantic integration in hearing signers: N400 and LPC.

    PubMed

    Zachau, Swantje; Korpilahti, Pirjo; Hämäläinen, Jarmo A; Ervast, Leena; Heinänen, Kaisu; Suominen, Kalervo; Lehtihalmes, Matti; Leppänen, Paavo H T

    2014-07-01

    We explored semantic integration mechanisms in native and non-native hearing users of sign language and non-signing controls. Event-related brain potentials (ERPs) were recorded while participants performed a semantic decision task for priming lexeme pairs. Pairs were presented either within speech or across speech and sign language. Target-related ERP responses were subjected to principal component analyses (PCA), and neurocognitive basis of semantic integration processes were assessed by analyzing the N400 and the late positive complex (LPC) components in response to spoken (auditory) and signed (visual) antonymic and unrelated targets. Semantically-related effects triggered across modalities would indicate a similar tight interconnection between the signers׳ two languages like that described for spoken language bilinguals. Remarkable structural similarity of the N400 and LPC components with varying group differences between the spoken and signed targets were found. The LPC was the dominant response. The controls׳ LPC differed from the LPC of the two signing groups. It was reduced to the auditory unrelated targets and was less frontal for all the visual targets. The visual LPC was more broadly distributed in native than non-native signers and was left-lateralized for the unrelated targets in the native hearing signers only. Semantic priming effects were found for the auditory N400 in all groups, but only native hearing signers revealed a clear N400 effect to the visual targets. Surprisingly, the non-native signers revealed no semantically-related processing effect to the visual targets reflected in the N400 or the LPC; instead they appeared to rely more on visual post-lexical analyzing stages than native signers. We conclude that native and non-native signers employed different processing strategies to integrate signed and spoken semantic content. It appeared that the signers׳ semantic processing system was affected by group-specific factors like language

  18. Semantic Elaboration through Integration: Hints Both Facilitate and Inform the Process

    ERIC Educational Resources Information Center

    Bauer, Patricia J.; Varga, Nicole L.; King, Jessica E.; Nolen, Ayla M.; White, Elizabeth A.

    2015-01-01

    Semantic knowledge can be extended in a variety of ways, including self-generation of new facts through integration of separate yet related episodes. We sought to promote integration and self-generation by providing "hints" to help 6-year-olds (Experiment 1) and 4-year-olds (Experiment 2) see the relevance of separate episodes to one…

  19. Integrating Syntax, Semantics, and Discourse DARPA Natural Language Understanding Program. Volume 1

    DTIC Science & Technology

    1987-05-14

    1987 ’^’fr’^k^^^^ Uniaya Defense Systems Integrating Syntax, Semantica , Dlacourse ture for the semantic and pragmatic components. The two basic...and implicit associates. Uniays Defense Systema Integrating Syntax, Semantica , Discourse fTm ’r» "’fc ■’’-, "’• "’- ■ - APPENDIX D A Dynamic

  20. Semantic Elaboration through Integration: Hints Both Facilitate and Inform the Process

    ERIC Educational Resources Information Center

    Bauer, Patricia J.; Varga, Nicole L.; King, Jessica E.; Nolen, Ayla M.; White, Elizabeth A.

    2015-01-01

    Semantic knowledge can be extended in a variety of ways, including self-generation of new facts through integration of separate yet related episodes. We sought to promote integration and self-generation by providing "hints" to help 6-year-olds (Experiment 1) and 4-year-olds (Experiment 2) see the relevance of separate episodes to one…

  1. Multimodal Feature Integration in the Angular Gyrus during Episodic and Semantic Retrieval

    PubMed Central

    Bonnici, Heidi M.; Richter, Franziska R.; Yazar, Yasemin

    2016-01-01

    Much evidence from distinct lines of investigation indicates the involvement of angular gyrus (AnG) in the retrieval of both episodic and semantic information, but the region's precise function and whether that function differs across episodic and semantic retrieval have yet to be determined. We used univariate and multivariate fMRI analysis methods to examine the role of AnG in multimodal feature integration during episodic and semantic retrieval. Human participants completed episodic and semantic memory tasks involving unimodal (auditory or visual) and multimodal (audio-visual) stimuli. Univariate analyses revealed the recruitment of functionally distinct AnG subregions during the retrieval of episodic and semantic information. Consistent with a role in multimodal feature integration during episodic retrieval, significantly greater AnG activity was observed during retrieval of integrated multimodal episodic memories compared with unimodal episodic memories. Multivariate classification analyses revealed that individual multimodal episodic memories could be differentiated in AnG, with classification accuracy tracking the vividness of participants' reported recollections, whereas distinct unimodal memories were represented in sensory association areas only. In contrast to episodic retrieval, AnG was engaged to a statistically equivalent degree during retrieval of unimodal and multimodal semantic memories, suggesting a distinct role for AnG during semantic retrieval. Modality-specific sensory association areas exhibited corresponding activity during both episodic and semantic retrieval, which mirrored the functional specialization of these regions during perception. The results offer new insights into the integrative processes subserved by AnG and its contribution to our subjective experience of remembering. SIGNIFICANCE STATEMENT Using univariate and multivariate fMRI analyses, we provide evidence that functionally distinct subregions of angular gyrus (An

  2. Organizational Knowledge Transfer Using Ontologies and a Rule-Based System

    NASA Astrophysics Data System (ADS)

    Okabe, Masao; Yoshioka, Akiko; Kobayashi, Keido; Yamaguchi, Takahira

    In recent automated and integrated manufacturing, so-called intelligence skill is becoming more and more important and its efficient transfer to next-generation engineers is one of the urgent issues. In this paper, we propose a new approach without costly OJT (on-the-job training), that is, combinational usage of a domain ontology, a rule ontology and a rule-based system. Intelligence skill can be decomposed into pieces of simple engineering rules. A rule ontology consists of these engineering rules as primitives and the semantic relations among them. A domain ontology consists of technical terms in the engineering rules and the semantic relations among them. A rule ontology helps novices get the total picture of the intelligence skill and a domain ontology helps them understand the exact meanings of the engineering rules. A rule-based system helps domain experts externalize their tacit intelligence skill to ontologies and also helps novices internalize them. As a case study, we applied our proposal to some actual job at a remote control and maintenance office of hydroelectric power stations in Tokyo Electric Power Co., Inc. We also did an evaluation experiment for this case study and the result supports our proposal.

  3. An MEG Study of Temporal Characteristics of Semantic Integration in Japanese Noun Phrases

    NASA Astrophysics Data System (ADS)

    Kiguchi, Hirohisa; Asakura, Nobuhiko

    Many studies of on-line comprehension of semantic violations have shown that the human sentence processor rapidly constructs a higher-order semantic interpretation of the sentence. What remains unclear, however, is the amount of time required to detect semantic anomalies while concatenating two words to form a phrase with very rapid stimuli presentation. We aimed to examine the time course of semantic integration in concatenating two words in phrase structure building, using magnetoencephalography (MEG). In the MEG experiment, subjects decided whether two words (a classifier and its corresponding noun), presented each for 66ms, form a semantically correct noun phrase. Half of the stimuli were matched pairs of classifiers and nouns. The other half were mismatched pairs of classifiers and nouns. In the analysis of MEG data, there were three primary peaks found at approximately 25ms (M1), 170ms (M2) and 250ms (M3) after the presentation of the target words. As a result, only the M3 latencies were significantly affected by the stimulus conditions. Thus, the present results indicate that the semantic integration in concatenating two words starts from approximately 250ms.

  4. Dynamic causal modeling of spatiotemporal integration of phonological and semantic processes: an electroencephalographic study

    PubMed Central

    Yvert, Gaëtan; Perrone-Bertolotti, Marcela; Baciu, Monica; David, Olivier

    2012-01-01

    Integration of phonological and lexico-semantic processes is essential for visual word recognition. Here we used dynamic causal modeling of event-related potentials, combined with group source reconstruction, to estimate how those processes translate into context-dependent modulation of effective connectivity within the temporal-frontal language network. Fifteen healthy human subjects performed a phoneme detection task in pseudo-words and a semantic categorization task in words. Cortical current densities revealed the sequential activation of temporal regions, from the occipital-temporal junction towards the anterior temporal lobe, before reaching the inferior frontal gyrus. A difference of activation between phonology and semantics was identified in the anterior temporal lobe, within the 240–300 ms peristimulus time-window. Dynamic causal modeling indicated this increase of activation of the anterior temporal lobe in the semantic condition as a consequence of an increase of forward connectivity from the posterior inferior temporal lobe to the anterior temporal lobe. In addition, fast activation of the inferior frontal region, that allowed a feedback control of frontal regions on the superior temporal and posterior inferior temporal cortices, was found to be likely. Our results precisely describe spatio-temporal network mechanisms occurring during integration of phonological and semantic processes. In particular, they support the hypothesis of multiple pathways within the temporal lobe for language processing, where frontal regions would exert a top-down control on temporal regions in the recruitment of the anterior temporal lobe for semantic processing. PMID:22442091

  5. Rules based process window OPC

    NASA Astrophysics Data System (ADS)

    O'Brien, Sean; Soper, Robert; Best, Shane; Mason, Mark

    2008-03-01

    As a preliminary step towards Model-Based Process Window OPC we have analyzed the impact of correcting post-OPC layouts using rules based methods. Image processing on the Brion Tachyon was used to identify sites where the OPC model/recipe failed to generate an acceptable solution. A set of rules for 65nm active and poly were generated by classifying these failure sites. The rules were based upon segment runlengths, figure spaces, and adjacent figure widths. 2.1 million sites for active were corrected in a small chip (comparing the pre and post rules based operations), and 59 million were found at poly. Tachyon analysis of the final reticle layout found weak margin sites distinct from those sites repaired by rules-based corrections. For the active layer more than 75% of the sites corrected by rules would have printed without a defect indicating that most rulesbased cleanups degrade the lithographic pattern. Some sites were missed by the rules based cleanups due to either bugs in the DRC software or gaps in the rules table. In the end dramatic changes to the reticle prevented catastrophic lithography errors, but this method is far too blunt. A more subtle model-based procedure is needed changing only those sites which have unsatisfactory lithographic margin.

  6. ODMedit: uniform semantic annotation for data integration in medicine based on a public metadata repository.

    PubMed

    Dugas, Martin; Meidt, Alexandra; Neuhaus, Philipp; Storck, Michael; Varghese, Julian

    2016-06-01

    The volume and complexity of patient data - especially in personalised medicine - is steadily increasing, both regarding clinical data and genomic profiles: Typically more than 1,000 items (e.g., laboratory values, vital signs, diagnostic tests etc.) are collected per patient in clinical trials. In oncology hundreds of mutations can potentially be detected for each patient by genomic profiling. Therefore data integration from multiple sources constitutes a key challenge for medical research and healthcare. Semantic annotation of data elements can facilitate to identify matching data elements in different sources and thereby supports data integration. Millions of different annotations are required due to the semantic richness of patient data. These annotations should be uniform, i.e., two matching data elements shall contain the same annotations. However, large terminologies like SNOMED CT or UMLS don't provide uniform coding. It is proposed to develop semantic annotations of medical data elements based on a large-scale public metadata repository. To achieve uniform codes, semantic annotations shall be re-used if a matching data element is available in the metadata repository. A web-based tool called ODMedit ( https://odmeditor.uni-muenster.de/ ) was developed to create data models with uniform semantic annotations. It contains ~800,000 terms with semantic annotations which were derived from ~5,800 models from the portal of medical data models (MDM). The tool was successfully applied to manually annotate 22 forms with 292 data items from CDISC and to update 1,495 data models of the MDM portal. Uniform manual semantic annotation of data models is feasible in principle, but requires a large-scale collaborative effort due to the semantic richness of patient data. A web-based tool for these annotations is available, which is linked to a public metadata repository.

  7. Semantic integration of medication data into the EHOP Clinical Data Warehouse.

    PubMed

    Delamarre, Denis; Bouzille, Guillaume; Dalleau, Kevin; Courtel, Denis; Cuggia, Marc

    2015-01-01

    Reusing medication data is crucial for many medical research domains. Semantic integration of such data in clinical data warehouse (CDW) is quite challenging. Our objective was to develop a reliable and scalable method for integrating prescription data into EHOP (a French CDW). PN13/PHAST was used as the semantic interoperability standard during the ETL process, and to store the prescriptions as documents in the CDW. Theriaque was used as a drug knowledge database (DKDB), to annotate the prescription dataset with the finest granularity, and to provide semantic capabilities to the EHOP query workbench. the system was evaluated on a clinical data set. Depending on the use case, the precision ranged from 52% to 100%, Recall was always 100%. interoperability standards and DKDB, document approach, and the finest granularity approach are the key factors for successful drug data integration in CDW.

  8. Cognitive control and semantics in schizophrenia: an integrated approach.

    PubMed

    Cohen, Jessica R; Elvevåg, Brita; Goldberg, Terry E

    2005-10-01

    The authors tested whether decisions about incongruencies in the representation and processing of semantic knowledge, thought to be related to cognitive control, are selectively impaired in schizophrenia. Twenty-four patients with schizophrenia and 24 healthy comparison subjects determined the relative size of paired stimuli as they are in the real world. Stimuli were words or images. Real-world "distance" (size difference between stimuli) was manipulated within pairs, as was "congruency" between real-world and presentation size. Although patients were slower overall, both groups exhibited similar effects of "distance" and "congruency"; the task was easier when the real-world size difference between stimuli was greater and when stimuli were congruent in presentation and real-world size. Some aspects of the representation of semantic knowledge are preserved in schizophrenia, and patients use this information to control cognition in the same manner as healthy individuals.

  9. Rule-based modeling with Virtual Cell

    PubMed Central

    Schaff, James C.; Vasilescu, Dan; Moraru, Ion I.; Loew, Leslie M.; Blinov, Michael L.

    2016-01-01

    Summary: Rule-based modeling is invaluable when the number of possible species and reactions in a model become too large to allow convenient manual specification. The popular rule-based software tools BioNetGen and NFSim provide powerful modeling and simulation capabilities at the cost of learning a complex scripting language which is used to specify these models. Here, we introduce a modeling tool that combines new graphical rule-based model specification with existing simulation engines in a seamless way within the familiar Virtual Cell (VCell) modeling environment. A mathematical model can be built integrating explicit reaction networks with reaction rules. In addition to offering a large choice of ODE and stochastic solvers, a model can be simulated using a network free approach through the NFSim simulation engine. Availability and implementation: Available as VCell (versions 6.0 and later) at the Virtual Cell web site (http://vcell.org/). The application installs and runs on all major platforms and does not require registration for use on the user’s computer. Tutorials are available at the Virtual Cell website and Help is provided within the software. Source code is available at Sourceforge. Contact: vcell_support@uchc.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27497444

  10. Rule-based modeling with Virtual Cell.

    PubMed

    Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Loew, Leslie M; Blinov, Michael L

    2016-09-15

    Rule-based modeling is invaluable when the number of possible species and reactions in a model become too large to allow convenient manual specification. The popular rule-based software tools BioNetGen and NFSim provide powerful modeling and simulation capabilities at the cost of learning a complex scripting language which is used to specify these models. Here, we introduce a modeling tool that combines new graphical rule-based model specification with existing simulation engines in a seamless way within the familiar Virtual Cell (VCell) modeling environment. A mathematical model can be built integrating explicit reaction networks with reaction rules. In addition to offering a large choice of ODE and stochastic solvers, a model can be simulated using a network free approach through the NFSim simulation engine. Available as VCell (versions 6.0 and later) at the Virtual Cell web site (http://vcell.org/). The application installs and runs on all major platforms and does not require registration for use on the user's computer. Tutorials are available at the Virtual Cell website and Help is provided within the software. Source code is available at Sourceforge. vcell_support@uchc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation.

    PubMed

    Wilkinson, Mark D; Vandervalk, Benjamin; McCarthy, Luke

    2011-10-24

    The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in

  12. The Semantic Automated Discovery and Integration (SADI) Web service Design-Pattern, API and Reference Implementation

    PubMed Central

    2011-01-01

    Background The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. Description SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. Conclusions SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner

  13. fMRI reveals Neuroanatomical Dissociations during Semantic Integration in Schizophrenia

    PubMed Central

    Kuperberg, Gina R.; West, Caroline W.; Goff, Don; Lakshmanan, Balaji M.

    2008-01-01

    Background Schizophrenia symptoms can be conceptualized in terms of a breakdown of a balance between (a) activating, retrieving and matching stored representations to incoming information (semantic memory-based processing), and (b) fully integrating activated semantic representations with one another and with other types of representations to form a gestalt representation of meaning (semantic integration). Semantic memory-based processes are relatively more dependent on inferior frontal and temporal cortices, while more demanding integrative processes additionally recruit the DLPFC and sometimes parietal cortices. We used fMRI to determine whether the modulation of temporal/inferior frontal cortices and the DLPFC can be neuroanatomically dissociated in schizophrenia, as semantic integration demands increase. Integration demands were manipulated by varying the nature (concrete versus abstract) and the congruity (incongruous versus congruous) of words within sentences. Methods Sixteen right-handed schizophrenia patients and sixteen healthy volunteers, matched on age and parental socio-economic status, underwent event-related fMRI scanning while they read sentences. BOLD effects were contrasted to words within sentences that were (a) concrete versus abstract, and (b) semantically incongruous versus congruous with their preceding contexts. Results In both contrasts, large networks mediating the activation and retrieval of verbal and imagistic representations were normally modulated in patients. However, unlike controls, patients failed to recruit the DLPFC, medial frontal and parietal cortices to incongruous (relative to congruous) sentences, and failed to recruit the DLPFC to concrete (relative to abstract) sentences. Conclusions As meaning is built from language, schizophrenia patients demonstrate a neuroanatomical dissociation in the modulation of temporal/inferior frontal cortices and the DLPFC. PMID:18504037

  14. Rule-Based Runtime Verification

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Goldberg, Allen; Havelund, Klaus; Sen, Koushik

    2003-01-01

    We present a rule-based framework for defining and implementing finite trace monitoring logics, including future and past time temporal logic, extended regular expressions, real-time logics, interval logics, forms of quantified temporal logics, and so on. Our logic, EAGLE, is implemented as a Java library and involves novel techniques for rule definition, manipulation and execution. Monitoring is done on a state-by-state basis, without storing the execution trace.

  15. An architecture for rule based system explanation

    NASA Technical Reports Server (NTRS)

    Fennel, T. R.; Johannes, James D.

    1990-01-01

    A system architecture is presented which incorporate both graphics and text into explanations provided by rule based expert systems. This architecture facilitates explanation of the knowledge base content, the control strategies employed by the system, and the conclusions made by the system. The suggested approach combines hypermedia and inference engine capabilities. Advantages include: closer integration of user interface, explanation system, and knowledge base; the ability to embed links to deeper knowledge underlying the compiled knowledge used in the knowledge base; and allowing for more direct control of explanation depth and duration by the user. User models are suggested to control the type, amount, and order of information presented.

  16. An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework

    ERIC Educational Resources Information Center

    Gao, Wenlong

    2012-01-01

    The ontology approach has been accepted as a very promising approach to semantic integration today. However, because of the diversity of focuses and its various connections to other research domains, the core concepts, theoretical and technical approaches, and research areas of this domain still remain unclear. Such ambiguity makes it difficult to…

  17. Semantic Integration Processes at Different Levels of Syntactic Hierarchy during Sentence Comprehension: An ERP Study

    ERIC Educational Resources Information Center

    Zhou, Xiaolin; Jiang, Xiaoming; Ye, Zheng; Zhang, Yaxu; Lou, Kaiyang; Zhan, Weidong

    2010-01-01

    An event-related potential (ERP) study was conducted to investigate the temporal neural dynamics of semantic integration processes at different levels of syntactic hierarchy during Chinese sentence reading. In a hierarchical structure, "subject noun" + "verb" + "numeral" + "classifier" + "object noun," the object noun is constrained by selectional…

  18. Novel word integration in the mental lexicon: evidence from unmasked and masked semantic priming.

    PubMed

    Tamminen, Jakke; Gaskell, M Gareth

    2013-01-01

    We sought to establish whether novel words can become integrated into existing semantic networks by teaching participants new meaningful words and then using these new words as primes in two semantic priming experiments, in which participants carried out a lexical decision task to familiar words. Importantly, at no point in training did the novel words co-occur with the familiar words that served as targets in the primed lexical decision task, allowing us to evaluate semantic priming in the absence of direct association. We found that familiar words were primed by the newly related novel words, both when the novel word prime was unmasked (experiment 1) and when it was masked (experiment 2), suggesting that the new words had been integrated into semantic memory. Furthermore, this integration was strongest after a 1-week delay and was independent of explicit recall of the novel word meanings: Forgetting of meanings did not attenuate priming. We argue that even after brief training, newly learned words become an integrated part of the adult mental lexicon rather than being episodically represented separately from the lexicon.

  19. An Approach to Formalizing Ontology Driven Semantic Integration: Concepts, Dimensions and Framework

    ERIC Educational Resources Information Center

    Gao, Wenlong

    2012-01-01

    The ontology approach has been accepted as a very promising approach to semantic integration today. However, because of the diversity of focuses and its various connections to other research domains, the core concepts, theoretical and technical approaches, and research areas of this domain still remain unclear. Such ambiguity makes it difficult to…

  20. Semantic integration of gene expression analysis tools and data sources using software connectors

    PubMed Central

    2013-01-01

    Background The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heteregeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. Results We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. Conclusions The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools

  1. Semantic integration of gene expression analysis tools and data sources using software connectors.

    PubMed

    Miyazaki, Flávia A; Guardia, Gabriela D A; Vêncio, Ricardo Z N; de Farias, Cléver R G

    2013-10-25

    The study and analysis of gene expression measurements is the primary focus of functional genomics. Once expression data is available, biologists are faced with the task of extracting (new) knowledge associated to the underlying biological phenomenon. Most often, in order to perform this task, biologists execute a number of analysis activities on the available gene expression dataset rather than a single analysis activity. The integration of heterogeneous tools and data sources to create an integrated analysis environment represents a challenging and error-prone task. Semantic integration enables the assignment of unambiguous meanings to data shared among different applications in an integrated environment, allowing the exchange of data in a semantically consistent and meaningful way. This work aims at developing an ontology-based methodology for the semantic integration of gene expression analysis tools and data sources. The proposed methodology relies on software connectors to support not only the access to heterogeneous data sources but also the definition of transformation rules on exchanged data. We have studied the different challenges involved in the integration of computer systems and the role software connectors play in this task. We have also studied a number of gene expression technologies, analysis tools and related ontologies in order to devise basic integration scenarios and propose a reference ontology for the gene expression domain. Then, we have defined a number of activities and associated guidelines to prescribe how the development of connectors should be carried out. Finally, we have applied the proposed methodology in the construction of three different integration scenarios involving the use of different tools for the analysis of different types of gene expression data. The proposed methodology facilitates the development of connectors capable of semantically integrating different gene expression analysis tools and data sources. The

  2. Integration and Querying of Genomic and Proteomic Semantic Annotations for Biomedical Knowledge Extraction.

    PubMed

    Masseroli, Marco; Canakoglu, Arif; Ceri, Stefano

    2016-01-01

    Understanding complex biological phenomena involves answering complex biomedical questions on multiple biomolecular information simultaneously, which are expressed through multiple genomic and proteomic semantic annotations scattered in many distributed and heterogeneous data sources; such heterogeneity and dispersion hamper the biologists' ability of asking global queries and performing global evaluations. To overcome this problem, we developed a software architecture to create and maintain a Genomic and Proteomic Knowledge Base (GPKB), which integrates several of the most relevant sources of such dispersed information (including Entrez Gene, UniProt, IntAct, Expasy Enzyme, GO, GOA, BioCyc, KEGG, Reactome, and OMIM). Our solution is general, as it uses a flexible, modular, and multilevel global data schema based on abstraction and generalization of integrated data features, and a set of automatic procedures for easing data integration and maintenance, also when the integrated data sources evolve in data content, structure, and number. These procedures also assure consistency, quality, and provenance tracking of all integrated data, and perform the semantic closure of the hierarchical relationships of the integrated biomedical ontologies. At http://www.bioinformatics.deib.polimi.it/GPKB/, a Web interface allows graphical easy composition of queries, although complex, on the knowledge base, supporting also semantic query expansion and comprehensive explorative search of the integrated data to better sustain biomedical knowledge extraction.

  3. Large scale healthcare data integration and analysis using the semantic web.

    PubMed

    Timm, John; Renly, Sondra; Farkash, Ariel

    2011-01-01

    Healthcare data interoperability can only be achieved when the semantics of the content is well defined and consistently implemented across heterogeneous data sources. Achieving these objectives of interoperability requires the collaboration of experts from several domains. This paper describes tooling that integrates Semantic Web technologies with common tools to facilitate cross-domain collaborative development for the purposes of data interoperability. Our approach is divided into stages of data harmonization and representation, model transformation, and instance generation. We applied our approach on Hypergenes, an EU funded project, where we use our method to the Essential Hypertension disease model using a CDA template. Our domain expert partners include clinical providers, clinical domain researchers, healthcare information technology experts, and a variety of clinical data consumers. We show that bringing Semantic Web technologies into the healthcare interoperability toolkit increases opportunities for beneficial collaboration thus improving patient care and clinical research outcomes.

  4. Sharing human-generated observations by integrating HMI and the Semantic Sensor Web.

    PubMed

    Sigüenza, Alvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current "Internet of Things" concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound.

  5. Sharing Human-Generated Observations by Integrating HMI and the Semantic Sensor Web

    PubMed Central

    Sigüenza, Álvaro; Díaz-Pardo, David; Bernat, Jesús; Vancea, Vasile; Blanco, José Luis; Conejero, David; Gómez, Luis Hernández

    2012-01-01

    Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C's Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers' observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound. PMID:22778643

  6. KaBOB: ontology-based semantic integration of biomedical databases.

    PubMed

    Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E

    2015-04-23

    The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for

  7. Clinical evaluation of using semantic searching engine for radiological imaging services in RIS-integrated PACS

    NASA Astrophysics Data System (ADS)

    Ling, Tonghui; Zhang, Kai; Yang, Yuanyuan; Hua, Yanqing; Zhang, Jianguo

    2015-03-01

    We had designed a semantic searching engine (SSE) for radiological imaging to search both reports and images in RIS-integrated PACS environment. In this presentation, we present evaluation results of this SSE about how it impacting the radiologists' behaviors in reporting for different kinds of examinations, and how it improving the performance of retrieval and usage of historical images in RIS-integrated PACS.

  8. Addressing the Challenges of Multi-Domain Data Integration with the SemantEco Framework

    NASA Astrophysics Data System (ADS)

    Patton, E. W.; Seyed, P.; McGuinness, D. L.

    2013-12-01

    Data integration across multiple domains will continue to be a challenge with the proliferation of big data in the sciences. Data origination issues and how data are manipulated are critical to enable scientists to understand and consume disparate datasets as research becomes more multidisciplinary. We present the SemantEco framework as an exemplar for designing an integrative portal for data discovery, exploration, and interpretation that uses best practice W3C Recommendations. We use the Resource Description Framework (RDF) with extensible ontologies described in the Web Ontology Language (OWL) to provide graph-based data representation. Furthermore, SemantEco ingests data via the software package csv2rdf4lod, which generates data provenance using the W3C provenance recommendation (PROV). Our presentation will discuss benefits and challenges of semantic integration, their effect on runtime performance, and how the SemantEco framework assisted in identifying performance issues and improved query performance across multiple domains by an order of magnitude. SemantEco benefits from a semantic approach that provides an 'open world', which allows data to incrementally change just as it does in the real world. SemantEco modules may load new ontologies and data using the W3C's SPARQL Protocol and RDF Query Language via HTTP. Modules may also provide user interface elements for applications and query capabilities to support new use cases. Modules can associate with domains, which are first-class objects in SemantEco. This enables SemantEco to perform integration and reasoning both within and across domains on module-provided data. The SemantEco framework has been used to construct a web portal for environmental and ecological data. The portal includes water and air quality data from the U.S. Geological Survey (USGS) and Environmental Protection Agency (EPA) and species observation counts for birds and fish from the Avian Knowledge Network and the Santa Barbara Long Term

  9. Semantic Health Knowledge Graph: Semantic Integration of Heterogeneous Medical Knowledge and Services

    PubMed Central

    Yang, Xiaoran; Qi, Jiaheng; Pan, Gang; Zhou, Binbin

    2017-01-01

    With the explosion of healthcare information, there has been a tremendous amount of heterogeneous textual medical knowledge (TMK), which plays an essential role in healthcare information systems. Existing works for integrating and utilizing the TMK mainly focus on straightforward connections establishment and pay less attention to make computers interpret and retrieve knowledge correctly and quickly. In this paper, we explore a novel model to organize and integrate the TMK into conceptual graphs. We then employ a framework to automatically retrieve knowledge in knowledge graphs with a high precision. In order to perform reasonable inference on knowledge graphs, we propose a contextual inference pruning algorithm to achieve efficient chain inference. Our algorithm achieves a better inference result with precision and recall of 92% and 96%, respectively, which can avoid most of the meaningless inferences. In addition, we implement two prototypes and provide services, and the results show our approach is practical and effective. PMID:28299322

  10. Applying Semantic Web Services and Wireless Sensor Networks for System Integration

    NASA Astrophysics Data System (ADS)

    Berkenbrock, Gian Ricardo; Hirata, Celso Massaki; de Oliveira Júnior, Frederico Guilherme Álvares; de Oliveira, José Maria Parente

    In environments like factories, buildings, and homes automation services tend to often change during their lifetime. Changes are concerned to business rules, process optimization, cost reduction, and so on. It is important to provide a smooth and straightforward way to deal with these changes so that could be handled in a faster and low cost manner. Some prominent solutions use the flexibility of Wireless Sensor Networks and the meaningful description of Semantic Web Services to provide service integration. In this work, we give an overview of current solutions for machinery integration that combine both technologies as well as a discussion about some perspectives and open issues when applying Wireless Sensor Networks and Semantic Web Services for automation services integration.

  11. Famous face identification in temporal lobe epilepsy: Support for a multimodal integration model of semantic memory

    PubMed Central

    Drane, Daniel L.; Ojemann, Jeffrey G.; Phatak, Vaishali; Loring, David W.; Gross, Robert E.; Hebb, Adam O.; Silbergeld, Daniel L.; Miller, John W.; Voets, Natalie L.; Saindane, Amit M.; Barsalou, Lawrence; Meador, Kimford J.; Ojemann, George A.; Tranel, Daniel

    2012-01-01

    This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre-and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory

  12. Famous face identification in temporal lobe epilepsy: support for a multimodal integration model of semantic memory.

    PubMed

    Drane, Daniel L; Ojemann, Jeffrey G; Phatak, Vaishali; Loring, David W; Gross, Robert E; Hebb, Adam O; Silbergeld, Daniel L; Miller, John W; Voets, Natalie L; Saindane, Amit M; Barsalou, Lawrence; Meador, Kimford J; Ojemann, George A; Tranel, Daniel

    2013-06-01

    This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre- and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory

  13. Construction of an ortholog database using the semantic web technology for integrative analysis of genomic data.

    PubMed

    Chiba, Hirokazu; Nishide, Hiroyo; Uchiyama, Ikuo

    2015-01-01

    Recently, various types of biological data, including genomic sequences, have been rapidly accumulating. To discover biological knowledge from such growing heterogeneous data, a flexible framework for data integration is necessary. Ortholog information is a central resource for interlinking corresponding genes among different organisms, and the Semantic Web provides a key technology for the flexible integration of heterogeneous data. We have constructed an ortholog database using the Semantic Web technology, aiming at the integration of numerous genomic data and various types of biological information. To formalize the structure of the ortholog information in the Semantic Web, we have constructed the Ortholog Ontology (OrthO). While the OrthO is a compact ontology for general use, it is designed to be extended to the description of database-specific concepts. On the basis of OrthO, we described the ortholog information from our Microbial Genome Database for Comparative Analysis (MBGD) in the form of Resource Description Framework (RDF) and made it available through the SPARQL endpoint, which accepts arbitrary queries specified by users. In this framework based on the OrthO, the biological data of different organisms can be integrated using the ortholog information as a hub. Besides, the ortholog information from different data sources can be compared with each other using the OrthO as a shared ontology. Here we show some examples demonstrating that the ortholog information described in RDF can be used to link various biological data such as taxonomy information and Gene Ontology. Thus, the ortholog database using the Semantic Web technology can contribute to biological knowledge discovery through integrative data analysis.

  14. Construction of an Ortholog Database Using the Semantic Web Technology for Integrative Analysis of Genomic Data

    PubMed Central

    Chiba, Hirokazu; Nishide, Hiroyo; Uchiyama, Ikuo

    2015-01-01

    Recently, various types of biological data, including genomic sequences, have been rapidly accumulating. To discover biological knowledge from such growing heterogeneous data, a flexible framework for data integration is necessary. Ortholog information is a central resource for interlinking corresponding genes among different organisms, and the Semantic Web provides a key technology for the flexible integration of heterogeneous data. We have constructed an ortholog database using the Semantic Web technology, aiming at the integration of numerous genomic data and various types of biological information. To formalize the structure of the ortholog information in the Semantic Web, we have constructed the Ortholog Ontology (OrthO). While the OrthO is a compact ontology for general use, it is designed to be extended to the description of database-specific concepts. On the basis of OrthO, we described the ortholog information from our Microbial Genome Database for Comparative Analysis (MBGD) in the form of Resource Description Framework (RDF) and made it available through the SPARQL endpoint, which accepts arbitrary queries specified by users. In this framework based on the OrthO, the biological data of different organisms can be integrated using the ortholog information as a hub. Besides, the ortholog information from different data sources can be compared with each other using the OrthO as a shared ontology. Here we show some examples demonstrating that the ortholog information described in RDF can be used to link various biological data such as taxonomy information and Gene Ontology. Thus, the ortholog database using the Semantic Web technology can contribute to biological knowledge discovery through integrative data analysis. PMID:25875762

  15. Bim-Gis Integrated Geospatial Information Model Using Semantic Web and Rdf Graphs

    NASA Astrophysics Data System (ADS)

    Hor, A.-H.; Jadidi, A.; Sohn, G.

    2016-06-01

    In recent years, 3D virtual indoor/outdoor urban modelling becomes a key spatial information framework for many civil and engineering applications such as evacuation planning, emergency and facility management. For accomplishing such sophisticate decision tasks, there is a large demands for building multi-scale and multi-sourced 3D urban models. Currently, Building Information Model (BIM) and Geographical Information Systems (GIS) are broadly used as the modelling sources. However, data sharing and exchanging information between two modelling domains is still a huge challenge; while the syntactic or semantic approaches do not fully provide exchanging of rich semantic and geometric information of BIM into GIS or vice-versa. This paper proposes a novel approach for integrating BIM and GIS using semantic web technologies and Resources Description Framework (RDF) graphs. The novelty of the proposed solution comes from the benefits of integrating BIM and GIS technologies into one unified model, so-called Integrated Geospatial Information Model (IGIM). The proposed approach consists of three main modules: BIM-RDF and GIS-RDF graphs construction, integrating of two RDF graphs, and query of information through IGIM-RDF graph using SPARQL. The IGIM generates queries from both the BIM and GIS RDF graphs resulting a semantically integrated model with entities representing both BIM classes and GIS feature objects with respect to the target-client application. The linkage between BIM-RDF and GIS-RDF is achieved through SPARQL endpoints and defined by a query using set of datasets and entity classes with complementary properties, relationships and geometries. To validate the proposed approach and its performance, a case study was also tested using IGIM system design.

  16. Topic Structure Affects Semantic Integration: Evidence from Event-Related Potentials

    PubMed Central

    Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang

    2013-01-01

    This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated. PMID:24348994

  17. A case study of data integration for aquatic resources using semantic web technologies

    USGS Publications Warehouse

    Gordon, Janice M.; Chkhenkeli, Nina; Govoni, David L.; Lightsom, Frances L.; Ostroff, Andrea C.; Schweitzer, Peter N.; Thongsavanh, Phethala; Varanka, Dalia E.; Zednik, Stephan

    2015-01-01

    Use cases, information modeling, and linked data techniques are Semantic Web technologies used to develop a prototype system that integrates scientific observations from four independent USGS and cooperator data systems. The techniques were tested with a use case goal of creating a data set for use in exploring potential relationships among freshwater fish populations and environmental factors. The resulting prototype extracts data from the BioData Retrieval System, the Multistate Aquatic Resource Information System, the National Geochemical Survey, and the National Hydrography Dataset. A prototype user interface allows a scientist to select observations from these data systems and combine them into a single data set in RDF format that includes explicitly defined relationships and data definitions. The project was funded by the USGS Community for Data Integration and undertaken by the Community for Data Integration Semantic Web Working Group in order to demonstrate use of Semantic Web technologies by scientists. This allows scientists to simultaneously explore data that are available in multiple, disparate systems beyond those they traditionally have used.

  18. Integrating The Stereotype Content Model (Warmth And Competence) And The Osgood Semantic Differential (Evaluation, Potency, And Activity)

    PubMed Central

    Fiske, Susan T.; Yzerbyt, Vincent Y.

    2015-01-01

    We integrate two prominent models of social perception dimensionality. In three studies, we demonstrate how the well-established semantic differential dimensions of evaluation and potency relate to the stereotype content model dimensions of warmth and competence. Specifially, using a correlational design (Study 1) and experimental designs (Studies 2 and 3), we found that semantic differential dimensions run diagonally across stereotype content model quadrants. Implications of integrating classic and modern approaches of social perception are discussed. PMID:26120217

  19. A semantic data dictionary method for database schema integration in CIESIN

    NASA Astrophysics Data System (ADS)

    Hinds, N.; Huang, Y.; Ravishankar, C.

    1993-08-01

    CIESIN (Consortium for International Earth Science Information Network) is funded by NASA to investigate the technology necessary to integrate and facilitate the interdisciplinary use of Global Change information. A clear of this mission includes providing a link between the various global change data sets, in particular the physical sciences and the human (social) sciences. The typical scientist using the CIESIN system will want to know how phenomena in an outside field affects his/her work. For example, a medical researcher might ask: how does air-quality effect emphysema? This and many similar questions will require sophisticated semantic data integration. The researcher who raised the question may be familiar with medical data sets containing emphysema occurrences. But this same investigator may know little, if anything, about the existance or location of air-quality data. It is easy to envision a system which would allow that investigator to locate and perform a ``join'' on two data sets, one containing emphysema cases and the other containing air-quality levels. No such system exists today. One major obstacle to providing such a system will be overcoming the heterogeneity which falls into two broad categories. ``Database system'' heterogeneity involves differences in data models and packages. ``Data semantic'' heterogeneity involves differences in terminology between disciplines which translates into data semantic issues, and varying levels of data refinement, from raw to summary. Our work investigates a global data dictionary mechanism to facilitate a merged data service. Specially, we propose using a semantic tree during schema definition to aid in locating and integrating heterogeneous databases.

  20. Automated revision of CLIPS rule-bases

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.; Pazzani, Michael J.

    1994-01-01

    This paper describes CLIPS-R, a theory revision system for the revision of CLIPS rule-bases. CLIPS-R may be used for a variety of knowledge-base revision tasks, such as refining a prototype system, adapting an existing system to slightly different operating conditions, or improving an operational system that makes occasional errors. We present a description of how CLIPS-R revises rule-bases, and an evaluation of the system on three rule-bases.

  1. Entrez Neuron RDFa: a pragmatic semantic web application for data integration in neuroscience research.

    PubMed

    Samwald, Matthias; Lim, Ernest; Masiar, Peter; Marenco, Luis; Chen, Huajun; Morse, Thomas; Mutalik, Pradeep; Shepherd, Gordon; Miller, Perry; Cheung, Kei-Hoi

    2009-01-01

    The amount of biomedical data available in Semantic Web formats has been rapidly growing in recent years. While these formats are machine-friendly, user-friendly web interfaces allowing easy querying of these data are typically lacking. We present "Entrez Neuron", a pilot neuron-centric interface that allows for keyword-based queries against a coherent repository of OWL ontologies. These ontologies describe neuronal structures, physiology, mathematical models and microscopy images. The returned query results are organized hierarchically according to brain architecture. Where possible, the application makes use of entities from the Open Biomedical Ontologies (OBO) and the 'HCLS knowledgebase' developed by the W3C Interest Group for Health Care and Life Science. It makes use of the emerging RDFa standard to embed ontology fragments and semantic annotations within its HTML-based user interface. The application and underlying ontologies demonstrate how Semantic Web technologies can be used for information integration within a curated information repository and between curated information repositories. It also demonstrates how information integration can be accomplished on the client side, through simple copying and pasting of portions of documents that contain RDFa markup.

  2. The effect of discourse structure on depth of semantic integration in reading.

    PubMed

    Yang, Xiaohong; Chen, Lijing; Yang, Yufang

    2014-02-01

    A coherent discourse exhibits certain structures in that subunits of discourses are related to one another in various ways and in that subunits that contribute to the same discourse purpose are joined to create a larger unit so as to produce an effect on the reader. To date, this crucial aspect of discourse has been largely neglected in the psycholinguistic literature. In two experiments, we examined whether semantic integration in discourse context was influenced by the difference of discourse structure. Readers read discourses in which the last sentence was locally congruent but either semantically congruent or incongruent when interpreted with the preceding sentence. Furthermore, the last sentence was either in the same discourse unit or not in the same discourse unit as the preceding sentence, depending on whether they shared the same discourse purpose. Results from self-paced reading (Experiment 1) and eye tracking (Experiment 2) showed that discourse-incongruous words were read longer than discourse-congruous words only when the critical sentence and the preceding sentence were in the same discourse unit, but not when they belonged to different discourse units. These results establish discourse structure as a new factor in semantic integration and suggest that discourse effects depend both on the content of what is being said and on the way that the contents are organized.

  3. Integrating Statistical Machine Learning in a Semantic Sensor Web for Proactive Monitoring and Control.

    PubMed

    Adeleke, Jude Adekunle; Moodley, Deshendran; Rens, Gavin; Adewumi, Aderemi Oluyinka

    2017-04-09

    Proactive monitoring and control of our natural and built environments is important in various application scenarios. Semantic Sensor Web technologies have been well researched and used for environmental monitoring applications to expose sensor data for analysis in order to provide responsive actions in situations of interest. While these applications provide quick response to situations, to minimize their unwanted effects, research efforts are still necessary to provide techniques that can anticipate the future to support proactive control, such that unwanted situations can be averted altogether. This study integrates a statistical machine learning based predictive model in a Semantic Sensor Web using stream reasoning. The approach is evaluated in an indoor air quality monitoring case study. A sliding window approach that employs the Multilayer Perceptron model to predict short term PM 2 . 5 pollution situations is integrated into the proactive monitoring and control framework. Results show that the proposed approach can effectively predict short term PM 2 . 5 pollution situations: precision of up to 0.86 and sensitivity of up to 0.85 is achieved over half hour prediction horizons, making it possible for the system to warn occupants or even to autonomously avert the predicted pollution situations within the context of Semantic Sensor Web.

  4. Mixing positive and negative valence: Affective-semantic integration of bivalent words

    PubMed Central

    Kuhlmann, Michael; Hofmann, Markus J.; Briesemeister, Benny B.; Jacobs, Arthur M.

    2016-01-01

    Single words have affective and aesthetic properties that influence their processing. Here we investigated the processing of a special case of word stimuli that are extremely difficult to evaluate, bivalent noun-noun-compounds (NNCs), i.e. novel words that mix a positive and negative noun, e.g. ‘Bombensex’ (bomb-sex). In a functional magnetic resonance imaging (fMRI) experiment we compared their processing with easier-to-evaluate non-bivalent NNCs in a valence decision task (VDT). Bivalent NNCs produced longer reaction times and elicited greater activation in the left inferior frontal gyrus (LIFG) than non-bivalent words, especially in contrast to words of negative valence. We attribute this effect to a LIFG-grounded process of semantic integration that requires greater effort for processing converse information, supporting the notion of a valence representation based on associations in semantic networks. PMID:27491491

  5. Mixing positive and negative valence: Affective-semantic integration of bivalent words.

    PubMed

    Kuhlmann, Michael; Hofmann, Markus J; Briesemeister, Benny B; Jacobs, Arthur M

    2016-08-05

    Single words have affective and aesthetic properties that influence their processing. Here we investigated the processing of a special case of word stimuli that are extremely difficult to evaluate, bivalent noun-noun-compounds (NNCs), i.e. novel words that mix a positive and negative noun, e.g. 'Bombensex' (bomb-sex). In a functional magnetic resonance imaging (fMRI) experiment we compared their processing with easier-to-evaluate non-bivalent NNCs in a valence decision task (VDT). Bivalent NNCs produced longer reaction times and elicited greater activation in the left inferior frontal gyrus (LIFG) than non-bivalent words, especially in contrast to words of negative valence. We attribute this effect to a LIFG-grounded process of semantic integration that requires greater effort for processing converse information, supporting the notion of a valence representation based on associations in semantic networks.

  6. Delineating the Effect of Semantic Congruency on Episodic Memory: The Role of Integration and Relatedness

    PubMed Central

    Bein, Oded; Livneh, Neta; Reggev, Niv; Gilead, Michael; Goshen-Gottstein, Yonatan; Maril, Anat

    2015-01-01

    A fundamental challenge in the study of learning and memory is to understand the role of existing knowledge in the encoding and retrieval of new episodic information. The importance of prior knowledge in memory is demonstrated in the congruency effect—the robust finding wherein participants display better memory for items that are compatible, rather than incompatible, with their pre-existing semantic knowledge. Despite its robustness, the mechanism underlying this effect is not well understood. In four studies, we provide evidence that demonstrates the privileged explanatory power of the elaboration-integration account over alternative hypotheses. Furthermore, we question the implicit assumption that the congruency effect pertains to the truthfulness/sensibility of a subject-predicate proposition, and show that congruency is a function of semantic relatedness between item and context words. PMID:25695759

  7. How Distance Affects Semantic Integration in Discourse: Evidence from Event-Related Potentials

    PubMed Central

    Yang, Xiaohong; Chen, Shuang; Chen, Xuhai; Yang, Yufang

    2015-01-01

    Event-related potentials were used to investigate whether semantic integration in discourse is influenced by the number of intervening sentences between the endpoints of integration. Readers read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the information introduced in the first sentence. Furthermore, for the short discourses, the first and last sentence were intervened by only one sentence while for the long discourses, they were intervened by three sentences. We found that the incongruent words elicited an N400 effect for both the short and long discourses. However, a P600 effect was only observed for the long discourses, but not for the short ones. These results suggest that although readers can successfully integrate upcoming words into the existing discourse representation, the effort required for this integration process is modulated by the number of intervening sentences. Thus, discourse distance as measured by the number of intervening sentences should be taken as an important factor for semantic integration in discourse. PMID:26569606

  8. A rule-based specification system for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Luke, Edward Allen

    This study seeks to reduce the complexity and associated costs of developing computation fluid dynamics simulation software. A high level rule-based specification language is proposed as an approach to reducing the complexity of simulation software. The proposed specification language, using a mixture of declarative single-assignment semantics and domain specific mapping operators, provides a means of automatically assembling numerical simulation components. As a result of both the high level of specification and the automatic assembly process, much of the more mundane implementation issues involved in traditional Fortran based specifications are eliminated. In addition to a description of the proposed specification language, this study develops numerical simulation software for compressible flows that include finite-rate chemical kinetics. This application is used as a illustration the proposed rule-based approach in the development of complex numerical software. The numerical software is validated against several test cases using a five species chemically reacting model for air including a high temperature supersonic diffuser nozzle and a Mach 10 blunt body geometry. The performance of this application is measured and found to be competitive with a representative Fortran simulation. The growth of scheduling overhead incurred when using the rule-based approach is also measured. The results of these measurements indicate that the scheduling costs will remain small even for large simulation meshes.

  9. Rule-Based Flight Software Cost Estimation

    NASA Technical Reports Server (NTRS)

    Stukes, Sherry A.; Spagnuolo, John N. Jr.

    2015-01-01

    This paper discusses the fundamental process for the computation of Flight Software (FSW) cost estimates. This process has been incorporated in a rule-based expert system [1] that can be used for Independent Cost Estimates (ICEs), Proposals, and for the validation of Cost Analysis Data Requirements (CADRe) submissions. A high-level directed graph (referred to here as a decision graph) illustrates the steps taken in the production of these estimated costs and serves as a basis of design for the expert system described in this paper. Detailed discussions are subsequently given elaborating upon the methodology, tools, charts, and caveats related to the various nodes of the graph. We present general principles for the estimation of FSW using SEER-SEM as an illustration of these principles when appropriate. Since Source Lines of Code (SLOC) is a major cost driver, a discussion of various SLOC data sources for the preparation of the estimates is given together with an explanation of how contractor SLOC estimates compare with the SLOC estimates used by JPL. Obtaining consistency in code counting will be presented as well as factors used in reconciling SLOC estimates from different code counters. When sufficient data is obtained, a mapping into the JPL Work Breakdown Structure (WBS) from the SEER-SEM output is illustrated. For across the board FSW estimates, as was done for the NASA Discovery Mission proposal estimates performed at JPL, a comparative high-level summary sheet for all missions with the SLOC, data description, brief mission description and the most relevant SEER-SEM parameter values is given to illustrate an encapsulation of the used and calculated data involved in the estimates. The rule-based expert system described provides the user with inputs useful or sufficient to run generic cost estimation programs. This system's incarnation is achieved via the C Language Integrated Production System (CLIPS) and will be addressed at the end of this paper.

  10. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources.

    PubMed

    Waagmeester, Andra; Kutmon, Martina; Riutta, Anders; Miller, Ryan; Willighagen, Egon L; Evelo, Chris T; Pico, Alexander R

    2016-06-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web.

  11. Using the Semantic Web for Rapid Integration of WikiPathways with Other Biological Online Data Resources

    PubMed Central

    Waagmeester, Andra; Pico, Alexander R.

    2016-01-01

    The diversity of online resources storing biological data in different formats provides a challenge for bioinformaticians to integrate and analyse their biological data. The semantic web provides a standard to facilitate knowledge integration using statements built as triples describing a relation between two objects. WikiPathways, an online collaborative pathway resource, is now available in the semantic web through a SPARQL endpoint at http://sparql.wikipathways.org. Having biological pathways in the semantic web allows rapid integration with data from other resources that contain information about elements present in pathways using SPARQL queries. In order to convert WikiPathways content into meaningful triples we developed two new vocabularies that capture the graphical representation and the pathway logic, respectively. Each gene, protein, and metabolite in a given pathway is defined with a standard set of identifiers to support linking to several other biological resources in the semantic web. WikiPathways triples were loaded into the Open PHACTS discovery platform and are available through its Web API (https://dev.openphacts.org/docs) to be used in various tools for drug development. We combined various semantic web resources with the newly converted WikiPathways content using a variety of SPARQL query types and third-party resources, such as the Open PHACTS API. The ability to use pathway information to form new links across diverse biological data highlights the utility of integrating WikiPathways in the semantic web. PMID:27336457

  12. HIV-K: an Integrative Knowledge Base for Semantic Integration of AIDS-related Malignancy Data and Treatment Outcomes

    PubMed Central

    Tirado-Ramos, A.; Saltz, Joel; Lechowicz, Mary Jo

    2011-01-01

    Technological innovations such as web services and collaborative Grid platforms like caGrid can create opportunities to converge the worlds of health care and clinical research, by facilitating access and integration of HIV-related malignancy clinical and outcomes data at more sophisticated, semantic levels. At the same time, large numbers of randomized clinical trial and outcomes data on AIDS-defining malignancies (ADM) and non-AIDS-defining malignancies (nADM) have been produced during the last few years. There is still much work to do, though, on obtaining clear conclusions from the integration of such information. This is a white paper on work in progress from Emory University’s HIV/AIDS related malignancy data integrative knowledge base project (HIV-K). We are working to increase the understanding of available clinical trial data and outcomes of ADM such as lymphoma, as well as nADM such as anal cancer, Hodgkin lymphoma, or liver cancer. Our hypothesis is that, by creating prototypes of tools for semantics-enabled integrative knowledge bases for HIV/AIDS-related malignancy data, we will facilitate the identification of patterns and potential new overall evidence, as well as the linking of integrated data and results to registries of interest. PMID:20543443

  13. SIDD: A Semantically Integrated Database towards a Global View of Human Disease

    PubMed Central

    Cheng, Liang; Wang, Guohua; Li, Jie; Zhang, Tianjiao; Xu, Peigang; Wang, Yadong

    2013-01-01

    Background A number of databases have been developed to collect disease-related molecular, phenotypic and environmental features (DR-MPEs), such as genes, non-coding RNAs, genetic variations, drugs, phenotypes and environmental factors. However, each of current databases focused on only one or two DR-MPEs. There is an urgent demand to develop an integrated database, which can establish semantic associations among disease-related databases and link them to provide a global view of human disease at the biological level. This database, once developed, will facilitate researchers to query various DR-MPEs through disease, and investigate disease mechanisms from different types of data. Methodology To establish an integrated disease-associated database, disease vocabularies used in different databases are mapped to Disease Ontology (DO) through semantic match. 4,284 and 4,186 disease terms from Medical Subject Headings (MeSH) and Online Mendelian Inheritance in Man (OMIM) respectively are mapped to DO. Then, the relationships between DR-MPEs and diseases are extracted and merged from different source databases for reducing the data redundancy. Conclusions A semantically integrated disease-associated database (SIDD) is developed, which integrates 18 disease-associated databases, for researchers to browse multiple types of DR-MPEs in a view. A web interface allows easy navigation for querying information through browsing a disease ontology tree or searching a disease term. Furthermore, a network visualization tool using Cytoscape Web plugin has been implemented in SIDD. It enhances the SIDD usage when viewing the relationships between diseases and DR-MPEs. The current version of SIDD (Jul 2013) documents 4,465,131 entries relating to 139,365 DR-MPEs, and to 3,824 human diseases. The database can be freely accessed from: http://mlg.hit.edu.cn/SIDD. PMID:24146757

  14. A structure-based model of semantic integrity constraints for relational data bases

    NASA Technical Reports Server (NTRS)

    Rasdorf, William J.; Ulberg, Karen J.; Baugh, John W., Jr.

    1987-01-01

    Data base management systems (DBMSs) are in widespread use because of the ease and flexibility with which users access large volumes of data. Ensuring data accuracy through integrity constraints is a central aspect of DBMS use. However, many DBMSs still lack adequate integrity support. In additon, a comprehensive theoretical basis for such support the role of a constraint classification system - has yet to be developed. This paper presents a formalism that classifies semantic integrity constraints based on the structure of the relational model. Integrity constraints are characterized by the portion of the data base structure they access, whether one or more relations, attributes, or tuples. Thus, the model is completely general, allowing the arbitrary specification of any constraint. Examples of each type of constraint are illustrated using a small engineering data base, and various implementation issues are discussed.

  15. Graph-Based Semantic Web Service Composition for Healthcare Data Integration

    PubMed Central

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.

  16. Electrophysiological differentiation of phonological and semantic integration in word and sentence contexts

    PubMed Central

    Diaz, Michele T.; Swaab, Tamara Y.

    2006-01-01

    During auditory language comprehension, listeners need to rapidly extract meaning from the continuous speech-stream. It is a matter of debate when and how contextual information constrains the activation of lexical representations in meaningful contexts. Electrophysiological studies of spoken language comprehension have identified an event-related potential (ERP) that was sensitive to phonological properties of speech, which was termed the phonological mismatch negativity (PMN). With the PMN, early lexical processing could potentially be distinguished from processes of semantic integration in spoken language comprehension. However, the sensitivity of the PMN to phonological processing per se has been questioned, and it has additionally been suggested that the “PMN” is not separable from the N400, an ERP that is sensitive to semantic aspects of the input. Here, we investigated whether or not a separable PMN exists and if it reflects purely phonological aspects of the speech input. In the present experiment, ERPs were recorded from healthy young adults (N =24) while they listened to sentences and word lists, in which we manipulated semantic and phonological expectation and congruency of the final word. ERPs sensitive to phonological processing were elicited only when phonological expectancy was violated in lists of words, but not during normal sentential processing. This suggests a differential role of phonological processing in more or less meaningful contexts and indicates a very early influence of the overall context on lexical processing in sentences. PMID:16952338

  17. A Ubiquitous Sensor Network Platform for Integrating Smart Devices into the Semantic Sensor Web

    PubMed Central

    de Vera, David Díaz Pardo; Izquierdo, Álvaro Sigüenza; Vercher, Jesús Bernat; Gómez, Luis Alfonso Hernández

    2014-01-01

    Ongoing Sensor Web developments make a growing amount of heterogeneous sensor data available to smart devices. This is generating an increasing demand for homogeneous mechanisms to access, publish and share real-world information. This paper discusses, first, an architectural solution based on Next Generation Networks: a pilot Telco Ubiquitous Sensor Network (USN) Platform that embeds several OGC® Sensor Web services. This platform has already been deployed in large scale projects. Second, the USN-Platform is extended to explore a first approach to Semantic Sensor Web principles and technologies, so that smart devices can access Sensor Web data, allowing them also to share richer (semantically interpreted) information. An experimental scenario is presented: a smart car that consumes and produces real-world information which is integrated into the Semantic Sensor Web through a Telco USN-Platform. Performance tests revealed that observation publishing times with our experimental system were well within limits compatible with the adequate operation of smart safety assistance systems in vehicles. On the other hand, response times for complex queries on large repositories may be inappropriate for rapid reaction needs. PMID:24945678

  18. Automatic image orientation detection via confidence-based integration of low-level and semantic cues.

    PubMed

    Luo, Jiebo; Boutell, Matthew

    2005-05-01

    Automatic image orientation detection for natural images is a useful, yet challenging research topic. Humans use scene context and semantic object recognition to identify the correct image orientation. However, it is difficult for a computer to perform the task in the same way because current object recognition algorithms are extremely limited in their scope and robustness. As a result, existing orientation detection methods were built upon low-level vision features such as spatial distributions of color and texture. Discrepant detection rates have been reported for these methods in the literature. We have developed a probabilistic approach to image orientation detection via confidence-based integration of low-level and semantic cues within a Bayesian framework. Our current accuracy is 90 percent for unconstrained consumer photos, impressive given the findings of a psychophysical study conducted recently. The proposed framework is an attempt to bridge the gap between computer and human vision systems and is applicable to other problems involving semantic scene content understanding.

  19. Hands typing what hands do: Action-semantic integration dynamics throughout written verb production.

    PubMed

    García, Adolfo M; Ibáñez, Agustín

    2016-04-01

    Processing action verbs, in general, and manual action verbs, in particular, involves activations in gross and hand-specific motor networks, respectively. While this is well established for receptive language processes, no study has explored action-semantic integration during written production. Moreover, little is known about how such crosstalk unfolds from motor planning to execution. Here we address both issues through our novel "action semantics in typing" paradigm, which allows to time keystroke operations during word typing. Specifically, we created a primed-verb-copying task involving manual action verbs, non-manual action verbs, and non-action verbs. Motor planning processes were indexed by first-letter lag (the lapse between target onset and first keystroke), whereas execution dynamics were assessed considering whole-word lag (the lapse between first and last keystroke). Each phase was differently delayed by action verbs. When these were processed for over one second, interference was strong and magnified by effector compatibility during programming, but weak and effector-blind during execution. Instead, when they were processed for less than 900ms, interference was reduced by effector compatibility during programming and it faded during execution. Finally, typing was facilitated by prime-target congruency, irrespective of the verbs' motor content. Thus, action-verb semantics seems to extend beyond its embodied foundations, involving conceptual dynamics not tapped by classical reaction-time measures. These findings are compatible with non-radical models of language embodiment and with predictions of event coding theory.

  20. Integration and publication of heterogeneous text-mined relationships on the Semantic Web.

    PubMed

    Coulet, Adrien; Garten, Yael; Dumontier, Michel; Altman, Russ B; Musen, Mark A; Shah, Nigam H

    2011-05-17

    Advances in Natural Language Processing (NLP) techniques enable the extraction of fine-grained relationships mentioned in biomedical text. The variability and the complexity of natural language in expressing similar relationships causes the extracted relationships to be highly heterogeneous, which makes the construction of knowledge bases difficult and poses a challenge in using these for data mining or question answering. We report on the semi-automatic construction of the PHARE relationship ontology (the PHArmacogenomic RElationships Ontology) consisting of 200 curated relations from over 40,000 heterogeneous relationships extracted via text-mining. These heterogeneous relations are then mapped to the PHARE ontology using synonyms, entity descriptions and hierarchies of entities and roles. Once mapped, relationships can be normalized and compared using the structure of the ontology to identify relationships that have similar semantics but different syntax. We compare and contrast the manual procedure with a fully automated approach using WordNet to quantify the degree of integration enabled by iterative curation and refinement of the PHARE ontology. The result of such integration is a repository of normalized biomedical relationships, named PHARE-KB, which can be queried using Semantic Web technologies such as SPARQL and can be visualized in the form of a biological network. The PHARE ontology serves as a common semantic framework to integrate more than 40,000 relationships pertinent to pharmacogenomics. The PHARE ontology forms the foundation of a knowledge base named PHARE-KB. Once populated with relationships, PHARE-KB (i) can be visualized in the form of a biological network to guide human tasks such as database curation and (ii) can be queried programmatically to guide bioinformatics applications such as the prediction of molecular interactions. PHARE is available at http://purl.bioontology.org/ontology/PHARE.

  1. Learning new vocabulary during childhood: effects of semantic training on lexical consolidation and integration.

    PubMed

    Henderson, Lisa; Weighall, Anna; Gaskell, Gareth

    2013-11-01

    Research suggests that word learning is an extended process, with offline consolidation crucial for the strengthening of new lexical representations and their integration with existing lexical knowledge (as measured by engagement in lexical competition). This supports a dual memory systems account, in which new information is initially sparsely encoded separately from existing knowledge and integrated with long-term memory over time. However, previous studies of this type exploited unnatural learning contexts, involving fictitious words in the absence of word meaning. In this study, 5- to 9-year-old children learned real science words (e.g., hippocampus) with or without semantic information. Children in both groups were slower to detect pauses in familiar competitor words (e.g., hippopotamus) relative to control words 24h after training but not immediately, confirming that offline consolidation is required before new words are integrated with the lexicon and engage in lexical competition. Children recalled more new words 24h after training than immediately (with similar improvements shown for the recall and recognition of new word meanings); however, children who were exposed to the meanings during training showed further improvements in recall after 1 week and outperformed children who were not exposed to meanings. These findings support the dual memory systems account of vocabulary acquisition and suggest that the association of a new phonological form with semantic information is critical for the development of stable lexical representations.

  2. Missing semantic annotation in databases. The root cause for data integration and migration problems in information systems.

    PubMed

    Dugas, M

    2014-01-01

    Data integration is a well-known grand challenge in information systems. It is highly relevant in medicine because of the multitude of patient data sources. Semantic annotations of data items regarding concept and value domain, based on comprehensive terminologies can facilitate data integration and migration. Therefore it should be implemented in databases from the very beginning.

  3. Early Stages of Sensory Processing, but Not Semantic Integration, Are Altered in Dyslexic Adults.

    PubMed

    Silva, Patrícia B; Ueki, Karen; Oliveira, Darlene G; Boggio, Paulo S; Macedo, Elizeu C

    2016-01-01

    The aim of this study was to verify which stages of language processing are impaired in individuals with dyslexia. For this, a visual-auditory crossmodal task with semantic judgment was used. The P100 potentials were chosen, related to visual processing and initial integration, and N400 potentials related to semantic processing. Based on visual-auditory crossmodal studies, it is understood that dyslexic individuals present impairments in the integration of these two types of tasks and impairments in processing spoken and musical auditory information. The present study sought to investigate and compare the performance of 32 adult participants (14 individuals with dyslexia), in semantic processing tasks in two situations with auditory stimuli: sentences and music, with integrated visual stimuli (pictures). From the analysis of the accuracy, both the sentence and the music blocks showed significant effects on the congruency variable, with both groups having higher scores for the incongruent items than for the congruent ones. Furthermore, there was also a group effect when the priming was music, with the dyslexic group showing an inferior performance to the control group, demonstrating greater impairments in processing when the priming was music. Regarding the reaction time variable, a group effect in music and sentence priming was found, with the dyslexic group being slower than the control group. The N400 and P100 components were analyzed. In items with judgment and music priming, a group effect was observed for the amplitude of the P100, with higher means produced by individuals with dyslexia, corroborating the literature that individuals with dyslexia have difficulties in early information processing. A congruency effect was observed in the items with music priming, with greater P100 amplitudes found in incongruous situations. Analyses of the N400 component showed the congruency effect for amplitude in both types of priming, with the mean amplitude for incongruent

  4. Early Stages of Sensory Processing, but Not Semantic Integration, Are Altered in Dyslexic Adults

    PubMed Central

    Silva, Patrícia B.; Ueki, Karen; Oliveira, Darlene G.; Boggio, Paulo S.; Macedo, Elizeu C.

    2016-01-01

    The aim of this study was to verify which stages of language processing are impaired in individuals with dyslexia. For this, a visual-auditory crossmodal task with semantic judgment was used. The P100 potentials were chosen, related to visual processing and initial integration, and N400 potentials related to semantic processing. Based on visual-auditory crossmodal studies, it is understood that dyslexic individuals present impairments in the integration of these two types of tasks and impairments in processing spoken and musical auditory information. The present study sought to investigate and compare the performance of 32 adult participants (14 individuals with dyslexia), in semantic processing tasks in two situations with auditory stimuli: sentences and music, with integrated visual stimuli (pictures). From the analysis of the accuracy, both the sentence and the music blocks showed significant effects on the congruency variable, with both groups having higher scores for the incongruent items than for the congruent ones. Furthermore, there was also a group effect when the priming was music, with the dyslexic group showing an inferior performance to the control group, demonstrating greater impairments in processing when the priming was music. Regarding the reaction time variable, a group effect in music and sentence priming was found, with the dyslexic group being slower than the control group. The N400 and P100 components were analyzed. In items with judgment and music priming, a group effect was observed for the amplitude of the P100, with higher means produced by individuals with dyslexia, corroborating the literature that individuals with dyslexia have difficulties in early information processing. A congruency effect was observed in the items with music priming, with greater P100 amplitudes found in incongruous situations. Analyses of the N400 component showed the congruency effect for amplitude in both types of priming, with the mean amplitude for incongruent

  5. Integrating Semantic Information in Metadata Descriptions for a Geoscience-wide Resource Inventory.

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Richard, S. M.; Gupta, A.; Valentine, D.; Whitenack, T.; Ozyurt, I. B.; Grethe, J. S.; Schachne, A.

    2016-12-01

    Integrating semantic information into legacy metadata catalogs is a challenging issue and so far has been mostly done on a limited scale. We present experience of CINERGI (Community Inventory of Earthcube Resources for Geoscience Interoperability), an NSF Earthcube Building Block project, in creating a large cross-disciplinary catalog of geoscience information resources to enable cross-domain discovery. The project developed a pipeline for automatically augmenting resource metadata, in particular generating keywords that describe metadata documents harvested from multiple geoscience information repositories or contributed by geoscientists through various channels including surveys and domain resource inventories. The pipeline examines available metadata descriptions using text parsing, vocabulary management and semantic annotation and graph navigation services of GeoSciGraph. GeoSciGraph, in turn, relies on a large cross-domain ontology of geoscience terms, which bridges several independently developed ontologies or taxonomies including SWEET, ENVO, YAGO, GeoSciML, GCMD, SWO, and CHEBI. The ontology content enables automatic extraction of keywords reflecting science domains, equipment used, geospatial features, measured properties, methods, processes, etc. We specifically focus on issues of cross-domain geoscience ontology creation, resolving several types of semantic conflicts among component ontologies or vocabularies, and constructing and managing facets for improved data discovery and navigation. The ontology and keyword generation rules are iteratively improved as pipeline results are presented to data managers for selective manual curation via a CINERGI Annotator user interface. We present lessons learned from applying CINERGI metadata augmentation pipeline to a number of federal agency and academic data registries, in the context of several use cases that require data discovery and integration across multiple earth science data catalogs of varying quality

  6. Two Neurocognitive Mechanisms of Semantic Integration during the Comprehension of Visual Real-world Events

    PubMed Central

    Sitnikova, Tatiana; Holcomb, Phillip J.; Kiyonaga, Kristi A.; Kuperberg, Gina R.

    2009-01-01

    How do comprehenders build up overall meaning representations of visual real-world events? This question was examined by recording event-related potentials (ERPs) while participants viewed short, silent movie clips depicting everyday events. In two experiments, it was demonstrated that presentation of the contextually inappropriate information in the movie endings evoked an anterior negativity. This effect was similar to the N400 component whose amplitude has been previously reported to inversely correlate with the strength of semantic relationship between the context and the eliciting stimulus in word and static picture paradigms. However, a second, somewhat later, ERP component—a posterior late positivity—was evoked specifically when target objects presented in the movie endings violated goal-related requirements of the action constrained by the scenario context (e.g., an electric iron that does not have a sharp-enough edge was used in place of a knife in a cutting bread scenario context). These findings suggest that comprehension of the visual real world might be mediated by two neurophysiologically distinct semantic integration mechanisms. The first mechanism, reflected by the anterior N400-like negativity, maps the incoming information onto the connections of various strengths between concepts in semantic memory. The second mechanism, reflected by the posterior late positivity, evaluates the incoming information against the discrete requirements of real-world actions. We suggest that there may be a tradeoff between these mechanisms in their utility for integrating across people, objects, and actions during event comprehension, in which the first mechanism is better suited for familiar situations, and the second mechanism is better suited for novel situations. PMID:18416681

  7. Francisella tularensis novicida proteomic and transcriptomic data integration and annotation based on semantic web technologies

    PubMed Central

    Anwar, Nadia; Hunt, Ela

    2009-01-01

    Background This paper summarises the lessons and experiences gained from a case study of the application of semantic web technologies to the integration of data from the bacterial species Francisella tularensis novicida (Fn). Fn data sources are disparate and heterogeneous, as multiple laboratories across the world, using multiple technologies, perform experiments to understand the mechanism of virulence. It is hard to integrate these data sources in a flexible manner that allows new experimental data to be added and compared when required. Results Public domain data sources were combined in RDF. Using this connected graph of database cross references, we extended the annotations of an experimental data set by superimposing onto it the annotation graph. Identifiers used in the experimental data automatically resolved and the data acquired annotations in the rest of the RDF graph. This happened without the expensive manual annotation that would normally be required to produce these links. This graph of resolved identifiers was then used to combine two experimental data sets, a proteomics experiment and a transcriptomic experiment studying the mechanism of virulence through the comparison of wildtype Fn with an avirulent mutant strain. Conclusion We produced a graph of Fn cross references which enabled the combination of two experimental datasets. Through combination of these data we are able to perform queries that compare the results of the two experiments. We found that data are easily combined in RDF and that experimental results are easily compared when the data are integrated. We conclude that semantic data integration offers a convenient, simple and flexible solution to the integration of published and unpublished experimental data. PMID:19796400

  8. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mie; Eshow, Michelle

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  9. Semantic Representation and Scale-Up of Integrated Air Traffic Management Data

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.; Ranjan, Shubha; Wei, Mei Y.; Eshow, Michelle M.

    2016-01-01

    Each day, the global air transportation industry generates a vast amount of heterogeneous data from air carriers, air traffic control providers, and secondary aviation entities handling baggage, ticketing, catering, fuel delivery, and other services. Generally, these data are stored in isolated data systems, separated from each other by significant political, regulatory, economic, and technological divides. These realities aside, integrating aviation data into a single, queryable, big data store could enable insights leading to major efficiency, safety, and cost advantages. In this paper, we describe an implemented system for combining heterogeneous air traffic management data using semantic integration techniques. The system transforms data from its original disparate source formats into a unified semantic representation within an ontology-based triple store. Our initial prototype stores only a small sliver of air traffic data covering one day of operations at a major airport. The paper also describes our analysis of difficulties ahead as we prepare to scale up data storage to accommodate successively larger quantities of data -- eventually covering all US commercial domestic flights over an extended multi-year timeframe. We review several approaches to mitigating scale-up related query performance concerns.

  10. Semantic Web Ontology and Data Integration: a Case Study in Aiding Psychiatric Drug Repurposing.

    PubMed

    Liang, Chen; Sun, Jingchun; Tao, Cui

    2016-01-01

    Despite ongoing progress towards treating mental illness, there remain significant difficulties in selecting probable candidate drugs from the existing database. We describe an ontology - oriented approach aims to represent the nexus between genes, drugs, phenotypes, symptoms, and diseases from multiple information sources. Along with this approach, we report a case study in which we attempted to explore the candidate drugs that effective for both bipolar disorder and epilepsy. We constructed an ontology that incorporates the knowledge between the two diseases and performed semantic reasoning task on the ontology. The reasoning results suggested 48 candidate drugs that hold promise for a further breakthrough. The evaluation was performed and demonstrated the validity of the proposed ontology. The overarching goal of this research is to build a framework of ontology - based data integration underpinning psychiatric drug repurposing. This approach prioritizes the candidate drugs that have potential associations among genes, phenotypes and symptoms, and thus facilitates the data integration and drug repurposing in psychiatric disorders.

  11. SENHANCE: A Semantic Web framework for integrating social and hardware sensors in e-Health.

    PubMed

    Pagkalos, Ioannis; Petrou, Loukas

    2016-09-01

    Self-reported data are very important in Healthcare, especially when combined with data from sensors. Social Networking Sites, such as Facebook, are a promising source of not only self-reported data but also social data, which are otherwise difficult to obtain. Due to their unstructured nature, providing information that is meaningful to health professionals from this source is a daunting task. To this end, we employ Social Network Applications as Social Sensors that gather structured data and use Semantic Web technologies to fuse them with hardware sensor data, effectively integrating both sources. We show that this combination of social and hardware sensor observations creates a novel space that can be used for a variety of feature-rich e-Health applications. We present the design of our prototype framework, SENHANCE, and our findings from its pilot application in the NutriHeAl project, where a Facebook app is integrated with Fitbit digital pedometers for Lifestyle monitoring.

  12. A Case Study in Integrating Multiple E-commerce Standards via Semantic Web Technology

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Hillman, Donald; Setio, Basuki; Heflin, Jeff

    Internet business-to-business transactions present great challenges in merging information from different sources. In this paper we describe a project to integrate four representative commercial classification systems with the Federal Cataloging System (FCS). The FCS is used by the US Defense Logistics Agency to name, describe and classify all items under inventory control by the DoD. Our approach uses the ECCMA Open Technical Dictionary (eOTD) as a common vocabulary to accommodate all different classifications. We create a semantic bridging ontology between each classification and the eOTD to describe their logical relationships in OWL DL. The essential idea is that since each classification has formal definitions in a common vocabulary, we can use subsumption to automatically integrate them, thus mitigating the need for pairwise mappings. Furthermore our system provides an interactive interface to let users choose and browse the results and more importantly it can translate catalogs that commit to these classifications using compiled mapping results.

  13. Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation

    PubMed Central

    Peelle, Jonathan E.; Bonner, Michael F.; Grossman, Murray

    2016-01-01

    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend “plaid” and “jacket” as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of “plaid jacket.” Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like “tiny radish” relative to non-meaningful combinations, such as “fast blueberry,” when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. SIGNIFICANCE STATEMENT A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex

  14. Causal Evidence for a Mechanism of Semantic Integration in the Angular Gyrus as Revealed by High-Definition Transcranial Direct Current Stimulation.

    PubMed

    Price, Amy Rose; Peelle, Jonathan E; Bonner, Michael F; Grossman, Murray; Hamilton, Roy H

    2016-03-30

    A defining aspect of human cognition is the ability to integrate conceptual information into complex semantic combinations. For example, we can comprehend "plaid" and "jacket" as individual concepts, but we can also effortlessly combine these concepts to form the semantic representation of "plaid jacket." Many neuroanatomic models of semantic memory propose that heteromodal cortical hubs integrate distributed semantic features into coherent representations. However, little work has specifically examined these proposed integrative mechanisms and the causal role of these regions in semantic integration. Here, we test the hypothesis that the angular gyrus (AG) is critical for integrating semantic information by applying high-definition transcranial direct current stimulation (tDCS) to an fMRI-guided region-of-interest in the left AG. We found that anodal stimulation to the left AG modulated semantic integration but had no effect on a letter-string control task. Specifically, anodal stimulation to the left AG resulted in faster comprehension of semantically meaningful combinations like "tiny radish" relative to non-meaningful combinations, such as "fast blueberry," when compared to the effects observed during sham stimulation and stimulation to a right-hemisphere control brain region. Moreover, the size of the effect from brain stimulation correlated with the degree of semantic coherence between the word pairs. These findings demonstrate that the left AG plays a causal role in the integration of lexical-semantic information, and that high-definition tDCS to an associative cortical hub can selectively modulate integrative processes in semantic memory. A major goal of neuroscience is to understand the neural basis of behaviors that are fundamental to human intelligence. One essential behavior is the ability to integrate conceptual knowledge from semantic memory, allowing us to construct an almost unlimited number of complex concepts from a limited set of basic

  15. Once is Enough: N400 Indexes Semantic Integration of Novel Word Meanings from a Single Exposure in Context

    PubMed Central

    Borovsky, Arielle; Elman, Jeffrey L.; Kutas, Marta

    2012-01-01

    We investigated the impact of contextual constraint on the integration of novel word meanings into semantic memory. Adults read strongly or weakly constraining sentences ending in known or unknown (novel) words as scalp-recorded electrical brain activity was recorded. Word knowledge was assessed via a lexical decision task in which recently seen known and unknown word sentence endings served as primes for semantically related, unrelated, and synonym/identical target words. As expected, N400 amplitudes to target words preceded by known word primes were reduced by prime-target relatedness. Critically, N400 amplitudes to targets preceded by novel primes also varied with prime-target relatedness, but only when they had initially appeared in highly constraining sentences. This demonstrates for the first time that fast-mapped word representations can develop strong associations with semantically related word meanings and reveals a rapid neural process that can integrate information about word meanings into the mental lexicon of young adults. PMID:23125559

  16. Integration of nursing assessment concepts into the medical entities dictionary using the LOINC semantic structure as a terminology model.

    PubMed Central

    Cieslowski, B. J.; Wajngurt, D.; Cimino, J. J.; Bakken, S.

    2001-01-01

    Recent investigations have tested the applicability of various terminology models for the representing nursing concepts including those related to nursing diagnoses, nursing interventions, and standardized nursing assessments as a prerequisite for building a reference terminology that supports the nursing domain. We used the semantic structure of Clinical LOINC (Logical Observations, Identifiers, Names, and Codes) as a reference terminology model to support the integration of standardized assessment terms from two nursing terminologies into the Medical Entities Dictionary (MED), the concept-oriented, metadata dictionary at New York Presbyterian Hospital. Although the LOINC semantic structure was used previously to represent laboratory terms in the MED, selected hierarchies and semantic slots required revisions in order to incorporate the nursing assessment concepts. This project was an initial step in integrating nursing assessment concepts into the MED in a manner consistent with evolving standards for reference terminology models. Moreover, the revisions provide the foundation for adding other types of standardized assessments to the MED. PMID:11825165

  17. Ontology and rules based model for traffic query

    NASA Astrophysics Data System (ADS)

    Cheng, Gang; Du, Qingyun; Huang, Qian; Zhao, Haiyun

    2008-10-01

    This paper will combine ontology and rule based qualitative reason with real time calculation, designing a combined traffic model of national scope which contains highway, railroad, water carriage, scheduled flight etc. That method follows the sense of people to space, establishes ontologies and rules knowledge base, using concepts, instances, relations and rules of traffic field as the basic knowledge for qualitative reason to discover implicit semantic information and eliminate unnecessary ambiguities. The knowledge from the ontologies and rules provides abundant information for query which can lighten the burden of computation, in the mean time, real-time calculation guarantees the accuracy of the data, has raised accuracy and efficiency of the query, which has strengthened the ease of query service and improved web users' experience.

  18. Design and Applications of a GeoSemantic Framework for Integration of Data and Model Resources in Hydrologic Systems

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2016-12-01

    Hydrologists today have to integrate resources such as data and models, which originate and reside in multiple autonomous and heterogeneous repositories over the Web. Several resource management systems have emerged within geoscience communities for sharing long-tail data, which are collected by individual or small research groups, and long-tail models, which are developed by scientists or small modeling communities. While these systems have increased the availability of resources within geoscience domains, deficiencies remain due to the heterogeneity in the methods, which are used to describe, encode, and publish information about resources over the Web. This heterogeneity limits our ability to access the right information in the right context so that it can be efficiently retrieved and understood without the Hydrologist's mediation. A primary challenge of the Web today is the lack of the semantic interoperability among the massive number of resources, which already exist and are continually being generated at rapid rates. To address this challenge, we have developed a decentralized GeoSemantic (GS) framework, which provides three sets of micro-web services to support (i) semantic annotation of resources, (ii) semantic alignment between the metadata of two resources, and (iii) semantic mediation among Standard Names. Here we present the design of the framework and demonstrate its application for semantic integration between data and models used in the IML-CZO. First we show how the IML-CZO data are annotated using the Semantic Annotation Services. Then we illustrate how the Resource Alignment Services and Knowledge Integration Services are used to create a semantic workflow among TopoFlow model, which is a spatially-distributed hydrologic model and the annotated data. Results of this work are (i) a demonstration of how the GS framework advances the integration of heterogeneous data and models of water-related disciplines by seamless handling of their semantic

  19. A Semantic Big Data Platform for Integrating Heterogeneous Wearable Data in Healthcare.

    PubMed

    Mezghani, Emna; Exposito, Ernesto; Drira, Khalil; Da Silveira, Marcos; Pruski, Cédric

    2015-12-01

    Advances supported by emerging wearable technologies in healthcare promise patients a provision of high quality of care. Wearable computing systems represent one of the most thrust areas used to transform traditional healthcare systems into active systems able to continuously monitor and control the patients' health in order to manage their care at an early stage. However, their proliferation creates challenges related to data management and integration. The diversity and variety of wearable data related to healthcare, their huge volume and their distribution make data processing and analytics more difficult. In this paper, we propose a generic semantic big data architecture based on the "Knowledge as a Service" approach to cope with heterogeneity and scalability challenges. Our main contribution focuses on enriching the NIST Big Data model with semantics in order to smartly understand the collected data, and generate more accurate and valuable information by correlating scattered medical data stemming from multiple wearable devices or/and from other distributed data sources. We have implemented and evaluated a Wearable KaaS platform to smartly manage heterogeneous data coming from wearable devices in order to assist the physicians in supervising the patient health evolution and keep the patient up-to-date about his/her status.

  20. Semantic Integration of Cervical Cancer Data Repositories to Facilitate Multicenter Association Studies: The ASSIST Approach

    PubMed Central

    Agorastos, Theodoros; Koutkias, Vassilis; Falelakis, Manolis; Lekka, Irini; Mikos, Themistoklis; Delopoulos, Anastasios; Mitkas, Pericles A.; Tantsis, Antonios; Weyers, Steven; Coorevits, Pascal; Kaufmann, Andreas M.; Kurzeja, Roberto; Maglaveras, Nicos

    2009-01-01

    The current work addresses the unification of Electronic Health Records related to cervical cancer into a single medical knowledge source, in the context of the EU-funded ASSIST research project. The project aims to facilitate the research for cervical precancer and cancer through a system that virtually unifies multiple patient record repositories, physically located in different medical centers/hospitals, thus, increasing flexibility by allowing the formation of study groups “on demand” and by recycling patient records in new studies. To this end, ASSIST uses semantic technologies to translate all medical entities (such as patient examination results, history, habits, genetic profile) and represent them in a common form, encoded in the ASSIST Cervical Cancer Ontology. The current paper presents the knowledge elicitation approach followed, towards the definition and representation of the disease’s medical concepts and rules that constitute the basis for the ASSIST Cervical Cancer Ontology. The proposed approach constitutes a paradigm for semantic integration of heterogeneous clinical data that may be applicable to other biomedical application domains. PMID:19458792

  1. Drug repositioning by applying 'expression profiles' generated by integrating chemical structure similarity and gene semantic similarity.

    PubMed

    Tan, Fujian; Yang, Ruizhi; Xu, Xiaoxue; Chen, Xiujie; Wang, Yunfeng; Ma, Hongzhe; Liu, Xiangqiong; Wu, Xin; Chen, Yuelong; Liu, Lei; Jia, Xiaodong

    2014-05-01

    Drug repositioning, also known as drug repurposing or reprofiling, is the process of finding new indications for established drugs. Because drug repositioning can reduce costs and enhance the efficiency of drug development, it is of paramount importance in medical research. Here, we present a systematic computational method to identify potential novel indications for a given drug. This method utilizes some prior knowledge such as 3D drug chemical structure information, drug-target interactions and gene semantic similarity information. Its prediction is based on another form of 'expression profile', which contains scores ranging from -1 to 1, reflecting the consensus response scores (CRSs) between each drug of 965 and 1560 proteins. The CRS integrates chemical structure similarity and gene semantic similarity information. We define the degree of similarity between two drugs as the absolute value of their correlation coefficients. Finally, we establish a drug similarity network (DSN) and obtain 33 modules of drugs with similar modes of action, determining their common indications. Using these modules, we predict new indications for 143 drugs and identify previously unknown indications for 42 drugs without ATC codes. This method overcomes the instability of gene expression profiling derived from experiments due to experimental conditions, and predicts indications for a new compound feasibly, requiring only the 3D structure of the compound. In addition, the high literature validation rate of 71.8% also suggests that our method has the potential to discover novel drug indications for existing drugs.

  2. Towards an open-source semantic data infrastructure for integrating clinical and scientific data in cognition-guided surgery

    NASA Astrophysics Data System (ADS)

    Fetzer, Andreas; Metzger, Jasmin; Katic, Darko; März, Keno; Wagner, Martin; Philipp, Patrick; Engelhardt, Sandy; Weller, Tobias; Zelzer, Sascha; Franz, Alfred M.; Schoch, Nicolai; Heuveline, Vincent; Maleshkova, Maria; Rettinger, Achim; Speidel, Stefanie; Wolf, Ivo; Kenngott, Hannes; Mehrabi, Arianeb; Müller-Stich, Beat P.; Maier-Hein, Lena; Meinzer, Hans-Peter; Nolden, Marco

    2016-03-01

    In the surgical domain, individual clinical experience, which is derived in large part from past clinical cases, plays an important role in the treatment decision process. Simultaneously the surgeon has to keep track of a large amount of clinical data, emerging from a number of heterogeneous systems during all phases of surgical treatment. This is complemented with the constantly growing knowledge derived from clinical studies and literature. To recall this vast amount of information at the right moment poses a growing challenge that should be supported by adequate technology. While many tools and projects aim at sharing or integrating data from various sources or even provide knowledge-based decision support - to our knowledge - no concept has been proposed that addresses the entire surgical pathway by accessing the entire information in order to provide context-aware cognitive assistance. Therefore a semantic representation and central storage of data and knowledge is a fundamental requirement. We present a semantic data infrastructure for integrating heterogeneous surgical data sources based on a common knowledge representation. A combination of the Extensible Neuroimaging Archive Toolkit (XNAT) with semantic web technologies, standardized interfaces and a common application platform enables applications to access and semantically annotate data, perform semantic reasoning and eventually create individual context-aware surgical assistance. The infrastructure meets the requirements of a cognitive surgical assistant system and has been successfully applied in various use cases. The system is based completely on free technologies and is available to the community as an open-source package.

  3. Semantic Web Ontology and Data Integration: a Case Study in Aiding Psychiatric Drug Repurposing.

    PubMed

    Liang, Chen; Sun, Jingchun; Tao, Cui

    2015-01-01

    There remain significant difficulties selecting probable candidate drugs from existing databases. We describe an ontology-oriented approach to represent the nexus between genes, drugs, phenotypes, symptoms, and diseases from multiple information sources. We also report a case study in which we attempted to explore candidate drugs effective for bipolar disorder and epilepsy. We constructed an ontology incorporating knowledge between the two diseases and performed semantic reasoning tasks with the ontology. The results suggested 48 candidate drugs that hold promise for further breakthrough. The evaluation demonstrated the validity our approach. Our approach prioritizes the candidate drugs that have potential associations among genes, phenotypes and symptoms, and thus facilitates the data integration and drug repurposing in psychiatric disorders.

  4. HUNTER-GATHERER: Three search techniques integrated for natural language semantics

    SciTech Connect

    Beale, S.; Nirenburg, S.; Mahesh, K.

    1996-12-31

    This work integrates three related Al search techniques - constraint satisfaction, branch-and-bound and solution synthesis - and applies the result to semantic processing in natural language (NL). We summarize the approach as {open_quote}Hunter-Gatherer:{close_quotes} (1) branch-and-bound and constraint satisfaction allow us to {open_quote}hunt down{close_quotes} non-optimal and impossible solutions and prune them from the search space. (2) solution synthesis methods then {open_quote}gather{close_quotes} all optimal solutions avoiding exponential complexity. Each of the three techniques is briefly described, as well as their extensions and combinations used in our system. We focus on the combination of solution synthesis and branch-and-bound methods which has enabled near-linear-time processing in our applications. Finally, we illustrate how the use of our technique in a large-scale MT project allowed a drastic reduction in search space.

  5. Once Is Enough: N400 Indexes Semantic Integration of Novel Word Meanings from a Single Exposure in Context

    ERIC Educational Resources Information Center

    Borovsky, Arielle; Elman, Jeffrey L.; Kutas, Marta

    2012-01-01

    We investigated the impact of contextual constraint on the integration of novel word meanings into semantic memory. Adults read strongly or weakly constraining sentences ending in known or unknown (novel) words as scalp-recorded electrical brain activity was recorded. Word knowledge was assessed via a lexical decision task in which recently seen…

  6. Once Is Enough: N400 Indexes Semantic Integration of Novel Word Meanings from a Single Exposure in Context

    ERIC Educational Resources Information Center

    Borovsky, Arielle; Elman, Jeffrey L.; Kutas, Marta

    2012-01-01

    We investigated the impact of contextual constraint on the integration of novel word meanings into semantic memory. Adults read strongly or weakly constraining sentences ending in known or unknown (novel) words as scalp-recorded electrical brain activity was recorded. Word knowledge was assessed via a lexical decision task in which recently seen…

  7. Semantic Repositories for eGovernment Initiatives: Integrating Knowledge and Services

    NASA Astrophysics Data System (ADS)

    Palmonari, Matteo; Viscusi, Gianluigi

    In recent years, public sector investments in eGovernment initiatives have depended on making more reliable existing governmental ICT systems and infrastructures. Furthermore, we assist at a change in the focus of public sector management, from the disaggregation, competition and performance measurements typical of the New Public Management (NPM), to new models of governance, aiming for the reintegration of services under a new perspective in bureaucracy, namely a holistic approach to policy making which exploits the extensive digitalization of administrative operations. In this scenario, major challenges are related to support effective access to information both at the front-end level, by means of highly modular and customizable content provision, and at the back-end level, by means of information integration initiatives. Repositories of information about data and services that exploit semantic models and technologies can support these goals by bridging the gap between the data-level representations and the human-level knowledge involved in accessing information and in searching for services. Moreover, semantic repository technologies can reach a new level of automation for different tasks involved in interoperability programs, both related to data integration techniques and service-oriented computing approaches. In this chapter, we discuss the above topics by referring to techniques and experiences where repositories based on conceptual models and ontologies are used at different levels in eGovernment initiatives: at the back-end level to produce a comprehensive view of the information managed in the public administrations' (PA) information systems, and at the front-end level to support effective service delivery.

  8. Semantic integration of audio-visual information of polyphonic characters in a sentence context: an event-related potential study.

    PubMed

    Liu, Hong; Zhang, Gaoyan; Liu, Baolin

    2017-04-01

    In the Chinese language, a polyphone is a kind of special character that has more than one pronunciation, with each pronunciation corresponding to a different meaning. Here, we aimed to reveal the cognitive processing of audio-visual information integration of polyphones in a sentence context using the event-related potential (ERP) method. Sentences ending with polyphones were presented to subjects simultaneously in both an auditory and a visual modality. Four experimental conditions were set in which the visual presentations were the same, but the pronunciations of the polyphones were: the correct pronunciation; another pronunciation of the polyphone; a semantically appropriate pronunciation but not the pronunciation of the polyphone; or a semantically inappropriate pronunciation but also not the pronunciation of the polyphone. The behavioral results demonstrated significant differences in response accuracies when judging the semantic meanings of the audio-visual sentences, which reflected the different demands on cognitive resources. The ERP results showed that in the early stage, abnormal pronunciations were represented by the amplitude of the P200 component. Interestingly, because the phonological information mediated access to the lexical semantics, the amplitude and latency of the N400 component changed linearly across conditions, which may reflect the gradually increased semantic mismatch in the four conditions when integrating the auditory pronunciation with the visual information. Moreover, the amplitude of the late positive shift (LPS) showed a significant correlation with the behavioral response accuracies, demonstrating that the LPS component reveals the demand of cognitive resources for monitoring and resolving semantic conflicts when integrating the audio-visual information.

  9. When zebras become painted donkeys: Grammatical gender and semantic priming interact during picture integration in a spoken Spanish sentence

    PubMed Central

    Wicha, Nicole Y. Y.; Orozco-Figueroa, Araceli; Reyes, Iliana; Hernandez, Arturo; de Barreto, Lourdes Gavaldón; Bates, Elizabeth A.

    2012-01-01

    This study investigates the contribution of grammatical gender to integrating depicted nouns into sentences during on-line comprehension, and whether semantic congruity and gender agreement interact using two tasks: naming and semantic judgement of pictures. Native Spanish speakers comprehended spoken Spanish sentences with an embedded line drawing, which replaced a noun that either made sense or not with the preceding sentence context and either matched or mismatched the gender of the preceding article. In Experiment 1a (picture naming) slower naming times were found for gender mismatching pictures than matches, as well as for semantically incongruous pictures than congruous ones. In addition, the effects of gender agreement and semantic congruity interacted; specifically, pictures that were both semantically incongruous and gender mismatching were named slowest, but not as slow as if adding independent delays from both violations. Compared with a neutral baseline, with pictures embedded in simple command sentences like “Now please say ____”, both facilitative and inhibitory effects were observed. Experiment 1b replicated these results with low-cloze gender-neutral sentences, more similar in structure and processing demands to the experimental sentences. In Experiment 2, participants judged a picture’s semantic fit within a sentence by button-press; gender agreement and semantic congruity again interacted, with gender agreement having an effect on congruous but not incongruous pictures. Two distinct effects of gender are hypothesised: a “global” predictive effect (observed with and without overt noun production), and a “local” inhibitory effect (observed only with production of gender-discordant nouns). PMID:22773871

  10. NCI Thesaurus: a semantic model integrating cancer-related clinical and molecular information.

    PubMed

    Sioutos, Nicholas; de Coronado, Sherri; Haber, Margaret W; Hartel, Frank W; Shaiu, Wen-Ling; Wright, Lawrence W

    2007-02-01

    Over the last 8 years, the National Cancer Institute (NCI) has launched a major effort to integrate molecular and clinical cancer-related information within a unified biomedical informatics framework, with controlled terminology as its foundational layer. The NCI Thesaurus is the reference terminology underpinning these efforts. It is designed to meet the growing need for accurate, comprehensive, and shared terminology, covering topics including: cancers, findings, drugs, therapies, anatomy, genes, pathways, cellular and subcellular processes, proteins, and experimental organisms. The NCI Thesaurus provides a partial model of how these things relate to each other, responding to actual user needs and implemented in a deductive logic framework that can help maintain the integrity and extend the informational power of what is provided. This paper presents the semantic model for cancer diseases and its uses in integrating clinical and molecular knowledge, more briefly examines the models and uses for drug, biochemical pathway, and mouse terminology, and discusses limits of the current approach and directions for future work.

  11. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration.

    PubMed

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-07-08

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) BACKGROUND: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) METHODS: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) RESULTS: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) CONCLUSION: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database.

  12. Closed-Loop Lifecycle Management of Service and Product in the Internet of Things: Semantic Framework for Knowledge Integration

    PubMed Central

    Yoo, Min-Jung; Grozel, Clément; Kiritsis, Dimitris

    2016-01-01

    This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messaging Interface (O-MI) and Open Data Format (O-DF), which ensures data communication. (1) Background: Based on an existing product lifecycle management (PLM) methodology, we enhanced the ontology model for the purpose of integrating efficiently the product-service ontology model that was newly developed; (2) Methods: The IoT message transfer layer is vertically integrated into a semantic knowledge framework inside which a Semantic Info-Node Agent (SINA) uses the message format as a common protocol of product-service lifecycle data transfer; (3) Results: The product-service ontology model facilitates information retrieval and knowledge extraction during the product lifecycle, while making more information available for the sake of service business creation. The vertical integration of IoT message transfer, encompassing all semantic layers, helps achieve a more flexible and modular approach to knowledge sharing in an IoT environment; (4) Contribution: A semantic data annotation applied to IoT can contribute to enhancing collected data types, which entails a richer knowledge extraction. The ontology-based PLM model enables as well the horizontal integration of heterogeneous PLM data while breaking traditional vertical information silos; (5) Conclusion: The framework was applied to a fictive case study with an electric car service for the purpose of demonstration. For the purpose of demonstrating the feasibility of the approach, the semantic model is implemented in Sesame APIs, which play the role of an Internet-connected Resource Description Framework (RDF) database. PMID:27399717

  13. Integrating Syntax, Semantics, and Discourse DARPA Natural Language Understanding Program. Volume 3. Papers

    DTIC Science & Technology

    1989-09-30

    Theory. Linguistic Inquiry 18.3, 1987, pp. 369-411. [Jakobson57] Roman Jakobson , Shifters, Verbal Categories and the Russian Verb. In Selected Writings...Montague Grammar: The Semantics of Verbs and Times in Generative Semantics and in Montague’s PTQ. Dordrecht: D. Reidel. Jakobson , Roman . 1971 [1957...8217Taste ( Jakobson , 1957) refers to the semantic effect of the presence or absence or the perfect amilary. ’Aspect is both part of the inherent meaning of a

  14. Oscillatory neuronal activity reflects lexical-semantic feature integration within and across sensory modalities in distributed cortical networks.

    PubMed

    van Ackeren, Markus J; Schneider, Till R; Müsch, Kathrin; Rueschemeyer, Shirley-Ann

    2014-10-22

    Research from the previous decade suggests that word meaning is partially stored in distributed modality-specific cortical networks. However, little is known about the mechanisms by which semantic content from multiple modalities is integrated into a coherent multisensory representation. Therefore we aimed to characterize differences between integration of lexical-semantic information from a single modality compared with two sensory modalities. We used magnetoencephalography in humans to investigate changes in oscillatory neuronal activity while participants verified two features for a given target word (e.g., "bus"). Feature pairs consisted of either two features from the same modality (visual: "red," "big") or different modalities (auditory and visual: "red," "loud"). The results suggest that integrating modality-specific features of the target word is associated with enhanced high-frequency power (80-120 Hz), while integrating features from different modalities is associated with a sustained increase in low-frequency power (2-8 Hz). Source reconstruction revealed a peak in the anterior temporal lobe for low-frequency and high-frequency effects. These results suggest that integrating lexical-semantic knowledge at different cortical scales is reflected in frequency-specific oscillatory neuronal activity in unisensory and multisensory association networks.

  15. Using Linked Open Data and Semantic Integration to Search Across Geoscience Repositories

    NASA Astrophysics Data System (ADS)

    Mickle, A.; Raymond, L. M.; Shepherd, A.; Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Hitzler, P.; Janowicz, K.; Jones, M.; Krisnadhi, A.; Lehnert, K. A.; Narock, T.; Schildhauer, M.; Wiebe, P. H.

    2014-12-01

    The MBLWHOI Library is a partner in the OceanLink project, an NSF EarthCube Building Block, applying semantic technologies to enable knowledge discovery, sharing and integration. OceanLink is testing ontology design patterns that link together: two data repositories, Rolling Deck to Repository (R2R), Biological and Chemical Oceanography Data Management Office (BCO-DMO); the MBLWHOI Library Institutional Repository (IR) Woods Hole Open Access Server (WHOAS); National Science Foundation (NSF) funded awards; and American Geophysical Union (AGU) conference presentations. The Library is collaborating with scientific users, data managers, DSpace engineers, experts in ontology design patterns, and user interface developers to make WHOAS, a DSpace repository, linked open data enabled. The goal is to allow searching across repositories without any of the information providers having to change how they manage their collections. The tools developed for DSpace will be made available to the community of users. There are 257 registered DSpace repositories in the United Stated and over 1700 worldwide. Outcomes include: Integration of DSpace with OpenRDF Sesame triple store to provide SPARQL endpoint for the storage and query of RDF representation of DSpace resources, Mapping of DSpace resources to OceanLink ontology, and DSpace "data" add on to provide resolvable linked open data representation of DSpace resources.

  16. Semantic Web Ontology and Data Integration: a Case Study in Aiding Psychiatric Drug Repurposing

    PubMed Central

    Liang, Chen; Sun, Jingchun; Tao, Cui

    2016-01-01

    Despite ongoing progress towards treating mental illness, there remain significant difficulties in selecting probable candidate drugs from the existing database. We describe an ontology — oriented approach aims to represent the nexus between genes, drugs, phenotypes, symptoms, and diseases from multiple information sources. Along with this approach, we report a case study in which we attempted to explore the candidate drugs that effective for both bipolar disorder and epilepsy. We constructed an ontology that incorporates the knowledge between the two diseases and performed semantic reasoning task on the ontology. The reasoning results suggested 48 candidate drugs that hold promise for a further breakthrough. The evaluation was performed and demonstrated the validity of the proposed ontology. The overarching goal of this research is to build a framework of ontology — based data integration underpinning psychiatric drug repurposing. This approach prioritizes the candidate drugs that have potential associations among genes, phenotypes and symptoms, and thus facilitates the data integration and drug repurposing in psychiatric disorders. PMID:27570661

  17. An Embedded Rule-Based Diagnostic Expert System in Ada

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Liberman, Eugene M.

    1992-01-01

    Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.

  18. Toward Semantic Interoperability in Home Health Care: Formally Representing OASIS Items for Integration into a Concept-oriented Terminology

    PubMed Central

    Choi, Jeungok; Jenkins, Melinda L.; Cimino, James J.; White, Thomas M.; Bakken, Suzanne

    2005-01-01

    Objective: The authors aimed to (1) formally represent OASIS-B1 concepts using the Logical Observation Identifiers, Names, and Codes (LOINC) semantic structure; (2) demonstrate integration of OASIS-B1 concepts into a concept-oriented terminology, the Medical Entities Dictionary (MED); (3) examine potential hierarchical structures within LOINC among OASIS-B1 and other nursing terms; and (4) illustrate a Web-based implementation for OASIS-B1 data entry using Dialogix, a software tool with a set of functions that supports complex data entry. Design and Measurements: Two hundred nine OASIS-B1 items were dissected into the six elements of the LOINC semantic structure and then integrated into the MED hierarchy. Each OASIS-B1 term was matched to LOINC-coded nursing terms, Home Health Care Classification, the Omaha System, and the Sign and Symptom Check-List for Persons with HIV, and the extent of the match was judged based on a scale of 0 (no match) to 4 (exact match). OASIS-B1 terms were implemented as a Web-based survey using Dialogix. Results: Of 209 terms, 204 were successfully dissected into the elements of the LOINC semantics structure and integrated into the MED with minor revisions of MED semantics. One hundred fifty-one OASIS-B1 terms were mapped to one or more of the LOINC-coded nursing terms. Conclusion: The LOINC semantic structure offers a standard way to add home health care data to a comprehensive patient record to facilitate data sharing for monitoring outcomes across sites and to further terminology management, decision support, and accurate information retrieval for evidence-based practice. The cross-mapping results support the possibility of a hierarchical structure of the OASIS-B1 concepts within nursing terminologies in the LOINC database. PMID:15802480

  19. Toward semantic interoperability in home health care: formally representing OASIS items for integration into a concept-oriented terminology.

    PubMed

    Choi, Jeungok; Jenkins, Melinda L; Cimino, James J; White, Thomas M; Bakken, Suzanne

    2005-01-01

    The authors aimed to (1) formally represent OASIS-B1 concepts using the Logical Observation Identifiers, Names, and Codes (LOINC) semantic structure; (2) demonstrate integration of OASIS-B1 concepts into a concept-oriented terminology, the Medical Entities Dictionary (MED); (3) examine potential hierarchical structures within LOINC among OASIS-B1 and other nursing terms; and (4) illustrate a Web-based implementation for OASIS-B1 data entry using Dialogix, a software tool with a set of functions that supports complex data entry. Two hundred nine OASIS-B1 items were dissected into the six elements of the LOINC semantic structure and then integrated into the MED hierarchy. Each OASIS-B1 term was matched to LOINC-coded nursing terms, Home Health Care Classification, the Omaha System, and the Sign and Symptom Check-List for Persons with HIV, and the extent of the match was judged based on a scale of 0 (no match) to 4 (exact match). OASIS-B1 terms were implemented as a Web-based survey using Dialogix. Of 209 terms, 204 were successfully dissected into the elements of the LOINC semantics structure and integrated into the MED with minor revisions of MED semantics. One hundred fifty-one OASIS-B1 terms were mapped to one or more of the LOINC-coded nursing terms. The LOINC semantic structure offers a standard way to add home health care data to a comprehensive patient record to facilitate data sharing for monitoring outcomes across sites and to further terminology management, decision support, and accurate information retrieval for evidence-based practice. The cross-mapping results support the possibility of a hierarchical structure of the OASIS-B1 concepts within nursing terminologies in the LOINC database.

  20. Parallelism In Rule-Based Systems

    NASA Astrophysics Data System (ADS)

    Sabharwal, Arvind; Iyengar, S. Sitharama; de Saussure, G.; Weisbin, C. R.

    1988-03-01

    Rule-based systems, which have proven to be extremely useful for several Artificial Intelligence and Expert Systems applications, currently face severe limitations due to the slow speed of their execution. To achieve the desired speed-up, this paper addresses the problem of parallelization of production systems and explores the various architectural and algorithmic possibilities. The inherent sources of parallelism in the production system structure are analyzed and the trade-offs, limitations and feasibility of exploitation of these sources of parallelism are presented. Based on this analysis, we propose a dedicated, coarse-grained, n-ary tree multiprocessor architecture for the parallel implementation of rule-based systems and then present algorithms for partitioning of rules in this architecture.

  1. Software Uncertainty in Integrated Environmental Modelling: the role of Semantics and Open Science

    NASA Astrophysics Data System (ADS)

    de Rigo, Daniele

    2013-04-01

    Computational aspects increasingly shape environmental sciences [1]. Actually, transdisciplinary modelling of complex and uncertain environmental systems is challenging computational science (CS) and also the science-policy interface [2-7]. Large spatial-scale problems falling within this category - i.e. wide-scale transdisciplinary modelling for environment (WSTMe) [8-10] - often deal with factors (a) for which deep-uncertainty [2,11-13] may prevent usual statistical analysis of modelled quantities and need different ways for providing policy-making with science-based support. Here, practical recommendations are proposed for tempering a peculiar - not infrequently underestimated - source of uncertainty. Software errors in complex WSTMe may subtly affect the outcomes with possible consequences even on collective environmental decision-making. Semantic transparency in CS [2,8,10,14,15] and free software [16,17] are discussed as possible mitigations (b) . Software uncertainty, black-boxes and free software. Integrated natural resources modelling and management (INRMM) [29] frequently exploits chains of nontrivial data-transformation models (D- TM), each of them affected by uncertainties and errors. Those D-TM chains may be packaged as monolithic specialized models, maybe only accessible as black-box executables (if accessible at all) [50]. For end-users, black-boxes merely transform inputs in the final outputs, relying on classical peer-reviewed publications for describing the internal mechanism. While software tautologically plays a vital role in CS, it is often neglected in favour of more theoretical aspects. This paradox has been provocatively described as "the invisibility of software in published science. Almost all published papers required some coding, but almost none mention software, let alone include or link to source code" [51]. Recently, this primacy of theory over reality [52-54] has been challenged by new emerging hybrid approaches [55] and by the

  2. Risk for Mild Cognitive Impairment Is Associated With Semantic Integration Deficits in Sentence Processing and Memory

    PubMed Central

    Stine-Morrow, Elizabeth A. L.

    2016-01-01

    Objectives. We examined the degree to which online sentence processing and offline sentence memory differed among older adults who showed risk for amnestic and nonamnestic varieties of mild cognitive impairment (MCI), based on psychometric classification. Method. Participants (N = 439) read a series of sentences in a self-paced word-by-word reading paradigm for subsequent recall and completed a standardized cognitive test battery. Participants were classified into 3 groups: unimpaired controls (N = 281), amnestic MCI (N = 94), or nonamnestic MCI (N = 64). Results. Relative to controls, both MCI groups had poorer sentence memory and showed reduced sentence wrap-up effects, indicating reduced allocation to semantic integration processes. Wrap-up effects predicted subsequent recall in the control and nonamnestic groups. The amnestic MCI group showed poorer recall than the nonamnestic MCI group, and only the amnestic MCI group showed no relationship between sentence wrap-up and recall. Discussion. Our findings suggest that psychometrically defined sub-types of MCI are associated with unique deficits in sentence processing and can differentiate between the engagement of attentional resources during reading and the effectiveness of engaging attentional resources in producing improved memory. PMID:25190209

  3. BSQA: integrated text mining using entity relation semantics extracted from biological literature of insects.

    PubMed

    He, Xin; Li, Yanen; Khetani, Radhika; Sanders, Barry; Lu, Yue; Ling, Xu; Zhai, Chengxiang; Schatz, Bruce

    2010-07-01

    Text mining is one promising way of extracting information automatically from the vast biological literature. To maximize its potential, the knowledge encoded in the text should be translated to some semantic representation such as entities and relations, which could be analyzed by machines. But large-scale practical systems for this purpose are rare. We present BeeSpace question/answering (BSQA) system that performs integrated text mining for insect biology, covering diverse aspects from molecular interactions of genes to insect behavior. BSQA recognizes a number of entities and relations in Medline documents about the model insect, Drosophila melanogaster. For any text query, BSQA exploits entity annotation of retrieved documents to identify important concepts in different categories. By utilizing the extracted relations, BSQA is also able to answer many biologically motivated questions, from simple ones such as, which anatomical part is a gene expressed in, to more complex ones involving multiple types of relations. BSQA is freely available at http://www.beespace.uiuc.edu/QuestionAnswer.

  4. Electrophysiological evidence of interaction between contextual expectation and semantic integration during the processing of collocations.

    PubMed

    Molinaro, Nicola; Carreiras, Manuel

    2010-03-01

    Despite the potentially infinite creativity of language, many words are patterned in ordered strings called collocations. Final words of these clusters are highly predictable; in addition, their overall meaning can vary on the literality dimension, ranging from (figurative) idiomatic strings to literal strings. These structures thus offer a natural linguistic scenario to contrast ERP correlates of contextual expectation and semantic integration processes during comprehension. In this study, expected endings elicited a positive peak around 300ms compared to less expected synonyms, suggesting that the earlier recognition of the string leads to the specific pre-activation of the lexical items that conclude the expression. On the other hand, meaning variations of these fixed strings (either a literal or a figurative whole meaning) affected ERPs only around 400ms, i.e. in the frontal portion of the N400. These findings are discussed within a more general cognitive framework as outlined in Kok's (2001) dual categorization model. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Audiovisual speech integration in autism spectrum disorders: ERP evidence for atypicalities in lexical-semantic processing.

    PubMed

    Megnin, Odette; Flitton, Atlanta; Jones, Catherine R G; de Haan, Michelle; Baldeweg, Torsten; Charman, Tony

    2012-02-01

    In typically developing (TD) individuals, behavioral and event-related potential (ERP) studies suggest that audiovisual (AV) integration enables faster and more efficient processing of speech. However, little is known about AV speech processing in individuals with autism spectrum disorders (ASD). This study examined ERP responses to spoken words to elucidate the effects of visual speech (the lip movements accompanying a spoken word) on the range of auditory speech processing stages from sound onset detection to semantic integration. The study also included an AV condition, which paired spoken words with a dynamic scrambled face in order to highlight AV effects specific to visual speech. Fourteen adolescent boys with ASD (15-17 years old) and 14 age- and verbal IQ-matched TD boys participated. The ERP of the TD group showed a pattern and topography of AV interaction effects consistent with activity within the superior temporal plane, with two dissociable effects over frontocentral and centroparietal regions. The posterior effect (200-300 ms interval) was specifically sensitive to lip movements in TD boys, and no AV modulation was observed in this region for the ASD group. Moreover, the magnitude of the posterior AV effect to visual speech correlated inversely with ASD symptomatology. In addition, the ASD boys showed an unexpected effect (P2 time window) over the frontocentral region (pooled electrodes F3, Fz, F4, FC1, FC2, FC3, FC4), which was sensitive to scrambled face stimuli. These results suggest that the neural networks facilitating processing of spoken words by visual speech are altered in individuals with ASD. Copyright © 2011, International Society for Autism Research, Wiley-Liss, Inc.

  6. The integration of geophysical and enhanced Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index data into a rule-based, piecewise regression-tree model to estimate cheatgrass beginning of spring growth

    USGS Publications Warehouse

    Boyte, Stephen P.; Wylie, Bruce K.; Major, Donald J.; Brown, Jesslyn F.

    2015-01-01

    Cheatgrass exhibits spatial and temporal phenological variability across the Great Basin as described by ecological models formed using remote sensing and other spatial data-sets. We developed a rule-based, piecewise regression-tree model trained on 99 points that used three data-sets – latitude, elevation, and start of season time based on remote sensing input data – to estimate cheatgrass beginning of spring growth (BOSG) in the northern Great Basin. The model was then applied to map the location and timing of cheatgrass spring growth for the entire area. The model was strong (R2 = 0.85) and predicted an average cheatgrass BOSG across the study area of 29 March–4 April. Of early cheatgrass BOSG areas, 65% occurred at elevations below 1452 m. The highest proportion of cheatgrass BOSG occurred between mid-April and late May. Predicted cheatgrass BOSG in this study matched well with previous Great Basin cheatgrass green-up studies.

  7. The DebugIT core ontology: semantic integration of antibiotics resistance patterns.

    PubMed

    Schober, Daniel; Boeker, Martin; Bullenkamp, Jessica; Huszka, Csaba; Depraetere, Kristof; Teodoro, Douglas; Nadah, Nadia; Choquet, Remy; Daniel, Christel; Schulz, Stefan

    2010-01-01

    Antibiotics resistance development poses a significant problem in today's hospital care. Massive amounts of clinical data are being collected and stored in proprietary and unconnected systems in heterogeneous format. The DebugIT EU project promises to make this data geographically and semantically interoperable for case-based knowledge analysis approaches aiming at the discovery of patterns that help to align antibiotics treatment schemes. The semantic glue for this endeavor is DCO, an application ontology that enables data miners to query distributed clinical information systems in a semantically rich and content driven manner. DCO will hence serve as the core component of the interoperability platform for the DebugIT project. Here we present DCO and an approach thet uses the semantic web query language SPARQL to bind and ontologically query hospital database content using DCO and information model mediators. We provide a query example that indicates that ontological querying over heterogeneous information models is feasible via SPARQL construct- and resource mapping queries.

  8. Horizontal Integration of Warfighter Intelligence Data: A Shared Semantic Resource for the Intelligence Community

    DTIC Science & Technology

    2012-10-01

    This strategy, which draws on standard features of what is now called ‘semantic technology ’ [2], has been used successfully for over ten years to...realization of the Human Genome Project [3, 4]. The quantity and variety of such data – now spanning all species and species- interactions, at all life...public release; distribution unlimited 13. SUPPLEMENTARY NOTES Preprint, to be presented at SEMANTIC TECHNOLOGY FOR INTELLIGENCE, DEFENSE, AND

  9. Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure

    SciTech Connect

    Yue, Peng; Gong, Jianya; Di, Liping; He, Lianlian; Wei, Yaxing

    2011-04-01

    Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information and discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.

  10. Toward Open Science at the European Scale: Geospatial Semantic Array Programming for Integrated Environmental Modelling

    NASA Astrophysics Data System (ADS)

    de Rigo, Daniele; Corti, Paolo; Caudullo, Giovanni; McInerney, Daniel; Di Leo, Margherita; San-Miguel-Ayanz, Jesús

    2013-04-01

    of the science-policy interface, INRMM should be able to provide citizens and policy-makers with a clear, accurate understanding of the implications of the technical apparatus on collective environmental decision-making [1]. Complexity of course should not be intended as an excuse for obscurity [27-29]. Geospatial Semantic Array Programming. Concise array-based mathematical formulation and implementation (with array programming tools, see (b) ) have proved helpful in supporting and mitigating the complexity of WSTMe [40-47] when complemented with generalized modularization and terse array-oriented semantic constraints. This defines the paradigm of Semantic Array Programming (SemAP) [35,36] where semantic transparency also implies free software use (although black-boxes [12] - e.g. legacy code - might easily be semantically interfaced). A new approach for WSTMe has emerged by formalizing unorganized best practices and experience-driven informal patterns. The approach introduces a lightweight (non-intrusive) integration of SemAP and geospatial tools (c) - called Geospatial Semantic Array Programming (GeoSemAP). GeoSemAP (d) exploits the joint semantics provided by SemAP and geospatial tools to split a complex D- TM into logical blocks which are easier to check by means of mathematical array-based and geospatial constraints. Those constraints take the form of precondition, invariant and postcondition semantic checks. This way, even complex WSTMe may be described as the composition of simpler GeoSemAP blocks, each of them structured as (d). GeoSemAP allows intermediate data and information layers to be more easily an formally semantically described so as to increase fault-tolerance [17], transparency and reproducibility of WSTMe. This might also help to better communicate part of the policy-relevant knowledge, often difficult to transfer from technical WSTMe to the science-policy interface [1,15]. References de Rigo, D., 2013. Behind the horizon of reproducible

  11. Automation and integration of components for generalized semantic markup of electronic medical texts.

    PubMed

    Dugan, J M; Berrios, D C; Liu, X; Kim, D K; Kaizer, H; Fagan, L M

    1999-01-01

    Our group has built an information retrieval system based on a complex semantic markup of medical textbooks. We describe the construction of a set of web-based knowledge-acquisition tools that expedites the collection and maintenance of the concepts required for text markup and the search interface required for information retrieval from the marked text. In the text markup system, domain experts (DEs) identify sections of text that contain one or more elements from a finite set of concepts. End users can then query the text using a predefined set of questions, each of which identifies a subset of complementary concepts. The search process matches that subset of concepts to relevant points in the text. The current process requires that the DE invest significant time to generate the required concepts and questions. We propose a new system--called ACQUIRE (Acquisition of Concepts and Queries in an Integrated Retrieval Environment)--that assists a DE in two essential tasks in the text-markup process. First, it helps her to develop, edit, and maintain the concept model: the set of concepts with which she marks the text. Second, ACQUIRE helps her to develop a query model: the set of specific questions that end users can later use to search the marked text. The DE incorporates concepts from the concept model when she creates the questions in the query model. The major benefit of the ACQUIRE system is a reduction in the time and effort required for the text-markup process. We compared the process of concept- and query-model creation using ACQUIRE to the process used in previous work by rebuilding two existing models that we previously constructed manually. We observed a significant decrease in the time required to build and maintain the concept and query models.

  12. Automation and integration of components for generalized semantic markup of electronic medical texts.

    PubMed Central

    Dugan, J. M.; Berrios, D. C.; Liu, X.; Kim, D. K.; Kaizer, H.; Fagan, L. M.

    1999-01-01

    Our group has built an information retrieval system based on a complex semantic markup of medical textbooks. We describe the construction of a set of web-based knowledge-acquisition tools that expedites the collection and maintenance of the concepts required for text markup and the search interface required for information retrieval from the marked text. In the text markup system, domain experts (DEs) identify sections of text that contain one or more elements from a finite set of concepts. End users can then query the text using a predefined set of questions, each of which identifies a subset of complementary concepts. The search process matches that subset of concepts to relevant points in the text. The current process requires that the DE invest significant time to generate the required concepts and questions. We propose a new system--called ACQUIRE (Acquisition of Concepts and Queries in an Integrated Retrieval Environment)--that assists a DE in two essential tasks in the text-markup process. First, it helps her to develop, edit, and maintain the concept model: the set of concepts with which she marks the text. Second, ACQUIRE helps her to develop a query model: the set of specific questions that end users can later use to search the marked text. The DE incorporates concepts from the concept model when she creates the questions in the query model. The major benefit of the ACQUIRE system is a reduction in the time and effort required for the text-markup process. We compared the process of concept- and query-model creation using ACQUIRE to the process used in previous work by rebuilding two existing models that we previously constructed manually. We observed a significant decrease in the time required to build and maintain the concept and query models. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:10566457

  13. Semantically Interoperable XML Data

    PubMed Central

    Vergara-Niedermayr, Cristobal; Wang, Fusheng; Pan, Tony; Kurc, Tahsin; Saltz, Joel

    2013-01-01

    XML is ubiquitously used as an information exchange platform for web-based applications in healthcare, life sciences, and many other domains. Proliferating XML data are now managed through latest native XML database technologies. XML data sources conforming to common XML schemas could be shared and integrated with syntactic interoperability. Semantic interoperability can be achieved through semantic annotations of data models using common data elements linked to concepts from ontologies. In this paper, we present a framework and software system to support the development of semantic interoperable XML based data sources that can be shared through a Grid infrastructure. We also present our work on supporting semantic validated XML data through semantic annotations for XML Schema, semantic validation and semantic authoring of XML data. We demonstrate the use of the system for a biomedical database of medical image annotations and markups. PMID:25298789

  14. Integration of clinical information across patient records: a comparison of mechanisms used to enforce semantic coherence.

    PubMed

    Mori, A R; Consorti, F

    1998-12-01

    Semantic coherence about clinical information is the bottleneck for true interoperability among applications in health telematics. Healthcare records are in principle made of statements about patient's health and activities performed, organized within attested transactions or messages. Various mechanisms were developed to optimally represent details of statements into a record system, creating de facto three subdivisions: 1) "containers" of clinical information, i.e., section headings, data elements in local records; segments and data fields in messages; 2) their "contents," i.e., coding systems and terminologies; and 3) "transaction context," i.e., circumstances related to document production and message exchange, typically represented in their headers. Details rely on a common semantic background and should therefore, be seen in a continuum; nevertheless, design methodologies and tools for the three subdivisions evolved independently and assignment of details to subdivisions is not predetermined by principles, but depends on implementation issues. Recent developments within the European Committee for Standardization (CEN/TC251/WG II) and in the European Project GALEN-IN-USE provide a new insight on semantics in healthcare. In order to guide harmonization of semantic aspects in the different series of standards--in information models, messages, document markup, terminology systems--we present here a comparison of the various mechanisms they use to enforce semantic coherence on clinical information.

  15. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    PubMed

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings.

  16. Fuzzification of ASAT's rule based aimpoint selection

    NASA Astrophysics Data System (ADS)

    Weight, Thomas H.

    1993-06-01

    The aimpoint algorithms being developed at Dr. Weight and Associates are based on the concept of fuzzy logic. This approach does not require a particular type of sensor data or algorithm type, but allows the user to develop a fuzzy logic algorithm based on existing aimpoint algorithms and models. This provides an opportunity for the user to upgrade an existing system design to achieve higher performance at minimal cost. Many projects have aimpoint algorithms which are based on 'crisp' logic rule based algorithms. These algorithms are sensitive to glint, corner reflectors, or intermittent thruster firings, and to uncertainties in the a priori estimates of angle of attack. If these projects are continued through to a demonstration involving a launch to hit a target, it is quite possible that the crisp logic approaches will need to be upgraded to handle these important error sources.

  17. The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies

    PubMed Central

    2013-01-01

    Background BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. Results The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. Conclusion We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer. PMID:23398680

  18. Semantic Integration and Age of Acquisition Effects in Code-Blend Comprehension

    ERIC Educational Resources Information Center

    Giezen, Marcel R.; Emmorey, Karen

    2016-01-01

    Semantic and lexical decision tasks were used to investigate the mechanisms underlying code-blend facilitation: the finding that hearing bimodal bilinguals comprehend signs in American Sign Language (ASL) and spoken English words more quickly when they are presented together simultaneously than when each is presented alone. More robust…

  19. Neural Correlates of Verbal and Nonverbal Semantic Integration in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    McCleery, Joseph P.; Ceponiene, Rita; Burner, Karen M.; Townsend, Jeanne; Kinnear, Mikaela; Schreibman, Laura

    2010-01-01

    Background: Autism is a pervasive developmental disorder characterized by deficits in social-emotional, social-communicative, and language skills. Behavioral and neuroimaging studies have found that children with autism spectrum disorders (ASD) evidence abnormalities in semantic processing, with particular difficulties in verbal comprehension.…

  20. Semantic Integration and Age of Acquisition Effects in Code-Blend Comprehension

    ERIC Educational Resources Information Center

    Giezen, Marcel R.; Emmorey, Karen

    2016-01-01

    Semantic and lexical decision tasks were used to investigate the mechanisms underlying code-blend facilitation: the finding that hearing bimodal bilinguals comprehend signs in American Sign Language (ASL) and spoken English words more quickly when they are presented together simultaneously than when each is presented alone. More robust…

  1. The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies.

    PubMed

    Katayama, Toshiaki; Wilkinson, Mark D; Micklem, Gos; Kawashima, Shuichi; Yamaguchi, Atsuko; Nakao, Mitsuteru; Yamamoto, Yasunori; Okamoto, Shinobu; Oouchida, Kenta; Chun, Hong-Woo; Aerts, Jan; Afzal, Hammad; Antezana, Erick; Arakawa, Kazuharu; Aranda, Bruno; Belleau, Francois; Bolleman, Jerven; Bonnal, Raoul Jp; Chapman, Brad; Cock, Peter Ja; Eriksson, Tore; Gordon, Paul Mk; Goto, Naohisa; Hayashi, Kazuhiro; Horn, Heiko; Ishiwata, Ryosuke; Kaminuma, Eli; Kasprzyk, Arek; Kawaji, Hideya; Kido, Nobuhiro; Kim, Young Joo; Kinjo, Akira R; Konishi, Fumikazu; Kwon, Kyung-Hoon; Labarga, Alberto; Lamprecht, Anna-Lena; Lin, Yu; Lindenbaum, Pierre; McCarthy, Luke; Morita, Hideyuki; Murakami, Katsuhiko; Nagao, Koji; Nishida, Kozo; Nishimura, Kunihiro; Nishizawa, Tatsuya; Ogishima, Soichi; Ono, Keiichiro; Oshita, Kazuki; Park, Keun-Joon; Prins, Pjotr; Saito, Taro L; Samwald, Matthias; Satagopam, Venkata P; Shigemoto, Yasumasa; Smith, Richard; Splendiani, Andrea; Sugawara, Hideaki; Taylor, James; Vos, Rutger A; Withers, David; Yamasaki, Chisato; Zmasek, Christian M; Kawamoto, Shoko; Okubo, Kosaku; Asai, Kiyoshi; Takagi, Toshihisa

    2013-02-11

    BioHackathon 2010 was the third in a series of meetings hosted by the Database Center for Life Sciences (DBCLS) in Tokyo, Japan. The overall goal of the BioHackathon series is to improve the quality and accessibility of life science research data on the Web by bringing together representatives from public databases, analytical tool providers, and cyber-infrastructure researchers to jointly tackle important challenges in the area of in silico biological research. The theme of BioHackathon 2010 was the 'Semantic Web', and all attendees gathered with the shared goal of producing Semantic Web data from their respective resources, and/or consuming or interacting those data using their tools and interfaces. We discussed on topics including guidelines for designing semantic data and interoperability of resources. We consequently developed tools and clients for analysis and visualization. We provide a meeting report from BioHackathon 2010, in which we describe the discussions, decisions, and breakthroughs made as we moved towards compliance with Semantic Web technologies - from source provider, through middleware, to the end-consumer.

  2. Semantic Integration as a Boundary Condition on Inhibitory Processes in Episodic Retrieval

    ERIC Educational Resources Information Center

    Goodmon, Leilani B.; Anderson, Michael C.

    2011-01-01

    Recalling an experience often impairs the later retention of related traces, a phenomenon known as retrieval-induced forgetting (RIF). Research has shown that episodic associations protect competing memories from RIF (Anderson & McCulloch, 1999). We report 4 experiments that examined whether semantic associations also protect against RIF. In…

  3. CI-Miner: A Semantic Methodology to Integrate Scientists, Data and Documents through the Use of Cyber-Infrastructure

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; CyberShARE Center of Excellence

    2011-12-01

    Scientists today face the challenge of rethinking the manner in which they document and make available their processes and data in an international cyber-infrastructure of shared resources. Some relevant examples of new scientific practices in the realm of computational and data extraction sciences include: large scale data discovery; data integration; data sharing across distinct scientific domains, systematic management of trust and uncertainty; and comprehensive support for explaining processes and results. This talk introduces CI-Miner - an innovative hands-on, open-source, community-driven methodology to integrate these new scientific practices. It has been developed in collaboration with scientists, with the purpose of capturing, storing and retrieving knowledge about scientific processes and their products, thereby further supporting a new generation of science techniques based on data exploration. CI-Miner uses semantic annotations in the form of W3C Ontology Web Language-based ontologies and Proof Markup Language (PML)-based provenance to represent knowledge. This methodology specializes in general-purpose ontologies, projected into workflow-driven ontologies(WDOs) and into semantic abstract workflows (SAWs). Provenance in PML is CI-Miner's integrative component, which allows scientists to retrieve and reason with the knowledge represented in these new semantic documents. It serves additionally as a platform to share such collected knowledge with the scientific community participating in the international cyber-infrastructure. The integrated semantic documents that are tailored for the use of human epistemic agents may also be utilized by machine epistemic agents, since the documents are based on W3C Resource Description Framework (RDF) notation. This talk is grounded upon interdisciplinary lessons learned through the use of CI-Miner in support of government-funded national and international cyber-infrastructure initiatives in the areas of geo

  4. The anterior temporal lobes are critically involved in acquiring new conceptual knowledge: evidence for impaired feature integration in semantic dementia.

    PubMed

    Hoffman, Paul; Evans, Gemma A L; Lambon Ralph, Matthew A

    2014-01-01

    Recent evidence from multiple neuroscience techniques indicates that regions within the anterior temporal lobes (ATLs) are a critical node in the neural network for representing conceptual knowledge, yet their function remains elusive. The hub-and-spoke model holds that ATL regions act as a transmodal conceptual hub, distilling the various sensory-motor features of objects and words into integrated, coherent conceptual representations. Single-cell recordings in monkeys suggest that the ATLs are critically involved in visual associative learning; however, investigations of this region in humans have focused on existing knowledge rather than learning. We studied acquisition of new concepts in semantic dementia patients, who have cortical damage centred on the ventrolateral aspects of the ATLs. Patients learned to assign abstract visual stimuli to two categories. The categories conformed to a family resemblance structure in which no individual stimulus features were fully diagnostic; thus the task required participants to form representations that integrate multiple features into a single concept. Patients were unable to do this, instead responding only on the basis of individual features. The study reveals that integrating disparate sources of information into novel coherent concepts is a critical computational function of the ATLs. This explains the central role of this region in conceptual representation and the catastrophic breakdown of concepts in semantic dementia.

  5. Lexicon-enhanced sentiment analysis framework using rule-based classification scheme.

    PubMed

    Asghar, Muhammad Zubair; Khan, Aurangzeb; Ahmad, Shakeel; Qasim, Maria; Khan, Imran Ali

    2017-01-01

    With the rapid increase in social networks and blogs, the social media services are increasingly being used by online communities to share their views and experiences about a particular product, policy and event. Due to economic importance of these reviews, there is growing trend of writing user reviews to promote a product. Nowadays, users prefer online blogs and review sites to purchase products. Therefore, user reviews are considered as an important source of information in Sentiment Analysis (SA) applications for decision making. In this work, we exploit the wealth of user reviews, available through the online forums, to analyze the semantic orientation of words by categorizing them into +ive and -ive classes to identify and classify emoticons, modifiers, general-purpose and domain-specific words expressed in the public's feedback about the products. However, the un-supervised learning approach employed in previous studies is becoming less efficient due to data sparseness, low accuracy due to non-consideration of emoticons, modifiers, and presence of domain specific words, as they may result in inaccurate classification of users' reviews. Lexicon-enhanced sentiment analysis based on Rule-based classification scheme is an alternative approach for improving sentiment classification of users' reviews in online communities. In addition to the sentiment terms used in general purpose sentiment analysis, we integrate emoticons, modifiers and domain specific terms to analyze the reviews posted in online communities. To test the effectiveness of the proposed method, we considered users reviews in three domains. The results obtained from different experiments demonstrate that the proposed method overcomes limitations of previous methods and the performance of the sentiment analysis is improved after considering emoticons, modifiers, negations, and domain specific terms when compared to baseline methods.

  6. Lexicon-enhanced sentiment analysis framework using rule-based classification scheme

    PubMed Central

    Khan, Aurangzeb; Ahmad, Shakeel; Qasim, Maria; Khan, Imran Ali

    2017-01-01

    With the rapid increase in social networks and blogs, the social media services are increasingly being used by online communities to share their views and experiences about a particular product, policy and event. Due to economic importance of these reviews, there is growing trend of writing user reviews to promote a product. Nowadays, users prefer online blogs and review sites to purchase products. Therefore, user reviews are considered as an important source of information in Sentiment Analysis (SA) applications for decision making. In this work, we exploit the wealth of user reviews, available through the online forums, to analyze the semantic orientation of words by categorizing them into +ive and -ive classes to identify and classify emoticons, modifiers, general-purpose and domain-specific words expressed in the public’s feedback about the products. However, the un-supervised learning approach employed in previous studies is becoming less efficient due to data sparseness, low accuracy due to non-consideration of emoticons, modifiers, and presence of domain specific words, as they may result in inaccurate classification of users’ reviews. Lexicon-enhanced sentiment analysis based on Rule-based classification scheme is an alternative approach for improving sentiment classification of users’ reviews in online communities. In addition to the sentiment terms used in general purpose sentiment analysis, we integrate emoticons, modifiers and domain specific terms to analyze the reviews posted in online communities. To test the effectiveness of the proposed method, we considered users reviews in three domains. The results obtained from different experiments demonstrate that the proposed method overcomes limitations of previous methods and the performance of the sentiment analysis is improved after considering emoticons, modifiers, negations, and domain specific terms when compared to baseline methods. PMID:28231286

  7. SemFunSim: A New Method for Measuring Disease Similarity by Integrating Semantic and Gene Functional Association

    PubMed Central

    Ju, Peng; Peng, Jiajie; Wang, Yadong

    2014-01-01

    Background Measuring similarity between diseases plays an important role in disease-related molecular function research. Functional associations between disease-related genes and semantic associations between diseases are often used to identify pairs of similar diseases from different perspectives. Currently, it is still a challenge to exploit both of them to calculate disease similarity. Therefore, a new method (SemFunSim) that integrates semantic and functional association is proposed to address the issue. Methods SemFunSim is designed as follows. First of all, FunSim (Functional similarity) is proposed to calculate disease similarity using disease-related gene sets in a weighted network of human gene function. Next, SemSim (Semantic Similarity) is devised to calculate disease similarity using the relationship between two diseases from Disease Ontology. Finally, FunSim and SemSim are integrated to measure disease similarity. Results The high average AUC (area under the receiver operating characteristic curve) (96.37%) shows that SemFunSim achieves a high true positive rate and a low false positive rate. 79 of the top 100 pairs of similar diseases identified by SemFunSim are annotated in the Comparative Toxicogenomics Database (CTD) as being targeted by the same therapeutic compounds, while other methods we compared could identify 35 or less such pairs among the top 100. Moreover, when using our method on diseases without annotated compounds in CTD, we could confirm many of our predicted candidate compounds from literature. This indicates that SemFunSim is an effective method for drug repositioning. PMID:24932637

  8. SemFunSim: a new method for measuring disease similarity by integrating semantic and gene functional association.

    PubMed

    Cheng, Liang; Li, Jie; Ju, Peng; Peng, Jiajie; Wang, Yadong

    2014-01-01

    Measuring similarity between diseases plays an important role in disease-related molecular function research. Functional associations between disease-related genes and semantic associations between diseases are often used to identify pairs of similar diseases from different perspectives. Currently, it is still a challenge to exploit both of them to calculate disease similarity. Therefore, a new method (SemFunSim) that integrates semantic and functional association is proposed to address the issue. SemFunSim is designed as follows. First of all, FunSim (Functional similarity) is proposed to calculate disease similarity using disease-related gene sets in a weighted network of human gene function. Next, SemSim (Semantic Similarity) is devised to calculate disease similarity using the relationship between two diseases from Disease Ontology. Finally, FunSim and SemSim are integrated to measure disease similarity. The high average AUC (area under the receiver operating characteristic curve) (96.37%) shows that SemFunSim achieves a high true positive rate and a low false positive rate. 79 of the top 100 pairs of similar diseases identified by SemFunSim are annotated in the Comparative Toxicogenomics Database (CTD) as being targeted by the same therapeutic compounds, while other methods we compared could identify 35 or less such pairs among the top 100. Moreover, when using our method on diseases without annotated compounds in CTD, we could confirm many of our predicted candidate compounds from literature. This indicates that SemFunSim is an effective method for drug repositioning.

  9. Modified risk graph method using fuzzy rule-based approach.

    PubMed

    Nait-Said, R; Zidani, F; Ouzraoui, N

    2009-05-30

    The risk graph is one of the most popular methods used to determine the safety integrity level for safety instrumented functions. However, conventional risk graph as described in the IEC 61508 standard is subjective and suffers from an interpretation problem of risk parameters. Thus, it can lead to inconsistent outcomes that may result in conservative SILs. To overcome this difficulty, a modified risk graph using fuzzy rule-based system is proposed. This novel version of risk graph uses fuzzy scales to assess risk parameters and calibration may be made by varying risk parameter values. Furthermore, the outcomes which are numerical values of risk reduction factor (the inverse of the probability of failure on demand) can be compared directly with those given by quantitative and semi-quantitative methods such as fault tree analysis (FTA), quantitative risk assessment (QRA) and layers of protection analysis (LOPA).

  10. An Unsupervised Rule-Based Method to Populate Ontologies from Text

    NASA Astrophysics Data System (ADS)

    Motta, Eduardo; Siqueira, Sean; Andreatta, Alexandre

    An increasing amount of information is available on the web and usually is expressed as text. Semantic information is implicit in these texts, since they are mainly intended for human consumption and interpretation. Because unstructured information is not easily handled automatically, an information extraction process has to be used to identify concepts and establish relations among them. Ontologies are an appropriate way to represent structured knowledge bases, enabling sharing, reuse and inference. In this paper, an information extraction process is used for populating a domain ontology. It targets Brazilian Portuguese texts from a biographical dictionary of music, which requires specific tools due to some language unique aspects. An unsupervised rule-based method is proposed. Through this process, latent concepts and relations expressed in natural language can be extracted and represented as an ontology, allowing new uses and visualizations of the content, such as semantically browsing and inferring new knowledge.

  11. A rule-based software test data generator

    NASA Technical Reports Server (NTRS)

    Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II

    1991-01-01

    Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.

  12. A rule-based software test data generator

    NASA Technical Reports Server (NTRS)

    Deason, William H.; Brown, David B.; Chang, Kai-Hsiung; Cross, James H., II

    1991-01-01

    Rule-based software test data generation is proposed as an alternative to either path/predicate analysis or random data generation. A prototype rule-based test data generator for Ada programs is constructed and compared to a random test data generator. Four Ada procedures are used in the comparison. Approximately 2000 rule-based test cases and 100,000 randomly generated test cases are automatically generated and executed. The success of the two methods is compared using standard coverage metrics. Simple statistical tests showing that even the primitive rule-based test data generation prototype is significantly better than random data generation are performed. This result demonstrates that rule-based test data generation is feasible and shows great promise in assisting test engineers, especially when the rule base is developed further.

  13. Integrating Syntax, Semantics, and Discourse DARPA Natural Language Understanding Program. Volume 2. Documentation

    DTIC Science & Technology

    1989-09-30

    essentially similar to that developed for other domains, and may be considered representative: it includes a domain-specific message input screen...OFF 6. translated-.grammar..present ----------------- > ON 7. translated- gramar -in..us---------OFF 8. grinder...from the output of the parse procedure. Two versions of the Isa are given: the first is essentially the data structure passed to semantic analysis, and

  14. Semantic confusion regarding the development of multisensory integration: a practical solution

    PubMed Central

    Stein, Barry E.; Burr, David; Constantinidis, Christos; Laurienti, Paul J.; Meredith, M. Alex; Perrault, Thomas J.; Ramachandran, Ramnarayan; Röder, Brigitte; Rowland, Benjamin A.; Sathian, K.; Schroeder, Charles E.; Shams, Ladan; Stanford, Terrence R.; Wallace, Mark T.; Yu, Liping; Lewkowicz, David J.

    2011-01-01

    There is now a good deal of data from neurophysiological studies in animals and behavioral studies in human infants regarding the development of multisensory processing capabilities. Although the conclusions drawn from these different datasets sometimes appear to conflict, many of the differences are due to the use of different terms to mean the same thing and, more problematic, the use of similar terms to mean different things. Semantic issues are pervasive in the field and complicate communication among groups using different methods to study similar issues. Achieving clarity of communication among different investigative groups is essential for each to make full use of the findings of others, and an important step in this direction is to identify areas of semantic confusion. In this way investigators can be encouraged to use terms whose meaning and underlying assumptions are unambiguous because they are commonly accepted. Although this issue is of obvious importance to the large and very rapidly growing number of researchers working on multisensory processes, it is perhaps even more important to the non-cognoscenti. Those who wish to benefit from the scholarship in this field but are unfamiliar with the issues identified here are most likely to be confused by semantic inconsistencies. The current discussion attempts to document some of the more problematic of these, begin a discussion about the nature of the confusion and suggest some possible solutions. PMID:20584174

  15. Knowledge representation and management: towards an integration of a semantic web in daily health practice.

    PubMed

    Griffon, N; Charlet, J; Darmoni, Sj

    2013-01-01

    To summarize the best papers in the field of Knowledge Representation and Management (KRM). A synopsis of the four selected articles for the IMIA Yearbook 2013 KRM section is provided, as well as highlights of current KRM trends, in particular, of the semantic web in daily health practice. The manual selection was performed in three stages: first a set of 3,106 articles, then a second set of 86 articles followed by a third set of 15 articles, and finally the last set of four chosen articles. Among the four selected articles (see Table 1), one focuses on knowledge engineering to prevent adverse drug events; the objective of the second is to propose mappings between clinical archetypes and SNOMED CT in the context of clinical practice; the third presents an ontology to create a question-answering system; the fourth describes a biomonitoring network based on semantic web technologies. These four articles clearly indicate that the health semantic web has become a part of daily practice of health professionals since 2012. In the review of the second set of 86 articles, the same topics included in the previous IMIA yearbook remain active research fields: Knowledge extraction, automatic indexing, information retrieval, natural language processing, management of health terminologies and ontologies.

  16. Semantics-Based Composition of Integrated Cardiomyocyte Models Motivated by Real-World Use Cases

    PubMed Central

    Neal, Maxwell L.; Carlson, Brian E.; Thompson, Christopher T.; James, Ryan C.; Kim, Karam G.; Tran, Kenneth; Crampin, Edmund J.; Cook, Daniel L.; Gennari, John H.

    2015-01-01

    Semantics-based model composition is an approach for generating complex biosimulation models from existing components that relies on capturing the biological meaning of model elements in a machine-readable fashion. This approach allows the user to work at the biological rather than computational level of abstraction and helps minimize the amount of manual effort required for model composition. To support this compositional approach, we have developed the SemGen software, and here report on SemGen’s semantics-based merging capabilities using real-world modeling use cases. We successfully reproduced a large, manually-encoded, multi-model merge: the “Pandit-Hinch-Niederer” (PHN) cardiomyocyte excitation-contraction model, previously developed using CellML. We describe our approach for annotating the three component models used in the PHN composition and for merging them at the biological level of abstraction within SemGen. We demonstrate that we were able to reproduce the original PHN model results in a semi-automated, semantics-based fashion and also rapidly generate a second, novel cardiomyocyte model composed using an alternative, independently-developed tension generation component. We discuss the time-saving features of our compositional approach in the context of these merging exercises, the limitations we encountered, and potential solutions for enhancing the approach. PMID:26716837

  17. Ontology Design Patterns: Bridging the Gap Between Local Semantic Use Cases and Large-Scale, Long-Term Data Integration

    NASA Astrophysics Data System (ADS)

    Shepherd, Adam; Arko, Robert; Krisnadhi, Adila; Hitzler, Pascal; Janowicz, Krzysztof; Chandler, Cyndy; Narock, Tom; Cheatham, Michelle; Schildhauer, Mark; Jones, Matt; Raymond, Lisa; Mickle, Audrey; Finin, Tim; Fils, Doug; Carbotte, Suzanne; Lehnert, Kerstin

    2015-04-01

    Integrating datasets for new use cases is one of the common drivers for adopting semantic web technologies. Even though linked data principles enables this type of activity over time, the task of reconciling new ontological commitments for newer use cases can be daunting. This situation was faced by the Biological and Chemical Oceanography Data Management Office (BCO-DMO) as it sought to integrate its existing linked data with other data repositories to address newer scientific use cases as a partner in the GeoLink Project. To achieve a successful integration with other GeoLink partners, BCO-DMO's metadata would need to be described using the new ontologies developed by the GeoLink partners - a situation that could impact semantic inferencing, pre-existing software and external users of BCO-DMO's linked data. This presentation describes the process of how GeoLink is bridging the gap between local, pre-existing ontologies to achieve scientific metadata integration for all its partners through the use of ontology design patterns. GeoLink, an NSF EarthCube Building Block, brings together experts from the geosciences, computer science, and library science in an effort to improve discovery and reuse of data and knowledge. Its participating repositories include content from field expeditions, laboratory analyses, journal publications, conference presentations, theses/reports, and funding awards that span scientific studies from marine geology to marine ecology and biogeochemistry to paleoclimatology. GeoLink's outcomes include a set of reusable ontology design patterns (ODPs) that describe core geoscience concepts, a network of Linked Data published by participating repositories using those ODPs, and tools to facilitate discovery of related content in multiple repositories.

  18. Implementing a commercial rule base as a medication order safety net.

    PubMed

    Reichley, Richard M; Seaton, Terry L; Resetar, Ervina; Micek, Scott T; Scott, Karen L; Fraser, Victoria J; Dunagan, W Claiborne; Bailey, Thomas C

    2005-01-01

    A commercial rule base (Cerner Multum) was used to identify medication orders exceeding recommended dosage limits at five hospitals within BJC HealthCare, an integrated health care system. During initial testing, clinical pharmacists determined that there was an excessive number of nuisance and clinically insignificant alerts, with an overall alert rate of 9.2%. A method for customizing the commercial rule base was implemented to increase rule specificity for problematic rules. The system was subsequently deployed at two facilities and achieved alert rates of less than 1%. Pharmacists screened these alerts and contacted ordering physicians in 21% of cases. Physicians made therapeutic changes in response to 38% of alerts presented to them. By applying simple techniques to customize rules, commercial rule bases can be used to rapidly deploy a safety net to screen drug orders for excessive dosages, while preserving the rule architecture for later implementations of more finely tuned clinical decision support.

  19. Content-based image retrieval with semantic navigation for medical images with multifocal diseases in integrated RIS/PACS system

    NASA Astrophysics Data System (ADS)

    Zhu, Yanjie; Zhang, Jianguo

    2011-03-01

    In this paper, we proposed a novel architecture integrated with RIS/PACS system that combined image annotation, CBIR techniques and high-dimensional index to retrieve similar medical images with one or more relevant focus in large scale medical image database. In our designed system, regions of interest (ROIs) were labeled by symptom descriptions found in relevant radiology reports as semantic navigation. The annotations were saved as xml file with image makeup language (IML). Then low level features such as texture and statistic features were extracted from the ROIs of lesions and inserted into a database. Recursive feature elimination algorithm was applied to find a high performance feature subset for each symptom. These subsets were used to build high dimensional index with semantic labels guiding the searching path as the navigation. As there might be more than one focus in one image, weight values specified by the user were introduced to calculate the final similarities. The searching results of medical images with multi-focal diseases are likely to have the same pathologies and visual effects with example image and are valuable for imaging diagnosis. The system was implemented for lung CT images, but it could be easily extended to other organs.

  20. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the Context of Smart Cities

    NASA Astrophysics Data System (ADS)

    Chaturvedi, K.; Kolbe, T. H.

    2016-10-01

    Smart cities provide effective integration of human, physical and digital systems operating in the built environment. The advancements in city and landscape models, sensor web technologies, and simulation methods play a significant role in city analyses and improving quality of life of citizens and governance of cities. Semantic 3D city models can provide substantial benefits and can become a central information backbone for smart city infrastructures. However, current generation semantic 3D city models are static in nature and do not support dynamic properties and sensor observations. In this paper, we propose a new concept called Dynamizer allowing to represent highly dynamic data and providing a method for injecting dynamic variations of city object properties into the static representation. The approach also provides direct capability to model complex patterns based on statistics and general rules and also, real-time sensor observations. The concept is implemented as an Application Domain Extension for the CityGML standard. However, it could also be applied to other GML-based application schemas including the European INSPIRE data themes and national standards for topography and cadasters like the British Ordnance Survey Mastermap or the German cadaster standard ALKIS.

  1. Applications and methods utilizing the Simple Semantic Web Architecture and Protocol (SSWAP) for bioinformatics resource discovery and disparate data and service integration.

    PubMed

    Nelson, Rex T; Avraham, Shulamit; Shoemaker, Randy C; May, Gregory D; Ware, Doreen; Gessler, Damian Dg

    2010-06-04

    Scientific data integration and computational service discovery are challenges for the bioinformatic community. This process is made more difficult by the separate and independent construction of biological databases, which makes the exchange of data between information resources difficult and labor intensive. A recently described semantic web protocol, the Simple Semantic Web Architecture and Protocol (SSWAP; pronounced "swap") offers the ability to describe data and services in a semantically meaningful way. We report how three major information resources (Gramene, SoyBase and the Legume Information System [LIS]) used SSWAP to semantically describe selected data and web services. We selected high-priority Quantitative Trait Locus (QTL), genomic mapping, trait, phenotypic, and sequence data and associated services such as BLAST for publication, data retrieval, and service invocation via semantic web services. Data and services were mapped to concepts and categories as implemented in legacy and de novo community ontologies. We used SSWAP to express these offerings in OWL Web Ontology Language (OWL), Resource Description Framework (RDF) and eXtensible Markup Language (XML) documents, which are appropriate for their semantic discovery and retrieval. We implemented SSWAP services to respond to web queries and return data. These services are registered with the SSWAP Discovery Server and are available for semantic discovery at http://sswap.info. A total of ten services delivering QTL information from Gramene were created. From SoyBase, we created six services delivering information about soybean QTLs, and seven services delivering genetic locus information. For LIS we constructed three services, two of which allow the retrieval of DNA and RNA FASTA sequences with the third service providing nucleic acid sequence comparison capability (BLAST). The need for semantic integration technologies has preceded available solutions. We report the feasibility of mapping high

  2. Adaptive Rule Based Fetal QRS Complex Detection Using Hilbert Transform

    PubMed Central

    Ulusar, Umit D.; Govindan, R.B.; Wilson, James D.; Lowery, Curtis L.; Preissl, Hubert; Eswaran, Hari

    2010-01-01

    In this paper we introduce an adaptive rule based QRS detection algorithm using the Hilbert transform (adHQRS) for fetal magnetocardiography processing. Hilbert transform is used to combine multiple channel measurements and the adaptive rule based decision process is used to eliminate spurious beats. The algorithm has been tested with a large number of datasets and promising results were obtained. PMID:19964648

  3. Adaptive rule based fetal QRS complex detection using Hilbert transform.

    PubMed

    Ulusar, Umit D; Govindan, R B; Wilson, James D; Lowery, Curtis L; Preissl, Hubert; Eswaran, Hari

    2009-01-01

    In this paper we introduce an adaptive rule based QRS detection algorithm using the Hilbert transform (adHQRS) for fetal magnetocardiography processing. Hilbert transform is used to combine multiple channel measurements and the adaptive rule based decision process is used to eliminate spurious beats. The algorithm has been tested with a large number of datasets and promising results were obtained.

  4. Rational integration of noisy evidence and prior semantic expectations in sentence interpretation

    PubMed Central

    Gibson, Edward; Bergen, Leon; Piantadosi, Steven T.

    2013-01-01

    Sentence processing theories typically assume that the input to our language processing mechanisms is an error-free sequence of words. However, this assumption is an oversimplification because noise is present in typical language use (for instance, due to a noisy environment, producer errors, or perceiver errors). A complete theory of human sentence comprehension therefore needs to explain how humans understand language given imperfect input. Indeed, like many cognitive systems, language processing mechanisms may even be “well designed”–in this case for the task of recovering intended meaning from noisy utterances. In particular, comprehension mechanisms may be sensitive to the types of information that an idealized statistical comprehender would be sensitive to. Here, we evaluate four predictions about such a rational (Bayesian) noisy-channel language comprehender in a sentence comprehension task: (i) semantic cues should pull sentence interpretation towards plausible meanings, especially if the wording of the more plausible meaning is close to the observed utterance in terms of the number of edits; (ii) this process should asymmetrically treat insertions and deletions due to the Bayesian “size principle”; such nonliteral interpretation of sentences should (iii) increase with the perceived noise rate of the communicative situation and (iv) decrease if semantically anomalous meanings are more likely to be communicated. These predictions are borne out, strongly suggesting that human language relies on rational statistical inference over a noisy channel. PMID:23637344

  5. Integrated Data Capturing Requirements for 3d Semantic Modelling of Cultural Heritage: the Inception Protocol

    NASA Astrophysics Data System (ADS)

    Di Giulio, R.; Maietti, F.; Piaia, E.; Medici, M.; Ferrari, F.; Turillazzi, B.

    2017-02-01

    The generation of high quality 3D models can be still very time-consuming and expensive, and the outcome of digital reconstructions is frequently provided in formats that are not interoperable, and therefore cannot be easily accessed. This challenge is even more crucial for complex architectures and large heritage sites, which involve a large amount of data to be acquired, managed and enriched by metadata. In this framework, the ongoing EU funded project INCEPTION - Inclusive Cultural Heritage in Europe through 3D semantic modelling proposes a workflow aimed at the achievements of efficient 3D digitization methods, post-processing tools for an enriched semantic modelling, web-based solutions and applications to ensure a wide access to experts and non-experts. In order to face these challenges and to start solving the issue of the large amount of captured data and time-consuming processes in the production of 3D digital models, an Optimized Data Acquisition Protocol (DAP) has been set up. The purpose is to guide the processes of digitization of cultural heritage, respecting needs, requirements and specificities of cultural assets.

  6. A semantic Grid Infrastructure Enabling Integrated Access and Knowledge Discovery from Multilevel Data in Ppost-Genomic Clinical Trials

    NASA Astrophysics Data System (ADS)

    Tsiknakis, Manolis; Sfakianakis, Stelios; Potamias, George; Zacharioudakis, Giorgos; Kafetzopoulos, Dimitris

    This paper reports on original results of the ACGT integrated project focusing on the design and development of a European Biomedical Grid infrastructure in support of multicentric, post genomic clinical trials on Cancer. The paper provides a presentation of the needs of users involved in post-genomic CTs, and presents such needs in the form of scenarios which drive the requirements engineering phase of the project. Subsequently, the initial architecture specified by the project is presented and its services are classified and discussed. The Master Ontology on Cancer, been developed by the project, is presented and our approach to develop the required metadata registries, which provide semantically rich information about available data and computational services, is provided. Finally, a short discussion of the work lying ahead is included.

  7. Integrated Syntactic/Semantic XML Data Validation with a Reusable Software Component

    ERIC Educational Resources Information Center

    Golikov, Steven

    2013-01-01

    Data integration is a critical component of enterprise system integration, and XML data validation is the foundation for sound data integration of XML-based information systems. Since B2B e-commerce relies on data validation as one of the critical components for enterprise integration, it is imperative for financial industries and e-commerce…

  8. Integrated Syntactic/Semantic XML Data Validation with a Reusable Software Component

    ERIC Educational Resources Information Center

    Golikov, Steven

    2013-01-01

    Data integration is a critical component of enterprise system integration, and XML data validation is the foundation for sound data integration of XML-based information systems. Since B2B e-commerce relies on data validation as one of the critical components for enterprise integration, it is imperative for financial industries and e-commerce…

  9. S3QL: A distributed domain specific language for controlled semantic integration of life sciences data

    PubMed Central

    2011-01-01

    Background The value and usefulness of data increases when it is explicitly interlinked with related data. This is the core principle of Linked Data. For life sciences researchers, harnessing the power of Linked Data to improve biological discovery is still challenged by a need to keep pace with rapidly evolving domains and requirements for collaboration and control as well as with the reference semantic web ontologies and standards. Knowledge organization systems (KOSs) can provide an abstraction for publishing biological discoveries as Linked Data without complicating transactions with contextual minutia such as provenance and access control. We have previously described the Simple Sloppy Semantic Database (S3DB) as an efficient model for creating knowledge organization systems using Linked Data best practices with explicit distinction between domain and instantiation and support for a permission control mechanism that automatically migrates between the two. In this report we present a domain specific language, the S3DB query language (S3QL), to operate on its underlying core model and facilitate management of Linked Data. Results Reflecting the data driven nature of our approach, S3QL has been implemented as an application programming interface for S3DB systems hosting biomedical data, and its syntax was subsequently generalized beyond the S3DB core model. This achievement is illustrated with the assembly of an S3QL query to manage entities from the Simple Knowledge Organization System. The illustrative use cases include gastrointestinal clinical trials, genomic characterization of cancer by The Cancer Genome Atlas (TCGA) and molecular epidemiology of infectious diseases. Conclusions S3QL was found to provide a convenient mechanism to represent context for interoperation between public and private datasets hosted at biomedical research institutions and linked data formalisms. PMID:21756325

  10. S3QL: a distributed domain specific language for controlled semantic integration of life sciences data.

    PubMed

    Deus, Helena F; Correa, Miriã C; Stanislaus, Romesh; Miragaia, Maria; Maass, Wolfgang; de Lencastre, Hermínia; Fox, Ronan; Almeida, Jonas S

    2011-07-14

    The value and usefulness of data increases when it is explicitly interlinked with related data. This is the core principle of Linked Data. For life sciences researchers, harnessing the power of Linked Data to improve biological discovery is still challenged by a need to keep pace with rapidly evolving domains and requirements for collaboration and control as well as with the reference semantic web ontologies and standards. Knowledge organization systems (KOSs) can provide an abstraction for publishing biological discoveries as Linked Data without complicating transactions with contextual minutia such as provenance and access control.We have previously described the Simple Sloppy Semantic Database (S3DB) as an efficient model for creating knowledge organization systems using Linked Data best practices with explicit distinction between domain and instantiation and support for a permission control mechanism that automatically migrates between the two. In this report we present a domain specific language, the S3DB query language (S3QL), to operate on its underlying core model and facilitate management of Linked Data. Reflecting the data driven nature of our approach, S3QL has been implemented as an application programming interface for S3DB systems hosting biomedical data, and its syntax was subsequently generalized beyond the S3DB core model. This achievement is illustrated with the assembly of an S3QL query to manage entities from the Simple Knowledge Organization System. The illustrative use cases include gastrointestinal clinical trials, genomic characterization of cancer by The Cancer Genome Atlas (TCGA) and molecular epidemiology of infectious diseases. S3QL was found to provide a convenient mechanism to represent context for interoperation between public and private datasets hosted at biomedical research institutions and linked data formalisms.

  11. A logical model of cooperating rule-based systems

    NASA Technical Reports Server (NTRS)

    Bailin, Sidney C.; Moore, John M.; Hilberg, Robert H.; Murphy, Elizabeth D.; Bahder, Shari A.

    1989-01-01

    A model is developed to assist in the planning, specification, development, and verification of space information systems involving distributed rule-based systems. The model is based on an analysis of possible uses of rule-based systems in control centers. This analysis is summarized as a data-flow model for a hypothetical intelligent control center. From this data-flow model, the logical model of cooperating rule-based systems is extracted. This model consists of four layers of increasing capability: (1) communicating agents, (2) belief-sharing knowledge sources, (3) goal-sharing interest areas, and (4) task-sharing job roles.

  12. Dispositional mindfulness and semantic integration of emotional words: Evidence from event-related brain potentials.

    PubMed

    Dorjee, Dusana; Lally, Níall; Darrall-Rew, Jonathan; Thierry, Guillaume

    2015-08-01

    Initial research shows that mindfulness training can enhance attention and modulate the affective response. However, links between mindfulness and language processing remain virtually unexplored despite the prominent role of overt and silent negative ruminative speech in depressive and anxiety-related symptomatology. Here, we measured dispositional mindfulness and recorded participants' event-related brain potential responses to positive and negative target words preceded by words congruent or incongruent with the targets in terms of semantic relatedness and emotional valence. While the low mindfulness group showed similar N400 effect pattern for positive and negative targets, high dispositional mindfulness was associated with larger N400 effect to negative targets. This result suggests that negative meanings are less readily accessible in people with high dispositional mindfulness. Furthermore, high dispositional mindfulness was associated with reduced P600 amplitudes to emotional words, suggesting less post-analysis and attentional effort which possibly relates to a lower inclination to ruminate. Overall, these findings provide initial evidence on associations between modifications in language systems and mindfulness.

  13. Generative Semantics.

    ERIC Educational Resources Information Center

    King, Margaret

    The first section of this paper deals with the attempts within the framework of transformational grammar to make semantics a systematic part of linguistic description, and outlines the characteristics of the generative semantics position. The second section takes a critical look at generative semantics in its later manifestations, and makes a case…

  14. The Evidence-base for Using Ontologies and Semantic Integration Methodologies to Support Integrated Chronic Disease Management in Primary and Ambulatory Care: Realist Review. Contribution of the IMIA Primary Health Care Informatics WG.

    PubMed

    Liyanage, H; Liaw, S-T; Kuziemsky, C; Terry, A L; Jones, S; Soler, J K; de Lusignan, S

    2013-01-01

    Most chronic diseases are managed in primary and ambulatory care. The chronic care model (CCM) suggests a wide range of community, technological, team and patient factors contribute to effective chronic disease management. Ontologies have the capability to enable formalised linkage of heterogeneous data sources as might be found across the elements of the CCM. To describe the evidence base for using ontologies and other semantic integration methods to support chronic disease management. We reviewed the evidence-base for the use of ontologies and other semantic integration methods within and across the elements of the CCM. We report them using a realist review describing the context in which the mechanism was applied, and any outcome measures. Most evidence was descriptive with an almost complete absence of empirical research and important gaps in the evidence-base. We found some use of ontologies and semantic integration methods for community support of the medical home and for care in the community. Ubiquitous information technology (IT) and other IT tools were deployed to support self-management support, use of shared registries, health behavioural models and knowledge discovery tools to improve delivery system design. Data quality issues restricted the use of clinical data; however there was an increased use of interoperable data and health system integration. Ontologies and semantic integration methods are emergent with limited evidence-base for their implementation. However, they have the potential to integrate the disparate community wide data sources to provide the information necessary for effective chronic disease management.

  15. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    NASA Technical Reports Server (NTRS)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  16. Techniques and implementation of the embedded rule-based expert system using Ada

    NASA Technical Reports Server (NTRS)

    Liberman, Eugene M.; Jones, Robert E.

    1991-01-01

    Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with its portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assured a growing role in providing human-like reasoning capability and expertise for computer systems. The integration of expert system technology with Ada programming language, specifically a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell is discussed. The NASA Lewis Research Center was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-base power expert system, in ART-Ada. Three components, the rule-based expert system, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.

  17. Semantic Sensor Web

    NASA Astrophysics Data System (ADS)

    Sheth, A.; Henson, C.; Thirunarayan, K.

    2008-12-01

    Sensors are distributed across the globe leading to an avalanche of data about our environment. It is possible today to utilize networks of sensors to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge. With a view to addressing this problem, the Semantic Sensor Web (SSW) [1] proposes that sensor data be annotated with semantic metadata that will both increase interoperability and provide contextual information essential for situational knowledge. Kno.e.sis Center's approach to SSW is an evolutionary one. It adds semantic annotations to the existing standard sensor languages of the Sensor Web Enablement (SWE) defined by OGC. These annotations enhance primarily syntactic XML-based descriptions in OGC's SWE languages with microformats, and W3C's Semantic Web languages- RDF and OWL. In association with semantic annotation and semantic web capabilities including ontologies and rules, SSW supports interoperability, analysis and reasoning over heterogeneous multi-modal sensor data. In this presentation, we will also demonstrate a mashup with support for complex spatio-temporal-thematic queries [2] and semantic analysis that utilize semantic annotations, multiple ontologies and rules. It uses existing services (e.g., GoogleMap) and semantics enhanced SWE's Sensor Observation Service (SOS) over weather and road condition data from various sensors that are part of Ohio's transportation network. Our upcoming plans are to demonstrate end to end (heterogeneous sensor to application) semantics support and study scalability of SSW involving thousands of sensors to about a billion triples. Keywords: Semantic Sensor Web, Spatiotemporal thematic queries, Semantic Web Enablement, Sensor Observation Service [1] Amit Sheth, Cory Henson, Satya

  18. Visualising biological data: a semantic approach to tool and database integration

    PubMed Central

    Pettifer, Steve; Thorne, David; McDermott, Philip; Marsh, James; Villéger, Alice; Kell, Douglas B; Attwood, Teresa K

    2009-01-01

    Motivation In the biological sciences, the need to analyse vast amounts of information has become commonplace. Such large-scale analyses often involve drawing together data from a variety of different databases, held remotely on the internet or locally on in-house servers. Supporting these tasks are ad hoc collections of data-manipulation tools, scripting languages and visualisation software, which are often combined in arcane ways to create cumbersome systems that have been customised for a particular purpose, and are consequently not readily adaptable to other uses. For many day-to-day bioinformatics tasks, the sizes of current databases, and the scale of the analyses necessary, now demand increasing levels of automation; nevertheless, the unique experience and intuition of human researchers is still required to interpret the end results in any meaningful biological way. Putting humans in the loop requires tools to support real-time interaction with these vast and complex data-sets. Numerous tools do exist for this purpose, but many do not have optimal interfaces, most are effectively isolated from other tools and databases owing to incompatible data formats, and many have limited real-time performance when applied to realistically large data-sets: much of the user's cognitive capacity is therefore focused on controlling the software and manipulating esoteric file formats rather than on performing the research. Methods To confront these issues, harnessing expertise in human-computer interaction (HCI), high-performance rendering and distributed systems, and guided by bioinformaticians and end-user biologists, we are building reusable software components that, together, create a toolkit that is both architecturally sound from a computing point of view, and addresses both user and developer requirements. Key to the system's usability is its direct exploitation of semantics, which, crucially, gives individual components knowledge of their own functionality and allows

  19. Semantics by analogy for illustrative volume visualization.

    PubMed

    Gerl, Moritz; Rautek, Peter; Isenberg, Tobias; Gröller, Eduard

    2012-05-01

    We present an interactive graphical approach for the explicit specification of semantics for volume visualization. This explicit and graphical specification of semantics for volumetric features allows us to visually assign meaning to both input and output parameters of the visualization mapping. This is in contrast to the implicit way of specifying semantics using transfer functions. In particular, we demonstrate how to realize a dynamic specification of semantics which allows to flexibly explore a wide range of mappings. Our approach is based on three concepts. First, we use semantic shader augmentation to automatically add rule-based rendering functionality to static visualization mappings in a shader program, while preserving the visual abstraction that the initial shader encodes. With this technique we extend recent developments that define a mapping between data attributes and visual attributes with rules, which are evaluated using fuzzy logic. Second, we let users define the semantics by analogy through brushing on renderings of the data attributes of interest. Third, the rules are specified graphically in an interface that provides visual clues for potential modifications. Together, the presented methods offer a high degree of freedom in the specification and exploration of rule-based mappings and avoid the limitations of a linguistic rule formulation.

  20. Semantics by analogy for illustrative volume visualization☆

    PubMed Central

    Gerl, Moritz; Rautek, Peter; Isenberg, Tobias; Gröller, Eduard

    2012-01-01

    We present an interactive graphical approach for the explicit specification of semantics for volume visualization. This explicit and graphical specification of semantics for volumetric features allows us to visually assign meaning to both input and output parameters of the visualization mapping. This is in contrast to the implicit way of specifying semantics using transfer functions. In particular, we demonstrate how to realize a dynamic specification of semantics which allows to flexibly explore a wide range of mappings. Our approach is based on three concepts. First, we use semantic shader augmentation to automatically add rule-based rendering functionality to static visualization mappings in a shader program, while preserving the visual abstraction that the initial shader encodes. With this technique we extend recent developments that define a mapping between data attributes and visual attributes with rules, which are evaluated using fuzzy logic. Second, we let users define the semantics by analogy through brushing on renderings of the data attributes of interest. Third, the rules are specified graphically in an interface that provides visual clues for potential modifications. Together, the presented methods offer a high degree of freedom in the specification and exploration of rule-based mappings and avoid the limitations of a linguistic rule formulation. PMID:23576827

  1. Automatic Sleep Scoring Based on Modular Rule-Based Reasoning Units and Signal Processing Units

    DTIC Science & Technology

    2007-11-02

    scoring, rule-based reasoning, multi-staged I. INTRODUCTION Integrated analysis on the state of sleep through Polysomnography is crucial for...diagnosis for sleep related disease. But conventional analog-type Polysomnography systems need tremendous amount of papers and much labor of trained expert...In this sense to equip digital Polysomnography and its following automatic analysis system became trend. In the sleep analysis, sleep stage scoring is

  2. Developing a semantic web model for medical differential diagnosis recommendation.

    PubMed

    Mohammed, Osama; Benlamri, Rachid

    2014-10-01

    In this paper we describe a novel model for differential diagnosis designed to make recommendations by utilizing semantic web technologies. The model is a response to a number of requirements, ranging from incorporating essential clinical diagnostic semantics to the integration of data mining for the process of identifying candidate diseases that best explain a set of clinical features. We introduce two major components, which we find essential to the construction of an integral differential diagnosis recommendation model: the evidence-based recommender component and the proximity-based recommender component. Both approaches are driven by disease diagnosis ontologies designed specifically to enable the process of generating diagnostic recommendations. These ontologies are the disease symptom ontology and the patient ontology. The evidence-based diagnosis process develops dynamic rules based on standardized clinical pathways. The proximity-based component employs data mining to provide clinicians with diagnosis predictions, as well as generates new diagnosis rules from provided training datasets. This article describes the integration between these two components along with the developed diagnosis ontologies to form a novel medical differential diagnosis recommendation model. This article also provides test cases from the implementation of the overall model, which shows quite promising diagnostic recommendation results.

  3. Visualising biological data: a semantic approach to tool and database integration.

    PubMed

    Pettifer, Steve; Thorne, David; McDermott, Philip; Marsh, James; Villéger, Alice; Kell, Douglas B; Attwood, Teresa K

    2009-06-16

    In the biological sciences, the need to analyse vast amounts of information has become commonplace. Such large-scale analyses often involve drawing together data from a variety of different databases, held remotely on the internet or locally on in-house servers. Supporting these tasks are ad hoc collections of data-manipulation tools, scripting languages and visualisation software, which are often combined in arcane ways to create cumbersome systems that have been customized for a particular purpose, and are consequently not readily adaptable to other uses. For many day-to-day bioinformatics tasks, the sizes of current databases, and the scale of the analyses necessary, now demand increasing levels of automation; nevertheless, the unique experience and intuition of human researchers is still required to interpret the end results in any meaningful biological way. Putting humans in the loop requires tools to support real-time interaction with these vast and complex data-sets. Numerous tools do exist for this purpose, but many do not have optimal interfaces, most are effectively isolated from other tools and databases owing to incompatible data formats, and many have limited real-time performance when applied to realistically large data-sets: much of the user's cognitive capacity is therefore focused on controlling the software and manipulating esoteric file formats rather than on performing the research. To confront these issues, harnessing expertise in human-computer interaction (HCI), high-performance rendering and distributed systems, and guided by bioinformaticians and end-user biologists, we are building reusable software components that, together, create a toolkit that is both architecturally sound from a computing point of view, and addresses both user and developer requirements. Key to the system's usability is its direct exploitation of semantics, which, crucially, gives individual components knowledge of their own functionality and allows them to

  4. The Development of the Ability to Semantically Integrate Information in Speech and Iconic Gesture in Comprehension.

    PubMed

    Sekine, Kazuki; Sowden, Hannah; Kita, Sotaro

    2015-11-01

    We examined whether children's ability to integrate speech and gesture follows the pattern of a broader developmental shift between 3- and 5-year-old children (Ramscar & Gitcho, 2007) regarding the ability to process two pieces of information simultaneously. In Experiment 1, 3-year-olds, 5-year-olds, and adults were presented with either an iconic gesture or a spoken sentence or a combination of the two on a computer screen, and they were instructed to select a photograph that best matched the message. The 3-year-olds did not integrate information in speech and gesture, but 5-year-olds and adults did. In Experiment 2, 3-year-old children were presented with the same speech and gesture as in Experiment 1 that were produced live by an experimenter. When presented live, 3-year-olds could integrate speech and gesture. We concluded that development of the integration ability is a part of the broader developmental shift; however, live-presentation facilitates the nascent integration ability in 3-year-olds.

  5. The Development of the Ability to Semantically Integrate Information in Speech and Iconic Gesture in Comprehension

    ERIC Educational Resources Information Center

    Sekine, Kazuki; Sowden, Hannah; Kita, Sotaro

    2015-01-01

    We examined whether children's ability to integrate speech and gesture follows the pattern of a broader developmental shift between 3- and 5-year-old children (Ramscar & Gitcho, 2007) regarding the ability to process two pieces of information simultaneously. In Experiment 1, 3-year-olds, 5-year-olds, and adults were presented with either an…

  6. A Semantic Analysis of XML Schema Matching for B2B Systems Integration

    ERIC Educational Resources Information Center

    Kim, Jaewook

    2011-01-01

    One of the most critical steps to integrating heterogeneous e-Business applications using different XML schemas is schema matching, which is known to be costly and error-prone. Many automatic schema matching approaches have been proposed, but the challenge is still daunting because of the complexity of schemas and immaturity of technologies in…

  7. Semantic Domain-Specific Functional Integration for Action-Related vs. Abstract Concepts

    ERIC Educational Resources Information Center

    Ghio, Marta; Tettamanti, Marco

    2010-01-01

    A central topic in cognitive neuroscience concerns the representation of concepts and the specific neural mechanisms that mediate conceptual knowledge. Recently proposed modal theories assert that concepts are grounded on the integration of multimodal, distributed representations. The aim of the present work is to complement the available…

  8. Semantic Domain-Specific Functional Integration for Action-Related vs. Abstract Concepts

    ERIC Educational Resources Information Center

    Ghio, Marta; Tettamanti, Marco

    2010-01-01

    A central topic in cognitive neuroscience concerns the representation of concepts and the specific neural mechanisms that mediate conceptual knowledge. Recently proposed modal theories assert that concepts are grounded on the integration of multimodal, distributed representations. The aim of the present work is to complement the available…

  9. A Semantic Analysis of XML Schema Matching for B2B Systems Integration

    ERIC Educational Resources Information Center

    Kim, Jaewook

    2011-01-01

    One of the most critical steps to integrating heterogeneous e-Business applications using different XML schemas is schema matching, which is known to be costly and error-prone. Many automatic schema matching approaches have been proposed, but the challenge is still daunting because of the complexity of schemas and immaturity of technologies in…

  10. The Development of the Ability to Semantically Integrate Information in Speech and Iconic Gesture in Comprehension

    ERIC Educational Resources Information Center

    Sekine, Kazuki; Sowden, Hannah; Kita, Sotaro

    2015-01-01

    We examined whether children's ability to integrate speech and gesture follows the pattern of a broader developmental shift between 3- and 5-year-old children (Ramscar & Gitcho, 2007) regarding the ability to process two pieces of information simultaneously. In Experiment 1, 3-year-olds, 5-year-olds, and adults were presented with either an…

  11. Case Study for Integration of an Oncology Clinical Site in a Semantic Interoperability Solution based on HL7 v3 and SNOMED-CT: Data Transformation Needs.

    PubMed

    Ibrahim, Ahmed; Bucur, Anca; Perez-Rey, David; Alonso, Enrique; de Hoog, Matthy; Dekker, Andre; Marshall, M Scott

    2015-01-01

    This paper describes the data transformation pipeline defined to support the integration of a new clinical site in a standards-based semantic interoperability environment. The available datasets combined structured and free-text patient data in Dutch, collected in the context of radiation therapy in several cancer types. Our approach aims at both efficiency and data quality. We combine custom-developed scripts, standard tools and manual validation by clinical and knowledge experts. We identified key challenges emerging from the several sources of heterogeneity in our case study (systems, language, data structure, clinical domain) and implemented solutions that we will further generalize for the integration of new sites. We conclude that the required effort for data transformation is manageable which supports the feasibility of our semantic interoperability solution. The achieved semantic interoperability will be leveraged for the deployment and evaluation at the clinical site of applications enabling secondary use of care data for research. This work has been funded by the European Commission through the INTEGRATE (FP7-ICT-2009-6-270253) and EURECA (FP7-ICT-2011-288048) projects.

  12. Case Study for Integration of an Oncology Clinical Site in a Semantic Interoperability Solution based on HL7 v3 and SNOMED-CT: Data Transformation Needs

    PubMed Central

    Ibrahim, Ahmed; Bucur, Anca; Perez-Rey, David; Alonso, Enrique; de Hoog, Matthy; Dekker, Andre; Marshall, M. Scott

    2015-01-01

    This paper describes the data transformation pipeline defined to support the integration of a new clinical site in a standards-based semantic interoperability environment. The available datasets combined structured and free-text patient data in Dutch, collected in the context of radiation therapy in several cancer types. Our approach aims at both efficiency and data quality. We combine custom-developed scripts, standard tools and manual validation by clinical and knowledge experts. We identified key challenges emerging from the several sources of heterogeneity in our case study (systems, language, data structure, clinical domain) and implemented solutions that we will further generalize for the integration of new sites. We conclude that the required effort for data transformation is manageable which supports the feasibility of our semantic interoperability solution. The achieved semantic interoperability will be leveraged for the deployment and evaluation at the clinical site of applications enabling secondary use of care data for research. This work has been funded by the European Commission through the INTEGRATE (FP7-ICT-2009-6-270253) and EURECA (FP7-ICT-2011-288048) projects. PMID:26306242

  13. Geo-Semantic Framework for Integrating Long-Tail Data and Model Resources for Advancing Earth System Science

    NASA Astrophysics Data System (ADS)

    Elag, M.; Kumar, P.

    2014-12-01

    Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation

  14. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    NASA Astrophysics Data System (ADS)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  15. Word-to-text integration: ERP evidence for semantic and orthographic effects in Chinese.

    PubMed

    Chen, Lin; Fang, Xiaoping; Perfetti, Charles A

    2017-05-01

    Although writing systems affect reading at the level of word identification, one expects writing system to have minimal effects on comprehension processes. We tested this assumption by recording ERPs while native Chinese speakers read short texts for comprehension in the word-to-text integration (WTI) paradigm to compare with studies of English using this paradigm. Of interest was the ERP on a 2-character word that began the second sentence of the text, with the first sentence varied to manipulate co-reference with the critical word in the second sentence. A paraphrase condition in which the critical word meaning was coreferential with a word in the first sentence showed a reduced N400 reduction. Consistent with results in English, this N400 effect suggests immediate integration of a Chinese 2-character word with the meaning of the text. Chinese allows an additional test of a morpheme effect when one character of a two-character word is repeated across the sentence boundary, thus having both orthographic and meaning overlap. This shared morpheme condition showed no effect during the timeframe when orthographic effects are observed (e.g. N200), nor did it show an N400 effect. However, character repetition did produce an N400 reduction on parietal sites regardless it represented the same morpheme or a different one. The results indicate that the WTI integration effect is general across writing systems at the meaning level, but that the orthographic form nonetheless has an effect, and is specifically functional in Chinese reading.

  16. Integrating the automatic and the controlled: strategies in semantic priming in an attractor network with latching dynamics.

    PubMed

    Lerner, Itamar; Bentin, Shlomo; Shriki, Oren

    2014-01-01

    Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model.

  17. Fuzzy rule-based models for decision support in ecosystem management.

    PubMed

    Adriaenssens, Veronique; De Baets, Bernard; Goethals, Peter L M; De Pauw, Niels

    2004-02-05

    To facilitate decision support in the ecosystem management, ecological expertise and site-specific data need to be integrated. Fuzzy logic can deal with highly variable, linguistic, vague and uncertain data or knowledge and, therefore, has the ability to allow for a logical, reliable and transparent information stream from data collection down to data usage in decision-making. Several environmental applications already implicate the use of fuzzy logic. Most of these applications have been set up by trial and error and are mainly limited to the domain of environmental assessment. In this article, applications of fuzzy logic for decision support in ecosystem management are reviewed and assessed, with an emphasis on rule-based models. In particular, the identification, optimisation, validation, the interpretability and uncertainty aspects of fuzzy rule-based models for decision support in ecosystem management are discussed.

  18. The Enterprise Data Trust at Mayo Clinic: a semantically integrated warehouse of biomedical data

    PubMed Central

    Beck, Scott A; Fisk, Thomas B; Mohr, David N

    2010-01-01

    Mayo Clinic's Enterprise Data Trust is a collection of data from patient care, education, research, and administrative transactional systems, organized to support information retrieval, business intelligence, and high-level decision making. Structurally it is a top-down, subject-oriented, integrated, time-variant, and non-volatile collection of data in support of Mayo Clinic's analytic and decision-making processes. It is an interconnected piece of Mayo Clinic's Enterprise Information Management initiative, which also includes Data Governance, Enterprise Data Modeling, the Enterprise Vocabulary System, and Metadata Management. These resources enable unprecedented organization of enterprise information about patient, genomic, and research data. While facile access for cohort definition or aggregate retrieval is supported, a high level of security, retrieval audit, and user authentication ensures privacy, confidentiality, and respect for the trust imparted by our patients for the respectful use of information about their conditions. PMID:20190054

  19. The Enterprise Data Trust at Mayo Clinic: a semantically integrated warehouse of biomedical data.

    PubMed

    Chute, Christopher G; Beck, Scott A; Fisk, Thomas B; Mohr, David N

    2010-01-01

    Mayo Clinic's Enterprise Data Trust is a collection of data from patient care, education, research, and administrative transactional systems, organized to support information retrieval, business intelligence, and high-level decision making. Structurally it is a top-down, subject-oriented, integrated, time-variant, and non-volatile collection of data in support of Mayo Clinic's analytic and decision-making processes. It is an interconnected piece of Mayo Clinic's Enterprise Information Management initiative, which also includes Data Governance, Enterprise Data Modeling, the Enterprise Vocabulary System, and Metadata Management. These resources enable unprecedented organization of enterprise information about patient, genomic, and research data. While facile access for cohort definition or aggregate retrieval is supported, a high level of security, retrieval audit, and user authentication ensures privacy, confidentiality, and respect for the trust imparted by our patients for the respectful use of information about their conditions.

  20. Semantic Bim and GIS Modelling for Energy-Efficient Buildings Integrated in a Healthcare District

    NASA Astrophysics Data System (ADS)

    Sebastian, R.; Böhms, H. M.; Bonsma, P.; van den Helm, P. W.

    2013-09-01

    The subject of energy-efficient buildings (EeB) is among the most urgent research priorities in the European Union (EU). In order to achieve the broadest impact, innovative approaches to EeB need to resolve challenges at the neighbourhood level, instead of only focusing on improvements of individual buildings. For this purpose, the design phase of new building projects as well as building retrofitting projects is the crucial moment for integrating multi-scale EeB solutions. In EeB design process, clients, architects, technical designers, contractors, and end-users altogether need new methods and tools for designing energy-efficiency buildings integrated in their neighbourhoods. Since the scope of designing covers multiple dimensions, the new design methodology relies on the inter-operability between Building Information Modelling (BIM) and Geospatial Information Systems (GIS). Design for EeB optimisation needs to put attention on the inter-connections between the architectural systems and the MEP/HVAC systems, as well as on the relation of Product Lifecycle Modelling (PLM), Building Management Systems (BMS), BIM and GIS. This paper is descriptive and it presents an actual EU FP7 large-scale collaborative research project titled STREAMER. The research on the inter-operability between BIM and GIS for holistic design of energy-efficient buildings in neighbourhood scale is supported by real case studies of mixed-use healthcare districts. The new design methodology encompasses all scales and all lifecycle phases of the built environment, as well as the whole lifecycle of the information models that comprises: Building Information Model (BIM), Building Assembly Model (BAM), Building Energy Model (BEM), and Building Operation Optimisation Model (BOOM).

  1. Repetition Priming and Hyperpriming in Semantic Dementia

    ERIC Educational Resources Information Center

    Cumming, T. B.; Graham, K. S.; Patterson, K.

    2006-01-01

    Evidence from neurologically normal subjects suggests that repetition priming (RP) is independent of semantic processing. Therefore, we may expect patients with a selective deficit to conceptual knowledge to exhibit RP for words regardless of the integrity of their semantic representations. We tested six patients with semantic dementia (SD) on a…

  2. Rule-based medical device adaptation for the digital operating room.

    PubMed

    Franke, Stefan; Neumuth, Thomas

    2015-08-01

    A workflow-driven cooperative operating room needs to be established in order to successfully unburden the surgeon and the operating room staff very time-consuming information-seeking and configuration tasks. We propose an approach towards the integration of intraoperative surgical workflow management and integration technologies. The concept of rule-based behavior is adapted to situation-aware medical devices. A prototype was implemented and experiments with sixty recorded brain tumor removal procedures were conducted to test the proposed approach. An analysis of the recordings indicated numerous applications, such as automatic display configuration, room light adaptation and pre-configuration of medical devices and systems.

  3. The Neural Correlates of Similarity- and Rule-based Generalization.

    PubMed

    Milton, Fraser; Bealing, Pippa; Carpenter, Kathryn L; Bennattayallah, Abdelmalek; Wills, Andy J

    2017-01-01

    The idea that there are multiple learning systems has become increasingly influential in recent years, with many studies providing evidence that there is both a quick, similarity-based or feature-based system and a more effortful rule-based system. A smaller number of imaging studies have also examined whether neurally dissociable learning systems are detectable. We further investigate this by employing for the first time in an imaging study a combined positive and negative patterning procedure originally developed by Shanks and Darby [Shanks, D. R., & Darby, R. J. Feature- and rule-based generalization in human associative learning. Journal of Experimental Psychology: Animal Behavior Processes, 24, 405-415, 1998]. Unlike previous related studies employing other procedures, rule generalization in the Shanks-Darby task is beyond any simple non-rule-based (e.g., associative) account. We found that rule- and similarity-based generalization evoked common activation in diverse regions including the pFC and the bilateral parietal and occipital lobes indicating that both strategies likely share a range of common processes. No differences between strategies were identified in whole-brain comparisons, but exploratory analyses indicated that rule-based generalization led to greater activation in the right middle frontal cortex than similarity-based generalization. Conversely, the similarity group activated the anterior medial frontal lobe and right inferior parietal lobes more than the rule group did. The implications of these results are discussed.

  4. Rule-Based Category Learning in Down Syndrome

    ERIC Educational Resources Information Center

    Phillips, B. Allyson; Conners, Frances A.; Merrill, Edward; Klinger, Mark R.

    2014-01-01

    Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III (Woodcock, McGrew, & Mather, 2001). In regression-based…

  5. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  6. A Rule-Based System for Test Quality Improvement

    ERIC Educational Resources Information Center

    Costagliola, Gennaro; Fuccella, Vittorio

    2009-01-01

    To correctly evaluate learners' knowledge, it is important to administer tests composed of good quality question items. By the term "quality" we intend the potential of an item in effectively discriminating between skilled and untrained students and in obtaining tutor's desired difficulty level. This article presents a rule-based e-testing system…

  7. Risk Levels for Rule-Based Weather Decision Aids

    DTIC Science & Technology

    2009-01-01

    Risk Levels for Rule-Based Weather Decision Aids, Army Research Laboratory Technical Report ARL-TR-4586, September 20008. 6. Richmond, P., Ed. Notes...Cold Weather on Productivity, in Technology Transfer Opportunities for the Construction Engineering Commmunity , Cold Regions Research and Engineering

  8. Rule-Based Category Learning in Down Syndrome

    ERIC Educational Resources Information Center

    Phillips, B. Allyson; Conners, Frances A.; Merrill, Edward; Klinger, Mark R.

    2014-01-01

    Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III (Woodcock, McGrew, & Mather, 2001). In regression-based…

  9. Optimal Test Design with Rule-Based Item Generation

    ERIC Educational Resources Information Center

    Geerlings, Hanneke; van der Linden, Wim J.; Glas, Cees A. W.

    2013-01-01

    Optimal test-design methods are applied to rule-based item generation. Three different cases of automated test design are presented: (a) test assembly from a pool of pregenerated, calibrated items; (b) test generation on the fly from a pool of calibrated item families; and (c) test generation on the fly directly from calibrated features defining…

  10. A Semantic Rule-Based Framework for Efficient Retrieval of Educational Materials

    ERIC Educational Resources Information Center

    Mahmoudi, Maryam Tayefeh; Taghiyareh, Fattaneh; Badie, Kambiz

    2013-01-01

    Retrieving resources in an appropriate manner has a promising role in increasing the performance of educational support systems. A variety of works have been done to organize materials for educational purposes using tagging techniques. Despite the effectiveness of these techniques within certain domains, organizing resources in a way being…

  11. Context-Based Semantic Annotations in CoPEs: An Ontological and Rule-Based Approach

    ERIC Educational Resources Information Center

    Boudebza, Souâad; Berkani, Lamia; Azouaou, Faiçal

    2013-01-01

    Knowledge capitalization is one of many problems facing online communities of practice (CoPs). Knowledge accumulated through the participation in the community must be capitalized for future reuse. Most of proposals are specific and focus on knowledge modeling disregarding the reuse of that knowledge. In this paper, we are particularly interested…

  12. Semantic Web Research Trends and Directions

    DTIC Science & Technology

    2006-01-01

    social trust on the semantic web that builds upon the previous work to create end user applications that benefit from the semantic foundation. 2 Swoop...security, authentication, and privacy. However, the social component of trust is one that is both important and ideally suited for the Semantic Web. When the...Semantic Web-based social networks are augmented with trust information, it is possible to make computations over the values, and integrate the

  13. Rule based fuzzy logic approach for classification of fibromyalgia syndrome.

    PubMed

    Arslan, Evren; Yildiz, Sedat; Albayrak, Yalcin; Koklukaya, Etem

    2016-06-01

    Fibromyalgia syndrome (FMS) is a chronic muscle and skeletal system disease observed generally in women, manifesting itself with a widespread pain and impairing the individual's quality of life. FMS diagnosis is made based on the American College of Rheumatology (ACR) criteria. However, recently the employability and sufficiency of ACR criteria are under debate. In this context, several evaluation methods, including clinical evaluation methods were proposed by researchers. Accordingly, ACR had to update their criteria announced back in 1990, 2010 and 2011. Proposed rule based fuzzy logic method aims to evaluate FMS at a different angle as well. This method contains a rule base derived from the 1990 ACR criteria and the individual experiences of specialists. The study was conducted using the data collected from 60 inpatient and 30 healthy volunteers. Several tests and physical examination were administered to the participants. The fuzzy logic rule base was structured using the parameters of tender point count, chronic widespread pain period, pain severity, fatigue severity and sleep disturbance level, which were deemed important in FMS diagnosis. It has been observed that generally fuzzy predictor was 95.56 % consistent with at least of the specialists, who are not a creator of the fuzzy rule base. Thus, in diagnosis classification where the severity of FMS was classified as well, consistent findings were obtained from the comparison of interpretations and experiences of specialists and the fuzzy logic approach. The study proposes a rule base, which could eliminate the shortcomings of 1990 ACR criteria during the FMS evaluation process. Furthermore, the proposed method presents a classification on the severity of the disease, which was not available with the ACR criteria. The study was not limited to only disease classification but at the same time the probability of occurrence and severity was classified. In addition, those who were not suffering from FMS were

  14. Semantic Data Integration and Ontology Use within the Global Earth Observation System of Systems (GEOSS) Global Water Cycle Data Integration System

    NASA Astrophysics Data System (ADS)

    Pozzi, W.; Fekete, B.; Piasecki, M.; McGuinness, D.; Fox, P.; Lawford, R.; Vorosmarty, C.; Houser, P.; Imam, B.

    2008-12-01

    The inadequacies of water cycle observations for monitoring long-term changes in the global water system, as well as their feedback into the climate system, poses a major constraint on sustainable development of water resources and improvement of water management practices. Hence, The Group on Earth Observations (GEO) has established Task WA-08-01, "Integration of in situ and satellite data for water cycle monitoring," an integrative initiative combining different types of satellite and in situ observations related to key variables of the water cycle with model outputs for improved accuracy and global coverage. This presentation proposes development of the Rapid, Integrated Monitoring System for the Water Cycle (Global-RIMS)--already employed by the GEO Global Terrestrial Network for Hydrology (GTN-H)--as either one of the main components or linked with the Asian system to constitute the modeling system of GEOSS for water cycle monitoring. We further propose expanded, augmented capability to run multiple grids to embrace some of the heterogeneous methods and formats of the Earth Science, Hydrology, and Hydraulic Engineering communities. Different methodologies are employed by the Earth Science (land surface modeling), the Hydrological (GIS), and the Hydraulic Engineering Communities; with each community employing models that require different input data. Data will be routed as input variables to the models through web services, allowing satellite and in situ data to be integrated together within the modeling framework. Semantic data integration will provide the automation to enable this system to operate in near-real-time. Multiple data collections for ground water, precipitation, soil moisture satellite data, such as SMAP, and lake data will require multiple low level ontologies, and an upper level ontology will permit user-friendly water management knowledge to be synthesized. These ontologies will have to have overlapping terms mapped and linked together. so

  15. Automated rule-base creation via CLIPS-Induce

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick M.

    1994-01-01

    Many CLIPS rule-bases contain one or more rule groups that perform classification. In this paper we describe CLIPS-Induce, an automated system for the creation of a CLIPS classification rule-base from a set of test cases. CLIPS-Induce consists of two components, a decision tree induction component and a CLIPS production extraction component. ID3, a popular decision tree induction algorithm, is used to induce a decision tree from the test cases. CLIPS production extraction is accomplished through a top-down traversal of the decision tree. Nodes of the tree are used to construct query rules, and branches of the tree are used to construct classification rules. The learned CLIPS productions may easily be incorporated into a large CLIPS system that perform tasks such as accessing a database or displaying information.

  16. Semantic Desktop

    NASA Astrophysics Data System (ADS)

    Sauermann, Leo; Kiesel, Malte; Schumacher, Kinga; Bernardi, Ansgar

    In diesem Beitrag wird gezeigt, wie der Arbeitsplatz der Zukunft aussehen könnte und wo das Semantic Web neue Möglichkeiten eröffnet. Dazu werden Ansätze aus dem Bereich Semantic Web, Knowledge Representation, Desktop-Anwendungen und Visualisierung vorgestellt, die es uns ermöglichen, die bestehenden Daten eines Benutzers neu zu interpretieren und zu verwenden. Dabei bringt die Kombination von Semantic Web und Desktop Computern besondere Vorteile - ein Paradigma, das unter dem Titel Semantic Desktop bekannt ist. Die beschriebenen Möglichkeiten der Applikationsintegration sind aber nicht auf den Desktop beschränkt, sondern können genauso in Web-Anwendungen Verwendung finden.

  17. Reading Development Electrified: Semantic and Syntactic Integration during Sentence Comprehension in School-Age Children and Young Adults

    ERIC Educational Resources Information Center

    VanDyke, Justine M.

    2011-01-01

    Adults are able to access semantic and syntactic information rapidly as they hear or read in real-time in order to interpret sentences. Young children, on the other hand, tend to rely on syntactically-based parsing routines, adopting the first noun as the agent of a sentence regardless of plausibility, at least during oral comprehension. Little is…

  18. Using Eye Tracking to Investigate Semantic and Spatial Representations of Scientific Diagrams during Text-Diagram Integration

    ERIC Educational Resources Information Center

    Jian, Yu-Cin; Wu, Chao-Jung

    2015-01-01

    We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our…

  19. Benefits and Costs of Lexical Decomposition and Semantic Integration during the Processing of Transparent and Opaque English Compounds

    ERIC Educational Resources Information Center

    Ji, Hongbo; Gagne, Christina L.; Spalding, Thomas L.

    2011-01-01

    Six lexical decision experiments were conducted to examine the influence of complex structure on the processing speed of English compounds. All experiments revealed that semantically transparent compounds (e.g., "rosebud") were processed more quickly than matched monomorphemic words (e.g., "giraffe"). Opaque compounds (e.g., "hogwash") were also…

  20. Using Eye Tracking to Investigate Semantic and Spatial Representations of Scientific Diagrams during Text-Diagram Integration

    ERIC Educational Resources Information Center

    Jian, Yu-Cin; Wu, Chao-Jung

    2015-01-01

    We investigated strategies used by readers when reading a science article with a diagram and assessed whether semantic and spatial representations were constructed while reading the diagram. Seventy-one undergraduate participants read a scientific article while tracking their eye movements and then completed a reading comprehension test. Our…

  1. Reading Development Electrified: Semantic and Syntactic Integration during Sentence Comprehension in School-Age Children and Young Adults

    ERIC Educational Resources Information Center

    VanDyke, Justine M.

    2011-01-01

    Adults are able to access semantic and syntactic information rapidly as they hear or read in real-time in order to interpret sentences. Young children, on the other hand, tend to rely on syntactically-based parsing routines, adopting the first noun as the agent of a sentence regardless of plausibility, at least during oral comprehension. Little is…

  2. Benefits and Costs of Lexical Decomposition and Semantic Integration during the Processing of Transparent and Opaque English Compounds

    ERIC Educational Resources Information Center

    Ji, Hongbo; Gagne, Christina L.; Spalding, Thomas L.

    2011-01-01

    Six lexical decision experiments were conducted to examine the influence of complex structure on the processing speed of English compounds. All experiments revealed that semantically transparent compounds (e.g., "rosebud") were processed more quickly than matched monomorphemic words (e.g., "giraffe"). Opaque compounds (e.g., "hogwash") were also…

  3. An approach to articulating expert system rule bases

    NASA Technical Reports Server (NTRS)

    Abernethy, Ken

    1988-01-01

    A rule-base generation procedure is developed for expert systems used to diagnose anomalies in the performance of mechanical plants and similar engineering systems. The method is based on construction of a failure-mode information-propagation model (FIPM). Details of the FIPM procedure are discussed and illustrated with diagrams; reference is made to a sample application involving the turbopump of the high-pressure oxidizer for the Space Shuttle main engine.

  4. Guidelines for visualizing and annotating rule-based models†

    PubMed Central

    Chylek, Lily A.; Hu, Bin; Blinov, Michael L.; Emonet, Thierry; Faeder, James R.; Goldstein, Byron; Gutenkunst, Ryan N.; Haugh, Jason M.; Lipniacki, Tomasz; Posner, Richard G.; Yang, Jin; Hlavacek, William S.

    2011-01-01

    Rule-based modeling provides a means to represent cell signaling systems in a way that captures site-specific details of molecular interactions. For rule-based models to be more widely understood and (re)used, conventions for model visualization and annotation are needed. We have developed the concepts of an extended contact map and a model guide for illustrating and annotating rule-based models. An extended contact map represents the scope of a model by providing an illustration of each molecule, molecular component, direct physical interaction, post-translational modification, and enzyme-substrate relationship considered in a model. A map can also illustrate allosteric effects, structural relationships among molecular components, and compartmental locations of molecules. A model guide associates elements of a contact map with annotation and elements of an underlying model, which may be fully or partially specified. A guide can also serve to document the biological knowledge upon which a model is based. We provide examples of a map and guide for a published rule-based model that characterizes early events in IgE receptor (FcεRI) signaling. We also provide examples of how to visualize a variety of processes that are common in cell signaling systems but not considered in the example model, such as ubiquitination. An extended contact map and an associated guide can document knowledge of a cell signaling system in a form that is visual as well as executable. As a tool for model annotation, a map and guide can communicate the content of a model clearly and with precision, even for large models. PMID:21647530

  5. Dynamic Influence Networks for Rule-based Models.

    PubMed

    Forbes, Angus G; Burks, Andrew; Lee, Kristine; Li, Xing; Boutillier, Pierre; Krivine, Jean; Fontana, Walter

    2017-08-29

    We introduce the Dynamic Influence Network (DIN), a novel visual analytics technique for representing and analyzing rulebased models of protein-protein interaction networks. Rule-based modeling has proved instrumental in developing biological models that are concise, comprehensible, easily extensible, and that mitigate the combinatorial complexity of multi-state and multi-component biological molecules. Our technique visualizes the dynamics of these rules as they evolve over time. Using the data produced by KaSim, an open source stochastic simulator of rule-based models written in the Kappa language, DINs provide a node-link diagram that represents the influence that each rule has on the other rules. That is, rather than representing individual biological components or types, we instead represent the rules about them (as nodes) and the current influence of these rules (as links). Using our interactive DIN-Viz software tool, researchers are able to query this dynamic network to find meaningful patterns about biological processes, and to identify salient aspects of complex rule-based models. To evaluate the effectiveness of our approach, we investigate a simulation of a circadian clock model that illustrates the oscillatory behavior of the KaiC protein phosphorylation cycle.

  6. Kappa rule-based modeling in synthetic biology.

    PubMed

    Wilson-Kanamori, John; Danos, Vincent; Thomson, Ty; Honorato-Zimmer, Ricardo

    2015-01-01

    Rule-based modeling, an alternative to traditional reaction-based modeling, allows us to intuitively specify biological interactions while abstracting from the underlying combinatorial complexity. One such rule-based modeling formalism is Kappa, which we introduce to readers in this chapter. We discuss the application of Kappa to three modeling scenarios in synthetic biology: a unidirectional switch based on nitrosylase induction in Saccharomyces cerevisiae, the repressilator in Escherichia coli formed from BioBrick parts, and a light-mediated extension to said repressilator developed by the University of Edinburgh team during iGEM 2010. The second and third scenarios in particular form a case-based introduction to the Kappa BioBrick Framework, allowing us to systematically address the modeling of devices and circuits based on BioBrick parts in Kappa. Through the use of these examples, we highlight the ease with which Kappa can model biological interactions both at the genetic and the protein-protein interaction level, resulting in detailed stochastic models accounting naturally for transcriptional and translational resource usage. We also hope to impart the intuitively modular nature of the modeling processes involved, supported by the introduction of visual representations of Kappa models. Concluding, we explore future endeavors aimed at making modeling of synthetic biology more user-friendly and accessible, taking advantage of the strengths of rule-based modeling in Kappa.

  7. Index : A Rule Based Expert System For Computer Network Maintenance

    NASA Astrophysics Data System (ADS)

    Chaganty, Srinivas; Pitchai, Anandhi; Morgan, Thomas W.

    1988-03-01

    Communications is an expert intensive discipline. The application of expert systems for maintenance of large and complex networks, mainly as an aid in trouble shooting, can simplify the task of network management. The important steps involved in troubleshooting are fault detection, fault reporting, fault interpretation and fault isolation. At present, Network Maintenance Facilities are capable of detecting and reporting the faults to network personnel. Fault interpretation refers to the next step in the process, which involves coming up with reasons for the failure. Fault interpretation can be characterized in two ways. First, it involves such a diversity of facts that it is difficult to predict. Secondly, it embodies a wealth of knowledge in the form of network management personnel. The application of expert systems in these interpretive tasks is an important step towards automation of network maintenance. In this paper, INDEX (Intelligent Network Diagnosis Expediter), a rule based production system for computer network alarm interpretation is described. It acts as an intelligent filter for people analyzing network alarms. INDEX analyzes the alarms in the network and identifies proper maintenance action to be taken.The important feature of this production system is that it is data driven. Working memory is the principal data repository of production systems and its contents represent the current state of the problem. Control is based upon which productions match the constantly changing working memory elements. Implementation of the prototype is in OPS83. Major issues in rule based system development such as rule base organization, implementation and efficiency are discussed.

  8. SSWAP: A Simple Semantic Web Architecture and Protocol for Semantic Web Services

    USDA-ARS?s Scientific Manuscript database

    SSWAP (Simple Semantic Web Architecture and Protocol) is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP is the driving technology behind the Virtual Plant Information Network, an NSF-funded semantic w...

  9. When Chinese semantics meets failed syntax.

    PubMed

    Yu, Jing; Zhang, Yaxu

    2008-05-07

    Previous event-related potential studies in Indo-European languages reported a surprising finding that failed syntactic category processing appears to block lexical-semantic integration, suggesting a functional primacy of syntax over semantics. An event-related potential experiment was conducted to test whether there is such primacy in Chinese sentence reading, using sentences containing either semantic only violations, combined syntactic category and semantic violations, or no violations. Semantic only violations elicited a centro-parietal negativity and combined violations a broadly distributed, but centro-parietally focused negativity, both in the 300-500 ms window and followed by a P600, suggesting that semantic integration proceeds even when syntactic category processing fails. Thus, there is no functional primacy of syntactic category over semantic processes during Chinese sentence reading.

  10. Fuzzylot: a novel self-organising fuzzy-neural rule-based pilot system for automated vehicles.

    PubMed

    Pasquier, M; Quek, C; Toh, M

    2001-10-01

    This paper presents part of our research work concerned with the realisation of an Intelligent Vehicle and the technologies required for its routing, navigation, and control. An automated driver prototype has been developed using a self-organising fuzzy rule-based system (POPFNN-CRI(S)) to model and subsequently emulate human driving expertise. The ability of fuzzy logic to represent vague information using linguistic variables makes it a powerful tool to develop rule-based control systems when an exact working model is not available, as is the case of any vehicle-driving task. Designing a fuzzy system, however, is a complex endeavour, due to the need to define the variables and their associated fuzzy sets, and determine a suitable rule base. Many efforts have thus been devoted to automating this process, yielding the development of learning and optimisation techniques. One of them is the family of POP-FNNs, or Pseudo-Outer Product Fuzzy Neural Networks (TVR, AARS(S), AARS(NS), CRI, Yager). These generic self-organising neural networks developed at the Intelligent Systems Laboratory (ISL/NTU) are based on formal fuzzy mathematical theory and are able to objectively extract a fuzzy rule base from training data. In this application, a driving simulator has been developed, that integrates a detailed model of the car dynamics, complete with engine characteristics and environmental parameters, and an OpenGL-based 3D-simulation interface coupled with driving wheel and accelerator/ brake pedals. The simulator has been used on various road scenarios to record from a human pilot driving data consisting of steering and speed control actions associated to road features. Specifically, the POPFNN-CRI(S) system is used to cluster the data and extract a fuzzy rule base modelling the human driving behaviour. Finally, the effectiveness of the generated rule base has been validated using the simulator in autopilot mode.

  11. Individual differences in the joint effects of semantic priming and word frequency: The role of lexical integrity

    PubMed Central

    Yap, Melvin J.; Tse, Chi-Shing; Balota, David A.

    2009-01-01

    Word frequency and semantic priming effects are among the most robust effects in visual word recognition, and it has been generally assumed that these two variables produce interactive effects in lexical decision performance, with larger priming effects for low-frequency targets. The results from four lexical decision experiments indicate that the joint effects of semantic priming and word frequency are critically dependent upon differences in the vocabulary knowledge of the participants. Specifically, across two Universities, additive effects of the two variables were observed in participants with more vocabulary knowledge, while interactive effects were observed in participants with less vocabulary knowledge. These results are discussed with reference to Borowsky and Besner’s (1993) multistage account and Plaut and Booth’s (2000) single-mechanism model. In general, the findings are also consistent with a flexible lexical processing system that optimizes performance based on processing fluency and task demands. PMID:20161653

  12. Algorithms and semantic infrastructure for mutation impact extraction and grounding.

    PubMed

    Laurila, Jonas B; Naderi, Nona; Witte, René; Riazanov, Alexandre; Kouznetsov, Alexandre; Baker, Christopher J O

    2010-12-02

    Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend on manually curated genomic variation databases. We present the first rule-based approach for the extraction of mutation impacts on protein properties, categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration) framework. We address the problem of access to legacy mutation data in unstructured form through the creation of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing to a broad spectrum of consumers.

  13. Connecting clinical and actuarial prediction with rule-based methods.

    PubMed

    Fokkema, Marjolein; Smits, Niels; Kelderman, Henk; Penninx, Brenda W J H

    2015-06-01

    Meta-analyses comparing the accuracy of clinical versus actuarial prediction have shown actuarial methods to outperform clinical methods, on average. However, actuarial methods are still not widely used in clinical practice, and there has been a call for the development of actuarial prediction methods for clinical practice. We argue that rule-based methods may be more useful than the linear main effect models usually employed in prediction studies, from a data and decision analytic as well as a practical perspective. In addition, decision rules derived with rule-based methods can be represented as fast and frugal trees, which, unlike main effects models, can be used in a sequential fashion, reducing the number of cues that have to be evaluated before making a prediction. We illustrate the usability of rule-based methods by applying RuleFit, an algorithm for deriving decision rules for classification and regression problems, to a dataset on prediction of the course of depressive and anxiety disorders from Penninx et al. (2011). The RuleFit algorithm provided a model consisting of 2 simple decision rules, requiring evaluation of only 2 to 4 cues. Predictive accuracy of the 2-rule model was very similar to that of a logistic regression model incorporating 20 predictor variables, originally applied to the dataset. In addition, the 2-rule model required, on average, evaluation of only 3 cues. Therefore, the RuleFit algorithm appears to be a promising method for creating decision tools that are less time consuming and easier to apply in psychological practice, and with accuracy comparable to traditional actuarial methods. (c) 2015 APA, all rights reserved).

  14. Simulation of large-scale rule-based models

    SciTech Connect

    Hlavacek, William S; Monnie, Michael I; Colvin, Joshua; Faseder, James

    2008-01-01

    Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein-protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of STOCHSIM. DYNSTOC differs from STOCHSIM by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at .

  15. Hierarchical graphs for rule-based modeling of biochemical systems

    PubMed Central

    2011-01-01

    Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models

  16. Classification of Contaminated Sites Using a Fuzzy Rule Based System

    SciTech Connect

    Lemos, F.L. de; Van Velzen, K.; Ross, T.

    2006-07-01

    This paper presents the general framework of a multi level model to manage contaminated sites that is being developed. A rule based system along with a scoring system for ranking sites for phase 1 ESA is being proposed (Level 1). Level 2, which consists of the recommendation of the consultant based on their phase 1 ESA is reasonably straightforward. Level 3 which consists of classifying sites which already had a phase 2 ESA conducted on them will involve a multi-objective decision making tool. Fuzzy set theory, which includes the concept of membership functions, was adjudged as the best way to deal with uncertain and non-random information. (authors)

  17. Rule-based navigation control design for autonomous flight

    NASA Astrophysics Data System (ADS)

    Contreras, Hugo; Bassi, Danilo

    2008-04-01

    This article depicts a navigation control system design that is based on a set of rules in order to follow a desired trajectory. The full control of the aircraft considered here comprises: a low level stability control loop, based on classic PID controller and the higher level navigation whose main job is to exercise lateral control (course) and altitude control, trying to follow a desired trajectory. The rules and PID gains were adjusted systematically according to the result of flight simulation. In spite of its simplicity, the rule-based navigation control proved to be robust, even with big perturbation, like crossing winds.

  18. SemanticOrganizer Brings Teams Together

    NASA Technical Reports Server (NTRS)

    Laufenberg, Lawrence

    2003-01-01

    SemanticOrganizer enables researchers in different locations to share, search for, and integrate data. Its customizable semantic links offer fast access to interrelated information. This knowledge management and information integration tool also supports real-time instrument data collection and collaborative image annotation.

  19. A Rules-Based Service for Suggesting Visualizations to Analyze Earth Science Phenomena.

    NASA Astrophysics Data System (ADS)

    Prabhu, A.; Zednik, S.; Fox, P. A.; Ramachandran, R.; Maskey, M.; Shie, C. L.; Shen, S.

    2016-12-01

    Current Earth Science Information Systems lack support for new or interdisciplinary researchers, who may be unfamiliar with the domain vocabulary or the breadth of relevant data available. We need to evolve the current information systems, to reduce the time required for data preparation, processing and analysis. This can be done by effectively salvaging the "dark" resources in Earth Science. We assert that Earth science metadata assets are dark resources, information resources that organizations collect, process, and store for regular business or operational activities but fail to utilize for other purposes. In order to effectively use these dark resources, especially for data processing and visualization, we need a combination of domain, data product and processing knowledge, i.e. a knowledge base from which specific data operations can be performed. In this presentation, we describe a semantic, rules based approach to provide i.e. a service to visualize Earth Science phenomena, based on the data variables extracted using the "dark" metadata resources. We use Jena rules to make assertions about compatibility between a phenomena and various visualizations based on multiple factors. We created separate orthogonal rulesets to map each of these factors to the various phenomena. Some of the factors we have considered include measurements, spatial resolution and time intervals. This approach enables easy additions and deletions based on newly obtained domain knowledge or phenomena related information and thus improving the accuracy of the rules service overall.

  20. g.infer: A GRASS GIS module for rule-based data-driven classification and workflow control.

    NASA Astrophysics Data System (ADS)

    Löwe, Peter

    2013-04-01

    This poster describes the internal architecture of the new GRASS GIS module g.infer [1] and demonstrates application scenarios . The new module for GRASS GIS Version 6.x and 7.x enables rule-based analysis and workflow management via data-driven inference processes based on the C Language Integrated Production System (CLIPS) [2]. g.infer uses the pyClips module [3] to provide an Python-based environment for CLIPS within the GRASS GIS environment for rule-based knowledge engineering. Application scenarios range from rule-based classification tasks, event-driven workflow-control to complex simulations for tasks such as Soil Erosion Monitoring and Disaster Early Warning [4]. References: [1] Löwe P.: Introducing the new GRASS module g.infer for data-driven rule-based applications, Vol.8 2012-08, Geoinformatics FCE CTU, ISSN 1802-2669 [2] http://clipsrules.sourceforge.net/ [3] http://pyclips.sourceforge.net/web/ [4] Löwe P.: A Spatial Decision Support System for Radar-metereology Data in South Africa, Transactions in GIS 2004, (2): 235-244

  1. Towards computerizing intensive care sedation guidelines: design of a rule-based architecture for automated execution of clinical guidelines

    PubMed Central

    2010-01-01

    Background Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs. The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase. Methods A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA). Results The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows. Conclusions The framework is an

  2. Towards computerizing intensive care sedation guidelines: design of a rule-based architecture for automated execution of clinical guidelines.

    PubMed

    Ongenae, Femke; De Backere, Femke; Steurbaut, Kristof; Colpaert, Kirsten; Kerckhove, Wannes; Decruyenaere, Johan; De Turck, Filip

    2010-01-18

    Computerized ICUs rely on software services to convey the medical condition of their patients as well as assisting the staff in taking treatment decisions. Such services are useful for following clinical guidelines quickly and accurately. However, the development of services is often time-consuming and error-prone. Consequently, many care-related activities are still conducted based on manually constructed guidelines. These are often ambiguous, which leads to unnecessary variations in treatments and costs.The goal of this paper is to present a semi-automatic verification and translation framework capable of turning manually constructed diagrams into ready-to-use programs. This framework combines the strengths of the manual and service-oriented approaches while decreasing their disadvantages. The aim is to close the gap in communication between the IT and the medical domain. This leads to a less time-consuming and error-prone development phase and a shorter clinical evaluation phase. A framework is proposed that semi-automatically translates a clinical guideline, expressed as an XML-based flow chart, into a Drools Rule Flow by employing semantic technologies such as ontologies and SWRL. An overview of the architecture is given and all the technology choices are thoroughly motivated. Finally, it is shown how this framework can be integrated into a service-oriented architecture (SOA). The applicability of the Drools Rule language to express clinical guidelines is evaluated by translating an example guideline, namely the sedation protocol used for the anaesthetization of patients, to a Drools Rule Flow and executing and deploying this Rule-based application as a part of a SOA. The results show that the performance of Drools is comparable to other technologies such as Web Services and increases with the number of decision nodes present in the Rule Flow. Most delays are introduced by loading the Rule Flows. The framework is an effective solution for computerizing

  3. Rule-based expert system for maritime anomaly detection

    NASA Astrophysics Data System (ADS)

    Roy, Jean

    2010-04-01

    Maritime domain operators/analysts have a mandate to be aware of all that is happening within their areas of responsibility. This mandate derives from the needs to defend sovereignty, protect infrastructures, counter terrorism, detect illegal activities, etc., and it has become more challenging in the past decade, as commercial shipping turned into a potential threat. In particular, a huge portion of the data and information made available to the operators/analysts is mundane, from maritime platforms going about normal, legitimate activities, and it is very challenging for them to detect and identify the non-mundane. To achieve such anomaly detection, they must establish numerous relevant situational facts from a variety of sensor data streams. Unfortunately, many of the facts of interest just cannot be observed; the operators/analysts thus use their knowledge of the maritime domain and their reasoning faculties to infer these facts. As they are often overwhelmed by the large amount of data and information, automated reasoning tools could be used to support them by inferring the necessary facts, ultimately providing indications and warning on a small number of anomalous events worthy of their attention. Along this line of thought, this paper describes a proof-of-concept prototype of a rule-based expert system implementing automated rule-based reasoning in support of maritime anomaly detection.

  4. Generative Semantics

    ERIC Educational Resources Information Center

    Bagha, Karim Nazari

    2011-01-01

    Generative semantics is (or perhaps was) a research program within linguistics, initiated by the work of George Lakoff, John R. Ross, Paul Postal and later McCawley. The approach developed out of transformational generative grammar in the mid 1960s, but stood largely in opposition to work by Noam Chomsky and his students. The nature and genesis of…

  5. A semantic grid infrastructure enabling integrated access and analysis of multilevel biomedical data in support of postgenomic clinical trials on cancer.

    PubMed

    Tsiknakis, Manolis; Brochhausen, Mathias; Nabrzyski, Jarek; Pucacki, Juliusz; Sfakianakis, Stelios G; Potamias, George; Desmedt, Cristine; Kafetzopoulos, Dimitris

    2008-03-01

    This paper reports on original results of the Advancing Clinico-Genomic Trials on Cancer integrated project focusing on the design and development of a European biomedical grid infrastructure in support of multicentric, postgenomic clinical trials (CTs) on cancer. Postgenomic CTs use multilevel clinical and genomic data and advanced computational analysis and visualization tools to test hypothesis in trying to identify the molecular reasons for a disease and the stratification of patients in terms of treatment. This paper provides a presentation of the needs of users involved in postgenomic CTs, and presents such needs in the form of scenarios, which drive the requirements engineering phase of the project. Subsequently, the initial architecture specified by the project is presented, and its services are classified and discussed. A key set of such services are those used for wrapping heterogeneous clinical trial management systems and other public biological databases. Also, the main technological challenge, i.e. the design and development of semantically rich grid services is discussed. In achieving such an objective, extensive use of ontologies and metadata are required. The Master Ontology on Cancer, developed by the project, is presented, and our approach to develop the required metadata registries, which provide semantically rich information about available data and computational services, is provided. Finally, a short discussion of the work lying ahead is included.

  6. Rule Based Category Learning in Patients with Parkinson’s Disease

    PubMed Central

    Price, Amanda; Filoteo, J. Vincent; Maddox, W. Todd

    2009-01-01

    Measures of explicit rule-based category learning are commonly used in neuropsychological evaluation of individuals with Parkinson’s disease (PD) and the pattern of PD performance on these measures tends to be highly varied. We review the neuropsychological literature to clarify the manner in which PD affects the component processes of rule-based category learning and work to identify and resolve discrepancies within this literature. In particular, we address the manner in which PD and its common treatments affect the processes of rule generation, maintenance, shifting and selection. We then integrate the neuropsychological research with relevant neuroimaging and computational modeling evidence to clarify the neurobiological impact of PD on each process. Current evidence indicates that neurochemical changes associated with PD primarily disrupt rule shifting, and may disturb feedback-mediated learning processes that guide rule selection. Although surgical and pharmacological therapies remediate this deficit, it appears that the same treatments may contribute to impaired rule generation, maintenance and selection processes. These data emphasize the importance of distinguishing between the impact of PD and its common treatments when considering the neuropsychological profile of the disease. PMID:19428385

  7. Seizure prediction in intracranial EEG: a patient-specific rule-based approach.

    PubMed

    Aarabi, Ardalan; He, Bin

    2011-01-01

    In this study, we report our development of a patient-specific rule-based seizure prediction system. Five univariate and one bivariate nonlinear measures were extracted from non-overlapping 10-second segments of intracranial EEG (iEEG) data recorded using both depth electrodes in the brain and subdural electrodes over the cortical surface. Nonlinear features representing the specific characteristic properties of EEG signal were then integrated spatio-temporally in a way to predict to predict seizure with high sensitivity. The present system was tested on 58 hours of iEEG data containing ten seizures recorded in two patients with medically intractable focal epilepsy. Within a prediction horizon of 30 and 60 minutes, our method showed an average sensitivity of 90% and 96.5% with an average false prediction rate of 0.06/h and 0.055/h, respectively. The present results suggest that such a rule-based system can become potentially a useful approach for predicting seizures prior to onset.

  8. Rule-based topology system for spatial databases to validate complex geographic datasets

    NASA Astrophysics Data System (ADS)

    Martinez-Llario, J.; Coll, E.; Núñez-Andrés, M.; Femenia-Ribera, C.

    2017-06-01

    A rule-based topology software system providing a highly flexible and fast procedure to enforce integrity in spatial relationships among datasets is presented. This improved topology rule system is built over the spatial extension Jaspa. Both projects are open source, freely available software developed by the corresponding author of this paper. Currently, there is no spatial DBMS that implements a rule-based topology engine (considering that the topology rules are designed and performed in the spatial backend). If the topology rules are applied in the frontend (as in many GIS desktop programs), ArcGIS is the most advanced solution. The system presented in this paper has several major advantages over the ArcGIS approach: it can be extended with new topology rules, it has a much wider set of rules, and it can mix feature attributes with topology rules as filters. In addition, the topology rule system can work with various DBMSs, including PostgreSQL, H2 or Oracle, and the logic is performed in the spatial backend. The proposed topology system allows users to check the complex spatial relationships among features (from one or several spatial layers) that require some complex cartographic datasets, such as the data specifications proposed by INSPIRE in Europe and the Land Administration Domain Model (LADM) for Cadastral data.

  9. Assessing flood vulnerability using a rule-based fuzzy system.

    PubMed

    Yazdi, J; Neyshabouri, S A A S

    2012-01-01

    Population growth and urbanization in the last decades have increased the vulnerability of properties and societies in flood-prone areas. Vulnerability analysis is one of the main factors used to determine the necessary measures of flood risk reduction in floodplains. At present, the vulnerability of natural disasters is analyzed by defining the various physical and social indices. This study presents a model based on a fuzzy rule-based system to address various ambiguities and uncertainties from natural variability, and human knowledge and preferences in vulnerability analysis. The proposed method is applied for a small watershed as a case study and the obtained results are compared with one of the index approaches. Both approaches present the same ranking for the sub-basin's vulnerability in the watershed. Finally, using the scores of vulnerability in different sub-basins, a vulnerability map of the watershed is presented.

  10. Rule-based category learning in Down syndrome.

    PubMed

    Phillips, B Allyson; Conners, Frances A; Merrill, Edward; Klinger, Mark R

    2014-05-01

    Rule-based category learning was examined in youths with Down syndrome (DS), youths with intellectual disability (ID), and typically developing (TD) youths. Two tasks measured category learning: the Modified Card Sort task (MCST) and the Concept Formation test of the Woodcock-Johnson-III ( Woodock, McGrew, & Mather, 2001 ). In regression-based analyses, DS and ID groups performed below the level expected for their nonverbal ability. In cross-sectional developmental trajectory analyses, results depended on the task. On the MCST, the DS and ID groups were similar to the TD group. On the Concept Formation test, the DS group had slower cross-sectional change than the other 2 groups. Category learning may be an area of difficulty for those with ID, but task-related factors may affect trajectories for youths with DS.

  11. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  12. Rule-based extrapolation: a continuing challenge for exemplar models.

    PubMed

    Denton, Stephen E; Kruschke, John K; Erickson, Michael A

    2008-08-01

    Erickson and Kruschke (1998, 2002) demonstrated that in rule-plus-exception categorization, people generalize category knowledge by extrapolating in a rule-like fashion, even when they are presented with a novel stimulus that is most similar to a known exception. Although exemplar models have been found to be deficient in explaining rule-based extrapolation, Rodrigues and Murre (2007) offered a variation of an exemplar model that was better able to account for such performance. Here, we present the results of a new rule-plus-exception experiment that yields rule-like extrapolation similar to that of previous experiments, and yet the data are not accounted for by Rodrigues and Murre's augmented exemplar model. Further, a hybrid rule-and-exemplar model is shown to better describe the data. Thus, we maintain that rule-plus-exception categorization continues to be a challenge for exemplar-only models.

  13. Approaches to the verification of rule-based expert systems

    NASA Technical Reports Server (NTRS)

    Culbert, Chris; Riley, Gary; Savely, Robert T.

    1987-01-01

    Expert systems are a highly useful spinoff of artificial intelligence research. One major stumbling block to extended use of expert systems is the lack of well-defined verification and validation (V and V) methodologies. Since expert systems are computer programs, the definitions of verification and validation from conventional software are applicable. The primary difficulty with expert systems is the use of development methodologies which do not support effective V and V. If proper techniques are used to document requirements, V and V of rule-based expert systems is possible, and may be easier than with conventional code. For NASA applications, the flight technique panels used in previous programs should provide an excellent way to verify the rules used in expert systems. There are, however, some inherent differences in expert systems that will affect V and V considerations.

  14. Fuzzy-Rule-Based Object Identification Methodology for NAVI System

    NASA Astrophysics Data System (ADS)

    Nagarajan, R.; Sainarayanan, G.; Yaacob, Sazali; Porle, Rosalyn R.

    2005-12-01

    We present an object identification methodology applied in a navigation assistance for visually impaired (NAVI) system. The NAVI has a single board processing system (SBPS), a digital video camera mounted headgear, and a pair of stereo earphones. The captured image from the camera is processed by the SBPS to generate a specially structured stereo sound suitable for vision impaired people in understanding the presence of objects/obstacles in front of them. The image processing stage is designed to identify the objects in the captured image. Edge detection and edge-linking procedures are applied in the processing of image. A concept of object preference is included in the image processing scheme and this concept is realized using a fuzzy-rule base. The blind users are trained with the stereo sound produced by NAVI for achieving a collision-free autonomous navigation.

  15. A High-Level Language for Rule-Based Modelling

    PubMed Central

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D.

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages. PMID:26043208

  16. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  17. A Rule-Based Industrial Boiler Selection System

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Khalil, S. N.; Karjanto, J.; Tee, B. T.; Wahidin, L. S.; Chen, W.; Rauterberg, G. W. M.; Sivarao, S.; Lim, T. L.

    2015-09-01

    Boiler is a device used for generating the steam for power generation, process use or heating, and hot water for heating purposes. Steam boiler consists of the containing vessel and convection heating surfaces only, whereas a steam generator covers the whole unit, encompassing water wall tubes, super heaters, air heaters and economizers. The selection of the boiler is very important to the industry for conducting the operation system successfully. The selection criteria are based on rule based expert system and multi-criteria weighted average method. The developed system consists of Knowledge Acquisition Module, Boiler Selection Module, User Interface Module and Help Module. The system capable of selecting the suitable boiler based on criteria weighted. The main benefits from using the system is to reduce the complexity in the decision making for selecting the most appropriate boiler to palm oil process plant.

  18. A high-level language for rule-based modelling.

    PubMed

    Pedersen, Michael; Phillips, Andrew; Plotkin, Gordon D

    2015-01-01

    Rule-based languages such as Kappa excel in their support for handling the combinatorial complexities prevalent in many biological systems, including signalling pathways. But Kappa provides little structure for organising rules, and large models can therefore be hard to read and maintain. This paper introduces a high-level, modular extension of Kappa called LBS-κ. We demonstrate the constructs of the language through examples and three case studies: a chemotaxis switch ring, a MAPK cascade, and an insulin signalling pathway. We then provide a formal definition of LBS-κ through an abstract syntax and a translation to plain Kappa. The translation is implemented in a compiler tool which is available as a web application. We finally demonstrate how to increase the expressivity of LBS-κ through embedded scripts in a general-purpose programming language, a technique which we view as generally applicable to other domain specific languages.

  19. Rule-Based Orientation Recognition Of A Moving Object

    NASA Astrophysics Data System (ADS)

    Gove, Robert J.

    1989-03-01

    This paper presents a detailed description and a comparative analysis of the algorithms used to determine the position and orientation of an object in real-time. The exemplary object, a freely moving gold-fish in an aquarium, provides "real-world" motion, with definable characteristics of motion (the fish never swims upside-down) and the complexities of a non-rigid body. For simplicity of implementation, and since a restricted and stationary viewing domain exists (fish-tank), we reduced the problem of obtaining 3D correspondence information to trivial alignment calculations by using two cameras orthogonally viewing the object. We applied symbolic processing techniques to recognize the 3-D orientation of a moving object of known identity in real-time. Assuming motion, each new frame (sensed by the two cameras) provides images of the object's profile which has most likely undergone translation, rotation, scaling and/or bending of the non-rigid object since the previous frame. We developed an expert system which uses heuristics of the object's motion behavior in the form of rules and information obtained via low-level image processing (like numerical inertial axis calculations) to dynamically estimate the object's orientation. An inference engine provides these estimates at frame rates of up to 10 per second (which is essentially real-time). The advantages of the rule-based approach to orientation recognition will be compared other pattern recognition techniques. Our results of an investigation of statistical pattern recognition, neural networks, and procedural techniques for orientation recognition will be included. We implemented the algorithms in a rapid-prototyping environment, the TI-Ezplorer, equipped with an Odyssey and custom imaging hardware. A brief overview of the workstation is included to clarify one motivation for our choice of algorithms. These algorithms exploit two facets of the prototype image processing and understanding workstation - both low

  20. Fuzzy-rule-based image reconstruction for positron emission tomography

    NASA Astrophysics Data System (ADS)

    Mondal, Partha P.; Rajan, K.

    2005-09-01

    Positron emission tomography (PET) and single-photon emission computed tomography have revolutionized the field of medicine and biology. Penalized iterative algorithms based on maximum a posteriori (MAP) estimation eliminate noisy artifacts by utilizing available prior information in the reconstruction process but often result in a blurring effect. MAP-based algorithms fail to determine the density class in the reconstructed image and hence penalize the pixels irrespective of the density class. Reconstruction with better edge information is often difficult because prior knowledge is not taken into account. The recently introduced median-root-prior (MRP)-based algorithm preserves the edges, but a steplike streaking effect is observed in the reconstructed image, which is undesirable. A fuzzy approach is proposed for modeling the nature of interpixel interaction in order to build an artifact-free edge-preserving reconstruction. The proposed algorithm consists of two elementary steps: (1) edge detection, in which fuzzy-rule-based derivatives are used for the detection of edges in the nearest neighborhood window (which is equivalent to recognizing nearby density classes), and (2) fuzzy smoothing, in which penalization is performed only for those pixels for which no edge is detected in the nearest neighborhood. Both of these operations are carried out iteratively until the image converges. Analysis shows that the proposed fuzzy-rule-based reconstruction algorithm is capable of producing qualitatively better reconstructed images than those reconstructed by MAP and MRP algorithms. The reconstructed images are sharper, with small features being better resolved owing to the nature of the fuzzy potential function.

  1. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  2. Genetic learning in rule-based and neural systems

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1993-01-01

    The design of neural networks and fuzzy systems can involve complex, nonlinear, and ill-conditioned optimization problems. Often, traditional optimization schemes are inadequate or inapplicable for such tasks. Genetic Algorithms (GA's) are a class of optimization procedures whose mechanics are based on those of natural genetics. Mathematical arguments show how GAs bring substantial computational leverage to search problems, without requiring the mathematical characteristics often necessary for traditional optimization schemes (e.g., modality, continuity, availability of derivative information, etc.). GA's have proven effective in a variety of search tasks that arise in neural networks and fuzzy systems. This presentation begins by introducing the mechanism and theoretical underpinnings of GA's. GA's are then related to a class of rule-based machine learning systems called learning classifier systems (LCS's). An LCS implements a low-level production-system that uses a GA as its primary rule discovery mechanism. This presentation illustrates how, despite its rule-based framework, an LCS can be thought of as a competitive neural network. Neural network simulator code for an LCS is presented. In this context, the GA is doing more than optimizing and objective function. It is searching for an ecology of hidden nodes with limited connectivity. The GA attempts to evolve this ecology such that effective neural network performance results. The GA is particularly well adapted to this task, given its naturally-inspired basis. The LCS/neural network analogy extends itself to other, more traditional neural networks. Conclusions to the presentation discuss the implications of using GA's in ecological search problems that arise in neural and fuzzy systems.

  3. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  4. Harmonising and semantically linking key variables from in-situ observing networks of an Integrated Atlantic Ocean Observing System, AtlantOS

    NASA Astrophysics Data System (ADS)

    Darroch, Louise; Buck, Justin

    2017-04-01

    Atlantic Ocean observation is currently undertaken through loosely-coordinated, in-situ observing networks, satellite observations and data management arrangements at regional, national and international scales. The EU Horizon 2020 AtlantOS project aims to deliver an advanced framework for the development of an Integrated Atlantic Ocean Observing System that strengthens the Global Ocean Observing System (GOOS) and contributes to the aims of the Galway Statement on Atlantic Ocean Cooperation. One goal is to ensure that data from different and diverse in-situ observing networks are readily accessible and useable to a wider community, including the international ocean science community and other stakeholders in this field. To help achieve this goal, the British Oceanographic Data Centre (BODC) produced a parameter matrix to harmonise data exchange, data flow and data integration for the key variables acquired by multiple in-situ AtlantOS observing networks such as ARGO, Seafloor Mapping and OceanSITES. Our solution used semantic linking of controlled vocabularies and metadata for parameters that were "mappable" to existing EU and international standard vocabularies. An AtlantOS Essential Variables list of terms (aggregated level) based on Global Climate Observing System (GCOS) Essential Climate Variables (ECV), GOOS Essential Ocean Variables (EOV) and other key network variables was defined and published on the Natural Environment Research Council (NERC) Vocabulary Server (version 2.0) as collection A05 (http://vocab.nerc.ac.uk/collection/A05/current/). This new vocabulary was semantically linked to standardised metadata for observed properties and units that had been validated by the AtlantOS community: SeaDataNet parameters (P01), Climate and Forecast (CF) Standard Names (P07) and SeaDataNet units (P06). Observed properties were mapped to biological entities from the internationally assured AphiaID from the WOrld Register of Marine Species (WoRMS), http

  5. A rule-based expert system for generating control displays at the Advanced Photon Source

    SciTech Connect

    Coulter, K.J.

    1993-11-01

    The integration of a rule-based expert system for generating screen displays for controlling and monitoring instrumentation under the Experimental Physics and Industrial Control System (EPICS) is presented. The expert system is implemented using CLIPS, an expert system shell from the Software Technology Branch at Lyndon B. Johnson Space Center. The user selects the hardware input and output to be displayed and the expert system constructs a graphical control screen appropriate for the data. Such a system provides a method for implementing a common look and feel for displays created by several different users and reduces the amount of time required to create displays for new hardware configurations. Users are able to modify the displays as needed using the EPICS display editor tool.

  6. On Decision-Making Among Multiple Rule-Bases in Fuzzy Control Systems

    NASA Technical Reports Server (NTRS)

    Tunstel, Edward; Jamshidi, Mo

    1997-01-01

    Intelligent control of complex multi-variable systems can be a challenge for single fuzzy rule-based controllers. This class of problems cam often be managed with less difficulty by distributing intelligent decision-making amongst a collection of rule-bases. Such an approach requires that a mechanism be chosen to ensure goal-oriented interaction between the multiple rule-bases. In this paper, a hierarchical rule-based approach is described. Decision-making mechanisms based on generalized concepts from single-rule-based fuzzy control are described. Finally, the effects of different aggregation operators on multi-rule-base decision-making are examined in a navigation control problem for mobile robots.

  7. The Process-Interaction-Model: a common representation of rule-based and logical models allows studying signal transduction on different levels of detail

    PubMed Central

    2012-01-01

    Background Signaling systems typically involve large, structured molecules each consisting of a large number of subunits called molecule domains. In modeling such systems these domains can be considered as the main players. In order to handle the resulting combinatorial complexity, rule-based modeling has been established as the tool of choice. In contrast to the detailed quantitative rule-based modeling, qualitative modeling approaches like logical modeling rely solely on the network structure and are particularly useful for analyzing structural and functional properties of signaling systems. Results We introduce the Process-Interaction-Model (PIM) concept. It defines a common representation (or basis) of rule-based models and site-specific logical models, and, furthermore, includes methods to derive models of both types from a given PIM. A PIM is based on directed graphs with nodes representing processes like post-translational modifications or binding processes and edges representing the interactions among processes. The applicability of the concept has been demonstrated by applying it to a model describing EGF insulin crosstalk. A prototypic implementation of the PIM concept has been integrated in the modeling software ProMoT. Conclusions The PIM concept provides a common basis for two modeling formalisms tailored to the study of signaling systems: a quantitative (rule-based) and a qualitative (logical) modeling formalism. Every PIM is a compact specification of a rule-based model and facilitates the systematic set-up of a rule-based model, while at the same time facilitating the automatic generation of a site-specific logical model. Consequently, modifications can be made on the underlying basis and then be propagated into the different model specifications – ensuring consistency of all models, regardless of the modeling formalism. This facilitates the analysis of a system on different levels of detail as it guarantees the application of established

  8. A Rule-based Track Anomaly Detection Algorithm for Maritime Force Protection

    DTIC Science & Technology

    2014-08-01

    UNCLASSIFIED UNCLASSIFIED A Rule- based Track Anomaly Detection Algorithm for Maritime Force Protection S.Boinepalli and...detection tool using a Rule- based Algorithm that can detect anomalies in a set of pre-recorded tracks using their curvature, speed and weave. We...Australia 2014 AR 016-049 August 2014 APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED A Rule- based Track Anomaly Detection

  9. Rule-based deduplication of article records from bibliographic databases.

    PubMed

    Jiang, Yu; Lin, Can; Meng, Weiyi; Yu, Clement; Cohen, Aaron M; Smalheiser, Neil R

    2014-01-01

    We recently designed and deployed a metasearch engine, Metta, that sends queries and retrieves search results from five leading biomedical databases: PubMed, EMBASE, CINAHL, PsycINFO and the Cochrane Central Register of Controlled Trials. Because many articles are indexed in more than one of these databases, it is desirable to deduplicate the retrieved article records. This is not a trivial problem because data fields contain a lot of missing and erroneous entries, and because certain types of information are recorded differently (and inconsistently) in the different databases. The present report describes our rule-based method for deduplicating article records across databases and includes an open-source script module that can be deployed freely. Metta was designed to satisfy the particular needs of people who are writing systematic reviews in evidence-based medicine. These users want the highest possible recall in retrieval, so it is important to err on the side of not deduplicating any records that refer to distinct articles, and it is important to perform deduplication online in real time. Our deduplication module is designed with these constraints in mind. Articles that share the same publication year are compared sequentially on parameters including PubMed ID number, digital object identifier, journal name, article title and author list, using text approximation techniques. In a review of Metta searches carried out by public users, we found that the deduplication module was more effective at identifying duplicates than EndNote without making any erroneous assignments.

  10. A Novel Rules Based Approach for Estimating Software Birthmark

    PubMed Central

    Binti Alias, Norma; Anwar, Sajid

    2015-01-01

    Software birthmark is a unique quality of software to detect software theft. Comparing birthmarks of software can tell us whether a program or software is a copy of another. Software theft and piracy are rapidly increasing problems of copying, stealing, and misusing the software without proper permission, as mentioned in the desired license agreement. The estimation of birthmark can play a key role in understanding the effectiveness of a birthmark. In this paper, a new technique is presented to evaluate and estimate software birthmark based on the two most sought-after properties of birthmarks, that is, credibility and resilience. For this purpose, the concept of soft computing such as probabilistic and fuzzy computing has been taken into account and fuzzy logic is used to estimate properties of birthmark. The proposed fuzzy rule based technique is validated through a case study and the results show that the technique is successful in assessing the specified properties of the birthmark, its resilience and credibility. This, in turn, shows how much effort will be required to detect the originality of the software based on its birthmark. PMID:25945363

  11. A novel rules based approach for estimating software birthmark.

    PubMed

    Nazir, Shah; Shahzad, Sara; Khan, Sher Afzal; Alias, Norma Binti; Anwar, Sajid

    2015-01-01

    Software birthmark is a unique quality of software to detect software theft. Comparing birthmarks of software can tell us whether a program or software is a copy of another. Software theft and piracy are rapidly increasing problems of copying, stealing, and misusing the software without proper permission, as mentioned in the desired license agreement. The estimation of birthmark can play a key role in understanding the effectiveness of a birthmark. In this paper, a new technique is presented to evaluate and estimate software birthmark based on the two most sought-after properties of birthmarks, that is, credibility and resilience. For this purpose, the concept of soft computing such as probabilistic and fuzzy computing has been taken into account and fuzzy logic is used to estimate properties of birthmark. The proposed fuzzy rule based technique is validated through a case study and the results show that the technique is successful in assessing the specified properties of the birthmark, its resilience and credibility. This, in turn, shows how much effort will be required to detect the originality of the software based on its birthmark.

  12. A Rules-Based Simulation of Bacterial Turbulence

    NASA Astrophysics Data System (ADS)

    Mikel-Stites, Maxwell; Staples, Anne

    2015-11-01

    In sufficiently dense bacterial populations (>40% bacteria by volume), unusual collective swimming behaviors have been consistently observed, resembling von Karman vortex streets. The source of these collective swimming behavior has yet to be fully determined, and as of yet, no research has been conducted that would define whether or not this behavior is derived predominantly from the properties of the surrounding media, or if it is an emergent behavior as a result of the ``rules'' governing the behavior of individual bacteria. The goal of this research is to ascertain whether or not it is possible to design a simulation that can replicate the qualitative behavior of the densely packed bacterial populations using only behavioral rules to govern the actions of each bacteria, with the physical properties of the media being neglected. The results of the simulation will address whether or not it is possible for the system's overall behavior to be driven exclusively by these rule-based dynamics. In order to examine this, the behavioral simulation was written in MATLAB on a fixed grid, and updated sequentially with the bacterial behavior, including randomized tumbling, gathering and perceptual sub-functions. If the simulation is successful, it will serve as confirmation that it is possible to generate these qualitatively vortex-like behaviors without specific physical media (that the phenomena arises in emergent fashion from behavioral rules), or as evidence that the observed behavior requires some specific set of physical parameters.

  13. Rule-based deduplication of article records from bibliographic databases

    PubMed Central

    Jiang, Yu; Lin, Can; Meng, Weiyi; Yu, Clement; Cohen, Aaron M.; Smalheiser, Neil R.

    2014-01-01

    We recently designed and deployed a metasearch engine, Metta, that sends queries and retrieves search results from five leading biomedical databases: PubMed, EMBASE, CINAHL, PsycINFO and the Cochrane Central Register of Controlled Trials. Because many articles are indexed in more than one of these databases, it is desirable to deduplicate the retrieved article records. This is not a trivial problem because data fields contain a lot of missing and erroneous entries, and because certain types of information are recorded differently (and inconsistently) in the different databases. The present report describes our rule-based method for deduplicating article records across databases and includes an open-source script module that can be deployed freely. Metta was designed to satisfy the particular needs of people who are writing systematic reviews in evidence-based medicine. These users want the highest possible recall in retrieval, so it is important to err on the side of not deduplicating any records that refer to distinct articles, and it is important to perform deduplication online in real time. Our deduplication module is designed with these constraints in mind. Articles that share the same publication year are compared sequentially on parameters including PubMed ID number, digital object identifier, journal name, article title and author list, using text approximation techniques. In a review of Metta searches carried out by public users, we found that the deduplication module was more effective at identifying duplicates than EndNote without making any erroneous assignments. PMID:24434031

  14. Semantically aided interpretation and querying of Jefferson Project data using the SemantEco framework

    NASA Astrophysics Data System (ADS)

    Patton, E. W.; Pinheiro, P.; McGuinness, D. L.

    2014-12-01

    We will describe the benefits we realized using semantic technologies to address the often challenging and resource intensive task of ontology alignment in service of data integration. Ontology alignment became relatively simple as we reused our existing semantic data integration framework, SemantEco. We work in the context of the Jefferson Project (JP), an effort to monitor and predict the health of Lake George in NY by deploying a large-scale sensor network in the lake, and analyzing the high-resolution sensor data. SemantEco is an open-source framework for building semantically-aware applications to assist users, particularly non-experts, in exploration and interpretation of integrated scientific data. SemantEco applications are composed of a set of modules that incorporate new datasets, extend the semantic capabilities of the system to integrate and reason about data, and provide facets for extending or controlling semantic queries. Whereas earlier SemantEco work focused on integration of water, air, and species data from government sources, we focus on redeploying it to provide a provenance-aware, semantic query and interpretation interface for JP's sensor data. By employing a minor alignment between SemantEco's ontology and the Human-Aware Sensor Network Ontology used to model the JP's sensor deployments, we were able to bring SemantEco's capabilities to bear on the JP sensor data and metadata. This alignment enabled SemantEco to perform the following tasks: (1) select JP datasets related to water quality; (2) understand how the JP's notion of water quality relates to water quality concepts in previous work; and (3) reuse existing SemantEco interactive data facets, e.g. maps and time series visualizations, and modules, e.g. the regulation module that interprets water quality data through the lens of various federal and state regulations. Semantic technologies, both as the engine driving SemantEco and the means of modeling the JP data, enabled us to rapidly

  15. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping

    NASA Astrophysics Data System (ADS)

    Lucas, Richard; Rowlands, Aled; Brown, Alan; Keyworth, Steve; Bunting, Peter

    AimTo evaluate the use of time-series of Landsat sensor data acquired over an annual cycle for mapping semi-natural habitats and agricultural land cover. LocationBerwyn Mountains, North Wales, United Kingdom. MethodsUsing eCognition Expert, segmentation of the Landsat sensor data was undertaken for actively managed agricultural land based on Integrated Administration and Control System (IACS) land parcel boundaries, whilst a per-pixel level segmentation was undertaken for all remaining areas. Numerical decision rules based on fuzzy logic that coupled knowledge of ecology and the information content of single and multi-date remotely sensed data and derived products (e.g., vegetation indices) were developed to discriminate vegetation types based primarily on inferred differences in phenology, structure, wetness and productivity. ResultsThe rule-based classification gave a good representation of the distribution of habitats and agricultural land. The more extensive, contiguous and homogeneous habitats could be mapped with accuracies exceeding 80%, although accuracies were lower for more complex environments (e.g., upland mosaics) or those with broad definition (e.g., semi-improved grasslands). Main conclusionsThe application of a rule-based classification to temporal imagery acquired over selected periods within an annual cycle provides a viable approach for mapping and monitoring of habitats and agricultural land in the United Kingdom that could be employed operationally.

  16. Preserved musical semantic memory in semantic dementia.

    PubMed

    Weinstein, Jessica; Koenig, Phyllis; Gunawardena, Delani; McMillan, Corey; Bonner, Michael; Grossman, Murray

    2011-02-01

    To understand the scope of semantic impairment in semantic dementia. Case study. Academic medical center. A man with semantic dementia, as demonstrated by clinical, neuropsychological, and imaging studies. Music performance and magnetic resonance imaging results. Despite profoundly impaired semantic memory for words and objects due to left temporal lobe atrophy, this semiprofessional musician was creative and expressive in demonstrating preserved musical knowledge. Long-term representations of words and objects in semantic memory may be dissociated from meaningful knowledge in other domains, such as music.

  17. Preserved Musical Semantic Memory in Semantic Dementia

    PubMed Central

    Weinstein, Jessica; Koenig, Phyllis; Gunawardena, Delani; McMillan, Corey; Bonner, Michael; Grossman, Murray

    2012-01-01

    Objective To understand the scope of semantic impairment in semantic dementia. Design Case study. Setting Academic medical center. Patient A man with semantic dementia, as demonstrated by clinical, neuropsychological, and imaging studies. Main Outcome Measures Music performance and magnetic resonance imaging results. Results Despite profoundly impaired semantic memory for words and objects due to left temporal lobe atrophy, this semiprofessional musician was creative and expressive in demonstrating preserved musical knowledge. Conclusion Long-term representations of words and objects in semantic memory may be dissociated from meaningful knowledge in other domains, such as music. PMID:21320991

  18. A rule-based seizure prediction method for focal neocortical epilepsy

    PubMed Central

    Aarabi, Ardalan; He, Bin

    2012-01-01

    Objective In the present study, we have developed a novel patient-specific rule-based seizure prediction system for focal neocortical epilepsy. Methods Five univariate measures including correlation dimension, correlation entropy, noise level, Lempel-Ziv complexity, and largest Lyapunov exponent as well as one bivariate measure, nonlinear interdependence, were extracted from non-overlapping 10-second segments of intracranial electroencephalogram (iEEG) data recorded using electrodes implanted deep in the brain and/or placed on the cortical surface. The spatio-temporal information was then integrated by using rules established based on patient-specific changes observed in the period prior to a seizure sample for each patient. The system was tested on 316 h of iEEG data containing 49 seizures recorded in eleven patients with medically intractable focal neocortical epilepsy. Results For seizure occurrence periods of 30 and 50 min our method showed an average sensitivity of 79.9% and 90.2% with an average false prediction rate of 0.17 and 0.11/h, respectively. In terms of sensitivity and false prediction rate, the system showed superiority to random and periodical predictors. Conclusions The nonlinear analysis of iEEG in the period prior to seizures revealed patient-specific spatio-temporal changes that were significantly different from those observed within baselines in the majority of the seizures analyzed in this study. Significance The present results suggest that the patient specific rule-based approach may become a potentially useful approach for predicting seizures prior to onset. PMID:22361267

  19. Neural substrates of similarity and rule-based strategies in judgment

    PubMed Central

    von Helversen, Bettina; Karlsson, Linnea; Rasch, Björn; Rieskamp, Jörg

    2014-01-01

    Making accurate judgments is a core human competence and a prerequisite for success in many areas of life. Plenty of evidence exists that people can employ different judgment strategies to solve identical judgment problems. In categorization, it has been demonstrated that similarity-based and rule-based strategies are associated with activity in different brain regions. Building on this research, the present work tests whether solving two identical judgment problems recruits different neural substrates depending on people's judgment strategies. Combining cognitive modeling of judgment strategies at the behavioral level with functional magnetic resonance imaging (fMRI), we compare brain activity when using two archetypal judgment strategies: a similarity-based exemplar strategy and a rule-based heuristic strategy. Using an exemplar-based strategy should recruit areas involved in long-term memory processes to a larger extent than a heuristic strategy. In contrast, using a heuristic strategy should recruit areas involved in the application of rules to a larger extent than an exemplar-based strategy. Largely consistent with our hypotheses, we found that using an exemplar-based strategy led to relatively higher BOLD activity in the anterior prefrontal and inferior parietal cortex, presumably related to retrieval and selective attention processes. In contrast, using a heuristic strategy led to relatively higher activity in areas in the dorsolateral prefrontal and the temporal-parietal cortex associated with cognitive control and information integration. Thus, even when people solve identical judgment problems, different neural substrates can be recruited depending on the judgment strategy involved. PMID:25360099

  20. Rule-based Cross-matching of Very Large Catalogs

    NASA Astrophysics Data System (ADS)

    Ogle, P. M.; Mazzarella, J.; Ebert, R.; Fadda, D.; Lo, T.; Terek, S.; Schmitz, M.; NED Team

    2015-09-01

    The NASA Extragalactic Database (NED) has deployed a new rule-based cross-matching algorithm called Match Expert (MatchEx), capable of cross-matching very large catalogs (VLCs) with >10 million objects. MatchEx goes beyond traditional position-based cross-matching algorithms by using other available data together with expert logic to determine which candidate match is the best. Furthermore, the local background density of sources is used to determine and minimize the false-positive match rate and to estimate match completeness. The logical outcome and statistical probability of each match decision is stored in the database and may be used to tune the algorithm and adjust match parameter thresholds. For our first production run, we cross-matched the GALEX All Sky Survey Catalog (GASC), containing nearly 40 million NUV-detected sources, against a directory of 180 million objects in NED. Candidate matches were identified for each GASC source within a 7''.5 radius. These candidates were filtered on position-based matching probability and on other criteria including object type and object name. We estimate a match completeness of 97.6% and a match accuracy of 99.75%. Over the next year, we will be cross-matching over 2 billion catalog sources to NED, including the Spitzer Source List, the 2MASS point-source catalog, AllWISE, and SDSS DR 10. We expect to add new capabilities to filter candidate matches based on photometry, redshifts, and refined object classifications. We will also extend MatchEx to handle more heterogenous datasets federated from smaller catalogs through NED's literature pipeline.

  1. Interleaving Semantic Web Reasoning and Service Discovery to Enforce Context-Sensitive Security and Privacy Policies

    DTIC Science & Technology

    2005-07-01

    Friedman- Hill . Jess in Action: Java Rule-based Systems, Manning Publications Com-pany, June 2003, ISBN 1930110898, http://herzberg.ca.sandia.gov/jess...Semantics Journal, 1(3), 2004. [9] R. Hull, B. Kumar, D. Lieuwen, P. Patel-Schneider, A. Sahuguet, S. Varadarajan, and A. Vyas . Enabling context

  2. Linguistic and Non-Linguistic Semantic Processing in Individuals with Autism Spectrum Disorders: An ERP Study

    ERIC Educational Resources Information Center

    Coderre, Emily L.; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry

    2017-01-01

    Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we…

  3. A Semantic Approach with Decision Support for Safety Service in Smart Home Management.

    PubMed

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-08-03

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate.

  4. A Semantic Approach with Decision Support for Safety Service in Smart Home Management

    PubMed Central

    Huang, Xiaoci; Yi, Jianjun; Zhu, Xiaomin; Chen, Shaoli

    2016-01-01

    Research on smart homes (SHs) has increased significantly in recent years because of the convenience provided by having an assisted living environment. The functions of SHs as mentioned in previous studies, particularly safety services, are seldom discussed or mentioned. Thus, this study proposes a semantic approach with decision support for safety service in SH management. The focus of this contribution is to explore a context awareness and reasoning approach for risk recognition in SH that enables the proper decision support for flexible safety service provision. The framework of SH based on a wireless sensor network is described from the perspective of neighbourhood management. This approach is based on the integration of semantic knowledge in which a reasoner can make decisions about risk recognition and safety service. We present a management ontology for a SH and relevant monitoring contextual information, which considers its suitability in a pervasive computing environment and is service-oriented. We also propose a rule-based reasoning method to provide decision support through reasoning techniques and context-awareness. A system prototype is developed to evaluate the feasibility, time response and extendibility of the approach. The evaluation of our approach shows that it is more effective in daily risk event recognition. The decisions for service provision are shown to be accurate. PMID:27527170

  5. The development of co-speech gesture and its semantic integration with speech in 6- to 12-year-old children with autism spectrum disorders.

    PubMed

    So, Wing-Chee; Wong, Miranda Kit-Yi; Lui, Ming; Yip, Virginia

    2015-11-01

    Previous work leaves open the question of whether children with autism spectrum disorders aged 6-12 years have delay in producing gestures compared to their typically developing peers. This study examined gestural production among school-aged children in a naturalistic context and how their gestures are semantically related to the accompanying speech. Delay in gestural production was found in children with autism spectrum disorders through their middle to late childhood. Compared to their typically developing counterparts, children with autism spectrum disorders gestured less often and used fewer types of gestures, in particular markers, which carry culture-specific meaning. Typically developing children's gestural production was related to language and cognitive skills, but among children with autism spectrum disorders, gestural production was more strongly related to the severity of socio-communicative impairment. Gesture impairment also included the failure to integrate speech with gesture: in particular, supplementary gestures are absent in children with autism spectrum disorders. The findings extend our understanding of gestural production in school-aged children with autism spectrum disorders during spontaneous interaction. The results can help guide new therapies for gestural production for children with autism spectrum disorders in middle and late childhood.

  6. Linked data scientometrics in semantic e-Science

    NASA Astrophysics Data System (ADS)

    Narock, Tom; Wimmer, Hayden

    2017-03-01

    The Semantic Web is inherently multi-disciplinary and many domains have taken advantage of semantic technologies. Yet, the geosciences are one of the fields leading the way in Semantic Web adoption and validation. Astronomy, Earth science, hydrology, and solar-terrestrial physics have seen a noteworthy amount of semantic integration. The geoscience community has been willing early adopters of semantic technologies and have provided essential feedback to the broader semantic web community. Yet, there has been no systematic study of the community as a whole and there exists no quantitative data on the impact and status of semantic technologies in the geosciences. We explore the applicability of Linked Data to scientometrics in the geosciences. In doing so, we gain an initial understanding of the breadth and depth of the Semantic Web in the geosciences. We identify what appears to be a transitionary period in the applicability of these technologies.

  7. Rule-Based Classification of Chemical Structures by Scaffold.

    PubMed

    Schuffenhauer, Ansgar; Varin, Thibault

    2011-08-01

    Databases for small organic chemical molecules usually contain millions of structures. The screening decks of pharmaceutical companies contain more than a million of structures. Nevertheless chemical substructure searching in these databases can be performed interactively in seconds. Because of this nobody has really missed structural classification of these databases for the purpose of finding data for individual chemical substructures. However, a full deck high-throughput screen produces also activity data for more than a million of substances. How can this amount of data be analyzed? Which are the active scaffolds identified by an assays? To answer such questions systematic classifications of molecules by scaffolds are needed. In this review it is described how molecules can be hierarchically classified by their scaffolds. It is explained how such classifications can be used to identify active scaffolds in an HTS data set. Once active classes are identified, they need to be visualized in the context of related scaffolds in order to understand SAR. Consequently such visualizations are another topic of this review. In addition scaffold based diversity measures are discussed and an outlook is given about the potential impact of structural classifications on a chemically aware semantic web.

  8. Getting connected: Both associative and semantic links structure semantic memory for newly learned persons.

    PubMed

    Wiese, Holger; Schweinberger, Stefan R

    2015-01-01

    The present study examined whether semantic memory for newly learned people is structured by visual co-occurrence, shared semantics, or both. Participants were trained with pairs of simultaneously presented (i.e., co-occurring) preexperimentally unfamiliar faces, which either did or did not share additionally provided semantic information (occupation, place of living, etc.). Semantic information could also be shared between faces that did not co-occur. A subsequent priming experiment revealed faster responses for both co-occurrence/no shared semantics and no co-occurrence/shared semantics conditions, than for an unrelated condition. Strikingly, priming was strongest in the co-occurrence/shared semantics condition, suggesting additive effects of these factors. Additional analysis of event-related brain potentials yielded priming in the N400 component only for combined effects of visual co-occurrence and shared semantics, with more positive amplitudes in this than in the unrelated condition. Overall, these findings suggest that both semantic relatedness and visual co-occurrence are important when novel information is integrated into person-related semantic memory.

  9. Cross border semantic interoperability for clinical research: the EHR4CR semantic resources and services

    PubMed Central

    Daniel, Christel; Ouagne, David; Sadou, Eric; Forsberg, Kerstin; Gilchrist, Mark Mc; Zapletal, Eric; Paris, Nicolas; Hussain, Sajjad; Jaulent, Marie-Christine; MD, Dipka Kalra

    2016-01-01

    With the development of platforms enabling the use of routinely collected clinical data in the context of international clinical research, scalable solutions for cross border semantic interoperability need to be developed. Within the context of the IMI EHR4CR project, we first defined the requirements and evaluation criteria of the EHR4CR semantic interoperability platform and then developed the semantic resources and supportive services and tooling to assist hospital sites in standardizing their data for allowing the execution of the project use cases. The experience gained from the evaluation of the EHR4CR platform accessing to semantically equivalent data elements across 11 European participating EHR systems from 5 countries demonstrated how far the mediation model and mapping efforts met the expected requirements of the project. Developers of semantic interoperability platforms are beginning to address a core set of requirements in order to reach the goal of developing cross border semantic integration of data. PMID:27570649

  10. Application of a rule-based knowledge system using CLIPS for the taxonomy of selected Opuntia species

    NASA Technical Reports Server (NTRS)

    Heymans, Bart C.; Onema, Joel P.; Kuti, Joseph O.

    1991-01-01

    A rule based knowledge system was developed in CLIPS (C Language Integrated Production System) for identifying Opuntia species in the family Cactaceae, which contains approx. 1500 different species. This botanist expert tool system is capable of identifying selected Opuntia plants from the family level down to the species level when given some basic characteristics of the plants. Many plants are becoming of increasing importance because of their nutrition and human health potential, especially in the treatment of diabetes mellitus. The expert tool system described can be extremely useful in an unequivocal identification of many useful Opuntia species.

  11. LORD: a phenotype-genotype semantically integrated biomedical data tool to support rare disease diagnosis coding in health information systems

    PubMed Central

    Choquet, Remy; Maaroufi, Meriem; Fonjallaz, Yannick; de Carrara, Albane; Vandenbussche, Pierre-Yves; Dhombres, Ferdinand; Landais, Paul

    2015-01-01

    Characterizing a rare disease diagnosis for a given patient is often made through expert’s networks. It is a complex task that could evolve over time depending on the natural history of the disease and the evolution of the scientific knowledge. Most rare diseases have genetic causes and recent improvements of sequencing techniques contribute to the discovery of many new diseases every year. Diagnosis coding in the rare disease field requires data from multiple knowledge bases to be aggregated in order to offer the clinician a global information space from possible diagnosis to clinical signs (phenotypes) and known genetic mutations (genotype). Nowadays, the major barrier to the coding activity is the lack of consolidation of such information scattered in different thesaurus such as Orphanet, OMIM or HPO. The Linking Open data for Rare Diseases (LORD) web portal we developed stands as the first attempt to fill this gap by offering an integrated view of 8,400 rare diseases linked to more than 14,500 signs and 3,270 genes. The application provides a browsing feature to navigate through the relationships between diseases, signs and genes, and some Application Programming Interfaces to help its integration in health information systems in routine. PMID:26958175

  12. LORD: a phenotype-genotype semantically integrated biomedical data tool to support rare disease diagnosis coding in health information systems.

    PubMed

    Choquet, Remy; Maaroufi, Meriem; Fonjallaz, Yannick; de Carrara, Albane; Vandenbussche, Pierre-Yves; Dhombres, Ferdinand; Landais, Paul

    Characterizing a rare disease diagnosis for a given patient is often made through expert's networks. It is a complex task that could evolve over time depending on the natural history of the disease and the evolution of the scientific knowledge. Most rare diseases have genetic causes and recent improvements of sequencing techniques contribute to the discovery of many new diseases every year. Diagnosis coding in the rare disease field requires data from multiple knowledge bases to be aggregated in order to offer the clinician a global information space from possible diagnosis to clinical signs (phenotypes) and known genetic mutations (genotype). Nowadays, the major barrier to the coding activity is the lack of consolidation of such information scattered in different thesaurus such as Orphanet, OMIM or HPO. The Linking Open data for Rare Diseases (LORD) web portal we developed stands as the first attempt to fill this gap by offering an integrated view of 8,400 rare diseases linked to more than 14,500 signs and 3,270 genes. The application provides a browsing feature to navigate through the relationships between diseases, signs and genes, and some Application Programming Interfaces to help its integration in health information systems in routine.

  13. Increasing Complexity in Rule-Based Clinical Decision Support: The Symptom Assessment and Management Intervention.

    PubMed

    Lobach, David F; Johns, Ellis B; Halpenny, Barbara; Saunders, Toni-Ann; Brzozowski, Jane; Del Fiol, Guilherme; Berry, Donna L; Braun, Ilana M; Finn, Kathleen; Wolfe, Joanne; Abrahm, Janet L; Cooley, Mary E

    2016-11-08

    Management of uncontrolled symptoms is an important component of quality cancer care. Clinical guidelines are available for optimal symptom management, but are not often integrated into the front lines of care. The use of clinical decision support (CDS) at the point-of-care is an innovative way to incorporate guideline-based symptom management into routine cancer care. The objective of this study was to develop and evaluate a rule-based CDS system to enable management of multiple symptoms in lung cancer patients at the point-of-care. This study was conducted in three phases involving a formative evaluation, a system evaluation, and a contextual evaluation of clinical use. In Phase 1, we conducted iterative usability testing of user interface prototypes with patients and health care providers (HCPs) in two thoracic oncology clinics. In Phase 2, we programmed complex algorithms derived from clinical practice guidelines into a rules engine that used Web services to communicate with the end-user application. Unit testing of algorithms was conducted using a stack-traversal tree-spanning methodology to identify all possible permutations of pathways through each algorithm, to validate accuracy. In Phase 3, we evaluated clinical use of the system among patients and HCPs in the two clinics via observations, structured interviews, and questionnaires. In Phase 1, 13 patients and 5 HCPs engaged in two rounds of formative testing, and suggested improvements leading to revisions until overall usability scores met a priori benchmarks. In Phase 2, symptom management algorithms contained between 29 and 1425 decision nodes, resulting in 19 to 3194 unique pathways per algorithm. Unit testing required 240 person-hours, and integration testing required 40 person-hours. In Phase 3, both patients and HCPs found the system usable and acceptable, and offered suggestions for improvements. A rule-based CDS system for complex symptom management was systematically developed and tested. The

  14. Increasing Complexity in Rule-Based Clinical Decision Support: The Symptom Assessment and Management Intervention

    PubMed Central

    Johns, Ellis B; Halpenny, Barbara; Saunders, Toni-Ann; Brzozowski, Jane; Del Fiol, Guilherme; Berry, Donna L; Braun, Ilana M; Finn, Kathleen; Wolfe, Joanne; Abrahm, Janet L; Cooley, Mary E

    2016-01-01

    Background Management of uncontrolled symptoms is an important component of quality cancer care. Clinical guidelines are available for optimal symptom management, but are not often integrated into the front lines of care. The use of clinical decision support (CDS) at the point-of-care is an innovative way to incorporate guideline-based symptom management into routine cancer care. Objective The objective of this study was to develop and evaluate a rule-based CDS system to enable management of multiple symptoms in lung cancer patients at the point-of-care. Methods This study was conducted in three phases involving a formative evaluation, a system evaluation, and a contextual evaluation of clinical use. In Phase 1, we conducted iterative usability testing of user interface prototypes with patients and health care providers (HCPs) in two thoracic oncology clinics. In Phase 2, we programmed complex algorithms derived from clinical practice guidelines into a rules engine that used Web services to communicate with the end-user application. Unit testing of algorithms was conducted using a stack-traversal tree-spanning methodology to identify all possible permutations of pathways through each algorithm, to validate accuracy. In Phase 3, we evaluated clinical use of the system among patients and HCPs in the two clinics via observations, structured interviews, and questionnaires. Results In Phase 1, 13 patients and 5 HCPs engaged in two rounds of formative testing, and suggested improvements leading to revisions until overall usability scores met a priori benchmarks. In Phase 2, symptom management algorithms contained between 29 and 1425 decision nodes, resulting in 19 to 3194 unique pathways per algorithm. Unit testing required 240 person-hours, and integration testing required 40 person-hours. In Phase 3, both patients and HCPs found the system usable and acceptable, and offered suggestions for improvements. Conclusions A rule-based CDS system for complex symptom management

  15. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    Fox, P. A.; McGuinness, D. L.

    2009-12-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?.

  16. The Semantic eScience Framework

    NASA Astrophysics Data System (ADS)

    McGuinness, Deborah; Fox, Peter; Hendler, James

    2010-05-01

    The goal of this effort is to design and implement a configurable and extensible semantic eScience framework (SESF). Configuration requires research into accommodating different levels of semantic expressivity and user requirements from use cases. Extensibility is being achieved in a modular approach to the semantic encodings (i.e. ontologies) performed in community settings, i.e. an ontology framework into which specific applications all the way up to communities can extend the semantics for their needs.We report on how we are accommodating the rapid advances in semantic technologies and tools and the sustainable software path for the future (certain) technical advances. In addition to a generalization of the current data science interface, we will present plans for an upper-level interface suitable for use by clearinghouses, and/or educational portals, digital libraries, and other disciplines.SESF builds upon previous work in the Virtual Solar-Terrestrial Observatory. The VSTO utilizes leading edge knowledge representation, query and reasoning techniques to support knowledge-enhanced search, data access, integration, and manipulation. It encodes term meanings and their inter-relationships in ontologies anduses these ontologies and associated inference engines to semantically enable the data services. The Semantically-Enabled Science Data Integration (SESDI) project implemented data integration capabilities among three sub-disciplines; solar radiation, volcanic outgassing and atmospheric structure using extensions to existingmodular ontolgies and used the VSTO data framework, while adding smart faceted search and semantic data registrationtools. The Semantic Provenance Capture in Data Ingest Systems (SPCDIS) has added explanation provenance capabilities to an observational data ingest pipeline for images of the Sun providing a set of tools to answer diverseend user questions such as ``Why does this image look bad?. http://tw.rpi.edu/portal/SESF

  17. An ontology-based hierarchical semantic modeling approach to clinical pathway workflows.

    PubMed

    Ye, Yan; Jiang, Zhibin; Diao, Xiaodi; Yang, Dong; Du, Gang

    2009-08-01

    This paper proposes an ontology-based approach of modeling clinical pathway workflows at the semantic level for facilitating computerized clinical pathway implementation and efficient delivery of high-quality healthcare services. A clinical pathway ontology (CPO) is formally defined in OWL web ontology language (OWL) to provide common semantic foundation for meaningful representation and exchange of pathway-related knowledge. A CPO-based semantic modeling method is then presented to describe clinical pathways as interconnected hierarchical models including the top-level outcome flow and intervention workflow level along a care timeline. Furthermore, relevant temporal knowledge can be fully represented by combing temporal entities in CPO and temporal rules based on semantic web rule language (SWRL). An illustrative example about a clinical pathway for cesarean section shows the applicability of the proposed methodology in enabling structured semantic descriptions of any real clinical pathway.

  18. PubFocus: semantic MEDLINE/PubMed citations analytics through integration of controlled biomedical dictionaries and ranking algorithm.

    PubMed

    Plikus, Maksim V; Zhang, Zina; Chuong, Cheng-Ming

    2006-10-02

    Understanding research activity within any given biomedical field is important. Search outputs generated by MEDLINE/PubMed are not well classified and require lengthy manual citation analysis. Automation of citation analytics can be very useful and timesaving for both novices and experts. PubFocus web server automates analysis of MEDLINE/PubMed search queries by enriching them with two widely used human factor-based bibliometric indicators of publication quality: journal impact factor and volume of forward references. In addition to providing basic volumetric statistics, PubFocus also prioritizes citations and evaluates authors' impact on the field of search. PubFocus also analyses presence and occurrence of biomedical key terms within citations by utilizing controlled vocabularies. We have developed citations' prioritisation algorithm based on journal impact factor, forward referencing volume, referencing dynamics, and author's contribution level. It can be applied either to the primary set of PubMed search results or to the subsets of these results identified through key terms from controlled biomedical vocabularies and ontologies. NCI (National Cancer Institute) thesaurus and MGD (Mouse Genome Database) mammalian gene orthology have been implemented for key terms analytics. PubFocus provides a scalable platform for the integration of multiple available ontology databases. PubFocus analytics can be adapted for input sources of biomedical citations other than PubMed.

  19. Semantics and pragmatics.

    PubMed

    McNally, Louise

    2013-05-01

    The fields of semantics and pragmatics are devoted to the study of conventionalized and context- or use-dependent aspects of natural language meaning, respectively. The complexity of human language as a semiotic system has led to considerable debate about how the semantics/pragmatics distinction should be drawn, if at all. This debate largely reflects contrasting views of meaning as a property of linguistic expressions versus something that speakers do. The fact that both views of meaning are essential to a complete understanding of language has led to a variety of efforts over the last 40 years to develop better integrated and more comprehensive theories of language use and interpretation. The most important advances have included the adaptation of propositional analyses of declarative sentences to interrogative, imperative and exclamative forms; the emergence of dynamic, game theoretic, and multi-dimensional theories of meaning; and the development of various techniques for incorporating context-dependent aspects of content into representations of context-invariant content with the goal of handling phenomena such as vagueness resolution, metaphor, and metonymy. WIREs Cogn Sci 2013, 4:285-297. doi: 10.1002/wcs.1227 For further resources related to this article, please visit the WIREs website. The authors declare no conflict of interest. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Semantic-Web Technology: Applications at NASA

    NASA Technical Reports Server (NTRS)

    Ashish, Naveen

    2004-01-01

    We provide a description of work at the National Aeronautics and Space Administration (NASA) on building system based on semantic-web concepts and technologies. NASA has been one of the early adopters of semantic-web technologies for practical applications. Indeed there are several ongoing 0 endeavors on building semantics based systems for use in diverse NASA domains ranging from collaborative scientific activity to accident and mishap investigation to enterprise search to scientific information gathering and integration to aviation safety decision support We provide a brief overview of many applications and ongoing work with the goal of informing the external community of these NASA endeavors.

  1. SEMANTICS AND CRITICAL READING.

    ERIC Educational Resources Information Center

    FLANIGAN, MICHAEL C.

    PROFICIENCY IN CRITICAL READING CAN BE ACCELERATED BY MAKING STUDENTS AWARE OF VARIOUS SEMANTIC DEVICES THAT HELP CLARIFY MEANINGS AND PURPOSES. EXCERPTS FROM THE ARTICLE "TEEN-AGE CORRUPTION" FROM THE NINTH-GRADE SEMANTICS UNIT WRITTEN BY THE PROJECT ENGLISH DEMONSTRATION CENTER AT EUCLID, OHIO, ARE USED TO ILLUSTRATE HOW SEMANTICS RELATE TO…

  2. Semantics via Machine Translation

    ERIC Educational Resources Information Center

    Culhane, P. T.

    1977-01-01

    Recent experiments in machine translation have given the semantic elements of collocation in Russian more objective criteria. Soviet linguists in search of semantic relationships have attempted to devise a semantic synthesis for construction of a basic language for machine translation. One such effort is summarized. (CHK)

  3. SEMANTICS AND CRITICAL READING.

    ERIC Educational Resources Information Center

    FLANIGAN, MICHAEL C.

    PROFICIENCY IN CRITICAL READING CAN BE ACCELERATED BY MAKING STUDENTS AWARE OF VARIOUS SEMANTIC DEVICES THAT HELP CLARIFY MEANINGS AND PURPOSES. EXCERPTS FROM THE ARTICLE "TEEN-AGE CORRUPTION" FROM THE NINTH-GRADE SEMANTICS UNIT WRITTEN BY THE PROJECT ENGLISH DEMONSTRATION CENTER AT EUCLID, OHIO, ARE USED TO ILLUSTRATE HOW SEMANTICS RELATE TO…

  4. Thalamic semantic paralexia

    PubMed Central

    Hoffmann, Michael

    2012-01-01

    Alexia may be divided into different subtypes, with semantic paralexia being particularly rare. A 57 year old woman with a discreet left thalamic stroke and semantic paralexia is described. Language evalution with the Boston Diagnostic Aphasia Battery confirmed the semantic paralexia (deep alexia). Multimodality magnetic resonance imaging brain scanning excluded other cerebral lesions. A good recovery ensued. PMID:22593810

  5. Semantic SenseLab: implementing the vision of the Semantic Web in neuroscience

    PubMed Central

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2011-01-01

    Summary Objective Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Methods Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. Conclusion We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/ PMID:20006477

  6. Semantic SenseLab: Implementing the vision of the Semantic Web in neuroscience.

    PubMed

    Samwald, Matthias; Chen, Huajun; Ruttenberg, Alan; Lim, Ernest; Marenco, Luis; Miller, Perry; Shepherd, Gordon; Cheung, Kei-Hoi

    2010-01-01

    Integrative neuroscience research needs a scalable informatics framework that enables semantic integration of diverse types of neuroscience data. This paper describes the use of the Web Ontology Language (OWL) and other Semantic Web technologies for the representation and integration of molecular-level data provided by several of SenseLab suite of neuroscience databases. Based on the original database structure, we semi-automatically translated the databases into OWL ontologies with manual addition of semantic enrichment. The SenseLab ontologies are extensively linked to other biomedical Semantic Web resources, including the Subcellular Anatomy Ontology, Brain Architecture Management System, the Gene Ontology, BIRNLex and UniProt. The SenseLab ontologies have also been mapped to the Basic Formal Ontology and Relation Ontology, which helps ease interoperability with many other existing and future biomedical ontologies for the Semantic Web. In addition, approaches to representing contradictory research statements are described. The SenseLab ontologies are designed for use on the Semantic Web that enables their integration into a growing collection of biomedical information resources. We demonstrate that our approach can yield significant potential benefits and that the Semantic Web is rapidly becoming mature enough to realize its anticipated promises. The ontologies are available online at http://neuroweb.med.yale.edu/senselab/. 2009 Elsevier B.V. All rights reserved.

  7. ConsPred: a rule-based (re-)annotation framework for prokaryotic genomes.

    PubMed

    Weinmaier, Thomas; Platzer, Alexander; Frank, Jeroen; Hellinger, Hans-Jörg; Tischler, Patrick; Rattei, Thomas

    2016-11-01

    The rapidly growing number of available prokaryotic genome sequences requires fully automated and high-quality software solutions for their initial and re-annotation. Here we present ConsPred, a prokaryotic genome annotation framework that performs intrinsic gene predictions, homology searches, predictions of non-coding genes as well as CRISPR repeats and integrates all evidence into a consensus annotation. ConsPred achieves comprehensive, high-quality annotations based on rules and priorities, similar to decision-making in manual curation and avoids conflicting predictions. Parameters controlling the annotation process are configurable by the user. ConsPred has been used in the institutions of the authors for longer than 5 years and can easily be extended and adapted to specific needs. The ConsPred algorithm for producing a consensus from the varying scores of multiple gene prediction programs approaches manual curation in accuracy. Its rule-based approach for choosing final predictions avoids overriding previous manual curations. ConsPred is implemented in Java, Perl and Shell and is freely available under the Creative Commons license as a stand-alone in-house pipeline or as an Amazon Machine Image for cloud computing, see https://sourceforge.net/projects/conspred/. thomas.rattei@univie.ac.atSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. A rule-based kinetic model of RNA polymerase II C-terminal domain phosphorylation

    PubMed Central

    Aitken, Stuart; Alexander, Ross D.; Beggs, Jean D.

    2013-01-01

    The complexity of many RNA processing pathways is such that a conventional systems modelling approach is inadequate to represent all the molecular species involved. We demonstrate that rule-based modelling permits a detailed model of a complex RNA signalling pathway to be defined. Phosphorylation of the RNA polymerase II (RNAPII) C-terminal domain (CTD; a flexible tail-like extension of the largest subunit) couples pre-messenger RNA capping, splicing and 3′ end maturation to transcriptional elongation and termination, and plays a central role in integrating these processes. The phosphorylation states of the serine residues of many heptapeptide repeats of the CTD alter along the coding region of genes as a function of distance from the promoter. From a mechanistic perspective, both the changes in phosphorylation and the location at which they take place on the genes are a function of the time spent by RNAPII in elongation as this interval provides the opportunity for the kinases and phosphatases to interact with the CTD. On this basis, we synthesize the available data to create a kinetic model of the action of the known kinases and phosphatases to resolve the phosphorylation pathways and their kinetics. PMID:23804443

  9. RFID sensor-tags feeding a context-aware rule-based healthcare monitoring system.

    PubMed

    Catarinucci, Luca; Colella, Riccardo; Esposito, Alessandra; Tarricone, Luciano; Zappatore, Marco

    2012-12-01

    Along with the growing of the aging population and the necessity of efficient wellness systems, there is a mounting demand for new technological solutions able to support remote and proactive healthcare. An answer to this need could be provided by the joint use of the emerging Radio Frequency Identification (RFID) technologies and advanced software choices. This paper presents a proposal for a context-aware infrastructure for ubiquitous and pervasive monitoring of heterogeneous healthcare-related scenarios, fed by RFID-based wireless sensors nodes. The software framework is based on a general purpose architecture exploiting three key implementation choices: ontology representation, multi-agent paradigm and rule-based logic. From the hardware point of view, the sensing and gathering of context-data is demanded to a new Enhanced RFID Sensor-Tag. This new device, de facto, makes possible the easy integration between RFID and generic sensors, guaranteeing flexibility and preserving the benefits in terms of simplicity of use and low cost of UHF RFID technology. The system is very efficient and versatile and its customization to new scenarios requires a very reduced effort, substantially limited to the update/extension of the ontology codification. Its effectiveness is demonstrated by reporting both customization effort and performance results obtained from validation in two different healthcare monitoring contexts.

  10. Designing caption production rules based on face, text, and motion detection

    NASA Astrophysics Data System (ADS)

    Chapdelaine, C.; Beaulieu, M.; Gagnon, L.

    2008-02-01

    Producing off-line captions for the deaf and hearing impaired people is a labor-intensive task that can require up to 18 hours of production per hour of film. Captions are placed manually close to the region of interest but it must avoid masking human faces, texts or any moving objects that might be relevant to the story flow. Our goal is to use image processing techniques to reduce the off-line caption production process by automatically placing the captions on the proper consecutive frames. We implemented a computer-assisted captioning software tool which integrates detection of faces, texts and visual motion regions. The near frontal faces are detected using a cascade of weak classifier and tracked through a particle filter. Then, frames are scanned to perform text spotting and build a region map suitable for text recognition. Finally, motion mapping is based on the Lukas-Kanade optical flow algorithm and provides MPEG-7 motion descriptors. The combined detected items are then fed to a rule-based algorithm to determine the best captions localization for the related sequences of frames. This paper focuses on the defined rules to assist the human captioners and the results of a user evaluation for this approach.

  11. The Semantic Distance Task: Quantifying Semantic Distance with Semantic Network Path Length

    ERIC Educational Resources Information Center

    Kenett, Yoed N.; Levi, Effi; Anaki, David; Faust, Miriam

    2017-01-01

    Semantic distance is a determining factor in cognitive processes, such as semantic priming, operating upon semantic memory. The main computational approach to compute semantic distance is through latent semantic analysis (LSA). However, objections have been raised against this approach, mainly in its failure at predicting semantic priming. We…

  12. Analysis and minimization of overtraining effect in rule-based classifiers for computer-aided diagnosis

    SciTech Connect

    Li Qiang; Doi Kunio

    2006-02-15

    Computer-aided diagnostic (CAD) schemes have been developed to assist radiologists detect various lesions in medical images. In CAD schemes, classifiers play a key role in achieving a high lesion detection rate and a low false-positive rate. Although many popular classifiers such as linear discriminant analysis and artificial neural networks have been employed in CAD schemes for reduction of false positives, a rule-based classifier has probably been the simplest and most frequently used one since the early days of development of various CAD schemes. However, with existing rule-based classifiers, there are major disadvantages that significantly reduce their practicality and credibility. The disadvantages include manual design, poor reproducibility, poor evaluation methods such as resubstitution, and a large overtraining effect. An automated rule-based classifier with a minimized overtraining effect can overcome or significantly reduce the extent of the above-mentioned disadvantages. In this study, we developed an 'optimal' method for the selection of cutoff thresholds and a fully automated rule-based classifier. Experimental results performed with Monte Carlo simulation and a real lung nodule CT data set demonstrated that the automated threshold selection method can completely eliminate overtraining effect in the procedure of cutoff threshold selection, and thus can minimize overall overtraining effect in the constructed rule-based classifier. We believe that this threshold selection method is very useful in the construction of automated rule-based classifiers with minimized overtraining effect.

  13. Neural Network and Rules-based Filter for Diagnostic System

    PubMed Central

    Pia, Francesco; Casanova, Andrea; Fanni, Alessandra; Mariotti, Stefano

    2001-01-01

    The use of computerized support to the medical diagnosis is a domain in which the principal difficulties are that only few experienced physicians are available because of their multiple clinical duties and above all due to the particular difficulty in knowledge domain representation. Aim of this work was to assure that an integrated application of Neural Networks and filter rules could be applied to a complex diagnosis problem such as the diagnosis of different types of hyperthyroidism. In fact these pathologies require a particular attention on the coming about of certain clinical reports in the moment when one wants to perform a computerized analysis.

  14. Biomedical semantics in the Semantic Web.

    PubMed

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  15. Biomedical semantics in the Semantic Web

    PubMed Central

    2011-01-01

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences? We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570

  16. Linguistic and Non-Linguistic Semantic Processing in Individuals with Autism Spectrum Disorders: An ERP Study.

    PubMed

    Coderre, Emily L; Chernenok, Mariya; Gordon, Barry; Ledoux, Kerry

    2017-01-12

    Individuals with autism spectrum disorders (ASD) experience difficulties with language, particularly higher-level functions like semantic integration. Yet some studies indicate that semantic processing of non-linguistic stimuli is not impaired, suggesting a language-specific deficit in semantic processing. Using a semantic priming task, we compared event-related potentials (ERPs) in response to lexico-semantic processing (written words) and visuo-semantic processing (pictures) in adults with ASD and adults with typical development (TD). The ASD group showed successful lexico-semantic and visuo-semantic processing, indicated by similar N400 effects between groups for word and picture stimuli. However, differences in N400 latency and topography in word conditions suggested different lexico-semantic processing mechanisms: an expectancy-based strategy for the TD group but a controlled post-lexical integration strategy for the ASD group.

  17. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing.

  18. BELMiner: adapting a rule-based relation extraction system to extract biological expression language statements from bio-medical literature evidence sentences.

    PubMed

    Ravikumar, K E; Rastegar-Mojarad, Majid; Liu, Hongfang

    2017-01-01

    Extracting meaningful relationships with semantic significance from biomedical literature is often a challenging task. BioCreative V track4 challenge for the first time has organized a comprehensive shared task to test the robustness of the text-mining algorithms in extracting semantically meaningful assertions from the evidence statement in biomedical text. In this work, we tested the ability of a rule-based semantic parser to extract Biological Expression Language (BEL) statements from evidence sentences culled out of biomedical literature as part of BioCreative V Track4 challenge. The system achieved an overall best F-measure of 21.29% in extracting the complete BEL statement. For relation extraction, the system achieved an F-measure of 65.13% on test data set. Our system achieved the best performance in five of the six criteria that was adopted for evaluation by the task organizers. Lack of ability to derive semantic inferences, limitation in the rule sets to map the textual extractions to BEL function were some of the reasons for low performance in extracting the complete BEL statement. Post shared task we also evaluated the impact of differential NER components on the ability to extract BEL statements on the test data sets besides making a single change in the rule sets that translate relation extractions into a BEL statement. There is a marked improvement by over 20% in the overall performance of the BELMiner's capability to extract BEL statement on the test set. The system is available as a REST-API at http://54.146.11.205:8484/BELXtractor/finder/. http://54.146.11.205:8484/BELXtractor/finder/.

  19. BELMiner: adapting a rule-based relation extraction system to extract biological expression language statements from bio-medical literature evidence sentences

    PubMed Central

    Rastegar-Mojarad, Majid; Liu, Hongfang

    2017-01-01

    Extracting meaningful relationships with semantic significance from biomedical literature is often a challenging task. BioCreative V track4 challenge for the first time has organized a comprehensive shared task to test the robustness of the text-mining algorithms in extracting semantically meaningful assertions from the evidence statement in biomedical text. In this work, we tested the ability of a rule-based semantic parser to extract Biological Expression Language (BEL) statements from evidence sentences culled out of biomedical literature as part of BioCreative V Track4 challenge. The system achieved an overall best F-measure of 21.29% in extracting the complete BEL statement. For relation extraction, the system achieved an F-measure of 65.13% on test data set. Our system achieved the best performance in five of the six criteria that was adopted for evaluation by the task organizers. Lack of ability to derive semantic inferences, limitation in the rule sets to map the textual extractions to BEL function were some of the reasons for low performance in extracting the complete BEL statement. Post shared task we also evaluated the impact of differential NER components on the ability to extract BEL statements on the test data sets besides making a single change in the rule sets that translate relation extractions into a BEL statement. There is a marked improvement by over 20% in the overall performance of the BELMiner’s capability to extract BEL statement on the test set. The system is available as a REST-API at http://54.146.11.205:8484/BELXtractor/finder/ Database URL: http://54.146.11.205:8484/BELXtractor/finder/ PMID:28365720

  20. Semantic framework for mapping object-oriented model to semantic web languages

    PubMed Central

    Ježek, Petr; Mouček, Roman

    2015-01-01

    The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework. PMID:25762923

  1. Semantic framework for mapping object-oriented model to semantic web languages.

    PubMed

    Ježek, Petr; Mouček, Roman

    2015-01-01

    The article deals with and discusses two main approaches in building semantic structures for electrophysiological metadata. It is the use of conventional data structures, repositories, and programming languages on one hand and the use of formal representations of ontologies, known from knowledge representation, such as description logics or semantic web languages on the other hand. Although knowledge engineering offers languages supporting richer semantic means of expression and technological advanced approaches, conventional data structures and repositories are still popular among developers, administrators and users because of their simplicity, overall intelligibility, and lower demands on technical equipment. The choice of conventional data resources and repositories, however, raises the question of how and where to add semantics that cannot be naturally expressed using them. As one of the possible solutions, this semantics can be added into the structures of the programming language that accesses and processes the underlying data. To support this idea we introduced a software prototype that enables its users to add semantically richer expressions into a Java object-oriented code. This approach does not burden users with additional demands on programming environment since reflective Java annotations were used as an entry for these expressions. Moreover, additional semantics need not to be written by the programmer directly to the code, but it can be collected from non-programmers using a graphic user interface. The mapping that allows the transformation of the semantically enriched Java code into the Semantic Web language OWL was proposed and implemented in a library named the Semantic Framework. This approach was validated by the integration of the Semantic Framework in the EEG/ERP Portal and by the subsequent registration of the EEG/ERP Portal in the Neuroscience Information Framework.

  2. The Development of Co-Speech Gesture and Its Semantic Integration with Speech in 6- to 12-Year-Old Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    So, Wing-Chee; Wong, Miranda Kit-Yi; Lui, Ming; Yip, Virginia

    2015-01-01

    Previous work leaves open the question of whether children with autism spectrum disorders aged 6-12?years have delay in producing gestures compared to their typically developing peers. This study examined gestural production among school-aged children in a naturalistic context and how their gestures are semantically related to the accompanying…

  3. The Development of Co-Speech Gesture and Its Semantic Integration with Speech in 6- to 12-Year-Old Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    So, Wing-Chee; Wong, Miranda Kit-Yi; Lui, Ming; Yip, Virginia

    2015-01-01

    Previous work leaves open the question of whether children with autism spectrum disorders aged 6-12?years have delay in producing gestures compared to their typically developing peers. This study examined gestural production among school-aged children in a naturalistic context and how their gestures are semantically related to the accompanying…

  4. Individual Differences in the Joint Effects of Semantic Priming and Word Frequency Revealed by RT Distributional Analyses: The Role of Lexical Integrity

    ERIC Educational Resources Information Center

    Yap, Melvin J.; Tse, Chi-Shing; Balota, David A.

    2009-01-01

    Word frequency and semantic priming effects are among the most robust effects in visual word recognition, and it has been generally assumed that these two variables produce interactive effects in lexical decision performance, with larger priming effects for low-frequency targets. The results from four lexical decision experiments indicate that the…

  5. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services

    PubMed Central

    Gessler, Damian DG; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-01-01

    Background SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. Results There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at , developer tools at , and a portal to third-party ontologies at (a "swap meet"). Conclusion SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the confounding of content, structure, and presentation. SSWAP is novel by establishing

  6. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.

    PubMed

    Gessler, Damian D G; Schiltz, Gary S; May, Greg D; Avraham, Shulamit; Town, Christopher D; Grant, David; Nelson, Rex T

    2009-09-23

    SSWAP (Simple Semantic Web Architecture and Protocol; pronounced "swap") is an architecture, protocol, and platform for using reasoning to semantically integrate heterogeneous disparate data and services on the web. SSWAP was developed as a hybrid semantic web services technology to overcome limitations found in both pure web service technologies and pure semantic web technologies. There are currently over 2400 resources published in SSWAP. Approximately two dozen are custom-written services for QTL (Quantitative Trait Loci) and mapping data for legumes and grasses (grains). The remaining are wrappers to Nucleic Acids Research Database and Web Server entries. As an architecture, SSWAP establishes how clients (users of data, services, and ontologies), providers (suppliers of data, services, and ontologies), and discovery servers (semantic search engines) interact to allow for the description, querying, discovery, invocation, and response of semantic web services. As a protocol, SSWAP provides the vocabulary and semantics to allow clients, providers, and discovery servers to engage in semantic web services. The protocol is based on the W3C-sanctioned first-order description logic language OWL DL. As an open source platform, a discovery server running at http://sswap.info (as in to "swap info") uses the description logic reasoner Pellet to integrate semantic resources. The platform hosts an interactive guide to the protocol at http://sswap.info/protocol.jsp, developer tools at http://sswap.info/developer.jsp, and a portal to third-party ontologies at http://sswapmeet.sswap.info (a "swap meet"). SSWAP addresses the three basic requirements of a semantic web services architecture (i.e., a common syntax, shared semantic, and semantic discovery) while addressing three technology limitations common in distributed service systems: i.e., i) the fatal mutability of traditional interfaces, ii) the rigidity and fragility of static subsumption hierarchies, and iii) the

  7. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  8. Semantic Networks and Social Networks

    ERIC Educational Resources Information Center

    Downes, Stephen

    2005-01-01

    Purpose: To illustrate the need for social network metadata within semantic metadata. Design/methodology/approach: Surveys properties of social networks and the semantic web, suggests that social network analysis applies to semantic content, argues that semantic content is more searchable if social network metadata is merged with semantic web…

  9. A Metrics Taxonomy and Reporting Strategy for Rule-Based Alerts

    PubMed Central

    Krall, Michael; Gerace, Alexander

    2015-01-01

    Context: Because institutions rely on rule-based alerts as an important component of their safety and quality strategies, they should determine whether the alerts achieve the expected benefit. Objective: To develop and to test a method of reporting outcome metrics for rule-based electronic health record alerts on a large scale. Methods: We empirically developed an action-oriented alerts taxonomy according to structure, actions, and implicit intended process outcomes using a set of 333 rule-based alerts at Kaiser Permanente Northwest. Next we developed a method for producing metrics reports for alert classes. Finally, we applied this method to alert taxa. Main Outcome Measures: Outcome measures were the successful development of a rule-based alerts taxonomy and the demonstration of its application in a reporting strategy. Results: We identified 9 major and 17 overall classes of alerts. We developed a specific metric approach for 5 of these classes, including the 3 most numerous ones in our institution, accounting for 224 (67%) of our alerts. Some alert classes do not readily lend themselves to this approach. Conclusions: We developed a taxonomy for rule-based alerts and demonstrated its application in developing outcome metrics reports on a large scale. This information allows tuning or retiring alerts and may inform the need to develop complementary or alternative approaches to address organizational imperatives. A method that assigns alerts to classes each amenable to a particular reporting strategy could reduce the difficulty of producing metrics reports. PMID:26057684

  10. Rule-based system for three-dimensional shape recovery from a single perspective view

    NASA Astrophysics Data System (ADS)

    Young, Tzay Y.; Gunasekaran, Seetharaman; Shomar, Wasim J.

    1988-03-01

    A rule based system for 3D shape recovery and orientation estimation from a single perspective view is described. The primary input to our system is a set of line segments extracted from images by a complex segmentation process. In practice, humans are able to interpret 3D shape and orientation from 2D images with very little a priori information. The heuristics behind shape constancy suggest that certain regularity assumptions play an important role. Fifteen rules have been developed for the rule base which can be extended to include additional rules. The current rules deal with parallel lines, perpendicular lines, and right corners in the object space that lead to the given image instance recorded by the camera. Forward chaining methodology is adopted. The implementation is written in the rule base language OPS5 in conjunction with Pascal on a VAX/VMS system. Two examples are presented, and the results are consistent with human perception.

  11. Overlay optimization for 1x node technology and beyond via rule based sparse sampling

    NASA Astrophysics Data System (ADS)

    Aung, Nyan L.; Chung, Woong Jae; Subramany, Lokesh; Hussain, Shehzeen; Samudrala, Pavan; Gao, Haiyong; Hao, Xueli; Chen, Yen-Jen; Gomez, Juan-Manuel

    2016-03-01

    We demonstrate a cost-effective automated rule based sparse sampling method that can detect the spatial variation of overlay errors as well as the overlay signature of the fields. Our technique satisfies the following three rules: (i) homogeneous distribution of ~200 samples across the wafer, (ii) equal number of samples in scan up and scan down condition and (iii) equal number of sampling on each overlay marks per field. When rule based samplings are implemented on the two products, the differences between the full wafer map sampling and the rule based sampling are within 3.5 nm overlay spec with residuals M+3σ of 2.4 nm (x) and 2.43 nm (y) for Product A and 2.98 nm (x) and 3.32 nm (y) for Product B.

  12. A Rule-Based System Implementing a Method for Translating FOL Formulas into NL Sentences

    NASA Astrophysics Data System (ADS)

    Mpagouli, Aikaterini; Hatzilygeroudis, Ioannis

    In this paper, we mainly present the implementation of a system that translates first order logic (FOL) formulas into natural language (NL) sentences. The motivation comes from an intelligent tutoring system teaching logic as a knowledge representation language, where it is used as a means for feedback to the students-users. FOL to NL conversion is achieved by using a rule-based approach, where we exploit the pattern matching capabilities of rules. So, the system consists of rule-based modules corresponding to the phases of our translation methodology. Facts are used in a lexicon providing lexical and grammatical information that helps in producing the NL sentences. The whole system is implemented in Jess, a java-implemented rule-based programming tool. Experimental results confirm the success of our choices.

  13. Semantic prosody and judgment.

    PubMed

    Hauser, David J; Schwarz, Norbert

    2016-07-01

    Some words tend to co-occur exclusively with a positive or negative context in natural language use, even though such valence patterns are not dictated by definitions or are part of the words' core meaning. These words contain semantic prosody, a subtle valenced meaning derived from co-occurrence in language. As language and thought are heavily intertwined, we hypothesized that semantic prosody can affect evaluative inferences about related ambiguous concepts. Participants inferred that an ambiguous medical outcome was more negative when it was caused, a verb with negative semantic prosody, than when it was produced, a synonymous verb with no semantic prosody (Studies 1a, 1b). Participants completed sentence fragments in a manner consistent with semantic prosody (Study 2), and semantic prosody affected various other judgments in line with evaluative inferences (estimates of an event's likelihood in Study 3). Finally, semantic prosody elicited both positive and negative evaluations of outcomes across a large set of semantically prosodic verbs (Study 4). Thus, semantic prosody can exert a strong influence on evaluative judgment. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Semantic role labeling for protein transport predicates.

    PubMed

    Bethard, Steven; Lu, Zhiyong; Martin, James H; Hunter, Lawrence

    2008-06-11

    , and is therefore more robust than the rule-based methods previously used to extract protein transport roles.

  15. Improving textual medication extraction using combined conditional random fields and rule-based systems.

    PubMed

    Tikk, Domonkos; Solt, Illés

    2010-01-01

    In the i2b2 Medication Extraction Challenge, medication names together with details of their administration were to be extracted from medical discharge summaries. The task of the challenge was decomposed into three pipelined components: named entity identification, context-aware filtering and relation extraction. For named entity identification, first a rule-based (RB) method that was used in our overall fifth place-ranked solution at the challenge was investigated. Second, a conditional random fields (CRF) approach is presented for named entity identification (NEI) developed after the completion of the challenge. The CRF models are trained on the 17 ground truth documents, the output of the rule-based NEI component on all documents, a larger but potentially inaccurate training dataset. For both NEI approaches their effect on relation extraction performance was investigated. The filtering and relation extraction components are both rule-based. In addition to the official entry level evaluation of the challenge, entity level analysis is also provided. On the test data an entry level F(1)-score of 80% was achieved for exact matching and 81% for inexact matching with the RB-NEI component. The CRF produces a significantly weaker result, but CRF outperforms the rule-based model with 81% exact and 82% inexact F(1)-score (p<0.02). This study shows that a simple rule-based method is on a par with more complicated machine learners; CRF models can benefit from the addition of the potentially inaccurate training data, when only very few training documents are available. Such training data could be generated using the outputs of rule-based methods.

  16. Hybrid neural network and rule-based pattern recognition system capable of self-modification

    SciTech Connect

    Glover, C.W.; Silliman, M.; Walker, M.; Spelt, P.F. ); Rao, N.S.V. . Dept. of Computer Science)

    1990-01-01

    This paper describes a hybrid neural network and rule-based pattern recognition system architecture which is capable of self-modification or learning. The central research issue to be addressed for a multiclassifier hybrid system is whether such a system can perform better than the two classifiers taken by themselves. The hybrid system employs a hierarchical architecture, and it can be interfaced with one or more sensors. Feature extraction routines operating on raw sensor data produce feature vectors which serve as inputs to neural network classifiers at the next level in the hierarchy. These low-level neural networks are trained to provide further discrimination of the sensor data. A set of feature vectors is formed from a concatenation of information from the feature extraction routines and the low-level neural network results. A rule-based classifier system uses this feature set to determine if certain expected environmental states, conditions, or objects are present in the sensors' current data stream. The rule-based system has been given an a priori set of models of the expected environmental states, conditions, or objects which it is expected to identify. The rule-based system forms many candidate directed graphs of various combinations of incoming features vectors, and it uses a suitably chosen metric to measure the similarity between candidate and model directed graphs. The rule-based system must decide if there is a match between one of the candidate graphs and a model graph. If a match is found, then the rule-based system invokes a routine to create and train a new high-level neural network from the appropriate feature vector data to recognize when this model state is present in future sensor data streams. 12 refs., 3 figs.

  17. A surgeon can operate or approach a complicated integral calculus instead of a renal one: implications for conceptual and lexical semantic disambiguation.

    PubMed

    Jacquelinet, Christian

    2004-01-01

    This paper approaches lexical semantic disambiguation and polysemy in the context of medical language understanding. These issues have been addressed as linguistic and cognitive requirements to build a knowledge extraction tool that turns natural language input into conceptual graphs. Previous results obtained with semantic analysis of medical terms in the domain of transplantation and organ failure prompt us to check the capabilities of our prototype to deal with ambiguities and polysemy. Starting from linguistic observation, we attempt to demonstrate how the respect of ambiguities when the co-text is not sufficient for disambiguation implies to introduce a void type in the concept type lattice. Then we show how the "creative use of words" (i.e. new senses in novel context) imposes to dynamically allocate type, categories and roles with the co-text.

  18. Fuzzy rule-based seizure prediction based on correlation dimension changes in intracranial EEG.

    PubMed

    Rabbi, Ahmed F; Aarabi, Ardalan; Fazel-Rezai, Reza

    2010-01-01

    In this paper, we present a method for epileptic seizure prediction from intracranial EEG recordings. We applied correlation dimension, a nonlinear dynamics based univariate characteristic measure for extracting features from EEG segments. Finally, we designed a fuzzy rule-based system for seizure prediction. The system is primarily designed based on expert's knowledge and reasoning. A spatial-temporal filtering method was used in accordance with the fuzzy rule-based inference system for issuing forecasting alarms. The system was evaluated on EEG data from 10 patients having 15 seizures.

  19. A rule-based systems approach to spacecraft communications configuration optimization

    NASA Technical Reports Server (NTRS)

    Rash, James L.; Wong, Yen F.; Cieplak, James J.

    1988-01-01

    An experimental rule-based system for optimizing user spacecraft communications configurations was developed at NASA to support mission planning for spacecraft that obtain telecommunications services through NASA's Tracking and Data Relay Satellite System. Designated Expert for Communications Configuration Optimization (ECCO), and implemented in the OPS5 production system language, the system has shown the validity of a rule-based systems approach to this optimization problem. The development of ECCO and the incremental optimizatin method on which it is based are discussed. A test case using hypothetical mission data is included to demonstrate the optimization concept.

  20. GetBonNie for building, analyzing and sharing rule-based models

    SciTech Connect

    Hu, Bin

    2008-01-01

    GetBonNie is a suite of web-based services for building, analyzing, and sharing rule-based models specified according to the conventions of the BioNetGen language (BNGL). Services include (1) an applet for drawing, editing, and viewing graphs of BNGL; (2) a network-generation engine for translating a set of rules into a chemical reaction network; (3) simulation engines that implement generate-first, on-the-fly, and network-free methods for simulating rule-based models; and (4) a database for sharing models, parameter values, annotations, simulation tasks and results.

  1. RuleMonkey: software for stochastic simulation of rule-based models

    PubMed Central

    2010-01-01

    Background The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems. Results Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods. Conclusions RuleMonkey enables the simulation of

  2. RuleMonkey: software for stochastic simulation of rule-based models.

    PubMed

    Colvin, Joshua; Monine, Michael I; Gutenkunst, Ryan N; Hlavacek, William S; Von Hoff, Daniel D; Posner, Richard G

    2010-07-30

    The system-level dynamics of many molecular interactions, particularly protein-protein interactions, can be conveniently represented using reaction rules, which can be specified using model-specification languages, such as the BioNetGen language (BNGL). A set of rules implicitly defines a (bio)chemical reaction network. The reaction network implied by a set of rules is often very large, and as a result, generation of the network implied by rules tends to be computationally expensive. Moreover, the cost of many commonly used methods for simulating network dynamics is a function of network size. Together these factors have limited application of the rule-based modeling approach. Recently, several methods for simulating rule-based models have been developed that avoid the expensive step of network generation. The cost of these "network-free" simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is now needed for the simulation and analysis of rule-based models of biochemical systems. Here, we present a software tool called RuleMonkey, which implements a network-free method for simulation of rule-based models that is similar to Gillespie's method. The method is suitable for rule-based models that can be encoded in BNGL, including models with rules that have global application conditions, such as rules for intramolecular association reactions. In addition, the method is rejection free, unlike other network-free methods that introduce null events, i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant tool for network-free simulation of rule-based models. We also compare RuleMonkey against problem-specific codes implementing network-free simulation methods. RuleMonkey enables the simulation of rule-based models for which the

  3. Considering the role of semantic memory in episodic future thinking: evidence from semantic dementia.

    PubMed

    Irish, Muireann; Addis, Donna Rose; Hodges, John R; Piguet, Olivier

    2012-07-01

    analyses that confirmed the relation between semantic memory deficits and episodic future thinking in semantic dementia, in contrast with the role of episodic memory deficits and episodic future thinking in Alzheimer's disease. Our findings demonstrate that semantic knowledge is critical for the construction of novel future events, providing the necessary scaffolding into which episodic details can be integrated. Further research is necessary to elucidate the precise contribution of semantic memory to future thinking, and to explore how deficits in self-projection manifest on behavioural and social levels in different dementia subtypes.

  4. Anticipating Words and Their Gender: An Event-related Brain Potential Study of Semantic Integration, Gender Expectancy, and Gender Agreement in Spanish Sentence Reading

    PubMed Central

    Wicha, Nicole Y. Y.; Moreno, Eva M.; Kutas, Marta

    2012-01-01

    Recent studies indicate that the human brain attends to and uses grammatical gender cues during sentence comprehension. Here, we examine the nature and time course of the effect of gender on word-by-word sentence reading. Event-related brain potentials were recorded to an article and noun, while native Spanish speakers read medium- to high-constraint Spanish sentences for comprehension. The noun either fit the sentence meaning or not, and matched the preceding article in gender or not; in addition, the preceding article was either expected or unexpected based on prior sentence context. Semantically anomalous nouns elicited an N400. Gender-disagreeing nouns elicited a posterior late positivity (P600), replicating previous findings for words. Gender agreement and semantic congruity interacted in both the N400 window—with a larger negativity frontally for double violations—and the P600 window—with a larger positivity for semantic anomalies, relative to the prestimulus baseline. Finally, unexpected articles elicited an enhanced positivity (500–700 msec post onset) relative to expected articles. Overall, our data indicate that readers anticipate and attend to the gender of both articles and nouns, and use gender in real time to maintain agreement and to build sentence meaning. PMID:15453979

  5. SemanticSCo: A platform to support the semantic composition of services for gene expression analysis.

    PubMed

    Guardia, Gabriela D A; Ferreira Pires, Luís; da Silva, Eduardo G; de Farias, Cléver R G

    2017-02-01

    Gene expression studies often require the combined use of a number of analysis tools. However, manual integration of analysis tools can be cumbersome and error prone. To support a higher level of automation in the integration process, efforts have been made in the biomedical domain towards the development of semantic web services and supporting composition environments. Yet, most environments consider only the execution of simple service behaviours and requires users to focus on technical details of the composition process. We propose a novel approach to the semantic composition of gene expression analysis services that addresses the shortcomings of the existing solutions. Our approach includes an architecture designed to support the service composition process for gene expression analysis, and a flexible strategy for the (semi) automatic composition of semantic web services. Finally, we implement a supporting platform called SemanticSCo to realize the proposed composition approach and demonstrate its functionality by successfully reproducing a microarray study documented in the literature. The SemanticSCo platform provides support for the composition of RESTful web services semantically annotated using SAWSDL. Our platform also supports the definition of constraints/conditions regarding the order in which service operations should be invoked, thus enabling the definition of complex service behaviours. Our proposed solution for semantic web service composition takes into account the requirements of different stakeholders and addresses all phases of the service composition process. It also provides support for the definition of analysis workflows at a high-level of abstraction, thus enabling users to focus on biological research issues rather than on the technical details of the composition process. The SemanticSCo source code is available at https://github.com/usplssb/SemanticSCo. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Exploring and linking biomedical resources through multidimensional semantic spaces.

    PubMed

    Berlanga, Rafael; Jiménez-Ruiz, Ernesto; Nebot, Victoria

    2012-01-25

    The semantic integration of biomedical resources is still a challenging issue which is required for effective information processing and data analysis. The availability of comprehensive knowledge resources such as biomedical ontologies and integrated thesauri greatly facilitates this integration effort by means of semantic annotation, which allows disparate data formats and contents to be expressed under a common semantic space. In this paper, we propose a multidimensional representation for such a semantic space, where dimensions regard the different perspectives in biomedical research (e.g., population, disease, anatomy and protein/genes). This paper presents a novel method for building multidimensional semantic spaces from semantically annotated biomedical data collections. This method consists of two main processes: knowledge and data normalization. The former one arranges the concepts provided by a reference knowledge resource (e.g., biomedical ontologies and thesauri) into a set of hierarchical dimensions for analysis purposes. The latter one reduces the annotation set associated to each collection item into a set of points of the multidimensional space. Additionally, we have developed a visual tool, called 3D-Browser, which implements OLAP-like operators over the generated multidimensional space. The method and the tool have been tested and evaluated in the context of the Health-e-Child (HeC) project. Automatic semantic annotation was applied to tag three collections of abstracts taken from PubMed, one for each target disease of the project, the Uniprot database, and the HeC patient record database. We adopted the UMLS Meta-thesaurus 2010AA as the reference knowledge resource. Current knowledge resources and semantic-aware technology make possible the integration of biomedical resources. Such an integration is performed through semantic annotation of the intended biomedical data resources. This paper shows how these annotations can be exploited for

  7. LEARNING SEMANTICS-ENHANCED LANGUAGE MODELS APPLIED TO UNSUEPRVISED WSD

    SciTech Connect

    VERSPOOR, KARIN; LIN, SHOU-DE

    2007-01-29

    An N-gram language model aims at capturing statistical syntactic word order information from corpora. Although the concept of language models has been applied extensively to handle a variety of NLP problems with reasonable success, the standard model does not incorporate semantic information, and consequently limits its applicability to semantic problems such as word sense disambiguation. We propose a framework that integrates semantic information into the language model schema, allowing a system to exploit both syntactic and semantic information to address NLP problems. Furthermore, acknowledging the limited availability of semantically annotated data, we discuss how the proposed model can be learned without annotated training examples. Finally, we report on a case study showing how the semantics-enhanced language model can be applied to unsupervised word sense disambiguation with promising results.

  8. Enabling Ontology Based Semantic Queries in Biomedical Database Systems

    PubMed Central

    Zheng, Shuai; Lu, James

    2014-01-01

    There is a lack of tools to ease the integration and ontology based semantic queries in biomedical databases, which are often annotated with ontology concepts. We aim to provide a middle layer between ontology repositories and semantically annotated databases to support semantic queries directly in the databases with expressive standard database query languages. We have developed a semantic query engine that provides semantic reasoning and query processing, and translates the queries into ontology repository operations on NCBO BioPortal. Semantic operators are implemented in the database as user defined functions extended to the database engine, thus semantic queries can be directly specified in standard database query languages such as SQL and XQuery. The system provides caching management to boosts query performance. The system is highly adaptable to support different ontologies through easy customizations. We have implemented the system DBOntoLink as an open source software, which supports major ontologies hosted at BioPortal. DBOntoLink supports a set of common ontology based semantic operations and have them fully integrated with a database management system IBM DB2. The system has been deployed and evaluated with an existing biomedical database for managing and querying image annotations and markups (AIM). Our performance study demonstrates the high expressiveness of semantic queries and the high efficiency of the queries. PMID:25541585

  9. Enabling Ontology Based Semantic Queries in Biomedical Database Systems.

    PubMed

    Zheng, Shuai; Wang, Fusheng; Lu, James

    2014-03-01

    There is a lack of tools to ease the integration and ontology based semantic queries in biomedical databases, which are often annotated with ontology concepts. We aim to provide a middle layer between ontology repositories and semantically annotated databases to support semantic queries directly in the databases with expressive standard database query languages. We have developed a semantic query engine that provides semantic reasoning and query processing, and translates the queries into ontology repository operations on NCBO BioPortal. Semantic operators are implemented in the database as user defined functions extended to the database engine, thus semantic queries can be directly specified in standard database query languages such as SQL and XQuery. The system provides caching management to boosts query performance. The system is highly adaptable to support different ontologies through easy customizations. We have implemented the system DBOntoLink as an open source software, which supports major ontologies hosted at BioPortal. DBOntoLink supports a set of common ontology based semantic operations and have them fully integrated with a database management system IBM DB2. The system has been deployed and evaluated with an existing biomedical database for managing and querying image annotations and markups (AIM). Our performance study demonstrates the high expressiveness of semantic queries and the high efficiency of the queries.

  10. e-Science and biological pathway semantics

    PubMed Central

    Luciano, Joanne S; Stevens, Robert D

    2007-01-01

    Background The development of e-Science presents a major set of opportunities and challenges for the future progress of biological and life scientific research. Major new tools are required and corresponding demands are placed on the high-throughput data generated and used in these processes. Nowhere is the demand greater than in the semantic integration of these data. Semantic Web tools and technologies afford the chance to achieve this semantic integration. Since pathway knowledge is central to much of the scientific research today it is a good test-bed for semantic integration. Within the context of biological pathways, the BioPAX initiative, part of a broader movement towards the standardization and integration of life science databases, forms a necessary prerequisite for its successful application of e-Science in health care and life science research. This paper examines whether BioPAX, an effort to overcome the barrier of disparate and heterogeneous pathway data sources, addresses the needs of e-Science. Results We demonstrate how BioPAX pathway data can be used to ask and answer some useful biological questions. We find that BioPAX comes close to meeting a broad range of e-Science needs, but certain semantic weaknesses mean that these goals are missed. We make a series of recommendations for re-modeling some aspects of BioPAX to better meet these needs. Conclusion Once these semantic weaknesses are addressed, it will be possible to integrate pathway information in a manner that would be useful in e-Science. PMID:17493286

  11. Anomia as a Marker of Distinct Semantic Memory Impairments in Alzheimer’s Disease and Semantic Dementia

    PubMed Central

    Reilly, Jamie; Peelle, Jonathan E.; Antonucci, Sharon M.; Grossman, Murray

    2011-01-01

    Objective Many neurologically-constrained models of semantic memory have been informed by two primary temporal lobe pathologies: Alzheimer’s Disease (AD) and Semantic Dementia (SD). However, controversy persists regarding the nature of the semantic impairment associated with these patient populations. Some argue that AD presents as a disconnection syndrome in which linguistic impairment reflects difficulties in lexical or perceptual means of semantic access. In contrast, there is a wider consensus that SD reflects loss of core knowledge that underlies word and object meaning. Object naming provides a window into the integrity of semantic knowledge in these two populations. Method We examined naming accuracy, errors and the correlation of naming ability with neuropsychological measures (semantic ability, executive functioning, and working memory) in a large sample of patients with AD (n=36) and SD (n=21). Results Naming ability and naming errors differed between groups, as did neuropsychological predictors of naming ability. Despite a similar extent of baseline cognitive impairment, SD patients were more anomic than AD patients. Conclusions These results add to a growing body of literature supporting a dual impairment to semantic content and active semantic processing in AD, and confirm the fundamental deficit in semantic content in SD. We interpret these findings as supporting of a model of semantic memory premised upon dynamic interactivity between the process and content of conceptual knowledge. PMID:21443339

  12. Ontology Reuse in Geoscience Semantic Applications

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Gross, M. B.; Daniels, M. D.; Rowan, L. R.; Stott, D.; Maull, K. E.; Khan, H.; Corson-Rikert, J.

    2015-12-01

    The tension between local ontology development and wider ontology connections is fundamental to the Semantic web. It is often unclear, however, what the key decision points should be for new semantic web applications in deciding when to reuse existing ontologies and when to develop original ontologies. In addition, with the growth of semantic web ontologies and applications, new semantic web applications can struggle to efficiently and effectively identify and select ontologies to reuse. This presentation will describe the ontology comparison, selection, and consolidation effort within the EarthCollab project. UCAR, Cornell University, and UNAVCO are collaborating on the EarthCollab project to use semantic web technologies to enable the discovery of the research output from a diverse array of projects. The EarthCollab project is using the VIVO Semantic web software suite to increase discoverability of research information and data related to the following two geoscience-based communities: (1) the Bering Sea Project, an interdisciplinary field program whose data archive is hosted by NCAR's Earth Observing Laboratory (EOL), and (2) diverse research projects informed by geodesy through the UNAVCO geodetic facility and consortium. This presentation will outline of EarthCollab use cases, and provide an overview of key ontologies being used, including the VIVO-Integrated Semantic Framework (VIVO-ISF), Global Change Information System (GCIS), and Data Catalog (DCAT) ontologies. We will discuss issues related to bringing these ontologies together to provide a robust ontological structure to support the EarthCollab use cases. It is rare that a single pre-existing ontology meets all of a new application's needs. New projects need to stitch ontologies together in ways that fit into the broader semantic web ecosystem.

  13. Linguistic Semantics: An Introduction.

    ERIC Educational Resources Information Center

    Lyons, John

    The book, designed as a textbook for introductory study of semantics within college-level linguistics, focuses on the study of meaning as it is systematically encoded in the vocabulary and grammar of natural languages. The term "semantics" is presumed here to include pragmatics. An introductory section explains fundamental theoretical and…

  14. The Semantic Learning Organization

    ERIC Educational Resources Information Center

    Sicilia, Miguel-Angel; Lytras, Miltiadis D.

    2005-01-01

    Purpose: The aim of this paper is introducing the concept of a "semantic learning organization" (SLO) as an extension of the concept of "learning organization" in the technological domain. Design/methodology/approach: The paper takes existing definitions and conceptualizations of both learning organizations and Semantic Web technology to develop…

  15. Communication: General Semantics Perspectives.

    ERIC Educational Resources Information Center

    Thayer, Lee, Ed.

    This book contains the edited papers from the eleventh International Conference on General Semantics, titled "A Search for Relevance." The conference questioned, as a central theme, the relevance of general semantics in a world of wars and human misery. Reacting to a fundamental Korzybski-ian principle that man's view of reality is…

  16. The Semantic Learning Organization

    ERIC Educational Resources Information Center

    Sicilia, Miguel-Angel; Lytras, Miltiadis D.

    2005-01-01

    Purpose: The aim of this paper is introducing the concept of a "semantic learning organization" (SLO) as an extension of the concept of "learning organization" in the technological domain. Design/methodology/approach: The paper takes existing definitions and conceptualizations of both learning organizations and Semantic Web technology to develop…

  17. Aging and Semantic Activation.

    ERIC Educational Resources Information Center

    Howard, Darlene V.

    Three studies tested the theory that long term memory consists of a semantically organized network of concept nodes interconnected by leveled associations or relations, and that when a stimulus is processed, the corresponding concept node is assumed to be temporarily activated and this activation spreads to nearby semantically related nodes. In…

  18. Improving Sector Hash Carving with Rule-Based and Entropy-Based Non-Probative Block Filters

    DTIC Science & Technology

    2015-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS IMPROVING SECTOR HASH CARVING WITH RULE-BASED AND ENTROPY -BASED NON-PROBATIVE BLOCK...AND DATES COVERED Master’s Thesis 01-07-2013 to 03-27-2015 4. TITLE AND SUBTITLE IMPROVING SECTOR HASH CARVING WITH RULE-BASED AND ENTROPY - BASED NON...phase uses rule-based and entropy -based non-probative block filters to improve matching against all file types. In the second phase, we restrict the

  19. Retrieval of abstract semantics.

    PubMed

    Noppeney, Uta; Price, Cathy J

    2004-05-01

    Behavioural and neuropsychological evidence suggests that abstract and concrete concepts might be represented, retrieved and processed differently in the human brain. Using fMRI, we demonstrate that retrieval of abstract relative to sensory-based semantics during synonym judgements increased activation in a left frontotemporal system that has been associated with semantic processing particularly at the sentence level. Since activation increases were observed irrespective of the degree of difficulty, we suggest that these differential activations might reflect a particular retrieval mechanism or strategy for abstract concepts. In contrast to sensory-based semantics, the meaning of abstract concepts is largely specified by their usage in language rather than by their relations to the physical world. Subjects might therefore generate an appropriate semantic sentential context to fully explore and specify the meaning of abstract concepts. Our results also explain why abstract semantics is vulnerable to left frontotemporal lesions.

  20. Order Theoretical Semantic Recommendation

    SciTech Connect

    Joslyn, Cliff A.; Hogan, Emilie A.; Paulson, Patrick R.; Peterson, Elena S.; Stephan, Eric G.; Thomas, Dennis G.

    2013-07-23

    Mathematical concepts of order and ordering relations play multiple roles in semantic technologies. Discrete totally ordered data characterize both input streams and top-k rank-ordered recommendations and query output, while temporal attributes establish numerical total orders, either over time points or in the more complex case of startend temporal intervals. But also of note are the fully partially ordered data, including both lattices and non-lattices, which actually dominate the semantic strcuture of ontological systems. Scalar semantic similarities over partially-ordered semantic data are traditionally used to return rank-ordered recommendations, but these require complementation with true metrics available over partially ordered sets. In this paper we report on our work in the foundations of partial order measurement in ontologies, with application to top-k semantic recommendation in workflows.

  1. Enhancing medical database semantics.

    PubMed Central

    Leão, B. de F.; Pavan, A.

    1995-01-01

    Medical Databases deal with dynamic, heterogeneous and fuzzy data. The modeling of such complex domain demands powerful semantic data modeling methodologies. This paper describes GSM-Explorer a Case Tool that allows for the creation of relational databases using semantic data modeling techniques. GSM Explorer fully incorporates the Generic Semantic Data Model-GSM enabling knowledge engineers to model the application domain with the abstraction mechanisms of generalization/specialization, association and aggregation. The tool generates a structure that implements persistent database-objects through the automatic generation of customized SQL ANSI scripts that sustain the semantics defined in the higher lever. This paper emphasizes the system architecture and the mapping of the semantic model into relational tables. The present status of the project and its further developments are discussed in the Conclusions. PMID:8563288

  2. Segmentation-based and rule-based spectral mixture analysis for estimating urban imperviousness

    NASA Astrophysics Data System (ADS)

    Li, Miao; Zang, Shuying; Wu, Changshan; Deng, Yingbin

    2015-03-01

    For detailed estimation of urban imperviousness, numerous image processing methods have been developed, and applied to different urban areas with some success. Most of these methods, however, are global techniques. That is, they have been applied to the entire study area without considering spatial and contextual variations. To address this problem, this paper explores whether two spatio-contextual analysis techniques, namely segmentation-based and rule-based analysis, can improve urban imperviousness estimation. These two spatio-contextual techniques were incorporated to a classic urban imperviousness estimation technique, fully-constrained linear spectral mixture analysis (FCLSMA) method. In particular, image segmentation was applied to divide the image to homogenous segments, and spatially varying endmembers were chosen for each segment. Then an FCLSMA was applied for each segment to estimate the pixel-wise fractional coverage of high-albedo material, low-albedo material, vegetation, and soil. Finally, a rule-based analysis was carried out to estimate the percent impervious surface area (%ISA). The developed technique was applied to a Landsat TM image acquired in Milwaukee River Watershed, an urbanized watershed in Wisconsin, United States. Results indicate that the performance of the developed segmentation-based and rule-based LSMA (S-R-LSMA) outperforms traditional SMA techniques, with a mean average error (MAE) of 5.44% and R2 of 0.88. Further, a comparative analysis shows that, when compared to segmentation, rule-based analysis plays a more essential role in improving the estimation accuracy.

  3. Rule-Based Expert Systems in the Command Estimate: An Operational Perspective

    DTIC Science & Technology

    1990-06-01

    11 Chapter 1 End Notes ...... ................. 14 CHAPTER 2. REVIEW OF LITERATURE Review of Literature ...... ................. 15 Rule-based Expert...War Gaming ... ......... 32 Conclusion .......... ...................... 34 Chapter 2 End Notes ........ ................. 35 CHAPTER 3. RESEARCH...39 Selection of Subject Matter Experts ... ......... 42 Systems Analysis of the Command Estimate ... ....... 43 Chapter 3 End Notes ...... ................. 48

  4. CT Image Sequence Analysis for Object Recognition - A Rule-Based 3-D Computer Vision System

    Treesearch

    Dongping Zhu; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman

    1991-01-01

    Research is now underway to create a vision system for hardwood log inspection using a knowledge-based approach. In this paper, we present a rule-based, 3-D vision system for locating and identifying wood defects using topological, geometric, and statistical attributes. A number of different features can be derived from the 3-D input scenes. These features and evidence...

  5. Haunted by a doppelgänger: irrelevant facial similarity affects rule-based judgments.

    PubMed

    von Helversen, Bettina; Herzog, Stefan M; Rieskamp, Jörg

    2014-01-01

    Judging other people is a common and important task. Every day professionals make decisions that affect the lives of other people when they diagnose medical conditions, grant parole, or hire new employees. To prevent discrimination, professional standards require that decision makers render accurate and unbiased judgments solely based on relevant information. Facial similarity to previously encountered persons can be a potential source of bias. Psychological research suggests that people only rely on similarity-based judgment strategies if the provided information does not allow them to make accurate rule-based judgments. Our study shows, however, that facial similarity to previously encountered persons influences judgment even in situations in which relevant information is available for making accurate rule-based judgments and where similarity is irrelevant for the task and relying on similarity is detrimental. In two experiments in an employment context we show that applicants who looked similar to high-performing former employees were judged as more suitable than applicants who looked similar to low-performing former employees. This similarity effect was found despite the fact that the participants used the relevant résumé information about the applicants by following a rule-based judgment strategy. These findings suggest that similarity-based and rule-based processes simultaneously underlie human judgment.

  6. Evolving rule-based systems in two medical domains using genetic programming.

    PubMed

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan; Axer, Hubertus; Bjerregaard, Beth; von Keyserlingk, Diedrich Graf

    2004-11-01

    To demonstrate and compare the application of different genetic programming (GP) based intelligent methodologies for the construction of rule-based systems in two medical domains: the diagnosis of aphasia's subtypes and the classification of pap-smear examinations. Past data representing (a) successful diagnosis of aphasia's subtypes from collaborating medical experts through a free interview per patient, and (b) correctly classified smears (images of cells) by cyto-technologists, previously stained using the Papanicolaou method. Initially a hybrid approach is proposed, which combines standard genetic programming and heuristic hierarchical crisp rule-base construction. Then, genetic programming for the production of crisp rule based systems is attempted. Finally, another hybrid intelligent model is composed by a grammar driven genetic programming system for the generation of fuzzy rule-based systems. Results denote the effectiveness of the proposed systems, while they are also compared for their efficiency, accuracy and comprehensibility, to those of an inductive machine learning approach as well as to those of a standard genetic programming symbolic expression approach. The proposed GP-based intelligent methodologies are able to produce accurate and comprehensible results for medical experts performing competitive to other intelligent approaches. The aim of the authors was the production of accurate but also sensible decision rules that could potentially help medical doctors to extract conclusions, even at the expense of a higher classification score achievement.

  7. Application of Rule-Based Computer Models to the Evaluation of Combat Training: A Feasibility Study

    DTIC Science & Technology

    1981-07-01

    Rule-Based Computer Models to Final Technical Report the Evaluation of Combat Training: A Feasi- -August 1979-July 1980 7t. AUHAs for theRAC Beha GRNT2...an ac- ceptable level of performance. For example, when talking of a "move to contact," the expected average speed is 15- 25 mph. This kind of evalua

  8. Age affects chunk-based, but not rule-based learning in artificial grammar acquisition.

    PubMed

    Kürten, Julia; De Vries, Meinou H; Kowal, Kristina; Zwitserlood, Pienie; Flöel, Agnes

    2012-07-01

    Explicit learning is well known to decline with age, but divergent results have been reported for implicit learning. Here, we assessed the effect of aging on implicit vs. explicit learning within the same task. Fifty-five young (mean 32 years) and 55 elderly (mean 64 years) individuals were exposed to letter strings generated by an artificial grammar. Subsequently, participants classified novel strings as grammatical or nongrammatical. Acquisition of superficial ("chunk-based") and structural ("rule-based") features of the grammar were analyzed separately. We found that overall classification accuracy was diminished in the elderly, driven by decreased performance on items that required chunk-based knowledge. Performance on items requiring rule-based knowledge was comparable between groups. Results indicate that rule-based and chunk-based learning are differentially affected by age: while rule-based learning, reflecting implicit learning, is preserved, chunk-based learning, which contains at least some explicit learning aspects, declines with age. Our findings may explain divergent results on implicit learning tasks in previous studies on aging. They may also help to better understand compensatory mechanisms during the aging process.

  9. Effectiveness of Visual Imagery versus Rule-Based Strategies in Teaching Spelling to Learning Disabled Students.

    ERIC Educational Resources Information Center

    Darch, Craig; Simpson, Robert G.

    1990-01-01

    Among 28 upper elementary learning-disabled students in a summer remedial program, those that were taught spelling with explicit rule-based strategies out-performed students presented with a visual imagery mnemonic on unit tests, a posttest, and a standardized spelling test. Contains 20 references. (SV)

  10. A rule-based expert system for chemical prioritization using effects-based chemical categories

    EPA Science Inventory

    A rule-based expert system (ES) was developed to predict chemical binding to the estrogen receptor (ER) patterned on the research approaches championed by Gilman Veith to whom this article and journal issue are dedicated. The ERES was built to be mechanistically-transparent and m...

  11. Rule-based approach to operating system selection: RMS vs. UNIX

    SciTech Connect

    Phifer, M.S.; Sadlowe, A.R.; Emrich, M.L.; Gadagkar, H.P.

    1988-10-01

    A rule-based system is under development for choosing computer operating systems. Following a brief historical account, this paper compares and contrasts the essential features of two operating systems highlighting particular applications. ATandT's UNIX System and Datapoint Corporations's Resource Management System (RMS) are used as illustrative examples. 11 refs., 3 figs.

  12. Applications of fuzzy sets to rule-based expert system development

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1989-01-01

    Problems of implementing rule-based expert systems using fuzzy sets are considered. A fuzzy logic software development shell is used that allows inclusion of both crisp and fuzzy rules indecision making and process control problems. Results are given that compare this type of expert system to a human expert in some specific applications. Advantages and disadvantages of such systems are discussed.

  13. Applications of fuzzy sets to rule-based expert system development

    NASA Technical Reports Server (NTRS)

    Lea, Robert N.

    1989-01-01

    Problems of implementing rule-based expert systems using fuzzy sets are considered. A fuzzy logic software development shell is used that allows inclusion of both crisp and fuzzy rules in decision making and process control problems. Results are given that compare this type of expert system to a human expert in some specific applications. Advantages and disadvantages of such systems are discussed.

  14. A rule-based expert system for chemical prioritization using effects-based chemical categories

    EPA Science Inventory

    A rule-based expert system (ES) was developed to predict chemical binding to the estrogen receptor (ER) patterned on the research approaches championed by Gilman Veith to whom this article and journal issue are dedicated. The ERES was built to be mechanistically-transparent and m...

  15. Using Rule-Based Computer Programming to Unify Communication Rules Research.

    ERIC Educational Resources Information Center

    Sanford, David L.; Roach, J. W.

    This paper proposes the use of a rule-based computer programming language as a standard for the expression of rules, arguing that the adoption of a standard would enable researchers to communicate about rules in a consistent and significant way. Focusing on the formal equivalence of artificial intelligence (AI) programming to different types of…

  16. Effects of Multimedia on Cognitive Load, Self-Efficacy, and Multiple Rule-Based Problem Solving

    ERIC Educational Resources Information Center

    Zheng, Robert; McAlack, Matthew; Wilmes, Barbara; Kohler-Evans, Patty; Williamson, Jacquee

    2009-01-01

    This study investigates effects of multimedia on cognitive load, self-efficacy and learners' ability to solve multiple rule-based problems. Two hundred twenty-two college students were randomly assigned to interactive and non-interactive multimedia groups. Based on Engelkamp's multimodal theory, the present study investigates the role of…

  17. The emergence of Semantic Systems Biology.

    PubMed

    Antezana, Erick; Mironov, Vladimir; Kuiper, Martin

    2013-03-25

    Over the past decade the biological sciences have been widely embracing Systems Biology and its various data integration approaches to discover new knowledge. Molecular Systems Biology aims to develop hypotheses based on integrated, or modelled data. These hypotheses can be subsequently used to design new experiments for testing, leading to an improved understanding of the biology; a more accurate model of the biological system and therefore an improved ability to develop hypotheses. During the same period the biosciences have also eagerly taken up the emerging Semantic Web as evidenced by the dedicated exploitation of Semantic Web technologies for data integration and sharing in the Life Sciences. We describe how these two approaches merged in Semantic Systems Biology: a data integration and analysis approach complementary to model-based Systems Biology. Semantic Systems Biology augments the integration and sharing of knowledge, and opens new avenues for computational support in quality checking and automated reasoning, and to develop new, testable hypotheses. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Extending rule-based methods to model molecular geometry and 3D model resolution.

    PubMed

    Hoard, Brittany; Jacobson, Bruna; Manavi, Kasra; Tapia, Lydia

    2016-08-01

    Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models

  19. Semantic processing of EHR data for clinical research.

    PubMed

    Sun, Hong; Depraetere, Kristof; De Roo, Jos; Mels, Giovanni; De Vloed, Boris; Twagirumukiza, Marc; Colaert, Dirk

    2015-12-01

    There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data.

  20. Semantics, Pragmatics, and the Nature of Semantic Theories

    ERIC Educational Resources Information Center

    Spewak, David Charles, Jr.

    2013-01-01

    The primary concern of this dissertation is determining the distinction between semantics and pragmatics and how context sensitivity should be accommodated within a semantic theory. I approach the question over how to distinguish semantics from pragmatics from a new angle by investigating what the objects of a semantic theory are, namely…

  1. Semantics, Pragmatics, and the Nature of Semantic Theories

    ERIC Educational Resources Information Center

    Spewak, David Charles, Jr.

    2013-01-01

    The primary concern of this dissertation is determining the distinction between semantics and pragmatics and how context sensitivity should be accommodated within a semantic theory. I approach the question over how to distinguish semantics from pragmatics from a new angle by investigating what the objects of a semantic theory are, namely…

  2. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    PubMed

    Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R

    2014-04-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings

  3. The use of web ontology languages and other semantic web tools in drug discovery.

    PubMed

    Chen, Huajun; Xie, Guotong

    2010-05-01

    To optimize drug development processes, pharmaceutical companies require principled approaches to integrate disparate data on a unified infrastructure, such as the web. The semantic web, developed on the web technology, provides a common, open framework capable of harmonizing diversified resources to enable networked and collaborative drug discovery. We survey the state of art of utilizing web ontologies and other semantic web technologies to interlink both data and people to support integrated drug discovery across domains and multiple disciplines. Particularly, the survey covers three major application categories including: i) semantic integration and open data linking; ii) semantic web service and scientific collaboration and iii) semantic data mining and integrative network analysis. The reader will gain: i) basic knowledge of the semantic web technologies; ii) an overview of the web ontology landscape for drug discovery and iii) a basic understanding of the values and benefits of utilizing the web ontologies in drug discovery. i) The semantic web enables a network effect for linking open data for integrated drug discovery; ii) The semantic web service technology can support instant ad hoc collaboration to improve pipeline productivity and iii) The semantic web encourages publishing data in a semantic way such as resource description framework attributes and thus helps move away from a reliance on pure textual content analysis toward more efficient semantic data mining.

  4. Discontinuous Categories Affect Information-Integration but not Rule-Based Category Learning

    ERIC Educational Resources Information Center

    Maddox, W. Todd; Filoteo, J. Vincent; Lauritzen, J. Scott; Connally, Emily; Hejl, Kelli D.

    2005-01-01

    Three experiments were conducted that provide a direct examination of within-category discontinuity manipulations on the implicit, procedural-based learning and the explicit, hypothesis-testing systems proposed in F. G. Ashby, L. A. Alfonso-Reese, A. U. Turken, and E. M. Waldron's (1998) competition between verbal and implicit systems model.…

  5. Integrating Rule-Based and Neural-Net Techniques for Spectral Analysis

    DTIC Science & Technology

    1990-06-01

    perceptron, is presented in Figure 6. This neural network is a generalization of the single layer perceptron 18 OUTPMUT (CLASSES) 1 2 3 . P TH IRD LAYER Wkl...ten input nodes and four output nodes and used a single layer perceptron . The output of the neural network merely separated chemicals into four

  6. A novel way of integrating rule-based knowledge into a web ontology language framework.

    PubMed

    Gamberger, Dragan; Krstaçić, Goran; Jović, Alan

    2013-01-01

    Web ontology language (OWL), used in combination with the Protégé visual interface, is a modern standard for development and maintenance of ontologies and a powerful tool for knowledge presentation. In this work, we describe a novel possibility to use OWL also for the conceptualization of knowledge presented by a set of rules. In this approach, rules are represented as a hierarchy of actionable classes with necessary and sufficient conditions defined by the description logic formalism. The advantages are that: the set of the rules is not an unordered set anymore, the concepts defined in descriptive ontologies can be used directly in the bodies of rules, and Protégé presents an intuitive tool for editing the set of rules. Standard ontology reasoning processes are not applicable in this framework, but experiments conducted on the rule sets have demonstrated that the reasoning problems can be successfully solved.

  7. A Defense of Semantic Minimalism

    ERIC Educational Resources Information Center

    Kim, Su

    2012-01-01

    Semantic Minimalism is a position about the semantic content of declarative sentences, i.e., the content that is determined entirely by syntax. It is defined by the following two points: "Point 1": The semantic content is a complete/truth-conditional proposition. "Point 2": The semantic content is useful to a theory of…

  8. A Semantic Graph Query Language

    SciTech Connect

    Kaplan, I L

    2006-10-16

    Semantic graphs can be used to organize large amounts of information from a number of sources into one unified structure. A semantic query language provides a foundation for extracting information from the semantic graph. The graph query language described here provides a simple, powerful method for querying semantic graphs.

  9. A Defense of Semantic Minimalism

    ERIC Educational Resources Information Center

    Kim, Su

    2012-01-01

    Semantic Minimalism is a position about the semantic content of declarative sentences, i.e., the content that is determined entirely by syntax. It is defined by the following two points: "Point 1": The semantic content is a complete/truth-conditional proposition. "Point 2": The semantic content is useful to a theory of…

  10. Allergen databases and allergen semantics.

    PubMed

    Gendel, Steven M

    2009-08-01

    The efficacy of any specific bioinformatic analysis of the potential allergenicity of new food proteins depends directly on the nature and content of the databases that are used in the analysis. A number of different allergen-related databases have been developed, each designed to meet a different need. These databases differ in content, organization, and accessibility. These differences create barriers for users and prevent data sharing and integration. The development and application of appropriate semantic web technologies, (for example, a food allergen ontology) could help to overcome these barriers and promote the development of more advanced analytic capabilities.

  11. Partitioning the UMLS semantic network.

    PubMed

    Chen, Zong; Perl, Yehoshua; Halper, Michael; Geller, James; Gu, Huanying

    2002-06-01

    The unified medical language system (UMLS) integrates many well-established biomedical terminologies. The UMLS semantic network (SN) can help orient users to the vast knowledge content of the UMLS Metathesaurus (META) via its abstract conceptual view. However, the SN itself is large and complex and may still be difficult to comprehend. Our technique partitions the SN into smaller meaningful units amenable to display on limited-sized computer screens. The basis for the partitioning is the distribution of the relationships within the SN. Three rules are applied to transform the original partition into a second more cohesive partition.

  12. [Semantic dementia--a multimodal disorder of conceptual knowledge].

    PubMed

    Nishio, Yoshiyuki; Mori, Etsuro

    2009-11-01

    Semantic dementia (SD) is a clinical syndrome characterized by progressive loss of semantic memory/ conceptual knowledge and by bilateral, but usually asymmetric, atrophy of the anterior temporal lobes (ATLS). On the basis of the neuropsychological findings of SD, the two theoretical implications for the organization of semantic memory have been suggested. First, selective impairment of semantic memory in the early stages of SD contrasts with the isolated loss of episodic memory in patients with damage to the medial temporal lobes and other Papez's circuit components. This double dissociation provides empirical evidence for fractionation of explicit memory into the two subsystems with different neural underpinnings. Second, the multimodal nature of semantic deficits in SD leads to a seminal view that semantic memory is organized as an amodal system. The ATLs play a pivotal role as a 'convergence zone' or 'semantic hub' integrating abundant verbal and perceptual attributes that are represented in the posterior temporal and temporo-occipital cortices. To develop further comprehensive theories regarding semantic memory, we should understand differential roles of the left and right ATLs and clarify the clinicoanatomical relationship between verbal, visual, and emotional aspects of semantic memory loss and the detailed anatomical localization of the lesions.

  13. A rule-based algorithm can output valid surgical strategies in the treatment of AIS.

    PubMed

    Phan, Philippe; Ouellet, Jean; Mezghani, Neila; de Guise, Jacques A; Labelle, Hubert

    2015-07-01

    Variability in surgical strategies for the treatment of adolescent idiopathic scoliosis (AIS) has been demonstrated despite the existence of classifications to guide selection of AIS curves to include in fusion. Decision trees and rule-based algorithms have demonstrated their potential to improve reliability of AIS classification because of their systematic approach and they have also been proposed in algorithms for selection of instrumentation levels in scoliosis. Our working hypothesis is that a rule-based algorithm with a knowledge base extracted from the literature can efficiently output surgical strategies alternatives for a given AIS case. Our objective is to develop a rule-based algorithm based on peer-reviewed literature to output alternative surgical strategies for approach and levels of fusion. A literature search of all English Manuscripts published between 2000 and December 2009 with Pubmed and Google scholar electronic search using the following keywords: "adolescent idiopathic scoliosis" and "surgery" alternatively with "levels of fusion" or "approach". All returned abstracts were screened for contents that could contain rules to include in the knowledge base. A dataset of 1,556 AIS cases treated surgically was used to test the surgical strategy rule-based algorithm (SSRBA) and evaluate how many surgical treatments are covered by the algorithm. The SSRBA was programmed using Matlab. Descriptive statistic was used to evaluate the ability of the rule-based algorithm to cover all treatment alternatives. A SSRBA was successfully developed following Lenke classification's concept that the spine is divided into three curve segments [proximal thoracic (PT), main thoracic (MT) and thoracolumbar/lumbar (TL)]. Each of the 1,556 AIS patients in the dataset was ran through the SSRBA. It proposed an average of 3.78 (±2.06) surgical strategies per case. Overall, the SSRBA is able to match the treatment offered by the surgeon in approach and level of fusion 70

  14. Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara

    Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.

  15. Overcoming semantic heterogeneity in spatial data infrastructures

    NASA Astrophysics Data System (ADS)

    Lutz, M.; Sprado, J.; Klien, E.; Schubert, C.; Christ, I.

    2009-04-01

    In current spatial data infrastructures (SDIs), it is still often difficult to effectively exchange or re-use geographic data sets. A main reason for this is semantic heterogeneity, which occurs at different levels: at the metadata, the schema and the data content level. It is the goal of the work presented in this paper to overcome the problems caused by semantic heterogeneity on all three levels. We present a method based on ontologies and logical reasoning, which enhances the discovery, retrieval, interpretation and integration of geographic data in SDIs. Its benefits and practical use are illustrated with examples from the domains of geology and hydrology.

  16. Trusting Crowdsourced Geospatial Semantics

    NASA Astrophysics Data System (ADS)

    Goodhue, P.; McNair, H.; Reitsma, F.

    2015-08-01

    The degree of trust one can place in information is one of the foremost limitations of crowdsourced geospatial information. As with the development of web technologies, the increased prevalence of semantics associated with geospatial information has increased accessibility and functionality. Semantics also provides an opportunity to extend indicators of trust for crowdsourced geospatial information that have largely focused on spatio-temporal and social aspects of that information. Comparing a feature's intrinsic and extrinsic properties to associated ontologies provides a means of semantically assessing the trustworthiness of crowdsourced geospatial information. The application of this approach to unconstrained semantic submissions then allows for a detailed assessment of the trust of these features whilst maintaining the descriptive thoroughness this mode of information submission affords. The resulting trust rating then becomes an attribute of the feature, providing not only an indication as to the trustworthiness of a specific feature but is able to be aggregated across multiple features to illustrate the overall trustworthiness of a dataset.

  17. Algebraic Semantics for Narrative

    ERIC Educational Resources Information Center

    Kahn, E.

    1974-01-01

    This paper uses discussion of Edmund Spenser's "The Faerie Queene" to present a theoretical framework for explaining the semantics of narrative discourse. The algebraic theory of finite automata is used. (CK)

  18. Fifty years of computer analysis in chest imaging: rule-based, machine learning, deep learning.

    PubMed

    van Ginneken, Bram

    2017-03-01

    Half a century ago, the term "computer-aided diagnosis" (CAD) was introduced in the scientific literature. Pulmonary imaging, with chest radiography and computed tomography, has always been one of the focus areas in this field. In this study, I describe how machine learning became the dominant technology for tackling CAD in the lungs, generally producing better results than do classical rule-based approaches, and how the field is now rapidly changing: in the last few years, we have seen how even better results can be obtained with deep learning. The key differences among rule-based processing, machine learning, and deep learning are summarized and illustrated for various applications of CAD in the chest.

  19. A self-learning rule base for command following in dynamical systems

    NASA Technical Reports Server (NTRS)

    Tsai, Wei K.; Lee, Hon-Mun; Parlos, Alexander

    1992-01-01

    In this paper, a self-learning Rule Base for command following in dynamical systems is presented. The learning is accomplished though reinforcement learning using an associative memory called SAM. The main advantage of SAM is that it is a function approximator with explicit storage of training samples. A learning algorithm patterned after the dynamic programming is proposed. Two artificially created, unstable dynamical systems are used for testing, and the Rule Base was used to generate a feedback control to improve the command following ability of the otherwise uncontrolled systems. The numerical results are very encouraging. The controlled systems exhibit a more stable behavior and a better capability to follow reference commands. The rules resulting from the reinforcement learning are explicitly stored and they can be modified or augmented by human experts. Due to overlapping storage scheme of SAM, the stored rules are similar to fuzzy rules.

  20. Rule-based mechanisms of learning for intelligent adaptive flight control

    NASA Technical Reports Server (NTRS)

    Handelman, David A.; Stengel, Robert F.

    1990-01-01

    How certain aspects of human learning can be used to characterize learning in intelligent adaptive control systems is investigated. Reflexive and declarative memory and learning are described. It is shown that model-based systems-theoretic adaptive control methods exhibit attributes of reflexive learning, whereas the problem-solving capabilities of knowledge-based systems of artificial intelligence are naturally suited for implementing declarative learning. Issues related to learning in knowledge-based control systems are addressed, with particular attention given to rule-based systems. A mechanism for real-time rule-based knowledge acquisition is suggested, and utilization of this mechanism within the context of failure diagnosis for fault-tolerant flight control is demonstrated.

  1. Development and Deployment of a Rule-Based Expert System for Autonomous Satellite Monitoring

    NASA Astrophysics Data System (ADS)

    Wong, L.; Kronberg, F.; Hopkins, A.; Machi, F.; Eastham, P.

    In compliance with NASA administrator Daniel Goldin's call for faster, cheaper, better NASA projects, the Center for EUV Astrophysics (CEA) in cooperation with NASA Ames Research Center has developed and deployed a partially autonomous satellite-telemetry monitoring system to monitor the health of the Extreme Ultraviolet Explorer (EUVE) payload. Originally, telemetry was monitored on a 24 hour basis by human operators. Using RTworks, a software package from Talarian Corporation, our development team has developed a rule-based, expert system capable of detecting critical EUVE payload anomalies and notifying an anomaly coordinator. This paper discusses the process of capturing and codifying the knowledge of EUVE operations into rules and how our rule-based system is applied in EUVE autonomous operations.

  2. Spatial Queries Entity Recognition and Disambiguation Using Rule-Based Approach

    NASA Astrophysics Data System (ADS)

    Hamzei, E.; Hakimpour, F.; Forati, A.

    2015-12-01

    In the digital world, search engines have been proposed as one of challenging research areas. One of the main issues in search engines studies is query processing, which its aim is to understand user's needs. If unsuitable spatial query processing approach is employed, the results will be associated with high degree of ambiguity. To evade such degree of ambiguity, in this paper we present a new algorithm which depends on rule-based systems to process queries. Our algorithm is implemented in the three basic steps including: deductively iterative splitting the query; finding candidates for the location names, the location types and spatial relationships; and finally checking the relationships logically and conceptually using a rule based system. As we finally present in the paper using our proposed method have two major advantages: the search engines can provide the capability of spatial analysis based on the specific process and secondly because of its disambiguation technique, user reaches the more desirable result.

  3. A Belief Rule Based Expert System to Assess Tuberculosis under Uncertainty.

    PubMed

    Hossain, Mohammad Shahadat; Ahmed, Faisal; Fatema-Tuj-Johora; Andersson, Karl

    2017-03-01

    The primary diagnosis of Tuberculosis (TB) is usually carried out by looking at the various signs and symptoms of a patient. However, these signs and symptoms cannot be measured with 100 % certainty since they are associated with various types of uncertainties such as vagueness, imprecision, randomness, ignorance and incompleteness. Consequently, traditional primary diagnosis, based on these signs and symptoms, which is carried out by the physicians, cannot deliver reliable results. Therefore, this article presents the design, development and applications of a Belief Rule Based Expert System (BRBES) with the ability to handle various types of uncertainties to diagnose TB. The knowledge base of this system is constructed by taking experts' suggestions and by analyzing historical data of TB patients. The experiments, carried out, by taking the data of 100 patients demonstrate that the BRBES's generated results are more reliable than that of human expert as well as fuzzy rule based expert system.

  4. Enhanced semantic interpretability by healthcare standards profiling.

    PubMed

    Lopez, Diego M; Blobel, Bernd G M E

    2008-01-01

    Several current healthcare standards support semantic interoperability. These standards are far to be completely adopted in health information system development, however. The objective of this paper is to provide a method and necessary tooling for reusing healthcare standards by exploiting the extensibility mechanisms of UML, by that way supporting the development of semantically interoperable systems and components. The method identifies first the models and tasks in the software development process in which health care standards can be reused. Then, the selected standard is formalized as a UML profile. Finally that profile is applied to system models, annotating them with the standard semantics. The supporting tools are Eclipse-based UML modeling tools. The method is integrated into a comprehensive framework for health information systems development. The feasibility of the approach is exemplified by a scenario reusing HL7 RIM and DIMs specifications. The approach presented is also applicable for harmonizing different standard specifications.

  5. A New Rule-Based System for the Construction and Structural Characterization of Artificial Proteins

    NASA Astrophysics Data System (ADS)

    Štambuk, Nikola; Konjevoda, Paško; Gotovac, Nikola

    In this paper, we present a new rule-based system for an artificial protein design incorporating ternary amino acid polarity (polar, nonpolar, and neutral). It may be used to design de novo α and β protein fold structures and mixed class proteins. The targeted molecules are artificial proteins with important industrial and biomedical applications, related to the development of diagnostic-therapeutic peptide pharmaceuticals, antibody mimetics, peptide vaccines, new nanobiomaterials and engineered protein scaffolds.

  6. Feature- versus rule-based generalization in rats, pigeons and humans.

    PubMed

    Maes, Elisa; De Filippo, Guido; Inkster, Angus B; Lea, Stephen E G; De Houwer, Jan; D'Hooge, Rudi; Beckers, Tom; Wills, Andy J

    2015-11-01

    Humans can spontaneously create rules that allow them to efficiently generalize what they have learned to novel situations. An enduring question is whether rule-based generalization is uniquely human or whether other animals can also abstract rules and apply them to novel situations. In recent years, there have been a number of high-profile claims that animals such as rats can learn rules. Most of those claims are quite weak because it is possible to demonstrate that simple associative systems (which do not learn rules) can account for the behavior in those tasks. Using a procedure that allows us to clearly distinguish feature-based from rule-based generalization (the Shanks-Darby procedure), we demonstrate that adult humans show rule-based generalization in this task, while generalization in rats and pigeons was based on featural overlap between stimuli. In brief, when learning that a stimulus made of two components ("AB") predicts a different outcome than its elements ("A" and "B"), people spontaneously abstract an opposites rule and apply it to new stimuli (e.g., knowing that "C" and "D" predict one outcome, they will predict that "CD" predicts the opposite outcome). Rats and pigeons show the reverse behavior-they generalize what they have learned, but on the basis of similarity (e.g., "CD" is similar to "C" and "D", so the same outcome is predicted for the compound stimulus as for the components). Genuinely rule-based behavior is observed in humans, but not in rats and pigeons, in the current procedure.

  7. Integrated data management for clinical studies: automatic transformation of data models with semantic annotations for principal investigators, data managers and statisticians.

    PubMed

    Dugas, Martin; Dugas-Breit, Susanne

    2014-01-01

    Design, execution and analysis of clinical studies involves several stakeholders with different professional backgrounds. Typically, principle investigators are familiar with standard office tools, data managers apply electronic data capture (EDC) systems and statisticians work with statistics software. Case report forms (CRFs) specify the data model of study subjects, evolve over time and consist of hundreds to thousands of data items per study. To avoid erroneous manual transformation work, a converting tool for different representations of study data models was designed. It can convert between office format, EDC and statistics format. In addition, it supports semantic annotations, which enable precise definitions for data items. A reference implementation is available as open source package ODMconverter at http://cran.r-project.org.

  8. Strategies for adding adaptive learning mechanisms to rule-based diagnostic expert systems

    NASA Technical Reports Server (NTRS)

    Stclair, D. C.; Sabharwal, C. L.; Bond, W. E.; Hacke, Keith

    1988-01-01

    Rule-based diagnostic expert systems can be used to perform many of the diagnostic chores necessary in today's complex space systems. These expert systems typically take a set of symptoms as input and produce diagnostic advice as output. The primary objective of such expert systems is to provide accurate and comprehensive advice which can be used to help return the space system in question to nominal operation. The development and maintenance of diagnostic expert systems is time and labor intensive since the services of both knowledge engineer(s) and domain expert(s) are required. The use of adaptive learning mechanisms to increment evaluate and refine rules promises to reduce both time and labor costs associated with such systems. This paper describes the basic adaptive learning mechanisms of strengthening, weakening, generalization, discrimination, and discovery. Next basic strategies are discussed for adding these learning mechanisms to rule-based diagnostic expert systems. These strategies support the incremental evaluation and refinement of rules in the knowledge base by comparing the set of advice given by the expert system (A) with the correct diagnosis (C). Techniques are described for selecting those rules in the in the knowledge base which should participate in adaptive learning. The strategies presented may be used with a wide variety of learning algorithms. Further, these strategies are applicable to a large number of rule-based diagnostic expert systems. They may be used to provide either immediate or deferred updating of the knowledge base.

  9. Associations between rule-based parenting practices and child screen viewing: A cross-sectional study.

    PubMed

    Kesten, Joanna M; Sebire, Simon J; Turner, Katrina M; Stewart-Brown, Sarah; Bentley, Georgina; Jago, Russell

    2015-01-01

    Child screen viewing (SV) is positively associated with poor health indicators. Interventions addressing rule-based parenting practices may offer an effective means of limiting SV. This study examined associations between rule-based parenting practices (limit and collaborative rule setting) and SV in 6-8-year old children. An online survey of 735 mothers in 2011 assessed: time that children spent engaged in SV activities; and the use of limit and collaborative rule setting. Logistic regression was used to examine the extent to which limit and collaborative rule setting were associated with SV behaviours. 'Always' setting limits was associated with more TV viewing, computer, smartphone and game-console use and a positive association was found between 'always' setting limits for game-console use and multi-SV (in girls). Associations were stronger in mothers of girls compared to mothers of boys. 'Sometimes' setting limits was associated with more TV viewing. There was no association between 'sometimes' setting limits and computer, game-console or smartphone use. There was a negative association between collaborative rule setting and game-console use in boys. Limit setting is associated with greater SV. Collaborative rule setting may be effective for managing boys' game-console use. More research is needed to understand rule-based parenting practices.

  10. A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics.

    PubMed

    Kaya, Aydın; Can, Ahmet Burak

    2015-08-01

    Predicting malignancy of solitary pulmonary nodules from computer tomography scans is a difficult and important problem in the diagnosis of lung cancer. This paper investigates the contribution of nodule characteristics in the prediction of malignancy. Using data from Lung Image Database Consortium (LIDC) database, we propose a weighted rule based classification approach for predicting malignancy of pulmonary nodules. LIDC database contains CT scans of nodules and information about nodule characteristics evaluated by multiple annotators. In the first step of our method, votes for nodule characteristics are obtained from ensemble classifiers by using image features. In the second step, votes and rules obtained from radiologist evaluations are used by a weighted rule based method to predict malignancy. The rule based method is constructed by using radiologist evaluations on previous cases. Correlations between malignancy and other nodule characteristics and agreement ratio of radiologists are considered in rule evaluation. To handle the unbalanced nature of LIDC, ensemble classifiers and data balancing methods are used. The proposed approach is compared with the classification methods trained on image features. Classification accuracy, specificity and sensitivity of classifiers are measured. The experimental results show that using nodule characteristics for malignancy prediction can improve classification results.

  11. Experiments in knowledge refinement for a large rule-based system

    NASA Astrophysics Data System (ADS)

    Harvey, Wilson A., Jr.; Tambe, Milind

    1993-08-01

    Knowledge-refinement is a central problem in the field of expert systems. For rule-based systems, refinement implies the addition, deletion, and modification of rules in the system so as to improve the system's overall performance. The goal of this research effort is to understand the methodology for refining large rule-based systems, as well as to develop tools that will be useful in refining such systems. The vehicle for our investigation is SPAM, a production system (rule-based system) for the interpretation of aerial imagery. Complex and computation-intensive systems like SPAM impose some unique constraints on knowledge refinement. More specifically, the credit/blame assignment problem for locating pieces of knowledge to refine becomes difficult. Given that constraint, we approach the problem in a bottom-up fashion, i.e., begin by refining portions of SPAM's knowledge base and then attempt to understand the interactions between them. We begin by identifying gaps and/or faults in the knowledge base by comparing SPAM's intermediate output to that of an expert, then modifying the knowledge base so that the system's output more accurately matches the expert's output. While this approach leads to some improvements, it also raises some interesting issues concerning the evaluation of refined knowledge at intermediate levels and of interaction between the refinements. This paper presents our initial efforts toward addressing these issues.

  12. Using reduced rule base with Expert System for the diagnosis of disease in hypertension.

    PubMed

    Başçiftçi, Fatih; Eldem, Ayşe

    2013-12-01

    Hypertension, also called the "Silent Killer", is a dangerous and widespread disease that seriously threatens the health of individuals and communities worldwide, often leading to fatal outcomes such as heart attack, stroke, and renal failure. It affects approximately one billion people worldwide with increasing incidence. In Turkey, over 15 million people have hypertension. In this study, a new Medical Expert System (MES) procedure with reduced rule base was developed to determine hypertension. The aim was to determine the disease by taking all symptoms of hypertension into account in the Medical Expert System (7 symptoms, 2(7) = 128 different conditions). In this new MES procedure, instead of checking all the symptoms, the reduced rule bases were used. In order to get the reduced rule bases, the method of two-level simplification of Boolean functions was used. Through the use of this method, instead of assessing 2(7) = 128 individual conditions by taking 7 symptoms of hypertension into account, reduced cases were evaluated. The average rate of success was 97.6 % with the new MES procedure.

  13. Semantic querying of relational data for clinical intelligence: a semantic web services-based approach

    PubMed Central

    2013-01-01

    Background Clinical Intelligence, as a research and engineering discipline, is dedicated to the development of tools for data analysis for the purposes of clinical research, surveillance, and effective health care management. Self-service ad hoc querying of clinical data is one desirable type of functionality. Since most of the data are currently stored in relational or similar form, ad hoc querying is problematic as it requires specialised technical skills and the knowledge of particular data schemas. Results A possible solution is semantic querying where the user formulates queries in terms of domain ontologies that are much easier to navigate and comprehend than data schemas. In this article, we are exploring the possibility of using SADI Semantic Web services for semantic querying of clinical data. We have developed a prototype of a semantic querying infrastructure for the surveillance of, and research on, hospital-acquired infections. Conclusions Our results suggest that SADI can support ad-hoc, self-service, semantic queries of relational data in a Clinical Intelligence context. The use of SADI compares favourably with approaches based on declarative semantic mappings from data schemas to ontologies, such as query rewriting and RDFizing by materialisation, because it can easily cope with situations when (i) some computation is required to turn relational data into RDF or OWL, e.g., to implement temporal reasoning, or (ii) integration with external data sources is necessary. PMID:23497556

  14. Adventures in Semantic Publishing: Exemplar Semantic Enhancements of a Research Article

    PubMed Central

    Shotton, David; Portwin, Katie; Klyne, Graham; Miles, Alistair

    2009-01-01

    Scientific innovation depends on finding, integrating, and re-using the products of previous research. Here we explore how recent developments in Web technology, particularly those related to the publication of data and metadata, might assist that process by providing semantic enhancements to journal articles within the mainstream process of scholarly journal publishing. We exemplify this by describing semantic enhancements we have made to a recent biomedical research article taken from PLoS Neglected Tropical Diseases, providing enrichment to its content and increased access to datasets within it. These semantic enhancements include provision of live DOIs and hyperlinks; semantic markup of textual terms, with links to relevant third-party information resources; interactive figures; a re-orderable reference list; a document summary containing a study summary, a tag cloud, and a citation analysis; and two novel types of semantic enrichment: the first, a Supporting Claims Tooltip to permit “Citations in Context”, and the second, Tag Trees that bring together semantically related terms. In addition, we have published downloadable spreadsheets containing data from within tables and figures, have enriched these with provenance information, and have demonstrated various types of data fusion (mashups) with results from other research articles and with Google Maps. We have also published machine-readable RDF metadata both about the article and about the references it cites, for which we developed a Citation Typing Ontology, CiTO (http://purl.org/net/cito/). The enhanced article, which is available at http://dx.doi.org/10.1371/journal.pntd.0000228.x001, presents a compelling existence proof of the possibilities of semantic publication. We hope the showcase of examples and ideas it contains, described in this paper, will excite the imaginations of researchers and publishers, stimulating them to explore the possibilities of semantic publishing for their own research

  15. Semantic Services for Wikipedia

    NASA Astrophysics Data System (ADS)

    Wang, Haofen; Penin, Thomas; Fu, Linyun; Liu, Qiaoling; Xue, Guirong; Yu, Yong

    Wikipedia, a killer application in Web 2.0, has embraced the power of collaborative editing to harness collective intelligence. It features many attractive characteristics, like entity-based link graph, abundant categorization and semi-structured layout, and can serve as an ideal data source to extract high quality and well-structured data. In this chapter, we first propose several solutions to extract knowledge from Wikipedia. We do not only consider information from the relational summaries of articles (infoboxes) but also semi-automatically extract it from the article text using the structured content available. Due to differences with information extraction from the Web, it is necessary to tackle new problems, like the lack of redundancy in Wikipedia that is dealt with by extending traditional machine learning algorithms to work with few labeled data. Furthermore, we also exploit the widespread categories as a complementary way to discover additional knowledge. Benefiting from both structured and textural information, we additionally provide a suggestion service for Wikipedia authoring. With the aim to facilitate semantic reuse, our proposal provides users with facilities such as link, categories and infobox content suggestions. The proposed enhancements can be applied to attract more contributors and lighten the burden of professional editors. Finally, we developed an enhanced search system, which can ease the process of exploiting Wikipedia. To provide a user-friendly interface, it extends the faceted search interface with relation navigation and let the user easily express his complex information needs in an interactive way. In order to achieve efficient query answering, it extends scalable IR engines to index and search both the textual and structured information with an integrated ranking support.

  16. Non-semantic contributions to "semantic" redundancy gain.

    PubMed

    Shepherdson, Peter; Miller, Jeff

    2016-01-01

    Recently, two groups of researchers have reported redundancy gains (enhanced performance with multiple, redundant targets) in tasks requiring semantic categorization. Here we report two experiments aimed at determining whether the gains found by one of these groups resulted from some form of semantic coactivation. We asked undergraduate psychology students to complete choice RT tasks requiring the semantic categorization of visually presented words, and compared performance with redundant targets from the same semantic category to performance with redundant targets from different semantic categories. If the redundancy gains resulted from the combination of information at a semantic level, they should have been greater in the former than the latter situation. However, our results showed no significant differences in redundancy gain (for latency and accuracy) between same-category and different-category conditions, despite gains appearing in both conditions. Thus, we suggest that redundancy gain in the semantic categorization task may result entirely from statistical facilitation or combination of information at non-semantic levels.

  17. Remote semantic memory is impoverished in hippocampal amnesia.

    PubMed

    Klooster, Nathaniel B; Duff, Melissa C

    2015-12-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition.

  18. User-centered semantic harmonization: a case study.

    PubMed

    Weng, Chunhua; Gennari, John H; Fridsma, Douglas B

    2007-06-01

    Semantic interoperability is one of the great challenges in biomedical informatics. Methods such as ontology alignment or use of metadata neither scale nor fundamentally alleviate semantic heterogeneity among information sources. In the context of the Cancer Biomedical Informatics Grid program, the Biomedical Research Integrated Domain Group (BRIDG) has been making an ambitious effort to harmonize existing information models for clinical research from a variety of sources and modeling agreed-upon semantics shared by the technical harmonization committee and the developers of these models. This paper provides some observations on this user-centered semantic harmonization effort and its inherent technical and social challenges. The authors also compare BRIDG with related efforts to achieve semantic interoperability in healthcare, including UMLS, InterMed, the Semantic Web, and the Ontology for Biomedical Investigations initiative. The BRIDG project demonstrates the feasibility of user-centered collaborative domain modeling as an approach to semantic harmonization, but also highlights a number of technology gaps in support of collaborative semantic harmonization that remain to be filled.

  19. Remote semantic memory is impoverished in hippocampal amnesia

    PubMed Central

    Klooster, Nathaniel B.; Duff, Melissa C.

    2015-01-01

    The necessity of the hippocampus for acquiring new semantic concepts is a topic of considerable debate. However, it is generally accepted that any role the hippocampus plays in semantic memory is time limited and that previously acquired information becomes independent of the hippocampus over time. This view, along with intact naming and word-definition matching performance in amnesia, has led to the notion that remote semantic memory is intact in patients with hippocampal amnesia. Motivated by perspectives of word learning as a protracted process where additional features and senses of a word are added over time, and by recent discoveries about the time course of hippocampal contributions to on-line relational processing, reconsolidation, and the flexible integration of information, we revisit the notion that remote semantic memory is intact in amnesia. Using measures of semantic richness and vocabulary depth from psycholinguistics and first and second language-learning studies, we examined how much information is associated with previously acquired, highly familiar words in a group of patients with bilateral hippocampal damage and amnesia. Relative to healthy demographically matched comparison participants and a group of brain-damaged comparison participants, the patients with hippocampal amnesia performed significantly worse on both productive and receptive measures of vocabulary depth and semantic richness. These findings suggest that remote semantic memory is impoverished in patients with hippocampal amnesia and that the hippocampus may play a role in the maintenance and updating of semantic memory beyond its initial acquisition. PMID:26474741

  20. The Semantic SPASE

    NASA Astrophysics Data System (ADS)

    Hughes, S.; Crichton, D.; Thieman, J.; Ramirez, P.; King, T.; Weiss, M.

    2005-12-01

    The Semantic SPASE (Space Physics Archive Search and Extract) prototype demonstrates the use of semantic web technologies to capture, document, and manage the SPASE data model, support facet- and text-based search, and provide flexible and intuitive user interfaces. The SPASE data model, under development since late 2003 by a consortium of space physics domain experts, is intended to serve as the basis for interoperability between independent data systems. To develop the Semantic SPASE prototype, the data model was first analyzed to determine the inherit object classes and their attributes. These were entered into Stanford Medical Informatics' Protege ontology tool and annotated using definitions from the SPASE documentation. Further analysis of the data model resulted in the addition of class relationships. Finally attributes and relationships that support broad-scope interoperability were added from research associated with the Object-Oriented Data Technology task. To validate the ontology and produce a knowledge base, example data products were ingested. The capture of the data model as an ontology results in a more formal specification of the model. The Protege software is also a powerful management tool and supports plug-ins that produce several graphical notations as output. The stated purpose of the semantic web is to support machine understanding of web-based information. Protege provides an export capability to RDF/XML and RDFS/XML for this purpose. Several research efforts use RDF/XML knowledge bases to provide semantic search. MIT's Simile/Longwell project provides both facet- and text-based search using a suite of metadata browsers and the text-based search engine Lucene. Using the Protege generated RDF knowledge-base a semantic search application was easily built and deployed to run as a web application. Configuration files specify the object attributes and values to be designated as facets (i.e. search) constraints. Semantic web technologies provide