Science.gov

Sample records for ruminal fermentation urinary

  1. Ruminal Fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminal fermentation is an exergonic process that converts feedstuffs into short chain volatile fatty acids (VFA), CO2, CH4, NH3, and heat. Some of the free energy is trapped as ATP and this energy is used to drive the growth of anaerobic ruminal microorganisms. The ruminant animals absorb VFA and...

  2. Manipulating ruminal fermentation: a microbial ecological perspective.

    PubMed

    Weimer, P J

    1998-12-01

    The essential role of ruminal microflora in ruminant nutrition provides the potential for improvement in animal production via altering the numbers or activities of specific classes of microorganisms. Successful alterations will be facilitated by an understanding of the microbial ecology of the rumen based on its mechanistic underpinnings. Demonstrated improvements in ruminal fermentation can be traced to their consonance with well-established principles of microbial ecology (niche occupancy, selective pressure, adaptation, and interactions) and the thermodynamics and kinetics of substrate utilization. Application of these principles to several proposed alterations of the ruminal bacterial population allows a prediction of their relative feasibility. Improving fiber digestion, decreasing protein degradation, and detoxifying feed components that are present in low concentrations will be difficult to achieve in the rumen and are best approached by altering the feed, either genetically or with postharvest treatment. By contrast, the detoxification of feed components present in high concentration, and redirection of electron disposal away from methanogenesis, are more productive targets for microbiological research.

  3. Bacterial fermentation in the gastrointestinal tract of non-ruminants: influence of fermented feeds and fermentable carbohydrates.

    PubMed

    Niba, A T; Beal, J D; Kudi, A C; Brooks, P H

    2009-10-01

    The search for alternatives to in-feed antibiotics in animal nutrition has highlighted the role dietary modulation can play in improving gut health. Current antibiotic replacement strategies have involved the use of microbes beneficial to health (probiotics) or fermentable carbohydrates (prebiotics) or both (synbiotics). The present review recognises the contribution of fermented feeds and fermentable carbohydrates in improving the gut environment in non-ruminants. It proposes the screening of probiotic bacteria for the production of fermented feeds and supplementation of these feeds with fermentable carbohydrates prior to feeding animals. It is suggested that the term 'fermbiotics' should be used to describe this intervention strategy. PMID:19283504

  4. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.

    PubMed

    Aschenbach, J R; Penner, G B; Stumpff, F; Gäbel, G

    2011-04-01

    Highly fermentable diets are rapidly converted to organic acids [i.e., short-chain fatty acids (SCFA) and lactic acid] within the rumen. The resulting release of protons can constitute a challenge to the ruminal ecosystem and animal health. Health disturbances, resulting from acidogenic diets, are classified as subacute and acute acidosis based on the degree of ruminal pH depression. Although increased acid production is a nutritionally desired effect of increased concentrate feeding, the accumulation of protons in the rumen is not. Consequently, mechanisms of proton removal and their quantitative importance are of major interest. Saliva buffers (i.e., bicarbonate, phosphate) have long been identified as important mechanisms for ruminal proton removal. An even larger proportion of protons appears to be removed from the rumen by SCFA absorption across the ruminal epithelium, making efficiency of SCFA absorption a key determinant for the individual susceptibility to subacute ruminal acidosis. Proceeding initially from a model of exclusively diffusional absorption of fermentation acids, several protein-dependent mechanisms have been discovered over the last 2 decades. Although the molecular identity of these proteins is mostly uncertain, apical acetate absorption is mediated, to a major degree, via acetate-bicarbonate exchange in addition to another nitrate-sensitive, bicarbonate-independent transport mechanism and lipophilic diffusion. Propionate and butyrate also show partially bicarbonate-dependent transport modes. Basolateral efflux of SCFA and their metabolites has to be mediated primarily by proteins and probably involves the monocarboxylate transporter (MCT1) and anion channels. Although the ruminal epithelium removes a large fraction of protons from the rumen, it also recycles protons to the rumen via apical sodium-proton exchanger, NHE. The latter is stimulated by ruminal SCFA absorption and salivary Na(+) secretion and protects epithelial integrity. Finally

  5. In vitro ruminal fermentation of treated alfalfa silage using ruminal inocula from high and low feed-efficient lactating cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to assess the effect of two additives on alfalfa silage and on in vitro ruminal fermentation when using ruminal inocula prepared from high feed-efficient (HE) and low feed-efficient (LE) lactating cows. Second and third cut alfalfa was harvested at 40% bloom stage, treated with con...

  6. Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals.

    PubMed

    Munn, Adam J; Streich, W Jürgen; Hummel, Jürgen; Clauss, Marcus

    2008-09-01

    It has been suggested that large foregut-fermenting marsupial herbivores, the kangaroos and their relatives, may be less constrained by food intake limitations as compared with ruminants, due mainly to differences in their digestive morphology and management of ingesta particles through the gut. In particular, as the quality of forage declines with increasing contents of plant fibre (cellulose, hemicelluloses and lignin; measured as neutral-detergent fibre, NDF), the tubiform foregut of kangaroos may allow these animals to maintain food intakes more so than ruminants like sheep, which appear to be limited by fibrous bulk filling the foregut and truncating further ingestion. Using available data on dry matter intake (DMI, g kg(-0.75) d(-1)), ingesta mean retention time (MRT, h), and apparent digestibility, we modelled digestible dry matter intake (DDMI) and digestible energy intake (DEI) by ruminant sheep (Ovis aries) and by the largest marsupial herbivore, the red kangaroo (Macropus rufus). Sheep achieved higher MRTs on similar DMIs, and hence sheep achieved higher DDMIs for any given level of DMI as compared with kangaroos. Interestingly, MRT declined in response to increasing DMI in a similar pattern for both species, and the association between DMI and plant NDF contents did not support the hypothesis that kangaroos are less affected by increasing fibre relative to sheep. However, when DEI was modelled according to DDMIs and dietary energy contents, we show that the kangaroos could meet their daily maintenance energy requirements (MER) at lower levels of DMI and on diets with higher fibre contents compared with sheep, due largely to the kangaroos' lower absolute maintenance and basal energy metabolisms compared with eutherians. These results suggest that differences in the metabolic set-point of different species can have profound effects on their nutritional niche, even when their digestive constraints are similar, as was the case for these ruminant and non-ruminant

  7. Modelling digestive constraints in non-ruminant and ruminant foregut-fermenting mammals.

    PubMed

    Munn, Adam J; Streich, W Jürgen; Hummel, Jürgen; Clauss, Marcus

    2008-09-01

    It has been suggested that large foregut-fermenting marsupial herbivores, the kangaroos and their relatives, may be less constrained by food intake limitations as compared with ruminants, due mainly to differences in their digestive morphology and management of ingesta particles through the gut. In particular, as the quality of forage declines with increasing contents of plant fibre (cellulose, hemicelluloses and lignin; measured as neutral-detergent fibre, NDF), the tubiform foregut of kangaroos may allow these animals to maintain food intakes more so than ruminants like sheep, which appear to be limited by fibrous bulk filling the foregut and truncating further ingestion. Using available data on dry matter intake (DMI, g kg(-0.75) d(-1)), ingesta mean retention time (MRT, h), and apparent digestibility, we modelled digestible dry matter intake (DDMI) and digestible energy intake (DEI) by ruminant sheep (Ovis aries) and by the largest marsupial herbivore, the red kangaroo (Macropus rufus). Sheep achieved higher MRTs on similar DMIs, and hence sheep achieved higher DDMIs for any given level of DMI as compared with kangaroos. Interestingly, MRT declined in response to increasing DMI in a similar pattern for both species, and the association between DMI and plant NDF contents did not support the hypothesis that kangaroos are less affected by increasing fibre relative to sheep. However, when DEI was modelled according to DDMIs and dietary energy contents, we show that the kangaroos could meet their daily maintenance energy requirements (MER) at lower levels of DMI and on diets with higher fibre contents compared with sheep, due largely to the kangaroos' lower absolute maintenance and basal energy metabolisms compared with eutherians. These results suggest that differences in the metabolic set-point of different species can have profound effects on their nutritional niche, even when their digestive constraints are similar, as was the case for these ruminant and non-ruminant

  8. Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations

    PubMed Central

    Weimer, Paul J.

    2015-01-01

    The ruminal microbial community is remarkably diverse, containing 100s of different bacterial and archaeal species, plus many species of fungi and protozoa. Molecular studies have identified a “core microbiome” dominated by phyla Firmicutes and Bacteroidetes, but also containing many other taxa. The rumen provides an ideal laboratory for studies on microbial ecology and the demonstration of ecological principles. In particular, the microbial community demonstrates both redundancy (overlap of function among multiple species) and resilience (resistance to, and capacity to recover from, perturbation). These twin properties provide remarkable stability that maintains digestive function for the host across a range of feeding and management conditions, but they also provide a challenge to engineering the rumen for improved function (e.g., improved fiber utilization or decreased methane production). Direct ruminal dosing or feeding of probiotic strains often fails to establish the added strains, due to intensive competition and amensalism from the indigenous residents that are well-adapted to the historical conditions within each rumen. Known exceptions include introduced strains that can fill otherwise unoccupied niches, as in the case of specialist bacteria that degrade phytotoxins such as mimosine or fluoroacetate. An additional complicating factor in manipulating the ruminal fermentation is the individuality or host specificity of the microbiota, in which individual animals contain a particular community whose species composition is capable of reconstituting itself, even following a near-total exchange of ruminal contents from another herd mate maintained on the same diet. Elucidation of the interactions between the microbial community and the individual host that establish and maintain this specificity may provide insights into why individual hosts vary in production metrics (e.g., feed efficiency or milk fat synthesis), and how to improve herd performance. PMID

  9. Effects of ruminal doses of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells.

    PubMed

    Oba, M; Mewis, J L; Zhining, Z

    2015-01-01

    The objective was to evaluate effects of a ruminal dose of sucrose, lactose, and corn starch on ruminal fermentation and expression of genes in ruminal epithelial cells. Six ruminally cannulated nonlactating nonpregnant Holstein cows (body weight=725±69.6kg) were assigned to treatments in a 3×3 Latin square design with 7-d periods; 1d for data and sample collection followed by a 6-d washout period. Cows were fed a diet containing whole-crop barley silage and dry ground corn, and dietary neutral detergent fiber and crude protein contents were 41.8 and 13.2% [dry matter (DM) basis], respectively. Treatment was a pulse-dose of sucrose, lactose, and corn starch (3.0, 3.0, and 2.85kg of DM, respectively; providing similar amounts of hexose across the treatments) through the ruminal cannulas. All treatments were given with alfalfa silage (1.75kg DM) to prevent acute rumen acidosis. Rumen pH was continuously monitored, and rumen fluid was sampled at 0, 30, 60, 90, 120, 150, and 180min after the dose. In addition, ruminal papillae were sampled from the ventral sac at 180min after the dose. Ruminal dosing with sucrose and lactose, compared with corn starch, increased ruminal total volatile fatty acid concentration and molar proportion of butyrate from 60 to 180min after the dose, and expression of genes for sodium hydrogen exchanger isoforms 1 and 2, and ATPase isoform 1 in ruminal epithelial cells. Ruminal dosing with sucrose, compared with lactose and corn starch, decreased rumen pH from 120 to 180min after the dose and molar proportion of acetate in ruminal fluid from 60 to 150min after the dose, and increased molar proportion of propionate in ruminal fluid from 60 to 150min, and expression of genes involved in butyrate metabolism (3-hydroxy-3-methylglutaryl-coenzyme A synthase isoform 1) and anion exchange across ruminal apical cell membrane (putative anion transporter isoform 1). These results suggest that replacing dietary starch with sugars may affect ruminal

  10. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep.

    PubMed

    Rira, M; Morgavi, D P; Archimède, H; Marie-Magdeleine, C; Popova, M; Bousseboua, H; Doreau, M

    2015-01-01

    The objective of this work was to study nutritional strategies for decreasing methane production by ruminants fed tropical diets, combining in vitro and in vivo methods. The in vitro approach was used to evaluate the dose effect of condensed tannins (CT) contained in leaves of Gliricidia sepium, Leucaena leucocephala, and Manihot esculenta (39, 75, and 92 g CT/kg DM, respectively) on methane production and ruminal fermentation characteristics. Tannin-rich plants (TRP) were incubated for 24 h alone or mixed with a natural grassland hay based on Dichanthium spp. (control plant), so that proportions of TRP were 0, 0.25, 0.5, 0.75, and 1.0. Methane production, VFA concentration, and fermented OM decreased with increased proportions of TRP. Numerical differences on methane production and VFA concentration among TRP sources may be due to differences in their CT content, with greater effects for L. leucocephala and M. esculenta than for G. sepium. Independently of TRP, the response to increasing doses of CT was linear for methane production but quadratic for VFA concentration. As a result, at moderate tannin dose, methane decreased more than VFA. The in vivo trial was conducted to investigate the effect of TRP on different ruminal microbial populations. To this end, 8 rumen-cannulated sheep from 2 breeds (Texel and Blackbelly) were used in two 4 × 4 Latin square designs. Diets were fed ad libitum and were composed of the same feeds used for the in vitro trial: control plant alone or combined with pellets made from TRP leaves at 44% of the diet DM. Compared to TRP, concentration of Ruminococcus flavefaciens was greater for the control diet and concentration of Ruminococcus albus was least for the control diet. The methanogen population was greater for Texel than for Blackbelly. By contrast, TRP-containing diets did not affect protozoa or Fibrobacter succinogenes numbers. Hence, TRP showed potential for mitigating methane production by ruminants. These findings suggest

  11. Potential of tannin-rich plants for modulating ruminal microbes and ruminal fermentation in sheep.

    PubMed

    Rira, M; Morgavi, D P; Archimède, H; Marie-Magdeleine, C; Popova, M; Bousseboua, H; Doreau, M

    2015-01-01

    The objective of this work was to study nutritional strategies for decreasing methane production by ruminants fed tropical diets, combining in vitro and in vivo methods. The in vitro approach was used to evaluate the dose effect of condensed tannins (CT) contained in leaves of Gliricidia sepium, Leucaena leucocephala, and Manihot esculenta (39, 75, and 92 g CT/kg DM, respectively) on methane production and ruminal fermentation characteristics. Tannin-rich plants (TRP) were incubated for 24 h alone or mixed with a natural grassland hay based on Dichanthium spp. (control plant), so that proportions of TRP were 0, 0.25, 0.5, 0.75, and 1.0. Methane production, VFA concentration, and fermented OM decreased with increased proportions of TRP. Numerical differences on methane production and VFA concentration among TRP sources may be due to differences in their CT content, with greater effects for L. leucocephala and M. esculenta than for G. sepium. Independently of TRP, the response to increasing doses of CT was linear for methane production but quadratic for VFA concentration. As a result, at moderate tannin dose, methane decreased more than VFA. The in vivo trial was conducted to investigate the effect of TRP on different ruminal microbial populations. To this end, 8 rumen-cannulated sheep from 2 breeds (Texel and Blackbelly) were used in two 4 × 4 Latin square designs. Diets were fed ad libitum and were composed of the same feeds used for the in vitro trial: control plant alone or combined with pellets made from TRP leaves at 44% of the diet DM. Compared to TRP, concentration of Ruminococcus flavefaciens was greater for the control diet and concentration of Ruminococcus albus was least for the control diet. The methanogen population was greater for Texel than for Blackbelly. By contrast, TRP-containing diets did not affect protozoa or Fibrobacter succinogenes numbers. Hence, TRP showed potential for mitigating methane production by ruminants. These findings suggest

  12. Total volatile fatty acid concentrations are unreliable estimators of treatment effects on ruminal fermentation in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile fatty acid concentrations ([VFA], mM) have long been used to assess impact of dietary treatments on ruminal fermentation in vivo. However, discrepancies in statistical results between VFA and VFA pool size (VFAmol), possibly related to ruminal digesta liquid amount (LIQ, kg), suggest issues...

  13. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.

    PubMed

    Elwakeel, E A; Amachawadi, R G; Nour, A M; Nasser, M E A; Nagaraja, T G; Titgemeyer, E C

    2013-01-01

    The objective of these studies was to characterize some factors affecting lysine degradation by mixed ruminal bacteria and by ruminal Fusobacterium necrophorum. Mixed ruminal bacteria degraded lysine, and addition of pure cultures of F. necrophorum did not increase lysine degradation. Addition of acetic or propionic acid strikingly reduced NH(3) production from lysine by mixed ruminal bacteria at pH 6, but not at pH 7. Although typical ruminal environments with acidic pH and normal concentrations of volatile fatty acids might inhibit lysine degradation by F. necrophorum, ruminal fluid contained enough bacteria with a lysine-degrading capacity to ferment 50 mM lysine in vitro. Of 7 strains of ruminal F. necrophorum tested, all grew on both lactate and lysine as the primary energy source. Both subspecies of ruminal F. necrophorum (necrophorum and funduliforme) used lysine as a primary C and energy source. Lysine and glutamic acid were effectively fermented by F. necrophorum, but alanine and tryptophan were not, and histidine and methionine were fermented only to a minor extent. The end products of lactate fermentation by F. necrophorum were propionate and acetate, and those of lysine degradation were butyrate and acetate. Fermentation of glutamic acid by F. necrophorum yielded acetate and butyrate in a ratio near to 2:1. The minimum inhibitory concentration of tylosin for F. necrophorum was not dependent on whether bacteria were grown with lactate or lysine, but F. necrophorum was more susceptible to monensin when grown on lysine than on lactate. Although F. necrophorum is generally resistant to monensin, the ionophore may reduce lysine degradation by F. necrophorum in the rumen. The essential oil components limonene, at 20 or 100 μg/mL, and thymol, at 100 μg/mL, inhibited F. necrophorum growth, whereas eugenol, guaiacol, and vanillin had no effect. Our findings may lead to ways to minimize ruminal lysine degradation and thus increase its availability to the animal

  14. Can the Heat of Ruminal Fermentation be Manipulated to Decrease Heat Stress?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The most straightforward way of decreasing the heat of fermentation is to bypass ruminal fermentation altogether. This strategy can be achieved by using feed materials not degradable the rumen or treating feeds so there is a greater escape or by-pass to the lower gut. Fatty acids arising from trig...

  15. Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community.

    PubMed

    Xiao, J X; Alugongo, G M; Chung, R; Dong, S Z; Li, S L; Yoon, I; Wu, Z H; Cao, Z J

    2016-07-01

    The aim of this study was to evaluate the effects of Saccharomyces cerevisiae fermentation products (SCFP) in the calf starter and milk on ruminal fermentation, gastrointestinal morphology, and microbial community in the first 56 d of life. Thirty Holstein bull calves were randomly assigned to 1 of 3 groups: a texturized calf starter containing 0 (CON), 0.5, or 1% SCFP (XPC, Diamond V, Cedar Rapids, IA) of dry matter from d 4 to 56. In addition, the XPC-supplemented calves were fed with 1 g/d SCFP (SmartCare, Diamond V, Cedar Rapids, IA) in milk from d 2 to 30. All calves were fed 4 L of colostrum within 1 h of birth and were subsequently fed milk twice daily until weaned on d 56. Rumen fluid was collected by an esophageal tube 4 h after the morning feeding on d 28 and 56 to determine ruminal pH, ammonia-N, and volatile fatty acids concentrations. On d 56, 15 (5 per treatment) calves were harvested and slaughter weight, gastrointestinal morphology parameters, and bacteria community were recorded. Papilla length, width, and surface area were measured from 5 locations within the rumen. Villus height, width, surface area, crypt depth, and villus height-to-crypt depth ratio were measured in the duodenum, jejunum, and ileum. Next-generation sequencing technology was used to test the microbial community of the rumen and duodenum samples on d 28 and 56. Data were analyzed by MIXED procedure in SAS (SAS Institute Inc., Cary, NC) with contrast statements to declare CON versus all SCFP and 0.5 versus 1% SCFP in starter grains. Ruminal pH, ammonia-N, and total volatile fatty acids were not altered by SCFP. However, the supplemented groups exhibited higher ruminal butyrate concentrations coinciding with higher Butyrivibrio and lower Prevotella richness than CON group. Supplementation of SCFP increased papilla length in the rumen. In the small intestine, SCFP reduced crypt depth of jejunum, and increased villus height-to-crypt depth ratio in all segments of the small intestine

  16. Effects of dietary sulfur concentration and forage-to-concentrate ratio on ruminal fermentation, sulfur metabolism, and short-chain fatty acid absorption in beef heifers.

    PubMed

    Amat, S; McKinnon, J J; Penner, G B; Hendrick, S

    2014-02-01

    This study evaluated the effects of dietary S concentration and forage-to-concentrate ratio (F:C) on ruminal fermentation, S metabolism, and short-chain fatty acid (SCFA) absorption in beef heifers. Sixteen ruminally cannulated heifers (initial BW 628 ± 48 kg) were used in a randomized complete block design with a 2 × 2 factorial treatment arrangement. The main factors included F:C (4% forage vs. 51% forage, DM basis) and the S concentration, which was modified using differing sources of wheat dried distillers grains with solubles (DDGS) to achieve low- and high-S diets (LS = 0.30% vs. HS = 0.67% S on a DM basis). Elemental S was also added to increase the S content for the HS diets. Serum sulfate concentration from blood, sulfide (S(2-)), and SCFA concentrations from ruminal fluid, hydrogen sulfide (H2S) concentration from the ruminal gas cap, and urinary sulfate concentration were determined. Continuous rumen pH and SCFA (acetate, butyrate, and propionate) absorption were measured. There were no interactions between S concentration and F:C. The F:C did not affect DMI (P = 0.26) or ruminal S metabolite concentrations (P ≥ 0.19), but ruminal pH was lower (P < 0.01) and SCFA absorption was greater (P < 0.01) for low F:C diets. Heifers fed HS diets had less DMI (P < 0.01) but greater ruminal pH (P < 0.01), greater concentrations of ruminal H2S (P < 0.01) and serum sulfate (P < 0.01), and greater urinary sulfate concentration (P < 0.01) and output (P < 0.01) relative to heifers fed LS diets. Ruminal H2S was positively correlated with serum sulfate (r = 0.89; P < 0.01). Ruminal acetate concentration was not affected (P = 0.26) by dietary S concentration. Heifers fed the HS diet had lower (P = 0.01) ruminal propionate concentration and tended to have lower (P = 0.06) butyrate concentration than heifers fed the LS diet. Ruminal acetate was greater (P = 0.01) and butyrate was less (P < 0.01) with the high F:C diet than the low F:C diet. Both HS (P = 0.06) and low F

  17. Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System

    PubMed Central

    Kim, Eun Tae; Hwang, Hee Soon; Lee, Sang Min; Lee, Shin Ja; Lee, Il Dong; Lee, Su Kyoung; Oh, Da Som; Lim, Jung Hwa; Yoon, Ho Baek; Jeong, Ha Yeon; Im, Seok Ki; Lee, Sung Sill

    2016-01-01

    This study was aimed to evaluate the in vitro effects of medicinal herb extracts (MHEs) on ruminal fermentation characteristics and the inhibition of protozoa to reduce methane production in the rumen. A fistulated Hanwoo was used as a donor of rumen fluid. The MHEs (T1, Veratrum patulum; T2, Iris ensata var. spontanea; T3, Arisaema ringens; T4, Carduus crispus; T5, Pueraria thunbergiana) were added to the in vitro fermentation bottles containing the rumen fluid and medium. Total volatile fatty acid (tVFA), total gas production, gas profiles, and the ruminal microbe communities were measured. The tVFA concentration was increased or decreased as compared to the control, and there was a significant (p<0.05) difference after 24 h incubation. pH and ruminal disappearance of dry matter did not show significant difference. As the in vitro ruminal fermentation progressed, total gas production in added MHEs was increased, while the methane production was decreased compared to the control. In particular, Arisaema ringens extract led to decrease methane production by more than 43%. In addition, the result of real-time polymerase chain reaction indicted that the protozoa population in all added MHEs decreased more than that of the control. In conclusion, the results of this study indicated that MHEs could have properties that decrease ruminal methanogenesis by inhibiting protozoa species and might be promising feed additives for ruminants. PMID:27004810

  18. Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System.

    PubMed

    Kim, Eun Tae; Hwang, Hee Soon; Lee, Sang Min; Lee, Shin Ja; Lee, Il Dong; Lee, Su Kyoung; Oh, Da Som; Lim, Jung Hwa; Yoon, Ho Baek; Jeong, Ha Yeon; Im, Seok Ki; Lee, Sung Sill

    2016-09-01

    This study was aimed to evaluate the in vitro effects of medicinal herb extracts (MHEs) on ruminal fermentation characteristics and the inhibition of protozoa to reduce methane production in the rumen. A fistulated Hanwoo was used as a donor of rumen fluid. The MHEs (T1, Veratrum patulum; T2, Iris ensata var. spontanea; T3, Arisaema ringens; T4, Carduus crispus; T5, Pueraria thunbergiana) were added to the in vitro fermentation bottles containing the rumen fluid and medium. Total volatile fatty acid (tVFA), total gas production, gas profiles, and the ruminal microbe communities were measured. The tVFA concentration was increased or decreased as compared to the control, and there was a significant (p<0.05) difference after 24 h incubation. pH and ruminal disappearance of dry matter did not show significant difference. As the in vitro ruminal fermentation progressed, total gas production in added MHEs was increased, while the methane production was decreased compared to the control. In particular, Arisaema ringens extract led to decrease methane production by more than 43%. In addition, the result of real-time polymerase chain reaction indicted that the protozoa population in all added MHEs decreased more than that of the control. In conclusion, the results of this study indicated that MHEs could have properties that decrease ruminal methanogenesis by inhibiting protozoa species and might be promising feed additives for ruminants.

  19. Effects of Medicinal Herb Extracts on In vitro Ruminal Methanogenesis, Microbe Diversity and Fermentation System.

    PubMed

    Kim, Eun Tae; Hwang, Hee Soon; Lee, Sang Min; Lee, Shin Ja; Lee, Il Dong; Lee, Su Kyoung; Oh, Da Som; Lim, Jung Hwa; Yoon, Ho Baek; Jeong, Ha Yeon; Im, Seok Ki; Lee, Sung Sill

    2016-09-01

    This study was aimed to evaluate the in vitro effects of medicinal herb extracts (MHEs) on ruminal fermentation characteristics and the inhibition of protozoa to reduce methane production in the rumen. A fistulated Hanwoo was used as a donor of rumen fluid. The MHEs (T1, Veratrum patulum; T2, Iris ensata var. spontanea; T3, Arisaema ringens; T4, Carduus crispus; T5, Pueraria thunbergiana) were added to the in vitro fermentation bottles containing the rumen fluid and medium. Total volatile fatty acid (tVFA), total gas production, gas profiles, and the ruminal microbe communities were measured. The tVFA concentration was increased or decreased as compared to the control, and there was a significant (p<0.05) difference after 24 h incubation. pH and ruminal disappearance of dry matter did not show significant difference. As the in vitro ruminal fermentation progressed, total gas production in added MHEs was increased, while the methane production was decreased compared to the control. In particular, Arisaema ringens extract led to decrease methane production by more than 43%. In addition, the result of real-time polymerase chain reaction indicted that the protozoa population in all added MHEs decreased more than that of the control. In conclusion, the results of this study indicated that MHEs could have properties that decrease ruminal methanogenesis by inhibiting protozoa species and might be promising feed additives for ruminants. PMID:27004810

  20. Inhibition of ruminal cellulose fermentation by extracts of the perennial legume cicer milkvetch (Astragalus cicer).

    PubMed

    Weimer, P J; Hatfield, R D; Buxton, D R

    1993-02-01

    Cicer milkvetch (Astragalus cicer L.) is a perennial legume used as a pasture or rangeland plant for ruminants. A study was undertaken to determine whether reported variations in its ruminal digestibility may be related to the presence of an antinutritive material. In vitro fermentation of neutral detergent fiber (NDF) of cicer milkvetch by mixed rumen microflora was poorer than was the fermentation of NDF in alfalfa (Medicago sativa L.). Fermentation of cicer milkvetch NDF was improved by preextraction of the ground herbage with water for 3 h at 39 degrees C. Such water extracts selectively inhibited in vitro fermentation of pure cellulose by mixed ruminal microflora and by pure cultures of the ruminal bacteria Ruminococcus flavefaciens FD-1 and Fibrobacter succinogenes S85. Inhibition of the cellulose fermentation by mixed ruminal microflora was dependent upon the concentration of cicer milkvetch extract and was overcome upon prolonged incubation. Pure cultures exposed to the extract did not recover from inhibition, even after long incubation times, unless the inhibitory agent was removed (viz., by dilution of inhibited cultures into fresh medium). The extract did not affect the fermentation of cellobiose by R. flavefaciens but did cause some inhibition of cellobiose fermentation by F. succinogenes. Moreover, the extracts did not inhibit hydrolysis of crystalline cellulose, carboxymethyl cellulose, or p-nitrophenylcellobioside by supernatants of these pure cultures of cellulolytic bacteria or by a commercial cellulase preparation from the fungus Trichoderma reesei. The agent caused cellulose-adherent cells to detach from cellulose fibers, suggesting that the agent may act, at least in part, by disrupting the glycocalyx necessary for adherence to, and rapid digestion of, cellulose.

  1. Supplementation of alfalfa (Medicago sativa) with condensed tannin-containing pellets of sericea lespedeza (Lespedeza cuneata): Effects on ruminant urinary urea excretion and digestibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some feedstuffs that contain condensed tannins can reduce urinary urea excretion without compromising nutrition for ruminant livestock. This results in reducing environmental impact, improving productivity and enhancing sustainability of ruminant farming operations. In some situations there are adva...

  2. Redox mediators modify end product distribution in biomass fermentations by mixed ruminal microbes in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fermentation system of mixed ruminal bacteria is capable of generating large amounts of short-chain volatile fatty acids (VFA) via the carboxylate platform in vitro. These VFAs are subject to elongation to larger, more energy-dense products through reverse beta-oxidation. This study examined the...

  3. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    PubMed Central

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  4. In vitro ruminal fermentation of organic acids common in forage.

    PubMed Central

    Russell, J B; Van Soest, P J

    1984-01-01

    Mixed rumen bacteria from cows fed either timothy hay or a 60% concentrate were incubated with 7.5 mM citrate, trans-aconitate, malate, malonate, quinate, and shikimate. Citrate, trans-aconitate, and malate were fermented at faster rates than malonate, quinate, and shikimate. Acetate was the primary fermentation product for all six acids. Quinate and shikimate fermentations gave rist to butyrate, whereas malate and malonate produced significant amounts of propionic acid. High-pressure liquid chromatography of fermentation products from trans-aconitate incubations revealed a compound that was subsequently identified as tricarballylate. As much as 40% of the trans-aconitate acid was converted to tricarballylate, and tricarballylate was fermented slowly. The slow rate of tricarballylate metabolism by mixed rumen bacteria and its potential as a magnesium chelator suggest that tricarballylate formation could be an important factor in the hypomagnesemia that leads to grass tetany. PMID:6696413

  5. The effect of replacing corn with glycerol on ruminal bacteria in continuous culture fermenters.

    PubMed

    AbuGhazaleh, A A; Abo El-Nor, S; Ibrahim, S A

    2011-06-01

    The effects of substituting corn with glycerol on DNA concentration of selected ruminal bacteria were investigated using continuous fermenters. Four continuous culture fermenters were used in a 4 × 4 Latin Square design with four 10 days consecutive periods. Treatment diets (60:40 forage to concentrate) were fed at 45 g/day dry matter (DM) in three equal portions. Glycerol (0.995 g/g glycerol) was used to replace corn in a grain mix at proportions of 0% (T0; control), 15% (T15), 30% (T30) and 45% (T45). On day 10 of each period, samples were collected from each fermenter 3 h after the morning feeding and analysed for volatile fatty acid and bacterial DNA concentration. Glycerol substitution was related to significantly higher butyrate, valerate and isovalerate concentrations. Compared with the T0 diet, acetate concentration was significantly lower with the T30 and T45 diets whilst propionate concentration was higher only with the T45 diet. The DNA concentrations for Butyrivibrio fibrisolvens and Selenomonas ruminantium decreased with the T30 and T45 diets compared with the T0 diet. No differences in the DNA concentrations for Ruminococcus albus and Succinivibrio dextrinosolvens amongst diets were observed. The findings show that substituting 15% of the dietary corn with glycerol had no substantive effects on fermentation processing or ruminal bacteria. Higher substitution levels, however, may adversely affect ruminal bacteria and negatively impact acetate production. PMID:20880288

  6. Effects of lauric acid on ruminal protozoal numbers and fermentation pattern and milk production in lactating dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were to evaluate lauric acid (LA) as a practical agent to suppress ruminal protozoa (RP), and to assess the effects of RP suppression on fermentation patterns and milk production in dairy cows. In experiment 1, six Holstein cows fitted with ruminal cannulae were used in ...

  7. Redundancy, resiliency, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ruminal microbial community is remarkably diverse, containing hundreds of different bacterial and archaeal species, plus many species of fungi and protozoa. Molecular studies have identified a “core microbiome” dominated by members of the phyla Firmicutes and Bacteroidetes, but also containing m...

  8. Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria.

    PubMed

    Weimer, P J; French, A D; Calamari, T A

    1991-11-01

    In addition to its usual native crystalline form (cellulose I), cellulose can exist in a variety of alternative crystalline forms (allomorphs) which differ in their unit cell dimensions, chain packing schemes, and hydrogen bonding relationships. We prepared, by various chemical treatments, four different alternative allomorphs, along with an amorphous (noncrystalline) cellulose which retained its original molecular weight. We then examined the kinetics of degradation of these materials by two species of ruminal bacteria and by inocula from two bovine rumens. Ruminococcus flavefaciens FD-1 and Fibrobacter succinogenes S85 were similar to one another in their relative rates of digestion of the different celluloses, which proceeded in the following order: amorphous > III(I) > IV(I) > III(II) > I > II. Unlike F. succinogenes, R. flavefaciens did not degrade cellulose II, even after an incubation of 3 weeks. Comparisons of the structural features of these allomorphs with their digestion kinetics suggest that degradation is enhanced by skewing of adjacent sheets in the microfibril, but is inhibited by intersheet hydrogen bonding and by antiparallelism in adjacent sheets. Mixed microflora from the bovine rumens showed in vitro digestion rates quite different from one another and from those of both of the two pure bacterial cultures, suggesting that R. flavefaciens and F. succinogenes (purportedly among the most active of the cellulolytic bacteria in the rumen) either behave differently in the ruminal ecosystem from the way they do in pure culture or did not play a major role in cellulose digestion in these ruminal samples.

  9. Fermentative characteristics and fibrolytic activities of anaerobic gut fungi isolated from wild and domestic ruminants.

    PubMed

    Paul, Shyam S; Kamra, Devki N; Sastry, Vadali R B

    2010-08-01

    Fermentative characteristics and fibrolytic enzyme activities of anaerobic gut fungi from wild (17 isolates) and domestic ruminants (15 isolates) were examined. In a medium containing 0.5% wheat straw and 0.02% cellobiose as energy source, activities of carboxymethyl cellulase (CMCase), avicelase, xylanase, acetyl esterase and protease produced by the fungal isolates were investigated. Average activity of CMCase (17.4 vs. 8.25 mIU ml(-1)), acetyl esterase (134 vs. 57 mIU ml(-1)) and protease (4400 vs. 1683 mIU ml(-1)) were significantly higher in isolates from wild ruminants than those from domestic ruminants. Xylanase and avicelase activities were comparable. When compared irrespective of source, fungal isolates having monocentric growth pattern produced more fibrolytic enzymes than isolates having polycentric growth pattern. CMCase, xylanase, avicelase activities were highest in Neocallimastix isolates. Acetyl esterase activity was highest in Piromyces and Neocallimastix isolates. Protease activity was highest in Piromyces isolates followed closely by Neocallimastix isolates. Between isolates from wild and domestic ruminants few differences were observed in pattern of carbohydrate utilisation and end products of fermentation. Inter-strain differences in the end product formation were apparent. All of the isolates produced acetate, lactate and formate; only a few isolates produced succinate. For isolation of superior fibrolytic isolates of anaerobic fungi, greater emphasis should be given to the screening of enzyme activities of isolates of genera Neocallimastix and Piromyces.

  10. Ruminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro.

    PubMed

    Anderson, Robin C; Ripley, Laura H; Bowman, Jan G P; Callaway, Todd R; Genovese, Kenneth J; Beier, Ross C; Harvey, Roger B; Nisbet, David J

    2016-01-01

    Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35-87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 μmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 μmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation in

  11. Ruminal Fermentation of Anti-Methanogenic Nitrate- and Nitro-Containing Forages In Vitro

    PubMed Central

    Anderson, Robin C.; Ripley, Laura H.; Bowman, Jan G. P.; Callaway, Todd R.; Genovese, Kenneth J.; Beier, Ross C.; Harvey, Roger B.; Nisbet, David J.

    2016-01-01

    Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) can accumulate in forages and be poisonous to animals if consumed in high enough amounts. These chemicals are also recognized as potent anti-methanogenic compounds, but plants naturally containing these chemicals have been studied little in this regard. Presently, we found that nitrate-, NPA-, or NPOH-containing forages effectively decreased methane production, by 35–87%, during in vitro fermentation by mixed cultures of ruminal microbes compared to fermentation by cultures incubated similarly with alfalfa. Methane production was further decreased during the incubation of mixed cultures also inoculated with Denitrobacterium detoxificans, a ruminal bacterium known to metabolize nitrate, NPA, and NPOH. Inhibition of methanogens within the mixed cultures was greatest with the NPA- and NPOH-containing forages. Hydrogen accumulated in all the mixed cultures incubated with forages containing nitrate, NPA or NPOH and was dramatically higher, exceeding 40 μmol hydrogen/mL, in mixed cultures incubated with NPA-containing forage but not inoculated with D. detoxificans. This possibly reflects the inhibition of hydrogenase-catalyzed uptake of hydrogen produced via conversion of 50 μmol added formate per milliliter to hydrogen. Accumulations of volatile fatty acids revealed compensatory changes in fermentation in mixed cultures incubated with the nitrate-, NPA-, and NPOH-containing forages as evidenced by lower accumulations of acetate, and in some cases, higher accumulations of butyrate and lower accumulations of ammonia, iso-buytrate, and iso-valerate compared to cultures incubated with alfalfa. Results reveal that nitrate, NPA, and NPOH that accumulate naturally in forages can be made available within ruminal incubations to inhibit methanogenesis. Further research is warranted to determine if diets can be formulated with nitrate-, NPA-, and NPOH-containing forages to achieve efficacious mitigation

  12. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation

    PubMed Central

    Ungerfeld, Emilio M.

    2015-01-01

    Research is being conducted with the objective of decreasing methane (CH4) production in the rumen, as methane emissions from ruminants are environmentally damaging and a loss of digestible energy to ruminants. Inhibiting ruminal methanogenesis generally results in accumulation of dihydrogen (H2), which is energetically inefficient and can inhibit fermentation. It would be nutritionally beneficial to incorporate accumulated H2 into propionate or butyrate production, or reductive acetogenesis. The objective of this analysis was to examine three possible physicochemical limitations to the incorporation of accumulated H2 into propionate and butyrate production, and reductive acetogenesis, in methanogenesis-inhibited ruminal batch and continuous cultures: (i) Thermodynamics; (ii) Enzyme kinetics; (iii) Substrate kinetics. Batch (N = 109) and continuous (N = 43) culture databases of experiments with at least 50% inhibition in CH4 production were used in this meta-analysis. Incorporation of accumulated H2 into propionate production and reductive acetogenesis seemed to be thermodynamically feasible but quite close to equilibrium, whereas this was less clear for butyrate. With regard to enzyme kinetics, it was speculated that hydrogenases of ruminal microorganisms may have evolved toward high-affinity and low maximal velocity to compete for traces of H2, rather than for high pressure accumulated H2. Responses so far obtained to the addition of propionate production intermediates do not allow distinguishing between thermodynamic and substrate kinetics control. PMID:26635743

  13. Limits to Dihydrogen Incorporation into Electron Sinks Alternative to Methanogenesis in Ruminal Fermentation.

    PubMed

    Ungerfeld, Emilio M

    2015-01-01

    Research is being conducted with the objective of decreasing methane (CH4) production in the rumen, as methane emissions from ruminants are environmentally damaging and a loss of digestible energy to ruminants. Inhibiting ruminal methanogenesis generally results in accumulation of dihydrogen (H2), which is energetically inefficient and can inhibit fermentation. It would be nutritionally beneficial to incorporate accumulated H2 into propionate or butyrate production, or reductive acetogenesis. The objective of this analysis was to examine three possible physicochemical limitations to the incorporation of accumulated H2 into propionate and butyrate production, and reductive acetogenesis, in methanogenesis-inhibited ruminal batch and continuous cultures: (i) Thermodynamics; (ii) Enzyme kinetics; (iii) Substrate kinetics. Batch (N = 109) and continuous (N = 43) culture databases of experiments with at least 50% inhibition in CH4 production were used in this meta-analysis. Incorporation of accumulated H2 into propionate production and reductive acetogenesis seemed to be thermodynamically feasible but quite close to equilibrium, whereas this was less clear for butyrate. With regard to enzyme kinetics, it was speculated that hydrogenases of ruminal microorganisms may have evolved toward high-affinity and low maximal velocity to compete for traces of H2, rather than for high pressure accumulated H2. Responses so far obtained to the addition of propionate production intermediates do not allow distinguishing between thermodynamic and substrate kinetics control.

  14. Effects of dietary supplementation of rumen-protected folic acid on rumen fermentation, degradability and excretion of urinary purine derivatives in growing steers.

    PubMed

    Wang, Cong; Liu, Qiang; Guo, Gang; Huo, WenJie; Ma, Le; Zhang, YanLi; Pei, CaiXia; Zhang, ShuanLin; Wang, Hao

    2016-12-01

    The present experiment was undertaken to determine the effects of dietary addition of rumen-protected folic acid (RPFA) on ruminal fermentation, nutrient degradability, enzyme activity and the relative quantity of ruminal cellulolytic bacteria in growing beef steers. Eight rumen-cannulated Jinnan beef steers averaging 2.5 years of age and 419 ± 1.9 kg body weight were used in a replicated 4 × 4 Latin square design. The four treatments comprised supplementation levels of 0 (Control), 70, 140 and 210 mg RPFA/kg dietary dry matter (DM). On DM basis, the ration consisted of 50% corn silage, 47% concentrate and 3% soybean oil. The DM intake (averaged 8.5 kg/d) was restricted to 95% of ad libitum intake. The intake of DM, crude protein (CP) and net energy for growth was not affected by treatments. In contrast, increasing RPFA supplementation increased average daily gain and the concentration of total volatile fatty acid and reduced ruminal pH linearly. Furthermore, increasing RPFA supplementation enhanced the acetate to propionate ratio and reduced the ruminal ammonia N content linearly. The ruminal effective degradability of neutral detergent fibre from corn silage and CP from concentrate improved linearly and was highest for the highest supplementation levels. The activities of cellobiase, xylanase, pectinase and α-amylase linearly increased, but carboxymethyl-cellulase and protease were not affected by the addition of RPFA. The relative quantities of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes increased linearly. With increasing RPFA supplementation levels, the excretion of urinary purine derivatives was also increased linearly. The present results indicated that the supplementation of RPFA improved ruminal fermentation, nutrient degradability, activities of microbial enzymes and the relative quantity of the ruminal cellulolytic bacteria in a dose-dependent manner. According to the conditions of this

  15. Effects of Coconut Materials on In vitro Ruminal Methanogenesis and Fermentation Characteristics.

    PubMed

    Kim, E T; Park, C G; Lim, D H; Kwon, E G; Ki, K S; Kim, S B; Moon, Y H; Shin, N H; Lee, S S

    2014-12-01

    The objective of this study was to evaluate the in vitro effects of coconut materials on ruminal methanogenesis and fermentation characteristics, in particular their effectiveness for mitigating ruminal methanogenesis. Fistulated Holstein cows were used as the donor of rumen fluid. Coconut materials were added to an in vitro fermentation incubated with rumen fluid-buffer mixture and timothy substrate for 24 h incubation. Total gas production, gas profiles, total volatile fatty acids (tVFAs) and the ruminal methanogens diversity were measured. Although gas profiles in added coconut oil and coconut powder were not significantly different, in vitro ruminal methane production was decreased with the level of reduction between 15% and 19% as compared to control, respectively. Coconut oil and coconut powder also inhibited gas production. The tVFAs concentration was increased by coconut materials, but was not affected significantly as compared to control. Acetate concentration was significantly lower (p<0.05), while propionate was significantly higher (p<0.05) by addition of the coconut materials than that of the control. The acetate:propionate ratio was significantly lowered with addition of coconut oil and coconut powder (p<0.05). The methanogens and ciliate-associated methanogens in all added coconut materials were shown to decrease as compared with control. This study showed that ciliate-associated methanogens diversity was reduced by more than 50% in both coconut oil and coconut powder treatments. In conclusion, these results indicate that coconut powder is a potential agent for decreasing in vitro ruminal methane production and as effective as coconut oil.

  16. Effects of Coconut Materials on In vitro Ruminal Methanogenesis and Fermentation Characteristics

    PubMed Central

    Kim, E. T.; Park, C. G.; Lim, D. H.; Kwon, E. G.; Ki, K. S.; Kim, S. B.; Moon, Y. H.; Shin, N. H.; Lee, S. S.

    2014-01-01

    The objective of this study was to evaluate the in vitro effects of coconut materials on ruminal methanogenesis and fermentation characteristics, in particular their effectiveness for mitigating ruminal methanogenesis. Fistulated Holstein cows were used as the donor of rumen fluid. Coconut materials were added to an in vitro fermentation incubated with rumen fluid-buffer mixture and timothy substrate for 24 h incubation. Total gas production, gas profiles, total volatile fatty acids (tVFAs) and the ruminal methanogens diversity were measured. Although gas profiles in added coconut oil and coconut powder were not significantly different, in vitro ruminal methane production was decreased with the level of reduction between 15% and 19% as compared to control, respectively. Coconut oil and coconut powder also inhibited gas production. The tVFAs concentration was increased by coconut materials, but was not affected significantly as compared to control. Acetate concentration was significantly lower (p<0.05), while propionate was significantly higher (p<0.05) by addition of the coconut materials than that of the control. The acetate:propionate ratio was significantly lowered with addition of coconut oil and coconut powder (p<0.05). The methanogens and ciliate-associated methanogens in all added coconut materials were shown to decrease as compared with control. This study showed that ciliate-associated methanogens diversity was reduced by more than 50% in both coconut oil and coconut powder treatments. In conclusion, these results indicate that coconut powder is a potential agent for decreasing in vitro ruminal methane production and as effective as coconut oil. PMID:25358365

  17. Diets of differentially processed wheat alter ruminal fermentation parameters and microbial populations in beef cattle.

    PubMed

    Jiang, S Z; Yang, Z B; Yang, W R; Li, Z; Zhang, C Y; Liu, X M; Wan, F C

    2015-11-01

    The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( < 0.05) than the corresponding values in cattle fed pulverized and extruded wheat. Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( < 0.05) with increased geometric mean particle size (geometric mean diameter) of processed wheat, except for extruded wheat; cattle fed extruded wheat had the lowest concentrations of total VFA and acetate among all treatments. The relative abundance of , , ciliated protozoa, and was lower in cattle fed the pulverized wheat diet than in the other 3 diets ( < 0.05), whereas the relative abundance of was decreased in cattle fed extruded wheat compared with cattle fed crushed and rolled wheat ( < 0.05). No treatment effect was obtained for serum enzyme activity and protein concentration ( > 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.

  18. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows.

    PubMed

    Shen, J S; Chai, Z; Song, L J; Liu, J X; Wu, Y M

    2012-10-01

    Six rumen-fistulated dairy cows were used in 2 trials to validate the technique for the collection of ruminal fluid by an oral stomach tube (OST). Trial 1 was conducted to compare the differences of ruminal fermentation parameters among rumen sites (cranial dorsal, cranial ventral, central, ventral, caudal dorsal, and caudal ventral). The ruminal fluid was collected once per day for 3 consecutive days through rumen cannula (RC). The samples were analyzed for pH, volatile fatty acids (VFA), ammonia N, sodium, potassium, calcium, chloride, and phosphorus concentrations. The ruminal fermentation parameters varied significantly among rumen sites. Compared with the central or ventral rumen, the cranial dorsal rumen had significantly higher pH, ammonia, and sodium concentrations and lower acetate, propionate, and butyrate concentrations, indicating that the sampling site may be one of the main factors contributing to the difference in ruminal fermentation parameters between the samples collected via the OST and RC. In trial 2, the fermentation parameters of ruminal fluid collected via OST at 2 insertion depths (180 or 200 cm) were compared with those of ruminal fluid collected via RC (ventral sac). Ruminal fluid was collected once per week at 5 to 6h after morning feeding. When the OST was inserted to a depth of 180 cm, the OST head was located in the cranial dorsal (atrium) of the rumen. The ruminal fluid collected via the OST had higher pH and sodium concentrations but lower VFA, potassium, calcium, and phosphorus concentrations than that collected via RC. However, when the OST was inserted to a depth of 200 cm, the OST head could pass through the front rumen pillar and reach the central rumen for sampling. No differences were found in pH, VFA, ammonia N, and ion concentrations between the samples collected via the 2 sampling methods. These results indicated that the OST should be inserted to reach the central rumen to obtain representative rumen fluid samples.

  19. Effect of 2-hydroxy-4-methylthio-butanoic acid on ruminal fermentation, bacterial distribution, digestibility, and performance of lactating dairy cows.

    PubMed

    Lee, C; Oh, J; Hristov, A N; Harvatine, K; Vazquez-Anon, M; Zanton, G I

    2015-02-01

    The objective of this experiment was to test the effect of a Met analog, 2-hydroxy-4-methylthio-butanoic acid (HMTBa), on ruminal fermentation and microbial protein synthesis, nutrient digestibility, urinary N losses, and performance of dairy cows. Eight multiparous lactating Holstein dairy cows were assigned to 4 levels of HMTBa [0 (control), 0.05, 0.10, and 0.15% (dry matter basis)] in a replicated 4×4 Latin square trial. Experimental periods were 28 d, including 21 d for adaptation. Ruminal ammonia and microbial N were labeled through a 6-d intraruminal infusion of (15)NH4Cl, and microbial protein synthesis in the rumen was estimated using the reticular sampling technique. Treatment had no effect on dry matter intake (28.4 to 29.8kg/d), milk yield (44.1 to 45.3kg/d), feed efficiency, and milk composition. Total-tract apparent digestibility of nutrients was generally not affected by treatment, except digestibility of crude protein and starch decreased quadratically with HMTBa supplementation. Fecal, but not urinary, and total excreta N losses were increased quadratically by HMTBa. Ruminal pH, ammonia concentration, protozoal counts, and the major volatile fatty acids were not affected by treatment. Microbial N outflow from the rumen was linearly increased by HMTBa. 2-Hydroxy-4-methylthio-butanoic acid linearly increased the proportion of Fecalibacterium and quadratically decreased the proportion of Eubacterium in ruminal contents. Of the individual bacterial species, HMTBa increased or tended to increase Prevotella loescheii and Prevotella oralis. 2-Hydroxy-4-methylthio-butanoic acid linearly increased the concentration (and yield) of 15:0 in milk fat. In the conditions of this crossover experiment, HMTBa had no effect on feed intake and performance of dairy cows, decreased dietary crude protein digestibility, and increased microbial N outflow from the rumen.

  20. Effects of varying forage particle size and fermentable carbohydrates on feed sorting, ruminal fermentation, and milk and component yields of dairy cows.

    PubMed

    Maulfair, D D; Heinrichs, A J

    2013-05-01

    Ration sorting is thought to affect ruminal fermentation in such a manner that milk yield milk and components are often decreased. However, the influence of ruminally degradable starch on ration sorting has not been studied. Therefore, the objective of this experiment was to evaluate the interactions between forage particle size (FPS) and ruminally fermentable carbohydrates (RFC) for dry matter intake (DMI), ration sorting, ruminal fermentation, chewing activity, and milk yield and components. In this study, 12 (8 ruminally cannulated) multiparous, lactating Holstein cows were fed a total mixed ration that varied in FPS and RFC. Two lengths of corn silage were used to alter FPS and 2 grind sizes of corn grain were used to alter RFC. It was determined that increasing RFC increased ruminating time and did not affect eating time, whereas increasing FPS increased eating time and did not affect ruminating time. Ruminal fermentation did not differ by altering either FPS or RFC. However, increasing FPS tended to increase mean and maximum ruminal pH and increasing RFC tended to decrease minimum ruminal pH. Particle size distribution became more diverse and neutral detergent fiber content of refusals increased over time, whereas starch content decreased, indicating that cows were sorting against physically effective neutral detergent fiber and for RFC. Selection indices determined that virtually no interactions occurred between FPS and RFC and that despite significant sorting throughout the day, by 24h after feeding cows had consumed a ration very similar to what was offered. This theory was reinforced by particle fraction intakes that very closely resembled the proportions of particle fractions in the offered total mixed ration. An interaction between FPS and RFC was observed for DMI, as DMI decreased with increasing FPS when the diet included low RFC and did not change when the diet included high RFC. Dry matter intake increased with RFC for long diets and did not change

  1. Methane Production of Different Forages in In vitro Ruminal Fermentation

    PubMed Central

    Meale, S. J.; Chaves, A. V.; Baah, J.; McAllister, T. A.

    2012-01-01

    An in vitro rumen batch culture study was completed to compare effects of common grasses, leguminous shrubs and non-leguminous shrubs used for livestock grazing in Australia and Ghana on CH4 production and fermentation characteristics. Grass species included Andropodon gayanus, Brachiaria ruziziensis and Pennisetum purpureum. Leguminous shrub species included Cajanus cajan, Cratylia argentea, Gliricidia sepium, Leucaena leucocephala and Stylosanthes guianensis and non-leguminous shrub species included Annona senegalensis, Moringa oleifera, Securinega virosa and Vitellaria paradoxa. Leaves were harvested, dried at 55°C and ground through a 1 mm screen. Serum bottles containing 500 mg of forage, modified McDougall’s buffer and rumen fluid were incubated under anaerobic conditions at 39°C for 24 h. Samples of each forage type were removed after 0, 2, 6, 12 and 24 h of incubation for determination of cumulative gas production. Methane production, ammonia concentration and proportions of VFA were measured at 24 h. Concentration of aNDF (g/kg DM) ranged from 671 to 713 (grasses), 377 to 590 (leguminous shrubs) and 288 to 517 (non-leguminous shrubs). After 24 h of in vitro incubation, cumulative gas, CH4 production, ammonia concentration, proportion of propionate in VFA and IVDMD differed (p<0.05) within each forage type. B. ruziziensis and G. sepium produced the highest cumulative gas, IVDMD, total VFA, proportion of propionate in VFA and the lowest A:P ratios within their forage types. Consequently, these two species produced moderate CH4 emissions without compromising digestion. Grazing of these two species may be a strategy to reduce CH4 emissions however further assessment in in vivo trials and at different stages of maturity is recommended. PMID:25049482

  2. A study of the structure-activity relationship of oligomeric ellagitannins on ruminal fermentation in vitro.

    PubMed

    Baert, Nicolas; Pellikaan, Wilbert F; Karonen, Maarit; Salminen, Juha-Pekka

    2016-10-01

    The aim of this study was to investigate how the degree of oligomerization of ellagitannins (ET) influences their ability to alter ruminal fermentation. Dimeric to heptameric ET were isolated from rosebay willowherb (Epilobium angustifolium) flowers and purified. Ellagitannins were tested in vitro on a mixture of grass silage and buffered rumen fluid. Total gas production was measured in real time using an automated pressure evaluation system. Methane production was monitored at regular interval by gas chromatography for 72h. The effect of ET was evaluated on 2 sources of rumen fluid using a randomized block design. Ammonia nitrogen, volatile fatty acid concentration, and pH were measured at the end of the experiment. Results show that oligomeric ET decreased gas production and total volatile fatty acid concentration proportionally to their degree of oligomerization. Methane production was also decreased by all the tested compounds and dimer was less effective than the larger ET, which showed similar levels of activity. Additionally, willowherb's oligomeric ET decreased ammonia-nitrogen and branched-chain volatile fatty acid concentrations, thus indicating reduced protein degradation by ruminal bacteria. This effect showed a quadratic relationship with the degree of oligomerization and was maximal with the tetramer. In conclusion, this study shows that the degree of oligomerization of ET has more than a simple linear effect on fermentation parameters in vitro. Large oligomers, in fact, have more detrimental effects on volatile fatty acid and gas production than small ones, while being similarly effective at inhibiting methane production. PMID:27522412

  3. Digesta retention patterns of solute and different-sized particles in camelids compared with ruminants and other foregut fermenters.

    PubMed

    Dittmann, Marie T; Runge, Ullrich; Ortmann, Sylvia; Lang, Richard A; Moser, Dario; Galeffi, Cordula; Schwarm, Angela; Kreuzer, Michael; Clauss, Marcus

    2015-07-01

    The mean retention times (MRT) of solute or particles in the gastrointestinal tract and the forestomach (FS) are crucial determinants of digestive physiology in herbivores. Besides ruminants, camelids are the only herbivores that have evolved rumination as an obligatory physiological process consisting of repeated mastication of large food particles, which requires a particle sorting mechanism in the FS. Differences between camelids and ruminants have hardly been investigated so far. In this study we measured MRTs of solute and differently sized particles (2, 10, and 20 mm) and the ratio of large-to-small particle MRT, i.e. the selectivity factors (SF(10/2mm), SF(20/2mm), SF(20/10mm)), in three camelid species: alpacas (Vicugna pacos), llamas (Llama glama), and Bactrian camels (Camelus bactrianus). The camelid data were compared with literature data from ruminants and non-ruminant foregut fermenters (NRFF). Camelids and ruminants both had higher SF(10/2mm)FS than NRFF, suggesting convergence in the function of the FS sorting mechanism in contrast to NRFF, in which such a sorting mechanism is absent. The SF(20/10mm)FS did not differ between ruminants and camelids, indicating that there is a particle size threshold of about 1 cm in both suborders above which particle retention is not increased. Camelids did not differ from ruminants in MRT(2mm)FS, MRTsoluteFS, and the ratio MRT(2mm)FS/MRTsoluteFS, but they were more similar to 'cattle-' than to 'moose-type' ruminants. Camelids had higher SF(10/2mm)FS and higher SF(20/2mm)FS than ruminants, indicating a potentially slower particle sorting in camelids than in ruminants, with larger particles being retained longer in relation to small particles.

  4. Effects of physically effective fiber on chewing activity, ruminal fermentation, and digestibility in goats.

    PubMed

    Zhao, X H; Zhang, T; Xu, M; Yao, J H

    2011-02-01

    The objective of this study was to evaluate the effects of physically effective NDF (peNDF) in goat diets containing alfalfa hay as the sole forage source on feed intake, chewing activity, ruminal fermentation, and nutrient digestibility. Four rumen-fistulated goats were fed different proportions of chopped and ground alfalfa hay in a 4 × 4 Latin square design. Diets were chemically similar but varied in peNDF content: low, moderate low, moderate high, and high. Dietary peNDF content was determined using the Penn State Particle Separator with 2 sieves (8 and 19 mm) or 3 sieves (1.18, 8, and 19 mm). The dietary peNDF content ranged from 1.9 to 11.7% using the 2 sieves and from 15.2 to 20.0% using the 3 sieves. Increasing forage particle length increased intake of peNDF, but decreased DMI linearly (P = 0.05). Ruminating and total chewing time (min/d) were increased linearly (P = 0.001 and 0.007, respectively) with increased dietary peNDF, resulting in a linear reduction (P < 0.001) in the duration of time that ruminal pH was less than 5.8 (10.9, 9.0, 1.2, and 0.3 h/d, respectively). Increasing dietary peNDF tended to increase the molar proportion of propionate linearly (P = 0.08) and decrease the molar proportion of butyrate (P = 0.09), but did not affect total VFA concentration. Increasing dietary peNDF linearly decreased the apparent digestibility of OM, NDF, and ADF in the total tract (P = 0.009, 0.003, and 0.008, respectively). This study demonstrated that increasing the dietary peNDF contained in alfalfa hay forage stimulated chewing activity and improved ruminal pH status, but reduced nutrient intake and efficiency of feed use.

  5. Effect of molasses, corn meal or a combination of molasses plus corn meal on ruminal fermentation of orchardgrass pasture in continuous culture fermenters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although molasses is being used by organic dairy farmers as a lower-cost energy alternative to corn, little research currently exists evaluating the effects of molasses as the sole supplement on ruminal fermentation of grazing dairy cows. This study evaluated the effects of pasture supplementation w...

  6. Daily and alternate-day supplementation of urea or biuret to ruminants consuming low-quality forage: III. Effects on ruminal fermentation characteristics in steers.

    PubMed

    Currier, T A; Bohnert, D W; Falck, S J; Schauer, C S; Bartle, S J

    2004-05-01

    Five ruminally and duodenally cannulated steers (491 +/- 21 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental nonprotein N (NPN) source and supplementation frequency (SF) on the dynamics of ruminal fermentation in steers consuming low-quality grass straw (4% CP). Treatments (TRT) included an unsupplemented control (CON) and a urea or biuret supplement that were placed directly into the rumen at 0700 daily (D) or every other day (2D). The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement; therefore, the urea and biuret treatments received the same amount of supplemental N over a 2-d period. Daily TRT were supplemented with CP at 0.04% of BW/d, whereas the 2D TRT were supplemented at 0.08% of BW every other day. Forage was provided at 120% of the previous 5-d average intake in two equal portions at 0715 and 1900. Ruminal fluid was collected 0, 3, 6, 9, 12, and 24 h after supplementation on a day of and a day before supplementation for all TRT. Ruminal NH3-N increased (P < 0.04) with CP supplementation on the day all supplements were provided and on the day on which only daily supplements were provided compared with the CON. However, an NPN source x SF interaction (P = 0.03) on the day all supplements were provided indicated that NH3-N increased at a greater rate for urea as SF decreased compared with biuret. Ruminal NH3-N on the day only daily supplements were provided was greater (P = 0.02) for D compared with 2D. On the day all supplements were provided, D increased (P = 0.05) ruminal indigestible acid detergent fiber passage rate and ruminal fluid volume compared with 2D. These results suggest that urea or biuret can be used effectively as a supplemental N source by steers consuming low-quality forage without adversely affecting ruminal fermentation, even when provided every other day.

  7. Effect of different levels of concentrate on ruminal microorganisms and rumen fermentation in Nellore steers.

    PubMed

    Granja-Salcedo, Yury T; Ribeiro Júnior, Carlos S; de Jesus, Raphael B; Gomez-Insuasti, Arturo S; Rivera, Astrid R; Messana, Juliana D; Canesin, Roberta C; Berchielli, Telma T

    2016-01-01

    The aim of this study was to investigate the effect of different dietary levels of concentrate on feed intake, digestibility, ruminal fermentation and microbial population in steers. Eight Nellore steers fitted with ruminal cannulas were used in a double 4 × 4 Latin square design experiment. The dietary treatments consist of four different proportions of concentrate to roughage: 30:70, 40:60, 60:40 and 80:20% in the dry matter, resulting in Diets 30, 40, 60 and 80, respectively. The roughage was corn silage, and the concentrate was composed of corn, soybean meal and urea. Apparent digestibility of organic matter and crude protein showed a linear association with concentrate proportion (p = 0.01), but the increased concentrate levels did not affect the digestibility of fibre. The lowest ruminal pH-values were observed in animals fed with Diet 80, remaining below pH 6.0 from 6 h after feeding, while in the other diets, the ruminal pH was below 6.0 not before 12 h after feeding. After feeding Diet 80, the ammonia concentration in the rumen was significantly the highest. Higher dietary concentrate levels resulted in a linear increase of propionic acid concentrations, a linear reduction of the ratio acetic acid to propionic acid (p < 0.01) and a linear increased synthesis of microbial nitrogen (p < 0.001). The predicted production of methane was lower in diets with greater amounts of concentrate (p = 0.032). The population of methanogens, R. flavefaciens and R. albus decreased with higher concentrate levels, while the population of S. ruminantium increased (p < 0.05). The results indicate that greater amounts of concentrate do not decrease ruminal pH-values as much as expected and inhibit some cellulolytic bacteria without impairing the dry matter intake and fibre digestibility in Nellore steers.

  8. Effect of different levels of concentrate on ruminal microorganisms and rumen fermentation in Nellore steers.

    PubMed

    Granja-Salcedo, Yury T; Ribeiro Júnior, Carlos S; de Jesus, Raphael B; Gomez-Insuasti, Arturo S; Rivera, Astrid R; Messana, Juliana D; Canesin, Roberta C; Berchielli, Telma T

    2016-01-01

    The aim of this study was to investigate the effect of different dietary levels of concentrate on feed intake, digestibility, ruminal fermentation and microbial population in steers. Eight Nellore steers fitted with ruminal cannulas were used in a double 4 × 4 Latin square design experiment. The dietary treatments consist of four different proportions of concentrate to roughage: 30:70, 40:60, 60:40 and 80:20% in the dry matter, resulting in Diets 30, 40, 60 and 80, respectively. The roughage was corn silage, and the concentrate was composed of corn, soybean meal and urea. Apparent digestibility of organic matter and crude protein showed a linear association with concentrate proportion (p = 0.01), but the increased concentrate levels did not affect the digestibility of fibre. The lowest ruminal pH-values were observed in animals fed with Diet 80, remaining below pH 6.0 from 6 h after feeding, while in the other diets, the ruminal pH was below 6.0 not before 12 h after feeding. After feeding Diet 80, the ammonia concentration in the rumen was significantly the highest. Higher dietary concentrate levels resulted in a linear increase of propionic acid concentrations, a linear reduction of the ratio acetic acid to propionic acid (p < 0.01) and a linear increased synthesis of microbial nitrogen (p < 0.001). The predicted production of methane was lower in diets with greater amounts of concentrate (p = 0.032). The population of methanogens, R. flavefaciens and R. albus decreased with higher concentrate levels, while the population of S. ruminantium increased (p < 0.05). The results indicate that greater amounts of concentrate do not decrease ruminal pH-values as much as expected and inhibit some cellulolytic bacteria without impairing the dry matter intake and fibre digestibility in Nellore steers. PMID:26654381

  9. Influence of time of feeding a protein meal on ruminal fermentation and forestomach digestion in dairy cows.

    PubMed

    Robinson, P H; Gill, M; Kennelly, J J

    1997-07-01

    Four ruminally and duodenally cannulated dairy cows in midlactation were fed twice daily a mixed diet of alfalfa silage and whole-crop oat silage and a concentrate consisting of primarily barley grain. A high protein supplement was fed at approximately 15% of the estimated dry matter intake of the mixed diet once daily at 0830 h, 0.5 h after the morning meal (day), or at 0030 h, 7.5 h after the evening meal (night). Cows fed the protein supplement during the night had higher apparent forestomach digestion of organic matter and crude protein. Ruminal concentrations of all volatile fatty acids, except isobutyrate, were higher for cows fed the protein supplement during the night. Although ruminal pH and concentrations of ammonia N did not differ between treatments, time by treatment interactions indicated that the feeding times of the protein supplement influenced diurnal patterns of ruminal fermentation. The flow of nonbacterial nonammonia N at the duodenum, as a proportion of N intake, was lower for cows fed the protein supplement during the night, but production of milk fat was higher. Results were consistent with a mechanism whereby protein fed during the night stimulated ruminal fermentation, particularly during the night, resulting in greater forestomach digestion of organic matter and less escape of dietary protein from the forestomach. Clearly, the different feeding times of this protein supplement changed the nutritional value of the overall diet.

  10. Ruminal fermentation and fill change with season in an arctic grazer: responses to hyperphagia and hypophagia in muskoxen (Ovibos moschatus).

    PubMed

    Barboza, Perry S; Peltier, Tim C; Forster, Robert J

    2006-01-01

    We studied castrated adult muskoxen fed a standard diet of grass hay and supplement throughout the year to determine seasonal changes in digesta passage, fill, and fermentation without the confounding effects of reproductive demands or changes in food quality. Although food intake increased by 74% between spring and autumn, mean retention times of fluid and particulate digesta markers were maintained between seasons in both the rumen (9-13 h) and the intestines (27-37 h). The rumen contained 84.5% of digesta and accounted for 79% of dry matter digestion in the whole digestive tract. Ruminal fluid space and whole-gut digesta fill increased by 31%-34%, while ruminal rates of in situ degradation increased by more than 100% between spring and autumn for cellulose and hemicellulose. Hyperphagia in autumn was accompanied by increased bacterial counts in ruminal fluid (30%), declines in ruminal pH, and increases in the concentration of fermentation acids (16%) when compared with spring hypophagia. Consumption of fresh hay and supplement increased the concentrations of acids most markedly during winter and spring when bacterial counts were low. Low food intakes in winter and spring may limit the microbial population, whereas hyperphagia in autumn may foster a much more active microflora that requires consistent supplies of substrate. Plasticity of fill and fermentation in muskoxen minimizes winter costs and maximizes nutrients and energy gained from coarse forages in small home ranges throughout the year.

  11. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis

    PubMed Central

    Ungerfeld, Emilio M.

    2015-01-01

    Maximizing the flow of metabolic hydrogen ([H]) in the rumen away from CH4 and toward volatile fatty acids (VFA) would increase the efficiency of ruminant production and decrease its environmental impact. The objectives of this meta-analysis were: (i) To quantify shifts in metabolic hydrogen sinks when inhibiting ruminal methanogenesis in vitro; and (ii) To understand the variation in shifts of metabolic hydrogen sinks among experiments and between batch and continuous cultures systems when methanogenesis is inhibited. Batch (28 experiments, N = 193) and continuous (16 experiments, N = 79) culture databases of experiments with at least 50% inhibition in CH4 production were compiled. Inhibiting methanogenesis generally resulted in less fermentation and digestion in most batch culture, but not in most continuous culture, experiments. Inhibiting CH4 production in batch cultures resulted in redirection of metabolic hydrogen toward propionate and H2 but not butyrate. In continuous cultures, there was no overall metabolic hydrogen redirection toward propionate or butyrate, and H2 as a proportion of metabolic hydrogen spared from CH4 production was numerically smaller compared to batch cultures. Dihydrogen accumulation was affected by type of substrate and methanogenesis inhibitor, with highly fermentable substrates resulting in greater redirection of metabolic hydrogen toward H2 when inhibiting methanogenesis, and some oils causing small or no H2 accumulation. In both batch and continuous culture, there was a decrease in metabolic hydrogen recovered as the sum of propionate, butyrate, CH4 and H2 when inhibiting methanogenesis, and it is speculated that as CH4 production decreases metabolic hydrogen could be increasingly incorporated into formate, microbial biomass, and perhaps, reductive acetogenesis in continuous cultures. Energetic benefits of inhibiting methanogenesis depended on the inhibitor and its concentration and on the in vitro system. PMID:25699029

  12. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis.

    PubMed

    Ungerfeld, Emilio M

    2015-01-01

    Maximizing the flow of metabolic hydrogen ([H]) in the rumen away from CH4 and toward volatile fatty acids (VFA) would increase the efficiency of ruminant production and decrease its environmental impact. The objectives of this meta-analysis were: (i) To quantify shifts in metabolic hydrogen sinks when inhibiting ruminal methanogenesis in vitro; and (ii) To understand the variation in shifts of metabolic hydrogen sinks among experiments and between batch and continuous cultures systems when methanogenesis is inhibited. Batch (28 experiments, N = 193) and continuous (16 experiments, N = 79) culture databases of experiments with at least 50% inhibition in CH4 production were compiled. Inhibiting methanogenesis generally resulted in less fermentation and digestion in most batch culture, but not in most continuous culture, experiments. Inhibiting CH4 production in batch cultures resulted in redirection of metabolic hydrogen toward propionate and H2 but not butyrate. In continuous cultures, there was no overall metabolic hydrogen redirection toward propionate or butyrate, and H2 as a proportion of metabolic hydrogen spared from CH4 production was numerically smaller compared to batch cultures. Dihydrogen accumulation was affected by type of substrate and methanogenesis inhibitor, with highly fermentable substrates resulting in greater redirection of metabolic hydrogen toward H2 when inhibiting methanogenesis, and some oils causing small or no H2 accumulation. In both batch and continuous culture, there was a decrease in metabolic hydrogen recovered as the sum of propionate, butyrate, CH4 and H2 when inhibiting methanogenesis, and it is speculated that as CH4 production decreases metabolic hydrogen could be increasingly incorporated into formate, microbial biomass, and perhaps, reductive acetogenesis in continuous cultures. Energetic benefits of inhibiting methanogenesis depended on the inhibitor and its concentration and on the in vitro system.

  13. Evaluation of nutritional and economic feed values of spent coffee grounds and Artemisia princeps residues as a ruminant feed using in vitro ruminal fermentation.

    PubMed

    Seo, Jakyeom; Jung, Jae Keun; Seo, Seongwon

    2015-01-01

    Much research on animal feed has focused on finding alternative feed ingredients that can replace conventional ones (e.g., grains and beans) to reduce feed costs. The objective of this study was to evaluate the economic, as well as nutritional value of spent coffee grounds (SCG) and Japanese mugwort (Artemisia princeps) residues (APR) as alternative feed ingredients for ruminants. We also investigated whether pre-fermentation using Lactobacillus spp. was a feasible way to increase the feed value of these by-products. Chemical analyses and an in vitro study were conducted for SCG, APR, and their pre-fermented forms. All the experimental diets for in vitro ruminal fermentation were formulated to contain a similar composition of crude protein, neutral detergent fiber and total digestible nutrients at 1x maintenance feed intake based on the dairy National Research Council (NRC). The control diet was composed of ryegrass, corn, soybean meal, whereas the treatments consisted of SCG, SCG fermented with Lactobacillus spp. (FSCG), APR, and its fermented form (FAPR). The treatment diets replaced 100 g/kg dry matter (DM) of the feed ingredients in the control. Costs were lower for the all treatments, except FAPR, than that of the control. After 24-h incubation, the NDF digestibility of the diets containing SCG and its fermented form were significantly lower than those of the other diets (P < 0.01); pre-fermentation tended to increase NDF digestibility (P = 0.07), especially for APR. Supplementation of SCG significantly decreased total gas production (ml/g DM) after 24-h fermentation in comparison with the control (P < 0.05); however, there were no significant differences between the control and the SCG or the APR diets in total gas production, as expressed per Korean Won (KRW). Diets supplemented with SCG or FSCG tended to have a higher total volatile fatty acid (VFA) concentration, expressed as per KRW, compared with the control (P = 0.06). Conversely, the fermentation

  14. Evaluation of nutritional and economic feed values of spent coffee grounds and Artemisia princeps residues as a ruminant feed using in vitro ruminal fermentation

    PubMed Central

    Seo, Jakyeom; Jung, Jae Keun

    2015-01-01

    Much research on animal feed has focused on finding alternative feed ingredients that can replace conventional ones (e.g., grains and beans) to reduce feed costs. The objective of this study was to evaluate the economic, as well as nutritional value of spent coffee grounds (SCG) and Japanese mugwort (Artemisia princeps) residues (APR) as alternative feed ingredients for ruminants. We also investigated whether pre-fermentation using Lactobacillus spp. was a feasible way to increase the feed value of these by-products. Chemical analyses and an in vitro study were conducted for SCG, APR, and their pre-fermented forms. All the experimental diets for in vitro ruminal fermentation were formulated to contain a similar composition of crude protein, neutral detergent fiber and total digestible nutrients at 1x maintenance feed intake based on the dairy National Research Council (NRC). The control diet was composed of ryegrass, corn, soybean meal, whereas the treatments consisted of SCG, SCG fermented with Lactobacillus spp. (FSCG), APR, and its fermented form (FAPR). The treatment diets replaced 100 g/kg dry matter (DM) of the feed ingredients in the control. Costs were lower for the all treatments, except FAPR, than that of the control. After 24-h incubation, the NDF digestibility of the diets containing SCG and its fermented form were significantly lower than those of the other diets (P < 0.01); pre-fermentation tended to increase NDF digestibility (P = 0.07), especially for APR. Supplementation of SCG significantly decreased total gas production (ml/g DM) after 24-h fermentation in comparison with the control (P < 0.05); however, there were no significant differences between the control and the SCG or the APR diets in total gas production, as expressed per Korean Won (KRW). Diets supplemented with SCG or FSCG tended to have a higher total volatile fatty acid (VFA) concentration, expressed as per KRW, compared with the control (P = 0.06). Conversely, the fermentation

  15. Effects of cottonseed meal supplementation time on ruminal fermentation and forage intake by Holstein steers fed fescue hay.

    PubMed

    Judkins, M B; Krysl, L J; Barton, R K; Holcombe, D W; Gunter, S A; Broesder, J T

    1991-09-01

    Four ruminally cannulated Holstein steers (average BW 303 kg) were used in a 4 x 4 Latin square design digestion trial to study the influence of daily cottonseed meal (CSM; 1.6 g of CP/kg of BW) supplementation time on forage intake and ruminal fluid kinetics and fermentation. Steers were housed individually in tie stalls and were fed chopped fescue hay on an ad libitum basis at 0600 and 1400. Treatments were 1) control, grass hay only (CON) and grass hay and CSM fed once daily at 2) 0600 (EAM) 3) 1000 (MAM), or 4) 1400 (PM). Ruminal NH3 N concentrations reflected a time of supplementation x sampling time interaction (P less than .05); CON steers had the lowest (P less than .05) ruminal NH3 N concentrations at all times other than at 0600, 1000, 1200, and 2400, when they did not differ (P greater than .05) from at least one of the supplemented groups. Forage intake, ratio of bacterial purine:N, rate of DM and NDF disappearance, and ruminal fluid kinetics were not influenced (P greater than .05) by supplementation time. Total ruminal VFA differed (P less than .05) between CON and supplemented steers, as well as among supplemented steers (linear and quadratic effects P less than .05). Acetate, propionate, and valerate proportions were influenced (P less than .05) by a sampling time X supplementation time interaction. Under the conditions of this study, greater peak ammonia concentrations with morning supplementation than with afternoon supplementation did not stimulate ruminal fermentation or rate of NDF disappearance.

  16. Preparation of glycerol-enriched yeast culture and its effect on blood metabolites and ruminal fermentation in goats.

    PubMed

    Ye, Gengping; Zhu, Yongxing; Liu, Jin; Chen, Xingxiang; Huang, Kehe

    2014-01-01

    The aim of this study was to isolate a glycerol-producing yeast strain from nature to prepare glycerol-enriched yeast culture (GY), and preliminarily evaluate the effects of GY on blood metabolites and ruminal fermentation in goats. During the trial, six isolates were isolated from unprocessed honey, and only two isolates with higher glycerol yield were identified by analysis of 26S ribosomal DNA sequences. One of the two isolates was identified as Saccharomyces cerevisiae, a direct-fed microbe permitted by the FDA. This isolate was used to prepare GY. The fermentation parameters were optimized through single-factor and orthogonal design methods to maximize the glycerol yield and biomass. The final GY contained 38.7±0.6 g/L glycerol and 12.6±0.5 g/L biomass. In vivo, eight castrated male goats with ruminal fistula were used in a replicated 4×4 Latin square experiment with four consecutive periods of 15 d. Treatments were as follows: control, LGY, MGY, and HGY with 0, 100, 200, and 300 mL GY per goat per day, respectively. The GY was added in two equal portions at 08∶00 and 17∶00 through ruminal fistula. Samples of blood and ruminal fluid were collected on the last one and two days of each period, respectively. Results showed that the plasma concentrations of triglyceride and total cholesterol were not affected by the supplemented GY. Compared with the control, goats supplemented with MGY and HGY had significantly higher (P<0.05) concentrations of plasma glucose and total protein, ruminal volatile fatty acid and molar proportion of propionate, and significantly lower (P<0.05) ruminal pH and ammonia nitrogen. These parameters changed linearly with increasing GY supplementation level (P<0.05). In conclusion, GY has great potential to be developed as a feed additive with dual effects of glycerol and yeast for ruminants.

  17. Effect of replacing corn with brown rice in a total, mixed, ration silage on milk production, ruminal fermentation and nitrogen balance in lactating dairy cows.

    PubMed

    Miyaji, Makoto; Matsuyama, Hiroki; Hosoda, Kenji; Nonaka, Kazuhisa

    2012-08-01

    Nine multiparous Holstein cows were used in a replicated 3 × 3 Latin square design to determine the effects of substituting corn grain with brown rice (BR) grain in total mixed ration (TMR) silage on milk yield, ruminal fermentation and nitrogen (N) balance. The TMR silages were made from the ensiling of TMR containing (dry matter basis) 50.1% forage in rice silage and corn silage combination, and 49.9% concentrate. The grain portion of the diets contained 31.2% steam-flaked corn, 31.2% steam-flaked BR or an equal mixture of corn and BR. Dietary treatments did not affect dry matter intake, milk yield and milk fat, protein and lactose yields. The ruminal pH and total volatile fatty acid concentrations were not affected by dietary treatment. The urinary N excretion decreased linearly (P < 0.01) in response to increased levels of BR, with no dietary effect on N intake, N secretion in milk and fecal N excretion. Our results indicate that steam-flaked BR is a suitable replacement for steam-flaked corn in dairy cow diets, and that it can be included in rations to a level of at least 31.2% of dry matter without adverse effects on milk production, when cows were fed rice silage and corn silage-based diets.

  18. Effects of a proteolytic feed enzyme on intake, digestion, ruminal fermentation, and milk production.

    PubMed

    Eun, J-S; Beauchemin, K A

    2005-06-01

    The effects of exogenous proteolytic enzyme (EPE) on intake, digestibility, ruminal fermentation, and lactational performance were determined using 8 lactating Holstein cows in a double 4 x4 Latin square experiment with a 2 x2 factorial arrangement of treatments. Diets based on barley silage and alfalfa hay as the forage sources were formulated to maintain different forage to concentrate ratios [60:40 vs. 34:66, dry matter (DM) basis]. Four dietary treatments were tested: high forage (HF) without EPE (HF-EPE), HF with EPE (HF+EPE), low forage (LF) without EPE (LF-EPE), and LF with EPE (LF+EPE). The EPE, which contained proteolytic activity but negligible fibrolytic activity, was added to the concentrate portion of the diets after pelleting at a rate of 1.25 mL/kg of DM. Adding EPE to the diet increased total tract digestibilities of DM, organic matter, N, acid detergent fiber, and neutral detergent fiber, with larger increases in digestibility observed for cows fed LF+EPE. Effects of added EPE on in vivo digestibility were consistent with improvements in gas production and degradability of the individual components of the TMR observed in vitro. Ruminal enzymic activities of xylanase and endoglucanase increased with addition of EPE to the diet, which may have accounted for improvements in fiber digestion. However, feeding EPE unexpectedly decreased feed intake of cows, which offset the benefits of improved feed digestibility. Consequently, milk yield of cows fed high or low forage diets decreased with adding EPE. Nevertheless, dairy efficiency, expressed as milk/DM intake, was highest for the LF+EPE diet. Addition of EPE to the diet increased milk fat and milk lactose percentages, but decreased milk protein percentage of cows fed a low forage diet. For cows fed high forage diets, EPE only increased milk lactose percentage. Efficiency of N use for milk production was decreased for both the high and low forage diets when EPE was added to the diet. Mean ruminal pH was

  19. Effects of the dicarboxylic acids malate and fumarate on E. coli 0157:H7 and Salmonella enterica Typhimurium populations in pure culture and in mixed ruminal microorganism fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dicarboxylic organic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total VFA production, and reduce lactic acid accumulation in a manner similar to ionophores. These acids stimulate the ruminal bacterium Selenomonas ruminantium to ferment lact...

  20. Effects of dietary supplementation of rumen-protected folic acid on rumen fermentation, degradability and excretion of urinary purine derivatives in growing steers.

    PubMed

    Wang, Cong; Liu, Qiang; Guo, Gang; Huo, WenJie; Ma, Le; Zhang, YanLi; Pei, CaiXia; Zhang, ShuanLin; Wang, Hao

    2016-12-01

    The present experiment was undertaken to determine the effects of dietary addition of rumen-protected folic acid (RPFA) on ruminal fermentation, nutrient degradability, enzyme activity and the relative quantity of ruminal cellulolytic bacteria in growing beef steers. Eight rumen-cannulated Jinnan beef steers averaging 2.5 years of age and 419 ± 1.9 kg body weight were used in a replicated 4 × 4 Latin square design. The four treatments comprised supplementation levels of 0 (Control), 70, 140 and 210 mg RPFA/kg dietary dry matter (DM). On DM basis, the ration consisted of 50% corn silage, 47% concentrate and 3% soybean oil. The DM intake (averaged 8.5 kg/d) was restricted to 95% of ad libitum intake. The intake of DM, crude protein (CP) and net energy for growth was not affected by treatments. In contrast, increasing RPFA supplementation increased average daily gain and the concentration of total volatile fatty acid and reduced ruminal pH linearly. Furthermore, increasing RPFA supplementation enhanced the acetate to propionate ratio and reduced the ruminal ammonia N content linearly. The ruminal effective degradability of neutral detergent fibre from corn silage and CP from concentrate improved linearly and was highest for the highest supplementation levels. The activities of cellobiase, xylanase, pectinase and α-amylase linearly increased, but carboxymethyl-cellulase and protease were not affected by the addition of RPFA. The relative quantities of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminococcus flavefaciens and Fibrobacter succinogenes increased linearly. With increasing RPFA supplementation levels, the excretion of urinary purine derivatives was also increased linearly. The present results indicated that the supplementation of RPFA improved ruminal fermentation, nutrient degradability, activities of microbial enzymes and the relative quantity of the ruminal cellulolytic bacteria in a dose-dependent manner. According to the conditions of this

  1. Ruminal fermentation and microbial ecology of buffaloes and cattle fed the same diet.

    PubMed

    Lwin, Khin-Ohnmar; Kondo, Makoto; Ban-Tokuda, Tomomi; Lapitan, Rosalina M; Del-Barrio, Arnel N; Fujihara, Tsutomu; Matsui, Hiroki

    2012-12-01

    Although buffaloes and cattle are ruminants, their digestive capabilities and rumen microbial compositions are considered to be different. The purpose of this study was to compare the rumen microbial ecology of crossbred water buffaloes and cattle that were fed the same diet. Cattle exhibited a higher fermentation rate than buffaloes. Methane production and methanogen density were lower in buffaloes. Phylogenetic analysis of Fibrobacter succinogenes-specific 16S ribosomal RNA gene clone library showed that the diversity of groups within a species was significantly different (P < 0.05) between buffalo and cattle and most of the clones were affiliated with group 2 of the species. Population densities of F.succinogenes, Ruminococcus albus and R. flavefaciens were higher until 6 h post-feeding in cattle; however, buffaloes exhibited different traits. The population of anaerobic fungi decreased at 3 h in cattle compared to buffaloes and was similar at 0 h and 6 h. The diversity profiles of bacteria and fungi were similar in the two species. The present study showed that the profiles of the fermentation process, microbial population and diversity were similar in crossbred water buffaloes and crossbred cattle.

  2. Optimized batch fermentation of cheese whey. Supplemented feedlot waste filtrate to produce a nitrogen-rich feed supplement for ruminants

    SciTech Connect

    Erdman, M.D.; Reddy, C.A.

    1986-03-01

    An optimized batch fermentation process for the conversion of cattle feedlot waste filtrate, supplemented with cheese whey, into a nitrogenous feed supplement for ruminants is described. Feedlot waste filtrate supplemented with cheese whey (5 g of whey per 100 ml) was fermented by the indigenous microbial flora in the feedlot waste filtrate. Ammonium hydroxide was added to the fermentation not only to maintain a constant pH but also to produce ammonium salts of organic acids, which have been shown to be valuable as nitrogenous feed supplements for ruminants. The utilization of substrate carbohydrate at pH 7.0 and 43 degrees C was greater than 94% within 8 h, and the crude protein (total N X 6.25) content of the product was 70 to 78% (dry weight basis). About 66 to 69% of the crude protein was in the form of ammonia nitrogen. Lactate and acetate were the predominant acids during the first 6 to 8 hours of fermentation, but after 24 hours, appreciable levels of propionate and butyrate were also present. The rate of fermentation and the crude protein content of the product were optimal at pH 7.0 and decreased at a lower pH. For example, fermentation did not go to completion even after 24 hours at pH 4.5. Fermentation proceeded optimally at 43 degrees C, less so at 37 degrees C, and considerably more slowly at 23 and 50 degrees C. Concentrations of up to 15 g of cheese whey per 100 ml of feedlot waste filtrate were fermented efficiently. Fermentation of feedlot waste filtrate obtained from animals fed low silage-high grain, high silage-low grain, or dairy rations resulted in similar products in terms of total nitrogen and organic acid composition.

  3. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture.

    PubMed

    Cardozo, P W; Calsamiglia, S; Ferret, A; Kamel, C

    2004-11-01

    Eight dual-flow continuous culture fermenters were used in four consecutive periods of 10 d to study the effects of six natural plant extracts on ruminal protein degradation and fermentation profiles. Fermenters were fed a diet with a 52:48 forage:concentrate ratio (DM basis). Treatments were no extract (CTR), 15 mg/kg DM of a mixture of equal proportions of all extracts (MIX), and 7.5 mg/kg DM of extracts of garlic (GAR), cinnamon (CIN), yucca (YUC), anise (ANI), oregano (ORE), or pepper (PEP). During the adaptation period (d 1 through 8), samples for ammonia N and VFA concentrations were taken 2 h after feeding. On d 9 and 10, samples for VFA (2 h after feeding), and peptide, AA, and ammonia N concentrations (0, 2, 4, 6, and 8 h after feeding) were also taken. Differences were declared at P < 0.05. During the adaptation period, total VFA and ammonia N concentrations were not affected by treatments. The acetate proportion was higher from d 2 to 6 in CIN, GAR, ANI, and ORE, and the propionate proportion was lower from d 2 to 4 in CIN and GAR, and from d 2 to 5 in ANI and ORE, compared with CTR. However, the proportion of individual VFA (mol/100 mol) was similar in all treatments after d 6, except for valerate in d 9 and 10, which was lower in PEP (2.8 +/- 0.27) compared with CTR (3.5 +/- 0.27). The average peptide N concentration was 31% higher in MIX, and 26% higher in CIN and YUC compared with CTR (6.5 +/- 1.07 mg/100 mL). The average AA N concentration was 17 and 15% higher in GAR and ANI, respectively, compared with CTR (7.2 +/- 0.77 mg/100 mL). The average ammonia N concentration was 31% higher in ANI and 25.5% lower in GAR compared with CTR (5.5 +/- 0.51 mg/100 mL). The accumulation of AA and ammonia N in ANI suggested that peptidolysis and deamination were stimulated. The accumulation of AA N and the decrease in ammonia N in GAR suggests that deamination was inhibited. The accumulation of peptide N and the numerical decrease in AA N in CIN suggest that

  4. Methane production, digestion, ruminal fermentation, nitrogen balance, and milk production of cows fed corn silage- or barley silage-based diets.

    PubMed

    Benchaar, C; Hassanat, F; Gervais, R; Chouinard, P Y; Petit, H V; Massé, D I

    2014-02-01

    This study evaluated the effects of replacing barley silage (BS) with corn silage (CS) in dairy cow diets on enteric CH4 emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio 60:40; dry matter basis) with the forage portion consisting of either barley silage (0% CS; 0% CS and 54.4% BS in the TMR), a 50:50 mixture of both silages (27% CS; 27.2% CS and 27.2% BS in the TMR), or corn silage (54% CS; 0% BS and 54.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of BS) also involved increasing the proportion of corn grain (at the expense of barley grain). Intake and digestibility of dry matter and milk production increased linearly as the proportion of CS increased in the diet. Increasing dietary CS proportion decreased linearly the acetate molar proportion and increased linearly that of propionate. Daily CH4 emissions tended to respond quadratically to increasing proportions of CS in the diet (487, 540, and 523 g/d for 0, 27, and 54% CS, respectively). Methane production adjusted for dry matter or gross energy intake declined as the amount of CS increased in the diet; this effect was more pronounced when cows were fed the 54% CS diet than the 27% CS diet. Increasing the CS proportion in the diet improved N utilization, as reflected by decreases in ruminal ammonia concentration and urinary N excretion and higher use of dietary N for milk protein secretion. Total replacement of BS with CS in dairy cow diets offers a strategy to decrease CH4 energy losses and control N losses without negatively affecting milk performance.

  5. Radiation pasteurised oil palm empty fruit bunch fermented with Pleurotus sajor-caju as feed supplement to ruminants

    NASA Astrophysics Data System (ADS)

    Awang, Mat Rasol; Mutaat, Hassan Hamdani; Mahmud, Mohd. Shukri; Wan Husain, Wan Badrin; Osman, Tajuddin; Bakar, Khomsaton Abu; Kassim, Asmahwati; Wan Mahmud, Zal U'yun; Manaf, Ishak; Kume, Tamikazu; Hashimoto, Shoji

    1993-10-01

    In solid state fermentation, Pleurotus sajor-caju has been found to be able to degrade at least 30% oil palm empty Fruit Bunch (EFB) fibre leaving 70 % useful materials. Conditions under which fermentation carried out were investigated. It was found that, in the temperature range between 25- 28 °C, relative ph between 6-8, moisture between 60-70 % and medium composition of CaCO 3: rice bran 2 %: 5 % were the optimum conditions. The results showed in fermented products that, there were substantial reduction in cellulosic component such as Crude Fiber (CF, 18 %); Acid Detergent Fibre (ADF, 45 %), Neutral Detergent Fibre (NDF, 61 %) and Acid Detergent Lignin (ADL, 14 %). However, Crude Protein (CP, 10%) increased resulted from single cell protein enrichment of mycelial microbial mass. The mass reductions of substrate in fermentation process corresponds to the CO 2 released during fermentation. Hence, attributable to the decreased in content of CF, ADF, NDF, and ADL. The digestibility study has also been carried out to determine the useful level of this product to ruminant. Aflatoxin content was detected low in both the initial substrates and products. Based on nutritional value and low content of aflatoxin, the product is useful as a source of roughage to ruminant.

  6. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows.

    PubMed

    Sun, P; Wang, J Q; Deng, L F

    2013-02-01

    Two experiments were conducted to evaluate the effects of Bacillus subtilis natto, which was initially isolated from fermented soybeans on milk production, rumen fermentation and ruminal microbiome in dairy cows. In Experiment 1, 36 early lactation Chinese Holstein dairy cows (56 ± 23 days in milk) were randomly assigned to three groups: Control, cows were fed total mixed ration (TMR); BSNLOW, TMR plus 0.5 × 1011 colony-forming units (cfu) of B. subtilis natto/cow per day; and BSNHIGH, TMR plus 1.0 × 1011 cfu of B. subtilis natto/cow per day. During the 70-day treatment period, daily milk production and daily milk composition were determined in individual cows. The results showed that supplementing dairy cows with 0.5 × 1011 and 1.0 × 1011 cfu of B. subtilis natto linearly increased (P < 0.01) milk production (25.2 and 26.4 kg/day v. 23.0 kg/day), 4% fat-corrected milk (27.3 and 28.1 kg/day v. 24.2 kg/day), energy-corrected milk (27.3 and 28.2 kg/day v. 24.2 kg/day), as well as milk fat (1.01 and 1.03 kg/day v. 0.88 kg/day), protein (0.77 and 0.82 kg/day v. 0.69 kg/day) and lactose yield (1.16 and 1.22 kg/day v. 1.06 kg/day) but decreased milk somatic cell counts (SCC) by 3.4% to 5.5% (P < 0.01) in BSNLOW and BSNHIGH treatments compared with Control. In Experiment 2, four rumen-cannulated dairy cows were fed the basal diet from 1 to 7 days (pre-trial period) and rumen samples were collected on days 6 and 7; the same cows then were fed 1.0 × 1011 cfu/day B. subtilis natto from days 8 to 21 (trial period) and rumen samples were collected on days 20 and 21. B. subtilis natto was discontinued from days 22 to 28 (post-trial period) and rumen samples were collected on days 27 and 28. Compared with the pre- and post-periods, ruminal pH decreased by 2.7% to 3.0% during the trial period (P < 0.01), whereas ammonia nitrogen (NH3-N), total volatile fatty acids and molar proportion of propionate (P < 0.01) and valerate (P < 0.05) increased. Molar proportion of acetate

  7. Effects of Momordica charantia Saponins on In vitro Ruminal Fermentation and Microbial Population

    PubMed Central

    Kang, Jinhe; Zeng, Bo; Tang, Shaoxun; Wang, Min; Han, Xuefeng; Zhou, Chuanshe; Yan, Qiongxian; He, Zhixiong; Liu, Jinfu; Tan, Zhiliang

    2016-01-01

    This study was conducted to investigate the effects of Momordica charantia saponin (MCS) on ruminal fermentation of maize stover and abundance of selected microbial populations in vitro. Five levels of MCS supplements (0, 0.01, 0.06, 0.30, 0.60 mg/mL) were tested. The pH, NH3-N, and volatile fatty acid were measured at 6, 24, 48 h of in vitro mixed incubation fluids, whilst the selected microbial populations were determined at 6 and 24 h. The high dose of MCS increased the initial fractional rate of degradation at t-value = 0 (FRD0) and the fractional rate of gas production (k), but decreased the theoretical maximum of gas production (VF) and the half-life (t0.5) compared with the control. The NH3-N concentration reached the lowest concentration with 0.01 mg MCS/mL at 6 h. The MSC inclusion increased (p<0.001) the molar proportion of butyrate, isovalerate at 24 h and 48 h, and the molar proportion of acetate at 24 h, but then decreased (p<0.05) them at 48 h. The molar proportion of valerate was increased (p<0.05) at 24 h. The acetate to propionate ratio (A/P; linear, p<0.01) was increased at 24 h, but reached the least value at the level of 0.30 mg/mL MCS. The MCS inclusion decreased (p<0.05) the molar proportion of propionate at 24 h and then increased it at 48 h. The concentration of total volatile fatty acid was decreased (p<0.001) at 24 h, but reached the greatest concentration at the level of 0.01 mg/mL and the least concentration at the level of 0.60 mg/mL. The relative abundance of Ruminococcus albus was increased at 6 h and 24 h, and the relative abundance of Fibrobacter succinogenes was the lowest (p<0.05) at 0.60 mg/mL at 6 h and 24 h. The relative abundance of Butyrivibrio fibrisolvens and fungus reached the greatest value (p<0.05) at low doses of MCS inclusion and the least value (p<0.05) at 0.60 mg/mL at 24 h. The present results demonstrates that a high level of MCS quickly inhibits in vitro fermentation of maize stover, while MCS at low doses has the

  8. Effect of dietary supplementation of rutin on lactation performance, ruminal fermentation and metabolism in dairy cows.

    PubMed

    Cui, K; Guo, X D; Tu, Y; Zhang, N F; Ma, T; Diao, Q Y

    2015-12-01

    The effect of long-term dietary supplementation with rutin on the lactation performance, ruminal fermentation and metabolism of dairy cows were investigated in this study. Twenty multiparous Chinese Holstein cows were randomly divided into four groups, and each was offered a basal diet supplemented with 0, 1.5, 3.0 or 4.5 mg rutin/kg of diet. The milk yield of the cows receiving 3.0 and 4.5 mg rutin/kg was higher than that of the control group, and the milk yield was increased by 10.06% and 3.37% (p < 0.05). On the basis of that finding, the cows supplemented with 0 or 3.0 mg rutin/kg of diet were used to investigate the effect of rutin supplementation on blood metabolites and hormone levels. Compared with the control group, the serum blood urea nitrogen (BUN) concentration of the 3.0 mg rutin/kg group is significantly decreased (p < 0.05). In another trial, four adult cows with permanent rumen fistula and duodenal cannulae were attributed in a self-control design to investigate the peak occurrence of rutin and quercetin in different parts of the gastrointestinal tract, ruminal fermentation and microbial population in dairy cows. The cows supplemented with 3.0 mg rutin/kg in the diet differed from the control period. Samples of rumen fluid, duodenal fluid and blood were collected at 1, 2, 3, 4, 5, 6, 7 and 8 h after morning feeding. Compared to the control group, the pH, ammonia nitrogen concentration, number and protein content of rumen protozoa and blood urea nitrogen were lower, but the concentration of total volatile fatty acid (TVFA), microbial crude protein (MCP) and serum lysozyme content were higher for the cows fed the rutin diets. The addition of 3.0 mg rutin/kg to diets for a long term tended to increase the milk yield and improve the metabolism and digestibility of the dairy cows.

  9. Carbohydrate fermentation by three species of polycentric ruminal fungi from cattle and water buffalo in tropical Australia.

    PubMed

    Phillips, M W; Gordon, G L

    1995-02-01

    Fructose, glucose and xylose were the only monosaccharides to be fermented by the polycentric fungi, Orpinomyces joyonii (three cattle isolates) and O. intercalaris (two cattle isolates) and Anaeromyces spp. (four cattle isolates and two water buffalo isolates). Both Orpinomyces spp. utilised a similar range of oligosaccharides and polysaccharides by fermenting cellobiose, gentiobiose, lactose, maltose, sucrose, cellulose, glycogen, starch and xylan. In contrast, there was considerable variation in carbohydrate fermentation amongst Anaeromyces spp., with only cellobiose, gentiobiose and cellulose being fermented by all strains. Formate, acetate and ethanol were the major fermentation end-products formed from glucose by all polycentric fungi. In addition, Anaeromyces spp. produced considerable amounts of lactate, although only small amounts were formed by Orpinomyces spp. This difference was explained by the low specific activity for lactate dehydrogenase in Orpinomyces spp. Several Anaeromyces spp. also produced malate as a significant end-product of glucose fermentation. Fermentation of specifically-labelled Z14C]glucose molecules by polycentric fungi showed that hexose was catabolised by both polycentric and monocentric fungi via the glycolysis pathway with end-products being derived from the following carbon atoms: lactate and malate (C1-C3; C4-C6), acetate and ethanol (C1-C2; C5-C6), CO2 and formate (C3; C4). The results were compared to those obtained for monocentric and polycentric fungi isolated from temperate climate ruminants. PMID:16887506

  10. Carbohydrate fermentation by three species of polycentric ruminal fungi from cattle and water buffalo in tropical Australia.

    PubMed

    Phillips, M W; Gordon, G L

    1995-02-01

    Fructose, glucose and xylose were the only monosaccharides to be fermented by the polycentric fungi, Orpinomyces joyonii (three cattle isolates) and O. intercalaris (two cattle isolates) and Anaeromyces spp. (four cattle isolates and two water buffalo isolates). Both Orpinomyces spp. utilised a similar range of oligosaccharides and polysaccharides by fermenting cellobiose, gentiobiose, lactose, maltose, sucrose, cellulose, glycogen, starch and xylan. In contrast, there was considerable variation in carbohydrate fermentation amongst Anaeromyces spp., with only cellobiose, gentiobiose and cellulose being fermented by all strains. Formate, acetate and ethanol were the major fermentation end-products formed from glucose by all polycentric fungi. In addition, Anaeromyces spp. produced considerable amounts of lactate, although only small amounts were formed by Orpinomyces spp. This difference was explained by the low specific activity for lactate dehydrogenase in Orpinomyces spp. Several Anaeromyces spp. also produced malate as a significant end-product of glucose fermentation. Fermentation of specifically-labelled Z14C]glucose molecules by polycentric fungi showed that hexose was catabolised by both polycentric and monocentric fungi via the glycolysis pathway with end-products being derived from the following carbon atoms: lactate and malate (C1-C3; C4-C6), acetate and ethanol (C1-C2; C5-C6), CO2 and formate (C3; C4). The results were compared to those obtained for monocentric and polycentric fungi isolated from temperate climate ruminants.

  11. Short communication: effect of oilseed supplementation of an herbage diet on ruminal fermentation in continuous culture.

    PubMed

    Soder, K J; Brito, A F; Rubano, M D

    2013-04-01

    A 4-unit continuous culture fermentor system was used to evaluate the effects of oilseed supplementation of an herbage-based diet on nutrient digestibility, fermentation profile, and bacterial nitrogen (N) synthesis. Treatments were randomly assigned to fermentors in a 4×4 Latin square design with 7d for diet adaptation and 3d for data and sample collection. Dietary treatments were an herbage-only diet (HERB), or the following ground oilseeds supplemented to an herbage-based diet at 10% of total dry matter (DM) fed: flaxseed (FLAX), canola (CAN), or sunflower (SUN). Apparent DM, organic matter, and neutral detergent fiber digestibility were not affected by diet, averaging 62, 68, and 78%, respectively. True DM and organic matter digestibility were not affected by diet, averaging 78 and 82%, respectively. Fermentor pH and total volatile fatty acids were not affected by diet. Branched-chain volatile fatty acids tended to be lower for HERB compared with the 3 oilseed diets. Ammonia N concentrations were lowest for the HERB diet. Crude protein digestibility was not affected by diet. Flow of NH3-N was lowest for the HERB diet reflecting the lowest culture concentration of NH3-N. Bacterial N flows were lowest for HERB and SUN diets, intermediate for FLAX, and greatest for CAN. Flows of total N, non-NH3-N, and dietary N were not affected by diet. Likewise, efficiency of bacterial N synthesis was not affected by diet. Supplementation with FLAX, CAN, or SUN at 10% of total DM fed did not affect nutrient digestibility or ruminal fermentation compared with an all-herbage diet. The oilseeds tested herein may be considered as alternative energy supplements for grazing dairy cows, particularly during times of low availability of corn. However, in vivo studies are needed to further evaluate the effects of oilseeds supplementation of an herbage-based diet on milk production and composition (specifically human-beneficial fatty acids).

  12. Effects of Flavonoid-rich Plant Extracts on In vitro Ruminal Methanogenesis, Microbial Populations and Fermentation Characteristics

    PubMed Central

    Kim, Eun T.; Guan, Le Luo; Lee, Shin J.; Lee, Sang M.; Lee, Sang S.; Lee, Il D.; Lee, Su K.; Lee, Sung S.

    2015-01-01

    The objective of this study was to evaluate the in vitro effects of flavonoid-rich plant extracts (PE) on ruminal fermentation characteristics and methane emission by studying their effectiveness for methanogenesis in the rumen. A fistulated Holstein cow was used as a donor of rumen fluid. The PE (Punica granatum, Betula schmidtii, Ginkgo biloba, Camellia japonica, and Cudrania tricuspidata) known to have high concentrations of flavonoid were added to an in vitro fermentation incubated with rumen fluid. Total gas production and microbial growth with all PE was higher than that of the control at 24 h incubation, while the methane emission was significantly lower (p<0.05) than that of the control. The decrease in methane accumulation relative to the control was 47.6%, 39.6%, 46.7%, 47.9%, and 48.8% for Punica, Betula, Ginkgo, Camellia, and Cudrania treatments, respectively. Ciliate populations were reduced by more than 60% in flavonoid-rich PE treatments. The Fibrobacter succinogenes diversity in all added flavonoid-rich PE was shown to increase, while the Ruminoccocus albus and R. flavefaciens populations in all PE decreased as compared with the control. In particular, the F. succinogenes community with the addition of Birch extract increased to a greater extent than that of others. In conclusion, the results of this study showed that flavonoid-rich PE decreased ruminal methane emission without adversely affecting ruminal fermentation characteristics in vitro in 24 h incubation time, suggesting that the flavonoid-rich PE have potential possibility as bio-active regulator for ruminants. PMID:25656200

  13. Effect of pentoses and pentitols on fermentation of hay by mixed populations of ruminal microorganisms.

    PubMed

    Gascoyne, D J; Theodorou, M K; Bazin, M J

    1988-09-01

    Consecutive batch culture, a technique which involves sequential transfer of cultures to fresh medium at regular intervals, was used to establish mixed ruminal-microbial populations in an anaerobic medium containing highly digestible hay. Once volatile fatty acid production was stable, perturbations were imposed in consecutive cultures by the addition of one of each of the following pentoses or analogous pentitols: l-arabinose, d-lyxose, d-ribose, d-xylose, l-arabitol, d-arabitol (lyxitol), ribitol, and xylitol. With the exception of d-lyxose, the addition of pentoses caused marked increases in propionate and valerate production, and except for d-arabitol, pentitol addition caused increases in butyrate and valerate production. On transfer to and continued incubation in the control medium, volatile fatty acid production reverted to preperturbed levels. The presence of pentitols and pentoses significantly reduced the endpoint pH of cultures and the proportion of hay that was fermented. With all added substrates, the response to the perturbation was at its maximum within one incubation (i.e., within 48 h). Similarly, the variables being monitored all returned to control levels within one incubation. On the basis of these results, it is suggested that changes were related to the need to maintain a redox balance within anaerobic cultures rather than any significant changes in the microbial population that was present.

  14. Effects of apple pomace proportion levels on the fermentation quality of total mixed ration silage and its digestibility, preference and ruminal fermentation in beef cows.

    PubMed

    Fang, Jiachen; Cao, Yang; Matsuzaki, Masatoshi; Suzuki, Hiroyuki

    2016-02-01

    Four Japanese black beef cows were used in a 4 × 4 Latin square to evaluate the fermentation quality, digestibility, ruminal fermentation and preference of total mixed ration (TMR) silages prepared with differing proportions of apple pomace (AP). Experimental treatments were the control (no AP added, CAP), 5% (low, LAP), 10% (medium, MAP) and 20% (high, HAP) of TMR dry matter (DM) as AP. All TMR silages were well preserved. Ethanol was produced in silages containing AP and the amount increased with the proportion of AP (P < 0.05). Nutrient digestibility with LAP, MAP and HAP treatment was lower than that with CAP treatment (P < 0.05). The ruminal molar proportion of acetic acid increased (P < 0.05), but the ruminal ammonia-N concentration decreased (P < 0.05) as the proportion of AP increased. The preference of the animals was highest for HAP, followed by MAP, CAP and LAP. This study demonstrates that decrease in nutrient digestibility might be related to the ethanol produced naturally from AP. Therefore, the proportion of AP in TMR silages should be less than 5% of dietary DM.

  15. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).

    PubMed

    Zhao, X H; Liu, C J; Liu, Y; Li, C Y; Yao, J H

    2013-12-01

    A rumen simulation technique (RUSITEC) apparatus with eight 800 ml fermenters was used to investigate the effects of replacing dietary starch with neutral detergent-soluble fibre (NDSF) by inclusion of sugar beet pulp in diets on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria. Experimental diets contained 12.7, 16.4, 20.1 or 23.8% NDSF substituted for starch on a dry matter basis. The experiment was conducted over two independent 15-day incubation periods with the last 8 days used for data collection. There was a tendency that 16.4% NDSF in the diet increased the apparent disappearance of organic matter (OM) and neutral detergent fibre (NDF). Increasing dietary NDSF level increased carboxymethylcellulase and xylanase activity in the solid fraction and apparent disappearance of acid detergent fibre (ADF) but reduced the 16S rDNA copy numbers of Ruminococcus albus in both liquid and solid fractions and R. flavefaciens in the solid fraction. The apparent disappearance of dietary nitrogen (N) was reduced by 29.6% with increased dietary NDSF. Substituting NDSF for starch appeared to increase the ratios of acetate/propionate and methane/volatile fatty acids (VFA) (mol/mol). Replacing dietary starch with NDSF reduced the daily production of ammonia-N and increased the growth of the solid-associated microbial pellets (SAM). Total microbial N flow and efficiency of microbial synthesis (EMS), expressed as g microbial N/kg OM fermented, tended to increase with increased dietary NDSF, but the numerical increase did not continue as dietary NDSF exceeded 20.1% of diet DM. Results suggested that substituting NDSF for starch up to 16.4% of diet DM increased digestion of nutrients (except for N) and microbial synthesis, and further increases (from 16.4% to 23.8%) in dietary NDSF did not repress microbial synthesis but did significantly reduce digestion of dietary N.

  16. Effects of a mixture of steam-flaked corn and extruded soybeans on performance, ruminal development, ruminal fermentation, and intestinal absorptive capability in veal calves.

    PubMed

    Xie, X X; Meng, Q X; Liu, P; Wu, H; Li, S R; Ren, L P; Li, X Z

    2013-09-01

    This study investigated the effects of a mixture of steam-flaked corn and extruded soybeans on performance, ruminal development, ruminal fermentation variables, and intestinal absorptive capability in Holstein male calves (n = 39). Calves were assigned to 1 of 3 treatments (13 calves per treatment): 1) milk replacer (MR), 2) one-half of the amount of MR in treatment 1, plus a mixture of 62.1% steam-flaked corn and 30.5% extruded soybeans provided ad libitum (HMCS), or 3) a mixture of 62.1% steam-flaked corn and 30.5% extruded soybeans provided ad libitum (CS). All the calves were started at 2 ± 1 d of age and studied for 150 d. Each 30 d was defined as 1 period. Dry matter intake and growth were measured daily and monthly, respectively. All calves were harvested at 150 d of age, after which rumen fluid was collected. Rumen and intestine samples were gathered. Calves fed MR exhibited greater BW (P = 0.001) and ADG (P < 0.001), compared with calves fed HMCS and CS from period 2 to 3; however, from period 4 to 5, CS calves had greater (P < 0.04) ADG than MR calves. The treatments did not differ in final BW (P = 0.72) and ADG (P = 0.20) from period 2 to 5. Compared with HMCS and MR calves, CS calves had the greatest DMI (P < 0.001) and the least feed efficiency (P < 0.001) from period 2 to 5. For ruminal fermentation parameters, CS calves had decreased (P = 0.04) rumen pH than MR calves. The NH3 concentrations were greater (P = 0.03) in calves fed HMCS than calves fed MR and CS. Total VFA concentrations were greatest in CS calves (P = 0.02). Calves fed CS had the greatest molar concentrations of propionate, butyrate, and valerate (P < 0.002), and calves fed HMCS had the greatest molar concentrations of isobutyrate (P = 0.001) and isovalerate (P = 0.001). The CS calves exhibited greater empty rumen weight (P = 0.001), papillae length (P < 0.001), papillae width (P < 0.001), rumen wall thickness (P = 0.012), and papillae density (P = 0.003). The greatest villus heights

  17. Heat Stress Alters Ruminal Fermentation and Digesta Characteristics, and Behavior in Lactating Dairy Cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a study designed to assess the impact and interaction of nonfiber carbohydrates (NFC) and ruminally degradable protein (RDP) on ruminal characteristics and animal behavior, animals experienced heat stress in the first period (HS), and no/greatly reduced heat stress (NHS) in the second period, all...

  18. Effects of plants and essential oils on ruminal in vitro batch culture methane production and fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, plants (14) and essential oils (EO; 88) from plants that are naturalized to, or can be successfully grown in North America were evaluated in a batch culture in vitro screening experiments with ruminal fluid as potential anti-methanogenic additives for ruminant diets. Essential oils we...

  19. Effects of particle size of alfalfa-based dairy cow diets on chewing activity, ruminal fermentation, and milk production.

    PubMed

    Beauchemin, K A; Yang, W Z; Rode, L M

    2003-02-01

    Effects offorage particle size measured as physically effective NDF and ratio of alfalfa silage to alfalfa hay of diets on feed intake, chewing activity, particle size reduction, salivary secretion, ruminal fermentation, and milk production of dairy cows were evaluated using a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. The diets consisted of 60% barley-based concentrate and 40% forage, comprised either of 50:50 or 25:75 of alfalfa silage:alfalfa hay, and alfalfa hay was either chopped or ground. Various methods were used to determine physically effective NDF content of the diets. Cows surgically fitted with ruminal and duodenal cannulas were offered ad libitum access to these total mixed diets. The physically effective NDF content of the diets was significantly lower when measured using the Penn State Particle Separator than when measured based on particles retained on 1.18-mm screen. Intake of DM was increased by increasing the ratio of silage to hay but was not affected by physically effective NDF content of diets. Eating time (hours per day) was not affected by the physically effective NDF content of diets, although cows spent more time eating per unit of DM or NDF when consuming high versus low alfalfa hay diets. Ruminating time (hours per day) was increased with increased physically effective NDF content of the diets. Rumen pH was affected more by changing dietary particle size than altering the ratio of silage to hay. Feeding chopped hay instead of ground hay improved ruminal pH status: time during which ruminal pH was above 6.2 increased and time during which ruminal pH was below 5.8 decreased. Milk production was increased by feeding higher concentrations of alfalfa silage due to increased DM intake, but was not affected by dietary particle size. Feed particle size, expressed as mean particle length or physically effective NDF was moderately correlated with ruminating time but not with eating time. Although physically

  20. Growth, ruminal measurements, and health characteristics of Holstein bull calves fed an Aspergillus oryzae fermentation extract.

    PubMed

    Yohe, T T; O'Diam, K M; Daniels, K M

    2015-09-01

    A fermentation extract of the fungus Aspergillus oryzae can be used as a prebiotic. The objective was to determine if dietary inclusion of a fermentation extract of A. oryzae as well as calf age would alter growth, health, performance parameters, and the growth and development of the rumen in Holstein calves from birth thru 1 wk postweaning; it was hypothesized that it would. Purchased bull calves (n=52) that originated from 1 of 13 farms were used in this experiment. All calves had serum IgG greater than 10 mg/mL. Calves were randomly assigned to a slaughter age, 4 (n=16) or 8 wk (n=36), and treatment, control (n=27) or fermentation extract of A. oryzae (AMF; n=25). Calves were housed and fed individually; no bedding was used and no forage was fed. Calves assigned to AMF were fed 2 g of AMF daily. Liquid AMF was delivered in milk replacer for the first 4 wk of the study; solid AMF was top-dressed on texturized starter thereafter. Calves were fed nonmedicated milk replacer twice daily (22.0% crude protein, 20.0% fat, dry matter basis; 680 g/d) and were weaned upon consumption of 0.91 kg of starter (20% crude protein, 2.0% fat; medicated with decoquinate) for 3 consecutive days or on d 45 of the study, whichever came first. Calves had ad libitum access to starter and water throughout the study. Feed intake as well as fecal and respiratory scores were recorded daily; body weight, withers height, and hip height were recorded weekly. Gross rumen measurements and rumen samples for future gross and histological analyses were taken at 4 and 8 wk. All calves grew similarly; weaning age averaged 40.39±0.77 d. Lifetime average daily gain was 0.60±0.05 kg/d and lifetime gain-to-feed ratio was 0.56±0.05. Milk replacer, starter, total dry matter intake, gross and histological rumen measurements, rumen pH, fecal and respiratory scores, and total medical costs were not affected by treatment. Despite total medical costs not differing by treatment, a lower percentage of AMF

  1. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis.

    PubMed

    Karnati, S K R; Sylvester, J T; Ribeiro, C V D M; Gilligan, L E; Firkins, J L

    2009-08-01

    Methane is an end product of ruminal fermentation that is energetically wasteful and contributes to global climate change. Bromoethanesulfonate, animal-vegetable fat, and monensin were compared with a control treatment to suppress different functional groups of ruminal prokaryotes in the presence or absence of protozoa to evaluate changes in fermentation, digestibility, and microbial N outflow. Four dual-flow continuous culture fermenter systems were used in 4 periods in a 4 x 4 Latin square design split into 2 subperiods. In subperiod 1, a multistage filter system (50-microm smallest pore size) retained most protozoa. At the start of subperiod 2, conventional filters (300-microm pore size) were substituted to efflux protozoa via filtrate pumps over 3 d; after a further 7 d of adaptation, the fermenters were sampled for 3 d. Treatments were retained during both subperiods. Flow of total N and digestibilities of NDF and OM were 18, 16, and 9% higher, respectively, for the defaunated subperiod but were not different among treatments. Ammonia concentration was 33% higher in the faunated fermenters but was not affected by treatment. Defaunation increased the flow of nonammonia N and bacterial N from the fermenters. Protozoal counts were not different among treatments, but bromoethanesulfonate increased the generation time from 43.2 to 55.6 h. Methanogenesis was unaffected by defaunation but tended to be increased by unsaturated fat. Defaunation did not affect total volatile fatty acid production but decreased the acetate:propionate ratio; monensin increased production of isovalerate and valerate. Biohydrogenation of unsaturated fatty acids was impaired in the defaunated fermenters because effluent flows of oleic, linoleic, and linolenic acids were 60, 77, and 69% higher, and the ratio of vaccenic acid:unsaturated FA ratio was decreased by 34% in the effluent. This ratio was increased in both subperiods with the added fat diet, indicating an accumulation of

  2. Steers grazing blue grama rangeland throughout the growing season. I. Dietary composition, intake, digesta kinetics and ruminal fermentation.

    PubMed

    Funk, M A; Galyean, M L; Branine, M E; Krysl, L J

    1987-11-01

    Four sampling periods on blue grama rangeland in northeastern New Mexico evaluated effects of advancing forage maturity and drought-induced dormancy on dietary nutrient and botanical composition, intake, digesta kinetics and ruminal fermentation in grazing beef steers. Six ruminally cannulated and three esophageally cannulated steers freely grazed a 12-ha pasture during the study. Sampling periods lasted 11 d and started June 2, during the early growing season (EGS); June 22, during early summer dormancy (ESD); July 21, during late summer dormancy (LSD); and August 25, 1985, during the late growing season (LGS). Forage availability was not limiting in any sampling period. Steers consumed a greater (P less than .05) percentage in forbs and lower percentage of grasses in EGS and ESD than in LSD and LGS. Dietary in vitro organic matter digestibility was lower (P less than .05) in ESD than in EGS, LSD and LGS. Dietary N content was higher (P less than .05) in EGs and LGS than in ESD and LSD. Neutral detergent fiber content was lower (P less than .05) in EGS than in other sampling periods, while dietary lignin contents were similar for all sampling periods. Voluntary organic matter intake was similar for all sampling periods; however, estimated gastrointestinal tract fill was greater (P less than .05) in ESD and LSD than in EGS and LGS. Particulate passage rate was slower (P less than .05) and total mean retention time longer (P less than .05) in LSD than in other sampling periods. Rate and lag time of neutral detergent fiber digestion were not different among sampling periods. Ruminal pH was greater (P less than .05) at 3 and 6 h after sunrise in ESD than in other sampling periods. Ruminal ammonia concentrations were lower (P less than .05) in ESD and LSD than in EGS and LGS at 3 and 6 h after sunrise. Total volatile fatty acid concentrations were lower (P less than .05) in ESD than in EGS and LSD at 3 h after sunrise and lower (P less than .10) than EGS and LGS at 9 h

  3. Effects of lauric and myristic acids on ruminal fermentation, production, and milk fatty acid composition in lactating dairy cows.

    PubMed

    Hristov, A N; Lee, C; Cassidy, T; Long, M; Heyler, K; Corl, B; Forster, R

    2011-01-01

    The objectives of this experiment were to investigate the effects of lauric (LA) and myristic (MA) acids on ruminal fermentation, production, and milk fatty acid (FA) profile in lactating dairy cows and to identify the FA responsible for the methanogen-suppressing effect of coconut oil. The experiment was conducted as a replicated 3×3 Latin square. Six ruminally cannulated cows (95±26.4 DIM) were subjected to the following treatments: 240 g/cow per day each of stearic acid (SA, control), LA, or MA. Experimental periods were 28 d and cows were refaunated between periods. Lauric acid reduced protozoal counts in the rumen by 96%, as well as acetate, total VFA, and microbial N outflow from the rumen, compared with SA and MA. Ruminal methane production was not affected by treatment. Dry matter intake was reduced 35% by LA compared with SA and MA, which resulted in decreased milk yield. Milk fat content also was depressed by LA compared with SA and MA. Treatment had no effect on milk protein content. All treatments increased milk concentration of the respective treatment FA. Concentration of C12:0 was more than doubled by LA, and C14:0 was increased (45%) by MA compared with SA. Concentration of milk FAC16 FA and MUFA were increased, by LA compared with the other treatments. In this study, LA had profound effects on ruminal fermentation, mediated through inhibited microbial populations, and decreased DMI, milk yield, and milk fat content. Despite the significant decrease in protozoal counts, however, LA had no effect on ruminal methane production. Thus, the antimethanogenic effect of coconut oil, observed in related studies, is likely due to total FA application level, the additive effect of LA and MA, or a combination of both. Both LA and MA

  4. Short communication: in vitro ruminal fermentability of a modified corn cultivar expressing a thermotolerant α-amylase.

    PubMed

    Hu, W; Persia, M E; Kung, L

    2010-10-01

    The fermentability of a corn cultivar that expresses a thermostable α-amylase (CA3272) was evaluated under various in vitro conditions. The CA3272 corn was developed as a replacement to microbial enzyme additions during the high-temperature processing of corn to produce ethanol. The α-amylase activity in the corn might have the potential for positive effects on ruminant performance if incorporated into the ration. Four corn cultivars were evaluated in an in vitro ruminal fermentation where the digestion of starch was measured after 6 h. The cultivars included a flint corn, an opaque corn, CA3272, and its near-isogenic counterpart (IC). The flint corn produced less total volatile fatty acids (18.4 mM) than the other 3 corns (average of 25.3 mM), supporting the fact that it had the highest concentration of prolamins, which are negatively associated with starch availability. A second 6-h in vitro ruminal fermentation evaluated mixtures of the CA3272 and IC corns (0, 25, 50, 75, and 100% concentrations of CA3272). Total volatile fatty acid production was not different among treatments for any proportions of CA3272. In a third in vitro experiment, there was a small but significant difference in starch degradation of CA3272 compared with IC (90.6 vs. 89.7%) but this difference is most likely not biologically relevant. In a fourth in vitro experiment, CA3272 and IC were incubated in water at 40 and 65°C for 24 h. Degradation of starch from native amylase activity at 40°C was 1.99 and 1.60% for CA3272 and IC, respectively, but when they were incubated at 65°C, starch degradation was 10.56 and 0.85% for CA3272 and IC, respectively. These data demonstrate that amylase activity in CA3272 is expressed at a high temperature (65°C) but at the physiological temperature expected in a rumen of a cow (39-40°C), expression of amylase activity does not appear to be sufficient to have any positive (or negative) effects on ruminal metabolism. PMID:20855018

  5. Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics.

    PubMed

    Wanapat, Metha; Kang, Sungchhang; Polyorach, Sineenart

    2013-01-01

    The availability of local feed resources in various seasons can contribute as essential sources of carbohydrate and protein which significantly impact rumen fermentation and the subsequent productivity of the ruminant. Recent developments, based on enriching protein in cassava chips, have yielded yeast fermented cassava chip protein (YEFECAP) providing up to 47.5% crude protein (CP), which can be used to replace soybean meal. The use of fodder trees has been developed through the process of pelleting; Leucaena leucocephala leaf pellets (LLP), mulberry leaf pellets (MUP) and mangosteen peel and/or garlic pellets, can be used as good sources of protein to supplement ruminant feeding. Apart from producing volatile fatty acids and microbial proteins, greenhouse gases such as methane are also produced in the rumen. Several methods have been used to reduce rumen methane. However, among many approaches, nutritional manipulation using feed formulation and feeding management, especially the use of plant extracts or plants containing secondary compounds (condensed tannins and saponins) and plant oils, has been reported. This approach could help todecrease rumen protozoa and methanogens and thus mitigate the production of methane. At present, more research concerning this burning issue - the role of livestock in global warming - warrants undertaking further research with regard to economic viability and practical feasibility. PMID:23981662

  6. Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation

    PubMed Central

    Liu, Y. F.; Zhao, H. B.; Liu, X. M.; You, W.; Cheng, H. J.; Wan, F. C.; Liu, G. F.; Tan, X. W.; Song, E. L.; Zhang, X. L.

    2016-01-01

    The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin×LuXi crossbred cattle with a body weight (400±10 kg), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a 4×4 Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal NH3-N concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle. PMID:26954111

  7. Methane production, nutrient digestion, ruminal fermentation, N balance, and milk production of cows fed timothy silage- or alfalfa silage-based diets.

    PubMed

    Hassanat, F; Gervais, R; Massé, D I; Petit, H V; Benchaar, C

    2014-10-01

    The objective of this study was to investigate the effects of changing forage source in dairy cow diets from timothy silage (TS) to alfalfa silage (AS) on enteric CH₄ emissions, ruminal fermentation characteristics, digestion, milk production, and N balance. Nine ruminally cannulated lactating cows were used in a replicated 3 × 3 Latin square design (32-d period) and fed (ad libitum) a total mixed ration (TMR; forage:concentrate ratio of 60:40, dry matter basis), with the forage portion consisting of either TS (0% AS; 0% AS and 54.4% TS in the TMR), a 50:50 mixture of both silages (50% AS; 27.2% AS and 27.2% TS in the TMR), or AS (100% AS; 54.4% AS and 0% TS in the TMR). Compared with TS, AS contained less (36.9 vs. 52.1%) neutral detergent fiber but more (20.5 vs. 13.6%) crude protein (CP). In sacco 24-h ruminal degradability of organic matter (OM) was higher for AS than for TS (73.5 vs. 66.9%). Replacement of TS with AS in the diet entailed increasing proportions of corn grain and bypass protein supplement at the expense of soybean meal. As the dietary proportion of AS increased, CP and starch concentrations increased, whereas fiber content declined in the TMR. Dry matter intake increased linearly with increasing AS proportions in the diet. Apparent total-tract digestibility of OM and gross energy remained unaffected, whereas CP digestibility increased linearly and that of fiber decreased linearly with increasing inclusion of AS in the diet. The acetate-to-propionate ratio was not affected, whereas ruminal concentration of ammonia (NH₃) and molar proportion of branched-chain VFA increased as the proportion of AS in the diet increased. Daily CH₄ emissions tended to increase (476, 483, and 491 g/d for cows fed 0% AS, 50% AS, and 100% AS, respectively) linearly as cows were fed increasing proportions of AS. Methane production adjusted for dry matter intake (average=19.8 g/kg) or gross energy intake (average=5.83%) was not affected by increasing AS inclusion

  8. Effects of source and level of dietary neutral detergent fiber on feed intake, ruminal fermentation, ruminal digestion in situ, and total tract digestion in beef cattle fed pelleted concentrates with or without supplemental roughage.

    PubMed

    Marshall, S A; Campbell, C P; Mandell, I B; Wilton, J W

    1992-03-01

    The effects of source and level of dietary NDF on intake, ruminal digestion in situ, ruminal fermentation, and total tract digestion were evaluated in Hereford steers using a replicated 5 x 5 Latin square design. Diets contained 62 to 64% TDN and included 1) 80% control concentrate (contained pelleted ground grains) and 20% timothy hay (traditional diet), 2) 80% control concentrate and 20% alfalfa cubes, 3) 90% control concentrate and 10% cubes, 4) a completely pelleted diet using corn cobs as the primary NDF source, and 5) 80% textured (rolled instead of ground grains) concentrate and 20% hay. Dry matter intake differed (P less than .05) between the traditional and cube diets due to limited acceptance of alfalfa cubes. Increased (P less than .05) ruminal osmolality, total VFA, and NH3 N and lower (P less than .01) ruminal pH in steers fed corn cob and cube diets relative to steers fed the traditional diet were due to preferential consumption of concentrate over supplemental roughage and the resultant rapid fermentation of concentrates. Potentially degradable DM in the traditional diet exceeded (P less than .06) all other diets, resulting in the increased (P less than .10) extent of DM disappearance despite a slower (P less than .05) rate of DM disappearance. Rate of NDF disappearance and all in situ starch disappearance parameters were similar between the traditional, corn cob, and cube diets. All ruminal digestion parameters involving NDF disappearance were similar between hay diets and between cube diets, whereas rate and extent of starch disappearance differed (P less than .05) between hay diets. Although formulation of diets with different sources of dietary NDF did not affect total tract digestion of nutrients, nutrient availability and ruminal fermentation were altered due to dietary differences in sources of dietary NDF and preferential selection of feedstuffs by steers. PMID:1314254

  9. Feed intake, nutrient digestibility and ruminal fermentation activities in sheep-fed peanut hulls treated with Trichoderma viride or urea.

    PubMed

    Abo-Donia, Fawzy M; Abdel-Azim, Safa N; Elghandour, Mona M Y; Salem, Abdelfattah Z M; Buendía, Germán; Soliman, N A M

    2014-01-01

    This study aimed to assess impacts of fungal treatment on the nutritional value of peanut hulls (PH) or urea at the rate of 5 kg/100 g of PH. Fermented sugar beet pulp inoculated with Trichoderma viride was supplemented to PH at rates of 5.0, 10.0 and 15.0 g/100 g air dry of PH and mixed well before aerobic incubation for 21 days. Organic matter (OM) content of PH declined with increased levels of fermented sugar beet pulp inoculums, while crude protein (CP), ether extract (EE), and ash increased. Fiber contents were decreased with both treatments of fermented sugar beet pulp and urea. Total N of PH increased with urea treatment, which reduced the true protein N to total protein N ratio. In sacco degradabilities of dry matter (DM), OM, and CP with urea treatment increased compared with fungal treatment. The DM intake of peanut hulls treated with fungus (PHF) was higher (P < 0.05) than with peanut hulls treated with urea (PHU). Digestibility of OM, CP, neutral detergent fiber, and non-fiber carbohydrate by native breed Ossimi sheep with PH were higher (P < 0.05) than with PH or urea treated PH. The intakes, losses, and balance of N increased (P < 0.01) with PHF versus PH feeding. Feeding PHF increased (P < 0.01) ruminal concentrations of NH3-N, acetic acid, butyric acid, and the acetic to propionic acid ratio. Bacterial and protozoal counts increased (P < 0.05) with feeding PHF or PHU versus PH. Overall, this fungal treatment of peanut hulls created a higher nutritive value feed for ruminants. PMID:24085418

  10. Effects of flaxseed and chia seed on ruminal fermentation, nutrient digestibility, and long-chain fatty acid flow in a dual-flow continuous culture system.

    PubMed

    Silva, L G; Bunkers, J; Paula, E M; Shenkoru, T; Yeh, Y; Amorati, B; Holcombe, D; Faciola, A P

    2016-04-01

    Flaxseed (FS) and chia seed (CS) are oilseeds rich in omega-3 fatty acids, which may change meat and milk composition when added to ruminants' diets and may have health benefits for humans. Literature on the effects of CS supplementation on ruminal metabolism is nonexistent. A dual-flow continuous culture fermenter system consisting of 6 fermenters was used to assess the effect of FS and CS supplementation in an alfalfa hay-based diet on ruminal fermentation, nutrient digestibility, microbial protein synthesis, and long-chain fatty acid flow. Diets were randomly assigned to fermenters in a replicated 3 × 3 Latin square design, with 3 consecutive periods of 10 d each, consisting of 7 d for diet adaptation and 3 d for sample collection. Each fermenter was fed a total of 72 g of DM/d divided in 6 equal portions. Treatments were 1) alfalfa hay + calcium soaps of palm oil fatty acid (MEG; 69.3 g DM/d of alfalfa hay plus 2.7 g DM/d of calcium soaps of palm oil fatty acid), 2) alfalfa hay + FS (FLAX; 68.4 g DM/d of alfalfa hay plus 3.6 g DM/d of ground FS), and 3) alfalfa hay + CS (CHIA; 68.04 g DM/d of alfalfa hay plus 3.96 g DM/d of ground CS). Dietary treatments had similar amounts of total fat, and fat supplements were ground to 2-mm diameter. Effluents from the last 3 d of incubation were composited for analyses. Data were analyzed using the MIXED procedure of SAS. Ruminal apparent and true nutrient digestibility of all nutrients did not differ ( > 0.05) among treatments. Compared with MEG, FLAX and CHIA increased the flows of C18:3 -3, C20:4 -6, and total PUFA ( < 0.01). Both CHIA and FLAX treatments had greater ruminal concentrations of C18:0, indicating that both CS and FS fatty acids were extensively biohydrogenated in the rumen. The NH-N concentration, microbial N flow, and efficiency of microbial protein synthesis were not affected ( > 0.05) by treatments. Lastly, there were no differences ( > 0.05) among diets for total VFA concentration and molar proportions

  11. Effects of flaxseed and chia seed on ruminal fermentation, nutrient digestibility, and long-chain fatty acid flow in a dual-flow continuous culture system.

    PubMed

    Silva, L G; Bunkers, J; Paula, E M; Shenkoru, T; Yeh, Y; Amorati, B; Holcombe, D; Faciola, A P

    2016-04-01

    Flaxseed (FS) and chia seed (CS) are oilseeds rich in omega-3 fatty acids, which may change meat and milk composition when added to ruminants' diets and may have health benefits for humans. Literature on the effects of CS supplementation on ruminal metabolism is nonexistent. A dual-flow continuous culture fermenter system consisting of 6 fermenters was used to assess the effect of FS and CS supplementation in an alfalfa hay-based diet on ruminal fermentation, nutrient digestibility, microbial protein synthesis, and long-chain fatty acid flow. Diets were randomly assigned to fermenters in a replicated 3 × 3 Latin square design, with 3 consecutive periods of 10 d each, consisting of 7 d for diet adaptation and 3 d for sample collection. Each fermenter was fed a total of 72 g of DM/d divided in 6 equal portions. Treatments were 1) alfalfa hay + calcium soaps of palm oil fatty acid (MEG; 69.3 g DM/d of alfalfa hay plus 2.7 g DM/d of calcium soaps of palm oil fatty acid), 2) alfalfa hay + FS (FLAX; 68.4 g DM/d of alfalfa hay plus 3.6 g DM/d of ground FS), and 3) alfalfa hay + CS (CHIA; 68.04 g DM/d of alfalfa hay plus 3.96 g DM/d of ground CS). Dietary treatments had similar amounts of total fat, and fat supplements were ground to 2-mm diameter. Effluents from the last 3 d of incubation were composited for analyses. Data were analyzed using the MIXED procedure of SAS. Ruminal apparent and true nutrient digestibility of all nutrients did not differ ( > 0.05) among treatments. Compared with MEG, FLAX and CHIA increased the flows of C18:3 -3, C20:4 -6, and total PUFA ( < 0.01). Both CHIA and FLAX treatments had greater ruminal concentrations of C18:0, indicating that both CS and FS fatty acids were extensively biohydrogenated in the rumen. The NH-N concentration, microbial N flow, and efficiency of microbial protein synthesis were not affected ( > 0.05) by treatments. Lastly, there were no differences ( > 0.05) among diets for total VFA concentration and molar proportions

  12. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage.

    PubMed

    Babaeinasab, Y; Rouzbehan, Y; Fazaeli, H; Rezaei, J

    2015-09-01

    The aim of this study was to determine the effect of molasses and lactic acid bacteria (LAB) on the chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of an ensiled potato-wheat straw mixture in a completely randomized design with 4 replicates. Wheat straw was harvested at full maturity and potato tuber when the leaves turned yellowish. The potato-wheat straw (57:43 ratio, DM basis) mixture was treated with molasses, LAB, or a combination. Lalsil Fresh LB (Lallemand, France; containing NCIMB 40788) or Lalsil MS01 (Lallemand, France; containing MA18/5U and MA126/4U) were each applied at a rate of 3 × 10 cfu/g of fresh material. Treatments were mixed potato-wheat straw silage (PWSS) without additive, PWSS inoculated with Lalsil Fresh LB, PWSS inoculated with Lalsil MS01, PWSS + 5% molasses, PWSS inoculated with Lalsil Fresh LB + 5% molasses, PWSS inoculated with Lalsil MS01 + 5% molasses, and corn silage (CS). The compaction densities of PWSS treatments and CS were approximately 850 and 980 kg wet matter/m, respectively. After anaerobic storage for 90 d, chemical composition, silage fermentation characteristics, in vitro gas production (GP), estimated OM disappearance (OMD), ammonia-N, VFA, microbial CP (MCP) production, and cellulolytic bacteria count were determined. Compared to CS, PWSS had greater ( < 0.001) values of DM, ADL, water-soluble carbohydrates, pH, and ammonia-N but lower ( < 0.05) values of CP, ash free-NDF (NDFom), ash, nitrate, and lactic, acetic, propionic, and butyric acids concentrations. When PWSS was treated with molasses, LAB, or both, the contents of CP and lactic and acetic acids increased, whereas NDFom, ammonia-N, and butyric acid decreased ( < 0.05). Based on in vitro ruminal experiments, PWSS had greater ( < 0.05) values of GP, OMD, and MCP but lower ( < 0.05) VFA and acetic acid compared to CS. With adding molasses alone or in combination with LAB inoculants to PWSS, the values of GP

  13. Fiber digestion, VFA production, and microbial population changes during in vitro ruminal fermentations of mixed rations by monensin-adapted and unadapted microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixed ruminal microbes were incubated for 24 h in vitro with mixed forage and concentrate rations containing 20% or 30% non-fiber carbohydrates (NFC) to assess in vitro fiber digestibility, fermentation end products, and relative population sizes (RPS, expressed as a percentage of 16S rRNA gene cop...

  14. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin**R and the Hawaiian marine algae, Chaetoceros, on ruminal fermentation in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of several methane-inhibitors on rumen fermentation were compared during three 24 h consecutive batch cultures of ruminal microbes in the presence of nonlimiting amounts of hydrogen. After the initial incubation series, methane production was reduced greater than 92% from that of nontre...

  15. Meta-analysis of the effects of essential oils and their bioactive compounds on rumen fermentation characteristics and feed efficiency in ruminants.

    PubMed

    Khiaosa-ard, R; Zebeli, Q

    2013-04-01

    The present study aimed at investigating the effects of essential oils and their bioactive compounds (EOBC) on rumen fermentation in vivo as well as animal performance and feed efficiency in different ruminant species, using a meta-analysis approach. Ruminant species were classified into 3 classes consisting of beef cattle, dairy cattle, and small ruminants. Two datasets (i.e., rumen fermentation and animal performance) were constructed, according to the available dependent variables within each animal class, from 28 publications (34 experiments) comprising a total of 97 dietary treatments. In addition, changes in rumen fermentation parameters relative to controls (i.e., no EOBC supplementation) of all animal classes were computed. Data were statistically analyzed within each animal class to evaluate the EOBC dose effect, taking into account variations of other variables across experiments (e.g., diet, feeding duration). The dose effect of EOBC on relative changes in fermentation parameters were analyzed across all animal classes. The primary results were that EOBC at doses <0.75 g/kg diet DM acted as a potential methane inhibitor in the rumen as a result of decreased acetate to propionate ratio. These responses were more pronounced in beef cattle (methane, P = 0.001; acetate to propionate ratio, P = 0.005) than in small ruminants (methane, P = 0.068; acetate to propionate ratio, P = 0.056) and in dairy cattle (P > 0.05), respectively. The analysis of relative changes in rumen fermentation variables suggests that EOBC affected protozoa numbers (P < 0.001) but only high doses (>0.20 g/kg DM) of EOBC had an inhibitory effect on this variable whereas lower doses promoted the number. For performance data, because numbers of observations in beef cattle and small ruminants were small, only those of dairy cattle (DMI, milk yield and milk composition, and feed efficiency) were analyzed. The results revealed no effect of EOBC dose on most parameters, except increased milk

  16. Effects of Dietary Crude Glycerin Supplementation on Nutrient Digestibility, Ruminal Fermentation, Blood Metabolites, and Nitrogen Balance of Goats

    PubMed Central

    Chanjula, P.; Pakdeechanuan, P.; Wattanasit, S.

    2014-01-01

    This experiment was conducted to evaluate the effects of increasing concentrations of crude glycerin (CGLY) in diets on nutrient utilization, ruminal fermentation characteristics, and nitrogen utilization of goats. Four male crossbred (Thai Native×Anglo Nubian) goats, with an average initial weight of 26±3.0 kg, were randomly assigned according to a 4×4 Latin square design with four 21 days consecutive periods. Treatments diets contained 0%, 5%, 10%, and 20% of dietary DM of CGLY. Based on this experiment, there were no significant differences (p>0.05) among treatment groups regarding DM intake and digestion coefficients of nutrients (DM, OM, CP, EE, NDF, and ADF). Likewise, mean serum glucose, BHBA, and PCV concentrations were not affected (p>0.05) by dietary treatments, whereas serum insulin concentration linearly increased (L, p = 0.002) with increasing the amount of CGLY supplementation. Ruminal pH, NH3-N, and BUN concentration were unchanged by dietary treatments, except for 20% of CGLY, NH3-N, and BUN were lower (p<0.05) than for the diets 10% of CGLY, while the difference between the diets 0%, 5%, and 20% of CGLY were not significant. The amount of N absorption and retention were similar among treatments. Based on this study, CGLY levels up to 20% in total mixed ration could be efficiently utilized for goats and this study elucidates a good approach to exploiting the use of biodiesel production for goat production. PMID:25049963

  17. Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits.

    PubMed

    Hernandez-Sanabria, Emma; Guan, Le Luo; Goonewardene, Laksiri A; Li, Meiju; Mujibi, Denis F; Stothard, Paul; Moore, Stephen S; Leon-Quintero, Monica C

    2010-10-01

    The influence of rumen microbial structure and functions on host physiology remains poorly understood. This study aimed to investigate the interaction between the ruminal microflora and the host by correlating bacterial diversity with fermentation measurements and feed efficiency traits, including dry matter intake, feed conversion ratio, average daily gain, and residual feed intake, using culture-independent methods. Universal bacterial partial 16S rRNA gene products were amplified from ruminal fluid collected from 58 steers raised under a low-energy diet and were subjected to PCR-denaturing gradient gel electrophoresis (DGGE) analysis. Multivariate statistical analysis was used to relate specific PCR-DGGE bands to various feed efficiency traits and metabolites. Analysis of volatile fatty acid profiles showed that butyrate was positively correlated with daily dry matter intake (P < 0.05) and tended to have higher concentration in inefficient animals (P = 0.10), while isovalerate was associated with residual feed intake (P < 0.05). Our results suggest that particular bacteria and their metabolism in the rumen may contribute to differences in host feed efficiency under a low-energy diet. This is the first study correlating PCR-DGGE bands representing specific bacteria to metabolites in the bovine rumen and to host feed efficiency traits.

  18. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro.

    PubMed

    Ertl, P; Knaus, W; Metzler-Zebeli, B U; Klevenhusen, F; Khiaosa-Ard, R; Zebeli, Q

    2015-07-01

    A rumen simulation technique was used to evaluate the effects of the complete substitution of a common concentrate mixture (CON) with a mixture consisting solely of by-products from the food industry (BP) at 2 different forage-to-concentrate ratios on ruminal fermentation profile, nutrient degradation, and abundance of rumen microbiota. The experiment was a 2×2 factorial arrangement with 2 concentrate types (CON and BP) and 2 concentrate levels (25 and 50% of diet dry matter). The experiment consisted of 2 experimental runs with 12 fermentation vessels each (n=6 per treatment). Each run lasted for 10d, with data collection on the last 5d. The BP diets had lower starch, but higher neutral detergent fiber (NDF) and fat contents compared with CON. Degradation of crude protein was decreased, but NDF and nonfiber carbohydrate degradation were higher for the BP diets. At the 50% concentrate level, organic matter degradation tended to be lower for BP and CH4 formation per unit of NDF degraded was also lower for BP. The BP mixture led to a higher concentration of propionate and a lower acetate-to-propionate ratio, whereas concentrations of butyrate and caproate decreased. Concentrate type did not affect microbial community composition, except that the abundance of bacteria of the genus Prevotella was higher for BP. Increasing the concentrate level resulted in higher degradation of organic matter and crude protein. At the higher concentrate level, total short-chain fatty acid formation increased and concentrations of isobutyrate and valerate decreased. In addition, at the 50% concentrate level, numbers of protozoa increased, whereas numbers of methanogens, anaerobic fungi, and fibrolytic bacteria decreased. No interaction was noted between the 2 dietary factors on most variables, except that at the higher concentrate level the effects of BP on CH4 and CO2 formation per unit of NDF degraded, crude protein degradation, and the abundance of Prevotella were more prominent. In

  19. Substitution of common concentrates with by-products modulated ruminal fermentation, nutrient degradation, and microbial community composition in vitro.

    PubMed

    Ertl, P; Knaus, W; Metzler-Zebeli, B U; Klevenhusen, F; Khiaosa-Ard, R; Zebeli, Q

    2015-07-01

    A rumen simulation technique was used to evaluate the effects of the complete substitution of a common concentrate mixture (CON) with a mixture consisting solely of by-products from the food industry (BP) at 2 different forage-to-concentrate ratios on ruminal fermentation profile, nutrient degradation, and abundance of rumen microbiota. The experiment was a 2×2 factorial arrangement with 2 concentrate types (CON and BP) and 2 concentrate levels (25 and 50% of diet dry matter). The experiment consisted of 2 experimental runs with 12 fermentation vessels each (n=6 per treatment). Each run lasted for 10d, with data collection on the last 5d. The BP diets had lower starch, but higher neutral detergent fiber (NDF) and fat contents compared with CON. Degradation of crude protein was decreased, but NDF and nonfiber carbohydrate degradation were higher for the BP diets. At the 50% concentrate level, organic matter degradation tended to be lower for BP and CH4 formation per unit of NDF degraded was also lower for BP. The BP mixture led to a higher concentration of propionate and a lower acetate-to-propionate ratio, whereas concentrations of butyrate and caproate decreased. Concentrate type did not affect microbial community composition, except that the abundance of bacteria of the genus Prevotella was higher for BP. Increasing the concentrate level resulted in higher degradation of organic matter and crude protein. At the higher concentrate level, total short-chain fatty acid formation increased and concentrations of isobutyrate and valerate decreased. In addition, at the 50% concentrate level, numbers of protozoa increased, whereas numbers of methanogens, anaerobic fungi, and fibrolytic bacteria decreased. No interaction was noted between the 2 dietary factors on most variables, except that at the higher concentrate level the effects of BP on CH4 and CO2 formation per unit of NDF degraded, crude protein degradation, and the abundance of Prevotella were more prominent. In

  20. Effects of oral nitroethane administration on enteric methane emissions and ruminal fermentation in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methane is a potent greenhouse gas and its release to the atmosphere is considered to contribute to global warming. Ruminal enteric methane production represents a loss of 2% to 15% of the animal’s energy intake and contributes nearly 20% of the United States total methane emissions. Studies have ...

  1. Methane production by two non-ruminant foregut-fermenting herbivores: The collared peccary (Pecari tajacu) and the pygmy hippopotamus (Hexaprotodon liberiensis).

    PubMed

    Vendl, Catharina; Frei, Samuel; Dittmann, Marie Theres; Furrer, Samuel; Ortmann, Sylvia; Lawrenz, Arne; Lange, Bastian; Munn, Adam; Kreuzer, Michael; Clauss, Marcus

    2016-01-01

    Methane (CH4) production varies between herbivore species, but reasons for this variation remain to be elucidated. Here, we report open-circuit chamber respiration measurements of CH4 production in four specimens each of two non-ruminant mammalian herbivores with a complex forestomach but largely differing in body size, the collared peccary (Pecari tajacu, mean body mass 17kg) and the pygmy hippopotamus (Hexaprotodon liberiensis, 229kg) fed lucerne-based diets. In addition, food intake, digestibility and mean retention times were measured in the same experiments. CH4 production averaged 8 and 72L/d, 18 and 19L/kg dry matter intake, and 4.0 and 4.2% of gross energy intake for the two species, respectively. When compared with previously reported data on CH4 production in other non-ruminant and ruminant foregut-fermenting as well as hindgut-fermenting species, it is evident that neither the question whether a species is a foregut fermenter or not, or whether it ruminates or not, is of the relevance previously suggested to explain variation in CH4 production between species. Rather, differences in CH4 production between species on similar diets appear related to species-specific differences in food intake and digesta retention kinetics.

  2. Methane production by two non-ruminant foregut-fermenting herbivores: The collared peccary (Pecari tajacu) and the pygmy hippopotamus (Hexaprotodon liberiensis).

    PubMed

    Vendl, Catharina; Frei, Samuel; Dittmann, Marie Theres; Furrer, Samuel; Ortmann, Sylvia; Lawrenz, Arne; Lange, Bastian; Munn, Adam; Kreuzer, Michael; Clauss, Marcus

    2016-01-01

    Methane (CH4) production varies between herbivore species, but reasons for this variation remain to be elucidated. Here, we report open-circuit chamber respiration measurements of CH4 production in four specimens each of two non-ruminant mammalian herbivores with a complex forestomach but largely differing in body size, the collared peccary (Pecari tajacu, mean body mass 17kg) and the pygmy hippopotamus (Hexaprotodon liberiensis, 229kg) fed lucerne-based diets. In addition, food intake, digestibility and mean retention times were measured in the same experiments. CH4 production averaged 8 and 72L/d, 18 and 19L/kg dry matter intake, and 4.0 and 4.2% of gross energy intake for the two species, respectively. When compared with previously reported data on CH4 production in other non-ruminant and ruminant foregut-fermenting as well as hindgut-fermenting species, it is evident that neither the question whether a species is a foregut fermenter or not, or whether it ruminates or not, is of the relevance previously suggested to explain variation in CH4 production between species. Rather, differences in CH4 production between species on similar diets appear related to species-specific differences in food intake and digesta retention kinetics. PMID:26454225

  3. Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios.

    PubMed

    Yang, C J; Mao, S Y; Long, L M; Zhu, W Y

    2012-11-01

    This study investigated the effects of disodium fumarate (DF) on methane emission, ruminal fermentation and microbial abundance in goats under different forage (F) : concentrate (C) ratios and fed according to maintenance requirements. Four ruminally fistulated, castrated male goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and the main factors being the F : C ratios (41 : 59 or 58 : 42) and DF supplementation (0 or 10 g/day). DF reduced methane production (P < 0.05) on average by 11.9%, irrespective of the F : C ratio. The concentrations of total volatile fatty acids, acetate and propionate were greater in the rumen of goats supplemented with DF (P < 0.05), whereas the abundance of methanogens was lower (P < 0.05). In high-forage diets, the abundance of Selenomonas ruminantium, a fumarate-reducing bacterium, was greater in the rumen of goats supplemented with DF. The abundance of fungi, protozoa, Ruminococus flavefaciens and Fibrobacter succinogenes were not affected by the addition of DF. Variable F : C ratios affected the abundance of methanogens, fungi and R. flavefaciens (P < 0.05), but did not affect methane emission. The result implied that DF had a beneficial effect on the in vivo rumen fermentation of the goats fed diets with different F : C ratios and that this effect were not a direct action on anaerobic fungi, protozoa and fibrolytic bacteria, the generally recognized fiber-degrading and hydrogen-producing microorganisms, but due to the stimulation of fumarate-reducing bacteria and the depression of methanogens.

  4. Effects of Forage:Concentrate Ratio on Growth Performance, Ruminal Fermentation and Blood Metabolites in Housing-feeding Yaks

    PubMed Central

    Chen, G. J.; Song, S. D.; Wang, B. X.; Zhang, Z. F.; Peng, Z. L.; Guo, C. H.; Zhong, J. C.; Wang, Y.

    2015-01-01

    The objective of this study was to determine the effect of forage: concentrate ratio (F:C) on growth performance, ruminal fermentation and blood metabolites of housing-feeding yaks. Thirty-two Maiwa male yaks (initial body weight = 207.99±3.31 kg) were randomly assigned to four dietary treatments (8 yaks per treatment). Experimental diets were: A, B, C, D which contained 70:30, 60:40, 50:50 and 40:60 F:C ratios, respectively. Dry matter intake and average daily gain in yaks fed the C and D diets were greater (p<0.05) than yaks fed the A and B diets. No differences were found in ruminal NH3-N, total volatile fatty acids, acetate, butyrate, valerate, and isovalerate concentrations. The propionate concentration was increased (p<0.05) in the C and D groups compared with the A and B diets. In contrast, the acetate to propionate ratio was decreased and was lowest (p<0.05) in the C group relative to the A and B diets, but was similar with the D group. For blood metabolites, no differences were found in serum concentrations of urea-N, albumin, triglyceride, cholesterol, low density lipoprotein, alanine aminotransferase, and aspartate aminotransferase (p>0.05) among treatments. Treatment C had a higher concentration of total protein and high density lipoprotein (p<0.05) than A and B groups. In addition, there was a trend that the globulin concentration of A group was lower than other treatments (p = 0.079). Results from this study suggest that increasing the level of concentrate from 30% to 50% exerted a positive effect on growth performance, rumen fermentation and blood metabolites in yaks. PMID:26580441

  5. Effects of long period feeding pistachio by-product silage on chewing activity, nutrient digestibility and ruminal fermentation parameters of Holstein male calves.

    PubMed

    Shakeri, P; Riasi, A; Alikhani, M

    2014-11-01

    The objective of this study was to determine the effects of pistachio by-product silage (PBPS) as a partial replacement for corn silage (CS) on chewing activity, nutrients digestibility and ruminal fermentation parameters in Holstein male calves over a 6-month assay. For this purpose, 24 Holstein male calves (4 to 5 months of age and 155.6±13.5 kg BW) were randomly assigned to one of the four dietary treatments (n=6). In these treatments, CS was substituted with different levels of PBPS (0%, 6%, 12% and 18% of dry matter (DM)). Nutrient digestibility was measured at the end of the experimental period (days 168 to 170). Ruminal fermentation parameters were determined on days 90 and 180 and chewing activity was determined on days 15 of the 3rd and 6th month of the experiment. Results showed that calves fed rations containing 6% PBPS spent more time ruminating (P<0.05) than the control group on the 3rd and 6th months. Feeding PBPS was found to have no effects on DM, organic matter (OM), ether extract or ash digestibility, but apparent digestibility of CP, NDFom and ADFom linearly decreased (P<0.01) with increasing substitutions. On days 90 and 180, ruminal concentrations of volatile fatty acids and NH3-N linearly decreased (P<0.01) with increasing levels of PBPS in the diets; however, ruminal pH and molar proportions of acetate, propionate and butyrate were similar across the treatments. It was concluded that partial substitution of CS with PBPS (6% or 12%) would have no adverse effects on nutrient digestibility, total chewing activity and ruminal fermentation parameters.

  6. Rumen microbial abundance and fermentation profile during severe subacute ruminal acidosis and its modulation by plant derived alkaloids in vitro.

    PubMed

    Mickdam, Elsayed; Khiaosa-Ard, Ratchaneewan; Metzler-Zebeli, Barbara U; Klevenhusen, Fenja; Chizzola, Remigius; Zebeli, Qendrim

    2016-06-01

    Rumen microbiota have important metabolic functions for the host animal. This study aimed at characterizing changes in rumen microbial abundances and fermentation profiles using a severe subacute ruminal acidosis (SARA) in vitro model, and to evaluate a potential modulatory role of plant derived alkaloids (PDA), containing quaternary benzophenanthridine and protopine alkaloids, of which sanguinarine and chelerythrine were the major bioactive compounds. Induction of severe SARA strongly affected the rumen microbial composition and fermentation variables without suppressing the abundance of total bacteria. Protozoa and fungi were more sensitive to the low ruminal pH condition than bacteria. Induction of severe SARA clearly depressed degradation of fiber (P < 0.001), which came along with a decreased relative abundance of fibrolytic Ruminococcus albus and Fibrobacter succinogenes (P < 0.001). Under severe SARA conditions, the genus Prevotella, Lactobacillus group, Megasphaera elsdenii, and Entodinium spp. (P < 0.001) were more abundant, whereas Ruminobacter amylophilus was less abundant. SARA largely suppressed methane formation (-70%, P < 0.001), although total methanogenic 16S rRNA gene abundance was not affected. According to principal component analysis, Methanobrevibacter spp. correlated to methane concentration. Addition of PDA modulated ruminal fermentation under normal conditions such as enhanced (P < 0.05) concentration of total SCFA, propionate and valerate, and increased (P < 0.05) degradation of crude protein compared with the unsupplemented control diet. Our results indicate strong shifts in the microbial community during severe SARA compared to normal conditions. Supplementation of PDA positively modulates ruminal fermentation under normal ruminal pH conditions. PMID:26868619

  7. Prevalence and characteristics of lactose non-fermenting Escherichia coli in urinary isolates.

    PubMed

    Chang, Jiyoung; Yu, Jinkyung; Lee, Hyeyoung; Ryu, Hyejin; Park, Kanggyun; Park, Yeon-Joon

    2014-11-01

    Recently, serotype O75 was found to be prominent among the non-ST131 ciprofloxacin-resistant Escherichia coli, and they were all lactose non-fermenters. In this study, we investigated the prevalence and characteristics of lactose non-fermenters in urinary isolates of E. coli. A total of 167 E. coli isolates was collected. Antimicrobial susceptibility tests were determined by VITEK 2 (bioMerieux, France). The lactose non-fermenters underwent PCR-based O typing, multilocus sequence typing (MLST) analysis, phylogenetic grouping. For ciprofloxacin-resistant isolates, the resistance mechanisms were investigated. Thirty-three (19.7%) isolates were lactose non-fermenters and the ciprofloxacin resistance rate was significantly higher than in lactose fermenters (66.7% vs. 31.6%, P = 0.0002). According to the serotype, O75 was the most common (42.4%, 14/33) and was followed by O16 (5/33), O2 (4/33), O25b (3/33), O15 (1/33), O6 (1/33), O1 (1/33). All the O75 isolates were ciprofloxacin-resistant and belonged to ST1193. By MLST, they were resolved into 11 STs. ST1193 was the most common (14/33) and was followed by ST131 (8/33). Interestingly, 8 isolates of ST131 were divided into three O types [O16 (4 isolates), O25b (3), and non-typeable (1)]. The ciprofloxacin resistance rate was high in isolates of O75-ST1193 and O25b-ST131 but low in O16-ST131 and O2-ST95. All the ciprofloxacin-resistant isolates showed identical triple mutations in gyrA and parC but the serotype O25b isolates had an additional mutation in parC (E84V). Only one isolate harbored aac(6')-Ib-cr variant and no qnr gene was detected. Continuous monitoring of the prevalence and clonal composition of the lactose non-fermenters is needed.

  8. Effects of feeding increasing levels of wet corn gluten feed on production and ruminal fermentation in lactating dairy cows.

    PubMed

    Mullins, C R; Grigsby, K N; Anderson, D E; Titgemeyer, E C; Bradford, B J

    2010-11-01

    An experiment was conducted to evaluate the effects of increasing dietary inclusion rates of wet corn gluten feed (WCGF; Sweet Bran; Cargill Inc., Blair, NE) on milk production and rumen parameters. Four primiparous and 4 multiparous ruminally cannulated Holstein cows averaging 90±13 d in milk (mean ± SD) were randomly assigned to 1 of 4 sequences in a replicated 4 × 4 Latin square experiment with 28-d periods. Treatments were diets containing 0, 11, 23, and 34% WCGF on a dry matter basis; alfalfa hay, corn silage, corn grain, soybean meal, expeller soybean meal, and mineral supplements were varied to maintain similar nutrient concentrations across diets. Performance and measures of ruminal fermentation were monitored. Linear and quadratic effects of increasing WCGF inclusion rate were assessed using mixed-model analysis. Increasing dietary WCGF linearly increased dry matter intake (26.7, 25.9, 29.3, and 29.7 kg/d for 0, 11, 23, and 34% WCGF, respectively) and milk production (36.8, 37.0, 40.1, and 38.9 kg/d). Concentrations of milk components did not differ among treatments; however, protein and lactose yields increased linearly and fat yield tended to increase linearly when more WCGF was fed. This led to greater production of energy-corrected milk (38.2, 38.8, 41.7, and 40.4 kg/d) and solids-corrected milk (35.2, 35.7, 38.5, and 37.2 kg/d), but efficiency of production linearly decreased. Increased WCGF in the diet tended to linearly decrease ruminal pH (6.18, 6.12, 6.14, and 5.91), possibly because mean particle size was below typical recommendations for all diets, and diets with greater proportions of WCGF had a smaller mean particle size. Ruminal acetate concentration decreased linearly and propionate increased linearly as WCGF inclusion rate increased. Treatments had a quadratic effect on ammonia concentration, with greater concentrations for the 0 and 34% WCGF diets. In situ digestibility of soybean hulls showed a significant diet-by-time interaction, and

  9. Effect of exchanging Onobrychis viciifolia and Lotus corniculatus for Medicago sativa on ruminal fermentation and nitrogen turnover in dairy cows.

    PubMed

    Grosse Brinkhaus, A; Bee, G; Silacci, P; Kreuzer, M; Dohme-Meier, F

    2016-06-01

    The objective of the study was to determine the effect of feeding sainfoin (SF; Onobrychis viciifolia) and birdsfoot trefoil (BT; Lotus corniculatus), 2 temperate climate forage legumes that contain condensed tannins (CT), on ruminal fermentation and N turnover in dairy cows. Six ruminally cannulated multiparous dairy cows (milk yield=40kg/d; 36 d in milk) were used in a replicated 3×3 Latin square design. All animals were fed basal diets containing 20% pelleted SF (223g of CT/kg of dry matter), BT (30.3g of CT/kg of dry matter), or alfalfa (AL) and concentrate to meet their predicted nutrient requirements. Each experimental period consisted of a 21-d adaptation period in a tiestall, followed by a 7-d collection period in metabolic crates, where feces and urine were collected quantitatively. During the 7-d period, milk yield was recorded daily and milk samples were taken at each milking. Blood, ruminal fluid, and papillae were sampled on d 2 and 5. The relative abundance of selected bacterial strains in ruminal fluid and the gene expression of transporter genes in the papillae were determined with quantitative PCR. Total volatile fatty acids and the abundance of the cellulolytic bacteria Prevotella spp. and Ruminococcus flavefaciens decreased with SF compared with AL. The relative gene expression of the monocarboxylate transporter 1 was increased with BT compared with AL and SF. Total yields of milk, milk fat, and milk protein were similar among treatments. The proportion of 18:3n-3 in milk fat was greater and those of 22:5n-3 and 22:6n-3 were lower with SF than with BT. The contents of urea N in blood (2.71, 3.45, and 3.90mmol/L for SF, AL, and BT, respectively), milk (79.8, 100.1, and 110.9mg/kg for SF, AL, and BT, respectively), and urine were lower with SF than with AL and BT, and a trend toward a lower ruminal ammonia content occurred with SF compared with BT. Intake and excretion of N with milk were similar among treatments, but urine N was lower with SF

  10. Effect of camelina oil or live yeasts (Saccharomyces cerevisiae) on ruminal methane production, rumen fermentation, and milk fatty acid composition in lactating cows fed grass silage diets.

    PubMed

    Bayat, A R; Kairenius, P; Stefański, T; Leskinen, H; Comtet-Marre, S; Forano, E; Chaucheyras-Durand, F; Shingfield, K J

    2015-05-01

    The potential of dietary supplements of 2 live yeast strains (Saccharomyces cerevisiae) or camelina oil to lower ruminal methane (CH4) and carbon dioxide (CO2) production and the associated effects on animal performance, rumen fermentation, rumen microbial populations, nutrient metabolism, and milk fatty acid (FA) composition of cows fed grass silage-based diets were examined. Four Finnish Ayrshire cows (53±7 d in milk) fitted with rumen cannula were used in a 4×4 Latin square with four 42-d periods. Cows received a basal total mixed ration (control treatment) with a 50:50 forage-to-concentrate ratio [on a dry matter (DM) basis] containing grass silage, the same basal total mixed ration supplemented with 1 of 2 live yeasts, A or B, administered directly in the rumen at 10(10) cfu/d (treatments A and B), or supplements of 60g of camelina oil/kg of diet DM that replaced concentrate ingredients in the basal total mixed ration (treatment CO). Relative to the control, treatments A and B had no effects on DM intake, rumen fermentation, ruminal gas production, or apparent total-tract nutrient digestibility. In contrast, treatment CO lowered DM intake and ruminal CH4 and CO2 production, responses associated with numerical nonsignificant decreases in total-tract organic matter digestibility, but no alterations in rumen fermentation characteristics or changes in the total numbers of rumen bacteria, methanogens, protozoa, and fungi. Compared with the control, treatment CO decreased the yields of milk, milk fat, lactose, and protein. Relative to treatment B, treatment CO improved nitrogen utilization due to a lower crude protein intake. Treatment A had no influence on milk FA composition, whereas treatment B increased cis-9 10:1 and decreased 11-cyclohexyl 11:0 and 24:0 concentrations. Treatment CO decreased milk fat 8:0 to 16:0 and total saturated FA, and increased 18:0, 18:1, 18:2, conjugated linoleic acid, 18:3n-3, and trans FA concentrations. Decreases in ruminal CH4

  11. Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows.

    PubMed

    Faciola, A P; Broderick, G A

    2014-01-01

    The objectives of this study were to evaluate the feeding of coconut oil (CO), in which lauric acid (La) comprises about 50% of the fatty acid composition, as a practical rumen protozoa (RP) suppressing agent, to assess whether the source of La affects ruminal fermentation and animal performance and to test whether suppressing RP improves N utilization, nutrient digestion, nutrient flow at the omasal canal, and milk production. Fifteen multiparous Holstein cows (3 fitted with ruminal cannulas) and 15 primiparous Holstein cows (3 fitted with ruminal cannulas) were used in a replicated 3×3 Latin square experiment with 14d of adaptation and 14d of sample collection. Diets were fed as total mixed ration and contained (dry matter basis) 10% corn silage, 50% alfalfa silage, and 40% concentrate. The control diet contained 3% (dry matter basis) calcium soaps of palm oil fatty acids (Megalac, Church & Dwight Co. Inc., Princeton, NJ) as a ruminally inert fat source and had no added La or CO. Diets with La and CO were formulated to contain equal amounts of La (1.3%, dry matter basis). Dry matter intake was not affected by treatment. Both CO and La reduced RP numbers by about 40%. Lauric acid reduced yield of milk and milk components; however, CO did not affect yield of milk and yields of milk components. Both La and CO caused small reductions in total VFA concentration; CO increased molar proportion of ruminal propionate, reduced ruminal ammonia and branched-chain volatile fatty acids, suggesting reduced protein degradation, and reduced milk urea N and blood urea N concentrations, suggesting improved protein efficiency. Lauric acid reduced total-tract apparent digestibility of neutral detergent fiber and acid detergent fiber as well as ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber as measured at the omasal canal; however, CO did not alter fiber digestion. Microbial protein flow at the omasal canal, as well as the flow of N fractions at

  12. Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows.

    PubMed

    Faciola, A P; Broderick, G A

    2014-01-01

    The objectives of this study were to evaluate the feeding of coconut oil (CO), in which lauric acid (La) comprises about 50% of the fatty acid composition, as a practical rumen protozoa (RP) suppressing agent, to assess whether the source of La affects ruminal fermentation and animal performance and to test whether suppressing RP improves N utilization, nutrient digestion, nutrient flow at the omasal canal, and milk production. Fifteen multiparous Holstein cows (3 fitted with ruminal cannulas) and 15 primiparous Holstein cows (3 fitted with ruminal cannulas) were used in a replicated 3×3 Latin square experiment with 14d of adaptation and 14d of sample collection. Diets were fed as total mixed ration and contained (dry matter basis) 10% corn silage, 50% alfalfa silage, and 40% concentrate. The control diet contained 3% (dry matter basis) calcium soaps of palm oil fatty acids (Megalac, Church & Dwight Co. Inc., Princeton, NJ) as a ruminally inert fat source and had no added La or CO. Diets with La and CO were formulated to contain equal amounts of La (1.3%, dry matter basis). Dry matter intake was not affected by treatment. Both CO and La reduced RP numbers by about 40%. Lauric acid reduced yield of milk and milk components; however, CO did not affect yield of milk and yields of milk components. Both La and CO caused small reductions in total VFA concentration; CO increased molar proportion of ruminal propionate, reduced ruminal ammonia and branched-chain volatile fatty acids, suggesting reduced protein degradation, and reduced milk urea N and blood urea N concentrations, suggesting improved protein efficiency. Lauric acid reduced total-tract apparent digestibility of neutral detergent fiber and acid detergent fiber as well as ruminal apparent digestibility of neutral detergent fiber and acid detergent fiber as measured at the omasal canal; however, CO did not alter fiber digestion. Microbial protein flow at the omasal canal, as well as the flow of N fractions at

  13. Evaluation of isoquinoline alkaloid supplementation levels on ruminal fermentation, characteristics of digestion, and microbial protein synthesis in steers fed a high-energy diet.

    PubMed

    Aguilar-Hernández, J A; Urías-Estrada, J D; López-Soto, M A; Barreras, A; Plascencia, A; Montaño, M; González-Vizcarra, V M; Estrada-Angulo, A; Castro-Pérez, B I; Barajas, R; Rogge, H I; Zinn, R A

    2016-01-01

    Four Holstein steers with ruminal and duodenal cannulas were used in a 4 × 4 Latin square design to examine the effect of daily intake of 0, 2, 4 or 6 g/steer of standardized plant extract containing a mixture of quaternary benzophenanthridine alkaloids and protopine alkaloids (QBA+PA) on the characteristics of ruminal fermentation and characteristics of digestion. The basal diet consisted of a steam-flaked corn-based finishing diet that contained 62% corn and 12% sudangrass hay and the rest of diet was composed of mainly dried distillers grains, molasses, fat, and minerals. The source of QBA+PA used was Sangrovit-RS (Phytobiotics Futterzusatzstoffe GmbH, Eltville, Germany) and supplementation levels of 2, 4, and 6 g Sangrovit-RS∙steer∙d, which represented a net daily ingestion of approximately 6, 12, and 18 mg of QBA+PA compounds, respectively. Inclusion of QBA+PA linearly increased ( = 0.04) flow to the duodenum of nonammonia N and linearly decreased ( < 0.01) duodenal flows of ammonia N. Ruminal microbial efficiency (duodenal microbial N; g/kg OM fermented in the rumen) and protein efficiency (duodenal nonammonia N; g/g N intake) were increased ( < 0.05) as the level of QBA+PA increased. There were no effects of QBA+PA supplementation on ruminal, postruminal, and total tract digestion of OM, starch, and NDF, but postruminal and total tract digestion of N increased ( < 0.01) as the level of QBA+PA increased. Digestible energy of the diet tended to increase (linear affect, = 0.09) with QBA+PA supplementation. Ruminal pH and total VFA molar concentrations were not different between treatments. Ruminal NH-N concentration linearly decreased ( = 0.02) with QBA+PA supplementation. Ruminal molar proportion of acetate increased ( = 0.04) as the supplementation level of QBA+PA increased. It is concluded that QBA+PA supplementation enhances efficiency of N utilization in feedlot steers fed a steam-flaked corn-based finishing diet. This effect was due, in part, to

  14. Effects of feeding three types of corn-milling coproducts on milk production and ruminal fermentation of lactating Holstein cattle.

    PubMed

    Kelzer, J M; Kononoff, P J; Gehman, A M; Tedeschi, L O; Karges, K; Gibson, M L

    2009-10-01

    Two experiments were conducted to determine the effects of feeding 3 corn-milling coproducts on intake, milk production, ruminal fermentation, and digestibility of lactating Holstein cows. In experiment 1, three corn-milling coproducts were fed at 15% of the diet dry matter (DM) to 28 Holstein cows averaging (+/-SD) 625 +/- 81 kg of body weight and 116 +/- 33 d in milk to determine effects on DM intake and milk production. In experiment 2, the same rations were fed to 4 ruminally fistulated, multiparous Holstein cows averaging 677 +/- 41 kg of body weight and 144 +/- 5 d in milk to determine the effects on ruminal fermentation and digestibility. In both experiments, cows and treatments were assigned randomly in 4 x 4 Latin squares over four 21-d periods. Treatments were formulated by replacing portions of forage and concentrate feeds with 15% coproduct and included 1) 0% coproduct (control), 2) dried distillers grains plus solubles (DDGS), 3) dehydrated corn germ meal (germ), and 4) high-protein dried distillers grains (HPDDG). Feed intake was recorded daily, and milk samples were collected on d 19 to 21 of each period for analysis of major components. Rumen fluid was collected at 10 time points over 24 h post feeding on d 21 of experiment 2. In experiment 1, DM intake was greater for the germ (24.3 kg/d) and DDGS treatments (23.8 kg/d), but DDGS was not different from the control (22.9 kg/d) and HPDDG treatments (22.4 kg/d). Milk production paralleled DM intake and tended to be greater for the germ (32.1 kg/d) and DDGS treatments (30.9 kg/d), but the DDGS treatment was not different from the control (30.6 kg/d) and HPDDG treatments (30.3 kg/d). However, yields of milk fat, milk protein, and 3.5% FCM were similar and averaged (+/-SEM) 1.1 +/- 0.1, 0.9 +/- 0.03, and 31.7 +/- 1.3 kg/d. Milk urea nitrogen was greater for the HPDDG (15.9 mg/dL) and germ treatments (15.5 mg/dL) than for the control (15.0 mg/dL) and DDGS treatments (14.9 mg/dL). In experiment 2, DM

  15. Effects of Partial Replacement of Corn with Glycerin on Ruminal Fermentation in a Dual-Flow Continuous Culture System.

    PubMed

    Del Bianco Benedeti, Pedro; Galoro da Silva, Lorrayny; Marostegan de Paula, Eduardo; Shenkoru, Teshome; Marcondes, Marcos Inácio; Monteiro, Hugo Fernando; Amorati, Brad; Yeh, Yenling; Poulson, Simon Roger; Faciola, Antonio Pinheiro

    2015-01-01

    The objective of this study was to evaluate the effects of partially replacing dry ground corn with glycerin on ruminal fermentation using a dual-flow continuous culture system. Six fermenters (1,223 ± 21 ml) were used in a replicated 3x3 Latin square arrangement with three periods of 10 d each, with 7 d for diet adaptation and 3 d for sample collections. All diets contained 75% concentrate and three dietary glycerin levels (0, 15, and 30% on dry matter basis), totaling six replicates per treatment. Fermenters were fed 72 g of dry matter/d equally divided in two meals/d, at 0800 and 2000 h. Solid and liquid dilution rates were adjusted daily to 5.5 and 11%/h, respectively. On d 8, 9, and 10, samples of 500 ml of solid and liquid digesta effluent were mixed, homogenized, and stored at -20°C. Subsamples of 10 ml were collected and preserved with 0.2 mL of a 50% H2SO4 solution for later determination of NH3-N and volatile fatty acids. Microbial biomass was isolated from fermenters for chemical analysis at the end of each experimental period. Data were analyzed using the MIXED procedure in SAS with α = 0.05. Glycerin levels did not affect apparent digestibility of DM (PLin. = 0.13; PQuad. = 0.40), OM (PLin. = 0.72; PQuad. = 0.15), NDF (PLin. = 0.38; PQuad. = 0.50) and ADF (PLin. = 0.91; PQuad. = 0.18). Also, glycerin inclusion did not affect true digestibility of DM (PLin. = 0.35; PQuad. = 0.48), and OM (PLin. = 0.08; PQuad. = 0.19). Concentrations of propionate (P < 0.01) and total volatile fatty acids (P < 0.01) increased linearly and concentrations of acetate (P < 0.01), butyrate (P = 0.01), iso-valerate (P < 0.01), and total branched-chain volatile fatty acids, as well as the acetate: propionate ratio (P < 0.01) decreased with glycerin inclusion. Linear increases on NH3-N concentration in digesta effluent (P < 0.01) and on NH3-N flow (P < 0.01) were observed due to glycerin inclusion in the diets. Crude protein digestibility (P = 0.04) and microbial N flow (P

  16. Effects of Partial Replacement of Corn with Glycerin on Ruminal Fermentation in a Dual-Flow Continuous Culture System

    PubMed Central

    Del Bianco Benedeti, Pedro; Galoro da Silva, Lorrayny; Marostegan de Paula, Eduardo; Shenkoru, Teshome; Marcondes, Marcos Inácio; Monteiro, Hugo Fernando; Amorati, Brad; Yeh, Yenling; Poulson, Simon Roger; Faciola, Antonio Pinheiro

    2015-01-01

    The objective of this study was to evaluate the effects of partially replacing dry ground corn with glycerin on ruminal fermentation using a dual-flow continuous culture system. Six fermenters (1,223 ± 21 ml) were used in a replicated 3x3 Latin square arrangement with three periods of 10 d each, with 7 d for diet adaptation and 3 d for sample collections. All diets contained 75% concentrate and three dietary glycerin levels (0, 15, and 30% on dry matter basis), totaling six replicates per treatment. Fermenters were fed 72 g of dry matter/d equally divided in two meals/d, at 0800 and 2000 h. Solid and liquid dilution rates were adjusted daily to 5.5 and 11%/h, respectively. On d 8, 9, and 10, samples of 500 ml of solid and liquid digesta effluent were mixed, homogenized, and stored at -20°C. Subsamples of 10 ml were collected and preserved with 0.2 mL of a 50% H2SO4 solution for later determination of NH3-N and volatile fatty acids. Microbial biomass was isolated from fermenters for chemical analysis at the end of each experimental period. Data were analyzed using the MIXED procedure in SAS with α = 0.05. Glycerin levels did not affect apparent digestibility of DM (PLin. = 0.13; PQuad. = 0.40), OM (PLin. = 0.72; PQuad. = 0.15), NDF (PLin. = 0.38; PQuad. = 0.50) and ADF (PLin. = 0.91; PQuad. = 0.18). Also, glycerin inclusion did not affect true digestibility of DM (PLin. = 0.35; PQuad. = 0.48), and OM (PLin. = 0.08; PQuad. = 0.19). Concentrations of propionate (P < 0.01) and total volatile fatty acids (P < 0.01) increased linearly and concentrations of acetate (P < 0.01), butyrate (P = 0.01), iso-valerate (P < 0.01), and total branched-chain volatile fatty acids, as well as the acetate: propionate ratio (P < 0.01) decreased with glycerin inclusion. Linear increases on NH3-N concentration in digesta effluent (P < 0.01) and on NH3-N flow (P < 0.01) were observed due to glycerin inclusion in the diets. Crude protein digestibility (P = 0.04) and microbial N flow (P

  17. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats.

    PubMed

    Chanjula, Pin; Pongprayoon, Sahutaya; Kongpan, Sirichai; Cherdthong, Anusorn

    2016-06-01

    This experiment was evaluation of the effects of increasing concentrations of crude glycerin from waste vegetable oil (CGWVO) in diets on feed intake, digestibility, ruminal fermentation characteristics, and nitrogen balance of goats. Four crossbred male (Thai Native × Anglo Nubian) goats, with an average initial body weight (BW) of 31.5 ± 1.90 kg, were randomly assigned according to a 4 × 4 Latin square design. The dietary treatments contained 0, 2, 4, and 6 % of dietary dry matter (DM) of CGWVO. Based on this experiment, there were significantly different (P > 0.05) among treatment groups regarding DM intake and digestion coefficients of nutrients (DM, OM, CP, EE, NDF, and ADF), which goats receiving 6 % of CGWVO had lower daily DMI and nutrient intake than those fed on 0, 2, and 4 % of CGWVO. Ruminal pH, NH3-N, and blood urea nitrogen (BUN) concentration were unchanged by dietary treatments, except that for 6 % of CGWVO supplementation, NH3-N, and BUN were lower (P < 0.05) than for the diets 0 % of CGWVO, while the differences between the diets 0, 2, and 4 % of CGWVO were not significant. The amounts of N absorption and retention were similar among treatments, except that for 6 % of CGWVO which N absorption was lower (P < 0.05) than among treatments while the difference between the diets 0, 2, and 4 % of CGWVO were not significant. Based on this study, CGWVO levels up to 4 % in total mixed ration could be efficiently utilized for goats. This study was a good approach in exploiting the use of biodiesel production from waste vegetable oil for goat production. PMID:27026232

  18. Influence of Sunflower Whole Seeds or Oil on Ruminal Fermentation, Milk Production, Composition, and Fatty Acid Profile in Lactating Goats.

    PubMed

    Morsy, T A; Kholif, S M; Kholif, A E; Matloup, O H; Salem, A Z M; Elella, A Abu

    2015-08-01

    This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance.

  19. Influence of Sunflower Whole Seeds or Oil on Ruminal Fermentation, Milk Production, Composition, and Fatty Acid Profile in Lactating Goats

    PubMed Central

    Morsy, T. A.; Kholif, S. M.; Kholif, A. E.; Matloup, O. H.; Salem, A. Z. M.; Elella, A. Abu

    2015-01-01

    This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance. PMID:26104519

  20. Effects of crude glycerin from waste vegetable oil supplementation on feed intake, ruminal fermentation characteristics, and nitrogen utilization of goats.

    PubMed

    Chanjula, Pin; Pongprayoon, Sahutaya; Kongpan, Sirichai; Cherdthong, Anusorn

    2016-06-01

    This experiment was evaluation of the effects of increasing concentrations of crude glycerin from waste vegetable oil (CGWVO) in diets on feed intake, digestibility, ruminal fermentation characteristics, and nitrogen balance of goats. Four crossbred male (Thai Native × Anglo Nubian) goats, with an average initial body weight (BW) of 31.5 ± 1.90 kg, were randomly assigned according to a 4 × 4 Latin square design. The dietary treatments contained 0, 2, 4, and 6 % of dietary dry matter (DM) of CGWVO. Based on this experiment, there were significantly different (P > 0.05) among treatment groups regarding DM intake and digestion coefficients of nutrients (DM, OM, CP, EE, NDF, and ADF), which goats receiving 6 % of CGWVO had lower daily DMI and nutrient intake than those fed on 0, 2, and 4 % of CGWVO. Ruminal pH, NH3-N, and blood urea nitrogen (BUN) concentration were unchanged by dietary treatments, except that for 6 % of CGWVO supplementation, NH3-N, and BUN were lower (P < 0.05) than for the diets 0 % of CGWVO, while the differences between the diets 0, 2, and 4 % of CGWVO were not significant. The amounts of N absorption and retention were similar among treatments, except that for 6 % of CGWVO which N absorption was lower (P < 0.05) than among treatments while the difference between the diets 0, 2, and 4 % of CGWVO were not significant. Based on this study, CGWVO levels up to 4 % in total mixed ration could be efficiently utilized for goats. This study was a good approach in exploiting the use of biodiesel production from waste vegetable oil for goat production.

  1. Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows.

    PubMed

    Lopes, J C; de Matos, L F; Harper, M T; Giallongo, F; Oh, J; Gruen, D; Ono, S; Kindermann, M; Duval, S; Hristov, A N

    2016-07-01

    The objective of this crossover experiment was to investigate the effect of a methane inhibitor, 3-nitrooxypropanol (3NOP), on enteric methane emission, methane isotopic composition, and rumen fermentation and microbial profile in lactating dairy cows. The experiment involved 6 ruminally cannulated late-lactation Holstein cows assigned to 2 treatments: control and 3NOP (60 mg/kg of feed dry matter). Compared with the control, 3NOP decreased methane emission by 31% and increased hydrogen emission from undetectable to 1.33 g/d. Methane emissions per kilogram of dry matter intake and milk yield were also decreased 34% by 3NOP. Milk production and composition were not affected by 3NOP, except milk fat concentration was increased compared with the control. Concentrations of total VFA and propionate in ruminal fluid were not affected by treatment, but acetate concentration tended to be lower and acetate-to-propionate ratio was lower for 3NOP compared with the control. The 3NOP decreased the molar proportion of acetate and increase those of propionate, butyrate, valerate, and isovalerate. Deuterium-to-hydrogen ratios of methane and the abundance of (13)CH3D were similar between treatments. Compared with the control, minor (4‰) depletion in the (13)C/(12)C ratio was observed for 3NOP. Genus composition of methanogenic archaea (Methanobrevibacter, Methanosphaera, and Methanomicrobium) was not affected by 3NOP, but the proportion of methanogens in the total cell counts tended to be decreased by 3NOP. Prevotella spp., the predominant bacterial genus in ruminal contents in this experiment, was also not affected by 3NOP. Compared with the control, Ruminococcus and Clostridium spp. were decreased and Butyrivibrio spp. was increased by 3NOP. This experiment demonstrated that a substantial inhibition of enteric methane emission by 3NOP in dairy cows was accompanied with increased hydrogen emission and decreased acetate-to-propionate ratio; however, neither an effect on rumen

  2. Comparison of methods for glycogen analysis of in vitro fermentation pellets produced with strained ruminal inoculum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microbial glycogen measurement is used to account for fates of carbohydrate substrates. It is commonly applied to washed cells or pure cultures which can be accurately subsampled, and it uses smaller sample sizes. However, the nonhomogenous fermentation pellets produced with strained rumen inoculum ...

  3. Effect of Lipid Sources with Different Fatty Acid Profiles on Intake, Nutrient Digestion and Ruminal Fermentation of Feedlot Nellore Steers

    PubMed Central

    Fiorentini, Giovani; Carvalho, Isabela P. C.; Messana, Juliana D.; Canesin, Roberta C.; Castagnino, Pablo S.; Lage, Josiane F.; Arcuri, Pedro B.; Berchielli, Telma T.

    2015-01-01

    The present study was conducted to determine the effect of lipid sources with different fatty acid profiles on nutrient digestion and ruminal fermentation. Ten rumen and duodenal fistulated Nellore steers (268 body weight±27 kg) were distributed in a duplicated 5×5 Latin square. Dietary treatments were as follows: without fat (WF), palm oil (PO), linseed oil (LO), protected fat (PF; Lactoplus), and whole soybeans (WS). The roughage feed was corn silage (600 g/kg on a dry matter [DM] basis) plus concentrate (400 g/kg on a DM basis). The higher intake of DM and organic matter (OM) (p<0.001) was found in animals on the diet with PF and WF (around 4.38 and 4.20 kg/d, respectively). Treatments with PO and LO decreased by around 10% the total digestibility of DM and OM (p<0.05). The addition of LO decreased by around 22.3% the neutral detergent fiber digestibility (p = 0.047) compared with other diets. The higher microbial protein synthesis was found in animals on the diet with LO and WS (33 g N/kg OM apparently digested in the rumen; p = 0.040). The highest C18:0 and linolenic acid intakes occurred in animals fed LO (p<0.001), and the highest intake of oleic (p = 0.002) and C16 acids (p = 0.022) occurred with the diets with LO and PF. Diet with PF decreased biohydrogenation extent (p = 0.05) of C18:1 n9,c, C18:2 n6,c, and total unsaturated fatty acids (UFA; around 20%, 7%, and 13%, respectively). The diet with PF and WF increased the concentration of NH3-N (p<0.001); however, the diet did not change volatile fatty acids (p>0.05), such as the molar percentage of acetate, propionate, butyrate and the acetate:propionate ratio. Treatments PO, LO and with WS decreased by around 50% the concentration of protozoa (p<0.001). Diets with some type of protection (PF and WS) decreased the effects of lipid on ruminal fermentation and presented similar outflow of benefit UFA as LO. PMID:26580282

  4. Effect of sward dry matter digestibility on methane production, ruminal fermentation, and microbial populations of zero-grazed beef cattle.

    PubMed

    Hart, K J; Martin, P G; Foley, P A; Kenny, D A; Boland, T M

    2009-10-01

    Increasing the digestibility of pasture for grazing ruminants has been proposed as a low-cost practical means of reducing ruminant CH(4) emissions. At high feed intake levels, the proportion of energy lost as CH(4) decreases as the digestibility of the diet increases. Therefore, improving forage digestibility may improve productivity as DM and energy intake are increased. A zero-grazing experiment was conducted to determine the effect of sward DM digestibility (DMD) on DMI, CH(4) emissions, and indices of rumen fermentation of beef animals. Twelve Charolais-cross heifers were assigned to 1 of 2 treatments, with 6 heifers per dietary treatment. Additionally, 4 cannulated Aberdeen Angus-cross steers were randomly allocated to each of these 2 treatments in a crossover design. Dietary treatments consisted of swards managed to produce (i) high digestibility pasture (high DMD) or (ii) pasture with less digestibility (low DMD), both offered for ad libitum intake. All animals were zero-grazed and offered freshly cut herbage twice daily. In vitro DMD values for the high and low DMD swards were 816 and 706 g/kg of DM. Heifers offered the high DMD grass had greater (P < 0.001) daily DMI of 7.66 kg compared with 5.38 kg for those offered the low DMD grass. Heifers offered the high DMD grass had greater (P = 0.003) daily CH(4) production (193 g of CH(4)/d) than those offered the low DMD grass (138 g of CH(4)/d). However, when corrected for DMI, digestible DMI, or ingested gross energy, there was no difference (P > 0.05) in CH(4) production between dietary treatments. For cannulated steers, intake tended (P = 0.06) to be greater for the high DMD grass (5.56 vs. 4.27 kg of DM/d), but rumen protozoa (4.95 x 10(4)/mL; P = 0.62); rumen ammonia (34 mg of N/L; P = 0.24); rumen total VFA (103 mM; P = 0.58), and rumen pH (6.8; P = 0.43) did not differ between treatments. There was no difference in total bacteria numbers, relative expression of the mcrA gene, and numbers of cycles to

  5. Effect of the rumen ciliates Entodinium caudatum, Epidinium ecaudatum and Eudiplodinium maggii, and combinations thereof, on ruminal fermentation and total tract digestion in sheep.

    PubMed

    Zeitz, Johanna O; Amelchanka, Sergej L; Michałowski, Tadeusz; Wereszka, Krzysztof; Meile, Leo; Hartnack, Sonja; Kreuzer, Michael; Soliva, Carla R

    2012-06-01

    The quantitative importance of individual ciliate species and their interaction in the rumen is still unclear. The present study was performed to test whether there are species differences in the influence on ruminal fermentation in vivo and if combinations of ciliates act additive in that respect. Six adult wethers fed a hay-concentrate diet were defaunated, then refaunated either with Entodinium caudatum (EC), Epidinium ecaudatum (EE) or Eudiplodinium maggii (EM) alone, then progressively with all possible species combinations. Feed, faeces, urine, ruminal fluid and gas were sampled for eight days always after at least 21 days of adaptation. With a linear mixed model, accounting for the 2 x 2 x 2 full factorial study design, mean marginal effect sizes, i.e., the magnitude of change in variables as caused by the presence of each ciliate species or of combinations of them, were estimated. The apparent digestibility of organic matter and neutral detergent fibre remained unaffected. The apparent N digestibility increased by 0.054 with EM (0.716 with defaunation). Ruminal ammonia increased by 1.6, 4.0 and 8.7 mmol/l in the presence of EM, EC and EE, respectively, compared to defaunation (6.9 mmol/l). In the EM + EE combination, ruminal ammonia was lower than would have been expected from an additive effect. With EE, total short-chain fatty acids increased by 23 mmol/l (100 mmol/l with defaunation), but not when EE was combined with EM. The acetate-to-propionate ratio decreased by 0.73 units in the presence of EE (4.0 with defaunation), but only when EE was the sole ciliate species in the rumen. In the presence of any ciliate species, the 16S rDNA copies of total Bacteria and major fibrolytic species decreased to 0.52- and 0.22-fold values, respectively of that found without protozoa. Total Archaea were unaffected; however, Methanobacteriales copies increased 1.44-fold with EC. The CH4-to-CO2 ratio of ruminal gas decreased by 0.036 with EM and 0.051 with EE (0.454 with

  6. In vitro fermentation of cellulose, beet pulp, citrus pulp, and citrus pectin using fecal inoculum from cats, dogs, horses, humans, and pigs and ruminal fluid from cattle.

    PubMed

    Sunvold, G D; Hussein, H S; Fahey, G C; Merchen, N R; Reinhart, G A

    1995-12-01

    We evaluated the influence of gastrointestinal tract microflora from several species on fiber fermentation characteristics in vitro. Selected fibrous substrates (cellulose, beet pulp, citrus pulp, and citrus pectin) were incubated for 6, 12, 24, and 48 h with ruminal fluid from cattle or feces from dogs, cats, pigs, horses, or humans. When data were pooled across all substrates and fermentation times, OM disappearance (29.4%) and acetate, propionate, butyrate, and total short-chain fatty acid (SCFA) production (1.09, .41, .12, and 1.61 mmol/g of OM, respectively) were lowest (P < .05), and lactate production (.23 mmol/g of OM) was greatest (P < .05) for horse fecal microflora compared with samples from the other species. The greatest (P < .05) acetate production resulted when substrates were fermented by cat fecal microflora (2.38 mmol/g of OM). The greatest (P < .05) propionate productions resulted from pig fecal and cattle ruminal microflora (.88 and .83 mmol/g of OM, respectively), and the greatest (P < .05) butyrate productions resulted from human and pig fecal microflora (.39 and .40 mmol/g of OM, respectively). Total SCFA production was greatest (P < .05) for cat fecal microflora (3.38 mmol/g of OM). When data were pooled across the species, substrate OM disappearance and SCFA production ranked from least to greatest in the following order: cellulose < beet pulp < citrus pulp < citrus pectin. The fermentability of different fibrous substrates by fecal or ruminal microflora from various species seems to be dependent not only on the fermentative activity of the microbial population but on other factors as well, perhaps lag time and rate of digesta passage.

  7. Evaluation of feeding glycerol on free-fatty acid production and fermentation kinetics of mixed ruminal microbes in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strategies to enrich ruminant-derived foods with unsaturated fatty acids are desired as these are considered beneficial for good human health. Ruminant-derived foods contain high proportions of saturated fats, a result of ruminal biohydrogenation, which rapidly saturates and thus limits the availab...

  8. Comparison of methods for glycogen analysis of in vitro fermentation pellets produced with strained ruminal inoculum.

    PubMed

    Hall, Mary Beth; Hatfield, Ronald D

    2015-11-01

    Microbial glycogen measurement is used to account for fates of carbohydrate substrates. It is commonly applied to washed cells or pure cultures which can be accurately subsampled, allowing the use of smaller sample sizes. However, the nonhomogeneous fermentation pellets produced with strained rumen inoculum cannot be accurately subsampled, requiring analysis of the entire pellet. In this study, two microbial glycogen methods were compared for analysis of such fermentation pellets: boiling samples for 3h in 30% KOH (KOH) or for 15min in 0.2M NaOH (NaOH), followed by enzymatic hydrolysis with α-amylase and amyloglucosidase, and detection of released glucose. Total α-glucan was calculated as glucose×0.9. KOH and NaOH did not differ in the α-glucan detected in fermentation pellets (29.9 and 29.6mg, respectively; P=0.61). Recovery of different control α-glucans was also tested using KOH, NaOH, and a method employing 45min of bead beating (BB). For purified beef liver glycogen (water-soluble) recovery, BB (95.0%)>KOH (91.4%)>NaOH (87.4%; P<0.05), and for wheat starch (water-insoluble granules) recovery, NaOH (96.9%)>BB (93.8%)>KOH (91.0%; P<0.05). Recovery of isolated protozoal glycogen (water-insoluble granules) did not differ among KOH (87.0%), NaOH (87.6%), and BB (86.0%; P=0.81), but recoveries for all were below 90%. Differences among substrates in the need for gelatinization and susceptibility to destruction by alkali likely affected the results. In conclusion, KOH and NaOH glycogen methods provided comparable determinations of fermentation pellet α-glucan. The tests on purified α-glucans indicated that assessment of recovery in glycogen methods can differ by the control α-glucan selected. PMID:26388511

  9. Comparison of methods for glycogen analysis of in vitro fermentation pellets produced with strained ruminal inoculum.

    PubMed

    Hall, Mary Beth; Hatfield, Ronald D

    2015-11-01

    Microbial glycogen measurement is used to account for fates of carbohydrate substrates. It is commonly applied to washed cells or pure cultures which can be accurately subsampled, allowing the use of smaller sample sizes. However, the nonhomogeneous fermentation pellets produced with strained rumen inoculum cannot be accurately subsampled, requiring analysis of the entire pellet. In this study, two microbial glycogen methods were compared for analysis of such fermentation pellets: boiling samples for 3h in 30% KOH (KOH) or for 15min in 0.2M NaOH (NaOH), followed by enzymatic hydrolysis with α-amylase and amyloglucosidase, and detection of released glucose. Total α-glucan was calculated as glucose×0.9. KOH and NaOH did not differ in the α-glucan detected in fermentation pellets (29.9 and 29.6mg, respectively; P=0.61). Recovery of different control α-glucans was also tested using KOH, NaOH, and a method employing 45min of bead beating (BB). For purified beef liver glycogen (water-soluble) recovery, BB (95.0%)>KOH (91.4%)>NaOH (87.4%; P<0.05), and for wheat starch (water-insoluble granules) recovery, NaOH (96.9%)>BB (93.8%)>KOH (91.0%; P<0.05). Recovery of isolated protozoal glycogen (water-insoluble granules) did not differ among KOH (87.0%), NaOH (87.6%), and BB (86.0%; P=0.81), but recoveries for all were below 90%. Differences among substrates in the need for gelatinization and susceptibility to destruction by alkali likely affected the results. In conclusion, KOH and NaOH glycogen methods provided comparable determinations of fermentation pellet α-glucan. The tests on purified α-glucans indicated that assessment of recovery in glycogen methods can differ by the control α-glucan selected.

  10. Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets.

    PubMed

    Zhou, Y W; McSweeney, C S; Wang, J K; Liu, J X

    2012-05-01

    This study was conducted to investigate effects of disodium fumarate (DF) on fermentation characteristics and microbial populations in the rumen of Hu sheep fed on high-forage diets. Two complementary feeding trials were conducted. In Trial 1, six Hu sheep fitted with ruminal cannulae were randomly allocated to a 2 × 2 cross-over design involving dietary treatments of either 0 or 20 g DF daily. Total DNA was extracted from the fluid- and solid-associated rumen microbes, respectively. Numbers of 16S rDNA gene copies associated with rumen methanogens and bacteria, and 18S rDNA gene copies associated with rumen protozoa and fungi were measured using real-time PCR, and expressed as proportion of total rumen bacteria 16S rDNA. Ruminal pH decreased in the DF group compared with the control (P < 0.05). Total volatile fatty acids increased (P < 0.001), but butyrate decreased (P < 0.01). Addition of DF inhibited the growth of methanogens, protozoa, fungi and Ruminococcus flavefaciens in fluid samples. Both Ruminococcus albus and Butyrivibrio fibrisolvens populations increased (P < 0.001) in particle-associated samples. Trial 2 was conducted to investigate the adaptive response of rumen microbes to DF. Three cannulated sheep were fed on basal diet for 2 weeks and continuously for 4 weeks with supplementation of DF at a level of 20 g/day. Ruminal samples were collected every week to analyze fermentation parameters and microbial populations. No effects of DF were observed on pH, acetate and butyrate (P > 0.05). Populations of methanogens and R. flavefaciens decreased in the fluid samples (P < 0.001), whereas addition of DF stimulated the population of solid-associated Fibrobacter succinogenes. Population of R. albus increased in the 2nd to 4th week in fluid-associated samples and was threefold higher in the 4th week than control week in solid samples. Analysis of denaturing gradient gel electrophoresis fingerprints revealed that there were significant changes in rumen

  11. Effects of disodium fumarate on ruminal fermentation and microbial communities in sheep fed on high-forage diets.

    PubMed

    Zhou, Y W; McSweeney, C S; Wang, J K; Liu, J X

    2012-05-01

    This study was conducted to investigate effects of disodium fumarate (DF) on fermentation characteristics and microbial populations in the rumen of Hu sheep fed on high-forage diets. Two complementary feeding trials were conducted. In Trial 1, six Hu sheep fitted with ruminal cannulae were randomly allocated to a 2 × 2 cross-over design involving dietary treatments of either 0 or 20 g DF daily. Total DNA was extracted from the fluid- and solid-associated rumen microbes, respectively. Numbers of 16S rDNA gene copies associated with rumen methanogens and bacteria, and 18S rDNA gene copies associated with rumen protozoa and fungi were measured using real-time PCR, and expressed as proportion of total rumen bacteria 16S rDNA. Ruminal pH decreased in the DF group compared with the control (P < 0.05). Total volatile fatty acids increased (P < 0.001), but butyrate decreased (P < 0.01). Addition of DF inhibited the growth of methanogens, protozoa, fungi and Ruminococcus flavefaciens in fluid samples. Both Ruminococcus albus and Butyrivibrio fibrisolvens populations increased (P < 0.001) in particle-associated samples. Trial 2 was conducted to investigate the adaptive response of rumen microbes to DF. Three cannulated sheep were fed on basal diet for 2 weeks and continuously for 4 weeks with supplementation of DF at a level of 20 g/day. Ruminal samples were collected every week to analyze fermentation parameters and microbial populations. No effects of DF were observed on pH, acetate and butyrate (P > 0.05). Populations of methanogens and R. flavefaciens decreased in the fluid samples (P < 0.001), whereas addition of DF stimulated the population of solid-associated Fibrobacter succinogenes. Population of R. albus increased in the 2nd to 4th week in fluid-associated samples and was threefold higher in the 4th week than control week in solid samples. Analysis of denaturing gradient gel electrophoresis fingerprints revealed that there were significant changes in rumen

  12. Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production.

    PubMed

    Benchaar, C; Hassanat, F; Gervais, R; Chouinard, P Y; Julien, C; Petit, H V; Massé, D I

    2013-04-01

    The objective of this study was to examine the effects of including corn dried distillers grains with solubles (DDGS) in the diet at the expense of corn and soybean meal on enteric CH4 emissions, ruminal fermentation characteristics, digestion (in sacco and apparent total-tract digestibility), N balance, and milk production of dairy cows. Twelve lactating Holstein cows were used in a triplicated 4×4 Latin square design (35-d periods) and fed (ad libitum intake) a total mixed ration containing (dry matter basis) 0, 10, 20, or 30% DDGS. Dry matter intake increased linearly, whereas apparent-total tract digestibility of dry matter and gross energy declined linearly as DDGS level in the diet increased. Increasing the proportion of DDGS in the diet decreased the acetate:propionate ratio, but this decrease was the result of reduced acetate concentration rather than increased propionate concentration. Milk yield increased linearly (up to +4kg/d) with increasing levels of DDGS in the diet and a tendency was observed for a quadratic increase in energy-corrected milk as the proportion of DDGS in the diet increased. Methane production decreased linearly with increasing levels of DDGS in the diet (495, 490, 477, and 475 g/d for 0, 10, 20, and 30% DDGS diets, respectively). When adjusted for gross energy intake, CH4 losses also decreased linearly as DDGS proportion increased in the diet by 5, 8, and 14% for 10, 20, and 30% DDGS diets, respectively. Similar decreases (up to 12% at 30% DDGS) were also observed when CH4 production was corrected for digestible energy intake. When expressed relative to energy-corrected milk, CH4 production declined linearly as the amount of DDGS increased in the diet. Total N excretion (urinary and fecal; g/d) increased as the amount of DDGS in the diet increased. Efficiency of N utilization (milk N secretion as a proportion of N intake) declined linearly with increasing inclusion of DDGS in the diet. However, productive N increased linearly with

  13. Effect of slow-release urea inclusion in diets containing modified corn distillers grains on total tract digestibility and ruminal fermentation in feedlot cattle.

    PubMed

    Ceconi, I; Ruiz-Moreno, M J; DiLorenzo, N; DiCostanzo, A; Crawford, G I

    2015-08-01

    Ruminal degradable intake protein (DIP) deficit may result when cattle are fed diets containing a greater inclusion of processed corn grain and small to moderate inclusion of corn distillers grains (DG). This deficit may arise from greater proportions of rapidly fermentable carbohydrates and RUP in corn grain. Urea-derived N is 100% DIP; however, rates of degradation of carbohydrates and conventional urea (CU) may not match. Therefore, beneficial effects may result from the use of slow-release urea (SRU) sources over CU when added to DIP-deficient diets. An experiment was conducted to evaluate the effect of increasing DIP concentration through inclusion of 1 of 2 SRU sources or CU in DG-containing feedlot diets on ruminal fermentation and total tract digestibility. In addition, an in situ experiment was conducted to characterize N disappearance of urea sources from polyester bags. Four ruminally cannulated steers (initial BW = 588 ± 8 kg) were arranged in a 4 × 4 Latin square design and assigned randomly to 1 of 4 dietary treatments containing 0% (CON) or 0.6% urea in the form of CU (UREA) or SRU as Optigen II (polymer-encapsulated urea; OPTI) or NitroShure (lipid-encapsulated urea; NITRO), and 30% corn earlage, 20% modified corn DG with solubles, 7.8% corn silage, 4.3% dry supplement, and dry-rolled corn (DM basis). Dietary DIP was estimated at 6.6% and 8.3% for CON and urea-containing dietary treatments, respectively. Steers were fed ad libitum once daily. Differences in purine derivatives-to-creatinine (PDC) index between treatments were used as indicators of differences in microbial CP synthesis. Intake of OM, digestibility of OM, NDF, CP, and starch, ruminal pH, total VFA ruminal concentration, and PDC index were not affected by treatment ( ≥ 0.21). Concentration of ammonia-N noticeably peaked at 4 h after feed delivery for cattle fed UREA (treatment × time, = 0.06) and measured at least 5.5 mg/dL for any treatment and at any hour after feed delivery

  14. Effects of feeding corn silage inoculated with microbial additives on the ruminal fermentation, microbial protein yield, and growth performance of lambs.

    PubMed

    Basso, F C; Adesogan, A T; Lara, E C; Rabelo, C H S; Berchielli, T T; Teixeira, I A M A; Siqueira, G R; Reis, R A

    2014-12-01

    This study aimed to examine the effects of feeding corn silage inoculated without or with either Lactobacillus buchneri (LB) alone or a combination of LB and Lactobacillus plantarum (LBLP) on the apparent digestibility, ruminal fermentation, microbial protein synthesis, and growth performance of lambs. Thirty Santa Inês×Dorper crossbred intact males lambs weighing 20.4±3.8 kg were blocked by weight into 10 groups. Lambs in each group were randomly assigned to 1 of the following 3 dietary treatments: untreated (Control), LB, and LBLP silage. Lambs were fed experimental diets for 61 d. The apparent digestibility was indirectly estimated from indigestible NDF measured on d 57 to 59. Spot urine samples were collected from all animals on d 59 to estimate microbial protein synthesis. Lambs were slaughtered for carcass evaluation on d 61 when they weighed 32.4±5.2 kg. Six additional ruminally cannulated Santa Inês×Dorper crossbred wethers weighing 40.5±1.8 kg were used to examine dietary effects on ruminal fermentation. Average daily gain was increased when lambs were fed LBLP silage (P<0.05) but not LB silage. The LBLP silage had the highest (P<0.05) lactic acid concentration and both inoculated silages had greater acetic acid concentrations than the Control silage (P<0.05). Inoculation of corn silage increased intakes of DM, OM, CP, NDF, total carbohydrate (CHO), and GE by the lambs but decreased digestibility of DM, OM, CP, total and nonstructural carbohydrates, and concentration of GE and ME. (P<0.05). Nevertheless, lambs fed inoculated silages had greater microbial N supply than those on the Control treatment (P<0.05). The acetate to propionate ratio was lower in ruminal fluid of wethers in LBLP treatment than LB and Control treatment (P<0.05) and ruminal pH tended to be greater in LB lambs than in LBLP and Control wethers (P<0.10). Finally, the inoculation with both bacteria combined enhanced the silage fermentation. The intakes of DM, OM, CP, NDF, and GE

  15. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage.

    PubMed

    Cao, Y; Cai, Y; Takahashi, T; Yoshida, N; Tohno, M; Uegaki, R; Nonaka, K; Terada, F

    2011-08-01

    The objective of this study was to determine the effect of beet pulp (BP) and lactic acid bacteria (LAB) on silage fermentation quality and in vitro ruminal dry matter (DM) digestion of vegetable residues, including white cabbage, Chinese cabbage, red cabbage, and lettuce. Silage was prepared using a small-scale fermentation system, and treatments were designed as control silage without additive or with BP (30% fresh matter basis), LAB inoculant Chikuso-1 (Lactobacillus plantarum, 5mg/kg, fresh matter basis), and BP+LAB. In vitro incubation was performed using rumen fluid mixed with McDougall's artificial saliva (at a ratio of 1:4, vol/vol) at 39°C for 6h to determine the ruminal fermentability of the vegetable residue silages. These vegetable residues contained high levels of crude protein (20.6-22.8% of DM) and moderate levels of neutral detergent fiber (22.7-33.6% of DM). In all silages, the pH sharply decreased and lactic acid increased, and the growth of bacilli, coliform bacteria, molds, and yeasts was inhibited by the low pH at the early stage of ensiling. The silage treated with BP or LAB had a lower pH and a higher lactic acid content than the control silage. After 6h of incubation, all silages had relatively high DM digestibility (38.6-44.9%); in particular, the LAB-inoculated silage had the highest DM digestibility and the lowest methane production. The vegetable residues had high nutritional content and high in vitro DM digestibility. Also, both the addition of a LAB inoculant and moisture adjustment with BP improved the fermentation quality of the vegetable residue silages. In addition, LAB increased DM digestibility and decreased ruminal methane production. PMID:21787927

  16. The effects of active dried and killed dried yeast on subacute ruminal acidosis, ruminal fermentation, and nutrient digestibility in beef heifers.

    PubMed

    Vyas, D; Uwizeye, A; Mohammed, R; Yang, W Z; Walker, N D; Beauchemin, K A

    2014-02-01

    The study addressed the importance of yeast (Saccharomyces cerevisiae) viability for reducing the incidence of subacute ruminal acidosis (SARA) and improving total tract nutrient digestibility in beef heifers. Six ruminally cannulated beef heifers (680 ± 50 kg BW) were used in a replicated 3 × 3 Latin square design and were fed a diet consisting of 40% barley silage, 10% chopped grass hay, and 50% barley grain-based concentrate (DM basis). Treatments were 1) no yeast (Control), 2) active dried yeast (ADY; 4 g providing 10(10) cfu/g; AB Vista, Marlborough, UK), and 3) killed dried yeast (KDY; 4 g autoclaved ADY). The treatments were directly dosed via the ruminal cannula daily at the time of feeding. The periods consisted of 2 wk of adaptation (d 1 to 14) and 7 d of measurements (d 15 to 21). Ruminal pH was continuously measured (d 15 to 21) using an indwelling system. Ruminal contents were sampled on d 15 and 17 at 0, 3, 6, 9, and 12 h after feeding. Total tract nutrient digestibility was measured using an external marker (YbCl3) from d 15 to 19. No treatment difference was observed for DMI (P = 0.86). Yeast supplementation (ADY and KDY) tended to increase total tract digestibility of starch (P = 0.07) whereas no effects were observed on digestibility of other nutrients. Both ADY and KDY elevated minimum (P < 0.01) and mean ruminal pH (P = 0.02) whereas no effects were observed on maximum pH (P = 0.12). Irrespective of its viability, yeast supplementation was effective in reducing time that ruminal pH was below 5.8 (P < 0.01) and 5.6 (P < 0.01). No treatment differences were observed for the ruminal VFA profile and lactate concentration. No treatment differences were observed on the relative population size of Streptococcus bovis, Fibrobacter succinogenes, and Megasphaera elsdenii (P > 0.10); however, the proportion of Ruminococcus flavefaciens in solid fraction of digesta was greater with KDY (P = 0.05). The study demonstrates the positive effects of yeast

  17. Effects of ractopamine hydrochloride are not confined to mammalian tissue: evidence for direct effects of ractopamine hydrochloride supplementation on fermentation by ruminal microorganisms.

    PubMed

    Walker, C E; Drouillard, J S

    2010-02-01

    Four experiments were conducted to investigate the effects of ractopamine hydrochloride (RAC) on ruminal fermentation and proteolysis. In Exp. 1, in vitro gas and VFA production was measured in flasks incubated with 0, 0.226, 2.26, 22.6, and 226.0 mg of RAC/L of buffered ruminal fluid. Ractopamine hydrochloride had a quadratic effect on in vitro gas production (P < 0.05; 177, 181, 185, 190, and 170 mL for 0, 0.226, 2.26, 22.6, and 226.0 mg, respectively). Total VFA production was not significantly changed with RAC (P > 0.50). In Exp. 2, IVDMD was measured with tubes incubated with 0, 0.226, 2.26, or 22.6 mg of RAC/L of buffered ruminal fluid with 4 substrate combinations: corn, corn plus soybean meal, corn plus urea, and corn plus soybean meal plus urea. Dry matter disappearance was measured after 2, 4, 6, 8, or 12 h of fermentation. There was an interaction between RAC and substrate (P < 0.01), with more degradable forms of nitrogen eliciting greater IVDMD from RAC. Significant main effects also were detected for RAC, substrate, and hour (P < 0.001). In Exp. 3, AA and ammonia were measured in tubes treated with 0 or 2.26 mg of RAC/L of buffered ruminal fluid. Tubes were incubated for 0, 15, 30, 45, 60, 75, 90, 120, 150, 180, 210, or 240 min. There were decreases in ammonia and AA concentrations with RAC (P < 0.001). Experiment 4 used 16 ruminally fistulated Holstein steers in a 2 x 2 x 2 factorial arrangement of treatments. Factors consisted of grain processing method (steam-flaked or dry-rolled corn), concentration of dried distillers grains (DG) with solubles (0 or 25% DG, DM basis), and concentration of RAC (0 or 200 mg/d). Ruminal ammonia concentrations were less when RAC was fed in combination with dry-rolled corn, but not when RAC was fed in conjunction with steam-flaked corn (grain processing x RAC, P < 0.01). Addition of RAC, steam-flaked corn, and DG all resulted in reduced ruminal ammonia concentrations (P < 0.01). Amino acid concentrations were

  18. Influence of CO sub 2 and low concentrations of O sub 2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatum

    SciTech Connect

    Ellis, J.E.; Lloyd, D. ); McIntyre, P.S.; Saleh, M. ); Williams, A. )

    1991-05-01

    The effects of ruminal concentrations of CO{sub 2} and oxygen on the end products of endogenous metabolism and fermentation of D-glucose by the ruminal entodiniomorphid ciliate Polyplastron multivesiculatum were investigated. The principal metabolic products were butyric, acetic, and lactic acids, H{sub 2}, and CO{sub 2}. {sup 13}C nuclear magnetic resonance spectroscopy identified glycerol as a previously unknown major product of D-(1-{sup 13}C) glucose fermentation by this protozoan. Metabolite formation rates were clearly influenced by the headspace gas composition. In the presence of 1 to 3 {mu}M O{sub 2}, acetate, H{sub 2}, and CO{sub 2} formation was partially depressed. A gas headspace with a high CO{sub 2} content (66 kPa) was found to suppress hydrogenosomal pathways and to favor butyrate accumulation. Cytochromes were not detected ({lt}2 pmol/mg of protein) in P. multivesiculatum; protozoal suspensions, however, consumed O{sub 2} for up to 3 h at 1 kPa of O{sub 2}. Under gas phases of {gt}2.6 kPa of O{sub 2}, the organisms rapidly became vacuolate and the cilia became inactive. The results suggest that fermentative pathways in P. multivesiculatum are influenced by the O{sub 2} and CO{sub 2} concentrations that prevail in situ in the rumen.

  19. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep.

    PubMed

    Liu, H; Vaddella, V; Zhou, D

    2011-12-01

    This study was conducted to evaluate the effects of chestnut tannins (CT) and coconut oil (CO) on growth performance, methane (CH₄) emission, ruminal fermentation, and microbial populations in sheep. A total of 48 Rideau Arcott sheep (average body weight 31.5±1.97 kg, 16 wk old) were randomly assigned into 6 treatment groups in a 3 × 2 factorial design, with CT and CO as the main effects (8 sheep per group). The treatments were control diet (CTR), 10 or 30 g of CT/kg of diet (CT10 and CT30), 25 g of CO/kg of concentrate (CO25), and 10 or 30 g of CT/kg of diet+25 g of CO/kg of concentrate (CT10CO25 and CT30CO25). After the feeding trial (60 d), all sheep were moved to respiratory chambers to measure CH₄ emission. After CH₄ emission measurements, all sheep were slaughtered to obtain rumen fluid samples. Results showed that the addition of CT, CO, and CT+CO had no significant effects on growth performance of sheep but reduced CH₄ emission. Addition of CT reduced the NH₃-N concentration in rumen fluid in CT30. Addition of CO decreased the concentration of total volatile fatty acids in rumen fluid. No significant differences were observed in pH and molar proportion of volatile fatty acids among treatments. Addition of CT, CO, and CT+CO significantly decreased methanogen and protozoa populations. Moreover, CO decreased counts of Fibrobacter succinogenes. No significant differences were observed in populations of fungi, Ruminococcus flavefaciens, or Ruminococcus albus among treatments. In conclusion, supplementation of CT and CO seemed to be a feasible means of decreasing emissions of CH₄ from sheep by reduction of methanogen and protozoa populations with no negative effect on growth performance.

  20. Effects of dietary protein-energy interrelationships on Holstein steer performance and ruminal bacterial fermentation in continuous culture.

    PubMed

    Chester-Jones, H; Stern, M D; Metwally, H M; Linn, J G; Ziegler, D M

    1991-12-01

    In vivo and in vitro 3 x 2 factorial experiments were conducted concurrently to evaluate the incorporation of 0, 15, or 30% sugar beet pulp (SBP) as an energy source in diets fed to growing Holstein steers with either soybean meal (SBM) or alcohol-treated, defatted soybean flakes (ATSBF) as primary supplemental protein sources. Three groups of 42 Holstein steers each were fed six different diets from 54 kg initial BW to 320 kg in three experimental periods. There were no overall SBP level x protein source interactions (P greater than .05). Beet pulp level tended to decrease ADG (linear, P = .05) and increase feed/gain (linear, P less than .05) and DMI (quadratic, P less than .05). Each grower diet was used in a substrate for ruminal microbial metabolism in six dual-flow, continuous-culture fermenters. Organic matter and carbohydrate digestion were similar (P greater than .05) among diets. Increasing dietary levels of SBP caused a concomitant increase (P less than .05) in acetate and decrease (P less than .05) in butyrate and isobutyrate concentrations. Beet pulp level x protein source interactions (P less than .05) were observed for CP degradation, ammonia and nonammonia N, and dietary N flow. Crude protein degradation was higher (P less than .05) for the 0% SBP with SBM diet (81.3%) than for the 30% SBP with ATSBF diet (64.4%). Efficiency of bacterial synthesis was similar (P greater than .05) among diets. Results indicated that SBP is an effective dietary energy source for high-energy grower diets at 15 or 30% of the DM but may cause a decrease in some performance traits. There were no nutritional benefits of using ATSBF vs SBM as the supplemental N source.

  1. Pelleted beet pulp substituted for high-moisture corn: 3. Effects on ruminal fermentation, pH, and microbial protein efficiency in lactating dairy cows.

    PubMed

    Voelker, J A; Allen, M S

    2003-11-01

    The effects of increasing concentrations of dried, pelleted beet pulp substituted for high-moisture corn on ruminal fermentation, pH, and microbial efficiency were evaluated using eight ruminally and duodenally cannulated multiparous Holstein cows in a duplicated 4 x 4 Latin square design with 21-d periods. Cows were 79 +/- 17 (mean +/- SD) DIM at the beginning of the experiment. Experimental diets with 40% forage (corn silage and alfalfa silage) and 60% concentrate contained 0, 6.1, 12.1, or 24.3% beet pulp substituted for high-moisture corn on a DM basis. Diet concentrations of NDF and starch were 24.3 and 34.6% (0% beet pulp), 26.2 and 30.5% (6% beet pulp), 28.0, and 26.5% (12% beet pulp), and 31.6 and 18.4% (24% beet pulp), respectively. Substituting beet pulp for corn did not affect daily mean or minimum ruminal pH but tended to reduce pH range. Ruminal acetate:propionate responded in a positive exponential relationship to added beet pulp. Rate of valerate absorption from the rumen was not affected by treatment. Substituting beet pulp for corn up to 24% of diet DM did not affect efficiency of ruminal microbial protein production, expressed as microbial N flow to the duodenum as a percentage of OM truly digested in the rumen. Microbial efficiency was not correlated to mean pH or daily minimum pH. While microbial efficiency was not directly related to concentration of beet pulp fed, it was positively correlated with passage rate of particulate matter, as represented by starch and indigestible NDF, probably due to reduced turnover of microbial protein in the rumen.

  2. Effects of feeding lauric acid on ruminal protozoa numbers, fermentation, and digestion and on milk production in dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objectives of this study were: (1) to determine the level of lauric acid (LA) addition to the diet necessary to effectively suppress ruminal protozoa (RP) to the extent observed when a single dose was given directly into the rumen; (2) to assess its effects on production and ruminal metabolism; ...

  3. Influence of cobalt concentration on vitamin B12 production and fermentation of mixed ruminal microorganisms grown in continuous culture flow-through fermentors.

    PubMed

    Tiffany, M E; Fellner, V; Spears, J W

    2006-03-01

    An experiment was conducted to determine the effects of dietary concentrations of Co on vitamin B12 production and fermentation of mixed ruminal microbes grown in continuous culture fermentors. Four fermentors were fed 14 g of DM/d. The DM consisted of a corn and cottonseed hull-based diet with Co supplemented as CoCO3. Dietary treatments were 1) control (containing 0.05 mg of Co/kg of DM), 2) 0.05 mg of supplemental Co/kg of DM, 3) 0.10 mg of supplemental Co/kg of DM, and 4) 1.0 mg of supplemental Co/kg of DM. After a 3-d adjustment period, fermentors were sampled over a 3-d sampling period. This process was repeated 2 additional times for a total of 3 runs. Ruminal fluid vitamin B12 concentrations were affected by Co supplementation (P < 0.01), and there was a treatment x day interaction (P < 0.01). By sampling d 3, cultures fed the basal diet supplemented with 0.10 mg of Co/kg had greater (P < 0.05) vitamin B12 concentrations than those supplemented with 0.05 mg of Co/kg of DM, and increasing supplemental Co from 0.10 to 1.0 mg/kg of DM increased (P < 0.01) ruminal fluid vitamin B12 concentration. Ruminal fluid succinate also was affected (P < 0.10) by a treatment x day interaction. Cobalt supplementation to the control diet greatly decreased (P < 0.05) succinate in ruminal cultures on sampling d 3 but not on d 1 or 2. Molar proportions of acetate, propionate, and isobutyrate, and acetate:propionate were not affected by the addition of supplemental Co to the basal diet. However, molar proportions of butyrate, valerate, and isovalerate increased (P < 0.05) in response to supplemental Co. The majority of long-chain fatty acids observed in this study were not affected by Co supplementation. However, percentages of C18:0 fatty acids in ruminal cultures tended (P < 0.10) to be greater for Co-supplemented diets relative to the control. Methane, ammonia, and pH were not greatly affected by Co supplementation. The results indicate that a total (diet plus supplemental

  4. Effects of feeding polyphenol-rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers.

    PubMed

    Ishida, Kyohei; Kishi, Yosuke; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2015-03-01

    Four wethers were used in a 4 × 4 Latin square design experiment to evaluate the availability of two types of winery wastes, winery sediment and grape pomace, as ruminant feeds possessing antioxidant activities. Each wether was assigned to one of the following four treatments: (i) 75 g/kg winery sediment (WS) on a dry matter (DM) basis; (ii) 166 g/kg DM winery grape pomace (WP); (iii) control diet (CD; 17 g/kg DM soybean meal);and (iv) only tall fescue hay (TFH; no additive). Winery sediment and grape pomace had high levels of polyphenols and of radical scavenging activities. Feeding with winery sediment and grape pomace did not negatively affect the intake, but it depressed crude protein (CP) digestibility compared with CD (P = 0.052 and P < 0.01 for WS and WP, respectively). Polyphenols in winery wastes decreased ruminal ammonia production (P = 0.089 and P < 0.05), likely due to their inhibitive effect on microbial activities in the rumen. The addition of winery sediment and grape pomace decreased urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG; an index of oxidative damages) excretion per day (P < 0.05 and P = 0.059). The results indicated that winery sediment and grape pomace could alter nitrogen metabolism and/or act as new antioxidants for ruminants.

  5. Replacing corn silage with different forage millet silage cultivars: effects on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.

    PubMed

    Brunette, T; Baurhoo, B; Mustafa, A F

    2014-10-01

    This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average=67.9%), NDF (average=53

  6. Chemical Composition, In vitro Gas Production, Ruminal Fermentation and Degradation Patterns of Diets by Grazing Steers in Native Range of North Mexico

    PubMed Central

    Murillo, M.; Herrera, E.; Carrete, F. O.; Ruiz, O.; Serrato, J. S.

    2012-01-01

    The objective of the study was to quantify annual and seasonal differences in the chemical composition, in vitro gas production, in situ degradability and ruminal fermentation of grazing steers’ diets. Diet samples were collected with four esophageal cannulated steers (350±3 kg BW); and four ruminally cannulated heifers (342±1.5 kg BW) were used to study the dry matter degradation and fermentation in rumen. Data were analyzed with repeated measurements split plot design. The crude protein, in vitro dry matter digestibility and metabolizable energy were higher during the first year of trial and in the summer (p<0.01). The values of calcium, phosphorus, magnesium, zinc and copper were higher in summer (p<0.05). The gas produced by the soluble and insoluble fractions, as well as the constant rate of gas production were greater in summer and fall (p<0.01). The ammonia nitrogen (NH3N) and total volatile fatty acids concentrations in rumen, the soluble and degradable fractions, the constant rate of degradation and the effective degradability of DM and NDF were affected by year (p<0.05) and season (p<0.01). Our study provides new and useful knowledge for the formulation of protein, energetic and mineral supplements that grazing cattle need to improve their productive and reproductive performance. PMID:25049495

  7. Effects of two halophytic plants (kochia and atriplex) on digestibility, fermentation and protein synthesis by ruminal microbes maintained in continuous culture.

    PubMed

    Riasi, A; Mesgaran, M Danesh; Stern, M D; Ruiz Moreno, M J

    2012-05-01

    Eight continuous culture fermenters were used in a completely randomized design to evaluate various nutritional values of Kochia (Kochia scoparia) compared with Atriplex (Atriplex dimorphostegia). Dried and pelleted samples (leaves and stems) provided substrate for metabolism by ruminal microbes maintained in a continuous culture fermentation system. Results indicated that there were no differences (p>0.05) in dry matter (DM) and crude protein (CP) digestibility between the two halophytic plants. Atriplex had higher (p<0.05) organic matter (OM) digestibility compared with Kochia. Neutral detergent fiber (aNDF) digestibility of Atriplex (411 g/kg) was higher (p<0.05) than that of Kochia (348 g/kg), however acid detergent fiber (ADF) digestibility was higher (p<0.05) in Kochia compared with Atriplex (406 vs. 234 g/kg). There were no differences (p>0.05) between the two halophytic plants in molar proportion of acetate and propionate, but the concentration of butyrate and valerate in Kochia were about two fold of Atriplex (p<0.05). When Kochia provided substrate to the microbes, protein synthesis was higher (p<0.05) compared with feeding Atriplex (5.96 vs. 4.85 g N/kg of OM truly digested). It was concluded that Kochia scoparia and Atriplex dimorphostegia had similar digestibility of DM and CP. It appears that these halophytic plants may not have enough digestible energy for high producing ruminants. PMID:25049608

  8. Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet.

    PubMed

    Kenney, N M; Vanzant, E S; Harmon, D L; McLeod, K R

    2015-05-01

    Direct-fed microbials (DFM) have been shown to improve gain and growth efficiency and also modulate ruminal fermentation. In Exp. 1,72 beef steers were used to compare a lactate-producing bacterial (LAB) DFM consisting primarily of Lactobacillus acidophilus and Enterococcus faecium,and a lactate-producing and lactate-utilizing (LAB/LU) DFM consisting primarily of L. acidophilus and Propionibacterium both fed at 10(9) cfu/d. Steers were fed a corn-based finishing diet for 153 d and then slaughtered for collection of carcass characteristics. In Exp. 2, 12 ruminally cannulated steers were fed acorn-based finishing diet and treated with 10(9) cfu/d of LAB DFM. Rumen fluid was sampled on d 14 and 28 over a 12-h period. Steers were ruminally dosed with a 2-L solution of neutralized DL-lactate (0.56 M)and Cr-EDTA (13.22 M) 3 h postfeeding on d 15 and 29. Ruminal samples were collected at 10- and 20-minintervals for the first and second hour postdosing. No differences (P ≥ 0.14) between control (CON) and LAB for DMI, ADG, growth efficiency, or carcass characteristics were observed. Dry matter intake was greater (P = 0.04) for LAB/LU than LAB from d 0 to 28 but did not differ (P ≥ 0.29) thereafter. Average daily gain was greater (P = 0.04) and efficiency tended(P = 0.06) to be greater for LAB than LAB/LU over the entire 153 d. In Exp. 2, total VFA concentration and molar proportions of butyrate were unaffected(P ≥ 0.24). Molar proportions of acetate exhibited a DFM by hour interaction (P = 0.04); however, on average, molar proportion of acetate was 4.4% greater for DFM. Conversely, DFM did not affect the molar proportion of propionate (P = 0.39). On average,molar proportions of propionate tended to increase(P = 0.07), and acetate tended to decrease (P = 0.07)across days. Mean daily ruminal pH was similar for CON on d 14 and 28, whereas mean pH increased from d 14 to 28 for DFM (DFM × day; P = 0.08).Minimum pH remained unchanged for CON over time but increased from d

  9. Direct-fed microbials containing lactate-producing bacteria influence ruminal fermentation but not lactate utilization in steers fed a high-concentrate diet.

    PubMed

    Kenney, N M; Vanzant, E S; Harmon, D L; McLeod, K R

    2015-05-01

    Direct-fed microbials (DFM) have been shown to improve gain and growth efficiency and also modulate ruminal fermentation. In Exp. 1,72 beef steers were used to compare a lactate-producing bacterial (LAB) DFM consisting primarily of Lactobacillus acidophilus and Enterococcus faecium,and a lactate-producing and lactate-utilizing (LAB/LU) DFM consisting primarily of L. acidophilus and Propionibacterium both fed at 10(9) cfu/d. Steers were fed a corn-based finishing diet for 153 d and then slaughtered for collection of carcass characteristics. In Exp. 2, 12 ruminally cannulated steers were fed acorn-based finishing diet and treated with 10(9) cfu/d of LAB DFM. Rumen fluid was sampled on d 14 and 28 over a 12-h period. Steers were ruminally dosed with a 2-L solution of neutralized DL-lactate (0.56 M)and Cr-EDTA (13.22 M) 3 h postfeeding on d 15 and 29. Ruminal samples were collected at 10- and 20-minintervals for the first and second hour postdosing. No differences (P ≥ 0.14) between control (CON) and LAB for DMI, ADG, growth efficiency, or carcass characteristics were observed. Dry matter intake was greater (P = 0.04) for LAB/LU than LAB from d 0 to 28 but did not differ (P ≥ 0.29) thereafter. Average daily gain was greater (P = 0.04) and efficiency tended(P = 0.06) to be greater for LAB than LAB/LU over the entire 153 d. In Exp. 2, total VFA concentration and molar proportions of butyrate were unaffected(P ≥ 0.24). Molar proportions of acetate exhibited a DFM by hour interaction (P = 0.04); however, on average, molar proportion of acetate was 4.4% greater for DFM. Conversely, DFM did not affect the molar proportion of propionate (P = 0.39). On average,molar proportions of propionate tended to increase(P = 0.07), and acetate tended to decrease (P = 0.07)across days. Mean daily ruminal pH was similar for CON on d 14 and 28, whereas mean pH increased from d 14 to 28 for DFM (DFM × day; P = 0.08).Minimum pH remained unchanged for CON over time but increased from d

  10. Effect of lauric acid and coconut oil on ruminal fermentation, digestion, ammonia losses from manure, and milk fatty acid composition in lactating cows.

    PubMed

    Hristov, A N; Vander Pol, M; Agle, M; Zaman, S; Schneider, C; Ndegwa, P; Vaddella, V K; Johnson, K; Shingfield, K J; Karnati, S K R

    2009-11-01

    This experiment (replicated 3 x 3 Latin square design) was conducted to investigate the effects of lauric acid (LA) or coconut oil (CO) on ruminal fermentation, nutrient digestibility, ammonia losses from manure, and milk fatty acid (FA) composition in lactating cows. Treatments consisted of intraruminal doses of 240 g of stearic acid/d (SA; control), 240 g of LA/d, or 530 g of CO/d administered once daily, before feeding. Between periods, cows were inoculated with ruminal contents from donor cows and allowed a 7-d recovery period. Treatment did not affect dry matter intake, milk yield, or milk composition. Ruminal pH was slightly increased by CO compared with the other treatments, whereas LA and CO decreased ruminal ammonia concentration compared with SA. Both LA and CO decreased protozoal counts by 80% or more compared with SA. Methane production rate in the rumen was reduced by CO compared with LA and SA, with no differences between LA and SA. Treatments had no effect on total tract apparent dry matter, organic matter, N, and neutral detergent fiber digestibility coefficients or on cumulative (15 d) in vitro ammonia losses from manure. Compared with SA, LA and CO increased milk fat 12:0, cis-9 12:1, and trans-9 12:1 content and decreased 6:0, 8:0, 10:0, cis-9 10:1, 16:0, 18:0, cis 18:1, total 18:2, 18:3 n-3 and total polyunsaturated FA concentrations. Administration of LA and 14:0 (as CO) in the rumen were apparently transferred into milk fat with a mean efficiency of 18 and 15%, respectively. In conclusion, current data confirmed that LA and CO exhibit strong antiprotozoal activity when dosed intraruminally, an effect that is accompanied by decreases in ammonia concentration and, for CO, lowered methane production. Administration of LA and CO in the rumen also altered milk FA composition. PMID:19841218

  11. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas

  12. Effects of extruding wheat dried distillers grains with solubles with peas or canola meal on ruminal fermentation, microbial protein synthesis, nutrient digestion, and milk production in dairy cows.

    PubMed

    Claassen, R M; Christensen, D A; Mutsvangwa, T

    2016-09-01

    Our objective was to examine the effects of feeding coextruded and nonextruded supplements consisting of wheat dried distillers grains with solubles with peas (WDDGS-peas) or canola meal (WDDGS-CM) on ruminal fermentation, omasal flow, and production performance in Holstein cows. Eight cows (4 ruminally cannulated) were used in a replicated 4×4 Latin square with 28-d periods and a 2×2 factorial arrangement of dietary treatments. Dietary treatments were coextruded or nonextruded mixtures of WDDGS-peas and WDDGS-CM that were included in total mixed rations at 15.1% [dry matter (DM) basis]. Diet had no effect on DM intake. Milk yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk fat content was greater in cows fed nonextruded diets compared with those fed coextruded diets, but milk fat yield was greater in cows fed coextruded diets compared with those fed nonextruded diets. Milk yield tended to be greater and milk protein yield was greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Cows fed nonextruded diets had a greater milk urea-N concentration compared with those fed coextruded diets. Cows fed coextruded diets had greater ruminal digestion of DM and tended to have greater ruminal digestion of organic matter compared with those fed nonextruded diets. Total-tract digestibilities of organic matter, crude protein, ether extract, and starch were greater, whereas that of acid detergent fiber and neutral detergent fiber tended to be greater in cows fed coextruded compared with those fed nonextruded diets. Total-tract digestibility of ether extract was lower whereas that of starch was greater and that of crude protein tended to be greater in cows fed WDDGS-peas compared with those fed WDDGS-CM. Total N excretion and milk N efficiency were unaffected by diet. Ruminal NH3-N concentration tended to be greater in cows fed WDDGS-CM compared with those fed WDDGS-peas. Ruminal propionate concentration was greater whereas

  13. Treatment of grain with organic acids at 2 different dietary phosphorus levels modulates ruminal microbial community structure and fermentation patterns in vitro.

    PubMed

    Harder, H; Khol-Parisini, A; Metzler-Zebeli, B U; Klevenhusen, F; Zebeli, Q

    2015-11-01

    Recent data indicate positive effects of treating grain with citric (CAc) or lactic acid (LAc) on the hydrolysis of phytate phosphorus (P) and fermentation products of the grain. This study used a semicontinuous rumen simulation technique to evaluate the effects of processing of barley with 50.25 g/L (wt/vol) CAc or 76.25 g/L LAc on microbial composition, metabolic fermentation profile, and nutrient degradation at low or high dietary P supply. The low P diet [3.1g of P per kg of dry matter (DM) of dietary P sources only] was not supplemented with inorganic P, whereas the high P diet was supplemented with 0.5 g of inorganic P per kg of DM through mineral premix and 870 mg of inorganic P/d per incubation fermenter via artificial saliva. Target microbes were determined using quantitative PCR. Data showed depression of total bacteria but not of total protozoa or short-chain fatty acid (SCFA) concentration with the low P diet. In addition, the low P diet lowered the relative abundance of Ruminococcus albus and decreased neutral detergent fiber (NDF) degradation and acetate proportion, but increased the abundance of several predominantly noncellulolytic bacterial species and anaerobic fungi. Treatment of grain with LAc increased the abundance of total bacteria in the low P diet only, and this effect was associated with a greater concentration of SCFA in the ruminal fluid. Interestingly, in the low P diet, CAc treatment of barley increased the most prevalent bacterial group, the genus Prevotella, in ruminal fluid and increased NDF degradation to the same extent as did inorganic P supplementation in the high P diet. Treatment with either CAc or LAc lowered the abundance of Megasphaera elsdenii but only in the low P diet. On the other hand, CAc treatment increased the proportion of acetate in the low P diet, whereas LAc treatment decreased this variable at both dietary P levels. The propionate proportion was significantly increased by LAc at both P levels, whereas butyrate

  14. Treatment of grain with organic acids at 2 different dietary phosphorus levels modulates ruminal microbial community structure and fermentation patterns in vitro.

    PubMed

    Harder, H; Khol-Parisini, A; Metzler-Zebeli, B U; Klevenhusen, F; Zebeli, Q

    2015-11-01

    Recent data indicate positive effects of treating grain with citric (CAc) or lactic acid (LAc) on the hydrolysis of phytate phosphorus (P) and fermentation products of the grain. This study used a semicontinuous rumen simulation technique to evaluate the effects of processing of barley with 50.25 g/L (wt/vol) CAc or 76.25 g/L LAc on microbial composition, metabolic fermentation profile, and nutrient degradation at low or high dietary P supply. The low P diet [3.1g of P per kg of dry matter (DM) of dietary P sources only] was not supplemented with inorganic P, whereas the high P diet was supplemented with 0.5 g of inorganic P per kg of DM through mineral premix and 870 mg of inorganic P/d per incubation fermenter via artificial saliva. Target microbes were determined using quantitative PCR. Data showed depression of total bacteria but not of total protozoa or short-chain fatty acid (SCFA) concentration with the low P diet. In addition, the low P diet lowered the relative abundance of Ruminococcus albus and decreased neutral detergent fiber (NDF) degradation and acetate proportion, but increased the abundance of several predominantly noncellulolytic bacterial species and anaerobic fungi. Treatment of grain with LAc increased the abundance of total bacteria in the low P diet only, and this effect was associated with a greater concentration of SCFA in the ruminal fluid. Interestingly, in the low P diet, CAc treatment of barley increased the most prevalent bacterial group, the genus Prevotella, in ruminal fluid and increased NDF degradation to the same extent as did inorganic P supplementation in the high P diet. Treatment with either CAc or LAc lowered the abundance of Megasphaera elsdenii but only in the low P diet. On the other hand, CAc treatment increased the proportion of acetate in the low P diet, whereas LAc treatment decreased this variable at both dietary P levels. The propionate proportion was significantly increased by LAc at both P levels, whereas butyrate

  15. Changes in ruminal fermentation and protein degradation in growing Holstein heifers from 80 to 250 kg fed high-concentrate diets with different forage-to-concentrate ratios.

    PubMed

    Rotger, A; Ferret, A; Calsamiglia, S; Manteca, X

    2005-07-01

    Six Holstein heifers (initial BW = 65.2 +/- 1.8 kg) fitted with ruminal cannulas were used in a repeated measures trial to assess the effect of age and forage-to-concentrate ratio on ruminal fermentation end products and in situ degradation kinetics of four plant protein supplements (soybean meal, sunflower meal, peas, and lupin seeds). Alfalfa hay also was incubated in situ to estimate NDF degradation. Three experimental periods were conducted at 13, 27, and 41 wk of age. Heifers were fed one of two diets, 12:88 vs. 30:70 forage-to-concentrate ratio (DM basis), offered as total mixed ration on an ad libitum basis. Intakes of DM, OM, CP, NDF, and ADG were not affected (P > or = 0.105) by diet. The 30:70 diet resulted in faster (P = 0.045) fluid passage rate and decreased (P = 0.015) ammonia N concentration compared with the 12:88 diet, but no differences (P > or = 0.244) were detected in ruminal pH and total VFA concentration between diets. The rate of degradation and the effective degradability of N in protein supplements was greater with the 30:70 diet for peas (P < or = 0.008) and lupin seeds (P < or = 0.02), and in the 12:88 diet for sunflower meal (P < or = 0.06). Degradation of NDF of alfalfa hay was low with both diets (18.5 and 23.7 % for 12:88 and 30:70, respectively); however, the rate and extent of DM and NDF degradation were greater (P < or = 0.016) with the 30:70 diet, suggesting a higher cellulolytic activity. Total VFA concentration and the proportion of propionate increased (P < or = 0.035), and the acetate proportion decreased (P = 0.021) with age. Average pH, ammonia N concentration, and passage rates were not affected (P > or = 0.168) by age. Degradation rate and effective degradability of N of sunflower meal, peas, lupin seeds, and of DM of alfalfa hay increased (P < or = 0.08) with age, but degradation kinetics of NDF of alfalfa hay was not affected (P > or = 0.249). The increase in the rate and extent of N degradation with age would suggest an

  16. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.

    PubMed

    Foskolos, A; Siurana, A; Rodriquez-Prado, M; Ferret, A; Bravo, D; Calsamiglia, S

    2015-08-01

    The ban on the use of antibiotics as growth promoters in animal feeds in the European Union has stimulated research on potential alternatives. Recently, propyl-propane thiosulfonate (PTSO), a stable organosulfurate compound of garlic, was purified. The objectives of the current study were to investigate the potential effects of PTSO on rumen microbial fermentation and to define effective doses. Two experiments were conducted using dual-flow continuous culture fermenters in 2 replicated periods. Each experimental period consisted of 5 d for adaptation of the ruminal fluid and 3 d for sampling. Temperature (39°C), pH (6.4), and liquid (0.10 h(-1)) and solid (0.05 h(-1)) dilution rates were maintained constant. Samples were taken 2 h after feeding and from the 24-h effluent. Samples were analyzed for volatile fatty acids (VFA) and nitrogen fractions, and degradation of nutrients was calculated. In addition, 24-h effluents from experiment 2 were analyzed for their fatty acid (FA) profile. Treatments in experiment 1 included a negative control without additive, a positive control with monensin (12mg/L), and PTSO at 30 and 300mg/L. The addition of 30mg/L did not affect any of the measurements tested. The addition of 300mg/L reduced microbial fermentation, as suggested by the decreased total VFA concentration, true degradation of organic matter and acid detergent fiber, and a tendency to decrease neutral detergent fiber degradation. Experiment 2 was conducted to test increasing doses of PTSO (0, 50, 100, and 150mg/L) on rumen microbial fermentation. At 2 h postfeeding, total VFA and molar proportion of propionate responded quadratically, with higher values in the intermediate doses. Molar proportions of butyrate increased and branched-chain VFA decreased linearly as the dose of PTSO increased. In the 24-h effluents, total VFA, acetate, and branched-chain VFA concentrations decreased linearly and those of propionate responded cubically with the highest value at 100mg

  17. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system.

    PubMed

    Foskolos, A; Siurana, A; Rodriquez-Prado, M; Ferret, A; Bravo, D; Calsamiglia, S

    2015-08-01

    The ban on the use of antibiotics as growth promoters in animal feeds in the European Union has stimulated research on potential alternatives. Recently, propyl-propane thiosulfonate (PTSO), a stable organosulfurate compound of garlic, was purified. The objectives of the current study were to investigate the potential effects of PTSO on rumen microbial fermentation and to define effective doses. Two experiments were conducted using dual-flow continuous culture fermenters in 2 replicated periods. Each experimental period consisted of 5 d for adaptation of the ruminal fluid and 3 d for sampling. Temperature (39°C), pH (6.4), and liquid (0.10 h(-1)) and solid (0.05 h(-1)) dilution rates were maintained constant. Samples were taken 2 h after feeding and from the 24-h effluent. Samples were analyzed for volatile fatty acids (VFA) and nitrogen fractions, and degradation of nutrients was calculated. In addition, 24-h effluents from experiment 2 were analyzed for their fatty acid (FA) profile. Treatments in experiment 1 included a negative control without additive, a positive control with monensin (12mg/L), and PTSO at 30 and 300mg/L. The addition of 30mg/L did not affect any of the measurements tested. The addition of 300mg/L reduced microbial fermentation, as suggested by the decreased total VFA concentration, true degradation of organic matter and acid detergent fiber, and a tendency to decrease neutral detergent fiber degradation. Experiment 2 was conducted to test increasing doses of PTSO (0, 50, 100, and 150mg/L) on rumen microbial fermentation. At 2 h postfeeding, total VFA and molar proportion of propionate responded quadratically, with higher values in the intermediate doses. Molar proportions of butyrate increased and branched-chain VFA decreased linearly as the dose of PTSO increased. In the 24-h effluents, total VFA, acetate, and branched-chain VFA concentrations decreased linearly and those of propionate responded cubically with the highest value at 100mg

  18. Effects of Supplementing Brown Seaweed By-products in the Diet of Holstein Cows during Transition on Ruminal Fermentation, Growth Performance and Endocrine Responses

    PubMed Central

    Hong, Z. S.; Kim, E. J.; Jin, Y. C.; Lee, J. S.; Choi, Y. J.; Lee, H. G.

    2015-01-01

    This study was conducted to examine the effects of supplementing brown seaweed by-products (BSB) in the diet of ruminants on ruminal fermentation characteristics, growth performance, endocrine response, and milk production in Holstein cows. In Experiment 1, the effects of different levels (0%, 2%, and 4% of basal diet as Control, 2% BSB, 4% BSB, respectively) of BSB were evaluated at 3, 6, 9, 12, and 24 h in vitro batch culture rumen fermentation. The pH tended to be higher for the higher level of BSB supplementation, with the pH at 12 h being significantly higher (p<0.05) than that of the control. The concentration of ammonia nitrogen was lower at 3, 9, 12, and 24 h incubation (p<0.05) compared with the control, and tended to be low at other incubation times. Volatile fatty acid concentration appeared to be minimally changed while lower values were observed with 4% BSB treatment at 24 h (p<0.05). In Experiment 2, effects of levels (0%, 2%, and 4%) of BSB on growth performance, endocrine responses and milk production were studied with Holstein dairy cows during transition. Dry matter intake, daily gain and feed efficiency were not affected by BSB supplementation. The concentration of plasma estrogen for the control, 2% BSB and 4% BSB after three months of pregnancy were 55.7, 94.1, and 72.3 pg/mL, respectively (p = 0.08). Although the differences of progesterone levels between BSB treatments and the control were minimal, the concentration in 4% BSB treatment increased to 157.7% compared with the initial level of the study. Triiodothyronine and thyroxine levels were also higher after both three months and eight months of pregnancy than the initial level at the beginning of the study. In addition, BSB treatments during one month after delivery did not affect daily milk yield and composition. In conclusion, the present results indicate that supplementation of BSB did not compromise ruminal fermentation, and animal performance at lower levels and hence may have

  19. Effect of wheat dried distillers grains with solubles and fibrolytic enzymes on ruminal fermentation, digestibility, growth performance, and feeding behavior of beef cattle.

    PubMed

    He, Z X; Walker, N D; McAllister, T A; Yang, W Z

    2015-03-01

    Two experiments were conducted to evaluate the effect of wheat dried distillers grains with solubles (DDGS) and fibrolytic enzymes (FE) on ruminal fermentation, in situ ruminal and in vivo total tract digestibility, growth performance, and feeding behavior of growing beef cattle. In Exp. 1, 6 ruminally cannulated Angus heifers (average BW of 794 ± 44.2 kg) were used in a 6 × 6 Latin square design with 2 × 3 factorial arrangement of treatments. Treatments were a control diet consisting of 50% barley silage, 10% grass hay, and 40% barley grain-based concentrate (CON) and the CON with 15% DDGS substituted for barley grain (WDG) combined with either 0, 1, or 2 mL FE/kg diet DM, respectively. Inclusion of DDGS increased total tract digestibility of CP ( < 0.01), NDF ( = 0.04), and ADF ( = 0.03). Increasing FE linearly ( = 0.03) increased CP digestibility without affecting the digestibility of other nutrients. There were no effects of DDGS inclusion or FE on ruminal pH or VFA concentration except that propionate was greater ( = 0.04) with the WDG. In situ ruminal DM and NDF disappearance of barley silage was greater ( < 0.04) in heifers fed the WDG than in heifers fed the CON after 24 h of incubation. Increasing FE linearly ( = 0.03) increased in situ NDF disappearance of barley silage after 24 h of incubation. In Exp. 2, 120 weaned steers (initial BW of 289 ± 11.0 kg) were fed diets similar to those in Exp. 1. The steers fed the WDG had greater ( < 0.01) final BW, ADG, DMI, and G:F compared with steers fed the CON. Increasing FE did not alter ADG or G:F but tended ( < 0.07) to linearly decrease DMI. There were interactions ( < 0.02) between DDGS and FE on eating rate and the time spent at the feed bunk. Supplementing FE decreased ( < 0.01) time at the bunk and increased ( < 0.01) eating rate for steers fed the WDG but not for steers fed the CON. Eating rate ( < 0.01) and meal frequency ( = 0.02) were greater but eating duration was shorter ( < 0.01) for steers fed

  20. Effect of divergence in phenotypic residual feed intake on methane emissions, ruminal fermentation, and apparent whole-tract digestibility of beef heifers across three contrasting diets.

    PubMed

    McDonnell, R P; Hart, K J; Boland, T M; Kelly, A K; McGee, M; Kenny, D A

    2016-03-01

    This study aimed to examine the effect of divergent phenotypic ranking for residual feed intake (RFI) on ruminal CH emissions, diet digestibility, and indices of ruminal fermentation in heifers across 3 commercially relevant diets. Twenty-eight Limousin × Friesian heifers were used and were ranked on the basis of phenotypic RFI: 14 low-RFI and 14 high-RFI animals. Ruminal CH emissions were estimated over 5 d using the SF tracer gas technique on 3 successive occasions: 1) at the end of a 6-wk period (Period 1) on grass silage (GS), 2) at the end of an 8-wk period (Period 2) at pasture, and 3) at the end of a 5-wk period (Period 3) on a 30:70 corn silage:concentrate total mixed ration (TMR). Animals were allowed ad libitum access to feed and water at all times. Individual DMI was estimated during CH measurement and rumen samples were taken at the end of each CH measurement period. Diet type affected all feed intake and CH traits measured ( < 0.01) but was unavoidably confounded with animal age/size and experimental period. Correlation coefficients between RFI and DMI were significant ( < 0.05) only when animals were fed the TMR. Daily CH correlated with DMI ( = 0.42, < 0.05) only when animals grazed pasture. Daily DMI was lower in low-RFI animals ( = 0.047) but only when expressed as grams per kilogram metabolic BW. Absolute CH emissions did not differ between RFI groups ( > 0.05), but CH yield was greatest in low-RFI heifers ( = 0.03) as a proportion of both DMI and GE intake. Interactions between the main effects were observed ( < 0.05) for CP digestibility (CPD), DM digestibility (DMD), ruminal propionate, and the acetate:propionate ratio. Low-RFI animals had greater ( < 0.05) CPD and DMD than their high-RFI contemporaries when offered GS but not the other 2 diets. Low-RFI heifers also had greater OM digestibility ( = 0.027). Additionally, low-RFI heifers had a lower concentration of propionate ( < 0.05) compared with high-RFI heifers when fed GS, resulting in a

  1. Combination effects of nitrocompounds, pyromellitic diimide, and 2-bromoethanesulfonate on in vitro ruminal methane production and fermentation of a grain-rich feed.

    PubMed

    Zhang, Dan-Feng; Yang, Hong-Jian

    2012-01-11

    An L(16) (4(5)) orthogonal experimental design was used to evaluate combination effects of nitroethane (0-15 mM), 2-nitroethanol (0-15 mM), 2-nitro-1-propanol (0-15 mM), pyromellitic diimide (0-0.07 mM), and 2-bromoethanesulfonate (0-0.05 mM) on in vitro ruminal fermentation of a grain-rich feed. In vitro dry matter disappearance was adversely affected by these inhibitors, while cumulative gas production was not affected. Volatile fatty acid production was increased by nitroethane and 2-bromoethanesulfonate in a dose-dependent manner and was decreased by 2-nitroethanol and pyromellitic diimide. All inhibitor treatments increased the molar acetate proportion, while decreasing proportions of propionate and butyrate; hydrogen recovery was decreased by 36.9-45.2%; and methane production was reduced by 95.2-99.2%. The methanogenesis inhibition ranked: nitroethane > 2-nitroethanol > 2-nitro-1-propanol > 2-bromoethanesulfonate > pyromellitic diimide; combined concentrations of 5, 5, 5, 0.02, and 0.03 mM, respectively, gave the optimal inhibiting efficiency. These results may provide a reference to develop effective mitigation of methane emission from ruminants.

  2. Effects of species-diverse high-alpine forage on in vitro ruminal fermentation when used as donor cow's feed or directly incubated.

    PubMed

    Khiaosa-Ard, R; Soliva, C R; Kreuzer, M; Leiber, F

    2012-11-01

    Alpine forages are assumed to have specific effects on ruminal digestion when fed to cattle. These effects were investigated in an experiment from two perspectives, either by using such forages as a substrate for incubation or as feed for a rumen fluid donor cow. In total, six 24-h in vitro batch culture runs were performed. Rumen fluid was collected from a non-lactating donor cow after having grazed pastures at ∼2000 m above sea level for 2, 6 and 10 weeks. These 'alpine runs' were compared with three lowland samplings from before and 2 and 6 weeks after the alpine grazing where a silage-concentrate mix was fed. In each run, nine replicates of four forages each were incubated. These forages differed in type and origin (alpine hay, lowland ryegrass hay, grass-maize silage mix, pure hemicellulose) as well as in the content of nutrients. Concentrations of phenolic compounds in the incubated forages were (g/kg dry matter (DM)): 20 (tannin proportion: 0.47), 8 (0.27), 15 (0.52) and 0 (0), respectively. Crude protein was highest in the silage mix and lowest with hemicellulose, whereas the opposite was the case for fiber. The total phenol contents (g/kg DM) for the high altitude and the lowland diet of the donor cow were 27 (tannins: 0.50 of phenols) and 12 (0.27), respectively. Independent of the origin of the rumen fluid, the incubation with alpine hay decreased (P < 0.05) bacterial counts, fermentation gas amount, volatile fatty acid (VFA) production as well as ammonia and methane concentrations in fermentation gas (the latter two being not lower when compared with hemicellulose). Alpine grazing of the cow in turn increased (P < 0.001) bacterial counts and, to a lesser extent, acetate proportion compared with lowland feeding. Further, alpine grazing decreased protozoal count (P < 0.05) and VFA production (P < 0.001) to a small extent, whereas methane remained widely unchanged. There were interactions (P < 0.05) between forage type incubated and feeding period of the

  3. An evaluation of the clinical pathologic findings in experimentally induced urinary bladder rupture in pre-ruminant calves.

    PubMed Central

    Wilson, D G; MacWilliams, P S

    1998-01-01

    The purpose of this project was to study the biochemical abnormalities that develop over time in preruminant calves with experimentally induced uroperitoneum. Uroperitoneum was produced by incising the bladder via a standing left flank laparotomy. Serum and peritoneal concentrations sodium, chloride, potassium, phosphate and creatinine were determined at 0, 2, 4, 8, 24, and 40 h. Serum creatinine concentration was increased by 8 h post-bladder rupture. Peritoneal concentrations of potassium and phosphate were significantly elevated 2 h after bladder rupture and peritoneal creatinine was significantly elevated by 4 h. Serum to peritoneal fluid ratios for potassium, phosphate and creatinine exceeded 2:1 within 2 h of bladder rupture. Pre-ruminant calves with experimentally induced uroperitoneum did not become hyperkalemic during the 40 h experiment. PMID:9553714

  4. Effect of increasing flaxseed supplementation of a pasture-based diet on methane output and ruminal fermentation in continuous culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flaxseed has been shown to decrease methane output when fed to ruminants in confinement. Organic dairy producers are interested in flaxseed as an alternative to other organic grains due to price, ability to grow on the farm, and availability. However, little is known regarding the effects of flaxsee...

  5. Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis.

    PubMed

    Yadeghari, Shahin; Malecky, Mostafa; Dehghan Banadaky, Mehdi; Navidshad, Bahman

    2015-01-01

    Four in vitro experiments (Exp.) were conducted to evaluate lavender essential oil (LEO) effects at 0 (control), 250 (low dose), 500 (medium dose), 750 and 1000 µL per L (high doses) of incubation medium on rumen gas production kinetics (Exp.1), ruminal digestibility and fermentation (Exp.2), methane production (Exp.3) and rumen acidosis (Exp.4). The asymptote of gas production (A) increased quadratically (p < 0.001), but the lag phase (L) increased (p = 0.003), and gas production rate (µ) decreased linearly (p = 0.031) with increasing dose of LEO. A linear and quadratic effect (p < 0.01) was observed for the gas produced after 24 hr of incubation (GP24). In vitro true dry matter degradability (IVTDMD) and in vitro true organic matter degradability (IVTOMD) both decreased linearly (p < 0.01), but microbial biomass (MB) and partitioning factor (PF) changed quadratically with increasing doses of LEO (p < 0.05). A cubic effect was observed for total volatile fatty acid (TVFA) and ammonia (NH3) concentrations (p < 0.05). Acetate molar percentage decreased (p = 0.004), whereas those of butyrate and valerate increased linearly (p < 0.05) with LEO dosage. The molar percentage of propionate increased by 10.60 and 12.00% at low and medium doses of LEO, respectively. Methane production decreased by 11.00 and 44.00 to 60.00% at medium and high doses of LEO (p < 0.05), respectively. Lavender essential oil decreased also ruminal pH at all included doses (p < 0.05), intensifying rumen acidosis. These results revealed a dose-dependent selective effect (stimulatory at low and medium, and inhibitory at high doses) of LEO on rumen fermentation. PMID:26973763

  6. Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis

    PubMed Central

    Yadeghari, Shahin; Malecky, Mostafa; Dehghan Banadaky, Mehdi; Navidshad, Bahman

    2015-01-01

    Four in vitro experiments (Exp.) were conducted to evaluate lavender essential oil (LEO) effects at 0 (control), 250 (low dose), 500 (medium dose), 750 and 1000 µL per L (high doses) of incubation medium on rumen gas production kinetics (Exp.1), ruminal digestibility and fermentation (Exp.2), methane production (Exp.3) and rumen acidosis (Exp.4). The asymptote of gas production (A) increased quadratically (p < 0.001), but the lag phase (L) increased (p = 0.003), and gas production rate (µ) decreased linearly (p = 0.031) with increasing dose of LEO. A linear and quadratic effect (p < 0.01) was observed for the gas produced after 24 hr of incubation (GP24). In vitro true dry matter degradability (IVTDMD) and in vitro true organic matter degradability (IVTOMD) both decreased linearly (p < 0.01), but microbial biomass (MB) and partitioning factor (PF) changed quadratically with increasing doses of LEO (p < 0.05). A cubic effect was observed for total volatile fatty acid (TVFA) and ammonia (NH3) concentrations (p < 0.05). Acetate molar percentage decreased (p = 0.004), whereas those of butyrate and valerate increased linearly (p < 0.05) with LEO dosage. The molar percentage of propionate increased by 10.60 and 12.00% at low and medium doses of LEO, respectively. Methane production decreased by 11.00 and 44.00 to 60.00% at medium and high doses of LEO (p < 0.05), respectively. Lavender essential oil decreased also ruminal pH at all included doses (p < 0.05), intensifying rumen acidosis. These results revealed a dose-dependent selective effect (stimulatory at low and medium, and inhibitory at high doses) of LEO on rumen fermentation. PMID:26973763

  7. Diet inclusion of devil fish (Plecostomus spp.) silage and its impacts on ruminal fermentation and growth performance of growing lambs in hot regions of Mexico.

    PubMed

    Tejeda-Arroyo, Eduardo; Cipriano-Salazar, Moisés; Camacho-Díaz, Luis Miguel; Salem, Abdelfattah Zeidan Mohamed; Kholif, Ahmed Eid; Elghandour, Mona Mohamed Mohamed Yasseen; DiLorenzo, Nicolas; Cruz-Lagunas, Blas

    2015-06-01

    The aim of this study was to evaluate the inclusion of devil fish (Plecostomus spp.-DF) silage in Criollo × Blackbelly lamb diets in hot region of Guerrero state of Mexico. Rumen fermentation including pH, volatile fatty acids (VFA) and ammonia-N (NH3-N) and productive variables including feed intake (FI), average daily gain (ADG), and feed conversion were determined. Twenty lambs with 18 ± 1.2 kg body weight in a completely randomized design were fed a total mixed ration (TMR) of concentrate (based on soybean meal, whole oat hay, ground corn cob, vitamins-minerals supplement) with DF silage at 0 % (DF0), 9 % (DF9), 18 % (DF18), and 27 % (DF27) of the TMR for 75 days. The ruminal pH showed no difference (P > 0.05) between treatments: ranging between 6.21 and 6.36. Propionic acid molar proportions showed an irregular pattern between experimental groups, which only differed (P < 0.05) between DF9 and DF27, without differences between the other treatments. A greater molar proportion of butyric acid was noted (P < 0.05) in DF27 when compared to the other treatments. The ruminal concentration of NH3-N showed some insignificant differences (P > 0.05) among treatments. The daily FI was increased (P < 0.01) in DF27 (1.131 g) when compared with DF0, while DF9 and DF18 showed intermediate consumption with no differences (P > 0.05) among them. The ADG showed only difference (cubic effect, P = 0.02) between DF9 and DF18. The highest feed conversion was observed (cubic effect, P < 0.01) with DF18, with a value of 4.7 kg of feed to gain 1 kg of body weight. It could be concluded that the inclusion of up to 18 % of DF silage in the TMR of growing lamb diets, in hot regions of Mexico, may improve productive performance and ruminal fermentation kinetics, without any negative effects. PMID:25851926

  8. Metabolic effects of D-psicose in rats: studies on faecal and urinary excretion and caecal fermentation.

    PubMed

    Matsuo, Tatsuhiro; Tanaka, Tomohiro; Hashiguchi, Mineo; Izumori, Ken; Suzuki, Hiroo

    2003-01-01

    D-psicose (D -ribo-2-hexulose), a C-3 epimer of D-fructose, is one of the "rare sugars" present in small quantities in commercial carbohydrate complex or agricultural products. We investigated the absorption and excretion of D-psicose when orally administrated (5g/kg body weight) to Wistar rats, and the fermentation of D-psicose was measured as caecal short-chain fatty acids (SCFAs) when fed to rats in controlled diets (0, 10, 20 and 30%). Urinary and faecal excretions of D-psicose over the 24 h, following a single oral administration, were 11-15% of dosage for the former and 8-13% of dosage for the latter. Serum D-psicose concentration and D-psicose in the contents of stomach and small intestines decreased progressively after administration. D-psicose in caecum contents was detected after 3h and 7h administration, but not after 1h. Rats fed on D-psicose diets showed short-chain fatty acid production with caecal hypertrophy. These results suggest that D-psicose is partly absorbable in the digestive tract and is excreted into urine and faeces. As with other poorly absorbed dietary carbohydrates, D-psicose is fermented in the caecum by intestinal microflora.

  9. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production.

    PubMed

    Hassanat, F; Gervais, R; Julien, C; Massé, D I; Lettat, A; Chouinard, P Y; Petit, H V; Benchaar, C

    2013-07-01

    The objective of this study was to determine the effects of replacing alfalfa silage (AS) with corn silage (CS) in dairy cow total mixed rations (TMR) on enteric CH4 emissions, ruminal fermentation characteristics, apparent total-tract digestibility, N balance, and milk production. Nine ruminally cannulated lactating cows were used in a replicated 3×3 Latin square design (32-d period) and fed (ad libitum) a TMR [forage:concentrate ratio of 60:40; dry matter (DM) basis], with the forage portion consisting of either alfalfa silage (0% CS; 56.4% AS in the TMR), a 50:50 mixture of both silages (50% CS; 28.2% AS and 28.2% CS in the TMR), or corn silage (100% CS; 56.4% CS in the TMR). Increasing the CS proportion (i.e., at the expense of AS) in the diet was achieved by decreasing the corn grain proportion and increasing that of soybean meal. Intake of DM and milk yield increased quadratically, whereas DM digestibility increased linearly as the proportion of CS increased in the diet. Increasing the dietary CS proportion resulted in changes (i.e., lower ruminal pH and acetate:propionate ratio, reduced fiber digestibility, decreased protozoa numbers, and lower milk fat and higher milk protein contents) typical of those observed when cows are fed high-starch diets. A quadratic response in daily CH4 emissions was observed in response to increasing the proportion of CS in the diet (440, 483, and 434 g/d for 0% CS, 50% CS, and 100% CS, respectively). Methane production adjusted for intake of DM, and gross or digestible energy was unaffected in cows fed the 50% CS diet, but decreased in cows fed the 100% CS diet (i.e., quadratic effect). Increasing the CS proportion in the diet at the expense of AS improved N utilization, as reflected by the decreases in ruminal NH3 concentration and manure N excretion, suggesting low potential NH3 and N2O emissions. Results from this study, suggest that total replacement of AS with CS in dairy cow diets offers a means of decreasing CH4 output

  10. Elevated CO(2) and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversity in vitro.

    PubMed

    Meibaum, Birgit; Riede, Susanne; Schröder, Bernd; Manderscheid, Remy; Weigel, Hans-Joachim; Breves, Gerhard

    2012-12-01

    Climate changes are supposed to influence productivity and chemical composition of plants. In the present experiments, it was hypothesised that the incubation of plants exposed to elevated atmospheric carbon dioxide concentrations ([CO₂]) and drought stress will result in different ruminal fermentation pattern and microbial diversity compared to unaffected plants. Maize plants were grown, well-watered under ambient (380 ppm CO₂, Variant A) and elevated [CO₂] (550 ppm CO₂, Variant B). Furthermore, each CO₂ treatment was also exposed to drought stress (380 ppm and 550 ppm CO₂,Variants C and D, respectively), which received only half as much water as the well-watered plants. Plant material from these treatments was incubated in a semi-continuous in vitro fermentation experiment using the rumen simulation technique. Single strand conformation polymorphism (SSCP) analysis was conducted for Bacteria and Archaea specific profiles. The analysis of crude nutrients showed higher contents of fibre fraction in drought stress Variants C and D. Crude protein content was increased by drought stress under ambient but not under elevated [CO₂]. Fermentation of drought stress variants resulted in significantly increased pH values, decreased digestibilities of organic matter and increased ammonia-N (NH₃-N) concentrations compared with well-watered variants. Additionally, the 550 ppm CO₂ Variants B and D showed significantly lower NH₃-N concentrations than Variants A and C. The Bacteria- and Archaea-specific SSCP profiles as well as the production rates of short-chain fatty acids and their molar percentages were not affected by treatments. During the first four days of equilibration period, a decrease of molar percentage of acetate and increased molar percentages of propionate were observed for all treatments. These alterations might have been induced by adaptation of the in vitro system to the new substrate. The rumen microflora appeared to be highly adaptive and

  11. Effects of replacing grass silage with forage pearl millet silage on milk yield, nutrient digestion, and ruminal fermentation of lactating dairy cows.

    PubMed

    Brunette, T; Baurhoo, B; Mustafa, A F

    2016-01-01

    This study investigated the effects of dietary replacement of grass silage (GS) with forage millet silages that were harvested at 2 stages of maturity [i.e., vegetative stage and dough to ripe seed (mature) stage] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a total mixed ration (60:40 forage:concentrate ratio). Dietary treatments included control (GS), vegetative millet silage (EM), and mature millet silage (MM) diets. Experimental silages comprised 24% of dietary dry matter (DM). Soybean meal and slow-release urea were added in millet diets to balance for crude protein (CP). Three additional ruminally fistulated cows were used to determine the effect of treatments on ruminal fermentation and total-tract nutrient utilization. Cows fed the GS diet consumed more DM (22.9 vs. 21.7 ± 1.02 kg/d) and CP (3.3 vs. 3.1 ± 0.19 kg/d), and similar starch (4.9 ± 0.39 kg/d) and neutral detergent fiber (NDF; 8.0 ± 0.27 kg/d) compared with cows fed the MM diet. Replacing the EM diet with the MM diet did not affect DM, NDF, or CP intakes. Cows fed the MM diet produced less milk (26.1 vs. 29.1 ± 0.79 kg/d), energy-corrected milk (28.0 vs.30.5 ± 0.92 kg/d), and 4% fat-corrected milk (26.5 vs. 28.3 ± 0.92 kg/d) yields than cows fed the GS diet. However, cows fed diets with EM and GS produced similar yields of milk, energy-corrected milk, and 4% fat-corrected milk. Feed efficiency (milk yield:DM intake) was greater only for cows fed the GS diet than those fed the MM diet. Milk protein yield and concentration were greater among cows fed the GS diet compared with those fed the EM or MM diets. Milk fat and lactose concentrations were not influenced by diet. However, milk urea N was lower for cows fed the GS diet than for those fed the MM diet. Ruminal NH3-N was greater for cows fed the EM diet than for

  12. Effect of dietary sugar concentration and sunflower seed supplementation on lactation performance, ruminal fermentation, milk fatty acid profile, and blood metabolites of dairy cows.

    PubMed

    Razzaghi, A; Valizadeh, R; Naserian, A A; Mesgaran, M Danesh; Carpenter, A J; Ghaffari, M H

    2016-05-01

    Previous research has shown that both sunflower seed (SF) and sucrose (SC) supplementation can result in variation in milk fat concentration and composition, possibly due to altered fermentation patterns and biohydrogenation of fatty acids in the rumen. The objective of this study was to determine the effects of different sugar concentrations with or without SF supplementation on lactation performance, ruminal fermentation, and milk fatty acid profile in lactating dairy cows. Eight multiparous Holstein dairy cows (body weight=620±15kg, 60±10 d in milk, mean ± standard deviation) were randomly assigned to treatments in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of treatments. Each 21-d period consisted of a 14-d diet adaptation period and 7-d collection period. Dairy cows were fed 1 of the following 4 diets: (1) no additional SC without SF supplementation (NSC-SF), (2) no additional SC with SF supplementation (NSC+SF), (3) SC without SF supplementation (SC-SF), and (4) SC with SF supplementation (SC+SF). The diets contained the same amount of forages (corn silage and alfalfa hay). Four isonitrogenous and isoenergetic diets were formulated by replacing corn grain with SC and SF and balanced using change in proportions of canola meal and sugar beet pulp. No interaction was detected between SC and SF supplementation with respect to dry matter intake, milk yield, and composition. A tendency was found for an interaction between inclusion of SC and SF on energy-corrected milk with the highest amount in the SC-SF diet. Ruminal pH and the molar proportion of acetate were affected by SC inclusion, with an increase related to the SC-SF diet. Diets containing SF decreased the concentrations of short-chain fatty acids (4:0 to 10:0) and medium-chain fatty acids (12:0 to 16:0) in milk fat. The addition of SC tended to decrease the concentration of total trans-18:1. These data provide evidence that exchanging SC for corn at 4% of dietary dry matter

  13. Effect of dietary sugar concentration and sunflower seed supplementation on lactation performance, ruminal fermentation, milk fatty acid profile, and blood metabolites of dairy cows.

    PubMed

    Razzaghi, A; Valizadeh, R; Naserian, A A; Mesgaran, M Danesh; Carpenter, A J; Ghaffari, M H

    2016-05-01

    Previous research has shown that both sunflower seed (SF) and sucrose (SC) supplementation can result in variation in milk fat concentration and composition, possibly due to altered fermentation patterns and biohydrogenation of fatty acids in the rumen. The objective of this study was to determine the effects of different sugar concentrations with or without SF supplementation on lactation performance, ruminal fermentation, and milk fatty acid profile in lactating dairy cows. Eight multiparous Holstein dairy cows (body weight=620±15kg, 60±10 d in milk, mean ± standard deviation) were randomly assigned to treatments in a replicated 4×4 Latin square design with a 2×2 factorial arrangement of treatments. Each 21-d period consisted of a 14-d diet adaptation period and 7-d collection period. Dairy cows were fed 1 of the following 4 diets: (1) no additional SC without SF supplementation (NSC-SF), (2) no additional SC with SF supplementation (NSC+SF), (3) SC without SF supplementation (SC-SF), and (4) SC with SF supplementation (SC+SF). The diets contained the same amount of forages (corn silage and alfalfa hay). Four isonitrogenous and isoenergetic diets were formulated by replacing corn grain with SC and SF and balanced using change in proportions of canola meal and sugar beet pulp. No interaction was detected between SC and SF supplementation with respect to dry matter intake, milk yield, and composition. A tendency was found for an interaction between inclusion of SC and SF on energy-corrected milk with the highest amount in the SC-SF diet. Ruminal pH and the molar proportion of acetate were affected by SC inclusion, with an increase related to the SC-SF diet. Diets containing SF decreased the concentrations of short-chain fatty acids (4:0 to 10:0) and medium-chain fatty acids (12:0 to 16:0) in milk fat. The addition of SC tended to decrease the concentration of total trans-18:1. These data provide evidence that exchanging SC for corn at 4% of dietary dry matter

  14. The effect of lipid supplements on ruminal bacteria in continuous culture fermenters varies with the fatty acid composition.

    PubMed

    Potu, Ramesh B; AbuGhazaleh, Amer A; Hastings, Darcie; Jones, Karen; Ibrahim, Salam A

    2011-04-01

    A single flow continuous culture fermenter system was used in this study to investigate the influence of dietary lipid supplements varying in their fatty acid content on the DNA concentration of selected rumen bacteria. Four continuous culture fermenters were used in a 4 × 4 Latin square design with four periods of 10 d each. Treatment diets were fed at 45 g/d (DM basis) in three equal portions during the day. The diets were: 1) control (CON), 2) control with animal fat source (SAT), 3) control with soybean oil (SBO), and 4) control with fish oil (FO). Lipid supplements were added at 3% of diet DM. The concentrations of total volatile fatty acids and acetate were not affected (P>0.05) by lipid supplements. Concentrations of propionate, iso-butyrate, valerate and iso-valerate were highest (P<0.05) with the FO diet compared with the other treatment diets. The concentration of til C18:l (vaccenic acid, VA) in effluents increased (P<0.05) with SBO and FO diets and was highest with the SBO diet. The concentrations of C18:0 in effluents were lowest (P<0.05) for the FO diet compared with the other treatment diets. Concentrations of DNA for Anaerovibrio lipolytica, and Butyrivibrio proteoclasticus in fermenters were similar (P>0.05) for all diets. The DNA concentrations of Butyrivibrio fibrisolvens and Ruminococcus albus in fermenters were lowest (P<0.05) with the FO diet but were similar (P>0.05) among the other treatment diets. Selenomonas ruminantium DNA concentration in fermenters was highest (P<0.05) with the FO diet. In conclusion, SBO had no effect on bacterial DNA concentrations tested in this study and the VA accumulation in the rumen observed on the FO diet may be due in part to FO influence on B. fibrisolvens, R. albus, and S. ruminantium. PMID:21538241

  15. In vitro fermentative characteristics of ruminant diets supplemented with fibrolytic enzymes and ranges of optimal endo-beta-1,4-glucanase activity.

    PubMed

    González-García, E; Albanell, E; Caja, G; Casals, R

    2010-04-01

    Effectiveness of fibrolytic enzymes supplementing a range of forage to concentrate (F:C) diets was assessed with goat (G) or cow (C) inoculum using the gas production (GP) technique. Four F:C diets were evaluated: forage (1:0), high forage (0.7:0.3), medium forage (0.5:0.5) and low forage (0.3:0.7) diets, supplemented or not with Promote(TM) (PRO) at 1 or 2 ml/kg dry matter (DM). The GP kinetic was different between F:C (1:0 < 0.7:0.3 < 0.5:0.5 < 0.3:0.7) and inoculum. Responses to enzyme were positively related to forage level and differed with inoculum. The neutral detergent fibre and acid detergent fibre degradation were depressed by the concentrate in the substrates fermented with C and were not altered or even enhanced in G sets. Results confirm that increasing starch proportion modified the pattern of microbial fermentation, while no influences were detected in the improvement of cell wall degradation with fibrolytic enzymes. Another in vitro experiment was conducted to investigate factors by which endo-beta-1,4-glucanase activity (EA) of PRO is compromised in a factorial design (3 x 4 x 3) for three pH (4.0, 5.5 and 6.5), four temperatures (30, 40, 50 and 70 degrees C) and three doses (1, 2 and 3 ml/kg DM of substrate). Maximum EA were obtained for pH 4.0, 50 degrees C and 3 ml/kg DM. Optimal conditions for PRO proved to be outside the normal ranges in ruminal environment.

  16. Influence of two levels of enzyme preparation on ruminal fermentation, particulate and fluid passage and cell wall digestion in wether lambs consuming either a 10% or 25% grain diet.

    PubMed

    Judkins, M B; Stobart, R H

    1988-04-01

    Effects of a fungal enzyme preparation on ruminal fermentation, digesta kinetics and cell wall digestion were studied. Either 0, 22 or 25 g/d of enzyme preparation was offered to nine ruminally cannulated Rambouillet or Columbia wether lambs (avg wt 28.6 kg) in two randomized complete block experiments. An alfalfa hay-corn mixture at 2.1% of body weight (10% corn) was used in Exp. 1. In Exp. 2, 2.7% of body weight (25% corn; Exp. 2) was fed. Ruminal samples were collected at 0, 4, 8, 12 and 24 h postfeeding on d 17 of each 22-d period to measure fluid dilution rate and fermentation characteristics. An intraruminal dose of Yb-labeled hay followed by fecal sampling on d 19 through 22 was used to estimate particulate passage and fecal output. Ruminal pH, NH3 concentrations, total volatile fatty acid and proportion of individual acids were not influenced (P greater than .10) by the addition of either level of enzyme preparation in either Exp. 1 or 2. Dry matter digestibility also showed no effect (P greater than .10) of enzyme preparation added to either diet. In Exp. 1, wethers receiving 35 g/d of the enzyme preparation had greater cell wall digestion (49.8%; P less than .05) than wethers receiving either 22 g/d or no enzyme preparation (45.7 and 42.9%, respectively). In Exp. 2, with a 25% corn diet, no influence (P greater than .10) of enzyme preparation was noted on cell wall digestibility. Particulate and ruminal fluid passage rate parameters remained unchanged (P greater than .10) by the addition of either level of enzyme preparation, regardless of the diet fed.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Effects of corn silage hybrids and dietary nonforage fiber sources on feed intake, digestibility, ruminal fermentation, and productive performance of lactating Holstein dairy cows.

    PubMed

    Holt, M S; Williams, C M; Dschaak, C M; Eun, J-S; Young, A J

    2010-11-01

    This experiment was conducted to determine the effects of corn silage hybrids and nonforage fiber sources (NFFS) in high forage diets formulated with high dietary proportions of alfalfa hay (AH) and corn silage (CS) on ruminal fermentation and productive performance by early lactating dairy cows. Eight multiparous Holstein cows (4 ruminally fistulated) averaging 36±6.2 d in milk were used in a duplicated 4 × 4 Latin square design experiment with a 2 × 2 factorial arrangement of treatments. Cows were fed 1 of 4 dietary treatments during each of the four 21-d replicates. Treatments were (1) conventional CS (CCS)-based diet without NFFS, (2) CCS-based diet with NFFS, (3) brown midrib CS (BMRCS)-based diet without NFFS, and (4) BMRCS-based diet with NFFS. Diets were isonitrogenous and isocaloric. Sources of NFFS consisted of ground soyhulls and pelleted beet pulp to replace a portion of AH and CS in the diets. In vitro 30-h neutral detergent fiber (NDF) degradability was greater for BMRCS than for CCS (42.3 vs. 31.2%). Neither CS hybrids nor NFFS affected intake of dry matter (DM) and nutrients. Digestibility of N, NDF, and acid detergent fiber tended to be greater for cows consuming CCS-based diets. Milk yield was not influenced by CS hybrids and NFFS. However, a tendency for an interaction between CS hybrids and NFFS occurred, with increased milk yield due to feeding NFFS with the BMRCS-based diet. Yields of milk fat and 3.5% fat-corrected milk decreased when feeding the BMRCS-based diet, and a tendency existed for an interaction between CS hybrids and NFFS because milk fat concentration further decreased by feeding NFFS with BMRCS-based diet. Although feed efficiency (milk/DM intake) was not affected by CS hybrids and NFFS, an interaction was found between CS hybrids and NFFS because feed efficiency increased when NFFS was fed only with BMRCS-based diet. Total volatile fatty acid production and individual molar proportions were not affected by diets. Dietary

  18. Influence of ensiling, exogenous protease addition, and bacterial inoculation on fermentation profile, nitrogen fractions, and ruminal in vitro starch digestibility in rehydrated and high-moisture corn.

    PubMed

    Ferraretto, L F; Fredin, S M; Shaver, R D

    2015-10-01

    Exogenous protease addition may be an option to increase proteolysis of zein proteins and thus starch digestibility in rehydrated and high-moisture corn (HMC) ensiled for short periods. In addition, microbial inoculation may accelerate fermentation and increase acid production and thus increase solubilization of zein proteins. Four experiments were performed to evaluate the effect on fermentation profile, N fractions, and ruminal in vitro starch digestibility (ivSD) of the following: (1) rehydration and ensiling of dry ground corn; (2) exogenous protease addition to rehydrated un-ensiled and ensiled corn; (3) exogenous protease addition or inoculation in rehydrated ensiled corn; and (4) exogenous protease addition or inoculation in HMC. Experiments 1, 2, and 3 were performed with 7 treatments: dry ground corn (DGC); DGC rehydrated to a targeted dry matter content of 70% (REH); REH treated with exogenous protease (REH+); REH ensiled for 30 d (ENS); ENS treated with exogenous protease (ENS+); ENS treated with a microbial inoculant containing Lactobacillus plantarum, Lactobacillus casei, Enterococcus faecium, and Pediococcus sp. (ENSI); and ENS treated with exogenous protease and microbial inoculant (ENSI+). Experiment 1 compared DGC, REH, and ENS with ivSD being greater for ENS (64.9%) than DGC and REH (51.7% on average). Experiment 2 compared REH and ENS without or with exogenous protease addition (REH+ and ENS+, respectively). Ensiling and exogenous protease addition increased ivSD, but exogenous protease addition was more effective in ENS than REH (6.4 vs. 2.6 percentage unit increase). Experiment 3 compared the effects of exogenous protease addition and inoculation in ENS corn (ENS, ENS+, ENSI, and ENSI+). The addition of protease, but not inoculant, increased ivSD. Inoculation reduced pH and acetate, propionate, and ethanol concentrations, and increased lactate and total acid concentrations. In experiment 4, 8 treatments were a combination of HMC noninoculated

  19. Feed intake, ruminal fermentation, and animal behavior of beef heifers fed forage free diets containing nonforage fiber sources.

    PubMed

    Iraira, S P; Ruíz de la Torre, J L; Rodríguez-Prado, M; Calsamiglia, S; Manteca, X; Ferret, A

    2013-08-01

    Eight Simmental heifers (initial BW 313.4 ± 13.2 kg) were randomly assigned to 1 of 4 experimental treatments in a 4 × 4 double Latin square design. The experiment was performed in four 28-d periods. Treatments tested were a control diet in which barley straw (BS) was used as a fiber source and 3 diets where the main difference was the nonforage fiber source used: soybean hulls (SH), beet pulp (BP) in pellets, and whole cottonseed (WCS). All ingredients, except the fiber sources, were ground through a 3-mm screen. Fiber ingredients were incorporated at 10, 17, 17, and 16% (on DM basis) in BS, SH, BP, and WCS, respectively. All diets were offered ad libitum as total mixed ration and designed to be isoenergetic (2.95 Mcal ME/kg DM), isonitrogenous (15% CP, DM basis), and with a NDF content of 20% (on DM basis) although there was a discrepancy between the theoretical and the actual chemical composition of the diets. Particle size separation was performed using the 3-screen Penn State Particle Separator. Animals were allotted in 8 individual roofed concrete pens equipped with a feedbunk and water trough. Intake was recorded over 7 d in the last week of each experimental period. Behavior was recorded for 24-h on d 2 and d 6 of each experimental week using a digital video recording device. A digital color camera was set up in front of each pen. Data recorded, except behavioral activities, were statistically analyzed using the MIXED procedure of SAS. To test treatment effect for each behavioral activity, analysis was performed using the GLIMMIX procedure of SAS. Diets ranked from greater to lesser proportion of particles of less than 1.18 mm as follows: SH, BS, WCS, and BP. Dry matter intake of heifers fed WCS was greater than the remaining treatments (P = 0.049). The greatest average ruminal pH was registered in heifers fed BS (6.4) and BP (6.3) whereas the smallest was recorded in SH diet (5.9), with WCS (6.2) occupying an intermediate position (P = 0.006). Total

  20. Feed intake, ruminal fermentation, and animal behavior of beef heifers fed forage free diets containing nonforage fiber sources.

    PubMed

    Iraira, S P; Ruíz de la Torre, J L; Rodríguez-Prado, M; Calsamiglia, S; Manteca, X; Ferret, A

    2013-08-01

    Eight Simmental heifers (initial BW 313.4 ± 13.2 kg) were randomly assigned to 1 of 4 experimental treatments in a 4 × 4 double Latin square design. The experiment was performed in four 28-d periods. Treatments tested were a control diet in which barley straw (BS) was used as a fiber source and 3 diets where the main difference was the nonforage fiber source used: soybean hulls (SH), beet pulp (BP) in pellets, and whole cottonseed (WCS). All ingredients, except the fiber sources, were ground through a 3-mm screen. Fiber ingredients were incorporated at 10, 17, 17, and 16% (on DM basis) in BS, SH, BP, and WCS, respectively. All diets were offered ad libitum as total mixed ration and designed to be isoenergetic (2.95 Mcal ME/kg DM), isonitrogenous (15% CP, DM basis), and with a NDF content of 20% (on DM basis) although there was a discrepancy between the theoretical and the actual chemical composition of the diets. Particle size separation was performed using the 3-screen Penn State Particle Separator. Animals were allotted in 8 individual roofed concrete pens equipped with a feedbunk and water trough. Intake was recorded over 7 d in the last week of each experimental period. Behavior was recorded for 24-h on d 2 and d 6 of each experimental week using a digital video recording device. A digital color camera was set up in front of each pen. Data recorded, except behavioral activities, were statistically analyzed using the MIXED procedure of SAS. To test treatment effect for each behavioral activity, analysis was performed using the GLIMMIX procedure of SAS. Diets ranked from greater to lesser proportion of particles of less than 1.18 mm as follows: SH, BS, WCS, and BP. Dry matter intake of heifers fed WCS was greater than the remaining treatments (P = 0.049). The greatest average ruminal pH was registered in heifers fed BS (6.4) and BP (6.3) whereas the smallest was recorded in SH diet (5.9), with WCS (6.2) occupying an intermediate position (P = 0.006). Total

  1. Nutrient digestibility and ruminal fermentation characteristic in swamp buffaloes fed on chemically treated rice straw and urea.

    PubMed

    Nguyen, Vinh Thi; Wanapat, Metha; Khejornsart, Pichad; Kongmun, Phongthorn

    2012-03-01

    The experiment was conducted to determine effects of urea-lime-treated rice straw and urea levels in concentrate on rumen fermentation, apparent nutrient digestibility, and cellulolytic bacteria population of 4-year-old, rumen-fistulated swamp buffaloes. All animals were randomly assigned according to a 2 × 2 factorial arrangement in a 4 × 4 Latin square design to receive four dietary treatments: factor A, two sources of roughage (rice straw and 2%urea + 2%lime-treated rice straw); factor B, two levels of urea in concentrate mixture (0% and 4%). Roughages were given ad libitum together with 0.3% BW of concentrate. It was found that voluntary feed intake, the digestibility of DM, OM, CP, NDF, acetate, and propionate concentration were significantly increased (P < 0.05) by treated rice straw, while NH(3)-N, BUN, and propionic acid concentration were increased by both factors of treated rice straw and 4% urea in concentrate. The real-time PCR quantification of Fibrobacter succinogenes and Ruminococcus albus population, and anaerobic fungi were greater (P < 0.05), but the population of Ruminococcus flavefaciens, protozoa, and methanogenic bacteria were reduced (P > 0.05) as influenced by treated rice straw and urea level. In conclusion, the combined use of urea-lime-treated rice straw and fed with concentrate (4% urea) could improve rumen ecology, rumen fermentation efficiency, and nutrient digestibility in swamp buffaloes. PMID:21805305

  2. Effects of altering alfalfa hay quality when feeding steam-flaked versus high-moisture corn grain on ruminal fermentation and lactational performance of dairy cows.

    PubMed

    Eun, J-S; Kelley, A W; Neal, K; Young, A J; Hall, J O

    2014-12-01

    This experiment was performed to test a hypothesis that nutritive benefits of feeding high-moisture corn (HMC) would be different when fed with different qualities of alfalfa hay (AH) due to associative effects on ruminal fermentation and nutrient utilization efficiency. Eight multiparous lactating Holstein cows were used; 4 were surgically fitted with ruminal cannulas. Days in milk averaged 184 ± 10.7 at the start of the experiment. The experiment was performed in a duplicate 4 × 4 Latin square design. Within each square, cows were randomly assigned to a sequence of 4 diets during each of the four 21-d periods (14 d of treatment adaptation and 7 d of data collection and sampling). A 2 × 2 factorial arrangement was used; fair-quality AH [FAH; 39.6% neutral detergent fiber (NDF) and 17.9% crude protein (CP)] or high-quality AH (HAH; 33.6% NDF and 21.9% CP) was combined with steam-flaked corn (SFC) or HMC to form 4 treatments: FAH with SFC, FAH with HMC, HAH with SFC, and HAH with HMC. The AH was fed at 32% dry matter (DM) content, whereas SFC or HMC was included at 17% DM content. Quality of AH did not affect DM intake, whereas feeding HMC decreased DM intake, regardless of quality of AH. Digestibility of DM was greater for cows fed HAH compared with those fed FAH (70.1 vs. 67.6%). Digestibility of NDF increased by feeding HMC (67.6 vs. 58.4%), but not by quality of AH. Under FAH, starch digestibility decreased by feeding HMC compared with SFC (85.7 vs. 95.0%), but it was similar under HAH, resulting in an interaction between quality of AH and type of corn grain (CG). Feeding different qualities of AH did not affect milk yield; however, feeding HMC decreased milk yield in FAH diet, causing an AH × CG interaction. Efficiency of milk yield/DM intake was improved due to feeding HMC, regardless of the quality of the AH. In addition, dietary N utilization for milk N tended to increase by feeding HMC, but it was not influenced by quality of AH. Yield of microbial

  3. Effects of altering alfalfa hay quality when feeding steam-flaked versus high-moisture corn grain on ruminal fermentation and lactational performance of dairy cows.

    PubMed

    Eun, J-S; Kelley, A W; Neal, K; Young, A J; Hall, J O

    2014-12-01

    This experiment was performed to test a hypothesis that nutritive benefits of feeding high-moisture corn (HMC) would be different when fed with different qualities of alfalfa hay (AH) due to associative effects on ruminal fermentation and nutrient utilization efficiency. Eight multiparous lactating Holstein cows were used; 4 were surgically fitted with ruminal cannulas. Days in milk averaged 184 ± 10.7 at the start of the experiment. The experiment was performed in a duplicate 4 × 4 Latin square design. Within each square, cows were randomly assigned to a sequence of 4 diets during each of the four 21-d periods (14 d of treatment adaptation and 7 d of data collection and sampling). A 2 × 2 factorial arrangement was used; fair-quality AH [FAH; 39.6% neutral detergent fiber (NDF) and 17.9% crude protein (CP)] or high-quality AH (HAH; 33.6% NDF and 21.9% CP) was combined with steam-flaked corn (SFC) or HMC to form 4 treatments: FAH with SFC, FAH with HMC, HAH with SFC, and HAH with HMC. The AH was fed at 32% dry matter (DM) content, whereas SFC or HMC was included at 17% DM content. Quality of AH did not affect DM intake, whereas feeding HMC decreased DM intake, regardless of quality of AH. Digestibility of DM was greater for cows fed HAH compared with those fed FAH (70.1 vs. 67.6%). Digestibility of NDF increased by feeding HMC (67.6 vs. 58.4%), but not by quality of AH. Under FAH, starch digestibility decreased by feeding HMC compared with SFC (85.7 vs. 95.0%), but it was similar under HAH, resulting in an interaction between quality of AH and type of corn grain (CG). Feeding different qualities of AH did not affect milk yield; however, feeding HMC decreased milk yield in FAH diet, causing an AH × CG interaction. Efficiency of milk yield/DM intake was improved due to feeding HMC, regardless of the quality of the AH. In addition, dietary N utilization for milk N tended to increase by feeding HMC, but it was not influenced by quality of AH. Yield of microbial

  4. Improvement of Nutritive Value and In vitro Ruminal Fermentation of Leucaena Silage by Molasses and Urea Supplementation.

    PubMed

    Phesatcha, K; Wanapat, M

    2016-08-01

    Leucaena silage was supplemented with different levels of molasses and urea to study its nutritive value and in vitro rumen fermentation efficiency. The ensiling study was randomly assigned according to a 3×3 factorial arrangement in which the first factor was molasses (M) supplement at 0%, 1%, and 2% of crop dry matter (DM) and the second was urea (U) supplement as 0%, 0.5%, and 1% of the crop DM, respectively. After 28 days of ensiling, the silage samples were collected and analyzed for chemical composition. All the nine Leucaena silages were kept for study of rumen fermentation efficiency using in vitro gas production techniques. The present result shows that supplementation of U or M did not affect DM, organic matter, neutral detergent fiber, and acid detergent fiber content in the silage. However, increasing level of U supplementation increased crude protein content while M level did not show any effect. Moreover, the combination of U and M supplement decreased the content of mimosine concentration especially with M2U1 (molasses 2% and urea 1%) silage. The result of the in vitro study shows that gas production kinetics, cumulation gas at 96 h and in vitro true digestibility increased with the increasing level of U and M supplementation especially in the combination treatments. Supplementation of M and U resulted in increasing propionic acid and total volatile fatty acid whereas, acetic acid, butyric acid concentrations and methane production were not changed. In addition, increasing U level supplementation increased NH3-N concentration. Result from real-time polymerase chain reaction revealed a significant effect on total bacteria, whereas F. succinogenes and R. flavefaciens population while R. albus was not affected by the M and U supplementation. Based on this study, it could be concluded that M and urea U supplementation could improve the nutritive value of Leucaena silage and enhance in vitro rumen fermentation efficiency. This study also suggested that

  5. Improvement of Nutritive Value and In vitro Ruminal Fermentation of Leucaena Silage by Molasses and Urea Supplementation

    PubMed Central

    Phesatcha, K.; Wanapat, M.

    2016-01-01

    Leucaena silage was supplemented with different levels of molasses and urea to study its nutritive value and in vitro rumen fermentation efficiency. The ensiling study was randomly assigned according to a 3×3 factorial arrangement in which the first factor was molasses (M) supplement at 0%, 1%, and 2% of crop dry matter (DM) and the second was urea (U) supplement as 0%, 0.5%, and 1% of the crop DM, respectively. After 28 days of ensiling, the silage samples were collected and analyzed for chemical composition. All the nine Leucaena silages were kept for study of rumen fermentation efficiency using in vitro gas production techniques. The present result shows that supplementation of U or M did not affect DM, organic matter, neutral detergent fiber, and acid detergent fiber content in the silage. However, increasing level of U supplementation increased crude protein content while M level did not show any effect. Moreover, the combination of U and M supplement decreased the content of mimosine concentration especially with M2U1 (molasses 2% and urea 1%) silage. The result of the in vitro study shows that gas production kinetics, cumulation gas at 96 h and in vitro true digestibility increased with the increasing level of U and M supplementation especially in the combination treatments. Supplementation of M and U resulted in increasing propionic acid and total volatile fatty acid whereas, acetic acid, butyric acid concentrations and methane production were not changed. In addition, increasing U level supplementation increased NH3-N concentration. Result from real-time polymerase chain reaction revealed a significant effect on total bacteria, whereas F. succinogenes and R. flavefaciens population while R. albus was not affected by the M and U supplementation. Based on this study, it could be concluded that M and urea U supplementation could improve the nutritive value of Leucaena silage and enhance in vitro rumen fermentation efficiency. This study also suggested that

  6. Effects of adding food by-products mainly including noodle waste to total mixed ration silage on fermentation quality, feed intake, digestibility, nitrogen utilization and ruminal fermentation in wethers.

    PubMed

    Ishida, Kyohei; Yani, Srita; Kitagawa, Masayuki; Oishi, Kazato; Hirooka, Hiroyuki; Kumagai, Hajime

    2012-11-01

    Four wethers were used in a 4 × 4 Latin square design experiment to evaluate the applicability of two types of total mixed ration (TMR) silage with food by-products. Four food by-products (i.e., potato waste, soy sauce cake, soybean curd residue and noodle waste) were obtained and mixed with commercial concentrate (CC) as TMR silage. The two types of TMR silage, T1 and T2, each contained CC, in addition to all by-products for T1 (TRE1), and soy sauce cake and noodle waste for T2 (TRE2) on a dry matter (DM) basis. The silage was well-fermented with low pH values and high lactic acid concentration. As the experimental treatments, T1, T2 and CC (CTL) were fed with a basal diet. The result showed that the digestibility of DM and organic matter (OM) were higher for T1 than for CC (P < 0.05), while crude protein digestibility was not significantly different among T1, T2 and CC. The retained nitrogen was not affected by inclusion of food by-products. Ruminal pH in TRE1 and TRE2 immediately decreased compared to that in CTL. The study suggested that the two types of TMR silage, including food by-products, might be used as a substitute for commercial concentrate.

  7. Effects of coconut and fish oils on ruminal methanogenesis, fermentation, and abundance and diversity of microbial populations in vitro.

    PubMed

    Patra, A K; Yu, Z

    2013-03-01

    Coconut (CO) and fish (FO) oils were previously shown to inhibit rumen methanogenesis and biohydrogenation, which mitigates methane emission and helps improve beneficial fatty acids in meat and milk. This study aimed at investigating the comparative effects of CO and FO on the methanogenesis, fermentation, and microbial abundances and diversity in vitro rumen cultures containing different doses (0, 3.1, and 6.2 mL/L) of each oil and 400mg feed substrate using rumen fluid from lactating dairy cows as inocula. Increasing doses of CO and FO quadratically decreased concentrations of methane, but hydrogen concentrations were only increased quadratically by CO. Both oils linearly decreased dry matter and neutral detergent fiber digestibility of feeds but did not affect the concentration of total volatile fatty acids. However, CO reduced acetate percentage and acetate to propionate ratio and increased the percentages of propionate and butyrate to a greater extent than FO. Ammonia concentration was greater for CO than FO. As determined by quantitative real-time PCR, FO had greater inhibition to methanogens than CO, but the opposite was true for protozoal, Ruminococcus flavefaciens, and Fibrobacter succinogenes. Ruminococcus albus was not affected by either oil. Denaturing gradient gel electrophoresis (DGGE) profiles revealed that bacterial and archaeal community composition were changed differently by oil type. Based on Pareto-Lorenz evenness curve analysis of the DGGE profiles, CO noticeably changed the functional organization of archaea compared with FO. In conclusion, although both CO and FO decreased methane concentrations to a similar extent, the mode of reduction and the effect on abundances and diversity of archaeal and bacterial populations differed between the oils. Thus, the use of combination of CO and FO at a low dose may additively lower methanogenesis in the rumen while having little adverse effect on rumen fermentation. PMID:23332846

  8. Effect of the dose of exogenous fibrolytic enzyme preparations on preingestive fiber hydrolysis, ruminal fermentation, and in vitro digestibility of bermudagrass haylage.

    PubMed

    Romero, J J; Zarate, M A; Adesogan, A T

    2015-01-01

    Our objectives were to evaluate the effects of the dose rates of 5 Trichoderma reesei and Aspergillus oryzae exogenous fibrolytic enzymes (EFE; 1A, 2A, 11C, 13D, and 15D) on in vitro digestibility, fermentation characteristics, and preingestive hydrolysis of bermudagrass haylage and to identify the optimal dose of each EFE for subsequent in vitro and in vivo studies. In experiment 1, EFE were diluted in citrate-phosphate buffer (pH 6) and applied in quadruplicate in each of 2 runs at 0× (control), 0.5×, 1×, 2×, and 3×; where 1× was the respective manufacturer-recommended dose (2.25, 2.25, 10, 15, and 15g of EFE/kg of dry matter). The suspension was incubated for 24h at 25°C and for a further 24h at 39°C after the addition of ruminal fluid. In experiment 2, a similar approach to that in experiment 1 was used to evaluate simulated preingestive effects, except that sodium azide (0.02% wt/vol) was added to the EFE solution. The suspension was incubated for 24h at 25°C and then 15mL of water was added before filtration to extract water-soluble compounds. For both experiments, data for each enzyme were analyzed separately as a completely randomized block design with a model that included effects of EFE dose, run, and their interaction. In experiment 1, increasing the EFE dose rate nonlinearly increased the DM digestibility of 1A, 2A, 11C, and 13D and the neutral detergent fiber digestibility (NDFD) of 1A, 2A, 11C, and 13D. Optimal doses of 1A, 2A, 11C, 13D, and 15D, as indicated by the greatest increases in NDFD at the lowest dose tested, were 2×, 2×, 1×, 0.5×, and 0.5×, respectively. Increasing the dose rate of 2A, 11C, and 13D nonlinearly increased concentrations of total volatile fatty acids and propionate (mM), decreased their acetate-to-propionate ratios and linearly decreased those of samples treated with 1A and 15D. In experiment 2, increasing the dose rate of each EFE nonlinearly decreased concentrations of netural detergent fiber; also, increasing

  9. Estimating fermentation characteristics and nutritive value of ensiled and dried pomegranate seeds for ruminants using in vitro gas production technique

    PubMed Central

    Taher-Maddah, M.; Maheri-Sis, N.; Salamatdoustnobar, R.; Ahmadzadeh, A.

    2012-01-01

    The purpose of this study was to determine the chemical composition and estimation of fermentation characteristics and nutritive value of ensiled and dried pomegranate seeds using in vitro gas production technique. Samples were collected, mixed, processed (ensiled and dried) and incubated in vitro with rumen liquor taken from three fistulated Iranian native (Taleshi) steers at 2, 4, 6, 8, 12, 16, 24, 36, 48, 72 and 96 h. The results showed that ensiling lead to significant increase in gas production of pomegranate seeds at all incubation times. The gas volume at 24 h incubation, were 25.76 and 17.91 ml/200mg DM for ensiled and dried pomegranate seeds, respectively. The gas production rate (c) also was significantly higher for ensiled groups than dried (0.0930 vs. 0.0643 ml/h). The organic matter digestibility (OMD), metabolizable energy (ME), net energy for lactation (NEL) and short chain fatty acids (SCFA) of ensiled pomegranate seeds were significantly higher than that of dried samples (43.15%, 6.37 MJ/kg DM, 4.43 MJ/kg DM, 0.5553 mmol for ensiled samples vs. 34.62%, 5.10 MJ/kg DM, 3.56 MJ/kg DM, 0.3680 mmol for dried samples, respectively). It can be concluded that ensiling increases the nutritive value of pomegranate seeds. PMID:26623290

  10. Exclusion of dietary sodium bicarbonate from a wheat-based diet: effects on milk production and ruminal fermentation.

    PubMed

    Doepel, L; Hayirli, A

    2011-01-01

    Milk production, rumen fermentation, and whole-tract apparent nutrient digestibility in response to feeding 20% steam-rolled wheat with or without sodium bicarbonate were evaluated in 12 Holstein cows averaging 165±16 DIM. Cows were fed 1 of 2 isoenergetic and isonitrogenous diets containing either 0 or 0.75% sodium bicarbonate on a DM basis for 21 d in a crossover design. Rumen fluid samples were obtained 18 times during the last 2 d of each period, and fecal samples were collected on 12 occasions from d 18 to 21 of each period. Removal of sodium bicarbonate from the diet did not affect DMI (21.0 kg/d), yields of milk (30.8 kg/d), or milk components (1.16, 1.01, and 1.40 kg/d for fat, protein, and lactose, respectively). Whole-tract apparent digestibility of DM, CP, ADF, and NDF did not differ between the 2 treatments (75.3, 76.6, 67.2, and 63.6%, respectively). The mean rumen pH was 6.24 and was not affected by excluding sodium bicarbonate from the diet. Rumen NH3-N (12.31 mg/dL) and lactic acid (3.63 mM) concentrations were not different, whereas total volatile fatty acids concentration tended to increase when sodium bicarbonate was present in the diet (110 vs. 116 mM). However, average concentrations of the individual volatile fatty acids, as a proportion of total volatile fatty acids, were not affected by treatment. In conclusion, dairy cow diets can include up to 20% steam-rolled wheat without the need for added sodium bicarbonate as long as the diets are formulated to meet the fiber requirements of the cow.

  11. Reduced-fat dried distillers grains with solubles reduces the risk for milk fat depression and supports milk production and ruminal fermentation in dairy cows.

    PubMed

    Ramirez-Ramirez, H A; Castillo Lopez, E; Jenkins, C J R; Aluthge, N D; Anderson, C; Fernando, S C; Harvatine, K J; Kononoff, P J

    2016-03-01

    fatty acids was observed; the overall mean was 121 ± 4.11 mM; molar proportion of acetate was affected by treatment resulting in 67.3, 63.2, 61.4, and 60.9 ± 0.93 mol/100 mol for CON, RFDG+RIF, RFDG, and DG, respectively. Results from DNA sequencing showed that rumen bacterial community structure was relatively stable with minor changes at the family and genus levels; these changes may be associated with low starch diets, and hence reduced amylolytic bacteria populations. Feeding high proportions of RFDDGS resulted in greater dry matter intake with low risk for milk fat depression while supporting ruminal fermentation.

  12. Characteristics of Wet Distillers Grains on In vitro Ruminal Fermentation and Its Effects on Performance and Carcass Characteristics of Finishing Hanwoo Steers.

    PubMed

    Ahn, Gyu Chul; Kwak, Hyung Jun; Oh, Young Kyoon; Lee, Yoo Kyung; Jang, Sun Sik; Lee, Sang Suk; Park, Keun Kyu

    2016-04-01

    Two experiments were conducted to determine the nutrient composition, in vitro ruminal ammonia concentrations and pH of wet distillers grains (WDG, produced from tapioca 70% and rice 30%) and to evaluate dietary effects of fermented total mixed ration (TMR) using WDG on the performance, blood metabolites and carcass characteristics of Hanwoo steers from mid fattening to slaughter. In Exp. I, average dry matter (DM), crude protein, ether extract, crude fiber, ash, neutral detergent fiber, acid detergent fiber, and nitrogen free extract of seven WDG samples from an ethanol plant with different sampling dates were 19.9%, 24.8%, 3.8%, 21.8%, 8.87%, 60.3%, 34.5%, and 40.7% (DM basis), respectively. For in vitro ammonia concentrations and pH, each sample was assigned to 7 incubation times (0, 4, 8, 12, 24, 48, and 72 h). Linear increase was observed between 12 and 48 h for ammonia concentrations, but final ammonia concentrations (72 h) were not significantly different among WDG samples and fermentation patterns of WDG samples showed similar tendency. In vitro pH varied among treatments from 0 to 24 h, but were not different statistically after 48 h. In Exp. II, 45 Hanwoo steers of 23 months (641±123 kg) from mid fattening period to slaughter (248 days) were randomly divided into three groups of 15 pens each (five repetitions/each treatment) and assigned to one of three dietary treatments; i) Control (TMR), ii) WDG 15 (TMR containing 15% of WDG, as fed basis) and iii) WDG 28 (TMR containing 28% of WDG, as fed basis). The body weight (BW), ADG, and feed conversion ratio (FCR) of control and WDG 15 and 28 during 248 days were 760.8, 740.1, and 765.5 kg, and 0.50, 0.50, and 0.52 kg/d, and 18.6, 17.6, and 17.1, respectively. The dry matter intake (DMI) (kg/d) of control (9.11) was higher (p<0.05) than WDG treatments (WDG 15%, 8.57; 28%, 8.70). Nevertheless, DMI did not affect BW, ADG, and FCR of Hanwoo finishing steers. Blood metabolites were in normal ranges and were not

  13. Characteristics of Wet Distillers Grains on In vitro Ruminal Fermentation and Its Effects on Performance and Carcass Characteristics of Finishing Hanwoo Steers

    PubMed Central

    Ahn, Gyu Chul; Kwak, Hyung Jun; Oh, Young Kyoon; Lee, Yoo Kyung; Jang, Sun Sik; Lee, Sang Suk; Park, Keun Kyu

    2016-01-01

    Two experiments were conducted to determine the nutrient composition, in vitro ruminal ammonia concentrations and pH of wet distillers grains (WDG, produced from tapioca 70% and rice 30%) and to evaluate dietary effects of fermented total mixed ration (TMR) using WDG on the performance, blood metabolites and carcass characteristics of Hanwoo steers from mid fattening to slaughter. In Exp. I, average dry matter (DM), crude protein, ether extract, crude fiber, ash, neutral detergent fiber, acid detergent fiber, and nitrogen free extract of seven WDG samples from an ethanol plant with different sampling dates were 19.9%, 24.8%, 3.8%, 21.8%, 8.87%, 60.3%, 34.5%, and 40.7% (DM basis), respectively. For in vitro ammonia concentrations and pH, each sample was assigned to 7 incubation times (0, 4, 8, 12, 24, 48, and 72 h). Linear increase was observed between 12 and 48 h for ammonia concentrations, but final ammonia concentrations (72 h) were not significantly different among WDG samples and fermentation patterns of WDG samples showed similar tendency. In vitro pH varied among treatments from 0 to 24 h, but were not different statistically after 48 h. In Exp. II, 45 Hanwoo steers of 23 months (641±123 kg) from mid fattening period to slaughter (248 days) were randomly divided into three groups of 15 pens each (five repetitions/each treatment) and assigned to one of three dietary treatments; i) Control (TMR), ii) WDG 15 (TMR containing 15% of WDG, as fed basis) and iii) WDG 28 (TMR containing 28% of WDG, as fed basis). The body weight (BW), ADG, and feed conversion ratio (FCR) of control and WDG 15 and 28 during 248 days were 760.8, 740.1, and 765.5 kg, and 0.50, 0.50, and 0.52 kg/d, and 18.6, 17.6, and 17.1, respectively. The dry matter intake (DMI) (kg/d) of control (9.11) was higher (p<0.05) than WDG treatments (WDG 15%, 8.57; 28%, 8.70). Nevertheless, DMI did not affect BW, ADG, and FCR of Hanwoo finishing steers. Blood metabolites were in normal ranges and were not

  14. Effect of urea inclusion in diets containing corn dried distillers grains on feedlot cattle performance, carcass characteristics, ruminal fermentation, total tract digestibility, and purine derivatives-to-creatinine index.

    PubMed

    Ceconi, I; Ruiz-Moreno, M J; DiLorenzo, N; DiCostanzo, A; Crawford, G I

    2015-01-01

    Increased availability of rapidly fermentable carbohydrates and a great proportion of corn-derived CP in the diet may result in a degradable intake protein (DIP) deficit. Therefore, ruminal DIP deficit may result from high dietary inclusion of processed corn grain and small to moderate inclusion of corn distillers grains (DG). Two experiments were conducted to evaluate the effect of increasing dietary DIP concentration through the inclusion of urea on feedlot cattle performance, carcass characteristics, ruminal fermentation, total tract digestibility, and purine derivatives-to-creatinine (PDC) index. In Exp. 1, 42 steers (428 ± 5 kg initial BW) were assigned randomly to 1 of 3 diets containing (DM basis) 0 (control [CON]), 0.4 (low urea [LU]), or 0.6% urea (high urea [HU]) to provide 6.4, 7.5, or 8.0% dietary DIP, respectively, and 12% high-moisture corn (HMC), 20% corn dried DG with solubles (DDGS), 10% ryegrass haylage, 2.9% dry supplement, and dry-rolled corn (DRC). Steers were fed ad libitum once daily using a Calan gate system. Carcass-adjusted final BW and DMI were similar among treatments (P ≥ 0.58). Carcass-adjusted ADG was greater (P ≤ 0.04) for the HU diet compared with the LU and CON diets and was similar (P = 0.73) between the LU and CON diets. Carcass-adjusted G:F was greater (P = 0.03) for the HU diet compared with the LU diet, tended (P = 0.09) to be greater compared with the CON diet, and was similar (P = 0.61) between the LU and CON diets. Carcass characteristics were similar (P ≥ 0.34) among treatments. In Exp. 2, 4 ruminally cannulated steers (347 ± 18 kg initial BW) were randomly assigned to a replicated 2 × 2 Latin square design. Steers were fed the same CON or HU diet used in Exp. 1 ad libitum once daily. Differences in the PDC index were used as indicators of differences in microbial CP synthesis. Ruminal pH, OM intake, and starch and CP digestibility were not affected by treatment (P ≥ 0.13). Digestibility of OM and NDF and

  15. The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation.

    PubMed

    Cruywagen, C W; Taylor, S; Beya, M M; Calitz, T

    2015-08-01

    Six ruminally cannulated Holstein cows were used to evaluate the effect of 2 dietary buffers on rumen pH, milk production, milk composition, and rumen fermentation parameters. A high concentrate total mixed ration [35.2% forage dry matter (DM)], formulated to be potentially acidotic, was used to construct 3 dietary treatments in which calcareous marine algae (calcified remains of the seaweed Lithothamnium calcareum) was compared with limestone (control) and sodium bicarbonate plus limestone. One basal diet was formulated and the treatment diets contained either 0.4% of dietary DM as Acid Buf, a calcified marine algae product (AB treatment), or 0.8% of dietary DM as sodium bicarbonate and 0.37% as limestone (BC treatment), or 0.35% of dietary DM as limestone [control (CON) treatment]. Cows were randomly allocated to treatments according to a double 3×3 Latin square design, with 3 treatments and 3 periods. The total experimental period was 66 d during which each cow received each treatment for a period of 15 d before the data collection period of 7 d. Rumen fluid was collected to determine volatile fatty acids, lactic acid, and ammonia concentrations. Rumen pH was monitored every 10min for 2 consecutive days using a portable data logging system fitted with in-dwelling electrodes. Milk samples were analyzed for solid and mineral contents. The effect of treatment on acidity was clearly visible, especially from the period from midday to midnight when rumen pH dropped below 5.5 for a longer period of time (13 h) in the CON treatment than in the BC (8.7 h) and AB (4 h) treatments. Daily milk, 4% fat-corrected milk, and energy-corrected milk yields differed among treatments, with AB being the highest, followed by BC and CON. Both buffers increased milk fat content. Treatment had no effect on milk protein content, but protein yield was increased in the AB treatment. Total rumen volatile fatty acids and acetate concentrations were higher and propionate was lower in the AB

  16. Influence of branched-chain fatty acid supplementation on voluntary intake, site and extent of digestion, ruminal fermentation, digesta kinetics and microbial protein synthesis in beef heifers consuming grass hay.

    PubMed

    Gunter, S A; Krysl, L J; Judkins, M B; Broesder, J T; Barton, R K

    1990-09-01

    Four heifers (British x British; average BW 372 kg) cannulated at the rumen and duodenum and consuming a grass hay (fescue-orchardgrass) diet were used in a 4 x 4 Latin square and supplemented with four levels (0, 20, 40, and 60 g.head-1.d-1) of supplemental four- and five-carbon VFA (BCFA). Forage OM, ADF, NDF and N intakes and digestibilities were not affected (P greater than .10) by BCFA supplementation. Likewise, duodenal N (microbial, feed and ammonia) flows and microbial efficiency were not altered (P greater than .10) by BCFA supplementation. Neither particulate and fluid passage rate nor in situ rate of NDF digestion was affected (P greater than .10) by treatment. Ruminal pH, ammonia concentrations and total VFA concentrations were similar (P greater than .10) among treatments. Ruminal proportions of acetate and propionate were not affected (P greater than .10) by treatment; however, butyrate responded in a cubic (P less than .05) fashion to BCFA, with the lowest proportion of butyrate at the 40 g BCFA feeding level. A time x treatment interaction (P less than .05) was noted for isobutyrate, isovalerate and valerate proportions; they were increased as a function of BCFA dosage at 2 to 8 h postdosing. Supplemental four- and five-carbon VFA had no effect on digestion and fermentation of grass hay. Supplementation of low-quality roughages with BCFA is not justified.

  17. Excretion patterns of solute and different-sized particle passage markers in foregut-fermenting proboscis monkey (Nasalis larvatus) do not indicate an adaptation for rumination.

    PubMed

    Matsuda, Ikki; Sha, John C M; Ortmann, Sylvia; Schwarm, Angela; Grandl, Florian; Caton, Judith; Jens, Warner; Kreuzer, Michael; Marlena, Diana; Hagen, Katharina B; Clauss, Marcus

    2015-10-01

    Behavioral observations and small fecal particles compared to other primates indicate that free-ranging proboscis monkeys (Nasalis larvatus) have a strategy of facultative merycism(rumination). In functional ruminants (ruminant and camelids), rumination is facilitated by a particle sorting mechanism in the forestomach that selectively retains larger particles and subjects them to repeated mastication. Using a set of a solute and three particle markers of different sizes (b2, 5 and 8mm),we displayed digesta passage kinetics and measured mean retention times (MRTs) in four captive proboscis monkeys (6–18 kg) and compared the marker excretion patterns to those in domestic cattle. In addition, we evaluated various methods of calculating and displaying passage characteristics. The mean ± SD dry matter intake was 98 ± 22 g kg−0.75 d−1, 68 ± 7% of which was browse. Accounting for sampling intervals in MRT calculation yielded results that were not affected by the sampling frequency. Displaying marker excretion patterns using fecal marker concentrations (rather than amounts) facilitated comparisons with reactor theory outputs and indicated that both proboscis and cattle digestive tracts represent a series of very few tank reactors. However, the separation of the solute and particle marker and the different-sized particle markers, evident in cattle, did not occur in proboscis monkeys, in which all markers moved together, at MRTs of approximately 40 h. The results indicate that the digestive physiology of proboscis monkeys does not show typical characteristics of ruminants, which may explain why merycism is only a facultative strategy in this species. PMID:26004169

  18. Influence of soybean meal and sorghum grain supplementation on intake, digesta kinetics, ruminal fermentation, site and extent of digestion and microbial protein synthesis in beef steers grazing blue grama rangeland.

    PubMed

    Krysl, L J; Branine, M E; Cheema, A U; Funk, M A; Galyean, M L

    1989-11-01

    acetate in ruminal fluid was less (P less than .10) for SBM and SFS than for C. Small amounts of supplemental SBM and SFS had little effect on forage intake, ruminal fermentation and site of digestion but both increased total tract OM digestion in steers grazing blue grama rangeland.

  19. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm-1), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm-1), total carbohydrates (CHO, region and baseline ca. 1193-889 cm-1) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm-1, region: 1102-1083 cm-1) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm-1) to 2nd peak (ca. 1374 cm-1) height ratio, CHO 1st peak (ca. 1149 cm-1) to 3rd peak (ca. 1032 cm-1) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P < 0

  20. Effects of bulk density of steam-flaked corn in diets containing wet corn gluten feed on feedlot cattle performance, carcass characteristics, apparent total tract digestibility, and ruminal fermentation.

    PubMed

    Ponce, C H; Domby, E M; Anele, U Y; Schutz, J S; Gautam, K K; Galyean, M L

    2013-07-01

    The effects of varying bulk density of steam-flaked corn (SFC) in diets containing wet corn gluten feed (WCGF; Sweet Bran; Cargill Corn Milling, Blair, NE) have not been defined. In Exp. 1, yearling steers (n = 108; initial BW = 367 ± 1.18 kg) were housed in 27 pens (4 steers/pen) and received 1 of 3 different SFC bulk density treatments in a randomized complete block design. Bulk density treatments were 283, 335, or 386 g/L SFC in diets containing 25% WCGF (% of DM). Steers were fed once daily to provide ad libitum access to feed for an average of 163 d. For a 5-d period before d 70 of the experiment, DMI was measured, and fecal samples were collected from each pen for measurement of nutrient digestibility using dietary acid insoluble ash as a marker. Varying bulk densities of SFC did not affect (P ≥ 0.233) overall DMI, ADG, or G:F on a live- or carcass-adjusted basis. Dressing percent and LM area increased linearly (P ≤ 0.05) as bulk density increased, but other carcass traits were not affected by treatments. Intake of DM, OM, and CP during the 5-d digestion phase did not differ among bulk densities; however, starch intake increased linearly (P = 0.004) as bulk density of SFC increased. Digestibility of DM, OM, and CP tended (P ≤ 0.065) to decrease and starch digestibility decreased (P = 0.002) linearly as bulk density of SFC increased. In Exp. 2, a 3 × 3 Latin square design was used for collection of ruminal fluid from 3 ruminally cannulated Jersey steers adapted to the same diets used in Exp. 1. Bulk density did not affect NH3 concentrations, VFA molar proportions, ruminal fluid osmolality, and IVDMD of the diets. Total gas production increased linearly (P = 0.003) as bulk density of SFC increased from 283 to 335 g/L, but it decreased (P = 0.002) at 386 g/L. Present data suggest that bulk density can be increased up to 386 g/L in finishing diets containing 25% (DM basis) WCGF without affecting cattle performance and with limited effects on ruminal

  1. Serosal-to-mucosal urea flux across the isolated ruminal epithelium is mediated via urea transporter-B and aquaporins when Holstein calves are abruptly changed to a moderately fermentable diet.

    PubMed

    Walpole, M E; Schurmann, B L; Górka, P; Penner, G B; Loewen, M E; Mutsvangwa, T

    2015-02-01

    Urea transport (UT-B) proteins are known to facilitate urea movement across the ruminal epithelium; however, other mechanisms may be involved as well because inhibiting UT-B does not completely abolish urea transport. Of the aquaporins (AQP), which are a family of membrane-spanning proteins that are predominantly involved in the movement of water, AQP-3, AQP-7, and AQP-10 are also permeable to urea, but it is not clear if they contribute to urea transport across the ruminal epithelium. The objectives of this study were to determine (1) the functional roles of AQP and UT-B in the serosal-to-mucosal urea flux (Jsm-urea) across rumen epithelium; and (2) whether functional adaptation occurs in response to increased diet fermentability. Twenty-five Holstein steer calves (n=5) were assigned to a control diet (CON; 91.5% hay and 8.5% vitamin and mineral supplement) or a medium grain diet (MGD; 41.5% barley grain, 50% hay, and 8.5% vitamin and mineral) that was fed for 3, 7, 14, or 21 d. Calves were killed and ruminal epithelium was collected for mounting in Ussing chambers under short-circuit conditions and for analysis of mRNA abundance of UT-B and AQP-3, AQP-7, and AQP-10. To mimic physiologic conditions, the mucosal buffer (pH 6.2) contained no urea, whereas the serosal buffer (pH 7.4) contained 1 mM urea. The fluxes of (14)C-urea (Jsm-urea; 26 kBq/10 mL) and (3)H-mannitol (Jsm-mannitol; 37 kBq/10 mL) were measured, with Jsm-mannitol being used as an indicator of paracellular or hydrophilic movement. Serosal addition of phloretin (1 mM) was used to inhibit UT-B-mediated urea transport, whereas NiCl2 (1 mM) was used to inhibit AQP-mediated urea transport. Across treatments, the addition of phloretin or NiCl2 reduced the Jsm-urea from 116.5 to 54.0 and 89.5 nmol/(cm(2) × h), respectively. When both inhibitors were added simultaneously, Jsm-urea was further reduced to 36.8 nmol/(cm(2) × h). Phloretin-sensitive and NiCl2-sensitive Jsm-urea were not affected by diet. The

  2. Serosal-to-mucosal urea flux across the isolated ruminal epithelium is mediated via urea transporter-B and aquaporins when Holstein calves are abruptly changed to a moderately fermentable diet.

    PubMed

    Walpole, M E; Schurmann, B L; Górka, P; Penner, G B; Loewen, M E; Mutsvangwa, T

    2015-02-01

    Urea transport (UT-B) proteins are known to facilitate urea movement across the ruminal epithelium; however, other mechanisms may be involved as well because inhibiting UT-B does not completely abolish urea transport. Of the aquaporins (AQP), which are a family of membrane-spanning proteins that are predominantly involved in the movement of water, AQP-3, AQP-7, and AQP-10 are also permeable to urea, but it is not clear if they contribute to urea transport across the ruminal epithelium. The objectives of this study were to determine (1) the functional roles of AQP and UT-B in the serosal-to-mucosal urea flux (Jsm-urea) across rumen epithelium; and (2) whether functional adaptation occurs in response to increased diet fermentability. Twenty-five Holstein steer calves (n=5) were assigned to a control diet (CON; 91.5% hay and 8.5% vitamin and mineral supplement) or a medium grain diet (MGD; 41.5% barley grain, 50% hay, and 8.5% vitamin and mineral) that was fed for 3, 7, 14, or 21 d. Calves were killed and ruminal epithelium was collected for mounting in Ussing chambers under short-circuit conditions and for analysis of mRNA abundance of UT-B and AQP-3, AQP-7, and AQP-10. To mimic physiologic conditions, the mucosal buffer (pH 6.2) contained no urea, whereas the serosal buffer (pH 7.4) contained 1 mM urea. The fluxes of (14)C-urea (Jsm-urea; 26 kBq/10 mL) and (3)H-mannitol (Jsm-mannitol; 37 kBq/10 mL) were measured, with Jsm-mannitol being used as an indicator of paracellular or hydrophilic movement. Serosal addition of phloretin (1 mM) was used to inhibit UT-B-mediated urea transport, whereas NiCl2 (1 mM) was used to inhibit AQP-mediated urea transport. Across treatments, the addition of phloretin or NiCl2 reduced the Jsm-urea from 116.5 to 54.0 and 89.5 nmol/(cm(2) × h), respectively. When both inhibitors were added simultaneously, Jsm-urea was further reduced to 36.8 nmol/(cm(2) × h). Phloretin-sensitive and NiCl2-sensitive Jsm-urea were not affected by diet. The

  3. Effect of Citrus Byproducts on Survival of O157:H7 and Non-O157 Escherichia coli Serogroups within In Vitro Bovine Ruminal Microbial Fermentations.

    PubMed

    Duoss-Jennings, Heather A; Schmidt, Ty B; Callaway, Todd R; Carroll, Jeffery A; Martin, James M; Shields-Menard, Sara A; Broadway, Paul R; Donaldson, Janet R

    2013-01-01

    Citrus byproducts (CBPs) are utilized as a low cost nutritional supplement to the diets of cattle and have been suggested to inhibit the growth of both Escherichia coli O157:H7 and Salmonella. The objective of this study was to examine the effects in vitro that varying concentrations of CBP in the powdered or pelleted variety have on the survival of Shiga-toxin Escherichia coli (STEC) serotypes O26:H11, O103:H8, O111:H8, O145:H28, and O157:H7 in bovine ruminal microorganism media. The O26:H11, O111:H8, O145:H28, and O157:H7 serotypes did not exhibit a change in populations in media supplemented with CBP with either variety. The O103:H8 serotype displayed a general trend for an approximate 1log(10) reduction in 5% powdered CBP and 20% pelleted CBP over 6 h. There was a trend for reductions in populations of a variant form of O157:H7 mutated in the stx1 and stx2 genes in higher concentrations of CBP. These results suggest that variations exist in the survival of these serotypes of STEC within mixed ruminal microorganism fluid media when supplemented with CBP. Further research is needed to determine why CBPs affect STEC serotypes differently.

  4. Influence of crambe meal as a protein source on intake, site of digestion, ruminal fermentation, and microbial efficiency in beef steers fed grass hay.

    PubMed

    Caton, J S; Burke, V I; Anderson, V L; Burgwald, L A; Norton, P L; Olson, K C

    1994-12-01

    Four ruminally and duodenally cannulated beef steers (558 +/- 37 kg) were arranged in a 4 x 4 Latin square to evaluate the influence of crambe meal as a protein source on intake, digestion, and microbial efficiency. Steers were offered chopped (10.2 cm) brome hay (6.2% CP) for ad libitum consumption and one of four supplements. Protein sources used were soybean and crambe meals (CM). Protein sources were blended to provide four levels of supplemental CM protein (0, 33, 67, and 100%). Protein supplements were fed to provide similar amounts of protein and energy. Amounts of supplements fed were 831, 885, 950, and 996 g of DM/steer daily for 0, 33, 67, and 100% CM treatments, respectively. Crambe meal represented 0, 2.00, 3.83, and 5.88% of the DM intake for respective treatments. Steers were allowed a 21-d adaptation to diets before each collection period. Supplements were offered at 0800 and forage at 0830. Crambe meal had no influence (P > .10) on forage and total DM intake (grams/kilogram of BW). Apparent total tract, ruminal, and postruminal digestion of OM, NDF, ADF, and N were unaffected (P > .10) by CM supplementation.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Organic acid blend with pure botanical product treatment reduces Escherichia coli and Salmonella populations in pure culture and in in vitro mixed ruminal microorganism fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogenic bacteria can live in the intestinal tract of food animals and can be transmitted to humans via food or indirectly through animal or fecal contact. Organic acid blend products have been used as non-antibiotic modifiers of the gastrointestinal fermentation of food animals to impr...

  6. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins are polyphenolic secondary plant compounds that have been shown to affect microbial activity to impact fermentation, protein degradation, methane production, and potential to mitigate foodborne pathogens. This study was conducted to examine the effects of source of tannin (condensed, CT, vs....

  7. Effect of high-dose nano-selenium and selenium-yeast on feed digestibility, rumen fermentation, and purine derivatives in sheep.

    PubMed

    Xun, Wenjuan; Shi, Liguang; Yue, Wenbin; Zhang, Chunxiang; Ren, Youshe; Liu, Qiang

    2012-12-01

    The aim of this study was to evaluate the effect of nano-selenium (NS) and yeast-selenium (YS) supplementation on feed digestibility, rumen fermentation, and urinary purine derivatives in sheep. Six male ruminally cannulated sheep, average 43.32 ± 4.8 kg of BW, were used in a replicated 3 × 3 Latin square experiment. The treatments were control (without NS and YS), NS with 4 g nano-Se (provide 4 mg Se), and YS with 4 g Se-yeast (provide 4 mg Se) per kilogram of diet dry matter (DM), respectively. Experimental periods were 25 days with 15 days of adaptation and 10 days of sampling. Ruminal pH, ammonia N concentration, molar proportion of propionate, and ratio of acetate to propionate were decreased (P < 0.01), and total ruminal VFA concentration was increased with NS and YS supplementation (P < 0.01). In situ ruminal neutral detergent fiber (aNDF) degradation of Leymus chinensis (P < 0.01) and crude protein (CP) of soybean meal (P < 0.01) were significantly improved by Se supplementation. Digestibilities of DM, organic matter, crude protein, ether extract, aNDF, and ADF in the total tract and urinary excretion of purine derivatives were also affected by feeding Se supplementation diets (P < 0.01). Ruminal fermentation was improved by feeding NS, and feed conversion efficiency was also increased compared with YS (P < 0.01). We concluded that nano-Se can be used as a preferentially available selenium source in ruminant nutrition.

  8. Fermentation of a bacterial cellulose/xylan composite by mixed ruminal microflora: implications for the role of polysaccharide matrix interactions in plant cell wall biodegradability.

    PubMed

    Weimer, P J; Hackney, J M; Jung, H J; Hatfield, R D

    2000-05-01

    Growth of the cellulose-synthesizing bacterium Acetobacter xylinum ATCC 53524 in media supplemented with 5% (w/v) glucose and 0.2% (w/v) of a water-soluble, nearly linear xylan from tobacco stalks resulted in the synthesis of a highly crystalline composite having a xylose/glucose ratio ranging from 0.06 to 0.24. The digestion of one composite (88% cellulose/12% xylan) by mixed ruminal microflora displayed kinetics of gas production similar to those of an unassociated mixture of the two components added in a xylan/cellulose ratio similar to that of the composite. The data suggest that intimate association of xylan and cellulose, as is typically found in secondary plant cell walls, does not inhibit the rate of digestion of the component polysaccharides.

  9. The effect of the inclusion of recycled poultry bedding and the physical form of diet on the performance, ruminal fermentation, and plasma metabolites of fattening lambs.

    PubMed

    Mirmohammadi, D; Rouzbehan, Y; Fazaeli, H

    2015-08-01

    During a 125-d experimental period, 24 Afshari × Kurdish male lambs initially weighing 25.2 ± 1.2 kg were grouped by BW and randomly assigned to treatments under a completely randomized design with a 2 × 2 factorial arrangement of treatments to evaluate the effects of feeding recycled poultry bedding (RPB; 0 and 200 g/kg DM) and the physical form of the diet (mash and block) on nutrient intake and digestibility, ruminal and plasma parameters, microbial N supply, N balance, feeding behavior, and growth performance of the lambs. Two diets with and without RPB in both mash and block form were prepared. Neither the inclusion of RPB nor the physical form of the diet affected the concentration of VFA or the total tract apparent digestibility of nutrients. Dietary RPB inclusion increased DMI ( < 0.01), tended ( = 0.10) to reduce ADG, and decreased G:F ( = 0.05). The physical form of the diet had no effect on DMI but decreased ADG ( = 0.01) and G:F ( = 0.02) in lambs fed on the block diet compared with those fed on the mash diet. Neither the inclusion of RPB nor the physical form of the diets had any effect on microbial N supply (g/d) and N retention. Rate of eating ( = 0.07), time spent eating ( = 0.87) and ruminating ( = 0.28), and total chewing activity ( = 0.65) were not affected by dietary RPB inclusion. Rate of eating decreased ( < 0.01) and time spent eating and total chewing activity increased ( = 0.01 and = 0.02, respectively) in lambs fed on the block diet compared with those fed on the mash diet. Results of the current study showed that inclusion of RPB up to 200 g/kg DM in diets for fattening was possible without any effect on performance and animal health. Processing of feed into the mash form gave higher livestock productivity in comparison to the block form.

  10. Influence of the novel urease inhibitor N-(n-butyl) thiophosphoric triamide on ruminant nitrogen metabolism: II. Ruminal nitrogen metabolism, diet digestibility, and nitrogen balance in lambs.

    PubMed

    Ludden, P A; Harmon, D L; Huntington, G B; Larson, B T; Axe, D E

    2000-01-01

    Three lamb metabolism experiments were conducted to investigate the effects of chronic administration of the novel urease inhibitor N (n-butyl) thiophosphoric triamide (NBPT) on ruminal N metabolism, fermentation, and N balance. In Exp. 1, ruminally cannulated wethers (n = 28; 45.0 +/- .9 kg) were administered one of seven doses of NBPT (0 [control], .125, .25, .5, 1, 2, or 4 g of NBPT daily) and fed a common cracked corn/cottonseed hull-based diet twice daily containing 2% urea at 2.5% of initial BW for the duration of the 15-d experiment. Overall, NBPT decreased (linear P < .0001; quadratic P < .001) ruminal urease activity, resulting in linear increases (P < .0001) in ruminal urea and decreases in ruminal NH3 N concentrations. However, the detection of an NBPT x day interaction (d 2 vs 15; P < .01) indicated that this depression in urea degradation diminished as the experiment progressed. Increasing NBPT linearly decreased (P < .01) total VFA concentrations on d 2 of the experiment, but it had no effect (P > .10) on d 15. Increasing NBPT had no effect (P > .10) on DM or ADF digestibilities, but it linearly decreased (P < .01) N digestibility. Supplementing NBPT produced a linear increase (P < .05) in urinary N excretion and a linear decrease (P < .01) in N retention. In Exp. 2, ruminally cannulated wethers (n = 30; 46.8 +/- .6 kg) were fed one of two basal diets (2.0 vs 1.1% dietary urea) at 2.5% of initial BW and dosed with either 0 (control), .25, or 2 g of NBPT daily for the duration of the 15-d experiment. There were no NBPT x dietary urea interactions (P > .10) for Exp. 2. Increasing NBPT depressed (linear and quadratic P < .0001) ruminal urease activity, producing linear (P < .0001) increases in urea N and linear decreases in NH3 N in the rumen. As in Exp. 1, an NBPT x day interaction (P < .05) was noted for urea, NH3 N, and total VFA concentrations; the maximum response to NBPT occurred on d 2 but diminished by d 15 of the experiment. Administration of

  11. Indirect measurement of saliva secretion in sheep fed diets of different structures and the effect of such diets on ruminal fluid kinetics and fermentation pattern.

    PubMed

    Durić, M; Zhao, G Y; Orskov, E R; Chen, X B

    1994-09-01

    Four Suffolk x Dorset sheep were allocated in a 4 x 4 Latin square design and received a hay-barley-molasses diet in one of four different physical structures: (1) pelleted; (2) pelleted:chopped (60:40); (3) chopped:pelleted (60:40); or (4) chopped. The animals were penned individually and the diet was restricted to provide 20 g of dry matter (DM) per kilogram live weight daily. The effects of the diets on rumen fluid kinetics, fermentation pattern and microbial nitrogen (MN) supply were examined. Saliva secretion was estimated using an indirect method based on water balance in the rumen. When the animals were fed the chopped diet, the salivation rate, rumen fluid volume and rumen liquid outflow were all increased significantly (P < 0.05 to P < 0.01). No consistent effect of dietary structure on rumen fluid dilution rate, purine derivative (PD) excretion or MN supply was observed. Dietary structure had no effect on the rumen fermentation pattern, digestibility of DM or nitrogen.

  12. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers.

    PubMed

    Anantasook, N; Wanapat, M; Cherdthong, A

    2014-02-01

    Four rumen-fistulated dairy steers were used in a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. The main factors were two roughage-to-concentrate ratios (R:C, 60:40 and 40:60) and two supplementation levels of rain tree pod meal (RPM) [0 or unsupplemented and 60 g/kg of total dry matter (DM) intake]. Chopped 30 g/kg of urea-treated rice straw was used as a roughage source. All animals received dietary according to respective R:C ratios at 25 g/kg body weight. The RPM contained condensed tannins and crude saponins at 84 and 143 g/kg of DM respectively. It was found that total volatile fatty acids (VFAs) and propionate concentrations were increased (p < 0.01), while acetate concentration, acetate-to-propionate ratio, CH4 production and protozoal numbers were decreased (p < 0.01) when steers were supplemented with RPM and 600 g/kg of concentrate. Allantoin excretion was found different by both R:C ratio and supplementation of RPM, with the highest value at R:C of 40:60 with 60 g/kg RPM (123.6 mmol/day) (p < 0.05). Allantoin absorption and microbial crude protein were increased (p < 0.05) with an increasing concentrate ratio. Moreover, efficiency of microbial protein synthesis was increased (p < 0.05) by feeding a higher ratio of concentrate (R:C 40:60) and supplementation of RPM. Based on this study, it is suggested that supplementation of RPM was beneficial for dairy cows fed on high roughage ratio, which could improved rumen fermentation by reducing fermentation gas loss, thus improving VFA profiles and thus enhancing efficiency of microbial protein synthesis.

  13. Manipulation of ruminal fermentation and methane production by supplementation of rain tree pod meal containing tannins and saponins in growing dairy steers.

    PubMed

    Anantasook, N; Wanapat, M; Cherdthong, A

    2014-02-01

    Four rumen-fistulated dairy steers were used in a 2 × 2 factorial arrangement in a 4 × 4 Latin square design. The main factors were two roughage-to-concentrate ratios (R:C, 60:40 and 40:60) and two supplementation levels of rain tree pod meal (RPM) [0 or unsupplemented and 60 g/kg of total dry matter (DM) intake]. Chopped 30 g/kg of urea-treated rice straw was used as a roughage source. All animals received dietary according to respective R:C ratios at 25 g/kg body weight. The RPM contained condensed tannins and crude saponins at 84 and 143 g/kg of DM respectively. It was found that total volatile fatty acids (VFAs) and propionate concentrations were increased (p < 0.01), while acetate concentration, acetate-to-propionate ratio, CH4 production and protozoal numbers were decreased (p < 0.01) when steers were supplemented with RPM and 600 g/kg of concentrate. Allantoin excretion was found different by both R:C ratio and supplementation of RPM, with the highest value at R:C of 40:60 with 60 g/kg RPM (123.6 mmol/day) (p < 0.05). Allantoin absorption and microbial crude protein were increased (p < 0.05) with an increasing concentrate ratio. Moreover, efficiency of microbial protein synthesis was increased (p < 0.05) by feeding a higher ratio of concentrate (R:C 40:60) and supplementation of RPM. Based on this study, it is suggested that supplementation of RPM was beneficial for dairy cows fed on high roughage ratio, which could improved rumen fermentation by reducing fermentation gas loss, thus improving VFA profiles and thus enhancing efficiency of microbial protein synthesis. PMID:23294319

  14. Characteristics of Wet and Dried Distillers Grains on In vitro Ruminal Fermentation and Effects of Dietary Wet Distillers Grains on Performance of Hanwoo Steers.

    PubMed

    Kim, Ill Young; Ahn, Gyu Chul; Kwak, Hyung Jun; Lee, Yoo Kyung; Oh, Young Kyoon; Lee, Sang Suk; Kim, Jeong Hoon; Park, Keun Kyu

    2015-05-01

    Two experiments were conducted to evaluate the nutrient composition, in vitro dry matter disappearance (IVDMD) and organic matter disappearance (IVOMD) of three kinds of distillers grains (DG); i) wet distillers grains (WDG, KRW 25/kg), ii) dried distillers grains (DDG, KRW 280/kg), iii) dried distillers grains with solubles (DDGS, KRW 270/kg) produced from tapioca 70% and rice 30%, and to evaluate dietary effects of WDG on the performance of Hanwoo steers. In Exp. 1, twelve-WDG, four-DDG and one-DDGS were collected from seven ethanol plants. Average crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of WDG, DDG, and DDGS were: 32.6%, 17.8%, 57.5%, and 30.2% for WDG, 36.7%, 13.9%, 51.4%, and 30.5% for DDG, and 31.0%, 11.9%, 40.3%, and 21.2% for DDGS (DM basis), respectively. The DDGS had a higher quantity of water-soluble fraction than WDG and DDG and showed the highest IVDMD (p<0.05) in comparison to others during the whole experimental time. The IVDMD at 0 to 12 h incubation were higher (p<0.05) in DDG than WDG, but did not show significant differences from 24 to 72 h. The same tendency was observed in IVOMD, showing that DG made from tapioca and rice (7:3) can be used as a feed ingredient for ruminants. Considering the price, WDG is a more useful feed ingredient than DDG and DDGS. In Exp. 2, 36 Hanwoo steers of 21 months (495.1±91 kg) were randomly assigned to one of three dietary treatments for 85 days; i) Control (total mixed ration, TMR), ii) WDG 10% (TMR containing 10% of WDG, as fed basis), and iii) WDG 20% (TMR containing 20% of WDG, as fed basis). With respect to body weight and average daily gain, there were no differences between control and WDG treatments during the whole experimental period. Dry matter intake of control (9.34 kg), WDG 10% (9.21 kg) and 20% (8.86 kg) and feed conversion ratio of control (13.0), WDG 10% (13.2) and 20% (12.1) did not show differences between control and WDG treatments. Thus, the use of WDG up

  15. Characteristics of Wet and Dried Distillers Grains on In vitro Ruminal Fermentation and Effects of Dietary Wet Distillers Grains on Performance of Hanwoo Steers

    PubMed Central

    Kim, Ill Young; Ahn, Gyu Chul; Kwak, Hyung Jun; Lee, Yoo Kyung; Oh, Young Kyoon; Lee, Sang Suk; Kim, Jeong Hoon; Park, Keun Kyu

    2015-01-01

    Two experiments were conducted to evaluate the nutrient composition, in vitro dry matter disappearance (IVDMD) and organic matter disappearance (IVOMD) of three kinds of distillers grains (DG); i) wet distillers grains (WDG, KRW 25/kg), ii) dried distillers grains (DDG, KRW 280/kg), iii) dried distillers grains with solubles (DDGS, KRW 270/kg) produced from tapioca 70% and rice 30%, and to evaluate dietary effects of WDG on the performance of Hanwoo steers. In Exp. 1, twelve-WDG, four-DDG and one-DDGS were collected from seven ethanol plants. Average crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of WDG, DDG, and DDGS were: 32.6%, 17.8%, 57.5%, and 30.2% for WDG, 36.7%, 13.9%, 51.4%, and 30.5% for DDG, and 31.0%, 11.9%, 40.3%, and 21.2% for DDGS (DM basis), respectively. The DDGS had a higher quantity of water-soluble fraction than WDG and DDG and showed the highest IVDMD (p<0.05) in comparison to others during the whole experimental time. The IVDMD at 0 to 12 h incubation were higher (p<0.05) in DDG than WDG, but did not show significant differences from 24 to 72 h. The same tendency was observed in IVOMD, showing that DG made from tapioca and rice (7:3) can be used as a feed ingredient for ruminants. Considering the price, WDG is a more useful feed ingredient than DDG and DDGS. In Exp. 2, 36 Hanwoo steers of 21 months (495.1±91 kg) were randomly assigned to one of three dietary treatments for 85 days; i) Control (total mixed ration, TMR), ii) WDG 10% (TMR containing 10% of WDG, as fed basis), and iii) WDG 20% (TMR containing 20% of WDG, as fed basis). With respect to body weight and average daily gain, there were no differences between control and WDG treatments during the whole experimental period. Dry matter intake of control (9.34 kg), WDG 10% (9.21 kg) and 20% (8.86 kg) and feed conversion ratio of control (13.0), WDG 10% (13.2) and 20% (12.1) did not show differences between control and WDG treatments. Thus, the use of WDG up

  16. Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep.

    PubMed

    Ma, T; Chen, D-D; Tu, Y; Zhang, N-F; Si, B-W; Deng, K-D; Diao, Q-Y

    2015-08-01

    Two experiments were conducted to evaluate the effect of resveratrol on methanogenesis and microbial flora in Dorper × thin-tailed Han cross-bred ewes. In experiment 1, ten ewes (67.2 ± 2.24 kg BW) were assigned to two dietary treatments, a basal diet and a basal diet supplemented with resveratrol (0.25 g/head·day), to investigate the effect of resveratrol on nutrient digestibility and nitrogen balance. In experiment 2, six ewes (64.0 ± 1.85 kg BW) with ruminal cannulae were assigned to the identical dietary treatments used in experiment 1 to investigate supplementary resveratrol on ruminal fermentation and microbial flora using qPCR. The results showed that supplementary resveratrol improved the digestibility of organic matter (OM; p < 0.001), nitrogen (N; p = 0.007), neutral detergent fibre (NDF; p < 0.001) and acid detergent fibre (ADF; p < 0.001). The excretion of faecal N was reduced (p = 0.007), whereas that of urinary N increased (p = 0.002), which led to an unchanged N retention (p = 0.157). Both CO2 and CH4 output scaled to digestible dry matter (DM) intake decreased from 602.5 to 518.7 (p = 0.039) and 68.2 to 56.6 (p < 0.001) respectively. Ruminal pH (p = 0.341), ammonia (p = 0.512) and total volatile fatty acid (VFA) (p = 0.249) were unaffected by resveratrol. The molar proportion of propionate increased from 13.1 to 17.5% (p < 0.001) while that of butyrate decreased from 11.0 to 9.55% (p < 0.001). The ratio of acetate to propionate (A/P) decreased from 5.44 to 3.96 (p < 0.001). Supplementary resveratrol increased ruminal population of Fibrobacter succinogenes, Ruminococcus albus and Butyrivibrio fibrisolvens (p < 0.001) while decreased protozoa and methanogens. In conclusion, dietary resveratrol inhibited methanogenesis without adversely affecting ruminal fermentation.

  17. Nutrient transport by ruminal bacteria: a review.

    PubMed

    Martin, S A

    1994-11-01

    Fermentation pathways have been elucidated for predominant ruminal bacteria, but information is limited concerning the specific transport mechanisms used by these microorganisms for C, energy, and N sources. In addition, it is possible that changes in ruminal environmental conditions could affect transport activity. Five carrier-mediated soluble nutrient transport mechanisms have been identified in bacteria: 1) facilitated diffusion, 2) shock sensitive systems, 3) proton symport, 4) Na+ symport, and the 5) phosphoenolpyruvate phosphotransferase system (PEP-PTS). Several regulatory mechanisms are also involved at the cell membrane to coordinate utilization of different sugars. Recent research has shown that predominant ruminal bacteria are capable of transporting soluble nutrients by several of the mechanisms outlined above. Megasphaera elsdenii, Selenomonas ruminantium, and Streptococcus bovis transport glucose by the PEP-PTS, and S. ruminantium and S. bovis also possess PEP-PTS activity for disaccharides. Glucose PTS activity in S. bovis was highest at a growth pH of 5.0, low glucose concentrations, and a dilution rate of .10 h-1. The cellulolytic ruminal bacterium Fibrobacter succinogenes uses a Na+ symport mechanism for glucose transport that is sensitive to low extracellular pH and ionophores. Sodium also stimulated cellobiose transport by F. succinogenes, and there is evidence for a proton symport in the transport of both arabinose and xylose by S. ruminantium. A chemical gradient of Na+ seems to play an important role in AA transport in several ruminal bacteria. Studying nutrient transport mechanisms in ruminal bacteria will lead to a better understanding of the ruminal fermentation.

  18. Effect of dietary replacement of alfalfa with urea-treated almond hulls on intake, growth, digestibility, microbial nitrogen, nitrogen retention, ruminal fermentation, and blood parameters in fattening lambs.

    PubMed

    Rad, M Imani; Rouzbehan, Y; Rezaei, J

    2016-01-01

    The objective of this study was to assess the effect of dietary replacement of alfalfa with urea-treated almond hulls (UAH) on DM and nutrients intakes, growth performance, diet digestibility, microbial N supply (MNS), N retention, rumen fermentation parameters, and blood metabolites in fattening male Shall lambs (29.9 ± 1.9 kg initial BW). Three diets, with equal ME and CP concentrations and a forage-to-concentrate ratio of 40 to 60, were formulated in which alfalfa was replaced by different levels (0, 200, or 400 g/kg of diet DM) of UAH. Experimental diets were randomly assigned to the 3 groups ( = 8/group) in a completely randomized design for a 74-d period (14 d for adaptation and 60 d for data collection). Diets were offered as a total mixed ration to ensure 10% orts. Dry matter and nutrients intakes, animal growth, diet digestibility, MNS, N retention, rumen fermentation parameters, and plasma metabolites were determined. The dietary substitution of UAH for alfalfa had no effects on DMI (linear, = 0.96; quadratic, = 0.86), ADG (linear, = 0.35; quadratic, = 0.19), and G:F (linear, = 0.66; quadratic, = 0.13). In vivo digestibility coefficients of DM (linear, = 0.82; quadratic, = 0.42), OM (linear, = 0.73; quadratic, = 0.95), CP (linear, = 0.24; quadratic, = 0.66), and ash-free NDF (linear, = 0.69; quadratic, = 0.74) were not affected by the dietary treatment. Feeding lambs on diets containing UAH instead of alfalfa had no effects on MNS (linear, = 0.63; quadratic, = 0.68) and N retention (linear, = 0.44; quadratic, = 0.17). Rumen pH (linear, = 0.26; quadratic, = 0.071), ammonia N (linear, = 0.39; quadratic, = 0.13), and VFA (linear, = 0.091; quadratic, = 0.86) concentrations, acetic acid-to-propionic acid ratio (linear, = 0.93; quadratic, = 0.62), and protozoa population (linear, = 0.62; quadratic, = 0.22) were not influenced by the experimental diets. Substituting alfalfa with UAH had no effects on the plasma concentrations of glucose (linear, = 0

  19. Effects of the dicarboxylic acids malate and fumarate on E. coli O157:H7 and Salmonella Typhimurium populations in pure culture and mixed ruminal culture in in vitro fermentations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dicarboxylic acids malate and fumarate increase ruminal pH, reduce methane production, increase propionate and total VFA production, and reduce lactic acid accumulation in a manner similar to ionophores. The mechanism by which these acids effect the ruminal environment is reported to be through...

  20. Effects of whole-plant corn silage hybrid type on intake, digestion, ruminal fermentation, and lactation performance by dairy cows through a meta-analysis.

    PubMed

    Ferraretto, L F; Shaver, R D

    2015-04-01

    Understanding the effect of whole-plant corn silage (WPCS) hybrids in dairy cattle diets may allow for better decisions on hybrid selection by dairy producers, as well as indicate potential strategies for the seed corn industry with regard to WPCS hybrids. Therefore, the objective of this study was to perform a meta-analysis using literature data on the effects of WPCS hybrid type on intake, digestibility, rumen fermentation, and lactation performance by dairy cows. The meta-analysis was performed using a data set of 162 treatment means from 48 peer-reviewed articles published between 1995 and 2014. Hybrids were divided into 3 categories before analysis. Comparative analysis of WPCS hybrid types differing in stalk characteristics were in 4 categories: conventional, dual-purpose, isogenic, or low-normal fiber digestibility (CONS), brown midrib (BMR), hybrids with greater NDF but lower lignin (%NDF) contents or high in vitro NDF digestibility (HFD), and leafy (LFY). Hybrid types differing in kernel characteristics were in 4 categories: conventional or yellow dent (CONG), NutriDense (ND), high oil (HO), and waxy. Genetically modified (GM) hybrids were compared with their genetically similar non-biotech counterpart (ISO). Except for lower lignin content for BMR and lower starch content for HFD than CONS and LFY, silage nutrient composition was similar among hybrids of different stalk types. A 1.1 kg/d greater intake of DM and 1.5 and 0.05 kg/d greater milk and protein yields, respectively, were observed for BMR compared with CONS and LFY. Likewise, DMI and milk yield were greater for HFD than CONS, but the magnitude of the difference was smaller. Total-tract NDF digestibility was greater, but starch digestibility was reduced, for BMR and HFD compared with CONS or LFY. Silage nutrient composition was similar for hybrids of varied kernel characteristics, except for lower CP and EE content for CONG than ND and HO. Feeding HO WPCS to dairy cows decreased milk fat content

  1. Effect of supplementing coconut or krabok oil, rich in medium-chain fatty acids on ruminal fermentation, protozoa and archaeal population of bulls.

    PubMed

    Panyakaew, P; Boon, N; Goel, G; Yuangklang, C; Schonewille, J Th; Hendriks, W H; Fievez, V

    2013-12-01

    Medium-chain fatty acids (MCFA), for example, capric acid (C10:0), myristic (C14:0) and lauric (C12:0) acid, have been suggested to decrease rumen archaeal abundance and protozoal numbers. This study aimed to compare the effect of MCFA, either supplied through krabok (KO) or coconut (CO) oil, on rumen fermentation, protozoal counts and archaeal abundance, as well as their diversity and functional organization. KO contains similar amounts of C12:0 as CO (420 and 458 g/kg FA, respectively), but has a higher proportion of C14:0 (464 v. 205 g/kg FA, respectively). Treatments contained 35 g supplemental fat per kg DM: a control diet with tallow (T); a diet with supplemental CO; and a diet with supplemental KO. A 4th treatment consisted of a diet with similar amounts of MCFA (i.e. C10:0+C12:0+C14:0) from CO and KO. To ensure isolipidic diets, extra tallow was supplied in the latter treatment (KO+T). Eight fistulated bulls (two bulls per treatment), fed a total mixed ration predominantly based on cassava chips, rice straw, tomato pomace, rice bran and soybean meal (1.5% of BW), were used. Both KO and CO increased the rumen volatile fatty acids, in particular propionate and decreased acetate proportions. Protozoal numbers were reduced through the supplementation of an MCFA source (CO, KO and KO+T), with the strongest reduction by KO. Quantitative real-time polymerase chain reaction assays based on archaeal primers showed a decrease in abundance of Archaea when supplementing with KO and KO+T compared with T and CO. The denaturing gradient gel electrophoresis profiles of the rumen archaeal population did not result in a grouping of treatments. Richness indices were calculated from the number of DGGE bands, whereas community organization was assessed from the Pareto-Lorenz evenness curves on the basis of DGGE band intensities. KO supplementation (KO and KO+T treatments) increased richness and evenness within the archaeal community. Further research including methane

  2. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.

    PubMed

    McAllister, T A; Meale, S J; Valle, E; Guan, L L; Zhou, M; Kelly, W J; Henderson, G; Attwood, G T; Janssen, P H

    2015-04-01

    Globally, methane (CH4) emissions account for 40% to 45% of greenhouse gas emissions from ruminant livestock, with over 90% of these emissions arising from enteric fermentation. Reduction of carbon dioxide to CH4 is critical for efficient ruminal fermentation because it prevents the accumulation of reducing equivalents in the rumen. Methanogens exist in a symbiotic relationship with rumen protozoa and fungi and within biofilms associated with feed and the rumen wall. Genomics and transcriptomics are playing an increasingly important role in defining the ecology of ruminal methanogenesis and identifying avenues for its mitigation. Metagenomic approaches have provided information on changes in abundances as well as the species composition of the methanogen community among ruminants that vary naturally in their CH4 emissions, their feed efficiency, and their response to CH4 mitigators. Sequencing the genomes of rumen methanogens has provided insight into surface proteins that may prove useful in the development of vaccines and has allowed assembly of biochemical pathways for use in chemogenomic approaches to lowering ruminal CH4 emissions. Metagenomics and metatranscriptomic analysis of entire rumen microbial communities are providing new perspectives on how methanogens interact with other members of this ecosystem and how these relationships may be altered to reduce methanogenesis. Identification of community members that produce antimethanogen agents that either inhibit or kill methanogens could lead to the identification of new mitigation approaches. Discovery of a lytic archaeophage that specifically lyses methanogens is 1 such example. Efforts in using genomic data to alter methanogenesis have been hampered by a lack of sequence information that is specific to the microbial community of the rumen. Programs such as Hungate1000 and the Global Rumen Census are increasing the breadth and depth of our understanding of global ruminal microbial communities, steps that

  3. RUMINANT NUTRITION SYMPOSIUM: Use of genomics and transcriptomics to identify strategies to lower ruminal methanogenesis.

    PubMed

    McAllister, T A; Meale, S J; Valle, E; Guan, L L; Zhou, M; Kelly, W J; Henderson, G; Attwood, G T; Janssen, P H

    2015-04-01

    Globally, methane (CH4) emissions account for 40% to 45% of greenhouse gas emissions from ruminant livestock, with over 90% of these emissions arising from enteric fermentation. Reduction of carbon dioxide to CH4 is critical for efficient ruminal fermentation because it prevents the accumulation of reducing equivalents in the rumen. Methanogens exist in a symbiotic relationship with rumen protozoa and fungi and within biofilms associated with feed and the rumen wall. Genomics and transcriptomics are playing an increasingly important role in defining the ecology of ruminal methanogenesis and identifying avenues for its mitigation. Metagenomic approaches have provided information on changes in abundances as well as the species composition of the methanogen community among ruminants that vary naturally in their CH4 emissions, their feed efficiency, and their response to CH4 mitigators. Sequencing the genomes of rumen methanogens has provided insight into surface proteins that may prove useful in the development of vaccines and has allowed assembly of biochemical pathways for use in chemogenomic approaches to lowering ruminal CH4 emissions. Metagenomics and metatranscriptomic analysis of entire rumen microbial communities are providing new perspectives on how methanogens interact with other members of this ecosystem and how these relationships may be altered to reduce methanogenesis. Identification of community members that produce antimethanogen agents that either inhibit or kill methanogens could lead to the identification of new mitigation approaches. Discovery of a lytic archaeophage that specifically lyses methanogens is 1 such example. Efforts in using genomic data to alter methanogenesis have been hampered by a lack of sequence information that is specific to the microbial community of the rumen. Programs such as Hungate1000 and the Global Rumen Census are increasing the breadth and depth of our understanding of global ruminal microbial communities, steps that

  4. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fructans are an important nonfiber carbohydrate in cool-season grasses. Their fermentation by ruminal microbes is not well described, though such information is needed to understand their nutritional value to ruminants. Our objective was to compare kinetics and product formation of orchardgrass fruc...

  5. Complete Genome of the Cellulolytic Ruminal Bacterium Ruminococcus albus 7

    SciTech Connect

    Suen, Garret; Stevenson, David M; Bruce, David; Chertkov, Olga; Copeland, A; Cheng, Jan-Fang; Detter, J. Chris; Goodwin, Lynne A.; Han, Cliff; Hauser, Loren John; Ivanova, N; Kyrpides, Nikos C; Land, Miriam L; Lapidus, Alla L.; Lucas, Susan; Ovchinnikova, Galina; Pitluck, Sam; Tapia, Roxanne; Woyke, Tanja; Boyum, Julie; Mead, David; Weimer, Paul J

    2011-01-01

    Ruminococcus albus 7 is a highly cellulolytic ruminal bacterium that is a member of the phylum Firmicutes. Here, we describe the complete genome of this microbe. This genome will be useful for rumen microbiology and cellulosome biology and in biofuel production, as one of its major fermentation products is ethanol.

  6. Urinary Dysfunction

    MedlinePlus

    ... PCF Spotlight Glossary African American Men Living with Prostate Cancer Urinary Dysfunction Side Effects Urinary Dysfunction Bowel Dysfunction ... dysfunction is normal following initial therapy for localized prostate cancer. But it’s important to realize that not all ...

  7. Ruminant nitrogen usage

    SciTech Connect

    Not Available

    1985-01-01

    This book brings together the latest research on protein absorption by ruminants and takes a look at the calculation of optimum nutrient requirements, including bacterial digestion, in the calculations. It also describes the parameters of nitrogen conversion in the ruminant and examines the different kinds of protein found in animal feedstuffs.

  8. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber.

    PubMed

    Allen, M S

    1997-07-01

    The content of ruminally fermented OM in the diet affects the fiber requirement of dairy cattle. Physically effective fiber is the fraction of feed that stimulates chewing activity. Chewing, in turn, stimulates saliva secretion. Bicarbonate and phosphate buffers in saliva neutralize acids produced by fermentation of OM in the rumen. The balance between the production of fermentation acid and buffer secretion is a major determinant of ruminal pH. Low ruminal pH may decrease DMI, fiber digestibility, and microbial yield and thus decrease milk production and increase feed costs. Diets should be formulated to maintain adequate mean ruminal pH, and variation in ruminal pH should be minimized by feeding management. The fraction of OM that is fermented in the rumen varies greatly among diets. This variation affects the amount of fermentation acids produced and directly affects the amount of physically effective fiber that is required to maintain adequate ruminal pH. Acid production in the rumen is due primarily to fermentation of carbohydrates, which represent over 65% of the DM in diets of dairy cows and have the most variable ruminal degradation across diets. The non-fiber carbohydrate content of the diet is often used as a proxy for ruminal fermentability, but this measure is inadequate. Ruminal fermentation of both nonfiber carbohydrate and fiber is extremely variable, and this variability is not related to the nonfiber carbohydrate content of the diet. The interaction of ruminally fermented carbohydrate and physically effective fiber must be considered when diets for dairy cattle are evaluated and formulated.

  9. Fermentation process

    SciTech Connect

    Lutzen, N.W.

    1982-02-23

    Fermentation process consists essentially of fermenting a 10-45% w/w aqueous slurry of granular starch for the production of ethanol with an ethanol-producing microorganism in the presence of alpha-amylase and glucoamylase, the conduct of said fermentation being characterized by low levels of dextrin and fermentable sugars in solution in the fermentation broth throughout the fermentation, and thereafter recovering enzymes from the fermentation broth for use anew in fermentation of granular starch.

  10. Establishment and development of ruminal hydrogenotrophs in methanogen-free lambs.

    PubMed

    Fonty, Gérard; Joblin, Keith; Chavarot, Michel; Roux, Remy; Naylor, Graham; Michallon, Fabien

    2007-10-01

    The aim of this work was to determine whether reductive acetogenesis can provide an alternative to methanogenesis in the rumen. Gnotobiotic lambs were inoculated with a functional rumen microbiota lacking methanogens and reared to maturity on a fibrous diet. Lambs with a methanogen-free rumen grew well, and the feed intake and ruminal volatile fatty acid concentrations for lambs lacking ruminal methanogens were lower but not markedly dissimilar from those for conventional lambs reared on the same diet. A high population density (10(7) to 10(8) cells g(-1)) of ruminal acetogens slowly developed in methanogen-free lambs. Sulfate- and fumarate-reducing bacteria were present, but their population densities were highly variable. In methanogen-free lambs, the hydrogen capture from fermentation was low (28 to 46%) in comparison with that in lambs containing ruminal methanogens (>90%). Reductive acetogenesis was not a significant part of ruminal fermentation in conventional lambs but contributed 21 to 25% to the fermentation in methanogen-free meroxenic animals. Ruminal H(2) utilization was lower in lambs lacking ruminal methanogens, but when a methanogen-free lamb was inoculated with a methanogen, the ruminal H(2) utilization was similar to that in conventional lambs. H(2) utilization in lambs containing a normal ruminal microflora was age dependent and increased with the animal age. The animal age effect was less marked in lambs lacking ruminal methanogens. Addition of fumarate to rumen contents from methanogen-free lambs increased H(2) utilization. These findings provide the first evidence from animal studies that reductive acetogens can sustain a functional rumen and replace methanogens as a sink for H(2) in the rumen.

  11. Performance of feedlot steers fed diets containing laidlomycin propionate or monensin plus tylosin, and effects of laidlomycin propionate concentration on intake patterns and ruminal fermentation in beef steers during adaptation to a high-concentrate diet.

    PubMed

    Galyean, M L; Malcolm, K J; Duff, G C

    1992-10-01

    Two hundred eighty-eight beef steers (British x Continental x Brahman) were fed a 90% concentrate diet containing either no ionophore (control), laidlomycin propionate at either 6 or 12 mg/kg of dietary DM, or monensin plus tylosin (31 and 12 mg/kg of DM, respectively). Neither of the two levels of laidlomycin propionate nor monensin plus tylosin affected (P greater than .10) ADG or feed:gain ratio. Monensin plus tylosin reduced (P less than .01) daily DMI for the 161-d trial period compared with the other three treatments. Laidlomycin propionate at 6 mg/kg increased (P less than .05) DMI relative to the control, laidlomycin propionate at 12 mg/kg, and monensin plus tylosin diets during the 2nd wk of the trial and from d 57 to 84. Treatments did not affect carcass measurements. In a second experiment, 12 ruminally cannulated steers were fed diets containing no ionophore or laidlomycin propionate at either 6 or 12 mg/kg of DM. Samples were obtained for two consecutive days while the dietary concentrate level was 75%, after which the diet was switched abruptly to 90% concentrate, and samples were collected on several days during a 21-d period. The rate at which steers consumed their daily allotment of feed was not altered markedly by laidlomycin propionate. Likewise, laidlomycin propionate did not affect total ruminal VFA concentrations or proportions. Ruminal concentrations of D-lactate were reduced (P less than .10) by 6 but not by 12 mg/kg of laidlomycin propionate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1429270

  12. Effects of Synchronization of Carbohydrate and Protein Supply in Total Mixed Ration with Korean Rice Wine Residue on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

    PubMed Central

    Piao, Min Yu; Kim, Hyun J.; Seo, J. K.; Park, T. S.; Yoon, J. S.; Kim, K. H.; Ha, Jong K.

    2012-01-01

    Three Holstein steers in the growing phase, each with a ruminal cannula, were used to test the hypothesis that the synchronization of the hourly rate of carbohydrate and nitrogen (N) released in the rumen would increase the amount of retained nitrogen for growth and thus improve the efficiency of microbial protein synthesis (EMPS). In Experiment 1, in situ degradability coefficients of carbohydrate and N in feeds including Korean rice wine residue (RWR) were determined. In Experiment 2, three total mixed ration (TMR) diets having different rates of carbohydrate and N release in the rumen were formulated using the in situ degradability of the feeds. All diets were made to contain similar contents of crude protein (CP) and neutral detergent fiber (NDF) but varied in their hourly pattern of nutrient release. The synchrony index of the three TMRs was 0.51 (LS), 0.77 (MS) and 0.95 (HS), respectively. The diets were fed at a restricted level (2% of the animal’s body weight) in a 3×3 Latin-square design. Synchronizing the hourly supply of energy and N in the rumen did not significantly alter the digestibility of dry matter, organic matter, crude protein, NDF or acid detergent fiber (ADF) (p>0.05). The ruminal NH3-N content of the LS group at three hours after feeding was significantly higher (p<0.05) than that of the other groups; however, the mean values of ruminal NH3-N, pH and VFA concentration among the three groups were not significantly different (p>0.05). In addition, the purine derivative (PD) excretion in urine and microbial-N production (MN) among the three groups were not significantly different (p>0.05). In conclusion, synchronizing dietary energy and N supply to the rumen did not have a major effect on nutrient digestion or microbial protein synthesis (MPS) in Holstein steers. PMID:25049518

  13. Performance of feedlot steers fed diets containing laidlomycin propionate or monensin plus tylosin, and effects of laidlomycin propionate concentration on intake patterns and ruminal fermentation in beef steers during adaptation to a high-concentrate diet.

    PubMed

    Galyean, M L; Malcolm, K J; Duff, G C

    1992-10-01

    Two hundred eighty-eight beef steers (British x Continental x Brahman) were fed a 90% concentrate diet containing either no ionophore (control), laidlomycin propionate at either 6 or 12 mg/kg of dietary DM, or monensin plus tylosin (31 and 12 mg/kg of DM, respectively). Neither of the two levels of laidlomycin propionate nor monensin plus tylosin affected (P greater than .10) ADG or feed:gain ratio. Monensin plus tylosin reduced (P less than .01) daily DMI for the 161-d trial period compared with the other three treatments. Laidlomycin propionate at 6 mg/kg increased (P less than .05) DMI relative to the control, laidlomycin propionate at 12 mg/kg, and monensin plus tylosin diets during the 2nd wk of the trial and from d 57 to 84. Treatments did not affect carcass measurements. In a second experiment, 12 ruminally cannulated steers were fed diets containing no ionophore or laidlomycin propionate at either 6 or 12 mg/kg of DM. Samples were obtained for two consecutive days while the dietary concentrate level was 75%, after which the diet was switched abruptly to 90% concentrate, and samples were collected on several days during a 21-d period. The rate at which steers consumed their daily allotment of feed was not altered markedly by laidlomycin propionate. Likewise, laidlomycin propionate did not affect total ruminal VFA concentrations or proportions. Ruminal concentrations of D-lactate were reduced (P less than .10) by 6 but not by 12 mg/kg of laidlomycin propionate.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. [PESTIVIRUSES IN RUMINANTS].

    PubMed

    Glotov, A G; Glotova, T I; Shulyak, A F

    2016-01-01

    The genus Pestivirus includes four species: bovine viral diarrhea virus 1, bovine viral diarrhea virus 2, classical swine fever disease virus, and ovine border disease virus. Pestiviruses infect many species of domestic and wild animals. Bovine viral diarrhea virus is a prototypical representative of the pestiviruses of ruminant animals. Recently, new candidates appeared for including in this genus: two viruses of the wild ruminant animals that have not been officially classified and one HoBi-like virus discovered for the first time in the bovine fetal serum. The circulation of the ruminant animal pestiviruses within population of domestic and wild animals, the presence of these viruses in bioproducts stimulates studies of the infection reservoirs and their influence on the effect of the bovine viral diarrhea control programs. PMID:27451496

  15. [PESTIVIRUSES IN RUMINANTS].

    PubMed

    Glotov, A G; Glotova, T I; Shulyak, A F

    2016-01-01

    The genus Pestivirus includes four species: bovine viral diarrhea virus 1, bovine viral diarrhea virus 2, classical swine fever disease virus, and ovine border disease virus. Pestiviruses infect many species of domestic and wild animals. Bovine viral diarrhea virus is a prototypical representative of the pestiviruses of ruminant animals. Recently, new candidates appeared for including in this genus: two viruses of the wild ruminant animals that have not been officially classified and one HoBi-like virus discovered for the first time in the bovine fetal serum. The circulation of the ruminant animal pestiviruses within population of domestic and wild animals, the presence of these viruses in bioproducts stimulates studies of the infection reservoirs and their influence on the effect of the bovine viral diarrhea control programs.

  16. Urinary Incontinence

    MedlinePlus

    Urinary incontinence (UI) is loss of bladder control. Symptoms can range from mild leaking to uncontrollable wetting. It can happen to anyone, but it becomes more common with age. Women experience ...

  17. Ruminal acidosis in feedlot: from aetiology to prevention.

    PubMed

    Hernández, Joaquín; Benedito, José Luis; Abuelo, Angel; Castillo, Cristina

    2014-01-01

    Acute ruminal acidosis is a metabolic status defined by decreased blood pH and bicarbonate, caused by overproduction of ruminal D-lactate. It will appear when animals ingest excessive amount of nonstructural carbohydrates with low neutral detergent fiber. Animals will show ruminal hypotony/atony with hydrorumen and a typical parakeratosis-rumenitis liver abscess complex, associated with a plethora of systemic manifestations such as diarrhea and dehydration, liver abscesses, infections of the lung, the heart, and/or the kidney, and laminitis, as well as neurologic symptoms due to both cerebrocortical necrosis and the direct effect of D-lactate on neurons. In feedlots, warning signs include decrease in chewing activity, weight, and dry matter intake and increase in laminitis and diarrhea prevalence. The prognosis is quite variable. Treatment will be based on the control of systemic acidosis and dehydration. Prevention is the most important tool and will require normalization of ruminal pH and microbiota. Appropriate feeding strategies are essential and involve changing the dietary composition to increase neutral detergent fiber content and greater particle size and length. Appropriate grain processing can control the fermentation rate while additives such as prebiotics or probiotics can help to stabilize the ruminal environment. Immunization against producers of D-lactate is being explored.

  18. Ruminal Acidosis in Feedlot: From Aetiology to Prevention

    PubMed Central

    Hernández, Joaquín; Benedito, José Luis; Abuelo, Angel; Castillo, Cristina

    2014-01-01

    Acute ruminal acidosis is a metabolic status defined by decreased blood pH and bicarbonate, caused by overproduction of ruminal D-lactate. It will appear when animals ingest excessive amount of nonstructural carbohydrates with low neutral detergent fiber. Animals will show ruminal hypotony/atony with hydrorumen and a typical parakeratosis-rumenitis liver abscess complex, associated with a plethora of systemic manifestations such as diarrhea and dehydration, liver abscesses, infections of the lung, the heart, and/or the kidney, and laminitis, as well as neurologic symptoms due to both cerebrocortical necrosis and the direct effect of D-lactate on neurons. In feedlots, warning signs include decrease in chewing activity, weight, and dry matter intake and increase in laminitis and diarrhea prevalence. The prognosis is quite variable. Treatment will be based on the control of systemic acidosis and dehydration. Prevention is the most important tool and will require normalization of ruminal pH and microbiota. Appropriate feeding strategies are essential and involve changing the dietary composition to increase neutral detergent fiber content and greater particle size and length. Appropriate grain processing can control the fermentation rate while additives such as prebiotics or probiotics can help to stabilize the ruminal environment. Immunization against producers of D-lactate is being explored. PMID:25489604

  19. Effects of plants containing secondary compounds and plant oils on rumen fermentation and ecology.

    PubMed

    Wanapat, Metha; Kongmun, Pongthon; Poungchompu, Onanong; Cherdthong, Anusorn; Khejornsart, Pichad; Pilajun, Ruangyote; Kaenpakdee, Sujittra

    2012-03-01

    A number of experiments have been conducted to investigate effects of tropical plants containing condensed tannins and/or saponins present in tropical plants and some plant oils on rumen fermentation and ecology in ruminants. Based on both in vitro and in vivo trials, the results revealed important effects on rumen microorganisms and fermentation including methane production. Incorporation and/or supplementation of these plants containing secondary metabolites have potential for improving rumen ecology and subsequently productivity in ruminants.

  20. Effect of dietary cation-anion difference on ruminal metabolism, total apparent digestibility, blood and renal acid-base regulation in lactating dairy cows.

    PubMed

    Martins, C M M R; Arcari, M A; Welter, K C; Gonçalves, J L; Santos, M V

    2016-01-01

    The present study aimed to evaluate the effect of dietary cation-anion difference (DCAD) on ruminal fermentation, total apparent digestibility, blood and renal metabolism of lactating dairy cows. Sixteen Holstein cows were distributed in four contemporary 4×4 Latin Square designs, which consisted of four periods of 21 days and four treatments according to DCAD: +290; +192; +98 and -71 milliequivalent (mEq)/kg dry matter (DM). Ruminal pH and concentrations of acetic and butyric acid increased linearly according to the increase of DCAD. Similarly, NDF total apparent digestibility linearly increased by 6.38% when DCAD increased from -71 to 290 mEq/kg DM [Y=65.90 (SE=2.37)+0.0167 (SE=0.0068)×DCAD (mEq/kg DM)]. Blood pH was also increased according to DCAD, which resulted in reduction of serum concentrations of Na, K and ionic calcium (iCa). To maintain the blood acid-base homeostasis, renal metabolism played an important role in controlling serum concentrations of Na and K, since the Na and K urinary excretion increased linearly by 89.69% and 46.06%, respectively, from -71 to 290 mEq/kg DM. Changes in acid-base balance of biological fluids may directly affect the mineral composition of milk, as milk concentrations of Na, K, iCa and chlorides were reduced according to blood pH increased. Thus, it can be concluded that the increase of DCAD raises the pH of ruminal fluid, NDF total apparent digestibility, and blood pH, and decreases the milk concentration of cationic minerals, as well as the efficiency of Na utilization to milk production.

  1. Effect of ruminal microflora on the biotransformation of netobimin, albendazole, albendazole sulfoxide, and albendazole sulfoxide enantiomers in an artificial rumen.

    PubMed

    Capece, B P; Calsamiglia, S; Castells, G; Arboix, M; Cristòfol, C

    2001-05-01

    The effect of ruminal flora on the disposition of benzimidazole anthelmintic drugs was studied in dual-flow continuous-culture fermenters (artificial rumens). Six 1,320-mL artificial rumens were inoculated with ruminal fluid and fermentation conditions were maintained constant at 39 degrees C, pH 6.4, solid dilution rate of 5%/h, and liquid dilution rate of 10%/h to simulate standard ruminal fermentation conditions. The study was repeated in two consecutive periods. Two hours after the inoculation of rumen fluid, the fermenters were fed 30 g of a 60:40 forage:concentrate ration. Within each period two fermenters per treatment were immediately dosed with 104 mg of netobimin, 52 mg of albendazole, or 39 mg of albendazole sulfoxide. Concentrations of netobimin, albendazole, albendazole sulfoxide and its enantiomers, and albendazole sulfone were analyzed by high performance liquid chromatography at 0.25, 0.5, 1, 2, 4, 6, and 8 h after dosage. Reductive metabolism by the ruminal bacteria was observed, favoring the production of albendazole, the most potent anthelmintic molecule. No differences in the production or consumption of albendazole sulfoxide enantiomers were observed, indicating that the ruminal bacteria metabolism was not enantioselective. Because benzimidazole anthelmintic drugs are generally administered orally, the ruminal flora play an important role in the bioavailability of these drugs. In our study, increased concentrations of albendazole in the three treatments, due to reductive ruminal biotransformation, suggests that ruminal biotransformation may improve the efficacy of orally administered netobimin, albendazole, and albendazole sulfoxide.

  2. Acetone and isopropanol in ruminal fluid and feces of lactating dairy cows.

    PubMed

    Sato, Hiroshi; Shiogama, Yumiko

    2010-03-01

    Acetone and its metabolite isopropanol are produced by gut microbes as well as by the host's metabolism. To evaluate the production of acetone and isopropanol in alimentary tracts, a total of 80 pair-samples of feces and ruminal fluid were taken in lactating dairy cows that had been fed silage-containing diets. Acetone and isopropanol were analyzed, together with ethanol and volatile fatty acids (VFAs). Isopropanol was detected in 57 fecal and all the ruminal samples; however, the ruminal isopropanol and ethanol concentrations were distinctly lower than those in the feces. Acetone was detected in 13 fecal and 53 ruminal samples; however, there was no significant difference in acetone concentrations between the feces and the ruminal fluid. The group with higher fecal isopropanol concentration showed higher fecal proportions of acetate accompanied by low proportion of minor VFA, which consisted of isobutyrate and iso- and n-valerate. In the group with higher ruminal isopropanol concentration, ethanol concentration was higher; the ruminal VFA profiles showed only a negligible difference. Fecal and ruminal ethanol concentrations were not affected by feed ethanol. Thus, the colon showed an accelerated alcoholic fermentation compared with the rumen of dairy cows; however, acetone was present at higher frequency in the rumen than in the feces.

  3. Nuclear transfer in ruminants.

    PubMed

    Lee, Joon-Hee; Maalouf, Walid E

    2015-01-01

    Ruminants were the first mammalian species to be cloned successfully by nuclear transplantation. Those experiments were designed to multiply high merit animals (Willadsen, Nature 320(6057):63-65, 1986; Prather et al., Biol Reprod 37(4):859-866, 1987; Wilmut et al., Nature 385(6619):810-813, 1997). Since then, cloning has provided us with a vast amount of knowledge and information on the reprogramming ability of somatic cells to different cell types which became an important basis for stem cell research and human medicine. Nowadays, the goals of most nuclear transfer work vary widely but in most cases the micromanipulation procedures remain the same. However, differences between species require different technical considerations. In this chapter, we describe in detail somatic cell nuclear transfer which is the foremost method for cloning ruminants with specific reference to sheep and cattle.

  4. Short communication: effects of level of rumen-degradable protein and corn distillers grains in corn silage-based diets on milk production and ruminal fermentation in lactating dairy cows.

    PubMed

    Zanton, G I; Heinrichs, A J; Jones, C M

    2013-07-01

    Two of the potential obstacles precluding inclusion of higher levels of dry distillers grains with solubles (DDGS) in corn-based dairy cow diets are the low levels of rumen-degradable protein (RDP) and the fatty acid content and composition of DDGS. Therefore, the objective of this experiment was to evaluate the production and rumen responses to dietary alterations in the level of RDP and DDGS for dairy cows fed a high corn silage diet. The experimental design was a replicated 4×4 Latin square with 21-d periods: 14 d of adaptation and 7 d of sampling; 16 uncannulated cows and 4 ruminally cannulated cows were blocked and assigned randomly to treatment sequences. Rations were provided as total mixed rations and were formulated to be high or low in RDP, with or without DDGS replacing soybean-based concentrates: high RDP, no DDGS (HRDP0); low RDP, no DDGS (LRDP0); low RDP, 10% DDGS; and low RDP, 20% DDGS. Body weight (696kg) and dry matter intake (26.6 kg/d) were not affected by treatment. Rumen ammonia concentration was greater for HRDP0 than LRDP0, but was unaffected by level of DDGS inclusion. The mean and minimum rumen pH and time pH was <5.5 were not different between diets. Milk production tended to be lower for cows fed HRDP0 than LRDP0 and tended to be linearly reduced as DDGS inclusion increased. Milk protein yield tended to be greater for cows fed LRDP0 than HRDP0, but was unaffected by DDGS level. Milk fat production, concentration, and fat-corrected milk were linearly reduced by increasing levels of DDGS. Based on these results, feeding DDGS at 20% of diet dry matter is not recommended for diets based on high corn silage.

  5. Peste des petits ruminants.

    PubMed

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants.

  6. Peste des petits ruminants.

    PubMed

    Parida, S; Muniraju, M; Mahapatra, M; Muthuchelvan, D; Buczkowski, H; Banyard, A C

    2015-12-14

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  7. Peste des petits ruminants

    PubMed Central

    Parida, S.; Muniraju, M.; Mahapatra, M.; Muthuchelvan, D.; Buczkowski, H.; Banyard, A.C.

    2015-01-01

    Peste des petits ruminants virus causes a highly infectious disease of small ruminants that is endemic across Africa, the Middle East and large regions of Asia. The virus is considered to be a major obstacle to the development of sustainable agriculture across the developing world and has recently been targeted by the World Organisation for Animal Health (OIE) and the Food and Agriculture Organisation (FAO) for eradication with the aim of global elimination of the disease by 2030. Fundamentally, the vaccines required to successfully achieve this goal are currently available, but the availability of novel vaccine preparations to also fulfill the requisite for differentiation between infected and vaccinated animals (DIVA) may reduce the time taken and the financial costs of serological surveillance in the later stages of any eradication campaign. Here, we overview what is currently known about the virus, with reference to its origin, updated global circulation, molecular evolution, diagnostic tools and vaccines currently available to combat the disease. Further, we comment on recent developments in our knowledge of various recombinant vaccines and on the potential for the development of novel multivalent vaccines for small ruminants. PMID:26443889

  8. Regurgitation and remastication in the foregut-fermenting proboscis monkey (Nasalis larvatus).

    PubMed

    Matsuda, Ikki; Murai, Tadahiro; Clauss, Marcus; Yamada, Tomomi; Tuuga, Augustine; Bernard, Henry; Higashi, Seigo

    2011-10-23

    Although foregut fermentation is often equated with rumination in the literature, functional ruminants (ruminants, camelids) differ fundamentally from non-ruminant foregut fermenters (e.g. macropods, hippos, peccaries). They combine foregut fermentation with a sorting mechanism that allows them to remasticate large particles and clear their foregut quickly of digested particles; thus, they do not only achieve high degrees of particle size reduction but also comparatively high food intakes. Regurgitation and remastication of stomach contents have been described sporadically in several non-ruminant, non-primate herbivores. However, this so-called 'merycism' apparently does not occur as consistently as in ruminants. Here, to our knowledge we report, for the first time, regurgitation and remastication in 23 free-ranging individuals of a primate species, the foregut-fermenting proboscis monkey (Nasalis larvatus). In one male that was observed continuously during 169 days, the behaviour was observed on 11 different days occurring mostly in the morning, and was associated with significantly higher proportions of daily feeding time than on days when it was not observed. This observation is consistent with the concept that intensified mastication allows higher food intake without compromising digestive efficiency, and represents an expansion of the known physiological primate repertoire that converges with a strategy usually associated with ruminants only. PMID:21450728

  9. Effects of dietary linseed oil and propionate precursors on ruminal microbial community, composition, and diversity in Yanbian yellow cattle.

    PubMed

    Li, Xiang Z; Park, Byung K; Shin, Jong S; Choi, Seong H; Smith, Stephen B; Yan, Chang G

    2015-01-01

    The rumen microbial ecosystem is a complex system where rumen fermentation processes involve interactions among microorganisms. There are important relationships between diet and the ruminal bacterial composition. Thus, we investigated the ruminal fermentation characteristics and compared ruminal bacterial communities using tag amplicon pyrosequencing analysis in Yanbian yellow steers, which were fed linseed oil (LO) and propionate precursors. We used eight ruminally cannulated Yanbian yellow steers (510 ± 5.8 kg) in a replicated 4 × 4 Latin square design with four dietary treatments. Steers were fed a basal diet that comprised 80% concentrate and 20% rice straw (DM basis, CON). The CON diet was supplemented with LO at 4%. The LO diet was also supplemented with 2% dl-malate or 2% fumarate as ruminal precursors of propionate. Dietary supplementation with LO and propionate precursors increased ruminal pH, total volatile fatty acid concentrations, and the molar proportion of propionate. The most abundant bacterial operational taxonomic units in the rumen were related to dietary treatments. Bacteroidetes dominated the ruminal bacterial community and the genus Prevotella was highly represented when steers were fed LO plus propionate precursors. However, with the CON and LO diet plus malate or fumarate, Firmicutes was the most abundant phylum and the genus Ruminococcus was predominant. In summary, supplementing the diets of ruminants with a moderate level of LO plus propionate precursors modified the ruminal fermentation pattern. The most positive responses to LO and propionate precursors supplementation were in the phyla Bacteriodetes and Firmicutes, and in the genus Ruminococcus and Prevotella. Thus, diets containing LO plus malate or fumarate have significant effects on the composition of the rumen microbial community. PMID:26024491

  10. Effects of dietary linseed oil and propionate precursors on ruminal microbial community, composition, and diversity in Yanbian yellow cattle.

    PubMed

    Li, Xiang Z; Park, Byung K; Shin, Jong S; Choi, Seong H; Smith, Stephen B; Yan, Chang G

    2015-01-01

    The rumen microbial ecosystem is a complex system where rumen fermentation processes involve interactions among microorganisms. There are important relationships between diet and the ruminal bacterial composition. Thus, we investigated the ruminal fermentation characteristics and compared ruminal bacterial communities using tag amplicon pyrosequencing analysis in Yanbian yellow steers, which were fed linseed oil (LO) and propionate precursors. We used eight ruminally cannulated Yanbian yellow steers (510 ± 5.8 kg) in a replicated 4 × 4 Latin square design with four dietary treatments. Steers were fed a basal diet that comprised 80% concentrate and 20% rice straw (DM basis, CON). The CON diet was supplemented with LO at 4%. The LO diet was also supplemented with 2% dl-malate or 2% fumarate as ruminal precursors of propionate. Dietary supplementation with LO and propionate precursors increased ruminal pH, total volatile fatty acid concentrations, and the molar proportion of propionate. The most abundant bacterial operational taxonomic units in the rumen were related to dietary treatments. Bacteroidetes dominated the ruminal bacterial community and the genus Prevotella was highly represented when steers were fed LO plus propionate precursors. However, with the CON and LO diet plus malate or fumarate, Firmicutes was the most abundant phylum and the genus Ruminococcus was predominant. In summary, supplementing the diets of ruminants with a moderate level of LO plus propionate precursors modified the ruminal fermentation pattern. The most positive responses to LO and propionate precursors supplementation were in the phyla Bacteriodetes and Firmicutes, and in the genus Ruminococcus and Prevotella. Thus, diets containing LO plus malate or fumarate have significant effects on the composition of the rumen microbial community.

  11. Interactions between Euphorbia esula toxins and bovine ruminal microbes.

    PubMed

    Kronberg, Scott L; Halaweish, Fathi T; Hubert, Mindy B; Weimer, Paul J

    2006-01-01

    Cattle generally avoid grazing leafy spurge (LS; Euphorbia esula), whereas sheep and goats will often eat it. Understanding metabolism of toxic phytochemicals in LS by bovine rumen microflora may help explain why cattle often develop aversions to LS after initially eating it. Toxicity of LS compounds after in vitro fermentation with normal vs. antibiotic-modified bovine rumen digesta was evaluated at different lengths of fermentation. Levels of toxic and aversion-inducing ingenols were determined for fermented and nonfermented mixtures of LS and bovine rumen digesta, and the toxicity of an aversion-inducing extract of LS to rumen microbial species that are common in cattle, sheep, and goats was evaluated. Fermentation of LS with bovine digesta increased the toxicity of extracted compounds. Introduction of neomycin (an antibiotic that preferentially inhibits gram-negative bacteria) into the LS and bovine rumen digesta mixtures did not appear to affect toxicities regardless of fermentation length. Levels of ingenol were observed in LS and bovine digesta mixtures (both fermented and nonfermented) that were consistent with levels of ingenols reported for LS. Finally, a toxic extract of LS had little or no negative effect on the growth of several common species of rumen bacteria. The results indicate that LS is not generally toxic to the ruminal bacteria, but that microbial activity in the rumen may be responsible for enhancing LS toxicity to cattle.

  12. Buffer nitrogen solubility, in vitro ruminal partitioning of nitrogen and in vitro ruminal biological activity of tannins in leaves of four fodder tree species.

    PubMed

    Cudjoe, N; Mlambo, V

    2014-08-01

    This study explores the chemical composition, buffer N solubility, in vitro ruminal N degradability and in vitro ruminal biological activity of tannins in leaves from Gliricidia sepium, Leucaena leucocephala, Morus alba and Trichanthera gigantea trees. These tree leaves are a potential protein source for ruminants, but their site-influenced nutritive value is largely unknown. Leucaena leucocephala leaves had the highest N content (42.1 g/kg DM), while T. gigantea leaves had the least (26.1 g/kg DM). Leucaena leucocephala had the highest buffer solubility index (20%), while 10% of the total N in leaves of the other three species was soluble. The rapidly fermentable N fraction 'a' was highest in M. alba leaves (734.9 g/kg DM) and least in T. gigantea leaves (139.5 g/kg DM). The rate of fermentation (c) was highest for M. alba (7%/hours) leaves. No significant correlations were recorded between buffer solubility index of N and in vitro ruminal N degradability parameters: a, b, and c. The highest response to tannin inactivation using polyethylene glycol, in terms of percentage increase in 36-hours cumulative gas production, was recorded in M. alba (39%) and T. gigantea (38%) leaves. It was concluded that buffer solubility of N is not a good indicator of ruminal N degradation in the leaves of these tree species. Leaves of M. alba could be more valuable as a source of rapidly fermentable N when animals are offered low-protein, high-fibre diets compared with other tree species evaluated in the current study. However, when feeding M. alba leaves, the role of tannins must be considered because these secondary plant compounds showed significant in vitro ruminal biological activity. PMID:24750263

  13. Buffer nitrogen solubility, in vitro ruminal partitioning of nitrogen and in vitro ruminal biological activity of tannins in leaves of four fodder tree species.

    PubMed

    Cudjoe, N; Mlambo, V

    2014-08-01

    This study explores the chemical composition, buffer N solubility, in vitro ruminal N degradability and in vitro ruminal biological activity of tannins in leaves from Gliricidia sepium, Leucaena leucocephala, Morus alba and Trichanthera gigantea trees. These tree leaves are a potential protein source for ruminants, but their site-influenced nutritive value is largely unknown. Leucaena leucocephala leaves had the highest N content (42.1 g/kg DM), while T. gigantea leaves had the least (26.1 g/kg DM). Leucaena leucocephala had the highest buffer solubility index (20%), while 10% of the total N in leaves of the other three species was soluble. The rapidly fermentable N fraction 'a' was highest in M. alba leaves (734.9 g/kg DM) and least in T. gigantea leaves (139.5 g/kg DM). The rate of fermentation (c) was highest for M. alba (7%/hours) leaves. No significant correlations were recorded between buffer solubility index of N and in vitro ruminal N degradability parameters: a, b, and c. The highest response to tannin inactivation using polyethylene glycol, in terms of percentage increase in 36-hours cumulative gas production, was recorded in M. alba (39%) and T. gigantea (38%) leaves. It was concluded that buffer solubility of N is not a good indicator of ruminal N degradation in the leaves of these tree species. Leaves of M. alba could be more valuable as a source of rapidly fermentable N when animals are offered low-protein, high-fibre diets compared with other tree species evaluated in the current study. However, when feeding M. alba leaves, the role of tannins must be considered because these secondary plant compounds showed significant in vitro ruminal biological activity.

  14. Fermented Vegetables

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wide variety of fermented foods of the world can be classified by the materials obtained from the fermentation, such as alcohol (beer, wine), organic acid such as lactic acid and acetic acid (vegetables, dairy), carbon dioxide (bread), and amino acids or peptides from protein (fish fermentations...

  15. [Urinary bilharziasis].

    PubMed

    Gigase, P L

    1992-01-01

    A short account is given of present views on urinary schistosomiasis or bilharziasis. The incidence of infections is increasing in endemic areas of Africa and the near east, as a consequence of irrigation programs and hydroelectric power development. Urinary schistosomiasis is a disease of children and young adults. The serious consequences, obstructive uropathy due to more or less irreversible ureteral lesions, and cancer of the bladder, less directly related to the infection, appear but later in life. Diagnosis is still based on parasitology and serology but ultrasonography has proven to be an important means to evaluate the extent of lesions of the urinary tract, especially in developing countries. Praziquantel was a major development in the medical treatment and cures easily the infection. Some irreversible consequences have however to be treated surgically. Schistosomiasis is still an important cause of morbidity and mortality in medically backward endemic countries. The control of the disease aims at reducing morbidity and mortality, consequences of the infection, rather than to avoid infection itself. It is based on mass treatment of school age children, together with focal molluscacides at places where people have contacts with water. Vaccination will be available in the near future and will be a welcome addition to other control measures, but will not be able to interrupt transmission on its own. Only economic development will solve in the long term this social African problem. PMID:1492630

  16. Measuring State-Specific Rumination: Development of the Rumination about an Interpersonal Offense Scale

    ERIC Educational Resources Information Center

    Wade, Nathaniel G.; Vogel, David L.; Liao, Kelly Yu-Hsin; Goldman, Daniel B.

    2008-01-01

    The tendency to ruminate has been consistently linked to psychological disturbances, such as increased stress, anger, and fear in response to provocations. However, existing measures of rumination focus on the disposition to ruminate rather than on rumination about a specific situation. This limits the ability to explore rumination about a…

  17. Brief Report: Adolescents' Co-Rumination with Mothers, Co-Rumination with Friends, and Internalizing Symptoms

    ERIC Educational Resources Information Center

    Waller, Erika M.; Rose, Amanda J.

    2013-01-01

    The current research examined co-rumination (extensively discussing, rehashing, and speculating about problems) with mothers and friends. Of interest was exploring whether adolescents who co-ruminate with mothers were especially likely to co-ruminate with friends as well as the interplay among co-rumination with mothers, co-rumination with…

  18. Electrophysiological correlates of anxious rumination.

    PubMed

    Andersen, Søren Bo; Moore, Roger Anthony; Venables, Louise; Corr, Philip Joseph

    2009-02-01

    EEG coherence and EEG power response were recorded as 63 participants engaged in one of three experimental conditions: 'personal rumination', 'nominal rumination', and 'baseline counting'. The rumination conditions were separated by a neutral (counting) task to eliminate neural carry-over effects. For personal rumination, participants spent 2 min ruminating about something in their life about which they were in two minds (i.e., in a state of personal conflict). For nominal rumination, they were presented with a conflict scenario (concerning buying a car) and instructed to ruminate about that for 2 min. The baseline counting task simply involved counting forwards from 1 at a speed comfortable to the individual. Participants completed various questionnaires to measure mood and also traits of personality (including trait anxiety). EEG data were analysed in the following wavebands: 4-6 Hz, 6-8 Hz, 8-10 Hz, 10-12 Hz, 12-20 Hz and 20-30 Hz. Results revealed that the scalp-wide EEG theta (4-6 Hz and 6-8 Hz) coherence associated with personal rumination was significantly greater than that associated with nominal rumination and baseline counting. Similarly, the scalp-wide 6-8 Hz and parietal-occipital 4-6 Hz power associated with personal rumination were significantly greater than power associated with the nominal rumination and power for baseline counting. For alpha, the 10-12 Hz scalp-wide EEG coherence associated with personal rumination was significantly greater than that associated with baseline counting. Otherwise, the scalp-wide 10-12 Hz power related to both nominal rumination and personal rumination were significantly greater than in response to baseline counting. For 20-30 Hz scalp-wide EEG power, data in response to the nominal rumination condition were significantly increased compared to data associated with the baseline counting condition. In terms of questionnaire data, tense arousal, anger/frustration, hedonic tone and energetic arousal were all influenced by

  19. The autonomic phenotype of rumination.

    PubMed

    Ottaviani, Cristina; Shapiro, David; Davydov, Dmitry M; Goldstein, Iris B; Mills, Paul J

    2009-06-01

    Recent studies suggest that ruminative thoughts may be mediators of the prolonged physiological effects of stress. We hypothesized that autonomic dysregulation plays a role in the relation between rumination and health. Rumination was induced by an anger-recall task in 45 healthy subjects. Heart rate variability (HRV), baroreflex sensitivity (BRS), and baroreflex effectiveness index (BEI) change scores were evaluated to obtain the autonomic phenotype of rumination. Personality traits and endothelial activation were examined for their relation to autonomic responses during rumination. Degree of endothelial activation was assessed by circulating soluble intercellular adhesion molecule-1 (sICAM-1). Vagal withdrawal during rumination was greater for women than men. Larger decreases in the high frequency component of HRV were associated with higher levels of anger-in, depression, and sICAM-1 levels. BRS reactivity was negatively related to trait anxiety. BEI reactivity was positively related to anger-in, hostility, anxiety, and depression. Lower BEI and BRS recovery were associated with lower social desirability and higher anger-out, anxiety, and depression. Findings suggest that the autonomic dysregulation that characterizes rumination plays a role in the relationships between personality and cardiovascular health. PMID:19272312

  20. Urinary catheter - infants

    MedlinePlus

    Bladder catheter - infants; Foley catheter - infants; Urinary catheter - neonatal ... A urinary catheter is a small, soft tube placed in the bladder. This article addresses urinary catheters in babies. WHY IS ...

  1. An assessment of GHG emissions from small ruminants in comparison with GHG emissions from large ruminants and monogastric livestock

    NASA Astrophysics Data System (ADS)

    Zervas, G.; Tsiplakou, E.

    2012-03-01

    Greenhouse gas (GHG) emissions are expected to cause global warming which results in extreme weather changes that could affect crop yields and productivity, food supplies and food prices. It is also expected that climate change will have an impact on animal metabolism and health, reproduction and productivity. On the other hand, the expected increased demand of animal origin products in the coming years will increase the reared animal numbers and consequently GHG emissions. This paper outlines the main GHGs emitted from livestock which are CO2, CH4 and N2O, coming from respiration, enteric fermentation and manure management respectively, with CH4 and N2O having the highest global warming potential. Ruminant livestock has the highest contribution to these GHG emissions with small ruminants share being 12.25% of the total GHG emissions from livestock's enteric and manure CH4, and manure N2O in CO2 equivalent, producing 9.45 kg CO2 equivalent per kg body weight with the respective values for cattle, pigs and poultry being 5.45, 3.97 and 3.25. Since the production systems significantly affect the GHG emissions, the grazing, livestock crop complex, and intensive ones account for 30.5%, 67.29% and 5.51% for total CH4 emission (from enteric fermentation and manure management) and 24.32%, 68.11% and 7.57% for N2O respectively. Taking into account the positive and negative impacts of small ruminant livestock production systems to the environmental aspects in general, it is recommended that a number of potentially effective measures should be taken and the appropriate mitigation technologies should be applied in order to reduce effectively and essentially the GHG emissions to the atmosphere, with no adverse effects on intensification and increased productivity of small ruminants production systems.

  2. Solid-state fermentation of wheat straw with Chaetomium cellulolyticum and Trichoderma lignorum

    SciTech Connect

    Viesturs, U.E.; Apsite, A.F.; Laukevics, J.J.; Ose, V.P.; Bekers, M.J.; Tengerdy, R.P.

    1981-01-01

    A novel solid-state fermentation process has been developed for converting wheat straw into protein-enriched ruminant feed with a mixed culture of Chaetomium cellulolyticum or Trichoderma lignorum and Candida lipolytica. Fermentations were conducted in 3-L horizontal stirred fermentors for 7 days at 30/sup 0/C. The straw fermented with the mixed cultures contained 16 to 18% protein, compared to 12 to 14% in straw fermented with either mold alone. Cellulose degradation in the fermented straw was 33%; its in vitro rumen digestibility was 50%.

  3. Cucumber fermentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humans have consumed fermented cucumber products since before the dawn of civilization. Although cucumber fermentation remains largely a traditional process, it has proven to be a consistently safe process by which raw cucumbers are transformed into high quality pickles that have a long shelf-life ...

  4. Biotypes of Gardnerella vaginalis isolated from urinary tract.

    PubMed

    González-Pedraza Avilés, A; Ortíz-Zaragoza, M C; Inzunza-Montiel, A E; Ponce-Rosas, E R

    1996-01-01

    A modified scheme is proposed for biotyping Gardnerella vaginalis isolated from urinary tract of symptomatic and asymptomatic women based on detection of hippurate hydrolysis, beta-galactosidase (ONPG) and lipase, and fermentation of arabinose, galactose and xylose. Thirty biotypes were found among 73 strains. The distribution of biotypes was similar in both populations but the biotypes 1H, 5G and 7G were found more frequently in women without symptoms of urinary tract infection.

  5. Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium.

    PubMed

    Teunissen, M J; Op den Camp, H J; Orpin, C G; Huis in 't Veld, J H; Vogels, G D

    1991-06-01

    Anaerobic fungi were isolated from rumen fluid of a domestic sheep (Ovis aries; a ruminant) and from faeces of five non-ruminants: African elephant (Loxodonta africana), black rhinoceros (Diceros bicornis), Indian rhinoceros (Rhinoceros unicornis), Indian elephant (Elephas maximus) and mara (Dolichotis patagonum). The anaerobic fungus isolated from the sheep was a Neocallimastix species and the isolates from non-ruminants were all species similar to Piromyces spp. A defined medium is described which supported growth of all the isolates, and was used to examine growth characteristics of the different strains. For each fungus the lipid phosphate content was determined after growth on cellobiose and the resulting values were used to estimate fungal biomass after growth on solid substrates. The ability of isolates from ruminants and non-ruminants to digest both wheat straw and cellulose was comparable. More than 90% and 60%, respectively, of filter paper cellulose and wheat straw were digested by most strains within 60-78 h. Growth of two fungi, isolated from rumen fluid of a sheep (Neocallimastix strain N1) and from faeces of an Indian rhinoceros (Piromyces strain R1), on cellobiose was studied in detail. Fungal growth yields on cellobiose were 64.1 g (mol substrate)-1 for N1 and 34.2 g mol-1 for R1. The major fermentation products of both strains were formate, lactate, acetate, ethanol and hydrogen. PMID:1919514

  6. Modulation of sheep ruminal urea transport by ammonia and pH.

    PubMed

    Lu, Zhongyan; Stumpff, Friederike; Deiner, Carolin; Rosendahl, Julia; Braun, Hannah; Abdoun, Khalid; Aschenbach, Jörg R; Martens, Holger

    2014-09-01

    Ruminal fermentation products such as short-chain fatty acids (SCFA) and CO2 acutely stimulate urea transport across the ruminal epithelium in vivo, whereas ammonia has inhibitory effects. Uptake and signaling pathways remain obscure. The ruminal expression of SLC14a1 (UT-B) was studied using polymerase chain reaction (PCR). The functional short-term effects of ammonia on cytosolic pH (pHi) and ruminal urea transport across native epithelia were investigated using pH-sensitive microelectrodes and via flux measurements in Ussing chambers. Two variants (UT-B1 and UT-B2) could be fully sequenced from ovine ruminal cDNA. Functionally, transport was passive and modulated by luminal pH in the presence of SCFA and CO2, rising in response to luminal acidification to a peak value at pH 5.8 and dropping with further acidification, resulting in a bell-shaped curve. Presence of ammonia reduced the amplitude, but not the shape of the relationship between urea flux and pH, so that urea flux remained maximal at pH 5.8. Effects of ammonia were concentration dependent, with saturation at 5 mmol/l. Clamping the transepithelial potential altered the inhibitory potential of ammonia on urea flux. Ammonia depolarized the apical membrane and acidified pHi, suggesting that, at physiological pH (< 7), uptake of NH4 (+) into the cytosol may be a key signaling event regulating ruminal urea transport. We conclude that transport of urea across the ruminal epithelium involves proteins subject to rapid modulation by manipulations that alter pHi and the cytosolic concentration of NH4 (+). Implications for epithelial and ruminal homeostasis are discussed.

  7. End product yields from the extraruminal fermentation of various polysaccharide, protein and nucleic acid components of biofuels feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Extraruminal” fermentations, employing mixed ruminal bacterial consortia incubated in vitro, are capable of fermenting a complex array of biomass materials to mixtures of volatile fatty acids (VFA), methane, and carbon dioxide. Most of the potential energy in the biomass feedstock is retained in th...

  8. Effect of nitroethane, dimethyl-2-nitroglutarate and 2-nitro-methyl-propionate on ruminal methane production and hydrogen balance in vitro.

    PubMed

    Anderson, Robin C; Huwe, Janice K; Smith, David J; Stanton, Thaddeus B; Krueger, Nathan A; Callaway, Todd R; Edrington, Thomas S; Harvey, Roger B; Nisbet, David J

    2010-07-01

    Ruminal methanogenesis is considered a digestive inefficiency that results in the loss of 2-12% of the host's gross energy intake and contributes nearly 20% to the United States annual CH(4) emissions. Presently, the effects of the known CH(4) inhibitor, nitroethane, and two synthetic nitrocompounds, dimethyl-2-nitroglutarate and 2-nitro-methyl-propionate, on ruminal CH(4) production and fermentation were evaluated in vitro. After 24 h incubation at 39 degrees C under 100% CO(2), ruminal fluid cultures treated with 2.97 or 11.88 mumol ml(-1) of the respective nitrocompounds produced > 92% less CH(4) (P < 0.05) than non-treated controls. Quantification of fermentation end-products produced and H(2) balance estimates indicate that fermentation efficiencies were not compromised by the nitro-treatments.

  9. Ruminants, climate change and climate policy

    NASA Astrophysics Data System (ADS)

    Ripple, William J.; Smith, Pete; Haberl, Helmut; Montzka, Stephen A.; McAlpine, Clive; Boucher, Douglas H.

    2014-01-01

    Greenhouse gas emissions from ruminant meat production are significant. Reductions in global ruminant numbers could make a substantial contribution to climate change mitigation goals and yield important social and environmental co-benefits.

  10. Rumination and multi-modal emotional reactivity.

    PubMed

    Hilt, Lori M; Aldao, Amelia; Fischer, Kelsey

    2015-01-01

    Rumination, a cognitive process that involves passively and repetitively focusing on negative feelings and their consequences, has been linked to negative emotional outcomes. Previous research suggests that rumination may lead to deleterious outcomes through prolonging emotional reactivity; however, evidence supporting the link between rumination and reactivity has been mixed. In the present study, we examined the relationship between state and trait rumination and multi-modal emotional reactivity (i.e., hypothalamic-pituitary-adrenal axis, autonomic nervous system, subjective experience). Fifty undergraduates participated in a social evaluative laboratory stressor. They also reported on their general tendency to ruminate and their use of rumination in response to this particular laboratory stressor. State, but not trait, rumination was associated with increases in cortisol and negative affect. Findings underscore the importance of multi-modal assessment of emotional reactivity and suggest important implications for rumination following a stressor.

  11. Peste des petits ruminants in Arabian wildlife.

    PubMed

    Kinne, J; Kreutzer, R; Kreutzer, M; Wernery, U; Wohlsein, P

    2010-08-01

    Recurrence of peste des petits ruminants (PPR) was diagnosed in the United Arabian Emirates in several wild ruminants confirmed by morphological, immunohistochemical, serological and molecular findings. Phylogenetic analysis revealed that the virus strain belongs to lineage IV, which is different to some previously isolated PPR strains from the Arabian Peninsula. This study shows that wild ruminants may play an important epidemiological role as virus source for domestic small ruminants.

  12. Enteric methane mitigation technologies for ruminant livestock: a synthesis of current research and future directions.

    PubMed

    Patra, Amlan Kumar

    2012-04-01

    Enteric methane (CH(4)) emission in ruminants, which is produced via fermentation of feeds in the rumen and lower digestive tract by methanogenic archaea, represents a loss of 2% to 12% of gross energy of feeds and contributes to global greenhouse effects. Globally, about 80 million tonnes of CH(4) is produced annually from enteric fermentation mainly from ruminants. Therefore, CH(4) mitigation strategies in ruminants have focused to obtain economic as well as environmental benefits. Some mitigation options such as chemical inhibitors, defaunation, and ionophores inhibit methanogenesis directly or indirectly in the rumen, but they have not confirmed consistent effects for practical use. A variety of nutritional amendments such as increasing the amount of grains, inclusion of some leguminous forages containing condensed tannins and ionophore compounds in diets, supplementation of low-quality roughages with protein and readily fermentable carbohydrates, and addition of fats show promise for CH(4) mitigation. These nutritional amendments also increase the efficiency of feed utilization and, therefore, are most likely to be adopted by farmers. Several new potential technologies such as use of plant secondary metabolites, probiotics and propionate enhancers, stimulation of acetogens, immunization, CH(4) oxidation by methylotrophs, and genetic selection of low CH(4)-producing animals have emerged to decrease CH(4) production, but these require extensive research before they can be recommended to livestock producers. The use of bacteriocins, bacteriophages, and development of recombinant vaccines targeting archaeal-specific genes and cell surface proteins may be areas worthy of investigation for CH(4) mitigation as well. A combination of different CH(4) mitigation strategies should be adopted in farm levels to substantially decrease methane emission from ruminants. Evidently, comprehensive research is needed to explore proven and reliable CH(4) mitigation technologies

  13. Isolation and characterization of an atypical Listeria monocytogenes associated with a canine urinary tract infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Listeria monocytogenes, a well-described cause of encephalitis and abortion in ruminants and of food-borne illness in humans, is rarely associated with disease in companion animals. A case of urinary tract infection associated with an atypical, weakly hemolytic L. monocytogenes strain is described i...

  14. Fermentation industry

    SciTech Connect

    Irvine, R.L.

    1980-06-01

    This article reviews current literature on the fermentation industry. The reuse, recycling and recovery of by-products previously discarded as waste are mentioned, including a Swedish brewery that hopes to reduce discharge of pollutants and the production of single cell protein from a variety of fermentation wastes. The treatment of wastes to produce food substitutes and fertilizers is mentioned together with treatment methods used in distilleries, wineries and in the pharmaceutical industry. (87 References)

  15. Rumination and Performance in Dynamic, Team Sport.

    PubMed

    Roy, Michael M; Memmert, Daniel; Frees, Anastasia; Radzevick, Joseph; Pretz, Jean; Noël, Benjamin

    2015-01-01

    People high in rumination are good at tasks that require persistence whereas people low in rumination is good at tasks that require flexibility. Here we examine real world implications of these differences in dynamic, team sport. In two studies, we found that professional male football (soccer) players from Germany and female field hockey players on the US national team were lower in rumination than were non-athletes. Further, low levels of rumination were associated with a longer career at a higher level in football players. Results indicate that athletes in dynamic, team sport might benefit from the flexibility associated with being low in rumination. PMID:26779110

  16. Rumination and Performance in Dynamic, Team Sport

    PubMed Central

    Roy, Michael M.; Memmert, Daniel; Frees, Anastasia; Radzevick, Joseph; Pretz, Jean; Noël, Benjamin

    2016-01-01

    People high in rumination are good at tasks that require persistence whereas people low in rumination is good at tasks that require flexibility. Here we examine real world implications of these differences in dynamic, team sport. In two studies, we found that professional male football (soccer) players from Germany and female field hockey players on the US national team were lower in rumination than were non-athletes. Further, low levels of rumination were associated with a longer career at a higher level in football players. Results indicate that athletes in dynamic, team sport might benefit from the flexibility associated with being low in rumination. PMID:26779110

  17. Urinary incontinence - injectable implant

    MedlinePlus

    ... deficiency repair; ISD repair; Injectable bulking agents for stress urinary incontinence ... RR, Blaivas JM, Gormley EA, et al. Female Stress Urinary Incontinence Update Panel of the American Urological Association Education ...

  18. Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows.

    PubMed

    Peyrat, J; Baumont, R; Le Morvan, A; Nozière, P

    2016-01-01

    The aim of this study was to evaluate the effect of stage of maturity at harvest on extent of starch, neutral detergent fiber (NDF), and protein digestion, and rumen fermentation in dry cows fed whole-plant corn silage from different hybrids. Four nonlactating Holstein cows cannulated at the rumen and proximal duodenum were fed 4 corn silages differing in hybrid (flint vs. flint-dent) and maturity stage (early vs. late) in a 4 × 4 Latin square design. From early to late maturity, starch content increased (from 234.5 to 348.5 g/kg), whereas total-tract (99.7 to 94.5%) and ruminal starch digestibility (91.3 to 86.5%) decreased significantly. The decrease in ruminal starch digestibility with increasing maturity was similar between hybrids. No effects were found of maturity, hybrid, or maturity × hybrid interaction on total-tract NDF digestibility, ruminal NDF digestibility, true digestibility of N and organic matter in the rumen, or microbial synthesis. Harvesting at later maturity led to increased ruminal ammonia, total volatile fatty acid concentrations, and acetate/propionate ratio but not pH. This study concludes that delaying date of harvest modifies the proportions of digestible starch and NDF supplied to cattle. Adjusting date of corn harvest to modulate amount of rumen-digested starch could be used as a strategy to control nutrient delivery to ruminants.

  19. Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows.

    PubMed

    Peyrat, J; Baumont, R; Le Morvan, A; Nozière, P

    2016-01-01

    The aim of this study was to evaluate the effect of stage of maturity at harvest on extent of starch, neutral detergent fiber (NDF), and protein digestion, and rumen fermentation in dry cows fed whole-plant corn silage from different hybrids. Four nonlactating Holstein cows cannulated at the rumen and proximal duodenum were fed 4 corn silages differing in hybrid (flint vs. flint-dent) and maturity stage (early vs. late) in a 4 × 4 Latin square design. From early to late maturity, starch content increased (from 234.5 to 348.5 g/kg), whereas total-tract (99.7 to 94.5%) and ruminal starch digestibility (91.3 to 86.5%) decreased significantly. The decrease in ruminal starch digestibility with increasing maturity was similar between hybrids. No effects were found of maturity, hybrid, or maturity × hybrid interaction on total-tract NDF digestibility, ruminal NDF digestibility, true digestibility of N and organic matter in the rumen, or microbial synthesis. Harvesting at later maturity led to increased ruminal ammonia, total volatile fatty acid concentrations, and acetate/propionate ratio but not pH. This study concludes that delaying date of harvest modifies the proportions of digestible starch and NDF supplied to cattle. Adjusting date of corn harvest to modulate amount of rumen-digested starch could be used as a strategy to control nutrient delivery to ruminants. PMID:26585483

  20. Effects of antibacterial agents on in vitro ovine ruminal biotransformation of the hepatotoxic pyrrolizidine alkaloid jacobine.

    PubMed

    Wachenheim, D E; Blythe, L L; Craig, A M

    1992-08-01

    Ingestion of pyrrolizidine alkaloids, naturally occurring plant toxins, causes illness and death in a number of animal species. Senecio jacobaea pyrrolizidine alkaloids cause significant economic losses due to livestock poisoning, particularly in the Pacific Northwest. Some sheep are resistant to pyrrolizidine alkaloid poisoning, because ovine ruminal biotransformation detoxifies free pyrrolizidine alkaloids in digesta. Antibacterial agents modify ruminal fermentation. Pretreatment with antibacterial agents may account for some animal variability in resistance to pyrrolizidine alkaloid toxicosis, and antibacterial agents can also be used for characterizing ruminal pyrrolizidine alkaloid-biotransforming microflora. The objective of this study was to evaluate the effects of antibacterial agents on biotransformation of a predominant S. jacobaea pyrrolizidine alkaloid, jacobine, in ovine ruminal contents. Ovine ruminal jacobine biotransformation was tested in vitro with 20 independent antibacterial agents. Low amounts of rifampin and erythromycin prevented jacobine biotransformation. Chlortetracycline, lasalocid, monensin, penicillin G, and tetracycline were slightly less effective at inhibiting jacobine biotransformation. Bacitracin, crystal violet, kanamycin, and neomycin were moderately inhibitory against jacobine biotransformation. Brilliant green, chloramphenicol, gramicidin, nalidixic acid, polymyxin B SO4, sodium azide, streptomycin, sulfisoxazole, and vancomycin had little to no effect on jacobine biotransformation. The antibiotics that were most effective at inhibiting biotransformation were those that are active against gram-positive bacteria. Therefore, gram-positive bacteria are most likely critical members of the jacobine-biotransforming consortia.

  1. [Infection and urinary lithiasis].

    PubMed

    Bruyere, F; Traxer, O; Saussine, C; Lechevallier, E

    2008-12-01

    Urinary infection is a risk factor for lithiasis. Urinary tract infection is a factor of gravity of urinary stone. The stone can exist before the infection which colonizes the stone, infected stone. The infection can be the cause of the stone, infectious stone (struvite stone). Infectious stones can be secondary to a non urinary infectious agent, oxalobacter formigenes (OF) and nanobacteria. The first-line treatment of struvite stone is percutaneous surgery. Perioperative antibiotics, renal urines and stone cultures are obligatory. PMID:19033073

  2. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring

    PubMed Central

    2016-01-01

    Abstract Evaluation of the radio‐transmission pH‐measurement system for monitoring the ruminal pH and subacute ruminal acidosis (SARA) in cattle is described. This is done in order to reveal the possible application of this system for detection and pathophysiological research of SARA by continuous ruminal pH measurement. The possibility of using this system for assessment of the ruminal pH in SARA cattle, and the presence of negative correlation between the ruminal pH and ruminal temperature in heathy and SARA cattle were determined. In addition, the 16S rRNA gene pyrosequencing analysis showed that the ruminal microbial community was simpler in SARA cattle, and the bacterial numbers in SARA cattle were lower than those in healthy hay‐fed cattle. Concentrate feeding might have reduced the diversity of the ruminal microbial community. Changes in the ruminal microbial community of SARA cattle might be related to the changes in ruminal pH followed by the decrease in the number of some bacteria. Continuous monitoring of the ruminal pH using the radio‐transmission pH‐measurement system would be applied for detection and prevention of SARA in the field and pathophysiological research of SARA, including ruminal zymology and bacteriology, which have been determined previously by sampling of the ruminal fluid and measuring of ruminal pH. PMID:26279060

  3. Pathophysiological evaluation of subacute ruminal acidosis (SARA) by continuous ruminal pH monitoring.

    PubMed

    Sato, Shigeru

    2016-02-01

    Evaluation of the radio-transmission pH-measurement system for monitoring the ruminal pH and subacute ruminal acidosis (SARA) in cattle is described. This is done in order to reveal the possible application of this system for detection and pathophysiological research of SARA by continuous ruminal pH measurement. The possibility of using this system for assessment of the ruminal pH in SARA cattle, and the presence of negative correlation between the ruminal pH and ruminal temperature in heathy and SARA cattle were determined. In addition, the 16S rRNA gene pyrosequencing analysis showed that the ruminal microbial community was simpler in SARA cattle, and the bacterial numbers in SARA cattle were lower than those in healthy hay-fed cattle. Concentrate feeding might have reduced the diversity of the ruminal microbial community. Changes in the ruminal microbial community of SARA cattle might be related to the changes in ruminal pH followed by the decrease in the number of some bacteria. Continuous monitoring of the ruminal pH using the radio-transmission pH-measurement system would be applied for detection and prevention of SARA in the field and pathophysiological research of SARA, including ruminal zymology and bacteriology, which have been determined previously by sampling of the ruminal fluid and measuring of ruminal pH.

  4. Faecal particle size in free-ranging primates supports a 'rumination' strategy in the proboscis monkey (Nasalis larvatus).

    PubMed

    Matsuda, Ikki; Tuuga, Augustine; Hashimoto, Chie; Bernard, Henry; Yamagiwa, Juichi; Fritz, Julia; Tsubokawa, Keiko; Yayota, Masato; Murai, Tadahiro; Iwata, Yuji; Clauss, Marcus

    2014-04-01

    In mammalian herbivores, faecal particle size indicates chewing efficiency. Proboscis monkeys (Nasalis larvatus) are foregut fermenters in which regurgitation and remastication (i.e. rumination) was observed in the wild, but not with the same consistency as found in ruminants and camelids. To test whether this species has exceptional chewing efficiency among primates, as ruminants have among mammals, we compared faecal particle size in free-ranging specimens with those of 12 other primate species. The discrete mean faecal particle size (dMEAN) increased with body mass (M) as dMEAN (mm) = 0.65 (95% confidence interval 0.49-0.87) M((0.33 (0.23-0.43)) in simple-stomached species. At 0.53 ± 0.09 mm, dMEAN of proboscis monkeys was particularly small for their average M (15 kg) and significantly smaller than values of two other foregut fermenting primate species. While we cannot exclude other reasons for the exceptional chewing efficiency in proboscis monkeys, this represents circumstantial evidence for regular use of rumination in this species. Thus, proboscis monkeys might be a model for convergent evolution towards rumination in a non-ungulate taxon. PMID:24380969

  5. Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro.

    PubMed

    Weimer, P J; Lopez-Guisa, J M; French, A D

    1990-08-01

    The digestion kinetics of a variety of pure celluloses were examined by using an in vitro assay employing mixed ruminal microflora and a modified detergent extraction procedure to recover residual cellulose. Digestion of all of the celluloses was described by a discontinuous first-order rate equation to yield digestion rate constants and discrete lag times. These kinetic parameters were compared with the relative crystallinity indices and estimated accessible surface areas of the celluloses. For type I celluloses having similar crystallinities and simple nonaggregating particle morphologies, the fermentation rate constants displayed a strong positive correlation (r2 = 0.978) with gross specific surface area; lag time exhibited a weaker, negative correlation (r2 = 0.930) with gross specific surface area. Crystallinity was shown to have a relatively minor effect on the digestion rate and lag time. Swelling of microcrystalline cellulose with 72 to 77% phosphoric acid yielded substrates which were fermented slightly more rapidly than the original material. However, treatment with higher concentrations of phosphoric acid resulted in a more slowly fermented substrate, despite a decrease in crystallinity and an increase in pore volume. This reduced fermentation rate was apparently due to the partial conversion of the cellulose from the type I to the type II allomorph, since mercerized (type II) cellulose was also fermented more slowly, and only after a much longer lag period. The results are consistent with earlier evidence for the cell-associated nature of cellulolytic enzymes of ruminal bacteria and suggest that ruminal microflora do not rapidly adapt to utilization of celluloses with altered unit cell structures.

  6. Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorganisms in vitro.

    PubMed Central

    Weimer, P J; Lopez-Guisa, J M; French, A D

    1990-01-01

    The digestion kinetics of a variety of pure celluloses were examined by using an in vitro assay employing mixed ruminal microflora and a modified detergent extraction procedure to recover residual cellulose. Digestion of all of the celluloses was described by a discontinuous first-order rate equation to yield digestion rate constants and discrete lag times. These kinetic parameters were compared with the relative crystallinity indices and estimated accessible surface areas of the celluloses. For type I celluloses having similar crystallinities and simple nonaggregating particle morphologies, the fermentation rate constants displayed a strong positive correlation (r2 = 0.978) with gross specific surface area; lag time exhibited a weaker, negative correlation (r2 = 0.930) with gross specific surface area. Crystallinity was shown to have a relatively minor effect on the digestion rate and lag time. Swelling of microcrystalline cellulose with 72 to 77% phosphoric acid yielded substrates which were fermented slightly more rapidly than the original material. However, treatment with higher concentrations of phosphoric acid resulted in a more slowly fermented substrate, despite a decrease in crystallinity and an increase in pore volume. This reduced fermentation rate was apparently due to the partial conversion of the cellulose from the type I to the type II allomorph, since mercerized (type II) cellulose was also fermented more slowly, and only after a much longer lag period. The results are consistent with earlier evidence for the cell-associated nature of cellulolytic enzymes of ruminal bacteria and suggest that ruminal microflora do not rapidly adapt to utilization of celluloses with altered unit cell structures. PMID:2403252

  7. An attentional scope model of rumination.

    PubMed

    Whitmer, Anson J; Gotlib, Ian H

    2013-09-01

    Rumination, defined as repetitive thinking about negative information, has been found to lead to serious maladaptive consequences, including longer and more severe episodes of major depression. In this review, we present and discuss research findings motivated by the formulation that individual differences in cognitive processes that control how information is processed influence the likelihood that thoughts will become repetitive and negative. Several studies have demonstrated that a tendency to ruminate (i.e., trait rumination) is related to difficulties updating working memory (WM) and disengaging from and forgetting no-longer-relevant information. Other investigators have documented that trait rumination is also associated with an enhanced ability to ignore distracting information and with more stable maintenance of task-relevant information. In contrast to trait rumination, a state of rumination has been found to be related to widespread deficits in cognitive control. In this article, we discuss how the current accounts of control functioning cannot explain this pattern of anomalous control functioning. To explain these findings, including unexpected and contradictory results, we present an attentional scope model of rumination that posits that a constricted array of thoughts, percepts, and actions that are activated in WM or available for selection from long-term memory affects the control functioning of trait ruminators. This model explains, at a cognitive level, why rumination is particularly likely to arise when individuals are in a negative mood state; it also accounts for a number of findings outside of the rumination-control literature and generates several novel predictions. PMID:23244316

  8. Characterizing the Ruminative Process in Young Adolescents

    PubMed Central

    Hilt, Lori M.; Pollak, Seth D.

    2014-01-01

    Objective Rumination involves repeatedly and passively dwelling on negative feelings and brooding about their causes and consequences. Prior work has found that rumination predicts many forms of psychopathology including anxiety, binge eating, binge drinking, self-injury, and especially depression (Nolen-Hoeksema, Wisco, & Lyubomirsky, 2008). In the present study, we attempt to characterize the ruminative process in real time in young adolescents, specifically by examining factors that predict rumination following an interpersonal stressor. Method A community sample of 105 youth ages 9-14 (70% girls; 66% Caucasian) completed questionnaires regarding depressive symptoms and trait rumination along with an assessment of selective attention using an emotional faces dot-probe task. Participants then underwent an interpersonal stressor and audio rumination induction in the laboratory during which time thoughts were sampled regularly and coded. Results Results indicate that negative self-referential thought is a common response to the stressor and is predicted by trait rumination scores. While most participants were able to disengage from this type of thinking, 10.5% persisted through (i.e., ruminated) until the end of the study. These individuals were characterized by higher depressive symptoms and an attentional bias away from happy (relative to neutral) faces. Conclusions Differences in attentional processes may characterize rumination in youth. Implications for the measurement of rumination as well as treatment are discussed. PMID:23477416

  9. Fermentation Industry.

    ERIC Educational Resources Information Center

    Grady, C. P. L., Jr.; Grady, J. K.

    1978-01-01

    Presents a literature review of wastes from the fermentation industry, covering publications of 1976-77. This review focuses on: (1) alcoholic beverage production; (2) pharmaceuticals and biochemicals production; and (3) biomass production. A list of 62 references is also presented. (HM)

  10. III. Quantitative aspects of phosphorus excretion in ruminants.

    PubMed

    Bravo, David; Sauvant, Daniel; Bogaert, Catherine; Meschy, François

    2003-01-01

    Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus content). Another source of faecal endogenous phosphorus is rumen microbial phosphorus that escaped solubilisation during post-rumen digestion. All factors stimulating microbial growth would increase phosphorus uptake by the rumen microbes and consequently the faecal endogenous phosphorus. Understanding the determinants of faecal endogenous phosphorus flow will help to precise the determination of net phosphorus requirements for maintenance. The role of plasma phosphorus in urinary phosphorus loss is discussed.

  11. Characterization of ruminal temperature and its relationship with ruminal pH in beef heifers fed growing and finishing diets.

    PubMed

    Mohammed, R; Hünerberg, M; McAllister, T A; Beauchemin, K A

    2014-10-01

    ) = 0.60, P < 0.001, n = 63). Mean T rum and maximum T rum were greater for CTL f than CDDGS f, WDDGS f, and WDDGS f+O. When individual animal data were examined, heifers with duration T rum > 40°C did not necessarily have greater duration pH < 5.2 or pH < 5.5. Ruminal temperature has the potential to predict ruminal pH, likely owing to the biological relationship between acid production and the heat of fermentation. Exploitation of this relationship to predict pH could provide a means of overcoming the problems associated with long-term monitoring of ruminal pH using electrode-based approaches.

  12. Vertebrate gastrointestinal fermentation: transport mechanisms for volatile fatty acids.

    PubMed

    Titus, E; Ahearn, G A

    1992-04-01

    Symbiotic microbial fermentation of plant polysaccharides can potentially provide significant levels of nutrients to host organisms in the form of volatile fatty acids (VFAs). Microbial fermentation can account for as much as 10% of maintenance energy requirements in carnivores and omnivores, and up to 80% in ruminant herbivores. In this review epithelial transport processes for the products of microbial fermentation are described in various mammalian and lower vertebrate species. Studies of transepithelial movement of VFA in vertebrate gastrointestinal systems have mostly been investigated in the mammals. In these it is widely held that the transmural movement of VFA is a concentration-dependent passive diffusion process whereby VFA is transported in the protonated form. A different model is described in this paper for carrier-mediated VFA transport, by way of anionic exchange with intracellular bicarbonate, in the intestine of a fermenting herbivorous teleost. These models for diffusive and carrier-mediated transport are compared and discussed from both physiological and experimental viewpoints.

  13. Snout Shape in Extant Ruminants

    PubMed Central

    Tennant, Jonathan P.; MacLeod, Norman

    2014-01-01

    Snout shape is a prominent aspect of herbivore feeding ecology, interacting with both forage selectivity and intake rate. Previous investigations have suggested ruminant feeding styles can be discriminated via snout shape, with grazing and browsing species characterised by ‘blunt’ and ‘pointed’ snouts respectively, often with specification of an ‘intermediate’ sub-grouping to represent ambiguous feeding styles and/or morphologies. Snout shape morphology is analysed here using a geometric morphometric approach to compare the two-dimensional profiles of the premaxilla in ventral aspect for a large sample of modern ruminant species, for which feeding modes are known from secondary criteria. Results suggest that, when browsing and grazing ruminants are classified ecologically based on a range of feeding style indicators, they cannot be discriminated unambiguously on the basis of snout profile shape alone. Profile shapes in our sample form a continuum with substantial overlap between groupings and a diverse range of morphologies. Nevertheless, we obtained an 83.8 percent ratio of correct post hoc feeding style categorisations based on the proximity of projected profile shapes to group centroids in the discriminant space. Accordingly, this procedure for identifying species whose feeding strategy is ‘unknown’ can be used with a reasonable degree of confidence, especially if backed-up by additional information. Based on these results we also refine the definitions of snout shape varieties, taking advantage of the descriptive power that geometric morphometrics offers to characterize the morphological disparities observed. The shape variance exhibited by both browsing and grazing ruminants corresponds strongly to body mass, providing further evidence for an interaction between snout shape, feeding style, and body size evolution. Finally, by exploring the role of phylogenetic similarity in snout shape, we find a slight increase in successful categorisation

  14. Snout shape in extant ruminants.

    PubMed

    Tennant, Jonathan P; MacLeod, Norman

    2014-01-01

    Snout shape is a prominent aspect of herbivore feeding ecology, interacting with both forage selectivity and intake rate. Previous investigations have suggested ruminant feeding styles can be discriminated via snout shape, with grazing and browsing species characterised by 'blunt' and 'pointed' snouts respectively, often with specification of an 'intermediate' sub-grouping to represent ambiguous feeding styles and/or morphologies. Snout shape morphology is analysed here using a geometric morphometric approach to compare the two-dimensional profiles of the premaxilla in ventral aspect for a large sample of modern ruminant species, for which feeding modes are known from secondary criteria. Results suggest that, when browsing and grazing ruminants are classified ecologically based on a range of feeding style indicators, they cannot be discriminated unambiguously on the basis of snout profile shape alone. Profile shapes in our sample form a continuum with substantial overlap between groupings and a diverse range of morphologies. Nevertheless, we obtained an 83.8 percent ratio of correct post hoc feeding style categorisations based on the proximity of projected profile shapes to group centroids in the discriminant space. Accordingly, this procedure for identifying species whose feeding strategy is 'unknown' can be used with a reasonable degree of confidence, especially if backed-up by additional information. Based on these results we also refine the definitions of snout shape varieties, taking advantage of the descriptive power that geometric morphometrics offers to characterize the morphological disparities observed. The shape variance exhibited by both browsing and grazing ruminants corresponds strongly to body mass, providing further evidence for an interaction between snout shape, feeding style, and body size evolution. Finally, by exploring the role of phylogenetic similarity in snout shape, we find a slight increase in successful categorisation when repeating the

  15. Toxicology of sulfur in ruminants: review

    SciTech Connect

    Kandylis, K.

    1984-10-01

    This review deals with the toxicology of sulfur in ruminants including toxicity, neurotoxic effects, and mechanism of toxic action of hydrogen sulfide, clinical signs, and treatment. It will report effects of excessive intake of sulfur by ruminants on feed intake, animal performance, ruminal digestion and motility, rumination, and other physiological functions. Poisoning of animals with sulfur from industrial emissions (sulfur dioxide) also is discussed. Excessive quantities of dietary sulfur (above .3 to .4%) as sulfate or elemental sulfur may cause toxic effects and in extreme cases can be fatal. The means is discussed whereby consumption of excessive amounts of sulfur leads to toxic effects. 53 references, 1 table.

  16. Utilization of tea grounds as feedstuff for ruminant

    PubMed Central

    2013-01-01

    Researches on tea have been developed for decades, which prove that tea, especially green tea, has multiple functional components. With the rapid development of beverage industry, the resultant large amounts of tea grounds attract great attention. However, unreasonable utilization of tea grounds would lead to great waste and environmental pollution, especially in summer. In view of the high nutritive value and multiple functional components, tea grounds could be used as feedstuff. By now, researches of tea grounds as feedstuff are mainly on ruminant, as the utilization on other animals is limited to lower level due to high fiber content. Therefore, the following review will begin with a brief introduction of tea grounds and the possible utilization of tea grounds as feedstuff, and then elaborate on the application of ensiling and total mixed ration on ruminant. Apart from the fermentation quality, nutritive value is also provided to assess feasibilities of using tea grounds as feedstuff resources. Finally, a summary on the utilization situation and future direction of using tea grounds as feedstuff is provided in this review. PMID:24369099

  17. Effects of Condensed Tannins in Mao (Antidesma thwaitesianum Muell. Arg.) Seed Meal on Rumen Fermentation Characteristics and Nitrogen Utilization in Goats

    PubMed Central

    Gunun, P.; Wanapat, M.; Gunun, N.; Cherdthong, A.; Sirilaophaisan, S.; Kaewwongsa, W.

    2016-01-01

    Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native×Anglo Nubian) goats with initial body weight (BW) 20±2 kg were randomly assigned to a 4×4 Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen (NH3-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane (CH4) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate

  18. Effects of Condensed Tannins in Mao (Antidesma thwaitesianum Muell. Arg.) Seed Meal on Rumen Fermentation Characteristics and Nitrogen Utilization in Goats.

    PubMed

    Gunun, P; Wanapat, M; Gunun, N; Cherdthong, A; Sirilaophaisan, S; Kaewwongsa, W

    2016-08-01

    Mao seed is a by-product of the wine and juice industry, which could be used in animal nutrition. The current study was designed to determine the effect of supplementation of mao (Antidesma thwaitesianum Muell. Arg.) seed meal (MOSM) containing condensed tannins (CT) on rumen fermentation, nitrogen (N) utilization and microbial protein synthesis in goats. Four crossbred (Thai Native×Anglo Nubian) goats with initial body weight (BW) 20±2 kg were randomly assigned to a 4×4 Latin square design. The four dietary treatments were MOSM supplementation at 0%, 0.8%, 1.6%, and 2.4% of total dry matter (DM) intake, respectively. During the experimental periods, all goats were fed a diet containing roughage to concentrate ratio of 60:40 at 3.0% BW/d and pangola grass hay was used as a roughage source. Results showed that supplementation with MOSM did not affect feed intake, nutrient intakes and apparent nutrient digestibility (p>0.05). In addition, ruminal pH and ammonia nitrogen (NH3-N) were not influenced by MOSM supplementation, whilst blood urea nitrogen was decreased quadraticly (p<0.05) in goats supplemented with MOSM at 2.4% of total DM intake. Propionate was increased linearly with MOSM supplementation, whereas acetate and butyrate were remained the same. Moreover, estimated ruminal methane (CH4) was decreased linearly (p<0.05) when goats were fed with MOSM at 1.6% and 2.4% of total DM intake. Numbers of bacteria and protozoa were similar among treatments (p>0.05). There were linear decreases in urinary N (p<0.01) and total N excretion (p<0.01) by MOSM supplementation. Furthermore, N retention was increased linearly (p<0.05) when goats were fed with MOSM supplementation at 1.6% and 2.4% of total DM intake. Microbial protein synthesis were not significantly different among treatments (p>0.05). From the current study, it can be concluded that supplementation of MOSM at 1.6% to 2.4% of total DM intake can be used to modify ruminal fermentation, especially propionate

  19. Linseed oil supplementation to dairy cows fed diets based on red clover silage or corn silage: Effects on methane production, rumen fermentation, nutrient digestibility, N balance, and milk production.

    PubMed

    Benchaar, C; Hassanat, F; Martineau, R; Gervais, R

    2015-11-01

    The objective of this study was to examine the effect of linseed oil (LO) supplementation to red clover silage (RCS)- or corn silage (CS)-based diets on enteric CH4 emissions, ruminal fermentation characteristics, nutrient digestibility, N balance, and milk production. Twelve rumen-cannulated lactating cows were used in a replicated 4×4 Latin square design (35-d periods) with a 2×2 factorial arrangement of treatments. Cows were fed (ad libitum) RCS- or CS-based diets [forage:concentrate ratio 60:40; dry matter (DM) basis] without or with LO (4% of DM). Supplementation of LO to the RCS-based diet reduced enteric CH4 production (-9%) and CH4 energy losses (-11%) with no adverse effects on DM intake, digestion, ruminal fermentation characteristics, protozoa numbers, or milk production. The addition of LO to the CS-based diet caused a greater decrease in CH4 production (-26%) and CH4 energy losses (-23%) but was associated with a reduction in DM intake, total-tract fiber digestibility, protozoa numbers, acetate:propionate ratio, and energy-corrected milk yield. Urinary N excretion (g/d) decreased with LO supplementation to RCS- and CS-based diets, suggesting reduced potential of N2O emissions. Results from this study show that the depressive effect of LO supplementation on enteric CH4 production is more pronounced with the CS- than with the RCS-based diet. However, because of reduced digestibility with the CS-based diet, the reduction in enteric CH4 production may be offset by higher CH4 emissions from manure storage. Thus, the type of forage of the basal diet should be taken into consideration when using fat supplementation as a dietary strategy to reduce enteric CH4 production from dairy cows.

  20. Rumen fermentation and production effects of Origanum vulgare L. leaves in lactating dairy cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A lactating cow trial was conducted to study the effects of dietary addition of oregano leaf material (Origanum vulgare L.; 0, control vs. 500 g/d, OV) on ruminal fermentation, methane production, total tract digestibility, manure gas emissions, N metabolism, organoleptic characteristics of milk, an...

  1. Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants.

    PubMed

    Singh, B; Satyanarayana, T

    2015-08-01

    Fungal phytases are histidine acid phosphatases, a subclass of acid phosphatases, which catalyse the hydrolysis of phytic acid resulting in the release of phosphate moieties and thus mitigate its antinutritional properties. The supplementation of feed with phytases increases the bioavailability of phosphorus and minerals in non-ruminant animals and reduces the phosphorus pollution due to phosphorus excretion in the areas of intensive livestock production. Although phytases are reported in plants, animals and micro-organisms, fungal sources are used extensively for the production of phytases on a commercial scale. Phytases have been produced by fungi in both solid-state fermentation (SSF) and submerged fermentation (SmF). The fungal phytases are high molecular weight proteins ranging from 35 to 500 kDa. They are optimally active within pH and temperature ranges between 4.5 and 6.0, and 45 and 70 °C respectively. Phytate degradation leads to amelioration in the nutritional status of foods and feeds by improving the availability of minerals, phosphorus and proteins in non-ruminant animals and human beings and thus mitigates the environmental phosphorus pollution. Our article focuses on the role of fungal phytases in improving nutritional value of foods and feeds with concomitant increase in growth of non-ruminant animals and mitigating environmental phosphorus pollution.

  2. Role of Fermentation in Improving Nutritional Quality of Soybean Meal — A Review

    PubMed Central

    Mukherjee, Runni; Chakraborty, Runu; Dutta, Abhishek

    2016-01-01

    Soybean meal (SBM), a commonly used protein source for animal feed, contains anti-nutritional factors such as trypsin inhibitor, phytate, oligosaccharides among others, which limit its utilization. Microbial fermentation using bacteria or fungi has the capability to improve nutritional value of SBM by altering the native composition. Both submerged and solid state fermentation processes can be used for this purpose. Bacterial and fungal fermentations result in degradation of various anti-nutritional factors, an increase in amount of small-sized peptides and improved content of both essential and non-essential amino acids. However, the resulting fermented products vary in levels of nutritional components as the two species used for fermentation differ in their metabolic activities. Compared to SBM, feeding non-ruminants with fermented SBM has several beneficial effects including increased average daily gain, improved growth performance, better protein digestibility, decreased immunological reactivity and undesirable morphological changes like absence of granulated pinocytotic vacuoles. PMID:26954129

  3. RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition.

    PubMed

    Firkins, J L; Yu, Z

    2015-04-01

    Metagenomics and high-throughput sequencing have greatly expanded our knowledge of the rumen microbiome. Surveys of all 4 cellular microbial groups (bacteria, archaea, protozoa, and fungi) reveal profound diversity. Even so, evidence exists for core members to perform key degradative or fermentative roles for the host. Some core members are functionally similar yet taxonomically diverse, and noncore members are particularly diverse and probably vary among diets, animals, and over time after feeding. Gains in functional knowledge are being made and offer much potential not only to improve fiber digestibility, decrease methane emissions, and improve efficiency of nitrogen usage but also to help explain the differences in nutrient digestibility or feed efficiency among animals fed the same diet. Integrated research using metagenomics, bioinformatics, traditional ruminant nutrition, and statistical inferences have provided opportunities for ruminant nutritionists and rumen microbiologists to work synergistically to improve nutrient utilization efficiency while minimizing output of wastes and emissions of methane and ammonia. Examples we highlight include residual feed intake, rumen biohydrogenation of unsaturated fatty acids, and dietary inclusion of ionophores. However, there are still some quantitative limitations in approaches being used. This review addresses knowledge gained and current limitations and challenges that remain. PMID:26020167

  4. RUMINANT NUTRITION SYMPOSIUM: How to use data on the rumen microbiome to improve our understanding of ruminant nutrition.

    PubMed

    Firkins, J L; Yu, Z

    2015-04-01

    Metagenomics and high-throughput sequencing have greatly expanded our knowledge of the rumen microbiome. Surveys of all 4 cellular microbial groups (bacteria, archaea, protozoa, and fungi) reveal profound diversity. Even so, evidence exists for core members to perform key degradative or fermentative roles for the host. Some core members are functionally similar yet taxonomically diverse, and noncore members are particularly diverse and probably vary among diets, animals, and over time after feeding. Gains in functional knowledge are being made and offer much potential not only to improve fiber digestibility, decrease methane emissions, and improve efficiency of nitrogen usage but also to help explain the differences in nutrient digestibility or feed efficiency among animals fed the same diet. Integrated research using metagenomics, bioinformatics, traditional ruminant nutrition, and statistical inferences have provided opportunities for ruminant nutritionists and rumen microbiologists to work synergistically to improve nutrient utilization efficiency while minimizing output of wastes and emissions of methane and ammonia. Examples we highlight include residual feed intake, rumen biohydrogenation of unsaturated fatty acids, and dietary inclusion of ionophores. However, there are still some quantitative limitations in approaches being used. This review addresses knowledge gained and current limitations and challenges that remain.

  5. Clicking away at co-rumination: co-rumination correlates across different modalities of communication.

    PubMed

    Keshishian, Ani C; Watkins, Melanie A; Otto, Michael W

    2016-11-01

    Co-rumination is associated with positive friendship quality (thought to buffer against anxiety and depression) but paradoxically higher levels of anxiety and depression. With the increasing use of technology for communication among adults, there is little known about co-rumination effects across different modalities of communication. In the current study, we examined co-rumination through four methods (i.e. in person, phone calls, text messaging, and social media) in two separate samples - college students and participants from the community. Classic co-rumination effects were found for in-person communications, and we found that co-rumination by telephone as well as by texting, for a college student sample only, mirrors some of these findings for in-person co-rumination. In studies of co-rumination, evaluation of multiple modes of communication is warranted.

  6. Clicking away at co-rumination: co-rumination correlates across different modalities of communication.

    PubMed

    Keshishian, Ani C; Watkins, Melanie A; Otto, Michael W

    2016-11-01

    Co-rumination is associated with positive friendship quality (thought to buffer against anxiety and depression) but paradoxically higher levels of anxiety and depression. With the increasing use of technology for communication among adults, there is little known about co-rumination effects across different modalities of communication. In the current study, we examined co-rumination through four methods (i.e. in person, phone calls, text messaging, and social media) in two separate samples - college students and participants from the community. Classic co-rumination effects were found for in-person communications, and we found that co-rumination by telephone as well as by texting, for a college student sample only, mirrors some of these findings for in-person co-rumination. In studies of co-rumination, evaluation of multiple modes of communication is warranted. PMID:27438655

  7. Investigation of the use of various plant extracts activity in ruminant

    NASA Astrophysics Data System (ADS)

    Yüca, Songül; Gül, Mehmet; Ćaǧlayan, Alper

    2016-04-01

    The prohibition of the use of antibiotics and as a result of the adverse effect on health of synthetic products, research has focused on natural feed additives. In recent years, the diet of farm animals many feed additives have been used for various purposes or continues. These include as used in ruminant rations as plant extract thyme, anise, pepper, mint, garlic, rosemary, cinnamon, parsley, bay leaf, coconut, like used herbal extracts and their effects on the performance of ruminants was investigated. Antioxidant, antifungal, antiviral, anti-inflamaotry is known to have effects of plant extract. By stimulating the digestive system of ruminants, they increase the activity of digestive enzymes, to prevent environmental pollution caused by manure, regulations rumen fermentation, inhibition of methane formation and protein degradability in the rumen as well as the animal is known to have many benefits. The structure of essential oils and plant extracts in this collection, examining the use of ruminant livestock events and the importance of the use in animal nutrition into practice will be discussed.

  8. Neural substrates of trait ruminations in depression.

    PubMed

    Mandell, Darcy; Siegle, Greg J; Shutt, Luann; Feldmiller, Josh; Thase, Michael E

    2014-02-01

    Rumination in depression is a risk factor for longer, more intense, and harder-to-treat depressions. But there appear to be multiple types of depressive rumination-whether they all share these vulnerability mechanisms, and thus would benefit from the same types of clinical attention is unclear. In the current study, we examined neural correlates of empirically derived dimensions of trait rumination in 35 depressed participants. These individuals and 29 never-depressed controls completed 17 self-report measures of rumination and an alternating emotion-processing/executive-control task during functional MRI (fMRI) assessment. We examined associations of regions of interest--the amygdala and other cortical regions subserving a potential role in deficient cognitive control and elaborative emotion-processing--with trait rumination. Rumination of all types was generally associated with increased sustained amygdala reactivity. When controlling for amygdala reactivity, distinct activity patterns in hippocampus were also associated with specific dimensions of rumination. We discuss the possibly utility of targeting more basic biological substrates of emotional reactivity in depressed patients who frequently ruminate. PMID:24661157

  9. Neural substrates of trait ruminations in depression

    PubMed Central

    Mandell, Darcy; Siegle, Greg; Shutt, Luann; Feldmiller, Josh; Thase, Michael E.

    2014-01-01

    Rumination in depression is a risk factor for longer, more intense, and harder-to-treat depressions. But there appear to be multiple types of depressive rumination – whether they all share these vulnerability mechanisms, and thus would benefit from the same types of clinical attention is unclear. In the current study, we examined neural correlates of empirically-derived dimensions of trait rumination in 35 depressed participants. These individuals and 29 never-depressed controls completed 17 self-report measures of rumination and an alternating emotion-processing/executive-control task during functional magnetic resonance imaging (fMRI) assessment. We examined associations of regions of interest—the amygdala and other cortical regions subserving a potential role in deficient cognitive control and elaborative emotion-processing—with trait rumination. Rumination of all types was generally associated with increased sustained amygdala reactivity. When controlling for amygdala reactivity, distinct activity patterns in hippocampus were also associated with specific dimensions of rumination. We discuss the possibly utility of targeting more basic biological substrates of emotional reactivity in depressed patients who frequently ruminate. PMID:24661157

  10. Effects of Peanut Butter on Ruminating.

    ERIC Educational Resources Information Center

    Greene, Katherine S.; And Others

    1991-01-01

    Effects of supplementary peanut butter on rumination behavior among five institutionalized mentally retarded adults were studied, by independently manipulating caloric density versus consistency of the peanut butter. Results showed an inverse relationship between rates of rumination and amount of peanut butter consumed, an effect primarily…

  11. 9 CFR 93.414 - Milk from quarantined ruminants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Milk from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.414 Milk from quarantined ruminants. Milk or cream from ruminants quarantined under the provisions of this part shall not be used by...

  12. 9 CFR 93.414 - Milk from quarantined ruminants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Milk from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.414 Milk from quarantined ruminants. Milk or cream from ruminants quarantined under the provisions of this part shall not be used by...

  13. 9 CFR 93.414 - Milk from quarantined ruminants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Milk from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.414 Milk from quarantined ruminants. Milk or cream from ruminants quarantined under the provisions of this part shall not be used by...

  14. 9 CFR 93.414 - Milk from quarantined ruminants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Milk from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.414 Milk from quarantined ruminants. Milk or cream from ruminants quarantined under the provisions of this part shall not be used by...

  15. 9 CFR 93.414 - Milk from quarantined ruminants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Milk from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.414 Milk from quarantined ruminants. Milk or cream from ruminants quarantined under the provisions of this part shall not be used by...

  16. 9 CFR 93.425 - Declaration for ruminants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Declaration for ruminants. 93.425... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.425 Declaration for ruminants. For all ruminants offered for importation from Mexico, the importer or his or her agent shall...

  17. 9 CFR 93.429 - Ruminants for immediate slaughter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Ruminants for immediate slaughter. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.429 Ruminants for immediate slaughter. Ruminants, other than sheep and goats, may be imported from Mexico, subject to...

  18. 9 CFR 93.425 - Declaration for ruminants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Declaration for ruminants. 93.425... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.425 Declaration for ruminants. For all ruminants offered for importation from Mexico, the importer or his or her agent shall...

  19. 9 CFR 93.429 - Ruminants for immediate slaughter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Ruminants for immediate slaughter. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.429 Ruminants for immediate slaughter. Ruminants, other than sheep and goats, may be imported from Mexico, subject to...

  20. 9 CFR 93.429 - Ruminants for immediate slaughter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Ruminants for immediate slaughter. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.429 Ruminants for immediate slaughter. Ruminants, other than sheep and goats, may be imported from Mexico, subject to...

  1. 9 CFR 93.409 - Articles accompanying ruminants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Articles accompanying ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.409 Articles accompanying ruminants..., blankets, or other things used for or about ruminants governed by the regulations in this part, shall...

  2. 9 CFR 93.409 - Articles accompanying ruminants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Articles accompanying ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.409 Articles accompanying ruminants..., blankets, or other things used for or about ruminants governed by the regulations in this part, shall...

  3. 9 CFR 93.412 - Ruminant quarantine facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Ruminant quarantine facilities. 93.412... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.412 Ruminant quarantine facilities. (a... ruminants from the time of unloading at the port to the time of release from the quarantine facility....

  4. 9 CFR 93.409 - Articles accompanying ruminants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Articles accompanying ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.409 Articles accompanying ruminants..., blankets, or other things used for or about ruminants governed by the regulations in this part, shall...

  5. 9 CFR 93.409 - Articles accompanying ruminants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Articles accompanying ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.409 Articles accompanying ruminants..., blankets, or other things used for or about ruminants governed by the regulations in this part, shall...

  6. 9 CFR 93.429 - Ruminants for immediate slaughter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Ruminants for immediate slaughter. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.429 Ruminants for immediate slaughter. Ruminants, other than sheep and goats, may be imported from Mexico, subject to...

  7. 9 CFR 93.425 - Declaration for ruminants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Declaration for ruminants. 93.425... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.425 Declaration for ruminants. For all ruminants offered for importation from Mexico, the importer or his or her agent shall...

  8. 9 CFR 93.409 - Articles accompanying ruminants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Articles accompanying ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.409 Articles accompanying ruminants..., blankets, or other things used for or about ruminants governed by the regulations in this part, shall...

  9. 9 CFR 93.425 - Declaration for ruminants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Declaration for ruminants. 93.425... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.425 Declaration for ruminants. For all ruminants offered for importation from Mexico, the importer or his or her agent shall...

  10. 9 CFR 93.429 - Ruminants for immediate slaughter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Ruminants for immediate slaughter. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.429 Ruminants for immediate slaughter. Ruminants, other than sheep and goats, may be imported from Mexico, subject to...

  11. 9 CFR 93.425 - Declaration for ruminants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Declaration for ruminants. 93.425... FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants Mexico 10 § 93.425 Declaration for ruminants. For all ruminants offered for importation from Mexico, the importer or his or her agent shall...

  12. A theoretical comparison between two ruminal electron sinks.

    PubMed

    Ungerfeld, Emilio M

    2013-01-01

    Dihydrogen accumulation resulting from methanogenesis inhibition in the rumen is an energy loss and can inhibit fermentation. The objective of this analysis was to compare the energetic and nutritional consequences of incorporating H2 into reductive acetogenesis or additional propionate production beyond the acetate to propionate shift occurring along with methanogenesis inhibition. Stoichiometric consequences were calculated for a simulated fermentation example. Possible nutritional consequences are discussed. Incorporating H2 into reductive acetogenesis or additional propionate production resulted in equal heat of combustion output in volatile fatty acids (VFA). Incorporation of H2 into reductive acetogenesis could result in moderate decrease in ruminal pH, although whole-animal buffering mechanisms make pH response difficult to predict. Research would be needed to compare the microbial protein production output. There could be post-absorptive implications due to differences in VFA profile. Electron incorporation into reductive acetogenesis could favor energy partition toward milk, but increase risk of ketosis in high-producing dairy cows on ketogenic diets. Greater propionate production could favor milk protein production, but may be less desirable in animals whose intake is metabolically constrained, like feedlot steers. Because of the different nutritional implications, and because practical solutions to incorporate H2 into either pathway are not yet available, it is recommended to research both alternatives.

  13. A theoretical comparison between two ruminal electron sinks

    PubMed Central

    Ungerfeld, Emilio M.

    2013-01-01

    Dihydrogen accumulation resulting from methanogenesis inhibition in the rumen is an energy loss and can inhibit fermentation. The objective of this analysis was to compare the energetic and nutritional consequences of incorporating H2 into reductive acetogenesis or additional propionate production beyond the acetate to propionate shift occurring along with methanogenesis inhibition. Stoichiometric consequences were calculated for a simulated fermentation example. Possible nutritional consequences are discussed. Incorporating H2 into reductive acetogenesis or additional propionate production resulted in equal heat of combustion output in volatile fatty acids (VFA). Incorporation of H2 into reductive acetogenesis could result in moderate decrease in ruminal pH, although whole-animal buffering mechanisms make pH response difficult to predict. Research would be needed to compare the microbial protein production output. There could be post-absorptive implications due to differences in VFA profile. Electron incorporation into reductive acetogenesis could favor energy partition toward milk, but increase risk of ketosis in high-producing dairy cows on ketogenic diets. Greater propionate production could favor milk protein production, but may be less desirable in animals whose intake is metabolically constrained, like feedlot steers. Because of the different nutritional implications, and because practical solutions to incorporate H2 into either pathway are not yet available, it is recommended to research both alternatives. PMID:24198813

  14. 9 CFR 92.6 - Determination of the date of effective enforcement of a ruminant-to-ruminant feed ban.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... enforcement of a ruminant-to-ruminant feed ban. 92.6 Section 92.6 Animals and Animal Products ANIMAL AND PLANT... Determination of the date of effective enforcement of a ruminant-to-ruminant feed ban. (a) In order for APHIS to... BSE controlled risk, APHIS must determine the date from which a ban on the feeding of...

  15. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes.

    PubMed

    Hall, M B; Weimer, P J

    2016-01-01

    Fructans are an important nonfiber carbohydrate in cool season grasses. Their fermentation by ruminal microbes is not well described, though such information is needed to understand their nutritional value to ruminants. Our objective was to compare kinetics and product formation of orchardgrass fructan (phlein; PHL) to other nonfiber carbohydrates when fermented in vitro with mixed or pure culture ruminal microbes. Studies were carried out as randomized complete block designs. All rates given are first-order rate constants. With mixed ruminal microbes, rate of substrate disappearance tended to be greater for glucose (GLC) than for PHL and chicory fructan (inulin; INU), which tended to differ from each other (0.74, 0.62, and 0.33 h(-1), respectively). Disappearance of GLC had almost no lag time (0.04 h), whereas the fructans had lags of 1.4h. The maximum microbial N accumulation, a proxy for cell growth, tended to be 20% greater for PHL and INU than for GLC. The N accumulation rate for GLC (1.31h(-1)) was greater than for PHL (0.75 h(-1)) and INU (0.26 h(-1)), which also differed. More microbial glycogen (+57%) was accumulated from GLC than from PHL, though accumulation rates did not differ (1.95 and 1.44 h(-1), respectively); little glycogen accumulated from INU. Rates of organic acid formation were 0.80, 0.28, and 0.80 h(-1) for GLC, INU, and PHL, respectively, with PHL tending to be greater than INU. Lactic acid production was more than 7-fold greater for GLC than for the fructans. The ratio of microbial cell carbon to organic acid carbon tended to be greater for PHL (0.90) and INU (0.86) than for GLC (0.69), indicating a greater yield of cell mass per amount of substrate fermented with fructans. Reduced microbial yield for GLC may relate to the greater glycogen production that requires ATP, and lactate production that yields less ATP; together, these processes could have reduced ATP available for cell growth. Acetate molar proportion was less for GLC than for

  16. Effect of ruminal ammonia supply on lysine utilization by growing steers.

    PubMed

    Hussein, A H; Batista, E D; Miesner, M D; Titgemeyer, E C

    2016-02-01

    Six ruminally cannulated Holstein steers (202 ± 15 kg) were used to study the effects of ruminal ammonia loading on whole-body lysine (Lys) utilization. Steers were housed in metabolism crates and used in a 6 × 6 Latin square design. All steers received 2.52 kg DM/d of a diet (10.1% CP) containing 82% soybean hulls, 8% wheat straw, 5% cane molasses, and 5% vitamins and minerals, and 10 g/d of urea (considered to be part of the basal diet) was ruminally infused continuously to ensure adequate ruminal ammonia concentrations. All steers were ruminally infused continuously with 200 g/d of acetic acid, 200 g/d of propionic acid, and 50 g/d of butyric acid and abomasally infused with 300 g/d of glucose continuously to increase energy supply without increasing microbial protein supply. Steers were also abomasally infused continuously with an excess of all essential AA except Lys to ensure that Lys was the only limiting AA. Treatments were arranged as a 3 × 2 factorial with 3 levels of urea (0, 40, or 80 g/d) continuously infused ruminally to induce ammonia loading and 2 levels of Lys (0 or 6 g/d) continuously infused abomasally. Treatments did not affect fecal N output ( = 0.37). Lysine supplementation decreased ( < 0.01) urinary N excretion from 51.9 g/d to 44.3 g/d, increased ( < 0.01) retained N from 24.8 to 33.8 g/d, increased ( < 0.01) plasma Lys, and decreased ( ≤ 0.05) plasma serine, tyrosine, valine, leucine, and phenylalanine. Lysine supplementation also tended ( = 0.09) to reduce plasma urea-N. Urea infusions linearly increased ( = 0.05) retained N (27.1, 29.3, and 31.5 g/d) and also linearly increased ( < 0.01) urinary N excretion (31.8, 48.1, and 64.4 g/d), urinary urea (21.9, 37.7, and 54.3 g/d), urinary ammonia (1.1, 1.4, and 1.9 g/d), and plasma urea (2.7, 4.0, and 5.1 mM), and linearly decreased plasma alanine ( = 0.04) and plasma glycine ( < 0.01). Assuming that retained protein is 6.25 × retained N and contains 6.4% Lys, the incremental

  17. Percutaneous urinary procedures

    MedlinePlus

    ... Lingeman JE. Surgical management of upper urinary tract calculi. In: Wein AJ, Kavoussi LR, Novick AC, et ... CC, Nakada SY. Treatment selection and outcomes: renal calculi. Urol Clin North Am . 2007;34(3):409- ...

  18. Mindfulness and rumination: does mindfulness training lead to reductions in the ruminative thinking associated with depression?

    PubMed

    Deyo, Mary; Wilson, Kimberly A; Ong, Jason; Koopman, Cheryl

    2009-01-01

    The purpose of this study was to investigate the impact of mindfulness-based stress reduction (MBSR; Kabat-Zinn, 1982, 1990) training on a self-selected adult community sample in the areas of mindfulness, rumination, depressive symptomatology and overall well-being. Targeting rumination was considered particularly important because a tendency toward rumination in nondepressed populations has been found to be predictive of subsequent onset of depression. As hypothesized, completers of the MBSR class showed increases in mindfulness and overall wellbeing, and decreases in rumination and symptoms of depression. Limitations of the study are discussed, as are the implications of these findings.

  19. Measuring Methane Production from Ruminants.

    PubMed

    Hill, Julian; McSweeney, Chris; Wright, André-Denis G; Bishop-Hurley, Greg; Kalantar-Zadeh, Kourosh

    2016-01-01

    Radiative forcing of methane (CH4) is significantly higher than carbon dioxide (CO2) and its enteric production by ruminant livestock is one of the major sources of greenhouse gas emissions. CH4 is also an important marker of farming productivity, because it is associated with the conversion of feed to product in livestock. Consequently, measurement of enteric CH4 is emerging as an important research topic. In this review, we briefly describe the conversion of carbohydrate to CH4 by the bacterial community within gut, and highlight some of the key host-microbiome interactions. We then provide a picture of current progress in techniques for measuring enteric CH4, the context in which these technologies are used, and the challenges faced. We also discuss solutions to existing problems and new approaches currently in development.

  20. Measuring Methane Production from Ruminants.

    PubMed

    Hill, Julian; McSweeney, Chris; Wright, André-Denis G; Bishop-Hurley, Greg; Kalantar-Zadeh, Kourosh

    2016-01-01

    Radiative forcing of methane (CH4) is significantly higher than carbon dioxide (CO2) and its enteric production by ruminant livestock is one of the major sources of greenhouse gas emissions. CH4 is also an important marker of farming productivity, because it is associated with the conversion of feed to product in livestock. Consequently, measurement of enteric CH4 is emerging as an important research topic. In this review, we briefly describe the conversion of carbohydrate to CH4 by the bacterial community within gut, and highlight some of the key host-microbiome interactions. We then provide a picture of current progress in techniques for measuring enteric CH4, the context in which these technologies are used, and the challenges faced. We also discuss solutions to existing problems and new approaches currently in development. PMID:26603286

  1. Peste des Petits Ruminants Virus.

    PubMed

    Baron, M D; Diallo, A; Lancelot, R; Libeau, G

    2016-01-01

    Peste des petits ruminants virus (PPRV) causes a severe contagious disease of sheep and goats and has spread extensively through the developing world. Because of its disproportionately large impact on the livelihoods of low-income livestock keepers, and the availability of effective vaccines and good diagnostics, the virus is being targeted for global control and eventual eradication. In this review we examine the origin of the virus and its current distribution, and the factors that have led international organizations to conclude that it is eradicable. We also review recent progress in the molecular and cellular biology of the virus and consider areas where further research is required to support the efforts being made by national, regional, and international bodies to tackle this growing threat. PMID:27112279

  2. Ruminal Leiomyosarcoma in an adult cow.

    PubMed

    Benavides, Julio; Fuertes, Miguel; Pérez, Valentin; Delgado, Laetitia; Ferreras, Ma Carmen

    2016-01-01

    An ulcerated and pedunculated intraluminal yellowish solitary mass was observed protruding into the ruminal lumen of an adult cow during an abattoir survey. Histologically, the neoplasm invaded the lamina propria-submucosa, eroded the ruminal epithelium and segmentally effaced the inner tunica muscularis. It was composed of pleomorphic spindle cells arranged in fascicles. Areas of hemorrhage, necrosis, microcystic changes as well as marked anisokaryosis, the presence of giant cells and scattered mitosis with atypical figures, were also observed. Immunohistochemically this tumor labeled positive for alpha smooth muscle actin, desmin and vimentin. With all the above findings, a diagnosis of ruminal leiomyosarcoma was confirmed. To the authors' knowledge, this is the first report of ruminal leiomyosarcoma in cattle. PMID:27529999

  3. Glycerol inhibition of ruminal lipolysis in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  4. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows.

    PubMed

    Aguerre, M J; Capozzolo, M C; Lencioni, P; Cabral, C; Wattiaux, M A

    2016-06-01

    Our objective was to determine the effects of a tannin mixture extract on lactating cow performance, rumen fermentation, and N partitioning, and whether responses were affected by dietary crude protein (CP). The experiment was conducted as a split-plot with 24 Holstein cows (mean ± standard deviation; 669±55kg of body weight; 87±36 d in milk; 8 ruminally cannulated) randomly assigned to a diet of [dry matter (DM) basis] 15.3 or 16.6% CP (whole plot) and 0, 0.45, 0.90, or 1.80% of a tannin mixture in three 4×4 Latin squares within each level of CP (sub-plot). Tannin extract mixture was from quebracho and chestnut trees (2:1 ratio). Dietary CP level did not influence responses to tannin supplementation. A linear decrease in DM intake (25.5 to 23.4kg/d) was found, as well as a linear increase in milk/DM intake (1.62 to 1.75) and a trend for a linear decrease in fat-and-protein-corrected milk (38.4 to 37.1kg/d) with increasing levels of tannin supplementation. In addition, there was a negative linear effect for milk urea N (14.0 to 12.9mg/dL), milk protein yield (1.20 to 1.15kg), and concentration (2.87 to 2.83%). Furthermore, the change in milk protein concentration tended to be quadratic, and predicted maximum was 2.89% for a tannin mixture fed at 0.47% of dietary DM. Tannin supplementation reduced ruminal NH3-N (11.3 to 8.8mg/dL), total branched-chain volatile fatty acid concentration (2.97 to 2.47mol/100mol), DM, organic matter, CP, and neutral detergent fiber digestibility. Dietary tannin had no effect on intake N (587±63g/d), milk N (175±32g/d), or N utilization efficiency (29.7±4.4%). However, feeding tannin extracts linearly increased fecal N excretion (214 to 256g/d), but reduced urinary N (213 to 177g/d) and urinary urea N (141 to 116g/d) excretion. Decreasing dietary CP did not influence milk production, but increased N utilization efficiency (milk N/N intake; 0.27 to 0.33), and decreased milk urea N (15.4 to 11.8mg/dL), ruminal NH3-N (11.0 to 9.3mg

  5. Intracytoplasmic sperm injection (ICSI) in small ruminants.

    PubMed

    López-Saucedo, J; Paramio-Nieto, M T; Fierro, R; Piña-Aguilar, R E

    2012-08-01

    Small ruminants are an important component of the global production systems of meat and wool, and their reproductive biology is well known. However, the incorporation of assisted reproduction techniques (ART) in the production systems of small ruminants is not as well developed as for other domestic species. Normally, production systems that incorporate ARTs are restricted to artificial insemination or in vivo embryo transfer. Intracytoplasmic sperm injection (ICSI) is one of the ARTs techniques reported for small ruminants and consists of the injection of spermatozoa inside an oocyte, bypassing the natural process of sperm-oocyte interaction. In goats and sheep, there are few live births by ICSI reported, with no reports from other species of small ruminants. Currently, there has not been intensive research about ICSI in small ruminants. However, ICSI has potentially important applications in animal production systems, primarily its use with semen of valued animals, with epididymal sperm, in the fertilization of prepubertal or cryopreserved oocytes. Other applications include more advanced techniques, such as transgenic-ICSI or its combination with spermatogonial transplantation. In this article, we review the "state of the art" of this technique in small ruminants including its historical development, research needs for its improvement and future applications.

  6. Effects of partial replacement of dietary starch from barley or corn with lactose on ruminal function, short-chain fatty acid absorption, nitrogen utilization, and production performance of dairy cows.

    PubMed

    Chibisa, G E; Gorka, P; Penner, G B; Berthiaume, R; Mutsvangwa, T

    2015-04-01

    In cows fed diets based on corn-alfalfa silage, replacing starch with sugar improves milk production. Although the rate of ruminal fermentation of sugar is more rapid than that of starch, evidence has been found that feeding sugar as a partial replacement for starch does not negatively affect ruminal pH despite increasing diet fermentability. The mechanism(s) for this desirable response are unknown. Our objective was to determine the effects of replacing barley or corn starch with lactose (as dried whey permeate; DWP) on ruminal function, short-chain fatty acid (SCFA) absorption, and nitrogen (N) utilization in dairy cows. Eight lactating cows were used in a replicated 4 × 4 Latin square design with 28-d periods and source of starch (barley vs. corn) and level of DWP (0 vs. 6%, DM basis) as treatment factors. Four cows in 1 Latin square were ruminally cannulated for the measurement of ruminal function, SCFA absorption, and N utilization. Dry matter intake and milk and milk component yields did not differ with diet. The dietary addition of DWP tended to increase ruminal butyrate concentration (13.6 vs. 12.2 mmol/L), and increased the Cl(-)-competitive absorption rates for acetate and propionate. There was no sugar effect on minimum ruminal pH, and the duration and area when ruminal pH was below 5.8. Minimum ruminal pH tended to be lower in cows fed barley compared with those fed corn (5.47 vs. 5.61). The duration when ruminal pH was below pH 5.8 tended to be shorter (186 vs. 235 min/d), whereas the area (pH × min/d) that pH was below 5.8 was smaller (47 vs. 111) on the corn than barley diets. Cows fed the high- compared with the low-sugar diet had lower ruminal NH3-N concentration. Feeding the high-sugar diet tended to increase apparent total-tract digestibility of dry matter and organic matters and increased apparent total-tract digestibility of fat. Apparent total-tract digestibility of N tended to be greater in cows fed barley compared with those fed corn

  7. Effects of sodium hydroxide treatment of dried distillers' grains on digestibility, ruminal metabolism, and metabolic acidosis of feedlot steers.

    PubMed

    Freitas, T B; Relling, A E; Pedreira, M S; Santana Junior, H A; Felix, T L

    2016-02-01

    The objectives were to determine the optimum inclusion of NaOH necessary to buffer the acidity of dried distillers' grains with solubles (DDGS) and its effects on digestibility, ruminal metabolism, and metabolic acidosis in feedlot steers. Rumen cannulated Angus-crossed steers were blocked by BW (small: 555 ± 42 kg initial BW, = 4; large: 703 ± 85 kg initial BW, = 4) over four 21-d periods in a replicated 4 × 4 Latin square design. Steers were assigned to 1 of 4 dietary treatments: 1) 50% untreated DDGS, 2) 50% DDGS treated with 0.5% (DM basis) sodium hydroxide (NaOH), 3) 50% DDGS treated with 1.0% (DM basis) NaOH, and 4) 50% DDGS treated with 1.5% (DM basis) NaOH. The remainder of the diets, on a DM basis, was composed of 20% corn silage, 20% dry-rolled corn, and 10% supplement. Ruminal pH was not affected by treatments ( = 0.56) or by a treatment × time interaction ( = 0.15). In situ NDF and ruminal DM disappearance did not differ ( ≥ 0.49 and ≥ 0.47, respectively) among treatments. Similar to in situ results, apparent total tract DM and NDF digestibility were not affected ( ≥ 0.33 and ≥ 0.21, respectively) by increasing NaOH inclusion in the diets. Urinary pH increased (linear, < 0.01) with increasing NaOH concentration in the diet. Blood pH was not affected ( ≥ 0.20), and blood total CO and partial pressure of CO were similar ( ≥ 0.56 and ≥ 0.17, respectively) as NaOH increased in the diet. Increasing NaOH in the diet did not affect ( ≥ 0.21) ruminal concentrations of total VFA. There were no linear ( = 0.20) or quadratic ( = 0.20) effects of treatment on ruminal acetate concentrations, nor was there a treatment × time interaction ( = 0.22) for acetate. Furthermore, there were no effects ( ≥ 0.90) of NaOH inclusion on ruminal propionate concentration. However, there was a quadratic response ( = 0.01) of ruminal butyrate concentrations as NaOH inclusion increased in the diet; ruminal butyrate concentrations were greatest with the 0.5 and 1

  8. Supplementing lactating dairy cows with a vitamin B12 precursor, 5,6-dimethylbenzimidazole, increases the apparent ruminal synthesis of vitamin B12.

    PubMed

    Brito, A; Chiquette, J; Stabler, S P; Allen, R H; Girard, C L

    2015-01-01

    Cobalamin (CBL), the biologically active form of vitamin B12, and its analogs, are produced by bacteria only if cobalt supply is adequate. The analogs differ generally by the nucleotide moiety of the molecule. In CBL, 5,6-dimethylbenzimidazole (5,6-DMB) is the base in the nucleotide moiety. The present study aimed to determine if a supplement of 5,6-DMB could increase utilization of dietary cobalt for synthesis of CBL and change ruminal fermentation, nutrient digestibility, omasal flow of nutrients and ruminal protozoa counts. Eight ruminally cannulated multiparous Holstein cows (mean±standard deviation=238±21 days in milk and 736±47 kg of BW) were used in a crossover design. Cows were randomly assigned to a daily supplement of a gelatin capsule containing 1.5 g of 5,6-DMB via the rumen cannula or no supplement. Each period lasted 29 days and consisted of 21 days for treatment adaptation and 8 days for data and samples collection. Five corrinoids, CBL and four cobamides were detected in the total mixed ration and the omasal digesta from both treatments. The dietary supplement of 5,6-DMB increased (P=0.02) apparent ruminal synthesis of CBL from 14.6 to 19.6 (s.e.m. 0.8) mg/day but had no effect (P>0.1) on apparent ruminal synthesis of the four analogs. The supplement of 5,6-DMB had no effect (P>0.1) on milk production and composition, or on protozoal count, ruminal pH and concentrations of volatile fatty acids and ammonia nitrogen in rumen content. The supplement had also no effect (P>0.1) on intake, omasal flow and apparent ruminal digestibility of dry matter, organic matter, NDF, ADF and nitrogenous fractions. Plasma concentration of CBL was not affected by treatments (P=0.98). Providing a preformed part of the CBL molecule, that is, 5,6-DMB, increased by 34% the apparent ruminal synthesis of CBL by ruminal bacteria but had no effect on ruminal fermentation or protozoa count and it was not sufficient to increase plasma concentrations of the vitamin. Even though

  9. Use of some novel alternative electron sinks to inhibit ruminal methanogenesis.

    PubMed

    Ungerfeld, Emilio M; Rust, Steven R; Burnett, Robert

    2003-01-01

    Several compounds were evaluated in vitro as alternative electron sinks to ruminal methanogenesis. They were incubated with ruminal fluid, buffer mixture, and finely ground alfalfa hay for 24 h, at 0, 6, 12, and 18 mM initial concentrations. The propionate enhancer oxaloacetic acid, the butyrate enhancer beta-hydroxybutyrate, and the butyrate unsaturated analog 3-butenoic acid were ineffective in decreasing methanogenesis. Nevertheless, beta-hydroxybutyrate increased apparent fermentation of the alfalfa hay substrate from 58.0 to 63.4%, and 3-butenoic acid seemed to increase it from 62.0 to 73.7%. Almost all of added oxaloacetic acid disappeared during the incubation, while only between 30.3 and 53.4% of beta-hydroxybutyrate disappeared. The butyrate enhancers acetoacetate and crotonic acid, and the butyrate unsaturated analog 2-butynoic acid, decreased methanogenesis by a maximum of 18,9 and 9%, respectively. Crotonic acid at 18 mM initial concentration seemed to increase the substrate apparent fermentation from 57.0 to 68.2%. Between 78.6 and 100% of acetoacetate disappeared during the incubation. The propionate unsaturated analog propynoic acid, and the unsaturated ester ethyl 2-butynoate, decreased methanogenesis by a maximum of 76 and 79%, respectively. Less than 5% of propynoic acid disappeared. The substrate apparent fermentation was decreased by propynoic acid from 62.0 to 57.4%, and seemed to have been decreased by ethyl 2-butynoate from 62.0 to 29.3%. More accurate measurements of the disappearance of some of the compounds studied are needed to better understand how they are metabolized and how they affect fermentation.

  10. Effects of Candida norvegensis Live Cells on In vitro Oat Straw Rumen Fermentation

    PubMed Central

    Ruiz, Oscar; Castillo, Yamicela; Arzola, Claudio; Burrola, Eduviges; Salinas, Jaime; Corral, Agustín; Hume, Michael E.; Murillo, Manuel; Itza, Mateo

    2016-01-01

    This study evaluated the effect of Candida norvegensis (C. norvegensis) viable yeast culture on in vitro ruminal fermentation of oat straw. Ruminal fluid was mixed with buffer solution (1:2) and anaerobically incubated with or without yeast at 39°C for 0, 4, 8, 16, and 24 h. A fully randomized design was used. There was a decrease in lactic acid (quadratic, p = 0.01), pH, (quadratic, p = 0.02), and yeasts counts (linear, p<0.01) across fermentation times. However, in vitro dry matter disappearance (IVDMD) and ammonia-N increased across fermentation times (quadratic; p<0.01 and p<0.02, respectively). Addition of yeast cells caused a decrease in pH values compared over all fermentation times (p<0.01), and lactic acid decreased at 12 h (p = 0.05). Meanwhile, yeast counts increased (p = 0.01) at 12 h. C. norvegensis increased ammonia-N at 4, 8, 12, and 24 h (p<0.01), and IVDMD of oat straw increased at 8, 12, and 24 h (p<0.01) of fermentation. Yeast cells increased acetate (p<0.01), propionate (p<0.03), and butyrate (p<0.03) at 8 h, while valeriate and isovaleriate increased at 8, 12, and 24 h (p<0.01). The yeast did not affect cellulolytic bacteria (p = 0.05), but cellulolytic fungi increased at 4 and 8 h (p<0.01), whereas production of methane decreased (p<0.01) at 8 h. It is concluded that addition of C. norvegensis to in vitro oat straw fermentation increased ruminal fermentation parameters as well as microbial growth with reduction of methane production. Additionally, yeast inoculum also improved IVDMD. PMID:26732446

  11. Holmium:YAG laser lithotripsy for the management of urolithiasis in small ruminants and pot-bellied pigs

    NASA Astrophysics Data System (ADS)

    Halland, Spring K.; House, John K.; George, Lisle

    2001-05-01

    Obstructive urolithiasis is a common problem in small ruminants and pot-bellied pigs. The most common site of urinary tract obstruction in these species is the urethra. Surgical procedures developed to relieve obstructions, in our experience have been effective in approximately 75% of cases. Urethral stricture is a common complication if the mucosa of the urethra is disrupted. The objective of this project was to evaluate endoscopy guided laser lithotripsy as a therapeutic modality to relieve urethral obstructions in small ruminants and pot-bellied pigs. The study population consisted of patients presented to the Veterinary Medical Teaching Hospital at the University of California Davis with obstructive urolithiasis. Lithotripsy was performed using a Holmium:YAG laser via a 200-micron low water quartz fiber passed through a flexible mini-endoscope. Two types of urinary calculi were managed with this technique, calcium carbonate and calcium hydroxyphosphate. Laser lithotripsy was effective at relieving obstructions caused by both types of calculi when conventional methods had failed. Laser lithotripsy performed via urethral endoscopy is a safe and effective therapeutic modality for management of obstructive urolithiasis in small ruminants and pot-bellied pigs and reduces the risk of post procedural urethral stricture.

  12. In vitro bacterial growth and in vivo ruminal microbiota populations associated with bloat in steers grazing wheat forage.

    PubMed

    Min, B R; Pinchak, W E; Anderson, R C; Hume, M E

    2006-10-01

    The role of ruminal bacteria in the frothy bloat complex common to cattle grazing winter wheat has not been previously determined. Two experiments, one in vitro and another in vivo, were designed to elucidate the effects of fresh wheat forage on bacterial growth, biofilm complexes, rumen fermentation end products, rumen bacterial diversity, and bloat potential. In Exp. 1, 6 strains of ruminal bacteria (Streptococcus bovis strain 26, Prevotella ruminicola strain 23, Eubacterium ruminantium B1C23, Ruminococcus albus SY3, Fibrobacter succinogenes ssp. S85, and Ruminococcus flavefaciens C94) were used in vitro to determine the effect of soluble plant protein from winter wheat forage on specific bacterial growth rate, biofilm complexes, VFA, and ruminal H2 and CH4 in mono or coculture with Methanobrevibacter smithii. The specific growth rate in plant protein medium containing soluble plant protein (3.27% nitrogen) was measured during a 24-h incubation at 39 degrees C in Hungate tubes under a CO2 gas phase. A monoculture of M. smithii was grown similarly, except under H2:CO2 (1:1), in a basal methanogen growth medium supplemented likewise with soluble plant protein. In Exp. 2, 6 ruminally cannulated steers grazing wheat forage were used to evaluate the influence of bloat on the production of biofilm complexes, ruminal microbial biodiversity patterns, and ruminal fluid protein fractions. In Exp. 1, cultures of R. albus (P < 0.01) and R. flavefaciens (P < 0.05) produced the most H2 among strains and resulted in greater (P < 0.01) CH4 production when cocultured with M. smithii than other coculture combinations. Cultures of S. bovis and E. ruminantium + M. smithii produced the most biofilm mass among strains. In Exp. 2, when diets changed from bermudagrass hay to wheat forage, biofilm production increased (P < 0.01). Biofilm production, concentrations of whole ruminal content (P < 0.01), and cheesecloth filtrate protein fractions (P < 0.05) in the ruminal fluid were greater

  13. Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

    PubMed Central

    Gao, Wei; Chen, Aodong; Zhang, Bowen; Kong, Ping; Liu, Chenli; Zhao, Jie

    2015-01-01

    This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance. PMID:25656208

  14. Fibrolytic enzymes and parity effects on feeding behavior, salivation, and ruminal pH of lactating dairy cows.

    PubMed

    Bowman, G R; Beauchemin, K A; Shelford, J A

    2003-02-01

    Four multiparous and four primiparous lactating dairy cows fitted with ruminal cannulas were used in a duplicated 4 x 4 Latin square design to study the effects of parity and inclusion of a fibrolytic enzyme product (Agribrands International, St. Louis, MO) on feeding and chewing behavior, salivation, and ruminal pH. Diets consisting of rolled barley, barley silage, and alfalfa haylage (55% forage, DM basis) differed in enzyme application: 1) control, 2) enzyme applied to concentrate (45% of TMR), 3) enzyme applied to supplement (4% of TMR), and enzyme applied to a premix (0.2% of TMR). Enzyme supplementation did not alter daily time spent eating or ruminating, but when enzymes were added to the ration daily, saliva production increased, with no difference among enzyme application treatments. Multiparous cows consumed a greater amount of feed, but spent a similar amount of time eating, compared to primiparous cows. Primiparous cows had shorter ruminating episodes, resulting in lower daily ruminating time compared with multiparous cows. Primiparous cows had lower daily saliva output compared with multiparous cows. These results indicate that application of this fibrolytic enzyme product did not alter the physical structure of the feed, as measured by feeding and chewing variables. The increase in total saliva production observed in cows fed enzyme-supplemented diets may be attributed to a physiological response to compensate for the increase in fermentation products during digestion. The increased intake for multiparous cows is attributed to increased eating rate and not to increased time spent eating. The higher DMI of multiparous cows resulted in increased rumination time needed to process the additional feed and increased salivation to buffer the greater production of VFA.

  15. Eating time modulations of physiology and health: life lessons from human and ruminant models.

    PubMed

    Nikkhah, Akbar

    2012-07-01

    Tissue nutrient supply may be synchronized with endogenous physiological rhythms to optimize animal and human health. Glucose tolerance and insulin sensitivity have endogenous rhythms that are not essentially dependent on food type and eating. Human glucose tolerance declines as day comes into night. Based on such evolutionary findings, large evening meals must be avoided to reduce risks of visceral adiposity, diabetes, hypertension and related cardiovascular complexities. Ruminants as extremely important food-producing livestock have evolved to ruminate mostly overnight when little grazing occurs, and when rumen reaches a larger volume and fermentation capacity. As such, eating time (e.g., evening vs. morning) will alter postprandial and diurnal patterns of food intake, rumen and peripheral metabolites production and supply, and milk and meat production efficiency. Most recent discoveries suggest that eating time modulates postprandial intake and metabolism patterns in non-grazing lactating cows. Eating rate and absolute intake can increase by evening vs. morning feeding in dairy cows. Evening feeding increased postprandial rumen volatile fatty acids (VFA) peak, and surges of blood insulin, lactate and beta-hydroxybutyrate, and induced a peripartal decline in blood glucose. As a result, milk fat and energy production were increased. While being unfavorable to human health, evening and night feeding have proved beneficial to ruminants. These findings establish a differential chronological basis for food intake and nutrient metabolism in man and food-producing animals. Eating time is a major external cue and a feasible life strategy that affects production and health physiology.

  16. Impacts of ruminal microorganisms on the production of fuels: how can we intercede from the outside?

    PubMed

    Weimer, Paul J; Kohn, Richard A

    2016-04-01

    The ruminal microbiome rapidly converts plant biomass to short-chain fatty acids (SCFA) that nourish the ruminant animal host. Because of its high species diversity, functional redundancy, and ease of extraruminal cultivation, this mixed microbial community is a particularly accomplished practitioner of the carboxylate platform for producing fuels and chemical precursors. Unlike reactor microbiomes derived from anaerobic digesters or sediments, the ruminal community naturally produces high concentrations of SCFA, with only modest methane production owing to the absence of both proton-reducing acetogens and aceticlastic methanogens. The extraruminal fermentation can be improved by addition of ethanol or lactate product streams, particularly in concert with reverse β-oxidizing bacteria (e.g., Clostridium kluyveri or Megasphaera elsdenii) that facilitate production of valeric and caproic acids. Application of fundamental principles of thermodynamics allows identification of optimal conditions for SCFA chain elongation, as well as discovery of novel synthetic capabilities (e.g., medium-chain alcohol and alkane production) by this mixed culture system.

  17. Impacts of ruminal microorganisms on the production of fuels: how can we intercede from the outside?

    PubMed

    Weimer, Paul J; Kohn, Richard A

    2016-04-01

    The ruminal microbiome rapidly converts plant biomass to short-chain fatty acids (SCFA) that nourish the ruminant animal host. Because of its high species diversity, functional redundancy, and ease of extraruminal cultivation, this mixed microbial community is a particularly accomplished practitioner of the carboxylate platform for producing fuels and chemical precursors. Unlike reactor microbiomes derived from anaerobic digesters or sediments, the ruminal community naturally produces high concentrations of SCFA, with only modest methane production owing to the absence of both proton-reducing acetogens and aceticlastic methanogens. The extraruminal fermentation can be improved by addition of ethanol or lactate product streams, particularly in concert with reverse β-oxidizing bacteria (e.g., Clostridium kluyveri or Megasphaera elsdenii) that facilitate production of valeric and caproic acids. Application of fundamental principles of thermodynamics allows identification of optimal conditions for SCFA chain elongation, as well as discovery of novel synthetic capabilities (e.g., medium-chain alcohol and alkane production) by this mixed culture system. PMID:26879958

  18. Microbial fuel cells and microbial ecology: applications in ruminant health and production research.

    PubMed

    Bretschger, Orianna; Osterstock, Jason B; Pinchak, William E; Ishii, Shun'ichi; Nelson, Karen E

    2010-04-01

    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H(2)) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H(2)in the rumen. Given the crucial role that H(2) plays in ruminant digestion, it is desirable to understand the microbial relationships that control H(2) partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.

  19. Microbial Fuel Cells and Microbial Ecology: Applications in Ruminant Health and Production Research

    PubMed Central

    Osterstock, Jason B.; Pinchak, William E.; Ishii, Shun’ichi; Nelson, Karen E.

    2009-01-01

    Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research. PMID:20024685

  20. Urinary Adiponectin Excretion

    PubMed Central

    von Eynatten, Maximilian; Liu, Dan; Hock, Cornelia; Oikonomou, Dimitrios; Baumann, Marcus; Allolio, Bruno; Korosoglou, Grigorios; Morcos, Michael; Campean, Valentina; Amann, Kerstin; Lutz, Jens; Heemann, Uwe; Nawroth, Peter P.; Bierhaus, Angelika; Humpert, Per M.

    2009-01-01

    OBJECTIVE Markers reliably identifying vascular damage and risk in diabetic patients are rare, and reports on associations of serum adiponectin with macrovascular disease have been inconsistent. In contrast to existing data on serum adiponectin, this study assesses whether urinary adiponectin excretion might represent a more consistent vascular damage marker in type 2 diabetes. RESEARCH DESIGN AND METHODS Adiponectin distribution in human kidney biopsies was assessed by immunohistochemistry, and urinary adiponectin isoforms were characterized by Western blot analysis. Total urinary adiponectin excretion rate was measured in 156 patients with type 2 diabetes who had a history of diabetic nephropathy and 40 healthy control subjects using enzyme-linked immunosorbent assay. Atherosclerotic burden was assessed by common carotid artery intima-media-thickness (IMT). RESULTS A homogenous staining of adiponectin was found on the endothelial surface of glomerular capillaries and intrarenal arterioles in nondiabetic kidneys, whereas staining was decreased in diabetic nephropathy. Low-molecular adiponectin isoforms (∼30–70 kDa) were detected in urine by Western blot analysis. Urinary adiponectin was significantly increased in type 2 diabetes (7.68 ± 14.26 vs. control subjects: 2.91 ± 3.85 μg/g creatinine, P = 0.008). Among type 2 diabetic patients, adiponectinuria was associated with IMT (r = 0.479, P < 0.001) and proved to be a powerful independent predictor of IMT (β = 0.360, P < 0.001) in multivariable regression analyses. In a risk prediction model including variables of the UK Prospective Diabetes Study coronary heart disease risk engine urinary adiponectin, but not the albumin excretion rate, added significant value for the prediction of increased IMT (P = 0.007). CONCLUSIONS Quantification of urinary adiponectin excretion appears to be an independent indicator of vascular damage potentially identifying an increased risk for vascular events. PMID:19509019

  1. Surgery for Stress Urinary Incontinence

    MedlinePlus

    ... Education FAQs Surgery for Stress Urinary Incontinence Patient Education Pamphlets - Spanish Surgery for Stress Urinary Incontinence FAQ166, July 2014 ... Your Practice Patient Safety & Quality Payment Reform (MACRA) Education & Events Annual ... Pamphlets Teen Health About ACOG About Us Leadership & ...

  2. Feline Lower Urinary Tract Disease

    MedlinePlus

    ... gland) can cause lower urinary tract disease in cats. Although they are much less common causes, FLUTD ... your veterinarian about the best diet for your cat. Many commercial diets are acceptable, but some urinary ...

  3. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-03-02

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  4. High solids fermentation reactor

    DOEpatents

    Wyman, Charles E.; Grohmann, Karel; Himmel, Michael E.; Richard, Christopher J.

    1993-01-01

    A fermentation reactor and method for fermentation of materials having greater than about 10% solids. The reactor includes a rotatable shaft along the central axis, the shaft including rods extending outwardly to mix the materials. The reactor and method are useful for anaerobic digestion of municipal solid wastes to produce methane, for production of commodity chemicals from organic materials, and for microbial fermentation processes.

  5. Mycotoxicoses of ruminants and horses.

    PubMed

    Riet-Correa, Franklin; Rivero, Rodolfo; Odriozola, Ernesto; Adrien, Maria de Lourdes; Medeiros, Rosane M T; Schild, Ana Lucia

    2013-11-01

    In the current study, mycotoxicoses of ruminants and horses are reviewed, with an emphasis on the occurrence of these diseases in South America. The main mycotoxicoses observed in grazing cattle include intoxications by indole-diterpenoid mycotoxins (Paspalum spp. contaminated by Claviceps paspali, Lolium perenne infected by Neotyphodium lolii, Cynodon dactylon infected by Claviceps cynodontis, and Poa huecu), gangrenous ergotism and dysthermic syndrome (hyperthermia) caused by Festuca arundinacea (syn. Festuca elatior) infected by Neotyphodium coenophialum (syn. Acremonium coenophialum), and photosensitization in pastures contaminated by toxigenic Pithomyces chartarum. Other mycotoxicoses in grazing cattle include slaframine toxicity in clover pastures infected by Rhizoctonia leguminicola and diplodiosis in cattle grazing in corn stubbles. The mycotoxicoses caused by contaminated concentrated food or byproducts in cattle include poisoning by toxins of Aspergillus clavatus, which contaminate barley or sugar beetroot by-products, gangrenous ergotism or dysthermic syndrome caused by wheat bran or wheat screenings contaminated with Claviceps purpurea, and acute respiratory distress caused by damaged sweet potatoes (Ipomoea batatas). The main mycotoxicosis of horses is leukoencephalomalacia caused by the fumonisins B1 and B2 produced by Fusarium spp. Poisoning by C. purpurea and F. elatior infected by N. coenophialum has also been reported as a cause of agalactia and neonatal mortality in mares. Slaframine toxicosis caused by the ingestion of alfalfa hay contaminated by R. leguminicola has also been reported in horses. PMID:24091682

  6. Mycotoxicoses of ruminants and horses.

    PubMed

    Riet-Correa, Franklin; Rivero, Rodolfo; Odriozola, Ernesto; Adrien, Maria de Lourdes; Medeiros, Rosane M T; Schild, Ana Lucia

    2013-11-01

    In the current study, mycotoxicoses of ruminants and horses are reviewed, with an emphasis on the occurrence of these diseases in South America. The main mycotoxicoses observed in grazing cattle include intoxications by indole-diterpenoid mycotoxins (Paspalum spp. contaminated by Claviceps paspali, Lolium perenne infected by Neotyphodium lolii, Cynodon dactylon infected by Claviceps cynodontis, and Poa huecu), gangrenous ergotism and dysthermic syndrome (hyperthermia) caused by Festuca arundinacea (syn. Festuca elatior) infected by Neotyphodium coenophialum (syn. Acremonium coenophialum), and photosensitization in pastures contaminated by toxigenic Pithomyces chartarum. Other mycotoxicoses in grazing cattle include slaframine toxicity in clover pastures infected by Rhizoctonia leguminicola and diplodiosis in cattle grazing in corn stubbles. The mycotoxicoses caused by contaminated concentrated food or byproducts in cattle include poisoning by toxins of Aspergillus clavatus, which contaminate barley or sugar beetroot by-products, gangrenous ergotism or dysthermic syndrome caused by wheat bran or wheat screenings contaminated with Claviceps purpurea, and acute respiratory distress caused by damaged sweet potatoes (Ipomoea batatas). The main mycotoxicosis of horses is leukoencephalomalacia caused by the fumonisins B1 and B2 produced by Fusarium spp. Poisoning by C. purpurea and F. elatior infected by N. coenophialum has also been reported as a cause of agalactia and neonatal mortality in mares. Slaframine toxicosis caused by the ingestion of alfalfa hay contaminated by R. leguminicola has also been reported in horses.

  7. Urinary tract endometriosis.

    PubMed

    Koszczuk, J C; Foglietti, M; Perez, J F; Dono, F V; Thomas, R J

    1989-01-01

    Although endometriosis is a common gynecologic pathologic phenomenon, involvement of the urinary tract is relatively rare. The clinical presentation and course of urinary system disease is extremely variable, as illustrated by the seven cases presented in this report. Therapy primarily is surgical, but a thorough understanding of the disease process and a complete knowledge of the patient's history and desires for fertility conservation are necessary to plot the most appropriate treatment course. Bladder involvement is more common, and usually less devastating, than either ureteral or kidney involvement. No signs, symptoms, or physical findings are pathognomonic, and the clinician must maintain a high index of suspicion in all cases of advanced pelvic endometriosis.

  8. Digestive efficiency in two small, wild ruminants: the dik-dik and suni antelopes.

    PubMed

    Maloiy, G M; Clemens, E T

    1999-10-01

    A comparative study, using six dik-dik and eight suni antelope, was undertaken to identify similarities and differences that may exist in the digestive process of these two small, East African ruminant browsers. The suni antelope was the more select feeder, preferring the native, Grewia sinilis leaves over that of lucerne hay. Daily forage consumption rate, per unity body weight, was greater in the dik-dik (40.4 g/kg) than for the suni (30.6 g/kg), while daily fluid intake was considerably less (i.e. dik-dik, 68 ml/kg versus suni, 106 ml/kg body weight). Rumen fermentation studies suggested that the suni antelope attained the more rapid rumen and caecal fermentation activities, when compared to the dik-dik antelope. The difference in ruminal and caecal digestive process of the two antelope is suggested to be partly the result of the dik-dik's arid-adaptation strategies of less fluid intake and a more diverse (less selective) browse consumption, relative to the suni antelope.

  9. Urinary albumin in space missions.

    PubMed

    Cirillo, Massimo; De Santo, Natale G; Heer, Martina; Norsk, Peter; Elmann-Larsen, Benny; Bellini, Luigi; Stellato, Davide; Drummer, Christian

    2002-07-01

    Proteinuria was hypothesized for space mission but research data are missing. Urinary albumin, as index of proteinuria, was analyzed in frozen urine samples collected by astronauts during space missions onboard MIR station and on ground (control). Urinary albumin was measured by a double antibody radioimmunoassay. On average, 24h urinary albumin was 27.4% lower in space than on ground; the difference was statistically significant. Low urinary albumin excretion could be another effect of exposure to weightlessness (microgravity).

  10. Urinary Tract Infections (For Kids)

    MedlinePlus

    ... time. And when you do, phew! Your pee smells bad. These changes occur because bacteria have caused an infection somewhere in your urinary tract. Let's find out more. What Exactly Is a Urinary Tract? Your urinary tract is actually a system made up of these main parts: two kidneys ...

  11. Antibacterial Activity of the Alkaloid-Enriched Extract from Prosopis juliflora Pods and Its Influence on in Vitro Ruminal Digestion

    PubMed Central

    dos Santos, Edilene T.; Pereira, Mara Lúcia A.; da Silva, Camilla Flávia P.G.; Souza-Neta, Lourdes C.; Geris, Regina; Martins, Dirceu; Santana, Antônio Euzébio G.; Barbosa, Luiz Cláudio A.; Silva, Herymá Giovane O.; Freitas, Giovana C.; Figueiredo, Mauro P.; de Oliveira, Fernando F.; Batista, Ronan

    2013-01-01

    The purpose of this study was to assess the in vitro antimicrobial activity of alkaloid-enriched extracts from Prosopis juliflora (Fabaceae) pods in order to evaluate them as feed additives for ruminants. As only the basic chloroformic extract (BCE), whose main constituents were juliprosopine (juliflorine), prosoflorine and juliprosine, showed Gram-positive antibacterial activity against Micrococcus luteus (MIC = 25 μg/mL), Staphylococcus aureus (MIC = 50 μg/mL) and Streptococcus mutans (MIC = 50 μg/mL), its influence on ruminal digestion was evaluated using a semi-automated in vitro gas production technique, with monensin as the positive control. Results showed that BCE has decreased gas production as efficiently as monensin after 36 h of fermentation, revealing its positive influence on gas production during ruminal digestion. Since P. juliflora is a very affordable plant, this study points out this alkaloid enriched extract from the pods of Prosopis juliflora as a potential feed additive to decrease gas production during ruminal digestion. PMID:23595000

  12. Development of Ruminal and Fecal Microbiomes Are Affected by Weaning But Not Weaning Strategy in Dairy Calves

    PubMed Central

    Meale, Sarah J.; Li, Shucong; Azevedo, Paula; Derakhshani, Hooman; Plaizier, Jan C.; Khafipour, Ehsan; Steele, Michael A.

    2016-01-01

    The nature of weaning, considered the most stressful and significant transition experienced by dairy calves, influences the ability of a calf to adapt to the dramatic dietary shift, and thus, can influence the severity of production losses through the weaning transition. However, the effects of various feeding strategies on the development of rumen or fecal microbiota across weaning are yet to be examined. Here we characterized the pre- and post-weaning ruminal and fecal microbiomes of Holstein dairy calves exposed to two different weaning strategies, gradual (step-down) or abrupt. We describe the shifts toward a mature ruminant state, a transition which is hastened by the introduction of the solid feeds initiating ruminal fermentation. Additionally, we discuss the predicted functional roles of these communities, which also appear to represent that of the mature gastrointestinal system prior to weaning, suggesting functional maturity. This assumed state of readiness also appeared to negate the effects of weaning strategy on ruminal and fecal microbiomes and therefore, we conclude that the shift in gastrointestinal microbiota may not account for the declines in gain and intakes observed in calves during an abrupt weaning. PMID:27199916

  13. Effects of feed intake and dietary urea concentration on ruminal dilution rate and efficiency of bacteria growth in steers

    SciTech Connect

    Firkins, J.L.; Lewis, S.M. Montgomery, L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.

    1987-11-01

    Four multiple-fistulated steers (340 kg) were fed a diet containing 50% ground grass hay, 20% dry distillers grains, and 30% concentrate at two intakes (7.2 or 4.8 kg DM/d). Urea (.4 or 1.2% of the diet) was infused continuously into the steers' rumens. The experimental design was a 4 x 4 Latin square with a 2 x 2 factorial arrangement of treatments. Infusing urea at .4 or 1.2% of the diet resulted in ruminal NH/sub 3/ N concentration of 4.97 and 9.10 mg/dl, respectively. Feeding steers at high rather than low intake decreased ruminal and total tract digestibilities of organic matter, NDF, and ADF but did not increase ruminal escape of N. However, apparent N escape from the rumen calculated using purines, but not /sup 15/N, as a bacterial marker was higher when 1.2 vs. .4% urea was infused. Feeding at high rather than at low intake increased the total pool of viable bacteria per gram organic matter fermented in the rumen. Although ruminal fluid outflows and particulate dilution rates were greater when steers were fed at high than low intakes, efficiencies of bacterial protein synthesis were unaffected by intake. The possibility of increased N recycling within the rumen with feeding at the higher intake is discussed.

  14. Development of Ruminal and Fecal Microbiomes Are Affected by Weaning But Not Weaning Strategy in Dairy Calves.

    PubMed

    Meale, Sarah J; Li, Shucong; Azevedo, Paula; Derakhshani, Hooman; Plaizier, Jan C; Khafipour, Ehsan; Steele, Michael A

    2016-01-01

    The nature of weaning, considered the most stressful and significant transition experienced by dairy calves, influences the ability of a calf to adapt to the dramatic dietary shift, and thus, can influence the severity of production losses through the weaning transition. However, the effects of various feeding strategies on the development of rumen or fecal microbiota across weaning are yet to be examined. Here we characterized the pre- and post-weaning ruminal and fecal microbiomes of Holstein dairy calves exposed to two different weaning strategies, gradual (step-down) or abrupt. We describe the shifts toward a mature ruminant state, a transition which is hastened by the introduction of the solid feeds initiating ruminal fermentation. Additionally, we discuss the predicted functional roles of these communities, which also appear to represent that of the mature gastrointestinal system prior to weaning, suggesting functional maturity. This assumed state of readiness also appeared to negate the effects of weaning strategy on ruminal and fecal microbiomes and therefore, we conclude that the shift in gastrointestinal microbiota may not account for the declines in gain and intakes observed in calves during an abrupt weaning.

  15. Development of Ruminal and Fecal Microbiomes Are Affected by Weaning But Not Weaning Strategy in Dairy Calves.

    PubMed

    Meale, Sarah J; Li, Shucong; Azevedo, Paula; Derakhshani, Hooman; Plaizier, Jan C; Khafipour, Ehsan; Steele, Michael A

    2016-01-01

    The nature of weaning, considered the most stressful and significant transition experienced by dairy calves, influences the ability of a calf to adapt to the dramatic dietary shift, and thus, can influence the severity of production losses through the weaning transition. However, the effects of various feeding strategies on the development of rumen or fecal microbiota across weaning are yet to be examined. Here we characterized the pre- and post-weaning ruminal and fecal microbiomes of Holstein dairy calves exposed to two different weaning strategies, gradual (step-down) or abrupt. We describe the shifts toward a mature ruminant state, a transition which is hastened by the introduction of the solid feeds initiating ruminal fermentation. Additionally, we discuss the predicted functional roles of these communities, which also appear to represent that of the mature gastrointestinal system prior to weaning, suggesting functional maturity. This assumed state of readiness also appeared to negate the effects of weaning strategy on ruminal and fecal microbiomes and therefore, we conclude that the shift in gastrointestinal microbiota may not account for the declines in gain and intakes observed in calves during an abrupt weaning. PMID:27199916

  16. Antibacterial activity of the alkaloid-enriched extract from Prosopis juliflora pods and its influence on in vitro ruminal digestion.

    PubMed

    Dos Santos, Edilene T; Pereira, Mara Lúcia A; da Silva, Camilla Flávia P G; Souza-Neta, Lourdes C; Geris, Regina; Martins, Dirceu; Santana, Antônio Euzébio G; Barbosa, Luiz Cláudio A; Silva, Herymá Giovane O; Freitas, Giovana C; Figueiredo, Mauro P; de Oliveira, Fernando F; Batista, Ronan

    2013-04-17

    The purpose of this study was to assess the in vitro antimicrobial activity of alkaloid-enriched extracts from Prosopis juliflora (Fabaceae) pods in order to evaluate them as feed additives for ruminants. As only the basic chloroformic extract (BCE), whose main constituents were juliprosopine (juliflorine), prosoflorine and juliprosine, showed Gram-positive antibacterial activity against Micrococcus luteus (MIC = 25 μg/mL), Staphylococcus aureus (MIC = 50 μg/mL) and Streptococcus mutans (MIC = 50 μg/mL), its influence on ruminal digestion was evaluated using a semi-automated in vitro gas production technique, with monensin as the positive control. Results showed that BCE has decreased gas production as efficiently as monensin after 36 h of fermentation, revealing its positive influence on gas production during ruminal digestion. Since P. juliflora is a very affordable plant, this study points out this alkaloid enriched extract from the pods of Prosopis juliflora as a potential feed additive to decrease gas production during ruminal digestion.

  17. Urinary Tract Infections

    MedlinePlus

    ... body's drainage system for removing wastes and extra water. It includes two kidneys, two ureters, a bladder, and a urethra. Urinary tract infections (UTIs) are the second most common type of infection in the body. You may have a UTI if you notice ...

  18. [Urinary catheter biofilm infections].

    PubMed

    Holá, V; Růzicka, F

    2008-04-01

    Urinary tract infections, most of which are biofilm infections in catheterized patients, account for more than 40% of hospital infections. Bacterial colonization of the urinary tract and catheters causes not only infection but also other complications such as catheter blockage by bacterial encrustation, urolithiasis and pyelonephritis. About 50% of long-term catheterized patients face urinary flow obstruction due to catheter encrustation, but no measure is currently available to prevent it. Encrustation has been known either to result from metabolic dysfunction or to be of microbial origin, with urease positive bacterial species implicated most often. Infectious calculi account for about 15-20% of all cases of urolithiasis and are often associated with biofilm colonization of a long-term indwelling urinary catheter or urethral stent. The use of closed catheter systems is helpful in reducing such problems; nevertheless, such a system only delays the inevitable, with infections emerging a little later. Various coatings intended to prevent the bacterial adhesion to the surface of catheters and implants and thus also the emergence of biofilm infections, unfortunately, do not inhibit the microbial adhesion completely and permanently and the only reliable method for biofilm eradication remains the removal of the foreign body from the patient.

  19. Effects of Dietary Forage and Calf Starter Diet on Ruminal pH and Bacteria in Holstein Calves during Weaning Transition

    PubMed Central

    Kim, Yo-Han; Nagata, Rie; Ohtani, Natsuki; Ichijo, Toshihiro; Ikuta, Kentaro; Sato, Shigeru

    2016-01-01

    abundance, and these changes might have influenced the establishment of fermentative ruminal functions during weaning transition.

  20. 9 CFR 93.415 - Manure from quarantined ruminants.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Manure from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.415 Manure from quarantined ruminants. No manure shall be removed from the quarantine premises until the release of the...

  1. 9 CFR 93.415 - Manure from quarantined ruminants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Manure from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.415 Manure from quarantined ruminants. No manure shall be removed from the quarantine premises until the release of the...

  2. 9 CFR 93.415 - Manure from quarantined ruminants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Manure from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.415 Manure from quarantined ruminants. No manure shall be removed from the quarantine premises until the release of the...

  3. 9 CFR 93.415 - Manure from quarantined ruminants.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Manure from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.415 Manure from quarantined ruminants. No manure shall be removed from the quarantine premises until the release of the...

  4. 9 CFR 93.415 - Manure from quarantined ruminants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Manure from quarantined ruminants. 93...; REQUIREMENTS FOR MEANS OF CONVEYANCE AND SHIPPING CONTAINERS Ruminants § 93.415 Manure from quarantined ruminants. No manure shall be removed from the quarantine premises until the release of the...

  5. Relative stability of transgene DNA fragments from GM rapeseed in mixed ruminal cultures.

    PubMed

    Sharma, Ranjana; Alexander, Trevor W; John, S Jacob; Forster, Robert J; McAllister, Tim A

    2004-05-01

    The use of transgenic crops as feeds for ruminant animals has prompted study of the possible uptake of transgene fragments by ruminal micro-organisms and/or intestinal absorption of fragments surviving passage through the rumen. The persistence in buffered ruminal contents of seven different recombinant DNA fragments from GM rapeseed expressing the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgene was tracked using PCR. Parental and transgenic (i.e. glyphosphate-tolerant; Roundup Ready, Monsanto Company, St Louis, MO, USA) rapeseed were incubated for 0, 2, 4, 8, 12, 24 and 48 h as whole seeds, cracked seeds, rapeseed meal, and as pelleted, barley-based diets containing 65 g rapeseed meal/kg. The seven transgene fragments ranged from 179 to 527 bp and spanned the entire 1363 bp EPSPS transgene. A 180 bp ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit fragment and a 466 bp 16S rDNA fragment were used as controls for endogenous rapeseed DNA and bacterial DNA respectively. The limit of detection of the PCR assay, established using negative controls spiked with known quantities of DNA, was 12.5 pg. Production of gas and NH3 was monitored throughout the incubation and confirmed active in vitro fermentation. Bacterial DNA was detected in all sample types at all time points. Persistence patterns of endogenous (Rubisco) and recombinant (EPSPS) rapeseed DNA were inversely related to substrate digestibility (amplifiable for 48, 8 and 4 h in whole or cracked seeds, meal and diets respectively), but did not differ between parental and GM rapeseed, nor among fragments. Detection of fragments was representative of persistence of the whole transgene. No EPSPS fragments were amplifiable in microbial DNA, suggesting that transformation had not occurred during the 48 h incubation. Uptake of transgenic DNA fragments by ruminal bacteria is probably precluded or time-limited by rapid degradation of plant DNA upon plant cell lysis.

  6. A novel subgroup of rhadinoviruses in ruminants.

    PubMed

    Li, Hong; Gailbreath, Katherine; Flach, Edmund J; Taus, Naomi S; Cooley, Jim; Keller, Janice; Russell, George C; Knowles, Donald P; Haig, David M; Oaks, J Lindsay; Traul, Donald L; Crawford, Timothy B

    2005-11-01

    In the course of investigating the malignant catarrhal fever (MCF) subgroup of rhadinoviruses, seven novel rhadinoviruses were identified in a variety of ruminants, including domestic sheep, bighorn sheep, bison, black-tailed deer, mule deer, fallow deer, elk and addax. Based on the DNA polymerase gene sequences, these newly recognized viruses clustered into a second distinct subgroup in ruminants with three members identified previously in cattle, goats and oryx. Phylogenetic analysis revealed that the currently known ruminant rhadinoviruses appear to comprise three distinct genetic lineages: (i) the MCF subgroup, defined by sequence identity and the presence of the 15A antigenic epitope; (ii) a second distinct subgroup, devoid of the 15A epitope, which contains the previously reported bovine lymphotropic herpesvirus and related viruses; and (iii) a third distinct subgroup represented by Bovine herpesvirus 4. Comparison of phylogenetic trees between the rhadinoviruses and their corresponding hosts further supports the gammaherpesvirus and host co-evolution theory. PMID:16227223

  7. Host specificity of the ruminal bacterial community in the dairy cow followng near-total exchange of ruminal contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this study was to examine the stability and host specificity of a cow’s ruminal bacterial community following massive challenge with the ruminal microflora from another cow. In each of two experiments, one pair of cows was selected on the basis of differences in ruminal bacterial comm...

  8. Effect of fumarate reducing bacteria on in vitro rumen fermentation, methane mitigation and microbial diversity.

    PubMed

    Mamuad, Lovelia; Kim, Seon Ho; Jeong, Chang Dae; Choi, Yeon Jae; Jeon, Che Ok; Lee, Sang-Suk

    2014-02-01

    The metabolic pathways involved in hydrogen (H(2)) production, utilization and the activity of methanogens are the important factors that should be considered in controlling methane (CH(4)) emissions by ruminants. H(2) as one of the major substrate for CH(4) production is therefore should be controlled. One of the strategies on reducing CH(4) is through the use of hydrogenotrophic microorganisms such as fumarate reducing bacteria. This study determined the effect of fumarate reducing bacteria, Mitsuokella jalaludinii, supplementation on in vitro rumen fermentation, CH(4) production, diversity and quantity. M. jalaludinii significantly reduced CH(4) at 48 and 72 h of incubation and significantly increased succinate at 24 h. Although not significantly different, propionate was found to be highest in treatment containing M. jalaludinii at 12 and 48 h of incubation. These results suggest that supplementation of fumarate reducing bacteria to ruminal fermentation reduces CH(4) production and quantity, increases succinate and changes the rumen microbial diversity.

  9. Fermentability of eastern gamagrass, big bluestem and sand bluestem grown across a wide variety of environments.

    PubMed

    Weimer, P J; Springer, T L

    2007-05-01

    Plant biomass has attracted interest as a feedstock for biofuels production, but much of this work has been focused on relatively few plant species. In this study, three relatively-unstudied species of warm-season perennial grasses, grown at multiple locations in the eastern and central US and harvested over a three year period, were examined for fermentability via in vitro ruminal gas production and dry matter digestibility assays, and near-infrared reflectance calibrations were developed for these fermentation parameters. Big bluestem (Andropogon gerardii Vitman) displayed greater fermentability than did sand bluestem (Andropogon hallii Hack) or eastern gamagrass [Tripsacum dactyloides (L.) L.], but displayed lower biomass yields. The bluestems also displayed lower N contents and less variation in fermentability over different growth environments (geographic locations and harvest years), suggesting a more consistent biomass quality than for eastern gamagrass. Thus, in addition to their use as forage for ruminant animals, bluestems may be of particular interest as feedstocks for bioconversion to ethanol and other products via direct microbial fermentation (consolidated bioprocessing) schemes, and thus merit additional efforts to enhance biomass yield potential.

  10. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep.

    PubMed

    Newbold, C J; Wallace, R J; Chen, X B; McIntosh, F M

    1995-06-01

    A ruminal simulation device (Rusitec) was used to compare the effects of Saccharomyces cerevisiae strains NCYC 240, NCYC 694, NCYC 1026, NCYC 1088, and Yea-Sacc (a commercial product containing S. cerevisiae) on ruminal fermentation. S. cerevisiae NCYC 240, NCYC 1088, NCYC 1026, and NCYC 694 were grown on malt extract at 30 degrees C in aerated fed-batch culture and harvested along with spent growth medium by freeze-drying. Each vessel received daily 20 g of a basal diet consisting of hay, barley, molasses, fishmeal, and a minerals/vitamins mixture at 500, 299.5, 100, 91, and 9.5 g/kg of DM, respectively. Yeast preparations (500 mg/d) were added along with the feed. S. cerevisiae NCYC 240, NCYC 1026, and Yea-Sacc stimulated total and cellulolytic bacterial numbers, whereas S. cerevisiae NCYC 694 and NCYC 1088 had no effect on the numbers of bacteria. The effects of S. cerevisiae NCYC 240, NCYC 1026, and Yea-Sacc on ruminal fermentation were further investigated in vivo using ruminally cannulated sheep fed 1.5 kg/d of the diet used in Rusitec, supplemented with 2 g/d of yeast culture. All treatments tended to stimulate total and cellulolytic bacterial numbers. However, the stimulation was only statistically significant for S. cerevisiae NCYC 1026 with total bacterial numbers and S. cerevisiae NCYC 240 with cellulolytic bacteria (P < .05). Increased bacterial numbers were associated with an increase in the rate of straw degradation in the rumen and a nonsignificant (P > .05) increase in the excretion of purine derivatives in the urine, measured as an index of microbial nitrogen leaving the rumen.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7673076

  11. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep.

    PubMed

    Newbold, C J; Wallace, R J; Chen, X B; McIntosh, F M

    1995-06-01

    A ruminal simulation device (Rusitec) was used to compare the effects of Saccharomyces cerevisiae strains NCYC 240, NCYC 694, NCYC 1026, NCYC 1088, and Yea-Sacc (a commercial product containing S. cerevisiae) on ruminal fermentation. S. cerevisiae NCYC 240, NCYC 1088, NCYC 1026, and NCYC 694 were grown on malt extract at 30 degrees C in aerated fed-batch culture and harvested along with spent growth medium by freeze-drying. Each vessel received daily 20 g of a basal diet consisting of hay, barley, molasses, fishmeal, and a minerals/vitamins mixture at 500, 299.5, 100, 91, and 9.5 g/kg of DM, respectively. Yeast preparations (500 mg/d) were added along with the feed. S. cerevisiae NCYC 240, NCYC 1026, and Yea-Sacc stimulated total and cellulolytic bacterial numbers, whereas S. cerevisiae NCYC 694 and NCYC 1088 had no effect on the numbers of bacteria. The effects of S. cerevisiae NCYC 240, NCYC 1026, and Yea-Sacc on ruminal fermentation were further investigated in vivo using ruminally cannulated sheep fed 1.5 kg/d of the diet used in Rusitec, supplemented with 2 g/d of yeast culture. All treatments tended to stimulate total and cellulolytic bacterial numbers. However, the stimulation was only statistically significant for S. cerevisiae NCYC 1026 with total bacterial numbers and S. cerevisiae NCYC 240 with cellulolytic bacteria (P < .05). Increased bacterial numbers were associated with an increase in the rate of straw degradation in the rumen and a nonsignificant (P > .05) increase in the excretion of purine derivatives in the urine, measured as an index of microbial nitrogen leaving the rumen.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Zoonotic risks from small ruminants.

    PubMed

    Ganter, M

    2015-12-14

    Zoonoses are infections that spread naturally between species (sometimes by a vector) from animals to other animal species or to humans or from humans to animals. Most of the zoonoses diagnosed in sheep and goats are transmitted by close contact of man with these animals and are, more often, occupational diseases that principally affect breeders, veterinarians and/or slaughterhouse workers. Some other diseases have an airborne transmission and affect the population in the vicinity of sheep/goat farms. Due to the fact that small ruminants are almost the only remaining animals which are migrating in industrialised countries, there is a severe risk for transmitting the diseases. Some other zoonotic diseases are foodborne diseases, which are mainly transmitted from animals to humans and to other animal species by contaminated food and water. Within the last decade central Europe was threatened by some new infections, e.g., bluetongue disease and schmallenberg disease, which although not of zoonotic interest, are caused by pathogens transmitted by vectors. Causal agents of both diseases have found highly effective indigenous vectors. In the future, climate change may possibly modify conditions for the vectors and influence their distribution and competence. By this, other vector-borne zoonotic infections may propagate into former disease free countries. Changes in human behaviour in consummation and processing of food, in animal housing and management may also influence future risks for zoonosis. Monitoring, prevention and control measures are proposed to limit further epidemics and to enable the containment of outbreaks. Measures depend mainly on the damage evoked or anticipated by the disease, the local situation, and the epidemiology of the zoonoses, the presence of the infective agent in wild and other animals, as well as the resistance of the causal microorganisms in the environment and the possibility to breed sheep and goats which are resistant to specific

  13. Zoonotic risks from small ruminants.

    PubMed

    Ganter, M

    2015-12-14

    Zoonoses are infections that spread naturally between species (sometimes by a vector) from animals to other animal species or to humans or from humans to animals. Most of the zoonoses diagnosed in sheep and goats are transmitted by close contact of man with these animals and are, more often, occupational diseases that principally affect breeders, veterinarians and/or slaughterhouse workers. Some other diseases have an airborne transmission and affect the population in the vicinity of sheep/goat farms. Due to the fact that small ruminants are almost the only remaining animals which are migrating in industrialised countries, there is a severe risk for transmitting the diseases. Some other zoonotic diseases are foodborne diseases, which are mainly transmitted from animals to humans and to other animal species by contaminated food and water. Within the last decade central Europe was threatened by some new infections, e.g., bluetongue disease and schmallenberg disease, which although not of zoonotic interest, are caused by pathogens transmitted by vectors. Causal agents of both diseases have found highly effective indigenous vectors. In the future, climate change may possibly modify conditions for the vectors and influence their distribution and competence. By this, other vector-borne zoonotic infections may propagate into former disease free countries. Changes in human behaviour in consummation and processing of food, in animal housing and management may also influence future risks for zoonosis. Monitoring, prevention and control measures are proposed to limit further epidemics and to enable the containment of outbreaks. Measures depend mainly on the damage evoked or anticipated by the disease, the local situation, and the epidemiology of the zoonoses, the presence of the infective agent in wild and other animals, as well as the resistance of the causal microorganisms in the environment and the possibility to breed sheep and goats which are resistant to specific

  14. Postcircumcision urinary tract infection.

    PubMed

    Cohen, H A; Drucker, M M; Vainer, S; Ashkenasi, A; Amir, J; Frydman, M; Varsano, I

    1992-06-01

    The possible association of urinary tract infection (UTI) with ritual circumcision on the eighth day of life was studied by analyzing the epidemiology of urinary tract infections during the first year of life in 169 children with UTI (56 males and 113 females) born in Israel from 1979 to 1984. Forty-eight percent of the episodes of UTI occurring in males appeared during the 12 days following circumcision, and the increased incidence during that period was highly significant. The median age of the males at the time of the UTI was 16 days, compared with seven months in females. Ritual Jewish circumcision as practiced in Israel may be a predisposing factor for UTI during the 12-day period following that procedure.

  15. Urinary Tract Endometriosis.

    PubMed

    Kołodziej, Anna; Krajewski, Wojciech; Dołowy, Łukasz; Hirnle, Lidia

    2015-01-01

    Recently, occurrence of urinary tract endometriosis (UTE) is more frequently diagnosed. According to literature, it refers to approximately 0.3 to even 12% of all women with endometriosis. The pathogenesis of UTE has not been clearly explained so far. The actually proposed hypotheses include embryonic, migration, transplantation, and iatrogenic theory. Most frequently UTE affects bladder, less often ureters and kidneys. One-third of patients remains asymptomatic or exhibits only minor manifestations. In symptomatic patients main complaints include dysuria, urinary urgency, and/or frequency, painful micturition, and burning sensation in the urethra and discomfort in the retropubic area. Treatment of UTE is challenging and can be pharmacological, surgical or can be a combination of both methods. In this paper we present a review of the literature concerning the UTE, its diagnosis and treatment. PMID:26341760

  16. Fermentation Quality and Additives: A Case of Rice Straw Silage.

    PubMed

    Oladosu, Yusuff; Rafii, Mohd Y; Abdullah, Norhani; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw. PMID:27429981

  17. Fermentation Quality and Additives: A Case of Rice Straw Silage.

    PubMed

    Oladosu, Yusuff; Rafii, Mohd Y; Abdullah, Norhani; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw.

  18. Fermentation Quality and Additives: A Case of Rice Straw Silage

    PubMed Central

    Oladosu, Yusuff; Magaji, Usman; Hussin, Ghazali; Ramli, Asfaliza; Miah, Gous

    2016-01-01

    Rice cultivation generates large amount of crop residues of which only 20% are utilized for industrial and domestic purposes. In most developing countries especially southeast Asia, rice straw is used as part of feeding ingredients for the ruminants. However, due to its low protein content and high level of lignin and silica, there is limitation to its digestibility and nutritional value. To utilize this crop residue judiciously, there is a need for improvement of its nutritive value to promote its utilization through ensiling. Understanding the fundamental principle of ensiling is a prerequisite for successful silage product. Prominent factors influencing quality of silage product include water soluble carbohydrates, natural microbial population, and harvesting conditions of the forage. Additives are used to control the fermentation processes to enhance nutrient recovery and improve silage stability. This review emphasizes some practical aspects of silage processing and the use of additives for improvement of fermentation quality of rice straw. PMID:27429981

  19. Glycerol inhibition of ruminal lipolysis in vitro.

    PubMed

    Edwards, H D; Anderson, R C; Miller, R K; Taylor, T M; Hardin, M D; Smith, S B; Krueger, N A; Nisbet, D J

    2012-09-01

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of supplemental glycerol on rumen lipolysis, mixed populations of ruminal bacteria were incubated with 6 or 20% glycerol (vol/vol). After 48-h anaerobic incubation of mixed culture rumen fluid, rates of free fatty acid production (nmol/mL per h) for the 6 and 20% glycerol-supplemented samples were decreased by 80 and 86%, respectively, compared with rates from nonsupplemented control cultures (12.4±1.0; mean ± SE). Conversely, assay of the prominent ruminal lipase-producing bacteria Anaerovibrio lipolyticus 5S, Butyrivibrio fibrisolvens 49, and Propionibacterium species avidum and acnes revealed no effect of 2 or 10% (vol/vol) added glycerol on lipolytic activity by these organisms. Supplementing glycerol at 6% on a vol/vol basis, equivalent to supplementing glycerol at approximately 8 to 15% of diet dry matter, effectively reduced lipolysis. However, the mechanism of glycerol inhibition of ruminal lipolysis remains to be demonstrated. PMID:22916923

  20. Short-term adaptation of the ruminal epithelium involves abrupt changes in sodium and short-chain fatty acid transport

    PubMed Central

    Schurmann, Brittney L.; Walpole, Matthew E.; Górka, Pawel; Ching, John C. H.; Loewen, Matthew E.

    2014-01-01

    The objectives of this study were to determine the effect of an increase in diet fermentability on 1) the rate and extent to which short-chain fatty acid (SCFA) absorption pathways adapt relative to changes in Na+ transport, 2) the epithelial surface area (SA), and 3) the barrier function of the bovine ruminal epithelium. Twenty-five Holstein steer calves were assigned to either the control diet (CON; 91.5% hay and 8.5% supplement) or a moderately fermentable diet (50% hay; 41.5% barley grain (G), and 8.5% supplement) fed for 3 (G3), 7 (G7), 14 (G14), or 21 days (G21). All calves were fed at 2.25% body weight at 0800. Calves were killed (at 1000), and ruminal tissue was collected to determine the rate and pathway of SCFA transport, Na+ transport and barrier function in Ussing chambers. Tissue was also collected for SA measurement and gene expression. Mean reticular pH decreased from 6.90 for CON to 6.59 for G7 and then increased (quadratic P < 0.001). While effective SA of the ruminal epithelium was not affected (P > 0.10) by dietary treatment, the net Na+ flux increased by 125% within 7 days (quadratic P = 0.016). Total acetate and butyrate flux increased from CON to G21, where passive diffusion was the primary SCFA absorption pathway affected. Increased mannitol flux, tissue conductance, and tendencies for increased expression of IL-1β and TLR2 indicated reduced rumen epithelium barrier function. This study indicates that an increase in diet fermentability acutely increases Na+ and SCFA absorption in the absence of increased SA, but reduces barrier function. PMID:25080498

  1. Short-term adaptation of the ruminal epithelium involves abrupt changes in sodium and short-chain fatty acid transport.

    PubMed

    Schurmann, Brittney L; Walpole, Matthew E; Górka, Pawel; Ching, John C H; Loewen, Matthew E; Penner, Gregory B

    2014-10-01

    The objectives of this study were to determine the effect of an increase in diet fermentability on 1) the rate and extent to which short-chain fatty acid (SCFA) absorption pathways adapt relative to changes in Na(+) transport, 2) the epithelial surface area (SA), and 3) the barrier function of the bovine ruminal epithelium. Twenty-five Holstein steer calves were assigned to either the control diet (CON; 91.5% hay and 8.5% supplement) or a moderately fermentable diet (50% hay; 41.5% barley grain (G), and 8.5% supplement) fed for 3 (G3), 7 (G7), 14 (G14), or 21 days (G21). All calves were fed at 2.25% body weight at 0800. Calves were killed (at 1000), and ruminal tissue was collected to determine the rate and pathway of SCFA transport, Na(+) transport and barrier function in Ussing chambers. Tissue was also collected for SA measurement and gene expression. Mean reticular pH decreased from 6.90 for CON to 6.59 for G7 and then increased (quadratic P < 0.001). While effective SA of the ruminal epithelium was not affected (P > 0.10) by dietary treatment, the net Na(+) flux increased by 125% within 7 days (quadratic P = 0.016). Total acetate and butyrate flux increased from CON to G21, where passive diffusion was the primary SCFA absorption pathway affected. Increased mannitol flux, tissue conductance, and tendencies for increased expression of IL-1β and TLR2 indicated reduced rumen epithelium barrier function. This study indicates that an increase in diet fermentability acutely increases Na(+) and SCFA absorption in the absence of increased SA, but reduces barrier function.

  2. Effects of including saponins (Micro-aid®) on intake, rumen fermentation, and digestibility in steers fed low-quality prairie hay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixteen ruminally-cannulated crossbred steers (529 ± 45 kg initial body weight, BW) were used to evaluate in situ dry matter (DM), neutral detergent fiber (aNDF), and N degradation characteristics of low quality prairie hay, blood urea nitrogen (BUN) and rumen fermentation parameters in steers provi...

  3. [Urinary calculi and infection].

    PubMed

    Trinchieri, Alberto

    2014-01-01

    Infection urinary stones resulting from urease-producing bacteria are composed by struvite and/or carbonate apatite. Bacterial urease splits urea and promotes the formation of ammonia and carbon dioxide leading to urine alkalinization and formation of phosphate salts. Proteus species are urease-producers, whereas a limited number of strains of other Gram negative and positive species may produce urease. Ureaplasma urealyticum and Corynebacterium urealyticum are urease-producers that are not isolated by conventional urine cultures, but require specific tests for identification. Primary treatment requires surgical removal of stones as complete as possible. Extracorporeal and endoscopic treatments are usually preferred, while open surgery is actually limited to few selected cases. Residual stones or fragments should be treated by chemolysis via ureteral catheter or nephrostomy or administration of citrate salts in order to achieve a stone-free renal unit. Postoperatively, recurrent urinary tract infection should be treated with appropriate antibiotic treatment although long-term antibiotic prophylaxis can cause resistance. Urinary acidification has been proposed for the prophylaxis of infection stones, but long-term acidification is difficult to achieve in urine infected by urease-producing bacteria. Urease inhibitors lead to prevention and/or dissolution of stones and encrustations in patients with infection by urea-splitting bacteria, but their use is limited by their toxicity. The administration of citrate salts involves an increase of the value of nucleation pH (pHn), that is the pH value at which calcium and magnesium phosphate crystallization occurs, in a greater way than the corresponding increase in the urinary pH due to its alkalinizing effect and resulting in a reduction of the risk of struvite crystallization. In conclusion prevention of the recurrence of infection stones can be achieved by an integrated approach tailored on the single patient. Complete

  4. Geriatric urinary incontinence.

    PubMed

    Ouslander, J G

    1992-02-01

    Urinary incontinence (UI) is now recognized as a prevalent, physically and emotionally disruptive, and costly health problem in the geriatric population. Because incontinence may be a manifestation of a subacute or reversible process within or outside of the lower urinary tract, and because effective treatment is available, it is important for primary care physicians to identify and appropriately assess incontinence in their geriatric patients. The initial evaluation of an incontinent geriatric patients. The initial evaluation of an incontinent geriatric patient includes a targeted history and physical examination, urinalysis, and simple tests of lower urinary tract function. Potentially reversible conditions that may be causing or contributing to the incontinence, such as delirium and urinary tract infection (UTI), should be identified and managed. Patients who may benefit from further testing, including urologic or gynecologic examination and/or complex urodynamic tests, should be identified and referred. Several therapeutic modalities can be used to treat geriatric UI. Behavioral therapies are noninvasive and effective, both in functional community-dwelling geriatric patients and in functionally impaired nursing home residents. Behavioral therapies include bladder training, pelvic muscle exercises, biofeedback, scheduled toileting, habit training, and prompted voiding. Pharmacologic therapy is often used in conjunction with behavioral therapy. For stress incontinence, alpha-adrenergic drugs are used and can be combined with topical or oral estrogen therapy in women. For urge incontinence, pharmacologic treatment involves drugs with anticholinergic and direct bladder muscle relaxant properties. Pharmacologic therapy for overflow incontinence is generally not effective on a long-term basis. Surgical treatment is indicated when a pathologic lesion such as a tumor is diagnosed, or when anatomic obstruction is believed to be the cause of the patient's symptoms

  5. Effect of protein supplementation on ruminal parameters and microbial community fingerprint of Nellore steers fed tropical forages.

    PubMed

    Bento, C B P; Azevedo, A C; Gomes, D I; Batista, E D; Rufino, L M A; Detmann, E; Mantovani, H C

    2016-01-01

    In tropical regions, protein supplementation is a common practice in dairy and beef farming. However, the effect of highly degradable protein in ruminal fermentation and microbial community composition has not yet been investigated in a systematic manner. In this work, we aimed to investigate the impact of casein supplementation on volatile fatty acids (VFA) production, specific activity of deamination (SAD), ammonia concentration and bacterial and archaeal community composition. The experimental design was a 4×4 Latin square balanced for residual effects, with four animals (average initial weight of 280±10 kg) and four experimental periods, each with duration of 29 days. The diet comprised Tifton 85 (Cynodon sp.) hay with an average CP content of 9.8%, on a dry matter basis. Animals received basal forage (control) or infusions of pure casein (230 g) administered direct into the rumen, abomasum or divided (50 : 50 ratio) in the rumen/abomasum. There was no differences (P>0.05) in ruminal pH and microbial protein concentration between supplemented v. non-supplemented animals. However, in steers receiving ruminal infusion of casein the SAD and ruminal ammonia concentration increased 33% and 76%, respectively, compared with the control. The total concentration of VFA increased (P0.05) in species richness and diversity of γ-proteobacteria, firmicutes and archaea between non-supplemented Nellore steers and steers receiving casein supplementation in the rumen. However, species richness and the Shannon-Wiener index were lower (P<0.05) for the phylum bacteroidetes in steers supplemented with casein in the rumen compared with non-supplemented animals. Venn diagrams indicated that the number of unique bands varied considerably among individual animals and was usually higher in number for non-supplemented steers compared with supplemented animals. These results add new knowledge about the effects of ruminal and postruminal protein supplementation on metabolic activities of

  6. Neonatal Staphylococcus lugdunensis urinary tract infection.

    PubMed

    Hayakawa, Itaru; Hataya, Hiroshi; Yamanouchi, Hanako; Sakakibara, Hiroshi; Terakawa, Toshiro

    2015-08-01

    Staphylococcus lugdunensis is a known pathogen of infective endocarditis, but not of urinary tract infection. We report a previously healthy neonate without congenital anomalies of the kidney and urinary tract who developed urinary tract infection due to Staphylococcus lugdunensis, illustrating that Staphylococcus lugdunensis can cause urinary tract infection even in those with no urinary tract complications. PMID:26177232

  7. [Urinary complications after anorectal surgery].

    PubMed

    Iusuf, T; Sârbu, V; Cristache, C; Popescu, R; Botea, F; Panait, L

    2000-01-01

    The prevalence of urinary complications after various anorectal operations was studied in a group of 273 patients. The overall prevalence of urinary complications was 26.7%; most of these complications affected men between 41 and 50, mainly after hemorrhoidectomy. In 10.6% of patients, bladder catheterization was needed. These urinary complications result from nervous reflexes originating from the anus and determined by the operative trauma and/or rectal distinction. In the treatment of these urinary complications, the role of the muses is essential for reassuring the patients. Parasympathomimetic drugs are often efficient. Urinary catheterization must be delayed until the 18th hour. Fluid restriction may be useful to prevent urinary retention. PMID:14870531

  8. Rumination on Anger and Sadness in Adolescence: Fueling of Fury and Deepening of Despair

    ERIC Educational Resources Information Center

    Peled, Maya; Moretti, Marlene M.

    2007-01-01

    We examined anger rumination and sadness rumination in clinic-referred adolescents (N = 121). Factor analysis indicated that items from analogous anger and sadness rumination measures loaded onto 2 factors tapping anger rumination and sadness rumination, respectively. Structural equation modeling confirmed unique relations between each form of…

  9. The Effects of Worry and Rumination on Affect States and Cognitive Activity

    ERIC Educational Resources Information Center

    McLaughlin, Katie A.; Borkovec, Thomas D.; Sibrava, Nicholas J.

    2007-01-01

    The effects of worry and rumination on affective states and mentation type were examined in an unselected undergraduate sample in Study 1 and in a sample of individuals with high trait worry and rumination, high rumination, and low worry/rumination in Study 2. Participants engaged in worry and rumination inductions, counterbalanced in order across…

  10. [Ultrasound of the urinary system].

    PubMed

    Segura-Grau, A; Herzog, R; Díaz-Rodriguez, N; Segura-Cabral, J M

    2016-09-01

    Ultrasound techniques are able to provide a fairly complete examination of the urinary system, achieving a high sensitivity in relevant-pathology detection, especially in the kidney, bladder and prostate. Early detection of pathologies such as tumors or urinary tract obstructions, sometimes even before their clinical manifestation, has improved their management and prognosis in many cases. This, added to its low cost and harmlessness, makes ultrasound ideal for early approaches and follow-up of a wide number of urinary system pathologies. In this article, the ultrasound characteristics of the main urinary system pathologies that can be diagnosed by this technique, are reviewed.

  11. [Ultrasound of the urinary system].

    PubMed

    Segura-Grau, A; Herzog, R; Díaz-Rodriguez, N; Segura-Cabral, J M

    2016-09-01

    Ultrasound techniques are able to provide a fairly complete examination of the urinary system, achieving a high sensitivity in relevant-pathology detection, especially in the kidney, bladder and prostate. Early detection of pathologies such as tumors or urinary tract obstructions, sometimes even before their clinical manifestation, has improved their management and prognosis in many cases. This, added to its low cost and harmlessness, makes ultrasound ideal for early approaches and follow-up of a wide number of urinary system pathologies. In this article, the ultrasound characteristics of the main urinary system pathologies that can be diagnosed by this technique, are reviewed. PMID:25982474

  12. Rumination modulates stress and other psychological processes in fibromyalgia

    PubMed Central

    Malin, Katrina; Littlejohn, Geoffrey Owen

    2015-01-01

    Objective Fibromyalgia (FM) is characterized by widespread pain and high levels of sleep disturbance, fatigue, and altered cognition. Psychological stress can modulate these features. In this study, we examined the thinking style of rumination in women with FM to assess the effect of rumination on stress levels and other psychological variables in FM. Material and Methods Ninety-eight women with FM completed questionnaires to assess levels of rumination, stress, anxiety, depression, optimism, control, and coping. T-tests and bivariate (Pearson) analysis was performed to assess relationships between rumination and other psychological factors. Results We found that those with higher levels of rumination had increased the use of negative coping techniques (p<0.001), higher anxiety (p<0.001), depression (p<0.001), and poor sleep levels (p<0.05). Higher rumination correlated with lower optimism (p<0.001) and control (Mastery) (p<0.001). High rumination correlated strongest with stress (p<0.001). Rumination predicted 26% of variance for perceived stress. Conclusion Rumination influenced several psychological processes deemed important in FM and was an important contributor to stress in FM. Specific interventions targeting rumination in FM may improve FM symptoms and outcomes. PMID:27708952

  13. [Salivary microbial flora of mentally retarded persons with rumination].

    PubMed

    Ishiguro, H

    1989-06-01

    The salivary microflora of institutionalized mentally retarded persons with chronic rumination was investigated, especially emphasizing the occurrence of the aciduric microorganisms such as mutans streptococci, lactobacilli and yeasts. 10 of those subjects together with 10 control subjects resident in the same institution were selected at random. The control subjects were mentally retarded but without rumination. Samples of saliva were collected about 2 hours after lunch. The results obtained were as follows: 1. Dental caries was more prevalent and advanced in those ruminating than the control subjects. 2. The mean salivary pH-value in the ruminating subjects was significantly lower than the control subjects. 3. The proportional distribution of the genera or species of salivary microorganisms cultivated on the blood agar plates was similar for both the ruminating and non-ruminating subjects. The only difference was observed in the genus of Actinomyces, which was less frequently isolated from the ruminating subjects. 4. Mutans streptococci, lactobacilli and yeasts recovered from their respective selective media were significantly predominant in those ruminating compared with control subjects. 5. Positive correlations among the cell count of mutans streptococci, lactobacilli and yeasts were found in the ruminating subjects. The yeasts isolated were classified exclusively into Candida albicans. 6. The results described above suggest that long-lasting acidic milieu in the oral cavities of the ruminating subjects favors the proliferation of mutans streptococci, lactobacilli and yeasts, resulting in the prevalence of dental caries in those subjects.

  14. Role of wild small ruminants in the epidemiology of peste des petits ruminants.

    PubMed

    Munir, M

    2014-10-01

    Peste des petits ruminants virus (PPRV) causes one of the most contagious and highly infectious respiratory diseases in sheep and goats known as peste des petits ruminants (PPR). Reports of outbreaks of PPR in captive and wild small ruminants have extended the known spectrum of susceptible species to include antelopes. Phylogenetic analysis of nucleoprotein and fusion genes indicates that all PPRVs isolated from wild ungulate outbreaks belong to lineage IV. While it is clear that a number of wildlife species are susceptible to infection, the role of wildlife in the epidemiology of PPR remains uncertain. The available information about the occurrence of disease in free-ranging wildlife is mainly derived from surveys based on serological evidence. Data on the genetic nature of circulating PPRV strains are scarce. Given the scope of PPR in wild ungulates that are widespread in many countries, current disease surveillance efforts are inadequate and warrant additional investment. This is crucial because domestic and wild ruminants mingle together at several points, allowing inter-species transmission of PPRV. There is no reason to believe that PPRV circulates in wild animals and acts as a potential source of virus for domestic species. Irrespective of the possibility of wild small ruminants as the reservoir of PPRV, concerns about the role of susceptible species of antelopes need to be addressed, due to the fact that the disease can pose a serious threat to the survival of endangered species of wild ruminants on the one hand and could act as a constraint to the global eradication of PPR on the other hand. In this review, knowledge gained through research or surveillance on the sustainability of PPRV in wild ruminants is discussed.

  15. Comparative study of fermentation and methanogen community structure in the digestive tract of goats and rabbits.

    PubMed

    Abecia, L; Fondevila, M; Rodríguez-Romero, N; Martínez, G; Yáñez-Ruiz, D R

    2013-05-01

    Methane is the most important anthropogenic contribution to climate change after carbon dioxide and represents a loss of feed energy for the animal, mainly for herbivorous species. However, our knowledge about the ecology of Archaea, the microbial group responsible for methane synthesis in the gut, is very poor. Moreover, it is well known that hindgut fermentation differs from rumen fermentation. The composition of archaeal communities in fermentation compartments of goats and rabbits were investigated using DGGE to generate fingerprints of archaeal 16S rRNA gene. Ruminal contents and faeces from five Murciano-Granadina goats and caecal contents of five commercial White New Zealand rabbits were compared. Diversity profile of methanogenic archaea was carried out by PCR-DGGE. Quantification of methanogenic archaea and the abundance relative to bacteria was determined by real-time PCR. Methanogenic archaeal species were relatively constant across species. Dendrogram from DGGE of the methanogen community showed one cluster for goat samples with two sub-clusters by type of sample (ruminal and faeces). In a second cluster, samples from rabbit were grouped. No differences were found either in richness or Shannon index as diversity indexes. Although the primer sets used was developed to investigate rumen methanogenic archaeal community, primers specificity did not affect the assessment of rabbit methanogen community structure. Rumen content showed the highest number or methanogenic archaea (log₁₀ 9.36), followed by faeces (log₁₀ 8.52) and showing rabbit caecum the lower values (log₁₀ 5.52). DGGE profile showed that pre-gastric and hindgut fermenters hold a very different methanogen community. Rabbits hold a microbial community of similar complexity than that in ruminants but less abundant, which agrees with the type of fermentation profile.

  16. Ruminal bacterial community shifts in grain-, sugar-, and histidine-challenged dairy heifers.

    PubMed

    Golder, H M; Denman, S E; McSweeney, C; Celi, P; Lean, I J

    2014-01-01

    Ruminal bacterial community composition (BCC) and its associations with ruminal fermentation measures were studied in dairy heifers challenged with combinations of grain, fructose, and histidine in a partial factorial study. Holstein-Friesian heifers (n=30) were randomly allocated to 5 triticale grain-based treatment groups: (1) control (no grain), (2) grain [fed at a dry matter intake (DMI) of 1.2% of body weight (BW)], (3) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI), (4) grain (1.2% of BW DMI) + histidine (6g/head), and (5) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI) + histidine (6g/head). Ruminal fluid was collected using a stomach tube 5, 115, and 215min after consumption of the rations and bacterial 16S ribosomal DNA sequence data was analyzed to characterize bacteria. Large variation among heifers and distinct BCC were evident in a between-group constrained principal components analysis. Bacterial composition in the fructose-fed heifers was positively related to total lactate and butyrate concentrations. Bacterial composition was positively associated with ruminal ammonia, valerate, and histamine concentrations in the grain-fed heifers. The predominant phyla were the Firmicutes (57.6% of total recovered sequences), Bacteroidetes (32.0%), and candidate phylum TM7 (4.0%). Prevotella was the dominant genus. In general, grain or histidine or their interactions with time had minimal effects on the relative abundance of bacterial phyla and families. Fructose increased and decreased the relative abundance of the Firmicutes and Proteobacteria phyla over time, respectively, and decreased the abundance of the Prevotellaceae family over time. The relative abundance of the Streptococcaceae and Veillonellaceae families was increased in the fructose-fed heifers and these heifers over time. A total of 31 operational taxonomic units differed among treatment groups in the 3.6h sampling period, Streptococcus bovis was observed in fructose fed animals. The TM7

  17. Ferment in Technology

    ERIC Educational Resources Information Center

    Crossland, Janice

    1974-01-01

    A pollution-reducing and energy-saving alternative to petroleum use could be the fermentation industry and other technologies based on the use of renewable resources. Expansion of the fermentation industry could reduce our dependence on petroleum, reduce growing waste disposal problems, and help solve world food shortages. (BT)

  18. Prosthetic urinary sphincter

    NASA Technical Reports Server (NTRS)

    Helms, C. R.; Smyly, H. M. (Inventor)

    1981-01-01

    A pump/valve unit for controlling the inflation and deflation of a urethral collar in a prosthetic urinary sphincter device is described. A compressible bulb pump defining a reservoir was integrated with a valve unit for implantation. The valve unit includes a movable valve member operable by depression of a flexible portion of the valve unit housing for controlling fluid flow between the reservoir and collar; and a pressure sensing means which operates the valve member to relieve an excess pressure in the collar should too much pressure be applied by the patient.

  19. Urinary tract infections.

    PubMed

    Wang, Alina; Nizran, Parminder; Malone, Michael A; Riley, Timothy

    2013-09-01

    Clinical presentation helps differentiate between upper and lower urinary tract infections (UTIs). UTIs are classified as either complicated or uncomplicated. A complicated UTI is associated with an underlying condition that increases the risk of failing therapy. Primary laboratory tests for UTIs consist of urinalysis and urine culture. The most common pathogen for uncomplicated cystitis and pyelonephritis is Escherichia coli. Nitrofurantoin, fosfomycin, and trimethoprim-sulfamethoxazole are first-line therapies for acute uncomplicated cystitis. Decisions regarding antibiotic agents should be individualized based on patients' allergies, tolerability, community resistance rates, cost, and availability.

  20. Non-steady-state modeling of effects of timing and level of concentrate supplementation on ruminal pH and forage intake in high-producing, grazing ewes.

    PubMed

    Imamidoost, R; Cant, J P

    2005-05-01

    A computer model was developed to predict responses of lactating ewes to concentrate supplementation, whether on pasture or stall-fed, given concentrate once per day or in multiple feedings, and suckling multiple lambs. The model considers effects of concentrate supplementation on organic acid production, saliva flow, ruminal pH, and forage intake. The user defines ewe BW, feed composition, and concentrate feeding times and amounts. The reference ewe has free access to forage and water. Upon consumption, forages and concentrates enter into lag pools for 2.0 and 0.24 h, respectively. Carbohydrates then enter ruminal pools of degradable fiber, undegradable fiber, or nonstructural carbohydrate, from which they are degraded or pass to the lower gut. Rapid dissociation of organic acids from carbohydrate fermentation and buffers from rumination are simulated to determine ruminal pH according to the Henderson-Hasselbach equation. The pH, in turn, affects fiber degradation rates. Forage intake continues during daylight hours until ruminal NDF exceeds 1.0% of BW, or organic acid concentration exceeds 130 mM. A circadian pattern of organic acid concentrations and pH of rumen contents with multiple concentrate feedings was simulated by the model with root mean square prediction error of 7.7 and 3.0 to 4.0% of the observed mean, respectively. However, ignoring fermentation of dietary protein may have caused an underestimation of organic acid production rates. The model predicted the increase in total DMI and the substitution effect on forage intake of increasing levels of concentrate supplementation. Simulations suggested that a single concentrate meal daily was best fed in the evening to minimize the substitution effect, and that there was no benefit in forage intake to feeding 2 kg/d concentrate in more than two meals per day.

  1. Induction of Subacute Ruminal Acidosis Affects the Ruminal Microbiome and Epithelium.

    PubMed

    McCann, Joshua C; Luan, Shaoyu; Cardoso, Felipe C; Derakhshani, Hooman; Khafipour, Ehsan; Loor, Juan J

    2016-01-01

    Subacute ruminal acidosis (SARA) negatively impacts the dairy industry by decreasing dry matter intake, milk production, profitability, and increasing culling rate and death loss. Six ruminally cannulated, lactating Holstein cows were used in a replicated incomplete Latin square design to determine the effects of SARA induction on the ruminal microbiome and epithelium. Experimental periods were 10 days with days 1-3 for ad libitum intake of control diet, followed by 50% feed restriction on day 4, and ad libitum access on day 5 to the basal diet or the basal diet with an additional 10% of a 50:50 wheat/barley pellet. Based on subsequent ruminal pH, cows were grouped (SARA grouping; SG) as Non-SARA or SARA based on time <5.6 pH (0 and 3.4 h, respectively). Ruminal samples were collected on days 1 and 6 of each period prior to feeding and separated into liquid and solid fractions. Microbial DNA was extracted for bacterial analysis using 16S rRNA gene paired-end sequencing on the MiSeq Illumina platform and quantitative PCR (qPCR). Ruminal epithelium biopsies were taken on days 1 and 6 before feeding. Quantitative RT-PCR was used to determine gene expression in rumen epithelium. Bray-Curtis similarity indicated samples within the liquid fraction separated by day and coincided with an increased relative abundance of genera Prevotella, Ruminococcus, Streptococcus, and Lactobacillus on day 6 (P < 0.06). Although Firmicutes was the predominant phyla in the solid fraction, a SG × day interaction (P < 0.01) indicated a decrease on day 6 for SARA cows. In contrast, phylum Bacteroidetes increased on day 6 (P < 0.01) for SARA cows driven by greater genera Prevotella and YRC22 (P < 0.01). Streptococcus bovis and Succinivibrio dextrinosolvens populations tended to increase on day 6 but were not affected by SG. In ruminal epithelium, CLDN1 and CLDN4 expression increased on day 6 (P < 0.03) 24 h after SARA induction and a tendency for a SG × day interaction (P < 0.10) was

  2. Induction of Subacute Ruminal Acidosis Affects the Ruminal Microbiome and Epithelium

    PubMed Central

    McCann, Joshua C.; Luan, Shaoyu; Cardoso, Felipe C.; Derakhshani, Hooman; Khafipour, Ehsan; Loor, Juan J.

    2016-01-01

    Subacute ruminal acidosis (SARA) negatively impacts the dairy industry by decreasing dry matter intake, milk production, profitability, and increasing culling rate and death loss. Six ruminally cannulated, lactating Holstein cows were used in a replicated incomplete Latin square design to determine the effects of SARA induction on the ruminal microbiome and epithelium. Experimental periods were 10 days with days 1–3 for ad libitum intake of control diet, followed by 50% feed restriction on day 4, and ad libitum access on day 5 to the basal diet or the basal diet with an additional 10% of a 50:50 wheat/barley pellet. Based on subsequent ruminal pH, cows were grouped (SARA grouping; SG) as Non-SARA or SARA based on time <5.6 pH (0 and 3.4 h, respectively). Ruminal samples were collected on days 1 and 6 of each period prior to feeding and separated into liquid and solid fractions. Microbial DNA was extracted for bacterial analysis using 16S rRNA gene paired-end sequencing on the MiSeq Illumina platform and quantitative PCR (qPCR). Ruminal epithelium biopsies were taken on days 1 and 6 before feeding. Quantitative RT-PCR was used to determine gene expression in rumen epithelium. Bray–Curtis similarity indicated samples within the liquid fraction separated by day and coincided with an increased relative abundance of genera Prevotella, Ruminococcus, Streptococcus, and Lactobacillus on day 6 (P < 0.06). Although Firmicutes was the predominant phyla in the solid fraction, a SG × day interaction (P < 0.01) indicated a decrease on day 6 for SARA cows. In contrast, phylum Bacteroidetes increased on day 6 (P < 0.01) for SARA cows driven by greater genera Prevotella and YRC22 (P < 0.01). Streptococcus bovis and Succinivibrio dextrinosolvens populations tended to increase on day 6 but were not affected by SG. In ruminal epithelium, CLDN1 and CLDN4 expression increased on day 6 (P < 0.03) 24 h after SARA induction and a tendency for a SG × day interaction (P < 0.10) was

  3. Post-entry blockade of small ruminant lentiviruses by wild ruminants.

    PubMed

    Sanjosé, Leticia; Crespo, Helena; Blatti-Cardinaux, Laure; Glaria, Idoia; Martínez-Carrasco, Carlos; Berriatua, Eduardo; Amorena, Beatriz; De Andrés, Damián; Bertoni, Giuseppe; Reina, Ramses

    2016-01-06

    Small ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs. Apparent restriction of SRLV infection in cervids was not related to the presence of neutralizing antibodies. In vitro cultured skin fibroblastic cells from red deer and fallow deer were permissive to the SRLV entry and integration, but produced low quantities of virus. SRLV got rapidly adapted in vitro to blood-derived macrophages and skin fibroblastic cells from red deer but not from fallow deer. Thus, although direct detection of virus was not successfully achieved in vivo, these findings show the potential susceptibility of wild ruminants to SRLV infection in the case of red deer and, on the other hand, an in vivo SRLV restriction in fallow deer. Altogether these results may highlight the importance of surveilling and controlling SRLV infection in domestic as well as in wild ruminants sharing pasture areas, and may provide new natural tools to control SRLV spread in sheep and goats.

  4. Post-entry blockade of small ruminant lentiviruses by wild ruminants.

    PubMed

    Sanjosé, Leticia; Crespo, Helena; Blatti-Cardinaux, Laure; Glaria, Idoia; Martínez-Carrasco, Carlos; Berriatua, Eduardo; Amorena, Beatriz; De Andrés, Damián; Bertoni, Giuseppe; Reina, Ramses

    2016-01-01

    Small ruminant lentivirus (SRLV) infection causes losses in the small ruminant industry due to reduced animal production and increased replacement rates. Infection of wild ruminants in close contact with infected domestic animals has been proposed to play a role in SRLV epidemiology, but studies are limited and mostly involve hybrids between wild and domestic animals. In this study, SRLV seropositive red deer, roe deer and mouflon were detected through modified ELISA tests, but virus was not successfully amplified using a set of different PCRs. Apparent restriction of SRLV infection in cervids was not related to the presence of neutralizing antibodies. In vitro cultured skin fibroblastic cells from red deer and fallow deer were permissive to the SRLV entry and integration, but produced low quantities of virus. SRLV got rapidly adapted in vitro to blood-derived macrophages and skin fibroblastic cells from red deer but not from fallow deer. Thus, although direct detection of virus was not successfully achieved in vivo, these findings show the potential susceptibility of wild ruminants to SRLV infection in the case of red deer and, on the other hand, an in vivo SRLV restriction in fallow deer. Altogether these results may highlight the importance of surveilling and controlling SRLV infection in domestic as well as in wild ruminants sharing pasture areas, and may provide new natural tools to control SRLV spread in sheep and goats. PMID:26738942

  5. SPECIFIC EFFECTS OF ANGER RUMINATION ON PARTICULAR EXECUTIVE FUNCTIONS (.).

    PubMed

    Ding, Xinfang; Yang, Yin; Qian, Mingyi; Gordon-Hollingsworth, Arlene

    2015-12-01

    The effects of two types of rumination on different kinds of executive functions were investigated. Fifty-nine participants (M age = 22.8 yr., SD = 2.5) were assigned to one of three conditions and instructed either to: (1) ruminate in a self-distanced way, (2) ruminate in a self-immersed way, or (3) think about the layout of their campus following anger induction. Afterward, the participants were directed to finish tasks designed to assess three kinds of executive functions: shifting, inhibition, and updating. Results showed that self-immersed rumination impaired shifting ability the most, while participants engaged in self-distanced rumination showed the worst performance on the inhibition task. No significant difference was found in the updating task. These results suggest that rumination influenced particular executive functions in different ways. PMID:26595287

  6. Can't quite commit: rumination and uncertainty.

    PubMed

    Ward, Andrew; Lyubomirsky, Sonja; Sousa, Lorie; Nolen-Hoeksema, Susan

    2003-01-01

    Why do some individuals persist in self-destructive rumination? Two studies investigated the relation between a ruminative response style and the reluctance to initiate instrumental behavior. In Study 1, ruminators were compared to nonruminators regarding their evaluation of a self-generated plan to revise their university housing system and, in Study 2, concerning their plan to redesign the undergraduate curriculum. In both studies, on relevant composite measures, ruminators expressed less satisfaction and confidence with regard to their plans than did nonruminators. They were also less likely to commit to the plans they generated. The findings suggest that in addition to its documented detrimental effects on thinking and problem solving, self-focused rumination may inhibit instrumental behavior by increasing uncertainty, resulting in further rumination and behavioral paralysis.

  7. Co-ruminating increases stress hormone levels in women.

    PubMed

    Byrd-Craven, Jennifer; Geary, David C; Rose, Amanda J; Ponzi, Davide

    2008-03-01

    Same-sex friendships are an important source of social support and typically contribute to positive adjustment. However, there can be adjustment trade-offs if the friends co-ruminate (i.e., talk excessively about problems) in that co-rumination is related to having close friendships but also to increased internalizing symptoms. The current study utilized an experimental manipulation that elicited co-rumination in young women and thus mirrored an everyday response to stress. Observed co-rumination was associated with a significant increase in the stress hormone, cortisol (after controlling for self-reported co-rumination and for cortisol levels assessed before the discussion of problems). These findings suggest that co-rumination can amplify, rather than mitigate, the hormonal stress response to personal life stressors.

  8. Fluid and electrolyte therapy in ruminants.

    PubMed

    Constable, Peter

    2003-11-01

    Five important questions always must be asked and answered regarding fluid and electrolyte therapy in ruminants: (1) Is therapy needed? (2) What type of therapy? (3) What route of administration? (4) How much should be administered? and (5) How fast should the solution be administered? Food animal veterinarians routinely should carry the following commercially available crystalloid solutions and have the knowledge of how to use the products appropriately: Ringer's solution, 1.3% NaHCO3, acetated Ringer's solution, HS (7.2% NaCl), 8% NaHCO3, 23% calcium gluconate, calcium-magnesium solutions, and 50% dextrose. Ruminants with a blood pH less than 7.20 should be treated intravenously with 1.3% or 8.0% NaHCO3, and those animals with a blood pH greater than 7.45 should be treated intravenously with Ringer's solution. Oral electrolyte solutions or intravenous acetated Ringer's solution should be administered to ruminants with a blood pH greater than 7.20 but less than 7.45, and acetated Ringer's solution is preferred to lactated Ringer's solution. HS solution should be administered whenever rapid resuscitation is required. Oral administration of electrolyte solutions is underused in neonatal and adult ruminants. The optimal solution for oral administration to neonatal ruminants has a sodium concentration between 90 and 130 mmol/L; a potassium concentration between 10 and 20 mmol/L; a chloride concentration between 40 and 80 mmol/L; 40 to 80 mmol/L of metabolizable (nonbicarbonate) base, such as acetate or propionate; and glucose as an energy source. The optimal formulation for adult ruminants is unknown, but such a solution should contain sodium, potassium, calcium, magnesium, phosphate, and propionate to facilitate sodium absorption and to provide an additional source of energy to the animal. Acidemia is treated best by intravenous or oral administration of NaHCO3. Alkalemia is treated best by intravenous administration of Ringer's solution and oral administration of

  9. Divergent utilization patterns of grass fructan, inulin, and other nonfiber carbohydrates by ruminal microbes.

    PubMed

    Hall, M B; Weimer, P J

    2016-01-01

    Fructans are an important nonfiber carbohydrate in cool season grasses. Their fermentation by ruminal microbes is not well described, though such information is needed to understand their nutritional value to ruminants. Our objective was to compare kinetics and product formation of orchardgrass fructan (phlein; PHL) to other nonfiber carbohydrates when fermented in vitro with mixed or pure culture ruminal microbes. Studies were carried out as randomized complete block designs. All rates given are first-order rate constants. With mixed ruminal microbes, rate of substrate disappearance tended to be greater for glucose (GLC) than for PHL and chicory fructan (inulin; INU), which tended to differ from each other (0.74, 0.62, and 0.33 h(-1), respectively). Disappearance of GLC had almost no lag time (0.04 h), whereas the fructans had lags of 1.4h. The maximum microbial N accumulation, a proxy for cell growth, tended to be 20% greater for PHL and INU than for GLC. The N accumulation rate for GLC (1.31h(-1)) was greater than for PHL (0.75 h(-1)) and INU (0.26 h(-1)), which also differed. More microbial glycogen (+57%) was accumulated from GLC than from PHL, though accumulation rates did not differ (1.95 and 1.44 h(-1), respectively); little glycogen accumulated from INU. Rates of organic acid formation were 0.80, 0.28, and 0.80 h(-1) for GLC, INU, and PHL, respectively, with PHL tending to be greater than INU. Lactic acid production was more than 7-fold greater for GLC than for the fructans. The ratio of microbial cell carbon to organic acid carbon tended to be greater for PHL (0.90) and INU (0.86) than for GLC (0.69), indicating a greater yield of cell mass per amount of substrate fermented with fructans. Reduced microbial yield for GLC may relate to the greater glycogen production that requires ATP, and lactate production that yields less ATP; together, these processes could have reduced ATP available for cell growth. Acetate molar proportion was less for GLC than for

  10. Urinary incontinence: the basics.

    PubMed

    Kennedy, K L; Steidle, C P; Letizia, T M

    1995-08-01

    Urinary incontinence (UI) is a widely prevalent problem that affects people of all ages and levels of physical health, both in healthcare settings and in the community. Contributing to the problem are that many practitioners remain uneducated about this condition, individuals are often too ashamed or embarrassed to seek professional help, and there are significant variations in diagnostic and treatment practices. Five types of UI are stress, urge, overflow, functional and manufactured incontinence. Stress, urge and overflow are caused by factors within the urinary tract and will be concentrated on in this article. To diagnose UI a three-part assessment should be conducted, including the patient history, physical examination, and urinalysis. A behavioral program should be designed which incorporates identification and education for both patient and clinician. Treatment options include pelvic floor exercises (Kegel), vaginal cones, bladder training (retraining), habit training (timed voiding), electrostimulation and biofeedback, clean intermittent catheterization, indwelling catheters, medications, collagen injections, surgery, and absorption products. Most patients can be helped dramatically or cured with the appropriate treatment.

  11. Fluid therapy in small ruminants and camelids.

    PubMed

    Jones, Meredyth; Navarre, Christine

    2014-07-01

    Body water, electrolytes, and acid-base balance are important considerations in the evaluation and treatment of small ruminants and camelids with any disease process, with restoration of these a priority as adjunctive therapy. The goals of fluid therapy should be to maintain cardiac output and tissue perfusion, and to correct acid-base and electrolyte abnormalities. Hypoglycemia, hyperkalemia, and acidosis are the most life-threatening abnormalities, and require most immediate correction.

  12. Bioremediation of trinitrotolulene by a ruminal microorganism

    SciTech Connect

    Lee, Taejin; Williamson, K.J.; Craig, A.M.

    1995-10-01

    2,4,6-trinitrotoluene (TNT) has been widely used for the production of explosives because of its low boiling point, high stability, low impact sensitivity, and safe manufacture. More than 1,100 military facilities, each potentially contaminated with munitions waste, are expected to require treatment of more than one million cubic yards of contaminated soils. The cost associated with remediation of these sites has been estimated to be in excess of $1.5 billion. Recently, researchers have studied ruminal microorganisms in relation to their ability to degrade xenobiotic compounds. Many of these organisms are strict anaerobes with optimal redox potentials as low as -420 mV. Ruminal organisms have been shown capable of destroying some pesticides, such as parathion, p-nitrophenol, and biphenyl-type compounds; thiono isomers, and nitrogen-containing heterocyclic plant toxins such as the pyrrolizidine alkaloids. Many of these compounds have structures similar to TNT. A TNT-degrading ruminal microorganism has been isolated from goat rumen fluid with successive enrichments on triaminotoluene (TAT) and TNT. The isolate, designated G.8, utilizes nitrate and lactate as the primary energy source. G.8 was able to tolerate and metabolite levels of TNT up to the saturation point of 125 mg/l.

  13. A diet supplement for captive wild ruminants.

    PubMed

    Baker, D L; Stout, G W; Miller, M W

    1998-06-01

    Nutritional husbandry of captive wild ruminants often requires feeding these animals a supplemental diet to enhance their health, reproductive performance, and productivity. Although supplemental diets for wild ruminants are commercially available, few have been evaluated in controlled intake and digestion trials. Voluntary intake, digestive efficiency, nitrogen retention, and gross energy utilization of pronghorn (Antilocapra americana), mule deer (Odocoileus hemionus), mountain sheep (Ovis canadensis), mountain goats (Oreamnos americanus), and wapiti (Cervus elaphus) consuming a high-energy, high-protein pelleted supplement were compared. Voluntary intake of dry matter, energy, and nitrogen were similar (P > 0.34) between mountain goats and mountain sheep and consistently lower (P < 0.03) for these species than for pronghorn, mule deer, and wapiti. Differences in digestive efficiency among species were inversely related to dry matter intake rates. Apparent digestibility of dry matter, organic matter, and neutral-detergent fiber was 10-20% higher for mountain goats and mountain sheep than for the other species (P < 0.04). Although these findings suggest a superior digestive efficiency for mountain goats and mountain sheep, species comparisons are inconclusive because of the confounding effects of season and ambient temperature on voluntary intake and digestion. Under the conditions of this experiment, the diet tested was safe, nutritious, and highly palatable. Protein and energy concentrations appear to be sufficient to meet or exceed known nutritional requirements of captive wild ruminants. PMID:9732028

  14. Evolution of ruminant headgear: a review.

    PubMed

    Davis, Edward Byrd; Brakora, Katherine A; Lee, Andrew H

    2011-10-01

    The horns, ossicones and antlers of ruminants are familiar and diverse examples of cranial appendages. We collectively term ruminant cranial appendages 'headgear'; this includes four extant forms: antlers (in cervids), horns (in bovids), pronghorns (in pronghorn antelope) and ossicones (in giraffids). Headgear evolution remains an open and intriguing question because phylogenies (molecular and morphological), adult headgear structure and headgear development (where data are available) all suggest different pictures of ruminant evolution. We discuss what is known about the evolution of headgear, including the evidence motivating previous hypotheses of single versus multiple origins, and the implications of recent phylogenetic revisions for these hypotheses. Inclusion of developmental data is critical for progress on the question of headgear evolution, and we synthesize the scattered literature on this front. The areas most in need of attention are early development in general; pronghorn and ossicone development in particular; and histological study of fossil forms of headgear. An integrative study of headgear development and evolution may have ramifications beyond the fields of systematics and evolution. Researchers in organismal biology, as well as those in biomedical fields investigating skin, bone and regenerative medicine, may all benefit from insights produced by this line of research. PMID:21733893

  15. Evolution of ruminant headgear: a review

    PubMed Central

    Davis, Edward Byrd; Brakora, Katherine A.; Lee, Andrew H.

    2011-01-01

    The horns, ossicones and antlers of ruminants are familiar and diverse examples of cranial appendages. We collectively term ruminant cranial appendages ‘headgear’; this includes four extant forms: antlers (in cervids), horns (in bovids), pronghorns (in pronghorn antelope) and ossicones (in giraffids). Headgear evolution remains an open and intriguing question because phylogenies (molecular and morphological), adult headgear structure and headgear development (where data are available) all suggest different pictures of ruminant evolution. We discuss what is known about the evolution of headgear, including the evidence motivating previous hypotheses of single versus multiple origins, and the implications of recent phylogenetic revisions for these hypotheses. Inclusion of developmental data is critical for progress on the question of headgear evolution, and we synthesize the scattered literature on this front. The areas most in need of attention are early development in general; pronghorn and ossicone development in particular; and histological study of fossil forms of headgear. An integrative study of headgear development and evolution may have ramifications beyond the fields of systematics and evolution. Researchers in organismal biology, as well as those in biomedical fields investigating skin, bone and regenerative medicine, may all benefit from insights produced by this line of research. PMID:21733893

  16. Trait Rumination, Depression, and Executive Functions in Early Adolescence

    PubMed Central

    Wagner, Clara A.; Alloy, Lauren B.; Abramson, Lyn Y.

    2014-01-01

    Although deficits in executive functions have been linked with both depression and rumination in adulthood, the nature of the relationship between these constructs is not well understood and remains understudied in adolescence. The present study examined the relationship of rumination and depression to deficits in executive functions in early adolescence, a critical developmental period for the emergence of depression and rumination and the development of executive functions. Participants were 486 early adolescents (52.7% female; 47.1% African American, 48.8% Caucasian; 4.2% Biracial/Multiracial/Other; M age = 12.88 years; SD = .62) and their mothers, recruited through local schools. Measures included (a) a semi-structured diagnostic interview of the mother and adolescent, (b) youth self-report forms assessing depressive symptoms and trait rumination, (c) mother-report forms assessing demographic information, and (d) behavioral tests of executive function (sustained, selective and divided attention, attentional set shifting, and working memory). Gender moderated rumination-set shifting associations, such that rumination predicted better set shifting in boys only. The current level of depressive symptoms moderated rumination-sustained attention associations, such that rumination predicted better sustained attention in those with low levels of depressive symptoms and worse sustained attention in those with high levels of depressive symptoms. Rumination did not predict performance on other measures of executive functions. Likewise, depressive symptoms and diagnosis were not associated with executive functions. Implications for future research are discussed. PMID:24839132

  17. Production of medium-chain volatile fatty acids by mixed ruminal microorganisms is enhanced by ethanol in co-culture with Clostridium kluyveri.

    PubMed

    Weimer, Paul J; Nerdahl, Michael; Brandl, Dane J

    2015-01-01

    Mixed bacterial communities from the rumen ferment cellulosic biomass primarily to C2-C4 volatile fatty acids, and perform only limited chain extension to produce C5 (valeric) and C6 (caproic) acids. The aim of this study was to increase production of caproate and valerate in short-term in vitro incubations. Co-culture of mixed ruminal microbes with a rumen-derived strain of the bacterium Clostridium kluyveri converted cellulosic biomass (alfalfa stems or switchgrass herbage) plus ethanol to VFA mixtures that include valeric and caproic acids as the major fermentation products over a 48-72h run time. Concentrations of caproate reached 6.1gL(-1), similar to or greater than those reported in most conventional carboxylate fermentations that employ substantially longer run times.

  18. Chewing activity, saliva production, and ruminal pH of primiparous and multiparous lactating dairy cows.

    PubMed

    Maekawa, M; Beauchemin, K A; Christensen, D A

    2002-05-01

    Four multiparous (MP) and four primiparous (PP) ruminally cannulated lactating Holstein cows were used in a double 4 x 4 Latin square design to study the chewing behavior, saliva production, and ruminal pH of cows in the first or subsequent lactation. Cows were fed one of four diets; three total mixed rations containing 40, 50, or 60% silage (DM basis), and a separate ingredient diet containing 50% concentrate. Dry matter intake was higher for MP cows than for PP cows (19.2 vs. 17.1 kg/d) but not as a percentage of body weight (2.97 +/- 0.06%). Multiparous cows spent more time eating than PP cows (260 vs. 213 min/d, respectively), even after adjustment for dry matter intake (13.8 vs. 12.4 min/kg DM). Multiparous cows also spent more time ruminating per day than PP cows (560 vs. 508 min/d, respectively). Eating salivation rate was not affected by parity, but resting salivation rate was higher for MP cows than for PP. Although MP cows spent more time chewing than PP cows, total daily saliva production was only numerically higher for MP cows because the increase in saliva produced during chewing was accompanied by a decrease in saliva produced during resting. Furthermore, pH profiles tended to be lower for MP cows than for PP cows. Multiparous cows may have a greater risk of incurring acidosis than PP cows because increased salivary secretion associated with increased chewing may not sufficiently compensate the increment of fermentation acids produced in the rumen due to high feed intake.

  19. Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production.

    PubMed

    Hackmann, T J; Spain, J N

    2010-04-01

    The article reviews ruminant ecology and evolution and shows insights they offer into livestock research. The first ruminants evolved about 50 million years ago and were small (<5 kg) forest-dwelling omnivores. Today there are almost 200 living ruminant species in 6 families. Wild ruminants number about 75 million, range from about 2 to more than 800 kg, and generally prefer at least some browse in their diets. Nine species have been domesticated within the last 10,000 yr. Their combined population currently numbers 3.6 billion. In contrast to wild ruminants, domestic species naturally prefer at least some grass in their diets, are of large body weight (BW; roughly from 35 to 800 kg), and, excepting reindeer, belong to one family (Bovidae). Wild ruminants thus have a comparatively rich ecological diversity and long evolutionary history. Studying them gives a broad perspective that can augment and challenge the status quo of ruminant research and production. Allometric equations, often used in ecology, relate BW to physiological measurements from several species (typically both wild and domestic). They are chiefly used to predict or explain values of physiological parameters from BW alone. Results of one such equation suggest that artificial selection has increased peak milk energy yield by 250% over its natural level. Voluntary feed intake is proportional to BW(0.9) across wild and domestic ruminant species. This proportionality suggests that physical and metabolic factors regulate intake simultaneously, not mutually exclusively as often presumed. Studying the omasum in wild species suggests it functions primarily in particle separation and retention and only secondarily in absorption and other roles. Studies on the African Serengeti show that multiple species, when grazed together, feed such that they use grasslands more completely. They support the use of mixed-species grazing systems in production agriculture. When under metabolic stress, wild species will not

  20. Invited review: ruminant ecology and evolution: perspectives useful to ruminant livestock research and production.

    PubMed

    Hackmann, T J; Spain, J N

    2010-04-01

    The article reviews ruminant ecology and evolution and shows insights they offer into livestock research. The first ruminants evolved about 50 million years ago and were small (<5 kg) forest-dwelling omnivores. Today there are almost 200 living ruminant species in 6 families. Wild ruminants number about 75 million, range from about 2 to more than 800 kg, and generally prefer at least some browse in their diets. Nine species have been domesticated within the last 10,000 yr. Their combined population currently numbers 3.6 billion. In contrast to wild ruminants, domestic species naturally prefer at least some grass in their diets, are of large body weight (BW; roughly from 35 to 800 kg), and, excepting reindeer, belong to one family (Bovidae). Wild ruminants thus have a comparatively rich ecological diversity and long evolutionary history. Studying them gives a broad perspective that can augment and challenge the status quo of ruminant research and production. Allometric equations, often used in ecology, relate BW to physiological measurements from several species (typically both wild and domestic). They are chiefly used to predict or explain values of physiological parameters from BW alone. Results of one such equation suggest that artificial selection has increased peak milk energy yield by 250% over its natural level. Voluntary feed intake is proportional to BW(0.9) across wild and domestic ruminant species. This proportionality suggests that physical and metabolic factors regulate intake simultaneously, not mutually exclusively as often presumed. Studying the omasum in wild species suggests it functions primarily in particle separation and retention and only secondarily in absorption and other roles. Studies on the African Serengeti show that multiple species, when grazed together, feed such that they use grasslands more completely. They support the use of mixed-species grazing systems in production agriculture. When under metabolic stress, wild species will not

  1. Anaplasma phagocytophilum in ruminants in Europe.

    PubMed

    Woldehiwet, Zerai

    2006-10-01

    The agent that causes tick-borne fever (TBF) in sheep was first described in 1940, 8 years after the disease was first recognized in Scotland. The same agent was soon shown to cause TBF in sheep and pasture fever in cattle in other parts of the UK, Scandinavia, and other parts of Europe. After the initial use of the name Rickettsia phagocytophila, the organism was given the name Cytoecetes phagocytophila to reflect its association with granulocytes and its morphological similarity with Cytoecetes microti. This name continued to be used by workers in the UK until the recent reclassification of the granulocytic ehrlichiae affecting ruminants, horses, and humans as variants of the same species, Anaplasma phagocytophilum. TBF and pasture fever are characterized by high fever, recurrent bacteremia, neutropenia, lymphocytopenia, thrombocytopenia, and general immunosuppression, resulting in more severe secondary infections such as tick pyemia, pneumonic pasteurellosis, listeriosis, and enterotoxemia. During the peak period of bacteremia as many as 90% of granulocytes may be infected. The agent is transmitted transtadially by the hard tick Ixodes ricinus, and possibly other ticks. After patent bacteremia, sheep, goats, and cattle become persistently infected "carriers," perhaps playing an important role in the maintenance of infection, in the flock/herd. Little is known about how efficiently ticks acquire and maintain infection in ruminant populations or whether "carrier" domestic ruminants play an important role as reservoirs of infection, but deer, other free-living ruminants, and wild rodents are also potential sources of infection. During the late 1990s serological evidence of infection of humans was demonstrated in several European countries, creating a renewed interest and increased awareness of the zoonotic potential of TBF variants. More recently, a few cases of human granulocytic anaplasmosis (HGA) have been reported in some European countries, but it remains to

  2. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    PubMed Central

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-01-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose. PMID:27748409

  3. Multiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides

    NASA Astrophysics Data System (ADS)

    Devendran, Saravanan; Abdel-Hamid, Ahmed M.; Evans, Anton F.; Iakiviak, Michael; Kwon, In Hyuk; Mackie, Roderick I.; Cann, Isaac

    2016-10-01

    Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Ruminococcus albus 8, a common inhabitant of the cow rumen, alludes to a bacterium well-endowed with genes that target degradation of various plant cell wall components. The mechanisms by which R. albus 8 employs to degrade these recalcitrant materials are, however, not clearly understood. In this report, we demonstrate that R. albus 8 elaborates multiple cellobiohydrolases with multi-modular architectures that overall enhance the catalytic activity and versatility of the enzymes. Furthermore, our analyses show that two cellobiose phosphorylases encoded by R. albus 8 can function synergistically with a cognate cellobiohydrolase and endoglucanase to completely release, from a cellulosic substrate, glucose which can then be fermented by the bacterium for production of energy and cellular building blocks. We further use transcriptomic analysis to confirm the over-expression of the biochemically characterized enzymes during growth of the bacterium on cellulosic substrates compared to cellobiose.

  4. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review.

    PubMed

    Cobellis, Gabriella; Trabalza-Marinucci, Massimo; Yu, Zhongtang

    2016-03-01

    Ruminant livestock systems contribute significantly to emission of methane, a potent greenhouse gas as they waste a portion of the ingested energy (2-15%) as methane and a large proportion (75-95%) of the ingested nitrogen as ammonia. Recently, numerous researches have been conducted to evaluate plant secondary metabolites, including essential oils (EO), as natural feed additives in ruminant nutrition and to exploit their potential to improve rumen fermentation efficiency. Essential oils appeared to be very promising compounds as they selectively reduced methane production and protein breakdown in both in vitro and in vivo studies. However, in some studies, the use of EO as feed additives was accompanied with decreased feed degradability and lowered volatile fatty acid. These adverse effects could be attributed to their broad and often non-specific antimicrobial activities within the rumen. Future research should be directed to identification of the active and useful EO compounds, optimization of EO doses, and use of a whole-farm approach with a focus on animal welfare, performance and economic benefits.

  5. Fermentative alcohol production

    DOEpatents

    Wilke, Charles R.; Maiorella, Brian L.; Blanch, Harvey W.; Cysewski, Gerald R.

    1982-01-01

    An improved fermentation process for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using "water load balancing" (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  6. Results of a screening programme to identify plants or plant extracts that inhibit ruminal protein degradation.

    PubMed

    Selje, N; Hoffmann, E M; Muetzel, S; Ningrat, R; Wallace, R J; Becker, K

    2007-07-01

    One aim of the EC Framework V project, 'Rumen-up' (QLK5-CT-2001-00 992), was to find plants or plant extracts that would inhibit the nutritionally wasteful degradation of protein in the rumen. A total of 500 samples were screened in vitro using 14C-labelled casein in a 30-min incubation with ruminal digesta. Eight were selected for further investigation using a batch fermentation system and soya protein and bovine serum albumin as proteolysis substrates; proteolysis was monitored over 12 h by the disappearance of soluble protein and the production of branched SCFA and NH3. Freeze-dried, ground foliage of Peltiphyllum peltatum, Helianthemum canum, Arbutus unedo, Arctostaphylos uva-ursi and Knautia arvensis inhibited proteolysis (P < 0.05), while Daucus carota, Clematis vitalba and Erica arborea had little effect. Inhibition by the first four samples appeared to be caused by the formation of insoluble tannin-protein complexes. The samples were rich in phenolics and inhibition was reversed by polyethyleneglycol. In contrast, K. arvensis contained low concentrations of phenolics and no tannins, had no effect in the 30-min assay, yet inhibited the degradation rate of soluble protein (by 14 %, P < 0.0001) and the production of branched SCFA (by 17 %, P < 0.05) without precipitating protein in the 12-h batch fermentation. The effects showed some resemblance to those obtained in parallel incubations containing 3 mum-monensin, suggesting that K. arvensis may be a plant-derived feed additive that can suppress growth and activity of key proteolytic ruminal micro-organisms in a manner similar to that already well known for monensin. PMID:17445338

  7. Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation.

    PubMed

    Varel, V H; Jung, H J

    1986-08-01

    In vitro cultures of ruminal microorganisms were used to determine the effect of cinnamic acid and vanillin on the digestibility of cellulose and xylan. Cinnamic acid and vanillin depressed in vitro dry matter disappearance of cellulose 14 and 49%, respectively, when rumen fluid was the inoculum. The number of viable Bacteroides succinogenes cells, the predominant cellulolytic organism, was threefold higher for fermentations which contained vanillin than for control fermentations. When xylan replaced cellulose as the substrate, a 14% decrease in the digestibility of xylan was observed with vanillin added; however, the number of viable xylanolytic bacteria cultured from the batch fermentation was 10-fold greater than that of control fermentations. The doubling time of B. succinogenes was increased from 2.32 to 2.58 h when vanillin was added to cellobiose medium, and absorbance was one-half that of controls after 18 h. The growth rate of Ruminococcus albus and Ruminococcus flavefaciens was inhibited more by p-coumaric acid than by vanillin, although no reduction of final absorbance was observed in their growth cycles. Vanillin, and to a lesser extent cinnamic acid, appeared to prevent the attachment of B. succinogenes cells to cellulose particles, but did not affect dissociation of cells from the particles. B. succinogenes, R. albus, R. flavefaciens, and Butyrivibrio fibrisolvens all modified the parent monomers cinnamic acid, p-coumaric acid, ferulic acid, and vanillin, with B. fibrisolvens causing the most extensive modification. These results suggest that phenolic monomers can inhibit digestibility of cellulose and xylan, possibly by influencing attachment of the fibrolytic microorganisms to fiber particles. The reduced bacterial attachment to structural carbohydrates in the presence of vanillin may generate more free-floating fibrolytic organisms, thus giving a deceptively higher viable count.

  8. Silage intake, rumination and pseudo-rumination activity in sheep studied by radiography and jaw movement recordings.

    PubMed

    Deswysen, A G; Ehrlein, H J

    1981-09-01

    1. The eating and ruminating activity of four rams given long-chopped silage ad lib. in two daily meals was studied by jaw movement recordings. The events of rumination and pseudo-rumination were observed by fluoroscopy and by cineradiography. 2. The rate of eating was highest at the beginning of the main meal and then declined gradually. 3. The silage intake level was low. 4. The swallowed silage did not accumulate at the cardiac region but was forced into the dorsal sac of the rumen by the contractions of the reticulum and cranial sac of the rumen. For regurgitation the solid particles had to return via the ventral and cranial sac of the rumen into the reticulum. 5. Liquid reticular contents with floating solid particles were aspirated into the oesophagus during the maximum of the regurgitation contraction of the reticulum. 6. The rumination activity during the day presented a high proportion of pseudo-rumination cycles whereas during the night the rumination became progressively normal. 7. Pseudo-rumination was caused by delayed return of the fibrous silage particles into the reticulum. Thus in pseudo-rumination the regurgitated material consisted predominantly of fluid containing only a small quantity of solid particles. 8. The results explain why long-chopped silage intake is associated with pseudo-rumination, a lower breakdown of particles and a waste of digestion time.

  9. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil.

    PubMed

    Toral, P G; Bernard, L; Belenguer, A; Rouel, J; Hervás, G; Chilliard, Y; Frutos, P

    2016-01-01

    Direct comparison of cow and goat performance and milk fatty acid responses to diets known to induce milk fat depression (MFD) in the bovine reveals relevant species-by-diet interactions in ruminal lipid metabolism. Thus, this study was conducted to infer potential mechanisms responsible for differences in the rumen microbial biohydrogenation (BH) due to diet and ruminant species. To meet this objective, 12 cows and 15 goats were fed a basal diet (control), a similar diet supplemented with 2.2% fish oil (FO), or a diet containing 5.3% sunflower oil and additional starch (+38%; SOS) according to a 3 × 3 Latin square design with 25-d experimental periods. On the last day of each period, fatty acid composition (by gas chromatography) and bacterial community (by terminal-RFLP), as well as fermentation characteristics, were measured in rumen fluid samples. Results showed significant differences in the response of cows and goats to dietary treatments, although variations in some fermentation parameters (e.g., decreases in the acetate-to-propionate ratio due to FO or SOS) were similar in both species. Main alterations in ruminal BH pathways potentially responsible for MFD on the SOS diet (i.e., the shift from trans-11 to trans-10 18:1 and related increases in trans-10,cis-12 18:2) tended to be more pronounced in cows, which is consistent with an associated MFD only in this species. However, changes linked to FO-induced MFD (e.g., decreases in 18:0 and increases in total trans-18:1) were stronger in caprine rumen fluid, which may explain their unexpected susceptibility (although less marked than in bovine) to the negative effect of FO on milk fat content. Altogether, these results suggest that distinct ruminal mechanisms lead to each type of diet-induced MFD and confirm a pronounced interaction with species. With regard to microbiota, differences between cows and goats in the composition of the rumen bacterial community might be behind the disparity in the microorganisms

  10. Modification of activities of the ruminal ecosystem and its bacterial and protozoan composition during repeated dietary changes in cows.

    PubMed

    Monteils, V; Rey, M; Silberberg, M; Cauquil, L; Combes, S

    2012-12-01

    Dietary change alters the ruminal ecosystem and can be regarded as a disturbance. Studying the response to a disturbance can help us understand the behavior of the ecosystem. Our work is concerned with the response of the ruminal ecosystem (composition and activities) during the application of repeated dietary disturbances to 6 dry Holstein cows. For 2 mo, the cows received a hay-based diet [experimental period (EP) 0], followed by 3 EP of successive changes (EP 1, 2, and 3) comprised of 2 parts: the first (10 d) with a corn silage-based diet and the second (25 d) with a hay-based diet. The measurements and samplings were done on the last days of EP 0 and of each part of EP 1 through 3, with the results of EP 0 used as covariables in the statistical models. The physicochemical measurements (pH and redox potential) and the fermentation variables (VFA, ammonia) were determined hourly between the morning and evening meals (n = 8 measurements/d). Samples of ruminal contents were taken 3 h after the morning meal to determine enzymatic activity [amylase, carboxymethyl cellulase (CMCase), and xylanase], to count the main protozoan genera and to quantify the bacteria by quantitative PCR, and to determine its structure by the capillary electrophoresis single-strand conformation polymorphism process. The pH fell for the corn silage-based diet with the EP (P < 0.05) but not for the hay-based diet. The VFA concentration decreased for both diets with the EP (P < 0.001), with the primary changes in acetate and propionate. The ammonia concentration increased for the corn silage-based diet with the EP (P < 0.05), whereas for the hay-based diet the highest value was observed for EP 2 (P < 0.05). The total quantity of bacteria decreased between EP 1 and 3 (P < 0.05) for both diets. The structure of the bacterial community was not affected by the disturbances for the corn silage-based diet, whereas for the hay-based diet large differences were evident between EP 1 and 3 (P < 0

  11. Comparison of ruminal lipid metabolism in dairy cows and goats fed diets supplemented with starch, plant oil, or fish oil.

    PubMed

    Toral, P G; Bernard, L; Belenguer, A; Rouel, J; Hervás, G; Chilliard, Y; Frutos, P

    2016-01-01

    Direct comparison of cow and goat performance and milk fatty acid responses to diets known to induce milk fat depression (MFD) in the bovine reveals relevant species-by-diet interactions in ruminal lipid metabolism. Thus, this study was conducted to infer potential mechanisms responsible for differences in the rumen microbial biohydrogenation (BH) due to diet and ruminant species. To meet this objective, 12 cows and 15 goats were fed a basal diet (control), a similar diet supplemented with 2.2% fish oil (FO), or a diet containing 5.3% sunflower oil and additional starch (+38%; SOS) according to a 3 × 3 Latin square design with 25-d experimental periods. On the last day of each period, fatty acid composition (by gas chromatography) and bacterial community (by terminal-RFLP), as well as fermentation characteristics, were measured in rumen fluid samples. Results showed significant differences in the response of cows and goats to dietary treatments, although variations in some fermentation parameters (e.g., decreases in the acetate-to-propionate ratio due to FO or SOS) were similar in both species. Main alterations in ruminal BH pathways potentially responsible for MFD on the SOS diet (i.e., the shift from trans-11 to trans-10 18:1 and related increases in trans-10,cis-12 18:2) tended to be more pronounced in cows, which is consistent with an associated MFD only in this species. However, changes linked to FO-induced MFD (e.g., decreases in 18:0 and increases in total trans-18:1) were stronger in caprine rumen fluid, which may explain their unexpected susceptibility (although less marked than in bovine) to the negative effect of FO on milk fat content. Altogether, these results suggest that distinct ruminal mechanisms lead to each type of diet-induced MFD and confirm a pronounced interaction with species. With regard to microbiota, differences between cows and goats in the composition of the rumen bacterial community might be behind the disparity in the microorganisms

  12. [Nosocomial urinary infections].

    PubMed

    Butreau-Lemaire, M; Botto, H

    1997-09-01

    The concept of nosocomial urinary tract infection now corresponds to a precise definition. It is generally related to bladder catheterization, constitutes the most frequent form of nosocomial infection (30 to 50% of infections), and represents the third most frequent portal of entry of bacteraemia. The organism most frequently isolated is Escherichia coli; but the flora is changing and the ecological distribution is continually modified. Despite their usually benign nature, these nosocomial infections can nevertheless influence hospital mortality; they increase the hospital stay by an average of 2.5 days and their treatment represents a large share of the antibiotic budget. Prevention of these infections is therefore essential, with particular emphasis on simple and universally accessible measures: very precise indications for vesical catheterization, use of closed circuit drainage, maximal asepsis when handling catheters, after washing the hands.

  13. [Female urinary incontinence].

    PubMed

    Jundt, K; Friese, K

    2005-06-01

    Several million women suffer from urinary incontinence in Germany. Stress and urge incontinence are especially clinically relevant. Training of the pelvic floor muscles (vaginal cones, electrical stimulation, biofeedback, and so forth) plays a central role in the conservative therapy of stress incontinence. The use of devices such as incontinence tampons and urethral pessaries is also common. A medication for the therapy of stress incontinence, which improves the closure of the urethral sphincter, has been on the market since 2004. In the operative area,the insertion of a tension-free vaginal tape (TVT) has gained acceptance in recent years. Anticholinergics are the primary medication used in the treatment of urge incontinence. Local estrogens, low frequency electrical stimulation, phytotherapeutics and the like have supportive effects.

  14. Ruminal pH predictions for beef cattle: Comparative evaluation of current models.

    PubMed

    Sarhan, M A; Beauchemin, K A

    2015-04-01

    This study evaluated 8 empirical models for their ability to accurately predict mean ruminal pH in beef cattle fed a wide range of diets. Models tested that use physically effective fiber (peNDF) as a dependent variable were Pitt et al. (1996, PIT), Mertens (1997, MER), Fox et al. (2004, FOX), Zebeli et al. (2006, ZB6), and Zebeli et al. (2008, ZB8), and those that use rumen VFA were Tamminga and Van Vuuren (1988, TAM), Lescoat and Sauvant (1995, LES), and Allen (1997, ALL). A data set of 65 published papers (231 treatment means) for beef cattle was assembled that included information on animal characteristics, diet composition, and ruminal fermentation and mean pH. Model evaluations were based on mean square prediction error (MSPE), concordance correlation coefficient (CCC), and regression analysis. The prediction potential of the models varied with low root MSPE (RMSPE) values of 4.94% and 5.37% for PIT and FOX, RMSPE values of 9.66% and 12.55% for ZB6 and MER, and intermediate RMSPE values of 5.66% to 6.26% for the other models. For PIT and FOX, with the lowest RMSPE, approximately 96% of MSPE was due to random error, whereas for ZB6 and MER, with the highest RMSPE, 15.85% and 23.42% of MSPE, respectively, was due to linear bias, and 37.19% and 60.12% of the error, respectively, was due to deviation of the regression slope from unity. The CCC was greatest for PIT (0.67) and FOX (0.62), followed by 0.60 for LES and TAM, 0.52 for ZB8, 0.39 for MER, 0.34 for ALL, and 0.22 for ZB6. Residuals plotted against model-predicted values showed linear bias (P < 0.001) for all models except PIT (P = 0.976) and FOX (P = 0.054) and mean bias (P < 0.001) except for FOX (P = 0.293), LES (P = 0.215), and TAM (P = 0.119). The study showed that the empirical models PIT and FOX, based on peNDF, and LES and TAM, based on VFA, are preferred over the others for prediction of mean ruminal pH in beef cattle fed a wide range of diets. Several animal (BW and intake), diet (forage and OM

  15. Estimating fermentative amino acid catabolism in the small intestine of growing pigs.

    PubMed

    Columbus, D A; Cant, J P; de Lange, C F M

    2015-11-01

    Fermentative catabolism (FAAC) of dietary and endogenous amino acids (AA) in the small intestine contributes to loss of AA available for protein synthesis and body maintenance functions in pigs. A continuous isotope infusion study was performed to determine whole body urea flux, urea recycling and FAAC in the small intestine of ileal-cannulated growing pigs fed a control diet (CON, 18.6% CP; n=6), a high fibre diet with 12% added pectin (HF, 17.7% CP; n = 4) or a low-protein diet (LP, 13.4% CP; n = 6). (15)N-ammonium chloride and (13)C-urea were infused intragastrically and intravenously, respectively, for 4 days. Recovery of ammonia at the distal ileum was increased by feeding additional fibre when compared with the CON (P > 0.05) but was not affected by dietary protein (0.24, 0.39 and 0.14 mmol nitrogen/kg BW/day for CON, HF and LP, respectively; P < 0.05). Lowering protein intake reduced urea flux (25.3, 25.7 and 10.3 mmol nitrogen/kg BW/day; P < 0.01), urinary urea excretion (14.4, 15.0 and 6.2 mmol N/kg BW/day; P < 0.001) and urea recycling (12.1, 11.3 and 3.23 mmol nitrogen/kg BW/day; P< 0 .01) compared with CON. There was a rapid reduction in (15)N-ammonia enrichment in digesta along the small intestine suggesting rapid absorption of ammonia before the distal ileum and lack of uniformity of enrichment in the digesta ammonia pool. A two-pool model was developed to determine possible value ranges for nitrogen flux in the small intestine assuming rapid absorption of ammonia.Maximum estimated FAAC based on this model was significantly lower when dietary protein content was decreased (32.9, 33.4 and 17.4 mmol nitrogen/kg BW/day; P < 0.001). There was no impact of dietary fibre on estimates of small intestine nitrogen flux( P > 0.05)compared with CON. The two-pool model developed in the present study allows for estimation of FAAC but still has limitations. Quantifying FAAC in the small intestine of pigs, as well as other non-ruminants and humans, offers a number

  16. Close Relationship of Ruminant Pestiviruses and Classical Swine Fever Virus

    PubMed Central

    Postel, Alexander; Schmeiser, Stefanie; Oguzoglu, Tuba Cigdem; Indenbirken, Daniela; Alawi, Malik; Fischer, Nicole; Grundhoff, Adam

    2015-01-01

    To determine why serum from small ruminants infected with ruminant pestiviruses reacted positively to classical swine fever virus (CSFV)–specific diagnostic tests, we analyzed 2 pestiviruses from Turkey. They differed genetically and antigenically from known Pestivirus species and were closely related to CSFV. Cross-reactions would interfere with classical swine fever diagnosis in pigs. PMID:25811683

  17. Dietary selection by domestic grazing ruminants: Current state of knowledge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ruminants grazing biodiverse pasture face many choices, including when and where to graze and how much herbage to consume. Scientific research has led to considerable knowledge about some of these choices (e.g. herbage DMI), but other aspects of the complex decision-making process of a grazing rumin...

  18. Childhood and Adult Sexual Abuse, Rumination on Sadness, and Dysphoria

    ERIC Educational Resources Information Center

    Conway, Michael; Mendelson, Morris; Giannopoulos, Constantina; Csank, Patricia A. R.; Holm, Susan L.

    2004-01-01

    Objective: The study addressed the hypothesis that adults reporting sexual abuse are more likely to exhibit a general tendency to ruminate on sadness. The relations between reported abuse, rumination on sadness, and dysphoria were also examined. Method: Undergraduate students (101 women and 100 men) reported on childhood and adult sexual abuse and…

  19. Direct and Generalized Effects of Food Satiation in Reducing Rumination.

    ERIC Educational Resources Information Center

    Clauser, Brian; Scibak, John W.

    1990-01-01

    The effects of food satiation on rumination and a collateral self-stimulatory behavior were examined in three profoundly retarded individuals. For all three individuals, the provision of unlimited quantities of cereal and milk during mealtime resulted in reductions in rumination and decreases in the collateral behaviors. (Author/DB)

  20. Rumination as a Transdiagnostic Factor in Depression and Anxiety

    PubMed Central

    Nolen-Hoeksema, Susan

    2011-01-01

    The high rate of comorbidity among mental disorders has driven a search for factors associated with the development of multiple types of psychopathology, referred to as transdiagnostic factors. Rumination is involved in the etiology and maintenance of major depression, and recent evidence implicates rumination in the development of anxiety. The extent to which rumination is a transdiagnostic factor that accounts for the co-occurrence of symptoms of depression and anxiety, however, has not previously been examined. We investigated whether rumination explained the concurrent and prospective associations between symptoms of depression and anxiety in two longitudinal studies: one of adolescents (N=1,065) and one of adults (N=1,317). Rumination was a full mediator of the concurrent association between symptoms of depression and anxiety in adolescents (z = 6.7, p < .001) and was a partial mediator of this association in adults (z = 5.6, p < .001). In prospective analyses in the adolescent sample, baseline depressive symptoms predicted increases in anxiety, and rumination fully mediated this association (z = 5.26, p < .001). In adults, baseline depression predicted increases in anxiety and baseline anxiety predicted increases in depression; rumination fully mediated both of these associations (z = 2.35, p = .019 and z = 5.10, p < .001, respectively). These findings highlight the importance of targeting rumination in transdiagnostic treatment approaches for emotional disorders. PMID:21238951

  1. Peste des petits ruminants virus in Heilongjiang province, China, 2014.

    PubMed

    Wang, Jingfei; Wang, Miao; Wang, Shida; Liu, Zaisi; Shen, Nan; Si, Wei; Sun, Gang; Drewe, Julian A; Cai, Xuehui

    2015-04-01

    During March 25-May 5, 2014, we investigated 11 outbreaks of peste des petits ruminants in Heilongjiang Province, China. We found that the most likely source of the outbreaks was animals from livestock markets in Shandong. Peste des petits ruminants viruses belonging to lineages II and IV were detected in sick animals. PMID:25811935

  2. Aflatoxin B1 binding to sorbents in bovine ruminal fluid.

    PubMed

    Spotti, M; Fracchiolla, M L; Arioli, F; Caloni, F; Pompa, G

    2005-08-01

    A recent approach to the problem of contamination of agricultural products by aflatoxin B(1) (AFB(1)) is to add non-nutritional adsorbents to animal diets in order to sequester ingested aflatoxins. We conducted in vitro experiments to develop a rapid and cheap model using ruminal fluid to assess the ability of sorbent materials to bind AFB(1). Seven sorbents (hydrated sodium calcium aluminosilicate; clinoptilolite; zeolite; two types of bentonite; sepiolite; and PHIL 75), commonly added to bovine diets were incubated in water and ruminal fluid in the presence of AFB(1). Hydrated sodium calcium aluminosilicate, sepiolite and one of the bentonites bound 100% of the AFB(1) in the presence of both ruminal fluid and water; clinoptilolite bound about 80% of AFB(1) in both liquids; whereas the affinities for the mycotoxin of zeolite (50%) and the other sample of bentonite (60%) in water seem to be increased by about 40% in ruminal fluid incubations. PHIL 75 had the poorest binding ability: about 30% in water and 45% in ruminal fluid. In view of the differences in toxin binding in water and ruminal fluid, it is preferable to use the ruminal fluid model for the in vitro pre-screening of sorbent materials potentially useful as adjuvants to ruminant feeds. PMID:16215841

  3. Peste des petits ruminants virus in Heilongjiang province, China, 2014.

    PubMed

    Wang, Jingfei; Wang, Miao; Wang, Shida; Liu, Zaisi; Shen, Nan; Si, Wei; Sun, Gang; Drewe, Julian A; Cai, Xuehui

    2015-04-01

    During March 25-May 5, 2014, we investigated 11 outbreaks of peste des petits ruminants in Heilongjiang Province, China. We found that the most likely source of the outbreaks was animals from livestock markets in Shandong. Peste des petits ruminants viruses belonging to lineages II and IV were detected in sick animals.

  4. An Effective and Benign Treatment of Rumination. Brief Report.

    ERIC Educational Resources Information Center

    Barton, Lyle E.; Barton, Carolyn L.

    1985-01-01

    A simple and effective program for the reduction or elimination of ruminative behavior in four school-aged students with multiple handicaps used a combination of peanut butter, reduced fluid consumption at meals, and fading. In each of the cases, the ruminative behavior was significantly reduced or eliminated. (Author/CL)

  5. Troubled Ruminations about Parents: Conceptualization and Validation with Emerging Adults

    ERIC Educational Resources Information Center

    Schwartz, Seth J.; Finley, Gordon E.

    2010-01-01

    This study was designed to introduce the construct of troubled ruminations about parents and to develop a brief screening instrument. An ethnically diverse sample of 1,376 university students completed the instrument and other measures of psychosocial functioning. Troubled ruminations about mothers and fathers were related to self-esteem, life…

  6. An Observational Study of Co-Rumination in Adolescent Friendships

    ERIC Educational Resources Information Center

    Rose, Amanda J.; Schwartz-Mette, Rebecca A.; Glick, Gary C.; Smith, Rhiannon L.; Luebbe, Aaron M.

    2014-01-01

    Co-rumination is a dyadic process between relationship partners that refers to excessively discussing problems, rehashing problems, speculating about problems, mutual encouragement of problem talk, and dwelling on negative affect. Although studies have addressed youths' "tendency" to co-ruminate, little is known about the nature of…

  7. A Systematic Review of the Relationship between Rumination and Suicidality

    ERIC Educational Resources Information Center

    Morrison, Rebecca; O'Connor, Rory C.

    2008-01-01

    Rumination has been persistently implicated in the etiology of hopelessness and depression, which are proximal predictors of suicidality. As a result, researchers have started to examine the role of rumination in suicidality. This systematic review provides a concise synopsis of the current progress in examining the relationship between rumination…

  8. More than Talk: Co-Rumination among College Students

    ERIC Educational Resources Information Center

    Landphair, Juliette; Preddy, Teri

    2012-01-01

    Co-rumination, a social process between two friends, is defined as the frequent and excessive discussion of personal problems. Like body image and alcohol use, it is one of those complicated issues embedded in larger cultural realities, which makes it universally recognizable. On campus, co-rumination has deleterious side effects: it challenges…

  9. Comparisons of Interventions for Rumination Maintained by Automatic Reinforcement

    ERIC Educational Resources Information Center

    Sharp, Rebecca A.; Phillips, Katrina J.; Mudford, Oliver C.

    2012-01-01

    The effectiveness of four antecedent treatments for rumination was compared for two individuals with autism, severe intellectual disabilities and long histories (at least 20 years) of rumination. Comparisons of increased meal size, supplemental feedings, fixed-time provision of peanut butter, and liquid rescheduling found liquid rescheduling to be…

  10. Optimal Cultivation Time for Yeast and Lactic Acid Bacteria in Fermented Milk and Effects of Fermented Soybean Meal on Rumen Degradability Using Nylon Bag Technique

    PubMed Central

    Polyorach, S.; Poungchompu, O.; Wanapat, M.; Kang, S.; Cherdthong, A.

    2016-01-01

    The objectives of this study were to determine an optimal cultivation time for populations of yeast and lactic acid bacteria (LAB) co-cultured in fermented milk and effects of soybean meal fermented milk (SBMFM) supplementation on rumen degradability in beef cattle using nylon bag technique. The study on an optimal cultivation time for yeast and LAB growth in fermented milk was determined at 0, 4, 8, 24, 48, 72, and 96 h post-cultivation. After fermenting for 4 days, an optimal cultivation time of yeast and LAB in fermented milk was selected and used for making the SBMFM product to study nylon bag technique. Two ruminal fistulated beef cattle (410±10 kg) were used to study on the effect of SBMFM supplementation (0%, 3%, and 5% of total concentrate substrate) on rumen degradability using in situ method at incubation times of 0, 2, 4, 6, 12, 24, 48, and 72 h according to a Completely randomized design. The results revealed that the highest yeast and LAB population culture in fermented milk was found at 72 h-post cultivation. From in situ study, the soluble fractions at time zero (a), potential degradability (a+b) and effective degradability of dry matter (EDDM) linearly (p<0.01) increased with the increasing supplemental levels and the highest was in the 5% SBMFM supplemented group. However, there was no effect of SBMFM supplement on insoluble degradability fractions (b) and rate of degradation (c). In conclusion, the optimal fermented time for fermented milk with yeast and LAB was at 72 h-post cultivation and supplementation of SBMFM at 5% of total concentrate substrate could improve rumen degradability of beef cattle. However, further research on effect of SBMFM on rumen ecology and production performance in meat and milk should be conducted using in vivo both digestion and feeding trials. PMID:26954119

  11. The Genome Sequence of the Rumen Methanogen Methanobrevibacter ruminantium Reveals New Possibilities for Controlling Ruminant Methane Emissions

    PubMed Central

    Leahy, Sinead C.; Kelly, William J.; Altermann, Eric; Ronimus, Ron S.; Yeoman, Carl J.; Pacheco, Diana M.; Li, Dong; Kong, Zhanhao; McTavish, Sharla; Sang, Carrie; Lambie, Suzanne C.; Janssen, Peter H.; Dey, Debjit; Attwood, Graeme T.

    2010-01-01

    Background Methane (CH4) is a potent greenhouse gas (GHG), having a global warming potential 21 times that of carbon dioxide (CO2). Methane emissions from agriculture represent around 40% of the emissions produced by human-related activities, the single largest source being enteric fermentation, mainly in ruminant livestock. Technologies to reduce these emissions are lacking. Ruminant methane is formed by the action of methanogenic archaea typified by Methanobrevibacter ruminantium, which is present in ruminants fed a wide variety of diets worldwide. To gain more insight into the lifestyle of a rumen methanogen, and to identify genes and proteins that can be targeted to reduce methane production, we have sequenced the 2.93 Mb genome of M. ruminantium M1, the first rumen methanogen genome to be completed. Methodology/Principal Findings The M1 genome was sequenced, annotated and subjected to comparative genomic and metabolic pathway analyses. Conserved and methanogen-specific gene sets suitable as targets for vaccine development or chemogenomic-based inhibition of rumen methanogens were identified. The feasibility of using a synthetic peptide-directed vaccinology approach to target epitopes of methanogen surface proteins was demonstrated. A prophage genome was described and its lytic enzyme, endoisopeptidase PeiR, was shown to lyse M1 cells in pure culture. A predicted stimulation of M1 growth by alcohols was demonstrated and microarray analyses indicated up-regulation of methanogenesis genes during co-culture with a hydrogen (H2) producing rumen bacterium. We also report the discovery of non-ribosomal peptide synthetases in M. ruminantium M1, the first reported in archaeal species. Conclusions/Significance The M1 genome sequence provides new insights into the lifestyle and cellular processes of this important rumen methanogen. It also defines vaccine and chemogenomic targets for broad inhibition of rumen methanogens and represents a significant contribution to

  12. Effects of dietary nitrogen levels and carbohydrate sources on apparent ruminal synthesis of some B vitamins in dairy cows.

    PubMed

    Beaudet, V; Gervais, R; Graulet, B; Nozière, P; Doreau, M; Fanchone, A; Castagnino, D D S; Girard, C L

    2016-04-01

    Effects of nitrogen level and carbohydrate source on apparent ruminal synthesis (ARS) of thiamin, riboflavin, niacin, vitamin B6, folates, and vitamin B12 were evaluated using 4 lactating Holstein cows distributed in a 4 × 4 Latin square design with treatments following a 2 × 2 factorial arrangement. Cows were fitted with cannulas in the rumen and proximal duodenum. The treatments were 2 N levels and 2 carbohydrate sources. The diet with the high N level provided 14% crude protein, calculated to meet 110% of the protein requirements and an adequate supply in rumen-degradable protein, whereas the diet with the low N level contained 11% crude protein, calculated to meet 80% of the protein requirements with a shortage in rumen-degradable protein. Carbohydrate source treatments differed by their nature (i.e., high in starch from barley, corn, and wheat, or high in fiber from soybean hulls and dehydrated beet pulp). All 4 diets were isoenergetic, based on corn silage, and had the same forage-to-concentrate ratio (60:40, dry matter basis). Duodenal flow was determined using YbCl3 as a marker. Each B-vitamin ARS was calculated as duodenal flow minus daily intake. The intake of several B vitamins varied among treatments, but because the animals consumed a similar amount of feed every day (average of 20 kg of dry matter/d) the difference was mostly due to vitamin content of each ingredient and their relative proportion in the diets. Decreasing N concentration in the diet reduced vitamin B6 duodenal flow and increased its apparent ruminal degradation. It also decreased duodenal flow and ARS of folates. The high-starch diets increased duodenal flow and ruminal balance of riboflavin, vitamin B6, and folates, whereas the high-fiber diets increased vitamin B12 ARS and duodenal flow. These effects on apparent synthesis are possibly due to changes in ruminal fermentation.

  13. Effects of dietary nitrogen levels and carbohydrate sources on apparent ruminal synthesis of some B vitamins in dairy cows.

    PubMed

    Beaudet, V; Gervais, R; Graulet, B; Nozière, P; Doreau, M; Fanchone, A; Castagnino, D D S; Girard, C L

    2016-04-01

    Effects of nitrogen level and carbohydrate source on apparent ruminal synthesis (ARS) of thiamin, riboflavin, niacin, vitamin B6, folates, and vitamin B12 were evaluated using 4 lactating Holstein cows distributed in a 4 × 4 Latin square design with treatments following a 2 × 2 factorial arrangement. Cows were fitted with cannulas in the rumen and proximal duodenum. The treatments were 2 N levels and 2 carbohydrate sources. The diet with the high N level provided 14% crude protein, calculated to meet 110% of the protein requirements and an adequate supply in rumen-degradable protein, whereas the diet with the low N level contained 11% crude protein, calculated to meet 80% of the protein requirements with a shortage in rumen-degradable protein. Carbohydrate source treatments differed by their nature (i.e., high in starch from barley, corn, and wheat, or high in fiber from soybean hulls and dehydrated beet pulp). All 4 diets were isoenergetic, based on corn silage, and had the same forage-to-concentrate ratio (60:40, dry matter basis). Duodenal flow was determined using YbCl3 as a marker. Each B-vitamin ARS was calculated as duodenal flow minus daily intake. The intake of several B vitamins varied among treatments, but because the animals consumed a similar amount of feed every day (average of 20 kg of dry matter/d) the difference was mostly due to vitamin content of each ingredient and their relative proportion in the diets. Decreasing N concentration in the diet reduced vitamin B6 duodenal flow and increased its apparent ruminal degradation. It also decreased duodenal flow and ARS of folates. The high-starch diets increased duodenal flow and ruminal balance of riboflavin, vitamin B6, and folates, whereas the high-fiber diets increased vitamin B12 ARS and duodenal flow. These effects on apparent synthesis are possibly due to changes in ruminal fermentation. PMID:26851844

  14. A long life among ruminants: giraffids and other special cases.

    PubMed

    Müller, D W H; Zerbe, P; Codron, D; Clauss, M; Hatt, J-M

    2011-11-01

    In order to investigate differences in the relative maximum longevity and other life history parameter between ruminant species, we collated data on mean body mass, maximum longevity, gestation period and newborn mass in wild ruminant and camelid species. Among ruminants, giraffids (giraffe Giraffa camelopardalis and okapi Okapia johnstoni) have particularly high longevities, long gestation periods, and low intrauterine growth rates. A particularly high absolute and relative longevity is also achieved by the anoa (Bubalus depressicornis), a member of the bovinae (cattle-type ruminants) and an insular dwarf (inhabiting the Indonesian island of Sulawesi). The fact that some (but not all) other small ruminants also achieve surprisingly high longevities leads to the hypothesis that extreme relative longevities in this group are an indication for secondary body size reduction.

  15. Internal switching and backward inhibition in depression and rumination.

    PubMed

    Chen, Xiao; Feng, Zhengzhi; Wang, Tao; Su, Hong; Zhang, Lihong

    2016-09-30

    Prior research has suggested that impairments of switching abilities are associated with depression as well as rumination. Backward inhibition (BI) refers to the ability to inhibit the processing of previously relevant information and is demonstrated to be one of the key mechanisms underlying switching abilities. However, the association between BI in internal switching and depression/rumination remains uninvestigated. To examine this association, a modified Internal Shifting Task (IST) was administered to a sample of dysphoric and healthy control undergraduates. Results showed that depressive symptoms were not associated with difficulties in switching among subjects held in working memory, while trait ruminators performed poorly in switching internally. Surprisingly, no association between BI in internal switching and rumination/depressive symptoms was found. These findings indicate that rumination is characterized by poor performance in internal switching, but this deficit is not associated with BI. PMID:27449002

  16. Gender differences in rumination: A meta-analysis

    PubMed Central

    Johnson, Daniel P.; Whisman, Mark A.

    2013-01-01

    Starting in adolescence and continuing through adulthood, women are twice as likely as men to experience depression. According to the response styles theory (RST), gender differences in depression result, in part, from women’s tendency to ruminate more than men. A meta-analysis was performed to evaluate gender differences in rumination in adults (k = 59; N = 14,321); additionally, an analysis of subtypes of rumination – brooding and reflection – was conducted (k = 23). Fixed effects analyses indicated that women scored higher than men in rumination (d = .24, p < .01, SEd = .02), brooding (d = .19, p < .01, SEd = .03) and reflection (d = .17, p < .01, SEd = .03); there was no evidence of heterogeneity or publication bias across studies for these effect sizes. Although statistically significant, the effect sizes for gender differences in rumination were small in magnitude. Results are discussed with respect to the RST and gender differences in depression. PMID:24089583

  17. A long life among ruminants: giraffids and other special cases.

    PubMed

    Müller, D W H; Zerbe, P; Codron, D; Clauss, M; Hatt, J-M

    2011-11-01

    In order to investigate differences in the relative maximum longevity and other life history parameter between ruminant species, we collated data on mean body mass, maximum longevity, gestation period and newborn mass in wild ruminant and camelid species. Among ruminants, giraffids (giraffe Giraffa camelopardalis and okapi Okapia johnstoni) have particularly high longevities, long gestation periods, and low intrauterine growth rates. A particularly high absolute and relative longevity is also achieved by the anoa (Bubalus depressicornis), a member of the bovinae (cattle-type ruminants) and an insular dwarf (inhabiting the Indonesian island of Sulawesi). The fact that some (but not all) other small ruminants also achieve surprisingly high longevities leads to the hypothesis that extreme relative longevities in this group are an indication for secondary body size reduction. PMID:22045457

  18. Approaches to management and care of the neonatal nondomestic ruminant.

    PubMed

    Wolfe, Barbara A; Lamberski, Nadine

    2012-05-01

    Management and care of the nondomestic ruminant neonate are similar in principle to domestic animal practice. Housing of the dam, conditions for birth, preparation for intervention, and plans for treatment and hand-rearing of sick neonates must all be considered carefully before undertaking nondomestic ruminant breeding. Unfortunately, neonatal losses tend to be much higher in nondomestic calves before weaning than in domestic cattle, sheep, and goat herds.1 With continued habitat and population declines in wild species, successful captive breeding of nondomestic herds becomes more important to species sustainability and potential reintroduction programs. The primary challenges contributing to neonatal losses in nondomestic ruminants are often animal temperament and adaptation to captivity. Only through experience can some of these challenges be overcome. However, by understanding some species-specific behavioral tendencies and the fractious nature of nondomestic ruminants in general, we can improve our success in managing and maintaining healthy populations of nondomestic ruminants in captivity. PMID:22640541

  19. Depressive rumination alters cortisol decline in Major Depressive Disorder.

    PubMed

    LeMoult, Joelle; Joormann, Jutta

    2014-07-01

    Depressive rumination - a central characteristic of Major Depressive Disorder (MDD) - is a maladaptive emotion regulation strategy that prolongs sad mood and depressive episodes. Considerable research demonstrates the emotional and behavioral consequences of depressive rumination, yet few studies investigate its effect on neuroendocrine functioning. The current study examined the effect of an emotion regulation manipulation on the trajec