On the origin of the hypervelocity runaway star HD 271791
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2010-01-01
We discuss the origin of the early-B-type runaway star HD 271791 and show that its extremely high velocity (≃530 - 920km s-1) cannot be explained within the framework of the binary-supernova ejection scenario. Instead, we suggest that HD 271791 attained its peculiar velocity in the course of a strong dynamical encounter between two hard, massive binaries or through an exchange encounter between a hard, massive binary and a very massive star, formed through runaway mergers of ordinary massive stars in the dense core of a young massive star cluster.
MULTIWAVELENGTH OBSERVATIONS OF THE RUNAWAY BINARY HD 15137
DOE Office of Scientific and Technical Information (OSTI.GOV)
McSwain, M. Virginia; Aragona, Christina; Marsh, Amber N.
2010-03-15
HD 15137 is an intriguing runaway O-type binary system that offers a rare opportunity to explore the mechanism by which it was ejected from the open cluster of its birth. Here, we present recent blue optical spectra of HD 15137 and derive a new orbital solution for the spectroscopic binary and physical parameters of the O star primary. We also present the first XMM-Newton observations of the system. Fits of the EPIC spectra indicate soft, thermal X-ray emission consistent with an isolated O star. Upper limits on the undetected hard X-ray emission place limits on the emission from a proposedmore » compact companion in the system, and we rule out a quiescent neutron star (NS) in the propeller regime or a weakly accreting NS. An unevolved secondary companion is also not detected in our optical spectra of the binary, and it is difficult to conclude that a gravitational interaction could have ejected this runaway binary with a low mass optical star. HD 15137 may contain an elusive NS in the ejector regime or a quiescent black hole with conditions unfavorable for accretion at the time of our observations.« less
A search for spectroscopic binaries among the runaway O type stars
NASA Technical Reports Server (NTRS)
Stone, R. C.
1982-01-01
Numerous radial velocity measurements of medium dispersion were made for the 10 brighter stars given in Stone's list of very probable O type runaways. All plates were measured with the KPNO PDS microdensitometer, and a new iterative reductional analysis was used to derive plate velocities, which are estimated to be 1.6 times more accurate internally than those found by using the traditional method. Of thse stars, psi Per, alpha Cam, HD 188209, and 26 Cep are identified as probable velocity variables, while 9 Sge, lambda Cep, and HD 218915 are classed as possible variables. If the source of this variability is Keplerian rather than atmospheric, which cannot be established unequivocally from the observations of this paper, psi Per could be a spectroscopic binary with a black hole companion, and at least 1.2 solar mass. The detection of runaway binary systems from radial velocity measurements is discussed.
Runaway companions of supernova remnants with Gaia
NASA Astrophysics Data System (ADS)
Boubert, Douglas; Fraser, Morgan; Evans, N. Wyn
2018-04-01
It is expected that most massive stars have companions and thus that some core-collapse supernovae should have a runaway companion. The precise astrometry and photometry provided by Gaia allows for the systematic discovery of these runaway companions. We combine a prior on the properties of runaway stars from binary evolution with data from TGAS and APASS to search for runaway stars within ten nearby supernova remnants. We strongly confirm the existing candidate HD 37424 in S147, propose the Be star BD+50 3188 to be associated with HB 21, and suggest tentative candidates for the Cygnus and Monoceros Loops.
A Search for Quiet Massive X-ray Binaries
NASA Astrophysics Data System (ADS)
McSwain, M. V.; Boyajian, T. S.; Grundstrom, E.; Gies, D. R.
2005-12-01
Wind accretion models of the X-ray luminosity in massive X-ray binaries (MXRBs) predict a class of "quiet" MXRBs in which the stellar wind is too weak to power a strong X-ray source. The first two candidates systems, HD 14633 and HD 15137, were recently detected. These O star + neutron star systems were ejected from the open cluster NGC 654, but although they both show evidence of a past supernova within the binary system, neither is a known X-ray emitter. These systems provide a new opportunity to examine the ejection mechanisms responsible for the OB runaway stars, and they can also provide key information about the evolution of spun-up, rejuvenated massive stars. We present here preliminary results from a search for other such quiet MXRBs. MVM is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-0401460.
THE PROPERTIES OF DYNAMICALLY EJECTED RUNAWAY AND HYPER-RUNAWAY STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perets, Hagai B.; Subr, Ladislav
2012-06-01
Runaway stars are stars observed to have large peculiar velocities. Two mechanisms are thought to contribute to the ejection of runaway stars, both of which involve binarity (or higher multiplicity). In the binary supernova scenario, a runaway star receives its velocity when its binary massive companion explodes as a supernova (SN). In the alternative dynamical ejection scenario, runaway stars are formed through gravitational interactions between stars and binaries in dense, compact clusters or cluster cores. Here we study the ejection scenario. We make use of extensive N-body simulations of massive clusters, as well as analytic arguments, in order to characterizemore » the expected ejection velocity distribution of runaway stars. We find that the ejection velocity distribution of the fastest runaways (v {approx}> 80 km s{sup -1}) depends on the binary distribution in the cluster, consistent with our analytic toy model, whereas the distribution of lower velocity runaways appears independent of the binaries' properties. For a realistic log constant distribution of binary separations, we find the velocity distribution to follow a simple power law: {Gamma}(v){proportional_to}v{sup -8/3} for the high-velocity runaways and v{sup -3/2} for the low-velocity ones. We calculate the total expected ejection rates of runaway stars from our simulated massive clusters and explore their mass function and their binarity. The mass function of runaway stars is biased toward high masses and strongly depends on their velocity. The binarity of runaways is a decreasing function of their ejection velocity, with no binaries expected to be ejected with v > 150 km s{sup -1}. We also find that hyper-runaways with velocities of hundreds of km s{sup -1} can be dynamically ejected from stellar clusters, but only at very low rates, which cannot account for a significant fraction of the observed population of hyper-velocity stars in the Galactic halo.« less
WR 148: identifying the companion of an extreme runaway massive binary*
NASA Astrophysics Data System (ADS)
Munoz, Melissa; Moffat, Anthony F. J.; Hill, Grant M.; Shenar, Tomer; Richardson, Noel D.; Pablo, Herbert; St-Louis, Nicole; Ramiaramanantsoa, Tahina
2017-05-01
WR 148 (HD 197406) is an extreme runaway system considered to be a potential candidate for a short-period (4.3173 d) rare WR + compact object binary. Provided with new high-resolution, high signal-to-noise spectra from the Keck observatory, we determine the orbital parameters for both the primary WR and the secondary, yielding respective projected orbital velocity amplitudes of 88.1 ± 3.8 km s-1 and 79.2 ± 3.1 km s-1 and implying a mass ratio of 1.1 ± 0.1. We then apply the shift-and-add technique to disentangle the spectra and obtain spectra compatible with a WN7ha and an O4-6 star. Considering an orbital inclination of ˜67°, derived from previous polarimetry observations, the system's total mass would be a mere 2-3M_{⊙}, an unprecedented result for a putative massive binary system. However, a system comprising a 37 M_{⊙} secondary (typical mass of an O5V star) and a 33 M_{⊙} primary (given the mass ratio) would infer an inclination of ˜18°. We therefore reconsider the previous methods of deriving the orbital inclination based on time-dependent polarimetry and photometry. While the polarimetric results are inconclusive requiring better data, the photometric results favour low inclinations. Finally, we compute WR 148's space velocity and retrace the runaway's trajectory back to the Galactic plane (GP). With an ejection velocity of 198 ± 27 km s-1 and a travel time of 4.7 ± 0.8 Myr to reach its current location, WR 148 was most likely ejected via dynamical interactions in a young cluster.
On the kinematics of a runaway Be star population
NASA Astrophysics Data System (ADS)
Boubert, D.; Evans, N. W.
2018-07-01
We explore the hypothesis that B-type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution from the first Gaia data release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5 per cent of the Be stars in our catalogue should be runaways. The remaining 82.5 per cent should be in binaries with subdwarfs, white dwarfs, or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4} per cent of the Be stars in our catalogue are runaways and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).
On the kinematics of a runaway Be star population
NASA Astrophysics Data System (ADS)
Boubert, D.; Evans, N. W.
2018-04-01
We explore the hypothesis that B type emission-line stars (Be stars) have their origin in mass-transfer binaries by measuring the fraction of runaway Be stars. We assemble the largest-to-date catalogue of 632 Be stars with 6D kinematics, exploiting the precise astrometry of the Tycho-Gaia Astrometric Solution (TGAS) from the first Gaia Data Release. Using binary stellar evolution simulations, we make predictions for the runaway and equatorial rotation velocities of a runaway Be star population. Accounting for observational biases, we calculate that if all classical Be stars originated through mass transfer in binaries, then 17.5% of the Be stars in our catalogue should be runaways. The remaining 82.5% should be in binaries with subdwarfs, white dwarfs or neutron stars, because those systems either remained bound post-supernova or avoided the supernova entirely. Using a Bayesian methodology, we compare the hypothesis that each Be star in our catalogue is a runaway to the null hypothesis that it is a member of the Milky Way disc. We find that 13.1^{+2.6}_{-2.4}% of the Be stars in our catalogue are runaways, and identify a subset of 40 high-probability runaways. We argue that deficiencies in our understanding of binary stellar evolution, as well as the degeneracy between velocity dispersion and number of runaway stars, can explain the slightly lower runaway fraction. We thus conclude that all Be stars could be explained by an origin in mass-transfer binaries. This conclusion is testable with the second Gaia data release (DR2).
NASA Astrophysics Data System (ADS)
Sorber, Rebecca L.; Rebecca L. Sorber, Henry A. Kobulnicky, Daniel A. Dale, Matthew S. Povich, William T. Chick, Heather N. Wernke, Julian E. Andrews, Stephan Munari, Grace M. Olivier, Danielle Schurhammer
2016-01-01
Though the main sequence evolution of OB type stars is relatively well known, the mass loss rates for these stars are still highly uncertain. Some OB stars are gravitationally ejected from their birth sites, traveling at speeds of 30 km/s or more which results in a prominent bowshock nebulae. We identified OB bowshock candidates at low Galactic latitudes by visual inspection of the Wide-field Infrared Survey Explorer (WISE) 22-micron images. Each candidate was observed using the Longslit Spectrograph at the Wyoming Infrared Observatory (WIRO) 2.3 meter telescope. We present here the results from observing four such candidates, and all four are confirmed as early type stars: GO92.3191+0.0591 (B1V) (aka ALS11826), GO86.551014-1.0873935 (B2V; a probable short-period binary), G076.6921-2.4071 (B5V), and G075.5711-0.2558 (B0V) (aka HD 194303). These results enlarge the sample of candidate runaway massive stars hosting bowshocks and provide a promising sample of such objects for studying stellar mass loss. This work is supported by the National Science Foundation Grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.
Enigma of Runaway Stars Solved
NASA Astrophysics Data System (ADS)
1997-01-01
Supernova Propels Companion Star through Interstellar Space The following success story is a classical illustration of scientific progress through concerted interplay of observation and theory. It concerns a 35-year old mystery which has now been solved by means of exciting observations of a strange double star. An added touch is the successive involvement of astronomers connected to the European Southern Observatory. For many years, astronomers have been puzzled by the fact that, among the thousands of very young, hot and heavy stars which have been observed in the Milky Way, there are some that move with exceptionally high velocities. In some cases, motions well above 100 km/sec, or ten times more than normal for such stars, have been measured. How is this possible? Which mechanism is responsible for the large amounts of energy needed to move such heavy bodies at such high speeds? Could it be that these stars are accelerated during the powerful explosion of a companion star as a supernova? Such a scenario was proposed in 1961 by Adriaan Blaauw [1], but until now, observational proof has been lacking. Now, however, strong supporting evidence for this mechanism has become available from observations obtained at the ESO La Silla observatory. The mysterious runaway stars OB-runaway stars [2] are heavy stars that travel through interstellar space with an anomalously high velocity. They have been known for several decades, but it has always been a problem to explain their high velocities. Although most OB-runaway stars are located at distances of several thousands of lightyears, their high velocity results in a measurable change in position on sky photos taken several years apart. The velocity component in the direction of the Earth can be measured very accurately from a spectrogram. From a combination of such observations, it is possible to measure the space velocity of OB-runaways. Bow shocks reveal runaway stars It has also been found that some OB-runaways display bow shocks of compressed matter, which look very much like the bow wave around a boat crossing the ocean. They are of the same physical nature as a bow shock created by a jet-fighter in the air. The explanation is similar: when an OB-runaway star plows through the interstellar medium (a very thin mixture of gas and dust particles) with supersonic velocity [3], interstellar matter is swept up in a bow shock. Stars of low velocity do not create bow shocks. Thus, the detection of a bow shock around a particular OB star indicates that it must have a supersonic velocity, thereby securely identifying it as a runaway star, even if its velocity has not been measured directly. Runaway stars come from stellar groups When a star's direction of motion in space is known, it is possible to reconstruct its previous path and, even more interestingly, to find the place where the star originally came from. It turns out that the paths of many OB-runaways can be traced back to socalled OB-associations , that is groups of 10 to 100 OB-type stars which are located in the spiral arms of our galaxy. About fifty OB-associations are known in the Milky Way. In fact, the majority of all known OB stars are members of an OB-association. Therefore, it is not very surprising that OB-runaway stars should also originate from OB-associations. This is also how they got their name: at some moment, they apparently left the association in which they were formed. The ejection mechanism But why were the OB-runaway stars kicked out of the OB-association and how did they achieve such high speeds? One possibility is that some OB stars in an OB-association are ejected due to strong gravitational effects at the time of close encounters between the members of the group. Complicated computer simulations show that this is in principle possible. Nevertheless, since many years, most astronomers think that a more likely scenario is that of violent supernova explosions, first proposed in 1961 by Adriaan Blaauw. Stellar evolution theory predicts that all OB stars will end their life in a supernova explosion. The heavier the OB star, the shorter its life. For instance, an OB star with a mass of 25 times that of the Sun, will explode after only 10 million years, compared to an expected life-time of about 13,000 million years for the Sun (which is not an OB star and will not become a supernova). Blaauw suggested that when an OB star is bound to another OB star in a binary system (a `double star'), the supernova explosion of one of the stars (the heaviest of the two would explode first) results in the rapid acceleration (in astronomical terminology, a `kick') of the other one. The reason for this is as follows. When two heavy stars orbit each other at high velocity, they are held together by their mutual gravitational attraction. But after the supernova explosion, one of the stars has lost most of its mass and there is no force to hold back the remaining OB star. The OB-star therefore immediately leaves its orbit and continues in a straight line while preserving its high orbital velocity. The effect is the same as when cutting a swinging rope with a stone attached to the end. Soon thereafter, this star will escape from the OB-association and start its journey through interstellar space as a new OB-runaway. Stellar evolution in a binary system About half of the known OB stars are members of a binary system. Modern evolutionary scenarios for such systems were developed by Edward van den Heuvel [4]. He realized that during the evolution of a close binary system, a phase of intensive mass transfer occurs, whereby matter flows from the heavier star towards its lighter companion. This has important consequences for the further evolution of the system. The mass transfer happens, after a few million years or even less, when the heaviest and therefore most rapidly evolving star increases in size and becomes a supergiant , many times larger than our Sun. The rate of mass transfer can become so large that this initially heaviest star eventually becomes lighter than its companion. This phase of mass transfer will not change the ultimate fate of the supergiant star and it will still be the first of the two to explode as a supernova. An important result of the mass transfer process is, however, that the central remnant of the supernova explosion, i.e. a neutron star or a black hole will remain gravitationally bound in an orbit around the companion OB star, also after it has received a high kick velocity. Compact companions of runaway stars Thus, from what is known about the evolution of heavy stars in binary systems, an OB-runaway that is expelled from an OB-association by a supernova explosion should be accompanied by a compact star. However, many astronomers have in the past looked carefully for the presence of a neutron star or a black hole around the known OB-runaway stars, but none was ever found. That negative observational result obviously did not lend support to the supernova scenario. This was a long-standing enigma. Fortunately, it now appears that it has finally been solved. Based on new observations, a group of astronomers [5], headed by Lex Kaper of ESO, has found that a well-known binary system of an OB-star and a compact neutron star possesses all the charateristics of a bona-fide runaway star. Vela X-1 is the brightest X-ray source in the Vela constellation. It consists of a so-called X-ray pulsar [6] which is definitely a neutron star produced by a supernova explosion and an OB star as companion. Detection of a bow shock around Vela X-1 ESO Press Photo 02/97 Caption to ESO PR Photo 02/97 [JPG, 184k] An image (ESO Press Photo 02/97) of the surroundings of the comparatively bright OB star HD77581 and its (optically invisible) companion Vela X-1 was obtained with the 1.54-m Danish telescope at La Silla, through a narrow-band H-alpha filter. It clearly shows the presence of a typical bow shock, thus immediately confirming the runaway status of this system. In fact, this is one of the most `perfect' bow shocks of parabolic form ever observed around an OB-runaway. Moreover, the orientation of the bow shock indicates that the system is moving towards the north; its origin must therefore lie somewhere south of its present position in the sky. It also turns out that the accordingly deduced path of HD77581 crosses a well-known OB-association with the designation Vel OB1 . At the measured distance of Vel OB1 of about 6000 lightyears, the observed proper motion and radial velocity of HD77581 indicate a space velocity of 90 km/sec. With this velocity, it would have taken HD77581 and its compact companion about 2.5 million years to travel the distance between Vel OB1 and its present position. This corresponds exactly to the expected time that has passed since the supernova explosion of the progenitor star of Vela~X-1, as deduced from the observed properties of the binary system. The puzzle comes together Now everything fits! The observation of a bow shock around the OB star HD77581 and its compact companion Vela X-1 supports the scenario originally proposed by Blaauw to create OB-runaway stars by the supernova explosion of the binary companion. Following back the path of the system resulted in the discovery of the place where it was born and from where it escaped after the violent supernova explosion which produced the neutron star that now manifests itself as the strong X-ray source known as Vela X-1. More information about this research project This research project is described in ESO Preprint no.~1199 and will appear shortly as a Letter to the Editor in `Astrophysical Journal' (ApJ 475, L37-L40). Notes: [1] Professor Adriaan Blaauw is a well-known Dutch astronomer (Leiden and Groningen). He participated very actively in the build-up of ESO in the 1950's and 60's and he was ESO Director General from 1970 - 1974. He is the author of ` ESO's Early History - The European Southern Observatory from concept to reality ' (1991). [2] The designation OB refers to the classification of their spectra which mostly show absorption lines of hydrogen and helium. Their high surface temperature, in some cases up to 50,000 o C, and large masses, from 10 to 50 times that of the Sun, are deduced by analysis of their spectra. [3] The term supersonic means that the velocity of the moving object is higher than that of the velocity of sound in the surrounding medium. While it is about 330 m/sec in the Earth's lower atmosphere, it is about 10 km/sec in the nearly empty interstellar space. [4] Professor Edward van den Heuvel works at the University of Amsterdam and is a member of the ESO Council, the highest authority of this Organisation. [5] The group members are Lex Kaper, Jacco van Loon, Thomas Augusteijn, Paul Goodfrooij, Ferdinando Patat, Albert Zijlstra (ESO) and Rens Waters (Astronomical Institute, Amsterdam, The Netherlands). [6] In 1971, the current Director General of ESO, Professor Riccardo Giacconi , was one of the first to propose that `X-ray pulsars' are rapidly rotating neutron stars. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.
Kinematic Clues to OB Field Star Origins: Radial Velocities, Runaways, and Binaries
NASA Astrophysics Data System (ADS)
Januszewski, Helen; Castro, Norberto; Oey, Sally; Becker, Juliette; Kratter, Kaitlin M.; Mateo, Mario; Simón-Díaz, Sergio; Bjorkman, Jon E.; Bjorkman, Karen; Sigut, Aaron; Smullen, Rachel; M2FS Team
2018-01-01
Field OB stars are a crucial probe of star formation in extreme conditions. Properties of massive stars formed in relative isolation can distinguish between competing star formation theories, while the statistics of runaway stars allow an indirect test of the densest conditions in clusters. To address these questions, we have obtained multi-epoch, spectroscopic observations for a spatially complete sample of 48 OB field stars in the SMC Wing with the IMACS and M2FS multi-object spectrographs at the Magellan Telescopes. The observations span 3-6 epochs per star, with sampling frequency ranging from one day to about one year. From these spectra, we have calculated the radial velocities (RVs) and, in particular, the systemic velocities for binaries. Thus, we present the intrinsic RV distribution largely uncontaminated by binary motions. We estimate the runaway frequency, corresponding to the high velocity stars in our sample, and we also constrain the binary frequency. The binary frequency and fitted orbital parameters also place important constraints on star formation theories, as these properties drive the process of runaway ejection in clusters, and we discuss these properties as derived from our sample. This unique kinematic analysis of a high mass field star population thus provides a new look at the processes governing formation and interaction of stars in environments at extreme densities, from isolation to dense clusters.
Very massive runaway stars from three-body encounters
NASA Astrophysics Data System (ADS)
Gvaramadze, Vasilii V.; Gualandris, Alessia
2011-01-01
Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.
VizieR Online Data Catalog: Multiplicity among chemically peculiar stars II (Carrier+, 2002)
NASA Astrophysics Data System (ADS)
Carrier, F.; North, P.; Udry, S.; Babel, J.
2002-08-01
We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are : HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars as for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. (4 data files).
High-velocity runaway stars from three-body encounters
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Gualandris, A.; Portegies Zwart, S.
2010-01-01
We performed numerical simulations of dynamical encounters between hard, massive binaries and a very massive star (VMS; formed through runaway mergers of ordinary stars in the dense core of a young massive star cluster) to explore the hypothesis that this dynamical process could be responsible for the origin of high-velocity (≥ 200 - 400 km s-1) early or late B-type stars. We estimated the typical velocities produced in encounters between very tight massive binaries and VMSs (of mass of ≥ 200 M⊙) and found that about 3 - 4% of all encounters produce velocities ≥ 400 km s-1, while in about 2% of encounters the escapers attain velocities exceeding the Milky Ways's escape velocity. We therefore argue that the origin of high-velocity (≥ 200 - 400 km s-1) runaway stars and at least some so-called hypervelocity stars could be associated with dynamical encounters between the tightest massive binaries and VMSs formed in the cores of star clusters. We also simulated dynamical encounters between tight massive binaries and single ordinary 50 - 100 M⊙ stars. We found that from 1 to ≃ 4% of these encounters can produce runaway stars with velocities of ≥ 300 - 400 km s-1 (typical of the bound population of high-velocity halo B-type stars) and occasionally (in less than 1% of encounters) produce hypervelocity (≥ 700 km s-1) late B-type escapers.
Fundamental parameters of massive stars in multiple systems: The cases of HD 17505A and HD 206267A
NASA Astrophysics Data System (ADS)
Raucq, F.; Rauw, G.; Mahy, L.; Simón-Díaz, S.
2018-06-01
Context. Many massive stars are part of binary or higher multiplicity systems. The present work focusses on two higher multiplicity systems: HD 17505A and HD 206267A. Aims: Determining the fundamental parameters of the components of the inner binary of these systems is mandatory to quantify the impact of binary or triple interactions on their evolution. Methods: We analysed high-resolution optical spectra to determine new orbital solutions of the inner binary systems. After subtracting the spectrum of the tertiary component, a spectral disentangling code was applied to reconstruct the individual spectra of the primary and secondary. We then analysed these spectra with the non-LTE model atmosphere code CMFGEN to establish the stellar parameters and the CNO abundances of these stars. Results: The inner binaries of these systems have eccentric orbits with e 0.13 despite their relatively short orbital periods of 8.6 and 3.7 days for HD 17505Aa and HD 206267Aa, respectively. Slight modifications of the CNO abundances are found in both components of each system. The components of HD 17505Aa are both well inside their Roche lobe, whilst the primary of HD 206267Aa nearly fills its Roche lobe around periastron passage. Whilst the rotation of the primary of HD 206267Aa is in pseudo-synchronization with the orbital motion, the secondary displays a rotation rate that is higher. Conclusions: The CNO abundances and properties of HD 17505Aa can be explained by single star evolutionary models accounting for the effects of rotation, suggesting that this system has not yet experienced binary interaction. The properties of HD 206267Aa suggest that some intermittent binary interaction might have taken place during periastron passages, but is apparently not operating anymore. Based on observations collected with the TIGRE telescope (La Luz, Mexico), the 1.93 m telescope at Observatoire de Haute Provence (France), the Nordic Optical Telescope at the Observatorio del Roque de los Muchachos (La Palma, Spain), and the Canada-France-Hawaii telescope (Mauna Kea, Hawaii).
HD271791: dynamical versus binary-supernova ejection scenario
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2009-05-01
The atmosphere of the extremely high-velocity (530-920kms-1) early B-type star HD271791 is enriched in α-process elements, which suggests that this star is a former secondary component of a massive tight binary system and that its surface was polluted by the nucleosynthetic products after the primary star exploded in a supernova. It was proposed that the (asymmetric) supernova explosion unbind the system and that the secondary star (HD271791) was released at its orbital velocity in the direction of Galactic rotation. In this Letter, we show that to explain the Galactic rest-frame velocity of HD271791 within the framework of the binary-supernova scenario, the stellar remnant of the supernova explosion (a <~10Msolar black hole) should receive an unrealistically large kick velocity of >=750-1200kms-1. We therefore consider the binary-supernova scenario as highly unlikely and instead propose that HD271791 attained its peculiar velocity in the course of a strong dynamical three- or four-body encounter in the dense core of the parent star cluster. Our proposal implies that by the moment of encounter HD271791 was a member of a massive post-supernova binary.
NASA Astrophysics Data System (ADS)
Boden, A. F.; Lane, B. F.; Creech-Eakman, M. J.; Queloz, D.; Koresko, C. D.
2000-05-01
The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. For the past several years we have had an ongoing program of resolving and reconstructing the visual and physical orbits of spectroscopic binary stars with PTI, with the goal of obtaining precise dynamical mass estimates and other physical parameters. We will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival and new spectroscopic radial velocity data. The systems for which we will discuss our orbit models are: iota Pegasi (HD 210027), 64 Psc (HD 4676), 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064), and 3 Boo (HD 120064). All of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions.
The Origin of B-type Runaway Stars: Non-LTE Abundances as a Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEvoy, Catherine M.; Dufton, Philip L.; Smoker, Jonathan V.
There are two accepted mechanisms to explain the origin of runaway OB-type stars: the binary supernova (SN) scenario and the cluster ejection scenario. In the former, an SN explosion within a close binary ejects the secondary star, while in the latter close multibody interactions in a dense cluster cause one or more of the stars to be ejected from the region at high velocity. Both mechanisms have the potential to affect the surface composition of the runaway star. tlusty non-LTE model atmosphere calculations have been used to determine the atmospheric parameters and the C, N, Mg, and Si abundances formore » a sample of B-type runaways. These same analytical tools were used by Hunter et al. for their analysis of 50 B-type open-cluster Galactic stars (i.e., nonrunaways). Effective temperatures were deduced using the Si-ionization balance technique, surface gravities from Balmer line profiles, and microturbulent velocities derived using the Si spectrum. The runaways show no obvious abundance anomalies when compared with stars in the open clusters. The runaways do show a spread in composition that almost certainly reflects the Galactic abundance gradient and a range in the birthplaces of the runaways in the Galactic disk. Since the observed Galactic abundance gradients of C, N, Mg, and Si are of a similar magnitude, the abundance ratios (e.g., N/Mg) are as obtained essentially uniform across the sample.« less
Multiplicity among chemically peculiar stars. II. Cool magnetic Ap stars
NASA Astrophysics Data System (ADS)
Carrier, F.; North, P.; Udry, S.; Babel, J.
2002-10-01
We present new orbits for sixteen Ap spectroscopic binaries, four of which might in fact be Am stars, and give their orbital elements. Four of them are SB2 systems: HD 5550, HD 22128, HD 56495 and HD 98088. The twelve other stars are: HD 9996, HD 12288, HD 40711, HD 54908, HD 65339, HD 73709, HD 105680, HD 138426, HD 184471, HD 188854, HD 200405 and HD 216533. Rough estimates of the individual masses of the components of HD 65339 (53 Cam) are given, combining our radial velocities with the results of speckle interferometry and with Hipparcos parallaxes. Considering the mass functions of 74 spectroscopic binaries from this work and from the literature, we conclude that the distribution of the mass ratio is the same for cool Ap stars and for normal G dwarfs. Therefore, the only differences between binaries with normal stars and those hosting an Ap star lie in the period distribution: except for the case of HD 200405, all orbital periods are longer than (or equal to) 3 days. A consequence of this peculiar distribution is a deficit of null eccentricities. There is no indication that the secondary has a special nature, like e.g. a white dwarf. Based on observations collected at the Observatoire de Haute-Provence (CNRS), France. Tables 1 to 3 are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/394/151 Appendix B is only available in electronic form at http://www.edpsciences.org
Spectroscopic Binary Star Studies with the Palomar Testbed Interferometer II
NASA Astrophysics Data System (ADS)
Boden, A. F.; Lane, B. F.; Creech-Eakman, M.; Queloz, D.; PTI Collaboration
1999-12-01
The Palomar Testbed Interferometer (PTI) is a long-baseline near-infrared interferometer located at Palomar Observatory. Following our previous work on resolving spectroscopic binary stars with the Palomar Testbed Interferometer (PTI), we will present a number of new visual and physical orbit determinations derived from integrated reductions of PTI visibility and archival radial velocity data. The six systems for which we will present new orbit models are: 12 Boo (HD 123999), 75 Cnc (HD 78418), 47 And (HD 8374), HD 205539, BY Draconis (HDE 234677), and 3 Boo (HD 120064). Most of these systems are double-lined binary systems (SB2), and integrated astrometric/radial velocity orbit modeling provides precise fundamental parameters (mass, luminosity) and system distance determinations comparable with Hipparcos precisions. The work described in this paper was performed under contract with the National Aeronautics and Space Administration.
On the origin of high-velocity runaway stars
NASA Astrophysics Data System (ADS)
Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon
2009-06-01
We explore the hypothesis that some high-velocity runaway stars attain their peculiar velocities in the course of exchange encounters between hard massive binaries and a very massive star (either an ordinary 50-100Msolar star or a more massive one, formed through runaway mergers of ordinary stars in the core of a young massive star cluster). In this process, one of the binary components becomes gravitationally bound to the very massive star, while the second one is ejected, sometimes with a high speed. We performed three-body scattering experiments and found that early B-type stars (the progenitors of the majority of neutron stars) can be ejected with velocities of >~200-400kms-1 (typical of pulsars), while 3-4Msolar stars can attain velocities of >~300-400kms-1 (typical of the bound population of halo late B-type stars). We also found that the ejected stars can occasionally attain velocities exceeding the Milky Ways's escape velocity.
HD 47755, a new eclipsing binary
NASA Technical Reports Server (NTRS)
Koch, R. H.; Bradstreet, D. H.; Hrivnak, B. J.; Pfeiffer, R. J.; Perry, P. M.
1986-01-01
The IUE spectra of the close binary star HD 47755 have been examined in order to determine its geometry, chemical composition, and light curve. UBV fluxes in the spectra, when dereddened for E(B-V) = 0.09 yield an effective temperature of 16,500 K. The ratio of the mean radii of the stars is found to agree well with an old blueband spectrophotometric value. Eclipses in the binary have been observed and a complex green light curve is derived. It is suggested that the wind from at least one of the components of HD 47755 is the source of the complexity in the light curve. The geometry of the HD 47755 is compared to that of V 641 Mon, A definite cluster member of NGC 2264. The interstellar line spectrum is found to be similar to that of V 641 Mon and the column densities for a few interstellar ions are given in a table. Evaluation of the nonastrometric evidence indicates that HD 47755 is also a member of NGC 2264.
The massive multiple system HD 64315
NASA Astrophysics Data System (ADS)
Lorenzo, J.; Simón-Díaz, S.; Negueruela, I.; Vilardell, F.; Garcia, M.; Evans, C. J.; Montes, D.
2017-10-01
Context. The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. Moreover, it has been identified as a spectroscopic binary, but existing data support contradictory values for its orbital period. Aims: We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. Methods: A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. We have developed our own program to fit four components to the combined line shapes. Once the four radial velocities were derived, we obtained a model to fit the radial-velocity curves using the Spectroscopic Binary Orbit Program (SBOP). We then implemented the radial velocities of the eclipsing binary and the light curves in the Wilson-Devinney code iteratively to derive stellar parameters for its components. We were also able to analyse the non-eclipsing binary, and to derive minimum masses for its components which dominate the system flux. Results: HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901 ± 0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569 ± 0.0000008 d. We derive masses of 14.6 ± 2.3 M⊙ for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M⊙ and 10.2 M⊙, and likely masses ≈ 30 M⊙. Conclusions: HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90M⊙, but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system. Based on observations obtained at the European Southern Observatory under programmes 078.D-0665(A), 082-D.0136 and 093.A-9001(A). Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Chromospherically active stars. IV - HD 178450 = V478 Lyr: An early-type BY Draconis type binary
NASA Technical Reports Server (NTRS)
Fekel, Francis C.
1988-01-01
It is shown that the variable star HD 178450 = V478 Lyr is a chromospherically active G8 V single-lined spectroscopic binary with a period of 2.130514 days. This star is characterized by strong UV emission features and a filled-in H-alpha absorption line which is variable in strength. Classified as an early-type BY Draconis system, it is similar to the BY Dra star HD 175742 = V775 Her. The unseen secondary of HD 178450 has a mass of about 0.3 solar masses and is believed to be an M2-M3 dwarf.
Runaway Massive Stars from R136: VFTS 682 is Very Likely a "Slow Runaway"
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung
2012-02-01
We conduct a theoretical study on the ejection of runaway massive stars from R136—the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordial binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M ⊙. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M ⊙ limit, as has been suggested recently, and they are consistent with the canonical upper limit.
Effects of radiation pressure on the equipotential surfaces in X-ray binaries
NASA Technical Reports Server (NTRS)
Kondo, Y.; Mccluskey, G. E., Jr.; Gulden, S. L.
1976-01-01
Equipotential surfaces incorporating the effect of radiation pressure were computed for the X-ray binaries Cen X-3, Cyg X-1 = HDE 226868, Vela XR-1 = 3U 0900-40 = HD 77581, and 3U 1700-37 = HD 153919. The topology of the equipotential surfaces is significantly affected by radiation pressure. In particular, the so-called critical Roche (Jacobian) lobes, the traditional figure 8's, do not exist. The effects of these results on modeling X-ray binaries are discussed.
NASA Astrophysics Data System (ADS)
Karami, K.; Mohebi, R.
2007-08-01
We introduce a new method to derive the orbital parameters of spectroscopic binary stars by nonlinear least squares of (o-c). Using the measured radial velocity data of the four double lined spectroscopic binary systems, AI Phe, GM Dra, HD 93917 and V502 Oph, we derived both the orbital and combined spectroscopic elements of these systems. Our numerical results are in good agreement with the those obtained using the method of Lehmann-Filhé.
X-Raying the Coronae of HD 155555
NASA Technical Reports Server (NTRS)
Lalitha, S.; Singh, K.P.; Drake, S. A.; Kashyap, V.
2015-01-01
We present an analysis of the high-resolution Chandra observation of the multiple system, HD 155555 (an RS CVn type binary system, HD 155555 AB, and its spatially resolved low-mass companion HD 155555 C). This is an intriguing system which shows properties of both an active pre-main sequence star and a synchronised (main sequence) binary. We obtain the emission measure distribution, temperature structures, plasma densities, and abundances of this system and compare them with the coronal properties of other young/active stars. HD 155555 AB and HD 155555 C produce copious X-ray emission with log L(sub x) of 30.54 and 29.30, respectively, in the 0.3-6.0 kiloelectronvolt energy band. The light curves of individual stars show variability on timescales of few minutes to hours. We analyse the dispersed spectra and reconstruct the emission measure distribution using spectral line analysis. The resulting elemental abundances exhibit inverse first ionisation potential effect in both cases. An analysis of He-like triplets yields a range of coronal electron densities 1010 - 1013 per cubic centimeter. Since HD 155555 AB is classified both as an RS CVn and a PMS star, we compare our results with those of other slightly older active main-sequence stars and T Tauri stars, which indicates that the coronal properties of HD 155555 AB closely resemble that of an older RS CVn binary rather than a younger PMS star. Our results also suggests that the properties of HD 155555 C is very similar to those of other active M dwarfs.
CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisse, C. M.; Christian, D. J.; Wolk, S. J.
Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10{sup 29} erg s{sup −1}, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L {sub x} > 6 × 10{sup 25} erg s{sup −1} within 2′ ofmore » the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT {sub Apec} = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L {sub x} ∼ 2 × 10{sup 29} erg s{sup −1} argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10{sup 6} years. At 10{sup 28}–10{sup 29} erg s{sup −1} X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.« less
NASA Astrophysics Data System (ADS)
Ma, Bo; Ge, Jian; Wolszczan, Alex; Muterspaugh, Matthew W.; Lee, Brian; Henry, Gregory W.; Schneider, Donald P.; Martín, Eduardo L.; Niedzielski, Andrzej; Xie, Jiwei; Fleming, Scott W.; Thomas, Neil; Williamson, Michael; Zhu, Zhaohuan; Agol, Eric; Bizyaev, Dmitry; Nicolaci da Costa, Luiz; Jiang, Peng; Martinez Fiorenzano, A. F.; González Hernández, Jonay I.; Guo, Pengcheng; Grieves, Nolan; Li, Rui; Liu, Jane; Mahadevan, Suvrath; Mazeh, Tsevi; Nguyen, Duy Cuong; Paegert, Martin; Sithajan, Sirinrat; Stassun, Keivan; Thirupathi, Sivarani; van Eyken, Julian C.; Wan, Xiaoke; Wang, Ji; Wisniewski, John P.; Zhao, Bo; Zucker, Shay
2016-11-01
We report the detections of a giant planet (MARVELS-7b) and a brown dwarf (BD) candidate (MARVELS-7c) around the primary star in the close binary system, HD 87646. To the best of our knowledge, it is the first close binary system with more than one substellar circumprimary companion that has been discovered. The detection of this giant planet was accomplished using the first multi-object Doppler instrument (KeckET) at the Sloan Digital Sky Survey (SDSS) telescope. Subsequent radial velocity observations using the Exoplanet Tracker at the Kitt Peak National Observatory, the High Resolution Spectrograph at the Hobby Eberley telescope, the “Classic” spectrograph at the Automatic Spectroscopic Telescope at the Fairborn Observatory, and MARVELS from SDSS-III confirmed this giant planet discovery and revealed the existence of a long-period BD in this binary. HD 87646 is a close binary with a separation of ˜22 au between the two stars, estimated using the Hipparcos catalog and our newly acquired AO image from PALAO on the 200 inch Hale Telescope at Palomar. The primary star in the binary, HD 87646A, has {T}{eff} = 5770 ± 80 K, log g = 4.1 ± 0.1, and [Fe/H] = -0.17 ± 0.08. The derived minimum masses of the two substellar companions of HD 87646A are 12.4 ± 0.7 {M}{Jup} and 57.0 ± 3.7 {M}{Jup}. The periods are 13.481 ± 0.001 days and 674 ± 4 days and the measured eccentricities are 0.05 ± 0.02 and 0.50 ± 0.02 respectively. Our dynamical simulations show that the system is stable if the binary orbit has a large semimajor axis and a low eccentricity, which can be verified with future astrometry observations.
NASA Astrophysics Data System (ADS)
Nazé, Y.; Antokhin, I. I.; Sana, H.; Gosset, E.; Rauw, G.
2005-05-01
We present the analysis of an extensive set of high-resolution spectroscopic observations of HD 93161, a visual binary with a separation of 2 arcsec. HD 93161 A is a spectroscopic binary, with both components clearly detected throughout the orbit. The primary star is most probably of spectral type O8V, while the secondary is likely an O9V. We obtain the first orbital solution for this system, characterized by a period of 8.566 +/- 0.004 d. The minimum masses of the primary and secondary stars are 22.2 +/- 0.6 and 17.0 +/- 0.4 Msolar, respectively. These values are quite large, suggesting a high inclination of the orbit. The second object, HD 93161 B, displays an O6.5V(f) spectral type and is thus slightly hotter than its neighbour. This star is at first sight single but presents radial velocity variations. Finally, we study HD 93161 in the X-ray domain. No significant variability is detected. The X-ray spectrum is well described by a 2T model with kT1~ 0.3 keV and kT2~ 0.7 keV. The X-ray luminosity is rather moderate, without any large emission excess imputable to a wind interaction.
Weak Magnetic Fields in Two Herbig Ae Systems: The SB2 AK Sco and the Presumed Binary HD 95881
NASA Astrophysics Data System (ADS)
Järvinen, S. P.; Carroll, T. A.; Hubrig, S.; Ilyin, I.; Schöller, M.; Castelli, F.; Hummel, C. A.; Petr-Gotzens, M. G.; Korhonen, H.; Weigelt, G.; Pogodin, M. A.; Drake, N. A.
2018-05-01
We report the detection of weak mean longitudinal magnetic fields in the Herbig Ae double-lined spectroscopic binary AK Sco and in the presumed spectroscopic Herbig Ae binary HD 95881 using observations with the High Accuracy Radial velocity Planet Searcher polarimeter (HARPSpol) attached to the European Southern Observatory’s (ESO’s) 3.6 m telescope. Employing a multi-line singular value decomposition method, we detect a mean longitudinal magnetic field < {B}{{z}}> =-83+/- 31 G in the secondary component of AK Sco on one occasion. For HD 95881, we measure < {B}{{z}}> =-93+/- 25 G and < {B}{{z}}> =105+/- 29 G at two different observing epochs. For all the detections the false alarm probability is smaller than 10‑5. For AK Sco system, we discover that accretion diagnostic Na I doublet lines and photospheric lines show intensity variations over the observing nights. The double-lined spectral appearance of HD 95881 is presented here for the first time.
RUNAWAY MASSIVE STARS FROM R136: VFTS 682 IS VERY LIKELY A 'SLOW RUNAWAY'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung, E-mail: sambaran@astro.uni-bonn.de, E-mail: pavel@astro.uni-bonn.de, E-mail: skoh@astro.uni-bonn.de
2012-02-10
We conduct a theoretical study on the ejection of runaway massive stars from R136-the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordialmore » binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M{sub Sun }. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M{sub Sun} limit, as has been suggested recently, and they are consistent with the canonical upper limit.« less
Chromospherically Active Stars. XXV. HD 144110=EV Draconis, a Double-lined Dwarf Binary
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Henry, Gregory W.; Lewis, Ceteka
2005-08-01
New spectroscopic and photometric observations of HD 144110 have been used to obtain an improved orbital element solution and determine some basic properties of the system. This chromospherically active, double-lined spectroscopic binary has an orbital period of 1.6714012 days and a circular orbit. We classify the components as G5 V and K0 V and suggest that they are slightly metal-rich. The photometric observations indicate that the rotation of HD 144110 is synchronous with the orbital period. Despite the short orbital period, no evidence of eclipses is seen in our photometry.
Radial velocities of southern visual multiple stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tokovinin, Andrei; Pribulla, Theodor; Fischer, Debra, E-mail: atokovinin@ctio.noao.edu, E-mail: pribulla@ta3.sk, E-mail: debra.fischer@gmail.com
2015-01-01
High-resolution spectra of visual multiple stars were taken in 2008–2009 to detect or confirm spectroscopic subsystems and to determine their orbits. Radial velocities of 93 late-type stars belonging to visual multiple systems were measured by numerical cross-correlation. We provide the individual velocities, the width, and the amplitude of the Gaussians that approximate the correlations. The new information on the multiple systems resulting from these data is discussed. We discovered double-lined binaries in HD 41742B, HD 56593C, and HD 122613AB, confirmed several other known subsystems, and constrained the existence of subsystems in some visual binaries where both components turned out tomore » have similar velocities. The orbits of double-lined subsystems with periods of 148 and 13 days are computed for HD 104471 Aa,Ab and HD 210349 Aa,Ab, respectively. We estimate individual magnitudes and masses of the components in these triple systems and update the outer orbit of HD 104471 AB.« less
Absolute parameters of southern detached eclipsing binary: HD 53570
NASA Astrophysics Data System (ADS)
Sürgit, D.
2018-05-01
In this study, we conducted the first analysis of spectroscopic and photometric observations of the eclipsing binary star HD 53570. Spectroscopic observations of HD 53570 were made at the Sutherland Station of the South African Astronomical Observatory in 2013 and 2014. The radial velocities of the components were determined using the cross-correlation technique. The spectroscopic mass ratio obtained for the system was 1.13 ( ± 0.07). The All Sky Automated Survey V light curve of HD 53570 was analyzed using the Wilson-Devinney code combined with the Monte Carlo search method. The final model showed that HD 53570 has a detached configuration. The mass and radii of the primary and secondary components of HD 53570 were derived as 1.06 ( ± 0.07) M⊙, 1.20 ( ± 0.16) M⊙, and 1.42 ( ± 0.14) R⊙, 2.07 ( ± 0.16) R⊙, respectively. The distance of HD 53570 was computed as 248 ( ± 38) pc considering interstellar extinction. The evolutionary status of the component stars was also investigated using Geneva evolutionary models.
Evidence for Strange Stellar Family (Artist Concept)
NASA Technical Reports Server (NTRS)
2007-01-01
This artist concept depicts a quadruple-star system called HD 98800. The system is approximately 10 million years old, and is located 150 light-years away in the constellation TW Hydrae. HD 98800 contains four stars, which are paired off into doublets, or binaries. The stars in the binary pairs orbit around each other, and the two pairs also circle each other like choreographed ballerinas. One of the stellar pairs, called HD 98800B, has a disk of dust around it, while the other pair does not. Although the four stars are gravitationally bound, the distance separating the two binary pairs is about 50 astronomical units (AU) -- slightly more than the average distance between our sun and Pluto. Using NASA's Spitzer Space Telescope, scientists finally have a detailed view of HD 98800B's potential planet-forming disk. Astronomers used the telescope's infrared spectrometer to detect the presence of two belts in the disk made of large dust grains. One belt sits approximately 5.9 AU away from the central binary, or about the distance from the sun to Jupiter, and is likely made up of asteroids and comets. The other belt sits at 1.5 to 2 AU, comparable to the area where Mars and the asteroid belt sit, and is made up of sand-sized dust grains.DOE Office of Scientific and Technical Information (OSTI.GOV)
Fekel, Francis C.; Williamson, Michael H.; Muterspaugh, Matthew W.
2015-02-01
With extensive sets of new radial velocities we have determined orbital elements for three previously known spectroscopic binaries, HD 54371, HR 2692, and 16 UMa. All three systems have had the lines of their secondaries detected for the first time. The orbital periods range from 16.24 to 113.23 days, and the three binaries have modestly or moderately eccentric orbits. The secondary to primary mass ratios range from 0.50 to 0.64. The orbital dimensions (a{sub 1} sin i and a{sub 2} sin i) and minimum masses (m{sub 1} sin{sup 3} i and m{sub 2} sin{sup 3} i) of the binary componentsmore » all have accuracies of ⩽1%. With our spectroscopic results and the Hipparcos data, we also have determined astrometric orbits for two of the three systems, HR 2692 and 16 UMa. The primaries of HD 54371 and 16 UMa are solar-type stars, and their secondaries are likely K or M dwarfs. The primary of HR 2692 is a late-type subgiant and its secondary is a G or K dwarf. The primaries of both HR 2692 and 16 UMa may be pseudosynchronously rotating, while that of HD 54371 is rotating faster than its pseudosynchronous velocity.« less
Colliding Winds in Massive Binaries
NASA Astrophysics Data System (ADS)
Thaller, M. L.
1998-12-01
In close binary systems of massive stars, the individual stellar winds will collide and form a bow shock between the stars, which may have significant impact on the mass-loss and evolution of the system. The existence of such a shock can be established through orbital-phase related variations in the UV resonance lines and optical emission lines. High density regions near the shock will produce Hα and Helium I emission which can be used to map the mass-flow structure of the system. The shock front between the stars may influence the balance of mass-loss versus mass-transfer in massive binary evolution, as matter lost to one star due to Roche lobe overflow may hit the shock and be deflected before it can accrete onto the surface of the other star. I have completed a high-resolution spectroscopic survey of 37 massive binaries, and compared the incidence and strength of emission to an independent survey of single massive stars. Binary stars show a statistically significant overabundance of optical emission, especially when one of the binary stars is in either a giant or supergiant phase of evolution. Seven systems in my survey exhibited clear signs of orbital phase related emission, and for three of the stars (HD 149404, HD 152248, and HD 163181), I present qualitative models of the mass-flow dynamics of the systems.
Local Thermonuclear Runaways in Dwarf Novae?
NASA Astrophysics Data System (ADS)
Shara, Michael
2012-10-01
We have no hope of understanding the structure and evolution of a class of astrophysical objects if we cannot identify the dominant energy source of those objects.The Disk Instability Model {DIM} postulates that Dwarf Nova {DN} outbursts are powered by runaway accretion from an accretion disk onto a White Dwarf {WD} in a red dwarf-WD mass transferring binary. Ominously, HST observations {e.g. Sion et al. 2001} of WD surface abundances hint at a significant shortcoming of the DIM. The data from the present proposal will be able to unequivocally demonstrate if the observed highly Carbon-depleted and Nitrogen-enhanced abundances on WD surfaces {NOT predicted by DIM} vary with binary orbital phase, or throughout a DN quiescence cycle, or from cycle to cycle. These same data will test if predicted {but never observed} Local Thermonuclear Runaways {"Nuclear-powered mini-novas"} occur on the WDs of DN. Such events could trigger or even power DN, providing the long-sought physical mechanism of DN eruptions that DIM lacks. As a "free" bonus, the same data may also directly detect the diffusion of accreted metals in a WD atmosphere for the first time, or provide significant limits on the diffusion rate.
New visual companions of solar-type stars within 25 pc
NASA Astrophysics Data System (ADS)
Chini, R.; Fuhrmann, K.; Barr, A.; Pozo, F.; Westhues, C.; Hodapp, K.
2014-01-01
We report the discovery of faint common-proper-motion companions to the nearby southern solar-type stars HD 43162, HD 67199, HD 114837, HD 114853, HD 129502, HD 165185, HD 197214 and HD 212330 from near-infrared imaging and astrometry. We also confirm the previously identified tertiary components around HD 165401 and HD 188088. Since the majority of these stars were already known as binaries, they ascend now to higher level systems. A particularly interesting case is the G6.5 V BY Dra-type variable HD 43162, which harbours two common-proper-motion companions at distances of 410 and 2740 au. Our limited study shows that the inventory of common-proper-motion companions around nearby bright stars is still not completely known.
The first orbital solution for the massive colliding-wind binary HD 93162 (≡ WR 25)
NASA Astrophysics Data System (ADS)
Gamen, R.; Gosset, E.; Morrell, N. I.; Niemela, V. S.; Sana, H.; Nazé, Y.; Rauw, G.; Barbá, R. H.; Solivella, G. R.
2008-08-01
Since the discovery, with EINSTEIN, of strong X-ray emission associated with HD 93162, this object was recurrently predicted by some authors to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have never been found so far. We spectroscopically monitored this object in order to investigate its possible variability and to provide an answer to the above-mentioned discordance. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched for periodicities. For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR 25 is actually an eccentric binary system with a probable period of about 208 days.
The Influence of Mass Loss on the Eccentricity of Double Star Orbits
NASA Astrophysics Data System (ADS)
Docobo, J. A.; Prieto, C.; Ling, J. F.
In this comunication we study the behaviour of the eccentricity of double star orbits (visual and wide spectroscopic binaries) according to simplified laws of mass loss. Applications to the systems WDS 05245S0224 - HD 35411, WDS 05387S0236 - HD 37468 and WDS 06154S0902 - HD 43362 are included.
NASA Astrophysics Data System (ADS)
Carquillat, J.-M.; Ginestet, N.; Prieur, J.-L.
2001-04-01
We present the results of the observations of two Am stars of eighth magnitude, the double-lined spectroscopic binaries HD 81976 and HD 98880, carried out with the CORAVEL instrument at the Observatoire de Haute-Provence in order to determine their orbital elements. We found 1) for HD 81976: P = 5.655750 days, T = 2449785.941 HJD, omega = 341.4deg, e = 0.061, K1 = 61.68 km s-1, K2 = 63.84 km s-1, V0 = 19.85 km s-1, a1 sin i = 4.788 Gm, a2 sin i = 4.956 Gm, M1 sin 3 i = 0.5875 Msun, M2 sin 3 i = 0.5676 Msun, and 2) for HD 98880: P = 14.20783 days, T0 = 2448682.883 HJD (ascending node), e = 0., K1 = 42.47 km s-1, K2 = 49.16 km s-1, V0 = 2.40 km s-1, a1 sin i = 8.298 Gm, a2 sin i = 9.604 Gm, M1 sin 3 i = 0.6091 Msun, M2 sin 3 i = 0.5262 Msun. The first of these two systems, HD 81976, is formed by two quasi-identical stars, and the Hipparcos data (MV, B-V) are consistent with late A stars in effective temperature; it is likely that the components rotate synchronised with the orbital motion. A third body may be present in this system since (i) the orbit has a significant eccentricity despite its short period and (ii) the systemic velocity V0 shows a possible drift. For the second system, HD 98880, we give Delta mB 1.25 and we propose a simple model based upon Strömgren photometric indices and the HR theoretical diagram of Schaller et al (1992) in addition to orbital parameters and Hipparcos data: Teff = 7000 K, log 10 g = 4.0, M1 = 1.9 Msun, M2 = 1.6 Msun, log 10(age) = 9.12. The components do not rotate synchronously contrary to HD 81976. Both binaries appear to be detached systems without possibility of eclipses. Based on observations made at the Haute-Provence Observatory, France.
On the resonant detonation of sub-Chandrasekhar mass white dwarfs during binary inspiral
NASA Astrophysics Data System (ADS)
McKernan, B.; Ford, K. E. S.
2016-12-01
White dwarfs (WDs) are believed to detonate via explosive Carbon-fusion in a Type Ia supernova (SN) when their temperature and/or density reach the point where Carbon is ignited in a runaway reaction. Observations of the Type Ia SN rate imply that all WD binaries that merge through the emission of gravitational radiation within a Hubble time should result in SNe, regardless of total mass. Here we investigate the conditions under which a single WD in a binary system might extract energy from its orbit, depositing enough energy into a resonant mode such that it detonates before merger. We show that, ignoring non-linear effects in a WD binary in tidal lock at small binary separations, the sustained tidal forcing of a low-order quadrupolar g mode or a harmonic of a low-order quadrupolar p mode could, in principle, drive the average temperature of Carbon nuclei in the mode over the runaway fusion threshold. If growing mode energy is thermalized at a core/atmosphere boundary, rapid Helium burning and inwards-travelling p-waves may result in core detonation. Thermalization at a boundary in the core can also result in detonation. If energy can be efficiently transferred from the orbit to modes as the WD binary passes through resonances, the WD merger time-scale will be shortened by Myr-Gyr compared to expected time-scales from gravitational wave (GW)-emission alone and GW detectors will observe deviations from predicted chirp profiles in resolved WD binaries. Future work in this area should focus on whether tidal locking in WD binaries is naturally driven towards low-order mode frequencies.
The first orbital solution for the massive colliding-wind binary HD 93162 (≡WR 25)
NASA Astrophysics Data System (ADS)
Gamen, R.; Gosset, E.; Morrell, N.; Niemela, V.; Sana, H.; Nazé, Y.; Rauw, G.; Barbá, R.; Solivella, G.
2006-12-01
Context: Since the discovery, with the EINSTEIN satellite, of strong X-ray emission associated with HD 93162 (≡WR 25), this object has been predicted to be a colliding-wind binary system. However, radial-velocity variations that would prove the suspected binary nature have yet to be found. Aims: We spectroscopically monitored this object to investigate its possible variability to address this discordance. Methods: We compiled the largest available radial-velocity data set for this star to look for variations that might be due to binary motion. We derived radial velocities from spectroscopic data acquired mainly between 1994 and 2006, and searched these radial velocities for periodicities using different numerical methods. Results: For the first time, periodic radial-velocity variations are detected. Our analysis definitively shows that the Wolf-Rayet star WR 25 is an eccentric binary system with a probable period of about 208 days.
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Tomkin, Jocelyn; Williamson, Michael H.
2009-04-01
We have determined improved spectroscopic orbits for three double-lined binaries, HD 82191 (Am), ω Dra (F5 V), and 108 Her (Am), using radial velocities from the 2.1 m telescope at McDonald Observatory, the coudé feed telescope at Kitt Peak National Observatory, and 2 m telescope at Fairborn Observatory. The orbital periods range from 5.28 to 9.01 days, and all three systems have circular orbits. The new orbital dimensions (a 1 sin i and a 2 sin i) and minimum masses (m 1 sin3 i and m 2 sin3 i) have accuracies of 0.2% or better. Our improved results confirm the large minimum masses of HD 82191 and also agree with the values previously found for ω Dra. However, for the components of 108 Her our minimum masses are about 20% larger than the previous best values. We conclude that both components of HD 82191 as well as the primary of 108 Her are Am stars. However, the A9 secondary of 108 Her has normal abundances. We estimate spectral types of F4 dwarf and G0 dwarf for the components of ω Dra. The primaries of the three binaries are synchronously rotating as is the secondary of 108 Her. The secondaries of HD 82191 and ω Dra are possibly synchronously rotating.
The long period Wolf-Rayet star HD193077
NASA Astrophysics Data System (ADS)
Annuk, Kalju
Radial velocities of HD193077 have been measured on 76 spectra obtained during 1980-1987. It has been found that the period of this WR binary star is about 1538 days. A new derived orbital solution yields an eccentric orbit, e = 0.3, and the mass function, f(m) = 4.54 solar masses, is typical of WR+O binaries. By analysis of radial velocity residuals, no short periodic variations were found, as it was suggested by Lamontagne et al. (1982).
Field O stars: formed in situ or as runaways?
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Weidner, C.; Kroupa, P.; Pflamm-Altenburg, J.
2012-08-01
A significant fraction of massive stars in the Milky Way and other galaxies are located far from star clusters and star-forming regions. It is known that some of these stars are runaways, i.e. possess high space velocities (determined through the proper motion and/or radial velocity measurements), and therefore most likely were formed in embedded clusters and then ejected into the field because of dynamical few-body interactions or binary-supernova explosions. However, there exists a group of field O stars whose runaway status is difficult to prove via direct proper motion measurements (e.g. in the Magellanic Clouds) or whose (measured) low space velocities and/or young ages appear to be incompatible with their large separation from known star clusters. The existence of this group led some authors to believe that field O stars can form in situ. Since the question of whether or not O stars can form in isolation is of crucial importance for star formation theory, it is important to thoroughly test candidates of such stars in order to improve the theory. In this paper, we examine the runaway status of the best candidates for isolated formation of massive stars in the Milky Way and the Magellanic Clouds by searching for bow shocks around them, by using the new reduction of the Hipparcos data, and by searching for stellar systems from which they could originate within their lifetimes. We show that most of the known O stars thought to have formed in isolation are instead very likely runaways. We show also that the field must contain a population of O stars whose low space velocities and/or young ages are in apparent contradiction to the large separation of these stars from their parent clusters and/or the ages of these clusters. These stars (the descendants of runaway massive binaries) cannot be traced back to their parent clusters and therefore can be mistakenly considered as having formed in situ. We argue also that some field O stars could be detected in optical wavelengths only because they are runaways, while their cousins residing in the deeply embedded parent clusters might still remain totally obscured. The main conclusion of our study is that there is no significant evidence whatsoever in support of the in situ proposal on the origin of massive stars.
A young contracting white dwarf in the peculiar binary HD 49798/RX J0648.0-4418?
NASA Astrophysics Data System (ADS)
Popov, S. B.; Mereghetti, S.; Blinnikov, S. I.; Kuranov, A. G.; Yungelson, L. R.
2018-02-01
HD 49798/RX J0648.0-4418 is a peculiar X-ray binary with a hot subdwarf (sdO) mass donor. The nature of the accreting compact object is not known, but its spin period P = 13.2 s and \\dot{P} =-2.15 × 10^{-15} s s-1 proves that it can be only either a white dwarf or a neutron star. The spin-up has been very stable for more than 20 yr. We demonstrate that the continuous stable spin-up of the compact companion of HD 49798 can be best explained by contraction of a young white dwarf with an age ˜2 Myr. This allows us to interpret all the basic parameters of the system in the framework of an accreting white dwarf. We present examples of binary evolution, which result in such systems. If correct, this is the first direct evidence for a white dwarf contraction in early evolutionary stages.
High-Resolution Spectroscopy of some very Active Southern Stars
NASA Technical Reports Server (NTRS)
Soderblom, David R.; King, Jeremy R.; Henry, Todd J.
1998-01-01
We have obtained high-resolution echelle spectra of 18 solar-type stars that an earlier survey showed to have very high levels of Ca II H and K emission. Most of these stars belong to close binary systems, but five remain as probable single stars or well-separated binaries that are younger than the Pleiades on the basis of their lithium abundances and H.alpha emission. Three of these probable single stars also lie more than 1 mag above the main sequence in a color-magnitude diagram, and appear to have ages of 10 to 15 Myr. Two of them, HD 202917 and HD 222259, also appear to have a kinematic association with the pre-main-sequence multiple system HD 98800.
The WR/LBV system HD 5980 in the Small Magellanic Cloud: What is its evolutionary status?
NASA Astrophysics Data System (ADS)
Koenigsberger, Gloria; Morrell, Nidia; Hillier, D. John; Barba, Rodolfo; Gamen, Roberto
2013-06-01
HD 5980 is located in the Small Magellanic Cloud and consists of two binary systems which, if physically associated, are very widely separated. Their orbital periods are 19.3d and 97d and each of these systems contains very luminous massive stars. The P=19.3d binary is peculiar in that it consists of two WR stars, one of which underwent an LBV eruption in 1994. Because this binary is eclipsing and because it has been monitored since the 1950s, we now have a good grasp on the fundamental parameters of the LBV component. Particularly noteworthy is the fact that its bolometric luminosity increased during the 1994 eruption. In this poster we will summarize our current knowledge of HD 5980, including recent results derived from observations at Las Campanas Observatory which yield an improved orbital solution for the two binary systems and strong limits on the mass of the LBV. With these data, it should now be possible to constrain the evolutionary path that has been followed by the LBV and speculate on its properties as it approaches the supernova stage.
Discovery of a Probable BH-HMXB and Cyg X-1 Progenitor System
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan E.; Gomez, Sebastian; Hong, Jaesub; Zhang, Shuo; Hailey, Charles; Mori, Kaya; Tomsick, John
2017-08-01
We report the discovery of a probable black hole High Mass X-ray Binary (BH-HMXB), a 5.3d single line spectroscopic binary (SB1) HD96670 in the Carina OB association. We initiated a search for such systems for which the O star primary was still on the main sequence, in stark contrast to Cyg X-1 with its evolved supergiant O star companion, since such systems must be ~10-30 times more numerous given their longer lifetimes. HD96670 had been found to be a SB1 with binary period ~5.5d and mass function ~0.125Msun. With a ~150ksec NuSTAR observation of HD96670 over 3 segments, we found a significant detection of a variable source best fit with a PL spectrum with photon index between 2.4 and 2.6 for the brightest vs. faintest observations. Weak 6.4 - 6.7 keV emission was also detected. We conducted extensive optical photometry and spectroscopy to better measure the binary system parameters and have fit the the combined data with an ellipsoidal modulation code (Wilson and Devinney) to find that the binary companion is best fit by a ~4.5 Msun BH accreting from the weak wind primary O star with luminosity Lx ~3 x 10^32 erg/s, which cannot be due to a colliding wind or intrinsic Ostar emission. . A B4V or B5V main sequence star companion can be ruled out by the very low accretion luminosity and lack of colliding wind expected. Full details, including the direct measurement of a triple companion B1V star previously reported (Sanna et al 2014) for HD96670, will appear in two forthcoming papers to be summarized in this talk.
Poša, Mihalj; Pilipović, Ana; Bećarević, Mirjana; Farkaš, Zita
2017-01-01
Due to a relatively small size of bile acid salts, their mixed micelles with nonionic surfactants are analysed. Of the special interests are real binary mixed micelles that are thermodynamically more stable than ideal mixed micelles. Thermodynamic stability is expressed with an excess Gibbs energy (G E ) or over an interaction parameter (β ij ). In this paper sodium salts of cholic (C) and hyodeoxycholic acid (HD) in their mixed micelles with Tween 40 (T40) are analysed by potentiometric titration and their pKa values are determined. Examined bile acids in mixed micelles with T40 have higher pKa values than free bile acids. The increase of ΔpKa acid constant of micellary bound C and HD is in a correlation with absolute values of an interaction parameter. According to an interaction parameter and an excess Gibbs energy, mixed micelle HD-T40 are thermodynamically more stable than mixed micelles C-T40. ΔpKa values are higher for mixed micelles with Tween 40 whose second building unit is HD, related to the building unit C. In both micellar systems, ΔpKa increases with the rise of a molar fraction of Tween 40 in binary mixtures of surfactants with sodium salts of bile acids. This suggests that, ΔpKa can be a measure of a thermodynamic stabilization of analysed binary mixed micelles as well as an interaction parameter. ΔpKa values are confirmed by determination of a distribution coefficient of HD and C in systems: water phase with Tween 40 in a micellar concentration and 1-octanol, with a change of a pH value of a water phase. Conformational analyses suggests that synergistic interactions between building units of analysed binary micelles originates from formation of hydrogen bonds between steroid OH groups and polyoxyethylene groups of the T40. Relative similarity and spatial orientation of C 3 and C 6 OH group allows cooperative formation of hydrogen bonds between T40 and HD - excess entropy in formation of mixed micelle. If a water solution of analysed binary mixtures of surfactants contains urea in concentration of 4M significant decreases of an interaction parameter value happens which confirms the importance of hydrogen bonds in synergistic interactions (urea compete in hydrogen bonds). Copyright © 2016 Elsevier Inc. All rights reserved.
The chemically peculiar double-lined spectroscopic binary HD 90264
NASA Astrophysics Data System (ADS)
Quiroga, C.; Torres, A. F.; Cidale, L. S.
2010-10-01
Context. HD 90264 is a chemically peculiar (CP) double-lined spectroscopic binary system of the type He-weak. Double-lined binaries are unique sources of data for stellar masses, physical properties, and evolutionary aspects of stars. Therefore, the determination of orbital elements is of great importance to study how the physical characteristics of CP stars are affected by a companion. Aims: We carried out a detailed spectral and polarimetric study of the spectroscopic binary system HD 90264 to characterize its orbit, determine the stellar masses, and investigate the spectral variability and possible polarization of the binary components. Methods: We employed medium-resolution échelle spectra and polarimetric data obtained at the 2.15-m telescope at CASLEO Observatory, Argentina. We measured radial velocities and line equivalent widths with IRAF packages. The radial velocity curves of both binary components were obtained combining radial velocity data derived from the single line of Hg II λ3984 Åand the double lines of Mg II λ4481 Å. Polarimetric data were studied by means of the statistical method of Clarke & Stewart and the Welch test. Results: We found that both components of the binary system are chemically peculiar stars, deficient in helium, where the primary is a He variable and the secondary is a Hg-Mn star. We derived for the first time the orbital parameters of the binary system. We found that the system has a quasi-circular orbit (e ~ 0.04) with an orbital period of 15.727 days. Taking into account the circular orbit solution, we derived a mass ratio of q = MHe-w/MHg-Mn = 1.22. We also found a rotational period of around 15-16 days, suggesting a spin-orbit synchronization. Possible signs of intrinsic polarization have also been detected. Conclusions: HD 90264 is the first known binary system comprised of a He variable star as the primary component and a Hg-Mn star as the secondary one. Based on observations taken at Complejo Astronómico El Leoncito (CASLEO), operated under an agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina, the Secretaría de Ciencia y Tecnología de la Nación and the National Universities of La Plata, Córdoba and San Juan.
2010-06-01
similar experiments using the Infrared Optical Telescope Array ( IOTA ) on the well- studied, widely separated binary ζ Hercules, in an attempt to revive...SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 11 19a. NAME OF RESPONSIBLE PERSON...SFPs with IOTA As noted by Dyck et al. (1995), for a binary star for which both components are within the field of view of the interferometer, it is
Project VeSElkA: a search for the vertical stratification of element abundances in HD 157087
NASA Astrophysics Data System (ADS)
Khalack, V.
2018-06-01
The new spectropolarimetric spectra of HD 157087 obtained recently with ESPaDOnS (Echelle SpectroPolarimetric Device for Observations of Stars) at the Canada-France-Hawaii Telescope are analysed to verify the nature of this object. The fundamental stellar parameters Teff = 8882 K, log g = 3.57 were obtained for HD 157087 from the analysis of nine Balmer line profiles in two available spectra. A comparison of the results of our abundance analysis with previously published data shows a variability of the average abundance with time for some chemical species, while the abundances of other elements remain almost constant. The abundance analysis also reveals evidence of a significant abundance increase towards the deeper atmospheric layers for C, S, Ca, Sc, V, Cr, Mn, Co, Ni and Zr. Together with the discovered enhanced abundance of Ca and Sc, this finding contradicts the classification of HD 157087 as a marginal Am star. An analysis of the available measurements of radial velocity revealed long- and short-period variations. The long-period variation supports the idea that HD 157087 is an astrometric binary system with a period longer than 6 yr. The presence of the short-period variation of Vr, as well as the detection of the temporal variation of the average abundance, suggests that HD 157087 may be a triple system, in which a short-period binary rotates around a third star. In this case, the short-period binary may consist of slowly rotating Am and A (or Ap with a weak magnetic field) stars that have similar effective temperatures and surface gravities, but different abundance peculiarities.
Three-dimensional orbit and physical parameters of HD 6840
NASA Astrophysics Data System (ADS)
Wang, Xiao-Li; Ren, Shu-Lin; Fu, Yan-Ning
2016-02-01
HD 6840 is a double-lined visual binary with an orbital period of ˜7.5 years. By fitting the speckle interferometric measurements made by the 6 m BTA telescope and 3.5 m WIYN telescope, Balega et al. gave a preliminary astrometric orbital solution of the system in 2006. Recently, Griffin derived a precise spectroscopic orbital solution from radial velocities observed with OPH and Cambridge Coravel. However, due to the low precision of the determined orbital inclination, the derived component masses are not satisfying. By adding the newly collected astrometric data in the Fourth Catalog of Interferometric Measurements of Binary Stars, we give a three-dimensional orbit solution with high precision and derive the preliminary physical parameters of HD 6840 via a simultaneous fit including both astrometric and radial velocity measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colognesi, Daniele; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it
2014-10-07
We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of themore » host cage on the HD microscopic dynamics. The sH clathrate sample presents a much greater challenge, due to the uncertainties regarding the crystal structure, which is known only for similar crystals with different promoter, but nor for HD (or H{sub 2}) plus methyl tert-butyl ether (MTBE-d12)« less
NASA Astrophysics Data System (ADS)
Farrington, C. D.; ten Brummelaar, T. A.; Mason, B. D.; Hartkopf, W. I.; McAlister, H. A.; Raghavan, D.; Turner, N. H.; Sturmann, L.; Sturmann, J.; Ridgway, S. T.
2010-06-01
We present the modification of the orbits of χ Draconis and HD 184467, and a completely new orbit for HD 198084, including data taken at the Center for High Angular Resolution Astronomy (CHARA) Array. These data were obtained using a modification of the technique of separated fringe packets (SFPs). The accuracy of the SFP data surpasses that of data taken by speckle, but the technique is much more time and labor intensive. Additionally, using SFPs with the CHARA Array, it is possible to obtain separations below the detection range of speckle interferometry (>=30 mas) above the range in "classic" long-baseline interferometry where fringes from a binary overlap are no longer separated (<=10 mas). Using spectroscopic binary systems with published speckle orbits, we are able to test our new measurements against their ephemerides to calibrate the method as well as produce entirely new orbits for systems with no current astrometric observations.
Physics of Cool Stars: Densities, Sizes, and Energetics
NASA Technical Reports Server (NTRS)
Dupree, Andrea K.
2001-01-01
The ORFEUS 1 (Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer) telescope obtained far ultraviolet spectra (lambda-lambda 912-1218) of luminous cool stars as a part of our observing program. Two classes of objects were measured: luminous single stars beta Dra (HD 159181) and two hybrid stars alpha Aqr (HD 209750) and alpha TrA (HD 150798) and two active binary systems: 44i Boo and UX Ari.
Runaway stars in the Gum Nebula
NASA Technical Reports Server (NTRS)
Got, J. R., III; Ostriker, J. P.
1971-01-01
It is proposed that the two pulsars PSR 0833-45 (the Vela pulsar) and MP 0835 are runaways from a common binary system originally located in the B association around gamma Velorum. Arguments are presented for a simple model of the Gum nebula in which two distinct ionized regions are present. The first consists of the Stromgren spheres of gamma Velorum and zeta Puppis, while the second is a larger, more filamentary region ionized by the supernova explosion associated with PSR 0833-45. Using this model and the available dispersion measures, the distances to the two pulsars were estimated and found to be compatible with a runaway origin. The position angle of the rotation axis of PSR 0833-45 is also compatible with this origin. The masses of the parent stars of the two pulsars can be deduced from the runaway star dynamics and an assumed age for MP 0835. It is concluded that the masses were in excess of 10 solar masses. The dynamically-determined parent star masses are in agreement with the values expected for evolved members of the B association around gamma Velorum.
Dynamical Analysis of the Circumprimary Planet in the Eccentric Binary System HD 59686
NASA Astrophysics Data System (ADS)
Trifonov, Trifon; Lee, Man Hoi; Reffert, Sabine; Quirrenbach, Andreas
2018-04-01
We present a detailed orbital and stability analysis of the HD 59686 binary-star planet system. HD 59686 is a single-lined, moderately close (a B = 13.6 au) eccentric (e B = 0.73) binary, where the primary is an evolved K giant with mass M = 1.9 M ⊙ and the secondary is a star with a minimum mass of m B = 0.53 M ⊙. Additionally, on the basis of precise radial velocity (RV) data, a Jovian planet with a minimum mass of m p = 7 M Jup, orbiting the primary on a nearly circular S-type orbit with e p = 0.05 and a p = 1.09 au, has recently been announced. We investigate large sets of orbital fits consistent with HD 59686's RV data by applying bootstrap and systematic grid search techniques coupled with self-consistent dynamical fitting. We perform long-term dynamical integrations of these fits to constrain the permitted orbital configurations. We find that if the binary and the planet in this system have prograde and aligned coplanar orbits, there are narrow regions of stable orbital solutions locked in a secular apsidal alignment with the angle between the periapses, Δω, librating about 0°. We also test a large number of mutually inclined dynamical models in an attempt to constrain the three-dimensional orbital architecture. We find that for nearly coplanar and retrograde orbits with mutual inclination 145° ≲ Δi ≤ 180°, the system is fully stable for a large range of orbital solutions.
Absolute parameters and chemical composition of the binary star OU Gem
NASA Astrophysics Data System (ADS)
Glazunova, L. V.; Mishenina, T. V.; Soubiran, C.; Kovtyukh, V. V.
2014-10-01
The absolute parameters and chemical composition of the BY Dra-type spectroscopic binary OU Gem (HD 45088) were determined on the basis of 10 high-resolution spectra. A new orbital solution of the binary system was determined, the binary ephemerides were specified, and the main physical and atmospheric parameters of the binary components were obtained. The chemical composition of both components was estimated for the first time for the stars of such type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilat-Lohinger, E.; Bazsó, A.; Funk, B.
Gravitational perturbations in multi-planet systems caused by an accompanying star are the subject of this investigation. Our dynamical model is based on the binary star HD 41004 AB where a giant planet orbits HD 41004 A. We modify the orbital parameters of this system and analyze the motion of a hypothetical test planet surrounding HD 41004 A on an interior orbit to the detected giant planet. Our numerical computations indicate perturbations due to mean motion and secular resonances (SRs). The locations of these resonances are usually connected to high eccentricity and highly inclined motion depending strongly on the binary-planet architecture.more » As the positions of mean motion resonances can easily be determined, the main purpose of this study is to present a new semi-analytical method to determine the location of an SR without huge computational effort.« less
The Algol-like binary TT Hydrae - The stars, circumstellar matter, and superionized plasma
NASA Technical Reports Server (NTRS)
Plavec, Mirek J.
1988-01-01
This paper reports on superionized UV emission lines discovered in TT Hydrae (HD 97528), a semidetached eclipsing binary system in the Southern-Hemisphere sky. The list of emission lines observed is typical for interacting nondegenerate binaries of the Algol type, but with system-specific relative-intensity characteristics. The primary component of the system is a B9.5 V main-sequence star with effective temperature of 9800 K. Its mass equals 2.25 solar masses; the radius is 1.9 solar radii; and surface gravity log g equals 4.23. The secondary star has a mass of 0.41 solar mass and fills its critical Roche lobe. Evidence obtained on mass interaction supports the conclusion that HD 97528 is a normal semidetached system.
Speckle interferometric measurements of binary stars. IX
NASA Technical Reports Server (NTRS)
Hartkopf, W. I.; Gaston, B. J.; Fekel, F. C.; Hendry, E. M.; Mcalister, H. A.
1984-01-01
Four hundred-forty measurements of 232 binary stars observed during 1981 by means of speckle interferometry with the 4-m telescope at KPNO are represented. Newly resolved systems include Xi-1 Cet, Rho Her A, HD 187321, and 59 Cyg A.
NASA Astrophysics Data System (ADS)
Schlichting, Hilke E.; Sari, Re'em
2011-02-01
Runaway growth is an important stage in planet formation during which large protoplanets form, while most of the initial mass remains in small planetesimals. The amount of mass converted into large protoplanets and their resulting size distribution are not well understood. Here, we use analytic work, that we confirm by coagulation simulations, to describe runaway growth and the corresponding evolution of the velocity dispersion. We find that runaway growth proceeds as follows. Initially, all the mass resides in small planetesimals, with mass surface density σ, and large protoplanets start to form by accreting small planetesimals. This growth continues until growth by merging large protoplanets becomes comparable to growth by planetesimal accretion. This condition sets in when Σ/σ ~ α3/4 ~ 10-3, where Σ is the mass surface density in protoplanets in a given logarithmic mass interval and α is the ratio of the size of a body to its Hill radius. From then on, protoplanetary growth and the evolution of the velocity dispersion become self-similar and Σ remains roughly constant, since an increase in Σ by accretion of small planetesimals is balanced by a decrease due to merging with large protoplanets. We show that this growth leads to a protoplanet size distribution given by N(>R) vprop R -3, where N(>R) is the number of objects with radii greater than R (i.e., a differential power-law index of 4). Since only the largest bodies grow significantly during runaway growth, Σ and thereby the size distribution are preserved. We apply our results to the Kuiper Belt, which is a relic of runaway growth where planet formation never proceeded to completion. Our results successfully match the observed Kuiper Belt size distribution, they illuminate the physical processes that shaped it and explain the total mass that is present in large Kuiper Belt objects (KBOs) today. This work suggests that the current mass in large KBOs is primordial and that it has not been significantly depleted. We also predict a maximum mass ratio for Kuiper Belt binaries that formed by dynamical processes of α-1/4 ~ 10, which explains the observed clustering in binary companion sizes that is seen in the cold classical belt. Finally, our results also apply to growth in debris disks, as long as frequent planetesimal-planetesimal collisions are not important during the growth.
The nature of the late B-type stars HD 67044 and HD 42035
NASA Astrophysics Data System (ADS)
Monier, R.; Gebran, M.; Royer, F.
2016-04-01
While monitoring a sample of apparently slowly rotating superficially normal bright late B and early A stars in the northern hemisphere, we have discovered that HD 67044 and HD 42035, hitherto classified as normal late B-type stars, are actually respectively a new chemically peculiar star and a new spectroscopic binary containing a very slow rotator HD 42035 S with ultra-sharp lines (v_{{e}}sin i= 3.7 km s^{-1}) and a fast rotator HD 42035 B with broad lines. The lines of Ti ii, Cr ii, Mn ii, Sr ii, Y ii, Zr ii and Ba ii are conspicuous features in the high resolution SOPHIE spectrum (R=75000) of HD 67044. The Hg ii line at 3983.93 Å is also present as a weak feature. The composite spectrum of HD 42035 is characterised by very sharp lines formed in HD 42035 S superimposed onto the shallow and broad lines of HD 42035 B. These very sharp lines are mostly due to light elements from C to Ni, the only heavy species definitely present are strontium and barium. Selected lines of 21 chemical elements from He up to Hg have been synthesized using model atmospheres computed with ATLAS9 and the spectrum synthesis code SYNSPEC48 including hyperfine structure of various isotopes when relevant. These synthetic spectra have been adjusted to high resolution high signal-to-noise spectra of HD 67044 and HD 42035 S in order to derive abundances of these key elements. HD 67044 is found to have distinct enhancements of Ti, Cr, Mn, Sr, Y, Zr, Ba and Hg and underabundances in He, C, O, Ca and Sc which shows that this star is not a superficially normal late B-type star, but actually is a new CP star most likely of the HgMn type. HD 42035 S has provisional underabundances of the light elements from C to Ti and overabundances of heavier elements (except for Fe and Sr which are also underabundant) up to barium. These values are lower limits to the actual abundances as we cannot currently place properly the continuum of HD 42035 S. More accurate fundamental parameters and abundances for HD 42035 S and HD 42035 B will be derived if we manage to disentangle their spectra. They will help clarify the status of the two components in this interesting new spectroscopic binary.
Astronomical Data Center Bulletin, volume 1, number 3
NASA Technical Reports Server (NTRS)
Mead, J. M.; Warren, W. H., Jr.; Nagy, T. A.
1983-01-01
A catalog of galactic O-type stars, a machine-readable version of the bright star catalog, a two-micron sky survey, sky survey sources with problematical Durchmusterung identifications, data retrieval for visual binary stars, faint blue objects, the sixth catalog of galactic Wolf-Rayet stars, declination versus magnitude distribution, the SAO-HD-GC-DM cross index catalog, star cross-identification tables, astronomical sources, bibliographical star index search updates, DO-HD and HD-DO cross indices, and catalogs, are reviewed.
The Orbit of the Companion to HD 100453A: Binary-driven Spiral Arms in a Protoplanetary Disk
NASA Astrophysics Data System (ADS)
Wagner, Kevin; Dong, Ruobing; Sheehan, Patrick; Apai, Dániel; Kasper, Markus; McClure, Melissa; Morzinski, Katie M.; Close, Laird; Males, Jared; Hinz, Phil; Quanz, Sascha P.; Fung, Jeffrey
2018-02-01
HD 100453AB is a 10 ± 2 Myr old binary whose protoplanetary disk was recently revealed to host a global two-armed spiral structure. Given the relatively small projected separation of the binary (1.″05, or ∼108 au), gravitational perturbations by the binary seemed to be a likely driving force behind the formation of the spiral arms. However, the orbit of these stars remained poorly understood, which prevented a proper treatment of the dynamical influence of the companion on the disk. We observed HD 100453AB between 2015 and 2017, utilizing extreme adaptive optics systems on the Very Large Telescope and the Magellan Clay Telescope. We combined the astrometry from these observations with published data to constrain the parameters of the binary’s orbit to a = 1.″06 ± 0.″09, e = 0.17±0.07, and i = 32.°5 ± 6.°5. We utilized publicly available ALMA 12CO data to constrain the inclination of the disk, {i}{{disk}}∼ 28^\\circ , which is relatively coplanar with the orbit of the companion and consistent with previous estimates from scattered light images. Finally, we input these constraints into hydrodynamic and radiative transfer simulations to model the structural evolution of the disk. We find that the spiral structure and truncation of the circumprimary disk in HD 100453 are consistent with a companion-driven origin. Furthermore, we find that the primary star’s rotation, its outer disk, and the companion exhibit roughly the same direction of angular momentum, and thus the system likely formed from the same parent body of material.
NASA Technical Reports Server (NTRS)
Buss, Richard H., Jr.; Tielens, A. G. G. M.; Snow, Theodore P.
1991-01-01
The mid-infrared spectra of carbon giant stars with hot companions are investigated in order to search for infrared emission bands from polycyclic aromatic hydrocarbons (PAH) in the envelopes of the C giants. A strong 8-micron emission band found in TU Tau = HD 38218 is attributed to the binary A star companion. It is argued that if the 8-micron feature in HD 38218 arises from PAHs, they seem to be important constituents of the C-giant shell, and they might be large compared with some interstellar PAHs. It is suggested that because no other IR spectra of C giants show clear PAH features, the greater flux of hard radiation in the binary HD 38218 seems likely to be responsible for the 8-micron feature and for its absence in many other C giants. Thus, PAHs could be present in the same amounts relative to SiC grains in the shells of similar single C giants, and the formation of carbonaceous grains could proceed through the formation of PAHs in C giant shells.
Spectroscopic study of the strontium AM binaries HD 434 and 41 Sex A
NASA Astrophysics Data System (ADS)
Sreedhar Rao, S.; Abhyankar, K. D.
1992-10-01
Improved spectroscopic orbital elements of the single-line Am binary HD 434 are presented, and cover large gaps in the radial velocity curve obtained earlier by Hube and Gulliver (1985). The MK morphology of the spectrum of HD 434 is examined, and the classification of its metallic line types in the violet and blue regions, along with its revised K- and H-line spectral types, are given for the first time. The strontium anomaly in its spectrum is discussed. 41 Sex A is found to be a prototype of an Am star exhibiting transitional characteristics, forming an evolutionary link between Ap and Am groups of CP stars. Its spectroscopic orbital elements are confirmed using our own velocities. The MK morphology of its spectrum and its spectral line behavior, especially that of the Sr II 4077 line, are briefly discussed.
VizieR Online Data Catalog: Chromospherically Active Binaries (Strassmeier+ 1993)
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Hall, D. S.; Fekel, F. C.
1996-08-01
Stars always appear in order of increasing right-ascension for the epoch 2000.0. For the current version of the catalog, the literature was searched through December 31, 1991 although a few later references are included. Additionally, some entries are cited with "private communication", which make this catalog also a first-hand source. A number in parentheses behind an entry always corresponds to a reference given in the bibliography. See the 1988 publication for specific requirements and restrictions in compiling these catalogs. See the source reference for more details about this catalog. The following binary systems, which were listed in the first edition of the catalog, were not included in the present edition due to insufficient evidence for chromospheric activity: eta And 26 Aql 4 UMi nu2 Sgr tau Sgr the following stars are chromospherically active but are components in a "wide" binary and were not included. HD 25893 HD 79211 Forty three new binary systems have been included in the present edition. (12 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez-Santiago, J.; Pereira, V.; De Castro, E.
2012-09-20
Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter ofmore » two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30'' northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.« less
Coordinated observations of interacting peculiar red giant binaries, 2
NASA Technical Reports Server (NTRS)
Ake, T.
1995-01-01
IUE and H alpha observations continued on a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s), HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. They were primary candidates from earlier surveys of PRG's to test the hypothesis that the Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.
Coordinated observations of interacting peculiar red giant binaries, 1
NASA Technical Reports Server (NTRS)
Ake, T.
1995-01-01
IUE Observations were begun for a two-year program to monitor the UV variability of three interacting peculiar red giant (PRG) binaries, HD 59643 (C6,s) HD 35155 (S3/2), and HR 1105 (S3.5/2.5). All of these systems were suspected to involve accretion of material from the PRG to a white-dwarf secondary, based mainly on previous IUE investigations. From our earlier surveys of PRG's, they were primary candidates to test the hypothesis that Tc-poor PRG's are formed as a result of mass transfer from a secondary component rather than from internal thermal pulsing while on the asymptotic red giant branch.
Research in astrophysical processes
NASA Technical Reports Server (NTRS)
Ruderman, Malvin A.
1994-01-01
Work completed under this grant is summarized in the following areas:(1) radio pulsar turn on and evaporation of companions in very low mass x-ray binaries and in binary radio pulsar systems; (2) effects of magnetospheric pair production on the radiation from gamma-ray pulsars; (3) radiation transfer in the atmosphere of an illuminated companion star; (4) evaporation of millisecond pulsar companions;(5) formation of planets around pulsars; (6) gamma-ray bursts; (7) quasi-periodic oscillations in low mass x-ray binaries; (8) origin of high mass x-ray binaries, runaway OB stars, and the lower mass cutoff for core collapse supernovae; (9) dynamics of planetary atmospheres; (10) two point closure modeling of stationary, forced turbulence; (11) models for the general circulation of Saturn; and (12) compressible convection in stellar interiors.
Recent progress in understanding the eruptions of classical novae
NASA Technical Reports Server (NTRS)
Shara, Michael M.
1988-01-01
Dramatic progress has occurred in the last two decades in understanding the physical processes and events leading up to, and transpiring during the eruption of a classical nova. The mechanism whereby a white dwarf accreting hydrogen-rich matter from a low-mass main-sequence companion produces a nova eruption has been understood since 1970. The mass-transferring binary stellar configuration leads inexorably to thermonuclear runaways detected at distances of megaparsecs. Summarized here are the efforts of many researchers in understanding the physical processes which generate nova eruptions; the effects upon nova eruptions of different binary-system parameters (e.g., chemical composition or mass of the white dwarf, different mass accretion rates); the possible metamorphosis from dwarf to classical novae and back again; and observational diagnostics of novae, including x ray and gamma ray emission, and the characteristics and distributions of novae in globular clusters and in extragalactic systems. While the thermonuclear-runaway model remains the successful cornerstone of nova simulation, it is now clear that a wide variety of physical processes, and three-dimensional hydrodynamic simulations, will be needed to explain the rich spectrum of behavior observed in erupting novae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fekel, Francis C.; Williamson, Michael H., E-mail: fekel@evans.tsuniv.ed
We have detected the secondary component in two previously known spectroscopic binaries, HD 434 and 41 Sex, and for the first time determined double-lined orbits for them. Despite the relatively long period of 34.26 days and a moderate eccentricity of 0.32, combined with the components' rotationally broadened lines, measurement of the primary and secondary radial velocities of HD 434 has enabled us to obtain significantly improved orbital elements. While the 41 Sex system has a much shorter period of 6.167 days and a circular orbit, the estimated V mag difference of 3.2 between its components also makes this a challengingmore » system. The new orbital dimensions (a{sub 1} sin i and a{sub 2} sin i) and minimum masses (m{sub 1} sin{sup 3} i and m{sub 2} sin{sup 3} i) of HD 434 have accuracies of 0.8% or better, while the same quantities for 41 Sex are good to 0.5% or better. Both components of HD 434 are Am stars while the Am star primary of 41 Sex has a late-F or early-G companion. All four stars are on the main sequence. The two components of HD 434 are rotating much faster than their predicted pseudosynchronous velocities, while both components of 41 Sex are synchronously rotating. For the primary of 41 Sex, the spectrum line depth changes noted by Sreedhar Rao et al. were not detected.« less
Separated fringe packet observations with the Chara Array. II. ω Andromeda, HD 178911, and ξ Cephei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrington, C. D.; Ten Brummelaar, T. A.; Turner, N. H.
When observed with optical long-baseline interferometers, components of a binary star that are sufficiently separated produce their own interferometric fringe packets; these are referred to as separated fringe packet (SFP) binaries. These SFP binaries can overlap in angular separation with the regime of systems resolvable by speckle interferometry at single, large-aperture telescopes and can provide additional measurements for preliminary orbits lacking good phase coverage, help constrain elements of already established orbits, and locate new binaries in the undersampled regime between the bounds of spectroscopic surveys and speckle interferometry. In this process, a visibility calibration star is not needed, and themore » SFPs can provide an accurate vector separation. In this paper, we apply the SFP approach to ω Andromeda, HD 178911, and ξ Cephei with the CLIMB three-beam combiner at the CHARA Array. For these systems we determine component masses and parallax of 0.963 ± 0.049 M {sub ☉} and 0.860 ± 0.051 M {sub ☉} and 39.54 ± 1.85 mas for ω Andromeda, for HD 178911 of 0.802 ± 0.055 M {sub ☉} and 0.622 ± 0.053 M {sub ☉} with 28.26 ± 1.70 mas, and masses of 1.045 ± 0.031 M {sub ☉} and 0.408 ± 0.066 M {sub ☉} and 38.10 ± 2.81 mas for ξ Cephei.« less
HD 66051: the first eclipsing binary hosting an early-type magnetic star
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Johnston, C.; Alecian, E.; Wade, G. A.
2018-05-01
Early-type magnetic stars are rarely found in close binary systems. No such objects were known in eclipsing binaries prior to this study. Here we investigated the eclipsing, spectroscopic double-lined binary HD 66051, which exhibits out-of-eclipse photometric variations suggestive of surface brightness inhomogeneities typical of early-type magnetic stars. Using a new set of high-resolution spectropolarimetric observations, we discovered a weak magnetic field on the primary and found intrinsic, element-dependent variability in its spectral lines. The magnetic field structure of the primary is dominated by a nearly axisymmetric dipolar component with a polar field strength Bd ≈ 600 G and an inclination with respect to the rotation axis of βd = 13°. A weaker quadrupolar component is also likely to be present. We combined the radial velocity measurements derived from our spectra with archival optical photometry to determine fundamental masses (3.16 and 1.75 M⊙) and radii (2.78 and 1.39 R⊙) with a 1-3% precision. We also obtained a refined estimate of the effective temperatures (13000 and 9000 K) and studied chemical abundances for both components with the help of disentangled spectra. We demonstrate that the primary component of HD 66051 is a typical late-B magnetic chemically peculiar star with a non-uniform surface chemical abundance distribution. It is not an HgMn-type star as suggested by recent studies. The secondary is a metallic-line star showing neither a strong, global magnetic field nor intrinsic spectral variability. Fundamental parameters provided by our work for this interesting system open unique possibilities for probing interior structure, studying atomic diffusion, and constraining binary star evolution.
An efficient indexing scheme for binary feature based biometric database
NASA Astrophysics Data System (ADS)
Gupta, P.; Sana, A.; Mehrotra, H.; Hwang, C. Jinshong
2007-04-01
The paper proposes an efficient indexing scheme for binary feature template using B+ tree. In this scheme the input image is decomposed into approximation, vertical, horizontal and diagonal coefficients using the discrete wavelet transform. The binarized approximation coefficient at second level is divided into four quadrants of equal size and Hamming distance (HD) for each quadrant with respect to sample template of all ones is measured. This HD value of each quadrant is used to generate upper and lower range values which are inserted into B+ tree. The nodes of tree at first level contain the lower and upper range values generated from HD of first quadrant. Similarly, lower and upper range values for the three quadrants are stored in the second, third and fourth level respectively. Finally leaf node contains the set of identifiers. At the time of identification, the test image is used to generate HD for four quadrants. Then the B+ tree is traversed based on the value of HD at every node and terminates to leaf nodes with set of identifiers. The feature vector for each identifier is retrieved from the particular bin of secondary memory and matched with test feature template to get top matches. The proposed scheme is implemented on ear biometric database collected at IIT Kanpur. The system is giving an overall accuracy of 95.8% at penetration rate of 34%.
A Runaway Yellow Supergiant Star in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia I.; Skiff, Brian; Georgy, Cyril
2018-05-01
We recently discovered a yellow supergiant (YSG) in the Small Magellanic Cloud (SMC) with a heliocentric radial velocity of ∼300 km s‑1, which is much larger than expected for a star at its location in the SMC. This is the first runaway YSG ever discovered and only the second evolved runaway star discovered in a galaxy other than the Milky Way. We classify the star as G5-8 I and use de-reddened broad-band colors with model atmospheres to determine an effective temperature of 4700 ± 250 K, consistent with what is expected from its spectral type. The star’s luminosity is then log L/L ⊙ ∼ 4.2 ± 0.1, consistent with it being a ∼30 Myr 9 M ⊙ star according to the Geneva evolution models. The star is currently located in the outer portion of the SMC’s body, but if the star’s transverse peculiar velocity is similar to its peculiar radial velocity, in 10 Myr the star would have moved 1.°6 across the disk of the SMC and could easily have been born in one of the SMC’s star-forming regions. Based on its large radial velocity, we suggest it originated in a binary system where the primary exploded as a supernovae, thus flinging the runaway star out into space. Such stars may provide an important mechanism for the dispersal of heavier elements in galaxies given the large percentage of massive stars that are runaways. In the future, we hope to look into additional evolved runaway stars that were discovered as part of our other past surveys. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
NASA Astrophysics Data System (ADS)
Fekel, Francis C.; Henry, Gregory W.; Tomkin, Jocelyn
2017-09-01
From an extensive number of newly acquired radial velocities we determine the orbital elements for three late-type dwarf systems, HD 96511, HR 7578, and KZ And. The orbital periods are 18.89737 ± 0.00002, 46.81610 ± 0.00006, and 3.0329113 ± 0.0000005 days, respectively, and all three systems are eccentric, although KZ And is just barely so. We have detected lines of the secondary of HD 96511 for the first time. The orbital dimensions (a 1 sin I and a 2 sin I) and minimum masses (m 1 sin3 I and m 2 sin3 I) of the binary components all have accuracies of 0.2% or better. Extensive photometry of the chromospherically active binary HR 7578 confirms a rather long rotation period of 16.446 ± 0.002 days and that the K3 V components do not eclipse. We have estimated the basic properties of the stars in the three systems and compared those results with evolutionary tracks. The results for KZ And that we computed with the revised Hipparcos parallax of van Leeuwen produce inconsistencies. That parallax appears to be too large, and so, instead, we used the original Hipparcos parallax of the common proper motion primary, which improves the results, although some problems remain.
The hot subdwarf in the eclipsing binary HD 185510
NASA Technical Reports Server (NTRS)
Jeffery, C. S.; Simon, Theodore; Evans, T. L.
1992-01-01
High-resolution spectroscopic measurements of radial velocity are employed to characterize the eclipsing binary HD 185510 in terms of masses and evolutionary status. The IUE is used to obtain the radial velocities which indicate a large mass ratio Mp/Ms of 7.45 +/- 0.15, and Teff is given at 25,000 +/- 1000 K based on Ly alpha and UV spectrophotometry. Photometric observations are used to give an orbital inclination of between 90 and 70 deg inclusive, leading to masses of 0.31-0.37 and 2.3-2.8 solar mass for the hot star and the K star, respectively. The surface gravity of HD 185510B is shown to be higher than those values for sdB stars suggesting that the object is a low-mass white dwarf that has not reached its fully degenerate configuration. The object is theorized to be a low-mass helium main-sequence star or a nascent helium degenerate in a post-Algol system.
NASA Astrophysics Data System (ADS)
Teske, Johanna K.; Shectman, Stephen A.; Vogt, Steve S.; Díaz, Matías; Butler, R. Paul; Crane, Jeffrey D.; Thompson, Ian B.; Arriagada, Pamela
2016-12-01
We present a new precision radial velocity (RV) data set that reveals multiple planets orbiting the stars in the ˜360 au, G2+G2 “twin” binary HD 133131AB. Our six years of high-resolution echelle observations from MIKE and five years from the Planet Finder Spectrograph (PFS) on the Magellan telescopes indicate the presence of two eccentric planets around HD 133131A with minimum masses of 1.43 ± 0.03 and 0.63 ± 0.15 {{ M }}{{J}} at 1.44 ± 0.005 and 4.79 ± 0.92 au, respectively. Additional PFS observations of HD 133131B spanning five years indicate the presence of one eccentric planet of minimum mass 2.50 ± 0.05 {{ M }}{{J}} at 6.40 ± 0.59 au, making it one of the longest-period planets detected with RV to date. These planets are the first to be reported primarily based on data taken with the PFS on Magellan, demonstrating the instrument’s precision and the advantage of long-baseline RV observations. We perform a differential analysis between the Sun and each star, and between the stars themselves, to derive stellar parameters and measure a suite of 21 abundances across a wide range of condensation temperatures. The host stars are old (likely ˜9.5 Gyr) and metal-poor ([Fe/H] ˜ -0.30), and we detect a ˜0.03 dex depletion in refractory elements in HD 133131A versus B (with standard errors ˜0.017). This detection and analysis adds to a small but growing sample of binary “twin” exoplanet host stars with precise abundances measured, and represents the most metal-poor and likely oldest in that sample. Overall, the planets around HD 133131A and B fall in an unexpected regime in planet mass-host star metallicity space and will serve as an important benchmark for the study of long-period giant planets. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
HD 143 418 - An Interacting Binary with a Subsynchronously Rotating Primary
NASA Astrophysics Data System (ADS)
Mikulášek, Z.; Zverko, J.; Žižňovský, J.; Krtička, J.; Iliev, I. Kh.; Kudryavtsev, D. O.; Gráf, T.; Zejda, M.
2010-12-01
HD 143418 is a non-eclipsing double-lined close binary with orbital period Porb=2.282520 d. The photometrically and spectroscopically dominant primary component is a normal A5V star in the middle of its stay on the main sequence with extremely slow, subsynchronous rotation (Prot being about 14 days!). Its photometric monitoring since 1982 revealed orbitally modulated variations with changing form and amplitude. The advanced principal component analysis (APCA) disentangling extract-ed a steady part of light curves obviously caused by the ellipticity of the primary. Seasonal components of the light curves may be related to an expected incidence of circumstellar matter ejected from the tidally spinning up primary component. A possible scenario of the synchronisation process is also briefly discussed.
The RS CVn Binary HD 155555: A Comparative Study of the Atmospheres for the Two Component Stars
NASA Technical Reports Server (NTRS)
Airapetian, V. S.; Dempsey, R. C.
1997-01-01
We present GHRS/HST observations of the RS CVn binary system HD 155555. Several key UV emission lines (Fe XXI, Si IV, O V, C IV) have been analyzed to provide information about the heating rate throughout the atmosphere from the chromosphere to the corona. We show that both the G and K components reveal features of a chromosphere, transition region and corona. The emission measure distribution as a function of temperature for both components is derived and compared with the RS Cvn system, HR 1099, and the Sun. The transition region and coronal lines of both stars show nonthermal broadenings of approx. 20-30 km/s. Possible physical implications for coronal heating mechanisms are discussed.
A SEARCH FOR X-RAY EMISSION FROM COLLIDING MAGNETOSPHERES IN YOUNG ECCENTRIC STELLAR BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes
Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged samplemore » of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ∼2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.« less
A Search For X-Ray Emission From Colliding Magnetospheres In Young Eccentric Stellar Binaries
NASA Astrophysics Data System (ADS)
Getman, Konstantin V.; Broos, Patrick S.; Kóspál, Ágnes; Salter, Demerese M.; Garmire, Gordon P.
2016-12-01
Among young binary stars whose magnetospheres are expected to collide, only two systems have been observed near periastron in the X-ray band: the low-mass DQ Tau and the older and more massive HD 152404. Both exhibit elevated levels of X-ray emission at periastron. Our goal is to determine whether colliding magnetospheres in young high-eccentricity binaries commonly produce elevated average levels of X-ray activity. This work is based on Chandra snapshots of multiple periastron and non-periastron passages in four nearby young eccentric binaries (Parenago 523, RX J1622.7-2325 Nw, UZ Tau E, and HD 152404). We find that for the merged sample of all four binaries the current X-ray data show an increasing average X-ray flux near periastron (at a ˜2.5-sigma level). Further comparison of these data with the X-ray properties of hundreds of young stars in the Orion Nebula Cluster, produced by the Chandra Orion Ultradeep Project (COUP), indicates that the X-ray emission from the merged sample of our binaries cannot be explained within the framework of the COUP-like X-ray activity. However, due to the inhomogeneities of the merged binary sample and the relatively low statistical significance of the detected flux increase, these findings are regarded as tentative only. More data are needed to prove that the flux increase is real and is related to the processes of colliding magnetospheres.
NASA Astrophysics Data System (ADS)
Berdyugin, A.; Piirola, V.; Sadegi, S.; Tsygankov, S.; Sakanoi, T.; Kagitani, M.; Yoneda, M.; Okano, S.; Poutanen, J.
2016-06-01
Aims: We investigate the structure of the O-type binary system HD 48099 by measuring linear polarization that arises due to light scattering process. High-precison polarimetry provides independent estimates of the orbital parameters and gives important information on the properties of the system. Methods: Linear polarization measurements of HD 48099 in the B, V and R passbands with the high-precision Dipol-2 polarimeter have been carried out. The data have been obtained with the 60 cm KVA (Observatory Roque de los Muchachos, La Palma, Spain) and T60 (Haleakala, Hawaii, USA) remotely controlled telescopes during 31 observing nights. Polarimetry in the optical wavelengths has been complemented by observations in the X-rays with the Swift space observatory. Results: Optical polarimetry revealed small intrinsic polarization in HD 48099 with ~0.1% peak to peak variation over the orbital period of 3.08 d. The variability pattern is typical for binary systems, showing strong second harmonic of the orbital period. We apply our model code for the electron scattering in the circumstellar matter to put constraints on the system geometry. A good model fit is obtained for scattering of light on a cloud produced by the colliding stellar winds. The geometry of the cloud, with a broad distribution of scattering particles away from the orbital plane, helps in constraining the (low) orbital inclination. We derive from the polarization data the inclination I = 17° ± 2° and the longitude of the ascending node Ω = 82° ± 1° of the binary orbit. The available X-ray data provide additional evidence for the existence of the colliding stellar winds in the system. Another possible source of the polarized light could be scattering from the stellar photospheres. The models with circumstellar envelopes, or matter confined to the orbital plane, do not provide good constraints on the low inclination, better than I ≤ 27°, as is already suggested by the absence of eclipses. The polarization data for HD 48099 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A92
Can binary stars test solar models?
NASA Technical Reports Server (NTRS)
Popper, D. M.; Ulrich, R. K.
1986-01-01
The position in the H-R diagram of the approximately solar-mass component of the Hyades eclipsing binary, HD 27130, is compared with the predictions of stellar structure theory. The stellar models are calibrated by matching a model with the solar heavy element composition and age to the solar radius and luminosity. The comparison to the Hyades binary then is a test of the prediction that the initial solar luminosity was only about 0.7 times the present solar luminosity. The agreement is satisfactory, lending a measure of confidence to the solar model employed, provided that the initial helium abundance of the Hyades stars is not greater than that of the sun and is not less by more than about 0.03 in Y. Unless the model is grossly incorrect, the inference of Stromgren, Olsen, and Gustafsson (1982) from the 'Hyades anomaly' in intermediate-band photometry that Y(Hyades) is less than Y(solar) by 0.1 or 0.15 is rejected by the observed properties of HD 27130.
Detection of a white dwarf companion to the Hyades stars HD 27483
NASA Technical Reports Server (NTRS)
Boehm-Vitense, Erika
1993-01-01
We observed with IUE a white dwarf (WD) companion to the Hyades F6 V binary stars HD 27483. This system is known to be a close binary of two nearly equal stars with an orbital period of 3.05 days. Our IUE observations revealed the presence of a third star, a white dwarf with an effective temperature of 23,000 +/- 1000 K and a mass of approximately 0.6 solar mass. Its presence in the Hyades cluster with a known age permits me to derive the mass of its progenitor, which must have been about 2.3 solar masses. The presence of the white dwarf in a binary system opens the possibility that some of the envelope material, which was expelled by the WD progenitor, may have been collected by the F6 stars. We may thus be able to study abundance anomalies of the WD progenitor with known mass on the surface of the F6 companions.
Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.
2011-11-01
Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular shells typical of luminous blue variable and late WN-type Wolf-Rayet stars.
Precise Ages for the Benchmark Brown Dwarfs HD 19467 B and HD 4747 B
NASA Astrophysics Data System (ADS)
Wood, Charlotte; Boyajian, Tabetha; Crepp, Justin; von Braun, Kaspar; Brewer, John; Schaefer, Gail; Adams, Arthur; White, Tim
2018-01-01
Large uncertainty in the age of brown dwarfs, stemming from a mass-age degeneracy, makes it difficult to constrain substellar evolutionary models. To break the degeneracy, we need ''benchmark" brown dwarfs (found in binary systems) whose ages can be determined independent of their masses. HD~19467~B and HD~4747~B are two benchmark brown dwarfs detected through the TRENDS (TaRgeting bENchmark objects with Doppler Spectroscopy) high-contrast imaging program for which we have dynamical mass measurements. To constrain their ages independently through isochronal analysis, we measured the radii of the host stars with interferometry using the Center for High Angular Resolution Astronomy (CHARA) Array. Assuming the brown dwarfs have the same ages as their host stars, we use these results to distinguish between several substellar evolutionary models. In this poster, we present new age estimates for HD~19467 and HD~4747 that are more accurate and precise and show our preliminary comparisons to cooling models.
Kepler observations of the asteroseismic binary HD 176465
NASA Astrophysics Data System (ADS)
White, T. R.; Benomar, O.; Silva Aguirre, V.; Ball, W. H.; Bedding, T. R.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Garcia, R. A.; Gizon, L.; Stello, D.; Aigrain, S.; Antia, H. M.; Appourchaux, T.; Bazot, M.; Campante, T. L.; Creevey, O. L.; Davies, G. R.; Elsworth, Y. P.; Gaulme, P.; Handberg, R.; Hekker, S.; Houdek, G.; Howe, R.; Huber, D.; Karoff, C.; Marques, J. P.; Mathur, S.; McQuillan, A.; Metcalfe, T. S.; Mosser, B.; Nielsen, M. B.; Régulo, C.; Salabert, D.; Stahn, T.
2017-05-01
Binary star systems are important for understanding stellar structure and evolution, and are especially useful when oscillations can be detected and analysed with asteroseismology. However, only four systems are known in which solar-like oscillations are detected in both components. Here, we analyse the fifth such system, HD 176465, which was observed by Kepler. We carefully analysed the system's power spectrum to measure individual mode frequencies, adapting our methods where necessary to accommodate the fact that both stars oscillate in a similar frequency range. We also modelled the two stars independently by fitting stellar models to the frequencies and complementaryparameters. We are able to cleanly separate the oscillation modes in both systems. The stellar models produce compatible ages and initial compositions for the stars, as is expected from their common and contemporaneous origin. Combining the individual ages, the system is about 3.0 ± 0.5 Gyr old. The two components of HD 176465 are young physically-similar oscillating solar analogues, the first such system to be found, and provide important constraints for stellar evolution and asteroseismology.
Line profile variability in the massive binary HD 152219
NASA Astrophysics Data System (ADS)
Sana, H.; Gosset, E.
2009-07-01
HD 152219 is a massive binary system with O9.5 III and B1-2 III/V components and a short orbital period of 4.2 d. In a previous work, we showed that the primary star (M_{prim}˜21 M_⊙) was presenting clear line profile variabilities (LPVs) that might be caused by nonradial pulsations (NRPs). In the present work, we report on an intensive spectroscopic monitoring, that aimed at unveiling the nature of the detected LPVs. Based on this new data set, we discard the NRPs and point out the Rossiter-McLaughlin effect as % being the cause of the observed LPVs. The upper limit derived on the amplitude of undetected NRPs, if any, is set at a couple of part per thousands of the continuum level.
NASA Astrophysics Data System (ADS)
Raghavan, Deepak; McAlister, H. A.
2007-12-01
We present a visual orbit for the spectroscopic binary, HD 146361, derived from observations at the CHARA Array's long baseline interferometer. The 26 calibrated visibility measurements obtained during May - July 2007 allow us to determine a full orbital solution and component masses for this known spectroscopic binary. The HD 146361 pair has a circular orbit of nearly equal-mass components with a good quality double-lined spectroscopic orbit (Dave Latham, private communication). We have adopted the well-constrained spectroscopic orbital elements and fit the angular semi-major axis, inclination, and longitude of nodes to the binary visibility curve equations. Using these elements and the Hipparcos parallax of 46.11 ± 0.98 mas, we obtain component masses of 1.046 ± 0.084 Msol and 1.000 ± 0.080 Msol. We have planned further observations of this system to reduce the mass uncertainties and may present an updated result at the meeting. This is the shortest period spectroscopic binary resolved as of yet with an interferometer. This work is being done in the context of Raghavan's thesis project, which is a survey of solar-type stars in the solar neighborhood. By completing this survey, we hope to build a comprehensive view of the environments around solar-type stars and improve our understanding of their habitats by analyzing their companions of all types - stars, brown dwarfs, and planets. We have chosen an unbiased, volume-limited sample of 455 primary stars as representatives of the solar-type stars in our Galaxy. Our effort is a modern update to the seminal work of Duquennoy & Mayor (1991) and will contribute to the broader subjects of stellar evolution and planetary system formation, evolution, and stability. Research at the CHARA Array is supported by the College of Arts and Sciences at Georgia State University and by the National Science Foundation through NSF Grant AST 0606958.
A Single Circumbinary Disk in the HD 98800 Quadruple System.
Koerner; Jensen; Cruz; Guild; Gultekin
2000-04-10
We present subarcsecond thermal infrared imaging of HD 98800, a young quadruple system composed of a pair of low-mass spectroscopic binaries separated by 0&farcs;8 (38 AU), each with a K-dwarf primary. Images at wavelengths ranging from 5 to 24.5 µm show unequivocally that the optically fainter binary, HD 98800B, is the sole source of a comparatively large infrared excess on which a silicate emission feature is superposed. The excess is detected only at wavelengths of 7.9 µm and longer, peaks at 25 µm, and has a best-fit blackbody temperature of 150 K, indicating that most of the dust lies at distances greater than the orbital separation of the spectroscopic binary. We estimate the radial extent of the dust with a disk model that approximates radiation from the spectroscopic binary as a single source of equivalent luminosity. Given the data, the most likely values of disk properties in the ranges considered are Rin=5.0+/-2.5 AU, DeltaR=13+/-8 AU, lambda0=2+4-1.5 µm, gamma=0+/-2.5, and sigmatotal=16+/-3 AU2, where Rin is the inner radius, DeltaR is the radial extent of the disk, lambda0 is the effective grain size, gamma is the radial power-law exponent of the optical depth tau, and sigmatotal is the total cross section of the grains. The range of implied disk masses is 0.001-0.1 times that of the Moon. These results show that, for a wide range of possible disk properties, a circumbinary disk is far more likely than a narrow ring.
A giant planet in the triple system HD 132563
NASA Astrophysics Data System (ADS)
Desidera, S.; Carolo, E.; Gratton, R.; Martinez Fiorenzano, A. F.; Endl, M.; Mesa, D.; Barbieri, M.; Bonavita, M.; Cecconi, M.; Claudi, R. U.; Cosentino, R.; Marzari, F.; Scuderi, S.
2011-09-01
As part of our radial velocity planet-search survey performed with SARG at TNG, we monitored the components of HD 132563 for ten years. It is a binary system formed by two rather similar solar type stars with a projected separation of 4.1 arcsec, which corresponds to 400 AU at the distance of 96 pc. The two components are moderately metal-poor ([Fe/H] = -0.19), and the age of the system is about 5 Gyr. We detected RV variations of HD 132563B with period of 1544 days and semi-amplitude of 26 m/s. From the star characteristics and line profile measurements, we infer their Keplerian origin. Therefore HD 132563B turns out to host a planet with a projected mass msini = 1.49 MJ at 2.6 AU with a moderately eccentric orbit (e = 0.22). The planet around HD 132563B is one of the few that are known in triple stellar systems, as we found that the primary HD 132563A is itself a spectroscopic binary with a period longer than 15 years and an eccentricity higher than 0.65. The spectroscopic component was not detected in adaptive-optics images taken with the instrument AdOpt mounted at the TNG, since it expected at a projected separation that was smaller than 0.2 arcsec at the time of our observations. A small excess in K band difference between the components with respect to the difference in V band is compatible with a companion of about 0.55 M⊙. A preliminary statistical analysis of when planets occur in triple systems indicate a similar frequency of planets around the isolated component in a triple system, components of wide binaries and single stars. There is no significant iron abundance difference between the components. The lack of stars in binary systems and open clusters showing strong enhancements of iron abundance, which are comparable to the typical metallicity difference between stars with and without giant planets, agrees with the idea that accretion of planetary material producing iron abundance anomalies over 0.1 dex is rare. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.Tables 4 and 5 are available in electronic form at http://www.aanda.org and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A90
Chromospherically active stars. 11: Giant with compact hot companions and the barium star scenario
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.
1993-01-01
We have determined spectroscopic orbits for three chromsopherically active giants that have hot compact companions. They are HD 160538 (KO III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (KO III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35,000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.
Chromospherically active stars. 6: Giants with compact hot companions and the barium star scenario
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Henry, Gregory W.; Busby, Michael R.; Eitter, Joseph J.
1993-01-01
We have determined spectroscopic orbits for three chromospherically active giants that have hot compact companions. They are HD 160538 (K0 III + wd, P = 904 days), HD 165141 (G8 III + wd, P approximately 5200 days), and HD 185510 (K0 III + sdB, P = 20.6619 days). By fitting an IUE spectrum with theoretical models, we find the white dwarf companion of HD 165141 has a temperature of about 35000 K. Spectral types and rotational velocities have been determined for the three giants and distances have been estimated. These three systems and 39 Ceti are compared with the barium star mass-transfer scenario. The long-period mild barium giant HD 165141 as well as HD 185510 and 39 Ceti, which have relatively short periods and normal abundance giants, appear to be consistent with this scenario. The last binary, HD 160538, a system with apparently near solar abundances, a white dwarf companion, and orbital characteristics similar to many barium stars, demonstrates that the existence of a white-dwarf companion is insufficient to produce a barium star. The paucity of systems with confirmed white-dwarf companions makes abundance analyses of HD 160538 and HD 165141 of great value in examining the role of metallicity in barium star formation.
NASA Astrophysics Data System (ADS)
Moutou, C.; Vigan, A.; Mesa, D.; Desidera, S.; Thébault, P.; Zurlo, A.; Salter, G.
2017-06-01
We explore the multiplicity of exoplanet host stars with high-resolution images obtained with VLT/SPHERE. Two different samples of systems were observed: one containing low-eccentricity outer planets, and the other containing high-eccentricity outer planets. We find that 10 out of 34 stars in the high-eccentricity systems are members of a binary, while the proportion is 3 out of 27 for circular systems. Eccentric-exoplanet hosts are, therefore, significantly more likely to have a stellar companion than circular-exoplanet hosts. The median magnitude contrast over the 68 data sets is 11.26 and 9.25, in H and K, respectively, at 0.30 arcsec. The derived detection limits reveal that binaries with separations of less than 50 au are rarer for exoplanet hosts than for field stars. Our results also imply that the majority of high-eccentricity planets are not embedded in multiple stellar systems (24 out of 34), since our detection limits exclude the presence of a stellar companion. We detect the low-mass stellar companions of HD 7449 and HD 211847, both members of our high-eccentricity sample. HD 7449B was already detected and our independent observation is in agreement with this earlier work. HD 211847's substellar companion, previously detected by the radial velocity method, is actually a low-mass star seen face-on. The role of stellar multiplicity in shaping planetary systems is confirmed by this work, although it does not appear as the only source of dynamical excitation. Based on observations collected with SPHERE on the Very Large Telescope (ESO, Chile).
HD 63021: An Ae Star with X-Ray Flux
NASA Astrophysics Data System (ADS)
Whelan, David G.; Labadie-Bartz, Jon; Chojnowski, S. Drew; Daglen, James; Hudson, Ken
2018-05-01
Balmer and Fe II (42) multiplet emission were discovered in a spectrum of HD 63021 on 10 April (UTC), 2018. Subsequent observations revealed variability in both photospheric absorption lines and Balmer line emission. In addition, it is an X-ray source, with a luminosity that is consistent with either a very strong stellar wind, or else the presence of a compact binary companion. Spectroscopic and photometric followup are planned to determine the nature of this source.
BD+43° 3654 - a blue straggler?
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Bomans, D. J.
2008-07-01
The astrometric data on the runaway star BD+43° 3654 are consistent with the origin of this O4If star in the center of the Cyg OB2 association, while BD+43° 3654 is younger than the association. To reconcile this discrepancy, we suggest that BD+43° 3654 is a blue straggler formed via a close encounter between two tight massive binaries in the core of Cyg OB2. A possible implication of this suggestion is that the very massive (and therefore apparently very young) stars in Cyg OB2 could be blue stragglers as well. We also suggest that the binary-binary encounter producing BD+43° 3654 might be responsible for ejection of two high-velocity stars (the stripped helium cores of massive stars) - the progenitors of the pulsars B2020+28 and B2021+51.
Hubble:WFPC2 and ESO:2.2-m Composite Image of 30 Dor Runaway Star
2017-12-08
NASA image release May 11, 2010 Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus Image: Hubble/WFPC2 and ESO/2.2-m Composite Image of 30 Dor Runaway Star A blue-hot star, 90 times more massive than our Sun, is hurtling across space fast enough to make a round trip from Earth to the Moon in merely two hours. Though the speed is not a record-breaker, it is unique to find a homeless star that has traveled so far from its nest. The only way the star could have been ejected from the star cluster where it was born is through a tussle with a rogue star that entered the binary system where the star lived, which ejected the star through a dynamical game of stellar pinball. This is strong circumstantial evidence for stars as massive as 150 times our Sun's mass living in the cluster. Only a very massive star would have the gravitational energy to eject something weighing 90 solar masses. The runaway star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth. To learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/runaway-star.html Credit: NASA, ESA, J. Walsh (ST-ECF), and ESO NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Separated before birth: pulsars B2020+28 and B2021+51 as the remnants of runaway stars
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
2007-08-01
Astrometric data on the pulsars B2020+28 and B2021+51 suggest that they originated within several parsecs of each other in the direction of the Cyg OB2 association. It was proposed that the pulsars share their origin in a common massive binary and were separated at the birth of the second pulsar following the asymmetric supernova explosion. We consider a different scenario for the origin of the pulsar pair based on a possibility that the pulsars were separated before their birth and that they are the remnants of runaway stars ejected (with velocities similar to those of the pulsars) from the core of Cyg OB2 due to strong three- or four-body dynamical encounters. Our scenario does not require any asymmetry in supernova explosions.
Lu, Heng; Zhang, Xuejuan; Li, Cuihong; Wei, Hedi; Liu, Qian; Li, Weiwei; Bo, Zhishan
2015-07-01
Performance enhancement of polymer solar cells (PSCs) is achieved by expanding the absorption of the active layer of devices. To better match the spectrum of solar radiation, two polymers with different band gaps are used as the donor material to fabricate ternary polymer cells. Ternary blend PSCs exhibit an enhanced short-circuit current density and open-circuit voltage in comparison with the corresponding HD-PDFC-DTBT (HD)- and DT-PDPPTPT (DPP)-based binary polymer solar cells, respectively. Ternary PSCs show a power conversion efficiency (PCE) of 6.71%, surpassing the corresponding binary PSCs. This work demonstrates that the fabrication of ternary PSCs by using two polymers with complementary absorption is an effective way to improve the device performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ya-Lin; Close, Laird M.; Males, Jared R.
2016-05-20
We analyze archival data from Bailey and co-workers from the Magellan adaptive optics system and present the first 0.9 μ m detection ( z ′ = 20.3 ± 0.4 mag; Δ z ′ = 13.0 ± 0.4 mag) of the 11 M {sub Jup} circumbinary planet HD 106906AB b, as well as 1 and 3.8 μ m detections of the debris disk around the binary. The disk has an east–west asymmetry in length and surface brightness, especially at 3.8 μ m where the disk appears to be one-sided. The spectral energy distribution of b, when scaled to the K{sub S}more » -band photometry, is consistent with 1800 K atmospheric models without significant dust reddening, unlike some young, very red, low-mass companions such as CT Cha B and 1RXS 1609 B. Therefore, the suggested circumplanetary disk of Kalas and co-workers might not contain much material, or might be closer to face-on. Finally, we suggest that the widest ( a ≳ 100 AU) low mass ratio ( M {sub p}/ M {sub ⋆} ≡ q ≲ 0.01) companions may have formed inside protoplanetary disks but were later scattered by binary/planet interactions. Such a scattering event may have occurred for HD 106906AB b with its central binary star, but definitive proof at this time is elusive.« less
Magellan AO System z‧, Y S , and L‧ Observations of the Very Wide 650 AU HD 106906 Planetary System
NASA Astrophysics Data System (ADS)
Wu, Ya-Lin; Close, Laird M.; Bailey, Vanessa P.; Rodigas, Timothy J.; Males, Jared R.; Morzinski, Katie M.; Follette, Katherine B.; Hinz, Philip M.; Puglisi, Alfio; Briguglio, Runa; Xompero, Marco
2016-05-01
We analyze archival data from Bailey and co-workers from the Magellan adaptive optics system and present the first 0.9 μm detection (z‧ = 20.3 ± 0.4 mag; Δz‧ = 13.0 ± 0.4 mag) of the 11 M Jup circumbinary planet HD 106906AB b, as well as 1 and 3.8 μm detections of the debris disk around the binary. The disk has an east-west asymmetry in length and surface brightness, especially at 3.8 μm where the disk appears to be one-sided. The spectral energy distribution of b, when scaled to the K S -band photometry, is consistent with 1800 K atmospheric models without significant dust reddening, unlike some young, very red, low-mass companions such as CT Cha B and 1RXS 1609 B. Therefore, the suggested circumplanetary disk of Kalas and co-workers might not contain much material, or might be closer to face-on. Finally, we suggest that the widest (a ≳ 100 AU) low mass ratio (M p/M ⋆ ≡ q ≲ 0.01) companions may have formed inside protoplanetary disks but were later scattered by binary/planet interactions. Such a scattering event may have occurred for HD 106906AB b with its central binary star, but definitive proof at this time is elusive. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.
NASA Astrophysics Data System (ADS)
Roberts, Lewis C., Jr.; Oppenheimer, Rebecca; Crepp, Justin R.; Baranec, Christoph; Beichman, Charles; Brenner, Douglas; Burruss, Rick; Cady, Eric; Luszcz-Cook, Statia; Dekany, Richard; Hillenbrand, Lynne; Hinkley, Sasha; King, David; Lockhart, Thomas G.; Nilsson, Ricky; Parry, Ian R.; Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Rémi; Rice, Emily L.; Veicht, Aaron; Vasisht, Gautam; Zhai, Chengxing; Zimmerman, Neil T.
2015-10-01
HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determined that the binary star has a likely period of approximately 800 years with a semimajor axis of 100-200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5-10 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Lewis C. Jr.; Beichman, Charles; Burruss, Rick
2015-10-15
HD 177830 is an evolved K0IV star with two known exoplanets. In addition to the planetary companions it has a late-type stellar companion discovered with adaptive optics imagery. We observed the binary star system with the PHARO near-IR camera and the Project 1640 coronagraph. Using the Project 1640 coronagraph and integral field spectrograph we extracted a spectrum of the stellar companion. This allowed us to determine that the spectral type of the stellar companion is a M4 ± 1 V. We used both instruments to measure the astrometry of the binary system. Combining these data with published data, we determinedmore » that the binary star has a likely period of approximately 800 years with a semimajor axis of 100–200 AU. This implies that the stellar companion has had little or no impact on the dynamics of the exoplanets. The astrometry of the system should continue to be monitored, but due to the slow nature of the system, observations can be made once every 5–10 years.« less
Einstein observations of selected close binaries and shell stars
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Koch, R. H.; Plavec, M. J.
1984-01-01
Several evolved close binaries and shell stars were observed with the IPC aboard the HEAO 2 Einstein Observatory. No eclipsing target was detected, and only two of the shell binaries were detected. It is argued that there is no substantial difference in L(X) for eclipsing and non-eclipsing binaries. The close binary and shell star CX Dra was detected as a moderately strong source, and the best interpretation is that the X-ray flux arises primarily from the corona of the cool member of the binary at about the level of Algol-like or RS CVn-type sources. The residual visible-band light curve of this binary has been modeled so as to conform as well as possible with this interpretation. HD 51480 was detected as a weak source. Substantial background information from IUE and ground scanner measurements are given for this binary. The positions and flux values of several accidentally detected sources are given.
Massive runaway stars in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Kroupa, P.; Pflamm-Altenburg, J.
2010-09-01
The origin of massive field stars in the Large Magellanic Cloud (LMC) has long been an enigma. The recent measurements of large offsets (˜ 100 km s-1) between the heliocentric radial velocities of some very massive (O2-type) field stars and the systemic LMC velocity provides a possible explanation of this enigma and suggests that the field stars are runaway stars ejected from their birthplaces at the very beginning of their parent cluster's dynamical evolution. A straightforward way to prove this explanation is to measure the proper motions of the field stars and to show that they are moving away from one of the nearby star clusters or OB associations. This approach is, however, complicated by the long distance to the LMC, which makes accurate proper motion measurements difficult. We used an alternative approach for solving the problem (first applied for Galactic field stars), based on the search for bow shocks produced by runaway stars. The geometry of detected bow shocks would allow us to infer the direction of stellar motion, thereby determining their possible parent clusters. In this paper we present the results of a search for bow shocks around six massive field stars that have been proposed as candidate runaway stars. Using archival Spitzer Space Telescope data, we found a bow shock associated with one of our programme stars, the O2 V((f*)) star BI 237, which is the first-ever detection of bow shocks in the LMC. Orientation of the bow shock suggests that BI 237 was ejected from the OB association LH 82 (located at ≃ 120 pc in projection from the star). A by-product of our search is the detection of bow shocks generated by four OB stars in the field of the LMC and an arc-like structure attached to the candidate luminous blue variable R81 (HD 269128). The geometry of two of these bow shocks is consistent with the possibility that their associated stars were ejected from the 30 Doradus star-forming complex. We discuss implications of our findings for the problem of the origin of runaway stars and the early dynamical evolution of star clusters.
The Pan-Pacific Planet Search. VII. The Most Eccentric Planet Orbiting a Giant Star
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Jones, M. I.; Horner, Jonathan; Kane, Stephen R.; Marshall, J. P.; Mustill, A. J.; Jenkins, J. S.; Pena Rojas, P. A.; Zhao, Jinglin; Villaver, Eva; Butler, R. P.; Clark, Jake
2017-12-01
Radial velocity observations from three instruments reveal the presence of a 4 M Jup planet candidate orbiting the K giant HD 76920. HD 76920b has an orbital eccentricity of 0.856 ± 0.009, making it the most eccentric planet known to orbit an evolved star. There is no indication that HD 76920 has an unseen binary companion, suggesting a scattering event rather than Kozai oscillations as a probable culprit for the observed eccentricity. The candidate planet currently approaches to about four stellar radii from its host star, and is predicted to be engulfed on a ∼100 Myr timescale due to the combined effects of stellar evolution and tidal interactions.
Time-series photometric spot modeling. I - Parameter study and application to HD 17433 = VY Arietis
NASA Technical Reports Server (NTRS)
Strassmeier, K. G.; Bopp, B. W.
1992-01-01
New UBVRI photometry of the active chromosphere binary HD 17433 (VY) Ari from 1987 through 1991 is presented, and the long-term and short-term spot behavior is studied. A 0.2 mag variation of the mean brightness and a maximum wave amplitude of up to 0.4 mag in 1988 are found. The newly measured photometric period of 16.42 d suggests asynchronous rotation of the primary component by about 30 percent.
NASA Technical Reports Server (NTRS)
Koenigsberger, G.
1983-01-01
Spectra of six WN + OB Wolf-Rayet systems obtained with the IUE are analyzed for phase-dependent variations. Periodic variability at emission-line frequencies is detected in V444 Cyg, HD 90657, HD 211853, HD 186943 and HD 94546 on low dispersion SWP images. No changes in the low dispersion spectra of HD 193077 are apparent. We find the variations in the UV to be similar in nature to those observed in optical spectra of various WR sources. That is, there is a strengthening of absorption components in P Cygni-type features at orbital phases in which the O-star is behind the WR wind. With the aid of a computer code which models this type of variations, and through a comparison with HD 193077, the dominant mechanism producing the variations is shown to be selective atmospheric eclipses of the O-star by the WR wind. Based on this interpretation, a straightforward technique is applied to the line of N IV 1718, by which an optical depth distribution in the WN winds of the form tau varies as r(-1) is derived for 16 r 66 solar radii. Phase-dependent variations in the width of the C IV 1550 absorption component in V444 Cyg, HD 90657 and HD 211853 are interpretated as wind-wind collision effects.
HD 202206: A Circumbinary Brown Dwarf System
NASA Astrophysics Data System (ADS)
Benedict, G. Fritz; Harrison, Thomas E.
2017-06-01
Using Hubble Space Telescope Fine Guidance Sensor astrometry and previously published radial velocity measures, we explore the exoplanetary system HD 202206. Our modeling results in a parallax, {π }{abs}=21.96+/- 0.12 milliseconds of arc, a mass for HD 202206 B of {{ M }}B={0.089}-0.006+0.007 {{ M }}⊙ , and a mass for HD 202206 c of {{ M }}c={17.9}-1.8+2.9 {{ M }}{Jup}. HD 202206 is a nearly face-on G + M binary orbited by a brown dwarf. The system architecture that we determine supports past assertions that stability requires a 5:1 mean motion resonance (we find a period ratio, {P}c/{P}B=4.92+/- 0.04) and coplanarity (we find a mutual inclination, {{Φ }}=6^\\circ +/- 2^\\circ ). Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.
The Unusual S Star Binary HD 191589
NASA Technical Reports Server (NTRS)
Ake, Thomas B.; Johnson, Hollis R.; Wahlgren, Glenn M.; Jorissen, Alain
1996-01-01
Recently, we discovered with International Ultraviolet Explorer (IUE) an F0-F2 IV-V companion to the T(sub c)-deficient S star HD 191589. If the magnitude difference is (delta)V=3.7, as indicated by several arguments, and E(B-V) = 0.0, we obtain a value of M(sub v)= - 1.5 +/- 0.4 for the Peculiar Red Giant (PRG), too faint for it to be a thermally-pulsing asymptotic giant branch star. According to the binary mass-transfer hypothesis for T(sub c)-deficient PRG's, a white dwarf must be the source of the s-process enhancement of the current primary star, but it cannot be seen because of the presence of the secondary. If such is the case, the F-star companion may also have been contaminated by s-process material. High-dispersion IUE observations indicate an enhancement of Zr II in the photosphere of the F-star as well. Thus, HD 191589 is likely a triple system, where what was once the most massive component of the system has polluted both of its companions with s-process material. One of these is the current S star, while the other is the companion still near the main sequence.
On the formation of runaway stars BN and x in the Orion Nebula Cluster
NASA Astrophysics Data System (ADS)
Farias, J. P.; Tan, J. C.
2018-05-01
We explore scenarios for the dynamical ejection of stars BN and x from source I in the Kleinmann-Low nebula of the Orion Nebula Cluster (ONC), which is important because it is the closest region of massive star formation. This ejection would cause source I to become a close binary or a merger product of two stars. We thus consider binary-binary encounters as the mechanism to produce this event. By running a large suite of N-body simulations, we find that it is nearly impossible to match the observations when using the commonly adopted masses for the participants, especially a source I mass of 7 M⊙. The only way to recreate the event is if source I is more massive, that is, 20 M⊙. However, even in this case, the likelihood of reproducing the observed system is low. We discuss the implications of these results for understanding this important star-forming region.
Chromospherically active stars. 13: HD 30957: A double lined K dwarf binary
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Dadonas, Virgilijus; Sperauskas, Julius; Vaccaro, Todd R.; Patterson, L. Ronald
1994-01-01
HD 30957 is a double-lined spectroscopic binary with a period of 44.395 days and a modest eccentricity of 0.09. The spectral types of the components are K2-3 V and K5 V. The measured v sin i for both components is less than or equal to 3 km/s and the orbital inclination is estimated to be 69 deg. The system is relatively nearby with a parallax of 0.025 sec or a distance of 40 pc. Space motions of the system indicate that it does not belong to any of the known moving groups. Absolute surface fluxes of the Ca II H and K lines have been recomputed and indicate only modest chromospheric activity. If the stars are rotating pseudosynchronously, the lack of light variability is consistent with the value of the critical Rossby number for starspot activity.
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Kirkpatrick, J. Davy; Yang, Xinxing; Strassmeier, Klaus G.
1989-01-01
The variable star HD 136901 = UV CrB is a chromospherically active K2 III single-lined spectroscopic binary with an orbital period of 18.665 days. It has modest-strength Ca H and K emission and UV features, while H-alpha is a strong absorption feature containing little or no emission. The inclination of the system is 53 + or - 12 deg. The v sin i of the primary is 42 + or - 2 km/s, resulting in a minimum radius of 15.5 + or - 0.8 solar. When compared with the Roche lobe radius, this results in a mass ratio of 2.90 or larger. Additional constraints indicate that the secondary has a mass between 0.85 and 1.25 solar. Thus, the mass of the primary is at least 2.5 solar and probably is in the range 2.5-4 solar.
Chen, Yu-Wei; Wu, Yu-Te; Lin, Jhin-Shyaun; Yang, Wu-Chang; Hsu, Yung-Ho; Lee, Kuo-Hua; Ou, Shou-Ming; Chen, Yung-Tai; Shih, Chia-Jen; Lee, Pui-Ching; Chan, Chia-Hao; Chung, Ming-Yi; Lin, Chih-Ching
2016-01-01
Hemodialysis (HD) is the most commonly-used renal replacement therapy for patients with end-stage renal disease worldwide. Arterio-venous fistula (AVF) is the vascular access of choice for HD patients with lowest risk of infection and thrombosis. In addition to environmental factors, genetic factors may also contribute to malfunction of AVF. Previous studies have demonstrated the effect of genotype polymorphisms of angiotensin converting enzyme on vascular access malfunction. We conducted a multicenter, cross-sectional study to evaluate the association between genetic polymorphisms of renin-angiotensin-aldosterone system and AVF malfunction. Totally, 577 patients were enrolled. Their mean age was 60 years old and 53% were male. HD patients with AVF malfunction had longer duration of HD (92.5 ± 68.1 vs. 61.2 ± 51.9 months, p < 0.001), lower prevalence of hypertension (44.8% vs. 55.3%, p = 0.025), right-sided (31.8% vs. 18.4%, p = 0.002) and upper arm AVF (26.6% vs. 9.7%, p < 0.001), and higher mean dynamic venous pressure (DVP) (147.8 ± 28.3 vs. 139.8 ± 30.0, p = 0.021). In subgroup analysis of different genders, location of AVF and DVP remained significant clinical risk factors of AVF malfunction in univariate and multivariate binary logistic regression in female HD patients. Among male HD patients, univariate binary logistic regression analysis revealed that right-side AVF and upper arm location are two important clinical risk factors. In addition, two single nucleotide polymorphisms (SNPs), rs275653 (Odds ratio 1.90, p = 0.038) and rs1492099 (Odds ratio 2.29, p = 0.017) of angiotensin II receptor 1 (AGTR1), were associated with increased risk of AVF malfunction. After adjustment for age and other clinical factors, minor allele-containing genotype polymorphisms (AA and CA) of rs1492099 still remained to be a significant risk factor of AVF malfunction (Odds ratio 3.63, p = 0.005). In conclusion, we demonstrated that rs1492099, a SNP of AGTR1 gene, could be a potential genetic risk factor of AVF malfunction in male HD patients. PMID:27240348
The Mysterious sdO X-ray Binary BD+37°442
NASA Astrophysics Data System (ADS)
Heber, U.; Geier, S.; Irrgang, A.; Schneider, D.; Barbu-Barna, I.; Mereghetti, S.; La Palombara, N.
2014-04-01
Pulsed X-ray emission in the luminous, helium-rich sdO BD +37°442 has recently been discovered (La Palombara et al. 2012). It was suggested that the sdO star has a neutron star or white dwarf companion with a spin period of 19.2 s. After HD 49798, which has a massive white dwarf companion spinning at 13.2 s in an 1.55 day orbit, this is only the second O-type subdwarf from which X-ray emission has been detected. We report preliminary results of our ongoing campaign to obtain time-resolved high-resolution spectroscopy using the CAFE instrument at Calar Alto observatory and SARG at the Telescopio Nationale Galileo. Atmospheric parameters were derived via a quantitative NLTE spectral analysis. The line fits hint at an unusually large projected rotation velocity. Therefore it seemed likely that BD +37°442 is a binary similar to HD 49798 and that the orbital period is also similar. The level of X-ray emission from BD +37°442 could be explained by accretion from the sdO wind by a neutron star orbiting at a period of less than ten days. Hence, we embarked on radial velocity monitoring in order to derive the binary parameters of the BD+37°442 system and obtained 41 spectra spread out over several month in 2012. Unlike for HD 49798, no radial velocity variations were found and, hence, there is no dynamical evidence for the existence of a compact companion yet. The origin of the pulsed X-ray emission remains as a mystery.
Dynamics of massive black holes as a possible candidate of Galactic dark matter
NASA Technical Reports Server (NTRS)
Xu, Guohong; Ostriker, Jeremiah P.
1994-01-01
If the dark halo of the Galaxy is comprised of massive black holes (MBHs), then those within approximately 1 kpc will spiral to the center, where they will interact with one another, forming binaries which contract, owing to further dynamical friction, and then possibly merge to become more massive objects by emission of gravitational radiation. If successive mergers would invariably lead, as has been proposed by various authors, to the formation of a very massive nucleus of 10(exp 8) solar mass, then the idea of MBHs as a dark matter candidate could be excluded on observational grounds, since the observed limit (or value) for a Galactic central black hole is approximately 10(exp 6.5) solar mass. But, if successive mergers are delayed or prevented by other processes, such as the gravitational slingshot or rocket effect of gravitational radiation, then a large mass accumulation will not occur. In order to resolve this issue, we perform detailed N-body simulations using a modfied Aarseth code to explore the dynamical behavior of the MBHs, and we find that for a 'best estimate' model of the Galaxy a runaway does not occur. The code treates the MBHs as subject to the primary gravitational forces of one another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to another and to the smooth stellar distribution, as well as the secondary perturbations in their orbits due to dynamical friction and gravitational radiation. Instead of a runaway, three-body interactions between hard binaries and single MBHs eject massive objects before accumulation of more than a few units, so that typically the center will contain zero, one, or two MBHs. We study how the situation depends in detail on the mass per MBH, the rotation of the halo, the mass distribution within the Galaxy, and other parameters. A runaway will most sensitively depend on the ratio of initial (spheroid/halo) central mass densities and secondarily on the typical values for the mass per MBH, with the rough dividing line, using Galactic parameters, being M(sub BH) less than or = 10(exp 6.5) solar mass. Using parameters from Lacey & Ostriker (1985) and our most accurate model for Galaxy, no runaway occurs.
NASA Technical Reports Server (NTRS)
Mccluskey, G. E.; Kondo, Y.
1983-01-01
The eclipsing binary system R Arae = HD 149730 is a relatively bright southern system with an orbital period of about 4.4 days. It is a single-lined spectroscopic binary. The spectral class of the primary component is B9 Vp. The system was included in a study of mass flow and evolution in close binary systems using the International Ultraviolet Explorer satellite (IUE). Four spectra in the wavelength range from 1150 to 1900 A were obtained with the far-ultraviolet SWP camera, and six spectra in the range from 1900 to 3200 range were obtained with the mid-ultraviolet LWR camera. The close binary R Arae exhibits very unusual ultraviolet spectra. It appears that no other close binary system, observed with any of the orbiting satellites, shows outside-eclipse ultraviolet continuum flux variations of this nature.
Anatomy of the hyper-runaway star LP 40-365 with Gaia
NASA Astrophysics Data System (ADS)
Raddi, R.; Hollands, M. A.; Gänsicke, B. T.; Townsley, D. M.; Hermes, J. J.; Gentile Fusillo, N. P.; Koester, D.
2018-06-01
LP 40-365 (aka GD 492) is a nearby low-luminosity hyper-runaway star with an extremely unusual atmospheric composition, which has been proposed as the remnant of a white dwarf that survived a subluminous Type Ia supernova (SN Ia) in a single-degenerate scenario. Adopting the Gaia Data Release (DR2) parallax, ϖ = 1.58 ± 0.03 mas, we estimate a radius of 0.18 ± 0.01 R⊙, confirming LP 40-365 as a subluminous star that is ≃ 15 times larger than a typical white dwarf and is compatible with the SN Ia remnant scenario. We present an updated kinematic analysis, making use of the Gaia parallax and proper motion, and confirm that LP 40-365 is leaving the Milky Way at about 1.5 times the escape velocity of the Solar neighbourhood with a rest-frame velocity of 852 ± 10 km s-1. Integrating the past trajectories of LP 40-365, we confirm it crossed the Galactic disc 5.0 ± 0.3 Myr ago in the direction of Carina, likely coming from beneath the plane. Finally, we estimate that LP 40-365 was ejected from its progenitor binary with a velocity of at least 600 km s-1, which is compatible with theoretical predictions for close binaries containing a white dwarf and a helium-star donor.
High Resolution Optical Spectroscopy of an Intriguing High-Latitude B-Type Star HD119608
NASA Astrophysics Data System (ADS)
Şahin, T.
2018-01-01
We present an LTE analysis of high resolution echelle optical spectra obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph for a B1Ib high galactic latitude supergiant HD119608. A fresh determination of the atmospheric parameters using line-blanketed LTE model atmospheres and spectral synthesis provided T eff = 23 300 ± 1000 K, log g = 3.0 ± 0.3, and the microturbulent velocity ξ = 6.0 ± 1.0 kms-1 and [Fe/H] = 0.16. The rotational velocity of the star was derived fromC, O, N, Al, and Fe lines as v sin i = 55.8 ± 1.3 kms-1. Elemental abundances were obtained for 10 different species. He, Al, and P abundances of the star were determined for the first time. In the spectra, hot post-AGB status as well as the Pop I characteristics of the star were examined. The approximately solar carbon and oxygen abundances, along with mild excess in helium and nitrogen abundances do not stipulate a CNO processed surface composition, hence a hot post-AGB status. The LTE abundances analysis also indicates solar sulphur and moderately enriched magnesium abundances. The average abundances of B dwarfs of well studied OB associations and Population I stars show a striking resemblance to abundances obtained for HD119608 in this study. This may imply a runaway status for the star.
The unstable fate of the planet orbiting the A star in the HD 131399 triple stellar system
NASA Astrophysics Data System (ADS)
Veras, Dimitri; Mustill, Alexander J.; Gänsicke, Boris T.
2017-02-01
Validated planet candidates need not lie on long-term stable orbits, and instability triggered by post-main-sequence stellar evolution can generate architectures which transport rocky material to white dwarfs, hence polluting them. The giant planet HD 131399Ab orbits its parent A star at a projected separation of about 50-100 au. The host star, HD 131399A, is part of a hierarchical triple with HD 131399BC being a close binary separated by a few hundred au from the A star. Here, we determine the fate of this system, and find the following: (I) Stability along the main sequence is achieved only for a favourable choice of parameters within the errors. (II) Even for this choice, in almost every instance, the planet is ejected during the transition between the giant branch and white dwarf phases of HD 131399A. This result provides an example of both how the free-floating planet population may be enhanced by similar systems and how instability can manifest in the polluted white dwarf progenitor population.
An X-ray Investigation of the NGC 346 Field. 1; The LBV HD 5980 and the NGC 346 Cluster
NASA Technical Reports Server (NTRS)
Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Corcoran, M. F.; Chu, Y.-H.; Koenigsberger, G.; Moffat, A. F. J.; Niemela, V. S.
2002-01-01
We present results from a Chandra observation of the NGC 346 star formation region, which contains numerous massive stars, and is related to N66, the largest H(II) region of the SMC (Small Magellanic Cloud). In this first paper, we will focus on the characteristics of the main objects of the field. The NGC 346 cluster itself shows only relatively faint X-ray emission (with L((sub X)(sup unabs)) is approximately 1.5 x 10(exp 34) erg s(exp -1), tightly correlated with the core of the cluster. In the field also lies HD 5980, a LBV (Luminous Blue Variable) star in a binary (or triple system) that is detected for the first time at X-ray energies. The star is X-ray bright, with an unabsorbed luminosity of L((sub X)(sup unabs)) is approximately 1.7 x 10(exp 34) erg s(exp -1), but needs to be monitored further to investigate its X-ray variability over a complete orbital cycle. The high X-ray luminosity may be associated either with colliding winds in the binary system or with the 1994 eruption. HD 5980 is surrounded by a region of diffuse X-ray emission, which may be a superimposed supernova remnant.
Planetary Formation and Dynamics in Binary Systems
NASA Astrophysics Data System (ADS)
Xie, J. W.
2013-01-01
As of today, over 500 exoplanets have been detected since the first exoplanet was discovered around a solar-like star in 1995. The planets in binaries could be common as stars are usually born in binary or multiple star systems. Although current observations show that the planet host rate in multiple star systems is around 17%, this fraction should be considered as a lower limit because of noticeable selection effects against binaries in planet searches. Most of the current known planet-bearing binary systems are S-types, meaning the companion star acts as a distant satellite, typically orbiting the inner star-planet system over 100 AU away. Nevertheless, there are four systems with a smaller separation of 20 AU, including the Gamma Cephei, GJ 86, HD 41004, and HD 196885. In addition to the planets in circumprimary (S-type) orbits discussed above, planets in circumbinary (P-type) orbits have been found in only two systems. In this thesis, we mainly study the planet formation in the S-type binary systems. In chapter 1, we first summarize current observational facts of exoplanets both in single-star and binary systems, then review the theoretical models of planet formation, with special attention to the application in binary systems. Perturbative effects from stellar companions render the planet formation process in binary systems even more complex than that in single-star systems. The perturbations from a binary companion can excite planetesimal orbits, and increase their mutual impact velocities to the values that might exceed their escape velocity or even the critical velocity for the onset of eroding collisions. The intermediate stage of the formation process---from planetesimals to planetary embryos---is thus the most problematic. In the following chapters, we investigate whether and how the planet formation goes through such a problematic stage. In chapter 2, we study the effects of gas dissipation on the planetesimals' mutual accretion. We find that in a dissipating gas disk, all the planetesimals eventually converge toward the same forced orbits regardless of their size, leading to the much lower impact velocities. This process progressively increases the net mass accretion and can even trigger the runaway growth for large planetesimals. In chapter 3, for the first time, we adopt a 3-dimensional approach to investigate the planetesimals' mutual accretion in binary systems. We find that the inclusion of a small inclination between the binary orbital plane and the circumstellar disk plane leads to the realization of the differential orbital phasing in 3-dimensional space. In such a case, impacts mainly occur between similar-sized bodies with the impact velocities being significantly reduced, and thus the planetesimal accretion is more favored. In chapter 4, we investigate the planet formation in a specific system, the habitable zone of Alpha Centauri B. For the first time, we develop a scaling method to estimate the planetesimal collisional timescale in binary systems. We find that the accretion-favorable conditions satisfied at 1˜2 AU from Alpha Centauri B after the first 10^5 years. However, the planetesimal accretion is significantly less efficient as compared to the single star case. Our results suggest that the formation of Earth-like planets through the accretion of km-sized planetesimals is possible in Alpha Centauri B, while the formation of gaseous giant planets is not favorable. In chapter 5, we outline a new concept, which we call the ``snowball'' growth mode. In this snowball phase, the isolated planetesimals move in the Keplerian orbits, and grow solely via the direct accretion of subcentimeter-sized dust entrained with the gas in the protoplanetary disk. Using a simplified model in which the planetesimals are progressively produced from the dust, we find that the snowball growth phase can be the dominant mode to transfer mass from the dust to planetesimals. The snowball growth mode could provide an alternative explanation for the turnover point in the size distribution of the present-day asteroid belt. For the specific case of close binaries such as Alpha Centauri, the snowball growth mode provides a safe way for the bodies to grow through the problematic range with a size of 1˜50 km. In chapter 6, we investigate the intermediate stages of the planet formation in highly inclined cases. We find that the gas drag plays a crucial role in the evolution of the planetesimals' semi-major axis, and the results can be generally divided into two categories, i.e., the Kozai-on regime and the Kozai-off regime. For both regimes, a robust outcome over a wide range of parameters is that, the planetesimals migrate/jump inwards and pile up, leading to a severely truncated and dense planetesimal disk around the primary. In this compact and dense disk, the collision rates are high but the relative velocities are low, providing conditions which are favorable for the planetesimal growth, and potentially allow for the subsequent formation of planets. Finally, we summarize this thesis in chapter 7. Many open questions still remain in current research field of planet formation in binary systems, and the current Kepler project provides an unprecedented opportunity for such researches. A comprehensive understanding of planets in binaries requires placing them in a bigger context to include the formation and evolution of stars and/or clusters.
NASA Astrophysics Data System (ADS)
Adamów, M.; Niedzielski, A.; Kowalik, K.; Villaver, E.; Wolszczan, A.; Maciejewski, G.; Gromadzki, M.
2018-05-01
Context. We present the latest results of our search for planets with HARPS-N at the 3.6 m Telescopio Nazionale Galileo under the Tracking Advanced Planetary Systems project: an in-depth study of the 15 most Li abundant giants from the PennState - Toruń Planet Search sample. Aims: Our goals are first, to obtain radial velocities of the most Li-rich giants we identified in our sample to search for possible low-mass substellar companions, and second, to perform an extended spectral analysis to define the evolutionary status of these stars. Methods: This work is based on high-resolution spectra obtained with the Hobby-Eberly Telescope and its High Resolution Spectrograph, and with the HARPS-N spectrograph at the Telescopio Nazionale Galileo. Two stars, HD 181368 and HD 188214, were also observed with UVES at the VLT to determine beryllium abundances. Results: We report i) the discovery of two new planetary systems around the Li-rich giant stars: HD 238914 and TYC 3318-01333-1 (a binary system); ii) reveal a binary Li-rich giant, HD 181368; iii) although our current phase coverage is not complete, we suggest the presence of planetary mass companions around TYC 3663-01966-1 and TYC 3105-00152-1; iv) we confirm the previous result for BD+48 740 and present updated orbital parameters, and v) we find a lack of a relation between the Li enhancement and the Be abundance for the stars HD 181368 and HD 188214, for which we acquired blue spectra. Conclusions: We found seven stars with stellar or potential planetary companions among the 15 Li-rich giant stars. The binary star frequency of the Li-rich giants in our sample appears to be normal, but the planet frequency is twice that of the general sample, which suggests a possible connection between hosting a companion and enhanced Li abundance in giant stars. We also found most of the companions orbits to be highly eccentric. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de CanariasRV data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A47
HIP 13962 - The Possible Former Member of Binary System with Supernova
NASA Astrophysics Data System (ADS)
Yushchenko, V.; Yushchenko, A.; Gopka, V.; Shavrina, A.; Kovtyukh, V.; Hong, K. S.; Mkrtichian, D.; Thano, N. A.
2016-12-01
The runaway supergiant star HIP 13962 (spectral type G0Ia) was recently pointed as a possible former binary companion of young pulsar PSR J0826+2637. The spectra of HIP 13962 were obtained in Haute-Provence observatory (France), in Bohuynsan observatory (Korea), and also in NARIT (Thailand) with 1.9, 1.8, and 2.4 meter telescopes respectively. The spectra were obtained in 1995, 2003, 2005, 2014, and 2015. Significant variations of the spectrum are detected. The cores of strong lines show complicated structure, the brightness of the star is variable. The cycles of photometric variations have been changed. We analyzed the spectral observations and present the preliminary chemical composition for elements from iron to lead. The abundance pattern can not be fitted by solar system r- & s-process abundance distribution.
Restablished Accretion in Post-outburst Classical Novae Revealed by X-rays
NASA Astrophysics Data System (ADS)
Hernanz, Margarita; Ferri, Carlo; Sala, Glòria
2009-05-01
Classical novae are explosions on accreting white dwarfs (hereinafter WDs) in cataclysmic variables (hereinafter CVs) a hydrogen thermonuclear runaway on top of the WD is responsible for the outburst. X-rays provide a unique way to study the turn-off of H-burning, because super soft X-rays reveal the hot WD photosphere, but also to understand how accretion is established again in the binary system. Observations with XMM-Newton of some post-outburst novae have revealed such a process, but a coverage up to larger energies -as Simbol-X will provide- is fundamental to well understand the characteristics of the binary system and of the nova ejecta. We present a brief summary of our results up to now and prospects for the Simbol-X mission.
Identification and properties of the M giant/X-ray system HD 154791 = 2A 1704+241
NASA Technical Reports Server (NTRS)
Garcia, M.; Baliunas, S. L.; Elvis, M.; Fabbiano, G.; Patterson, J.; Schwartz, D.; Doxsey, R.; Koenigsberger, G.; Swank, J.; Watson, M. G.
1983-01-01
The Aerial V X-ray source 2A 1704+241 (= 4U 1700+24 = 3A 1703+241) is identified with the M3 II star HD 154791. The identification is based on a precise X-ray position determined by the HEAO 1 scanning modulation collimator and the Einstein Observatory imaging proportional counter, together with a spectrum measured by the International Ultraviolet Explorer. The ultraviolet spectrum shows strong emission of C IV 1550 A, N v 1238 A, and Mg II 2800 A, which is very unusual among M giants. This is the first X-ray detection of an M giant which has a completely normal optical spectrum. The X-ray luminosity reaches three orders of magnitude above the mean upper limit for the coronal X-ray flux from M giants. Although there is no direct evidence for a binary system, since radial velocity variations have not been observed, it is shown that a plausible neutron star binary model can be constructed.
Simultaneous X-Ray and UV Spectroscopy of the Symbiotic HD 154791
NASA Technical Reports Server (NTRS)
Chakrabarty, Deepto
2005-01-01
Our program consisted of three observations of the symbiotic neutron stadred giant binary 4U 1700+24/HD154791. Using an earlier 2002 TOO observation made in response to a new transient X-ray outburst, we had previously discovered a redshifted O VII line and submitted a paper on this discovery to the journal Astronomy and Astrophysics. In these new observations, we from analysis of the 2002 TOO observation of the symbiotic neutron-star binary 4U 1700+24, made in response to detection of a new transient outburst, we discovered a redshifted Oxygen VIII line (in collaboration with A. Tiengo of UVA), and submitted a paper on this result to A&A. Analysis of the three subsequent observations has found a number of other features also due to ionized oxygen, which we have found to vary as the source transits from outburst to quiescence. A paper describing these observations is being prepared for submission to the Astrophysical Journal, led by Co-I Duncan Galloway.
Two drastically different climate states on an Earth-like terra-planet
NASA Astrophysics Data System (ADS)
Kalidindi, Sirisha; Reick, Christian H.; Raddatz, Thomas; Claussen, Martin
2018-06-01
We study an Earth-like terra-planet (water-limited terrestrial planet) with an overland recycling mechanism bringing fresh water back from the high latitudes to the low latitudes. By performing model simulations for such a planet we find two drastically different climate states for the same set of boundary conditions and parameter values: a cold and wet (CW) state with dominant low-latitude precipitation and a hot and dry (HD) state with only high-latitude precipitation. We notice that for perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo while above the threshold only the CW state is stable. Starting from the HD state and increasing background soil albedo above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35 °C globally, which is of the order of the temperature difference between present day and the Snowball Earth state. When albedo starting from the CW state is reduced down to zero the terra-planet does not shift back to the HD state (no closed hysteresis). This is due to the high cloud cover in the CW state hiding the surface from solar irradiation so that surface albedo has only a minor effect on the top of the atmosphere radiation balance. Additional simulations with present-day Earth's obliquity all lead to the CW state, suggesting a similar abrupt transition from the HD state to the CW state when increasing obliquity from zero. Our study also has implications for the habitability of Earth-like terra-planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at low latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at high latitudes in frozen form. Overall, the existence of bistability in the presence of an overland recycling mechanism hints at the possibility of a wider habitable zone for Earth-like terra-planets at low obliquities.
Optical studies of X-ray peculiar chromosphereically active stars
NASA Astrophysics Data System (ADS)
Pandey, J. C.
2006-02-01
A multiwavelength study of the late-type active stars, selected on the basis of their X-ray and radio luminosities is presented in this thesis. For FR Cnc, a photometric period 0.8267 +/- 0.0004 d has been established. The strong variation in the phase and amplitude of the FR Cnc light curves when folded on this period implies the presence of evolving and migrating spots or spot groups on its surface. A photometric period of 18.802 +/- 0.074 has been discovered in the star HD 81032. The shape and amplitude of the photometric light curves of FR Cnc, HD 81032, HD 95559 and LO Peg are observed to be changing from one epoch to another. The change in the amplitude is mainly due to a change in the minimum of the light curve, and this May be due to a change in the spot coverage. This indicates that photometric variability is due to the presence of dark spots on the surface of active star. Two groups of spots are identified for FR Cnc and LO Peg. The spots are found to migrate, and migration periods of 0.97 year and 0.93 year are determined from the 4 years of data. A migration period of 1.12 years for one group of spots in LO Peg is also determined. Formation of a new group of spots in the star HD 95559 was also seen during our observations. A single large group of spots is found to migrate, and a migration period of 7.32 +/- 0.04 years is determined for HD 81032. The stars FR Cnc, HD 81032, HD 160934 and LO Peg are seen to be redder at the light minimum and we interpret this is due to the relatively cooler temperature of the darker regions present in the visible hemisphere. We find the lack of color-brightness correlation in the star HD 95559 and this May be due to the presence of bright faculae and plages like regions accompanied by dark spots in any one component of the this binary system. The optical spectroscopy of FR Cnc and HD 81032 carried out during 2002-2003, reveals the presence of strong and variable Ca II H and K, Halpha and Hbeta emission features indicative of high level of chromospheric activity. The chromospheric line emission for both stars seems to correlate with the photometric light curve, i.e. maximum at the light curve minimum, or minimum at the light curve maximum. The value of 5.3 for the ratio of the excess emission in Halpha to Hbeta, EHalpha/EHbeta for the star FR Cnc, suggests that the chromospheric emission May arise from an extended off-limb region. We have searched for the presence of color excesses in the near-IR JHK bands of these stars using 2MASS data, but none of them appear to have any significant color excess. The kinematics of the stars FR Cnc, HD 95559, HD 160934 and LO Peg suggest that these are younger than 0.6 Gyrs. The archival X-ray observations of HD 81032, HD 95559, HD 160934 and LO Peg carried out by with the ROSAT observatory were also analyzed. We did not find any significant variability in the X-ray light curve of the stars HD 95559. However, it appears from the X-ray light curve of HD 81032 that a moderate flare occurred during the RASS observations, with a peak of about 0.6 ct s^{-1} at approximately JD=244806.95 and half decay time of 2.6 x 10^4 s. A similar flare was also observed in HD 160934 with a peak about 0.2 ct s^{-1} (above its mean level) at JD = 2448123.12. A significant variability was found in the X-ray light curve of LO Peg. Rotational modulation appears to be present in the X-ray light curve of LO Peg. The best fit models to their X-ray spectra imply the presence of two coronal plasma components of differing temperatures and with sub-solar metal abundances. The inferred emission measures and temperatures of HD 95559 and LO Peg are similar to those found for other active dwarf stars. The observed X-ray spectrum and the inferred coronal plasma parameters for HD 81032 are typical of those seen in active stars such as RS CVn binaries. All of the optical and X-ray properties found for FR Cnc, HD 95559, HD 160934 and LO Peg are most consistent to the BY Dra type. However, for HD 81032 these properties suggest that it being an evolved RS! CVn binary of the long-period type Correlations between various physical quantities (Lx, Lrad, P and B-V) of active stars have been re-examined using a sample containing 248 active stars (101 dwarfs, 65 subgiants and 82 giants). It is a largest sample investigated so far. We did not find any appreciable changes in the correlations reported in previous studies. In addition to above, an Imaging Polarimeter has been fabricated for use with liquid-N2 cooled CCD camera and is designed to suit 104-cm Sampurnanand telescope with an f/13 focus at ARIES, Naini Tal. The instrument measures the linear polarization in broad B, V and R band, and has a field of view 2' x 2'.
NASA Astrophysics Data System (ADS)
Fossati, L.; Zwintz, K.; Castro, N.; Langer, N.; Lorenz, D.; Schneider, F. R. N.; Kuschnig, R.; Matthews, J. M.; Alecian, E.; Wade, G. A.; Barnes, T. G.; Thoul, A. A.
2014-02-01
Star clusters are known as superb tools for understanding stellar evolution. In a quest for understanding the physical origin of magnetism and chemical peculiarity in about 7% of the massive main-sequence stars, we analysed two of the ten brightest members of the ~10 Myr old Galactic open cluster NGC 2264, the early B-dwarfs HD 47887 and HD 47777. We find accurate rotation periods of 1.95 and 2.64 days, respectively, from MOST photometry. We obtained ESPaDOnS spectropolarimetric observations, through which we determined stellar parameters, detailed chemical surface abundances, projected rotational velocities, and the inclination angles of the rotation axis. Because we found only small (<5 km s-1) radial velocity variations, most likely caused by spots, we can rule out that HD 47887 and HD 47777 are close binaries. Finally, using the least-squares deconvolution technique, we found that both stars possess a large-scale magnetic field with an average longitudinal field strength of about 400 G. From a simultaneous fit of the stellar parameters we determine the evolutionary masses of HD 47887 and HD 47777 to be 9.4+0.6-0.7 M⊙ and 7.6+0.5-0.5 M⊙. Interestingly, HD 47777 shows a remarkable helium underabundance, typical of helium-weak chemically peculiar stars, while the abundances of HD 47887 are normal, which might imply that diffusion is operating in the lower mass star but not in the slightly more massive one. Furthermore, we argue that the rather slow rotation, as well as the lack of nitrogen enrichment in both stars, can be consistent with both the fossil and the binary hypothesis for the origin of the magnetic field. However, the presence of two magnetic and apparently single stars near the top of the cluster mass-function may speak in favour of the latter. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Microsatellite Systems Canada Inc. (MSCI), formerly part of Dynacon, Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia with the assistance of the University of Vienna.Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
The Influence of Stellar Spin on Ignition of Thermonuclear Runaways
NASA Astrophysics Data System (ADS)
Galloway, Duncan K.; in ’t Zand, Jean J. M.; Chenevez, Jérôme; Keek, Laurens; Sanchez-Fernandez, Celia; Worpel, Hauke; Lampe, Nathanael; Kuulkers, Erik; Watts, Anna; Ootes, Laura; The MINBAR collaboration
2018-04-01
Runaway thermonuclear burning of a layer of accumulated fuel on the surface of a compact star provides a brief but intense display of stellar nuclear processes. For neutron stars accreting from a binary companion, these events manifest as thermonuclear (type-I) X-ray bursts, and recur on typical timescales of hours to days. We measured the burst rate as a function of accretion rate, from seven neutron stars with known spin rates, using a burst sample accumulated over several decades. At the highest accretion rates, the burst rate is lower for faster spinning stars. The observations imply that fast (>400 Hz) rotation encourages stabilization of nuclear burning, suggesting a dynamical dependence of nuclear ignition on the spin rate. This dependence is unexpected, because faster rotation entails less shear between the surrounding accretion disk and the star. Large-scale circulation in the fuel layer, leading to enhanced mixing of the burst ashes into the fuel layer, may explain this behavior; further numerical simulations are required to confirm this.
NASA Astrophysics Data System (ADS)
Zinnecker, Hans
We review the multiplicity of massive stars by compiling the abstracts of the most relevant papers in the field. We start by discussing the massive stars in the Orion Trapezium Cluster and in other Galactic young clusters and OB associations, and end with the R136 cluster in the LMC. The multiplicity of field O-stars and runaway OB stars is also reviewed. The results of both visual and spectroscopic surveys are presented, as well as data for eclipsing systems. Among the latter, we find the most massive known binary system WR20a, with two ~,80M_⊙ components in a 3 day orbit. Some 80% of the wide visual binaries in stellar associations are in fact hierarchical triple systems, where typically the more massive of the binary components is itself a spectroscopic or even eclipsing binary pair. The multiplicity (number of companions) of massive star primaries is significantly higher than for low-mass solar-type primaries or for young low-mass T Tauri stars. There is also a striking preponderance of very close nearly equal mass binary systems (the origin of which has recently been explained in an accretion scenario). Finally, we offer a new idea as to the origin of massive Trapezium systems, frequently found in the centers of dense young clusters.
Correlated Radial Velocity and X-Ray Variations in HD 154791/4U 1700+24
NASA Astrophysics Data System (ADS)
Galloway, Duncan K.; Sokoloski, J. L.; Kenyon, Scott J.
2002-12-01
We present evidence for approximately 400 day variations in the radial velocity of HD 154791 (V934 Her), the suggested optical counterpart of 4U 1700+24. The variations are correlated with the previously reported ~400 day variations in the X-ray flux of 4U 1700+24, which supports the association of these two objects, as well as the identification of this system as the second known X-ray binary in which a neutron star accretes from the wind of a red giant. The HD 154791 radial velocity variations can be fitted with an eccentric orbit with period 404+/-3 days, amplitude K=0.75+/-0.12kms-1, and eccentricity e=0.26+/-0.15. There are also indications of variations on longer timescales >~2000 days. We have reexamined all available All-Sky Monitor (ASM) data following an unusually large X-ray outburst in 1997-1998 and confirm that the 1 day averaged 2-10 keV X-ray flux from 4U 1700+24 is modulated with a period of 400+/-20 days. The mean profile of the persistent X-ray variations was approximately sinusoidal, with an amplitude of 0.108+/-0.012 ASM counts s-1 (corresponding to 31% rms). The epoch of X-ray maximum was approximately 40 days after the time of periastron, according to the eccentric orbital fit. If the 400 day oscillations from HD 154791/4U 1700+24 are due to orbital motion, then the system parameters are probably close to those of the only other neutron star symbiotic-like binary, GX 1+4. We discuss the similarities and differences between these two systems.
NASA Astrophysics Data System (ADS)
Faramaz, V.; Beust, H.; Augereau, J.-C.; Bonsor, A.; Thébault, P.; Wu, Y.; Marshall, J. P.; del Burgo, C.; Ertel, S.; Eiroa, C.; Montesinos, B.; Mora, A.
2014-01-01
We present some highlights of two ongoing investigations that deal with the dynamics of planetary systems. Firstly, until recently, observed eccentric patterns in debris disks were found in young systems. However recent observations of Gyr-old eccentric debris disks leads to question the survival timescale of this type of asymmetry. One such disk was recently observed in the far-IR by the Herschel Space Observatory around ζ2 Reticuli. Secondly, as a binary companion orbits a circumprimary disk, it creates regions where planet formation is strongly handicapped. However, some planets were detected in this zone in tight binary systems (γ Cep, HD 196885). We aim to determine whether a binary companion can affect migration such that planets are brought in these regions and focus in particular on the planetesimal-driven migration mechanism.
Adiabatic Mass Loss Model in Binary Stars
NASA Astrophysics Data System (ADS)
Ge, H. W.
2012-07-01
Rapid mass transfer process in the interacting binary systems is very complicated. It relates to two basic problems in the binary star evolution, i.e., the dynamically unstable Roche-lobe overflow and the common envelope evolution. Both of the problems are very important and difficult to be modeled. In this PhD thesis, we focus on the rapid mass loss process of the donor in interacting binary systems. The application to the criterion of dynamically unstable mass transfer and the common envelope evolution are also included. Our results based on the adiabatic mass loss model could be used to improve the binary evolution theory, the binary population synthetic method, and other related aspects. We build up the adiabatic mass loss model. In this model, two approximations are included. The first one is that the energy generation and heat flow through the stellar interior can be neglected, hence the restructuring is adiabatic. The second one is that he stellar interior remains in hydrostatic equilibrium. We model this response by constructing model sequences, beginning with a donor star filling its Roche lobe at an arbitrary point in its evolution, holding its specific entropy and composition profiles fixed. These approximations are validated by the comparison with the time-dependent binary mass transfer calculations and the polytropic model for low mass zero-age main-sequence stars. In the dynamical time scale mass transfer, the adiabatic response of the donor star drives it to expand beyond its Roche lobe, leading to runaway mass transfer and the formation of a common envelope with its companion star. For donor stars with surface convection zones of any significant depth, this runaway condition is encountered early in mass transfer, if at all; but for main sequence stars with radiative envelopes, it may be encountered after a prolonged phase of thermal time scale mass transfer, so-called delayed dynamical instability. We identify the critical binary mass ratio for the onset of dynamical time scale mass transfer; if the ratio of donor to accretor masses exceeds this critical value, the dynamical time scale mass transfer ensues. The grid of criterion for all stars can be used to be the basic input as the binary population synthetic method, which will be improved absolutely. In common envelope evolution, the dissipation of orbital energy of the binary provides the energy to eject the common envelope; the energy budget for this process essentially consists of the initial orbital energy of the binary and the initial binding energies of the binary components. We emphasize that, because stellar core and envelope contribute mutually to each other's gravitational potential energy, proper evaluation of the total energy of a star requires integration over the entire stellar interior, not the ejected envelope alone as commonly assumed. We show that the change in total energy of the donor star, as a function of its remaining mass along an adiabatic mass-loss sequence, can be calculated. This change in total energy of the donor star, combined with the requirement that both remnant donor and its companion star fit within their respective Roche lobes, then circumscribes energetically possible survivors of common envelope evolution. It is the first time that we can calculate the accurate total energy of the donor star in common envelope evolution, while the results with the old method are inconsistent with observations.
Cas A and the Crab were not stellar binaries at death
NASA Astrophysics Data System (ADS)
Kochanek, C. S.
2018-01-01
The majority of massive stars are in binaries, which implies that many core collapse supernovae should be binaries at the time of the explosion. Here we show that the three most recent, local (visual) SNe (the Crab, Cas A and SN 1987A) were not stellar binaries at death, with limits on the initial mass ratios of q = M2/M1 ≲ 0.1. No quantitative limits have previously been set for Cas A and the Crab, while for SN 1987A we merely updated existing limits in view of new estimates of the dust content. The lack of stellar companions to these three ccSNe implies a 90 per cent confidence upper limit on the q ≳ 0.1 binary fraction at death of fb < 44 per cent. In a passively evolving binary model (meaning no binary interactions), with a flat mass ratio distribution and a Salpeter IMF, the resulting 90 per cent confidence upper limit on the initial binary fraction of F < 63 per cent is in tension with observed massive binary statistics. Allowing a significant fraction fM ≃ 25 per cent of stellar binaries to merge reduces the tension, with F < 63({1-f}M)^{-1}{ per cent} ˜eq 81{ per cent}, but allowing for the significant fraction in higher order systems (triples, etc.) reintroduces the tension. That Cas A was not a stellar binary at death also shows that a surviving massive binary companion at the time of the explosion is not necessary for producing a Type IIb SNe. Much larger surveys for binary companions to Galactic SNe will become feasible with the release of the full Gaia proper motion and parallax catalogues providing a powerful probe of the statistics of such binaries and their role in massive star evolution, neutron star velocity distributions and runaway stars.
Interrogation of duplicitous stars with an APT
NASA Technical Reports Server (NTRS)
Bopp, Bernard W.
1992-01-01
Preliminary results from intensive spectroscopic and APT monitoring of two interacting binary systems are presented. Both V644 Mon (Be + K:) and HD 37453 (F5 II + B) show complex, composite, and variable spectral. APT observations extending over three years show both stars to vary by 0.1-0.2 mag in V. The photometric variability of V644 Mon appears to be irregular, though there is some evidence for periodic behavior in the 50-60 day range. HD 37453 has an orbital period of 66.75 days; the best-fit photometric period is not quite half this value, indicating the star is an ellipsoidal variable.
Direct imaging discovery of a Jovian exoplanet within a triple-star system.
Wagner, Kevin; Apai, Dániel; Kasper, Markus; Kratter, Kaitlin; McClure, Melissa; Robberto, Massimo; Beuzit, Jean-Luc
2016-08-12
Direct imaging allows for the detection and characterization of exoplanets via their thermal emission. We report the discovery via imaging of a young Jovian planet in a triple-star system and characterize its atmospheric properties through near-infrared spectroscopy. The semimajor axis of the planet is closer relative to that of its hierarchical triple-star system than for any known exoplanet within a stellar binary or triple, making HD 131399 dynamically unlike any other known system. The location of HD 131399Ab on a wide orbit in a triple system demonstrates that massive planets may be found on long and possibly unstable orbits in multistar systems. HD 131399Ab is one of the lowest mass (4 ± 1 Jupiter masses) and coldest (850 ± 50 kelvin) exoplanets to have been directly imaged. Copyright © 2016, American Association for the Advancement of Science.
Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.
Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly
2018-01-01
Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.
Photometric study of HD 155555C in the β Pictoris Association
NASA Astrophysics Data System (ADS)
Messina, Sergio; Millward, Mervyn; Bradstreet, David H.
2015-05-01
We are carrying out a series of photometric monitoring to measure the rotation periods of members in the young β Pictoris Association, as part of the RACE-OC project (Rotation and ACtivity Evolution in Open Clusters). In this paper, we present the results for HD 155555C which is believed to be physically associated to the spectroscopic binary V824 Ara (HD 155555) and thus constituting a triple system. We collected B, V, and R-band photometric data timeseries and discovered from periodogram analysis the rotation period P = 4.43 d. Combined with stellar radius and projected rotational velocity, we find this star almost equator-on with an inclination i ≃ 90 ° . The rotational properties of HD 155555C fit well into the period distribution of other β Pic members, giving further support to the suggested membership to the association and to its physical association to V824 Ara. A comparison with pre-main-sequence isochrones from various models allows us to estimate an age of 20 ± 15 Myr for this triple system.
The Discovery of a Low-Mass Binary Companion to HD130948
NASA Astrophysics Data System (ADS)
Potter, D. E.; Cushing, M. C.; Neuhauser, R.
2003-10-01
We report the discovery of a low mass binary companion to the nearby (17.9 pc) main sequence star HD130948 (HR5534, HIP 72567) using the Hokupa'a adaptive optics instrument mounted on the Gemini North 8 meter telescope. Both companions have the same common proper motion as the primary star as seen over a 4 month baseline. The JHK' photometry of the companions, when placed on a near-IR color-magnitude diagram and compared with theoretical models places them at the bottom of the M-dwarf sequence. Preliminary near IR spectra have been obtained with SpeX mounted on the NASA IRTF 3 meter telescope are consistent with the photometric results and show carbon monoxide bandheads and water absorption features indicative of an early L-late M spectral type. The X-ray activity and Lithium abundance of the primary star indicate that the system is probably less than 1 Gyr old. Assuming a young age, these objects are less than 80 Mjupiter. With further astrometric observations carried out over an estimated orbital period of 10-20 years, a dynamical mass will be obtained.
NASA Astrophysics Data System (ADS)
Reggiani, Henrique; Meléndez, Jorge
2018-04-01
Recent studies of chemical abundances in metal-poor halo stars show the existence of different populations, which is important for studies of Galaxy formation and evolution. Here, we revisit the twin pair of chemically anomalous stars HD 134439 and HD 134440, using high resolution (R ˜ 72 000) and high S/N ratio (S/N ˜ 250) HDS/Subaru spectra. We compare them to the well-studied halo star HD 103095, using the line-by-line differential technique to estimate precise stellar parameters and LTE chemical abundances. We present the abundances of C, O, Na, Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Sr, Y, Ba, La, Ce, Nd, and Sm. We compare our results to the precise abundance patterns of Nissen & Schuster (2010) and data from dwarf Spheroidal galaxies (dSphs). We show that the abundance pattern of these stars appears to be closely linked to that of dSphs with [α/Fe] knee below [Fe/H] < -1.5. We also find a systematic difference of 0.06 ± 0.01 dex between the abundances of these twin binary stars, which could be explained by the engulfment of a planet, thus suggesting that planet formation is possible at low metallicities ([Fe/H] = -1.4).
Shrinking of the Be disk whilst the X-ray activity increases in the binary system A0535+262
NASA Astrophysics Data System (ADS)
Camero-Arranz, A.; Caballero-Garcia, M. D.; Fabregat, J.; Jelinek, M.; Castro-Tirado, A.; Peris, V.
2015-02-01
We report on the evolution of the H & alpha; equivalent width (EW) of the Be/X-ray binary system A 0535+262/HD 245770, using observations performed with the spectrograph COLORES at the 0.6 m telescope BOOTES-2 (M & aacute;laga, Spain) on 2015-01-27 at 22:05:31.736 UTC (MJD 57049.920), and with the spectrograph located at the 51 cm telescope of the Observatorio de Aras de los Olmos of the University of Valencia on 2015-01-29 at 01:00:00 UTC (MJD 57051.042).
Electron-ion recombination in low temperature hydrogen/deuterium plasma
NASA Astrophysics Data System (ADS)
Glosík, Juraj; Dohnal, Petr; Kálosi, Ábel; Augustovičová, Lucie D.; Shapko, Dmytro; Roučka, Štěpán; Plašil, Radek
2018-01-01
The stationary afterglow with cavity ring down spectrometer (SA-CRDS) was used to study the recombination of H3+, H2D+, HD2+ and D3+ ions with electrons in low temperature (77-300 K) plasmas in He/Ar/H2/D2 gas mixtures. By measuring effective recombination rate coefficients (αeff) in plasma with mixtures of ions and their dependences on temperature and partial densities of He, H2 and D2, αeff (T, [He],[H2],[D2]), we determined binary (αbinH3, αbinH2D, αbinHD2, αbinD3) and ternary (KH3, KH2D, KHD2, KD3) recombination rate coefficients for H3+, H2D+, HD2+ and D3+ ions. For all four ions we observed very efficient He assisted ternary recombination which is comparable with binary recombination already at [He] =1 × 1017 cm-3. The removal of excited particles in afterglow plasma was monitored to obtain the plasma thermalisation rate at given experimental conditions. The inferred deexcitation rates for reaction of helium metastable atoms with D2 are kD2 (300 K)=(2.1 ± 0.3) × 10-10 cm3 s-1 and kD2 (140 K)=(1.3 ± 0.3) × 10-10 cm3 s-1. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea.
Contribution a l'etude des spectres composites. VI. HD 66068-9.
NASA Astrophysics Data System (ADS)
Carquillat, J. M.; Ginestet, N.; Duquennoy, A.; Pedoussaut, A.
1994-09-01
HD 66068-9 is listed by Hynek (1938) as a star having a composite spectrum. Classifications made by various authors and by us indicate that this star is, in fact, an Am one. Our radial velocity observations, carried out at the Observatoire de Haute-Provence with the spectrovelocimeter CORAVEL, show HD 66068-9 to be a double-lined spectroscopic binary with the following orbital elements: P=7.74799days; T=2447600.690JD; ω=341.1deg; e=0.418; K_1_=56.1km/s; K_2_=75.1km/s; V_0_=-21.1km/s; a_1_sini=5.43x10^6^km; a_2_sini=7.27x10^6^km; M_1_sin^3^i=0.78Msun_; M_2_sin^3^i=0.58Msun_. The system appears to be a detached one (a=~25Rsun_) without possibility of eclipses (i=~47deg); the secondary component should be an early F dwarf star. The ratio of the corelation dip areas indicates a blue magnitude difference {DELTA}m~1.6mag., and the dip area of the primary alone a metallicity [Fe/H]=~0.37dex for the Am star. Rotation-revolution synchronism is discussed: we conclude that this binary does not rotate synchronically but perhaps that pseudo-synchronization occurs near the periastron passage, according to Hut's theory. Perturbations of some radial velocities during 1983 suggest the existence of a long period third body.
MOST discovers a multimode δ Scuti star in a triple system: HD 61199
NASA Astrophysics Data System (ADS)
Hareter, M.; Kochukhov, O.; Lehmann, H.; Tsymbal, V.; Huber, D.; Lenz, P.; Weiss, W. W.; Matthews, J. M.; Rucinski, S.; Rowe, J. F.; Kuschnig, R.; Guenther, D. B.; Moffat, A. F. J.; Sasselov, D.; Walker, G. A. H.; Scholtz, A.
2008-12-01
Context: A field star, HD 61199 (V ≈ 8), simultaneously observed with Procyon by the MOST (Microvariability & Oscillations of STars) satellite in continuous runs of 34, 17, and 34 days in 2004, 2005, and 2007, was found to pulsate in 11 frequencies in the δ Scuti range with amplitudes from 1.7 down to 0.09 mmag. The photometry also showed variations with a period of about four days. To investigate the nature of the longer period, 45 days of time-resolved spectroscopy was obtained at the Thüringer Landessternwarte Tautenburg in 2004. The radial velocity measurements indicate that HD 61199 is a triple system. Aims: A δ Scuti pulsator with a rich eigenspectrum in a multiple system is promising for asteroseismology. Our objectives were to identify which of the stars in the system is the δ Scuti variable and to obtain the orbital elements of the system and the fundamental parameters of the individual components, which are constrained by the pulsation frequencies of the δ Scuti star. Methods: Classical Fourier techniques and least-squares multi-sinusoidal fits were applied to the MOST photometry to identify the pulsation frequencies. The groundbased spectroscopy was analysed with least-squares-deconvolution (LSD) techniques, and the orbital elements derived with the KOREL and ORBITX routines. Asteroseismic models were also generated. Results: The photometric and spectroscopic data are compatible with a triple system consisting of a close binary with an orbital period of 3.57 days and a δ Scuti companion (HD 61199 A) as the most luminous component. The δ Scuti star is a rapid rotator with about v\\cdot sin{i} = 130 {km s-1} and an upper mass limit of about 2.1 M⊙. For the close binary components, we find they are of nearly equal mass, with lower mass limits of about 0.7 M⊙. Comparisons to synthetic spectra indicate these stars have a late-F spectral type. The observed oscillation frequencies are compared to pulsation models to further constrain the evolutionary state and mass of HD 61199 A. The orbit frequency of the close binary corresponds to the difference of the two δ Scuti frequencies with the highest amplitudes - a coincidence that is remarkable, but not explained. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna and on spectra taken with the Coudé-echelle spectrograph attached to the 2-m telescope of the Thueringer Landessternwarte Tautenburg.
HD 51844: An Am δ Scuti in a binary showing periastron brightening
NASA Astrophysics Data System (ADS)
Hareter, M.; Paparó, M.; Weiss, W.; García Hernández, A.; Borkovits, T.; Lampens, P.; Rainer, M.; De Cat, P.; Marcos-Arenal, P.; Vos, J.; Poretti, E.; Baglin, A.; Michel, E.; Baudin, F.; Catala, C.
2014-07-01
Context. Pulsating stars in binary systems are ideal laboratories to test stellar evolution and pulsation theory, since a direct, model-independent determination of component masses is possible. The high-precision CoRoT photometry allows a detailed view of the frequency content of pulsating stars, enabling detection of patterns in their distribution. The object HD 51844 is such a case showing periastron brightening instead of eclipses. Aims: We present a comprehensive study of the HD 51844 system, where we derive physical parameters of both components, the pulsation content and frequency patterns. Additionally, we obtain the orbital elements, including masses, and the chemical composition of the stars. Methods: Time series analysis using standard tools was employed to extract the pulsation frequencies. Photospheric abundances of 21 chemical elements were derived by means of spectrum synthesis. We derived orbital elements both by fitting the observed radial velocities and the light curves, and we did asteroseismic modelling as well. Results: We found that HD 51844 is a double lined spectroscopic binary. The determined abundances are consistent with δ Delphini classification. We determined the orbital period (33.498 ± 0.002 d), the eccentricity (0.484 ± 0.020), the mass ratio (0.988 ± 0.02), and the masses to 2.0 ± 0.2 M⊙ for both components. Only one component showed pulsation. Two p modes (f22 and f36) and one g mode (forb) may be tidally excited. Among the 115 frequencies, we detected triplets due to the frequency modulation, frequency differences connected to the orbital period, and unexpected resonances (3:2, 3:5, and 3:4), which is a new discovery for a δ Sct star. The observed frequency differences among the dominant modes suggest a large separation of 2.0-2.2 d-1, which are consistent with models of mean density of 0.063 g cm-3, and with the binary solution and TAMS evolutionary phase for the pulsating component. The binary evolution is in an intermediate evolutionary phase; the stellar rotation is super-synchronised, but circularisation of the orbit is not reached. Based on observations obtained with the HERMES spectrograph attached to the Mercator Telescope which is operated on the island of La Palma by the University of Leuven (IvS) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. The HERMES spectrograph is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany. Based on CoRoT space-based photometric data; the CoRoT space mission was developed and operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations collected at La Silla Observatory, ESO (Chile) with the HARPS spectrograph at the 3.6 m telescope, under programme LP185.D-0056.Table 9 is available in electronic form at http://www.aanda.org
NASA Technical Reports Server (NTRS)
Nichols, J. S.; Fesen, R. A.
1994-01-01
Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer during a Roche Lobe overflow stage of the binary after the supernova explosion. In either of these cases the bright optical ring nebulae associated with these three WR stars may signify recent Roche Lobe overflows consistent with spectroscopic abundance analysis.
The long-period binary central stars of the planetary nebulae NGC 1514 and LoTr 5
NASA Astrophysics Data System (ADS)
Jones, D.; Van Winckel, H.; Aller, A.; Exter, K.; De Marco, O.
2017-04-01
The importance of long-period binaries for the formation and evolution of planetary nebulae is still rather poorly understood, which in part is due to the lack of central star systems that are known to comprise such long-period binaries. Here, we report on the latest results from the on-going Mercator-HERMES survey for variability in the central stars of planetary nebulae. We present a study of the central stars of NGC 1514, BD+30°623, the spectrum of which shows features associated with a hot nebular progenitor as well as a possible A-type companion. Cross-correlation of high-resolution HERMES spectra against synthetic spectra shows the system to be a highly eccentric (e 0.5) double-lined binary with a period of 3300 days. Previous studies indicated that the cool component might be a horizontal branch star of mass 0.55 M⊙, but the observed radial velocity amplitudes rule out such a low mass. If we assume that the nebular symmetry axis and binary orbital plane are perpendicular, then the data are more consistent with a post-main-sequence star ascending towards the giant branch. We also present the continued monitoring of the central star of LoTr 5, HD 112313, which has now completed one full cycle, allowing the orbital period (P 2700 days) and eccentricity (e 0.3) to be derived. To date, the orbital periods of BD+30°623 and HD 112313 are the longest to have been measured spectroscopically in the central stars of planetary nebulae. Furthermore, these systems, along with BD+33°2642, comprise the only spectroscopic wide-binary central stars currently known. Based on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.The radial velocity data for both objects are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/L9
Quantitative spectral analysis of the sdB star HD 188112: A helium-core white dwarf progenitor
NASA Astrophysics Data System (ADS)
Latour, M.; Heber, U.; Irrgang, A.; Schaffenroth, V.; Geier, S.; Hillebrandt, W.; Röpke, F. K.; Taubenberger, S.; Kromer, M.; Fink, M.
2016-01-01
Context. HD 188112 is a bright (V = 10.2 mag) hot subdwarf B (sdB) star with a mass too low to ignite core helium burning and is therefore considered a pre-extremely low-mass (ELM) white dwarf (WD). ELM WDs (M ≲ 0.3 M⊙) are He-core objects produced by the evolution of compact binary systems. Aims: We present in this paper a detailed abundance analysis of HD 188112 based on high-resolution Hubble Space Telescope (HST) near- and far-ultraviolet spectroscopy. We also constrain the mass of the star's companion. Methods: We use hybrid non-LTE model atmospheres to fit the observed spectral lines, and to derive the abundances of more than a dozen elements and the rotational broadening of metallic lines. Results: We confirm the previous binary system parameters by combining radial velocities measured in our UV spectra with the previously published values. The system has a period of 0.60658584 days and a WD companion with M ≥ 0.70 M⊙. By assuming a tidally locked rotation combined with the projected rotational velocity (v sin I = 7.9 ± 0.3 km s-1), we constrain the companion mass to be between 0.9 and 1.3 M⊙. We further discuss the future evolution of the system as a potential progenitor of an underluminous type Ia supernova. We measure abundances for Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Ni, and Zn, and for the trans-iron elements Ga, Sn, and Pb. In addition, we derive upper limits for the C, N, O elements and find HD 188112 to be strongly depleted in carbon. We find evidence of non-LTE effects on the line strength of some ionic species such as Si II and Ni II. The metallic abundances indicate that the star is metal-poor, with an abundance pattern most likely produced by diffusion effects.
First discovery of a magnetic field in a main-sequence δ Scuti star: the Kepler star HD 188774
NASA Astrophysics Data System (ADS)
Neiner, C.; Lampens, P.
2015-11-01
The Kepler space mission provided a wealth of δ Sct-γ Dor hybrid candidates. While some may be genuine hybrids, others might be misclassified due to the presence of a binary companion or to rotational modulation caused by magnetism and related surface inhomogeneities. In particular, the Kepler δ Sct-γ Dor hybrid candidate HD 188774 shows a few low frequencies in its light and radial velocity curves, whose origin is unclear. In this work, we check for the presence of a magnetic field in HD 188774. We obtained two spectropolarimetric measurements with an Echelle SpectroPolarimetric Device for the Observation of Stars (ESPaDOnS) at Canada-France-Hawaii Telescope. The data were analysed with the least-squares deconvolution (LSD) method. We detected a clear magnetic signature in the Stokes V LSD profiles. The origin of the low frequencies detected in HD 188774 is therefore most probably the rotational modulation of surface spots possibly related to the presence of a magnetic field. Consequently, HD 188774 is not a genuine hybrid δ Sct-γ Dor star, but the first known magnetic main-sequence δ Sct star. This makes it a prime target for future asteroseismic and spot modelling. This result casts new light on the interpretation of the Kepler results for other δ Sct-γ Dor hybrid candidates.
NASA Astrophysics Data System (ADS)
Stassun, Keivan; David, Trevor J.; Conroy, Kyle E.; Hillenbrand, Lynne; Stauffer, John R.; Pepper, Joshua; Rebull, Luisa M.; Cody, Ann Marie
2016-06-01
Prior to K2, only one eclipsing binary in the Pleiades was known (HD 23642). We present the discovery and characterization of three additional eclipsing binaries (EBs) in this ~120 Myr old benchmark open cluster. Unlike HD 23642, all three of the new EBs are low mass (Mtot < 1 M⊙) and thus their components are still undergoing pre-main-sequence contraction at the Pleiades age. Low mass EBs are rare, especially in the pre-main-sequence phase, and thus these systems are valuable for constraining theoretical stellar evolution models. One of the three new EBs is single-lined with a K-type primary (HII 2407). The second (HCG 76) comprises two nearly equal-mass 0.3 M⊙ stars, with masses and radii measured with precisions of better than 3% and 5%, respectively. The third (MHO 9) has an M-type primary with a secondary that is possibly quite close to the hydrogen-burning limit, but needs additional follow-up observations to better constrain its parameters. We use the precise parameters of HCG 76 to test the predictions of stellar evolution models, and to derive an independent distance to the Pleiades of 132±5 pc. Finally, we present tentative evidence for differential rotation in the primary component of the newly discovered Pleiades EB HII 2407, and we also characterize a newly discovered transiting Neptune-sized planet orbiting an M-dwarf in the Hyades.
Asteroseismic Investigations of the Binary System HD 176465
NASA Astrophysics Data System (ADS)
Gai, Ning; Basu, Sarbani; Tang, Yanke
2018-04-01
HD 176465 is a binary system for which both components are solar-like pulsators and oscillation frequencies were observed by the Kepler mission. In this paper, we have modeled the asteroseismic and spectroscopic data of the stars, and have determined their convection-zone helium abundances using the signatures left by the He II ionization zone on the mode frequencies. As expected, we find that the components of the binary are of the same age within uncertainties (3.087 ± 0.580 Gyr and 3.569 ± 0.912 Gyr); they also have the same initial helium abundance (Y init = 0.253 ± 0.006 and 0.254 ± 0.008). Their current metallicity ([Fe/H] = ‑0.275 ± 0.04 and ‑0.285 ± 0.04) is also the same within errors. Fits to the signature of the He II acoustic glitch yield current helium abundances of Y A = 0.224 ± 0.006 and Y B = 0.233 ± 0.008 for the two components. Analyzing the complete ensemble of models generated for this investigation, we find that both the amplitude and acoustic depth of the glitch signature arising from the second helium ionization zone and the base of the convection zone (CZ) are functions of mass. We show that the acoustic depths of these glitches are positively correlated with each other. The analysis can help us to detect the internal structure and constrain the chemical compositions.
51 Eridani and GJ 3305: A 10-15 Myr old Binary Star System at 30 Parsecs
NASA Astrophysics Data System (ADS)
Feigelson, E. D.; Lawson, W. A.; Stark, M.; Townsley, L.; Garmire, G. P.
2006-03-01
Following the suggestion of Zuckerman and coworkers, we consider the evidence that 51 Eri (spectral type F0) and GJ 3305 (M0), historically classified as unrelated main-sequence stars in the solar neighborhood, are instead a wide physical binary system and members of the young β Pic moving group (BPMG). The BPMG is the nearest (d<~50 pc) of several groups of young stars with ages around 10 Myr that are kinematically convergent with the Oph-Sco-Cen association (OSCA), the nearest OB star association. Combining South African Astronomical Observatory optical photometry, Hobby-Eberly Telescope high-resolution spectroscopy, Chandra X-Ray Observatory data, and Second US Naval Observatory CCD Astrograph Catalog kinematics, we confirm with high confidence that the system is indeed extremely young. GJ 3305 itself exhibits very strong magnetic activity but has rapidly depleted most of its lithium. The 51 Eri/GJ 3305 system is the westernmost known member of the OSCA, lying 110 pc from the main subgroups. The system is similar to the BPMG wide binary HD 172555/CD -64 1208 and the HD 104237 quintet, suggesting that dynamically fragile multiple systems can survive the turbulent environments of their natal giant molecular cloud complexes, while still having high dispersion velocities imparted. Nearby young systems such as these are excellent targets for evolved circumstellar disk and planetary studies, having stellar ages comparable to that of the late phases of planet formation.
HD 129333: The Sun in its infancy
NASA Technical Reports Server (NTRS)
Dorren, J. David; Guinan, Edward F.
1994-01-01
HD 129333 is a remarkable young, nearby solar-type G star which offers a unique opportunity of studying the properties of the Sun at a time very shortly after in arrived on the main sequence. Its space motion suggest that it is a member of the Pleiades moving group, with an age of approximately 70 Myr; its lithium abundance is consistent with this. HD 129333 has the highest level of Ca II emission of any G star which is not a member of a close binary. Our observations in 1983 showed it to have low-amplitude (5%) light variations implying a rotation period of about 2.7 days, or about 10 times faster than the Sun. Modeling of the photometric variations on the assumption that they are due to starspots yields a spot temperature about 500 K cooler than the photosphere, and a coverage of about 6% of the stellar surface area. ROSAT observations in 1990 revealed the star to be an X-ray source, with an X-ray luminosity in the 0.2 to 2.4 keV range about 300 times that of the Sun. We have used International Ultraviolet Explorer (IUE) observations in conjuction with ground-based photometry to examine the magnetic activity of this star. The IUE emission-line fluxes reveal a level of chromospheric activity 3 to 20 times greater than the Sun's. The transition-region activity is 20 to 100 times that of the Sun. The activity level of HD 129333 is consistent with the Skumanich law relating activity to age, and with the rotation-activity relation, although it may be near saturation level. This star can yield valuable information about the magnetic dynamo of the young Sun, as well as about stellar dynamos in general. The 1988 IUE observations covered four phases of its rotational cycle. A phase dependence of the Mg II h and k emission flux suggests a close association of chromospheric plages with starspot regions at that time. Systematic variations in the mean brightness of HD 129333 between 1983 and 1993, and in the UV emission fluxes, indicate the presence of an activity cycle of an estimated 12 years' duration. HD 129333 is the first solar-type star other than RS CVn binaries for which luminosity variations provide evidence for a spot cycle. Unlike the Sun, which is brighter at activity maximum HD 129333 appears to be fainter when more heavily spotted. Although evolutionary models for the Sun suggest that it was about 30% less luminous at age 70 Myr, they give no information about the UV flux. Accordingly, we have used the 1988 IUE observations of HD 129333 to construct a model spectrum of the infant Sun, which can be used to provide a quantitative estimate of the UV flux in the early solar system.
Final binary star results from the ESO VLT Lunar occultations program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richichi, A.; Fors, O.; Cusano, F.
2014-03-01
We report on 13 subarcsecond binaries, detected by means of lunar occultations in the near-infrared at the ESO Very Large Telescope (VLT). They are all first-time detections except for the visual binary HD 158122, which we resolved for the first time in the near-infrared. The primaries have magnitudes in the range K = 4.5-10.0, and companions in the range K = 6.8-11.1. The magnitude differences have a median value of 2.4, with the largest being 4.6. The projected separations are in the range of 4-168 mas, with a median of 13 mas. We discuss and compare our results with themore » available literature. With this paper, we conclude the mining for binary star detections in the 1226 occultations recorded at the VLT with the ISAAC instrument. We expect that the majority of these binaries may be unresolvable by adaptive optics on current telescopes, and they might be challenging for long-baseline interferometry. However, they constitute an interesting sample for future larger telescopes and for astrometric missions such as GAIA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldoretta, E. J.; Gies, D. R.; Henry, T. J.
2015-01-01
We present the results of an all-sky survey made with the Fine Guidance Sensor on the Hubble Space Telescope to search for angularly resolved binary systems among massive stars. The sample of 224 stars is comprised mainly of Galactic O- and B-type stars and luminous blue variables, plus a few luminous stars in the Large Magellanic Cloud. The FGS TRANS mode observations are sensitive to the detection of companions with an angular separation between 0.″01 and 1.″0 and brighter than △m=5. The FGS observations resolved 52 binary and 6 triple star systems and detected partially resolved binaries in 7 additionalmore » targets (43 of these are new detections). These numbers yield a companion detection frequency of 29% for the FGS survey. We also gathered literature results on the numbers of close spectroscopic binaries and wider astrometric binaries among the sample, and we present estimates of the frequency of multiple systems and the companion frequency for subsets of stars residing in clusters and associations, field stars, and runaway stars. These results confirm the high multiplicity fraction, especially among massive stars in clusters and associations. We show that the period distribution is approximately flat in increments of logP. We identify a number of systems of potential interest for long-term orbital determinations, and we note the importance of some of these companions for the interpretation of the radial velocities and light curves of close binaries that have third companions.« less
HD 101088, AN ACCRETING 14 AU BINARY IN LOWER CENTAURUS CRUX WITH VERY LITTLE CIRCUMSTELLAR DUST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bitner, Martin A.; Chen, Christine H.; Muzerolle, James
2010-05-10
We present high-resolution (R = 55, 000) optical spectra obtained with MIKE on the 6.5 m Magellan Clay Telescope as well as Spitzer MIPS photometry and Infrared Spectrometer low-resolution (R {approx} 60) spectroscopy of the close (14 AU separation) binary, HD 101088, a member of the {approx}12 Myr old southern region of the Lower Centaurus Crux subgroup of the Scorpius-Centaurus OB association. We find that the primary and/or secondary is accreting from a tenuous circumprimary and/or circumsecondary disk despite the apparent lack of a massive circumbinary disk. We estimate a lower limit to the accretion rate of M-dot > 1x10{supmore » -9} M{sub sun} yr{sup -1}, which our multiple observation epochs show varies over a timescale of months. The upper limit on the 70 {mu}m flux allows us to place an upper limit on the mass of dust grains smaller than several microns present in a circumbinary disk of 0.16 M{sub moon}. We conclude that the classification of disks into either protoplanetary or debris disks based on fractional infrared luminosity alone may be misleading.« less
The unusual carbon star HD 59643 - Alternative models
NASA Technical Reports Server (NTRS)
Johnson, H. R.; Eaton, J. A.; Querci, F. R.; Querci, M.; Baumert, J. H.
1988-01-01
A binary model for the carbon star HD 59643 is discussed in which the secondary spectrum is formed in an accretion disk. If this hot, ultraviolet-emitting disk radiates like a 20,000 K black-body, it must be 0.03 solar radii or less across at minimum emission. Large widths of C IV multiplet UV1 on high-resolution spectra indicate its formation in the inner parts of a disk. The semiforbidden C III and Si III lines, however, are much narrower and could be formed in the outer parts of a disk or in the carbon star's chromosphere. The electron density in the region of formation of C III is about 10 to the 10th/cu cm.
Chandra Observations of Associates of η Carinae. II. Spectra
NASA Astrophysics Data System (ADS)
Evans, Nancy Remage; Schlegel, Eric M.; Waldron, Wayne L.; Seward, Frederick D.; Krauss, Miriam I.; Nichols, Joy; Wolk, Scott J.
2004-09-01
The low-resolution X-ray spectra around η Car covering Trumpler 16 and part of Trumpler 14 have been extracted from a Chandra CCD ACIS image. Various analysis techniques have been applied to the spectra based on their count rates. The spectra with the greatest number of counts (HD 93162 = WR 25, HD 93129 AB, and HD 93250) have been fitted with a wind model, which uses several components with different temperatures and depths in the wind. Weaker spectra have been fitted with Raymond-Smith models. The weakest spectra are simply intercompared with strong spectra. In general, fits produce reasonable parameters based on knowledge of the extinction from optical studies and on the range of temperatures for high- and low-mass stars. Direct comparisons of spectra confirm the consistency of the fitting results and also hardness ratios for cases of unusually large extinction in the clusters. The spectra of the low-mass stars are harder than the more massive stars. Stars in the sequence evolving from the main sequence (HD 93250) through the system containing the O supergiant (HD 93129 AB) and then through the Wolf-Rayet stage (HD 93162), presumably ending in the extreme example of η Car, share the property of being unusually luminous and hard in X-rays. For these X-ray-luminous stars, their high mass and evolutionary status (from the very last stages of the main sequence and beyond) is the common feature. Their binary status is mixed, and their magnetic status is still uncertain. Based on observations made with the Chandra X-Ray Observatory.
DOUBLE BOW SHOCKS AROUND YOUNG, RUNAWAY RED SUPERGIANTS: APPLICATION TO BETELGEUSE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackey, Jonathan; Mohamed, Shazrene; Neilson, Hilding R.
2012-05-20
A significant fraction of massive stars are moving supersonically through the interstellar medium (ISM), either due to disruption of a binary system or ejection from their parent star cluster. The interaction of their wind with the ISM produces a bow shock. In late evolutionary stages these stars may undergo rapid transitions from red to blue and vice versa on the Hertzsprung-Russell diagram, with accompanying rapid changes to their stellar winds and bow shocks. Recent three-dimensional simulations of the bow shock produced by the nearby runaway red supergiant (RSG) Betelgeuse, under the assumption of a constant wind, indicate that the bowmore » shock is very young (<30, 000 years old), hence Betelgeuse may have only recently become an RSG. To test this possibility, we have calculated stellar evolution models for single stars which match the observed properties of Betelgeuse in the RSG phase. The resulting evolving stellar wind is incorporated into two-dimensional hydrodynamic simulations in which we model a runaway blue supergiant (BSG) as it undergoes the transition to an RSG near the end of its life. We find that the collapsing BSG wind bubble induces a bow shock-shaped inner shell around the RSG wind that resembles Betelgeuse's bow shock, and has a similar mass. Surrounding this is the larger-scale retreating bow shock generated by the now defunct BSG wind's interaction with the ISM. We suggest that this outer shell could explain the bar feature located (at least in projection) just in front of Betelgeuse's bow shock.« less
Runaway youths and correlating factors, study in Thailand.
Techakasem, Pisarn; Kolkijkovin, Varuna
2006-02-01
To study differences between runaways and non-runaways in a mental health clinic and to study differences between runaways in a mental health clinic and legal / shelter system. Psychiatric records of runaways and non-runaways from Vajira Hospital were collected from June 1994 to October 2003. 21 cases in each group were studied in various factors. 21 runaway cases who were in child and adolescent shelters were interviewed by the researchers. Neglect, sexual abuse, rejection, poverty and truancy were more common in the runaway group. The runaway group had more conduct disorder and substance abuse. Physical abuse, authoritarian and being in custody were more common in runaways in shelters. Various factors correlate with running away. These factors lie beneath long before runaway has taken place and understanding and managing them help in preventing and prompt treatment.
4U 1907+09: an HMXB running away from the Galactic plane
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.; Röser, S.; Scholz, R.-D.; Schilbach, E.
2011-05-01
We report the discovery of a bow shock around the high-mass X-ray binary (HMXB) 4U 1907+09 using the Spitzer Space Telescope 24 μm data (after Vela X-1 the second example of bow shocks associated with HMXBs). The detection of the bow shock implies that 4U 1907+09 is moving through space with a high (supersonic) peculiar velocity. To confirm the runaway nature of 4U 1907+09, we measured its proper motion, which for an adopted distance to the system of 4 kpc corresponds to a peculiar transverse velocity of ≃ 160 ± 115 km s-1, meaning that 4U 1907+09 is indeed a runaway system. This also supports the general belief that most HMXBs possess high space velocities. The direction of motion of 4U 1907+09 inferred from the proper motion measurement is consistent with the orientation of the symmetry axis of the bow shock, and shows that the HMXB is running away from the Galactic plane. We also present the Spitzer images of the bow shock around Vela X-1 (a system similar to 4U 1907+09) and compare it with the bow shock generated by 4U 1907+09.
Kinetics of relativistic runaway electrons
NASA Astrophysics Data System (ADS)
Breizman, B. N.; Aleynikov, P. B.
2017-12-01
This overview covers recent developments in the theory of runaway electrons in tokamaks. Its main purpose is to outline the intuitive basis for first-principle advancements in runaway electron physics. The overview highlights the following physics aspects of the runaway evolution: (1) survival and acceleration of initially hot electrons during thermal quench, (2) effect of magnetic perturbations on runaway confinement, (3) multiplication of the runaways via knock-on collisions with the bulk electrons, (4) slow decay of the runaway current, and (5) runaway-driven micro-instabilities. The scope of the reported studies is governed by the need to understand the behavior of runaway electrons as an essential physics element of the disruption events in ITER in order to develop an effective runaway mitigation scheme. ).
The search for the elusive companion of EG andromedae
NASA Technical Reports Server (NTRS)
Pesce, Joseph E.; Stencel, Robert E.; Oliversen, Nancy A.
1987-01-01
Observations are reported at opposite quadratures of the interacting symbiotic binary EG And (HD-4174, Period = 470 d). After correcting for absolute motion at the system, it appears, surprisingly, that many of the nebular lines arise from material that moves with the red giant star. This fact is used to interpret the observed complex line profiles of C IV and He II in the object.
NASA Astrophysics Data System (ADS)
Rodigas, Timothy J.; Bergeron, P.; Simon, Amélie; Arriagada, Pamela; Faherty, Jacqueline K.; Anglada-Escudé, Guillem; Mamajek, Eric E.; Weinberger, Alycia; Butler, R. Paul; Males, Jared R.; Morzinski, Katie; Close, Laird M.; Hinz, Philip M.; Bailey, Jeremy; Carter, Brad; Jenkins, James S.; Jones, Hugh; O'Toole, Simon; Tinney, C. G.; Wittenmyer, Rob; Debes, John
2016-11-01
HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2.″2 (100 au) at multiple wavelengths spanning 0.6-4 μm and show that it is most likely a gravitationally bound cool white dwarf. Modeling its spectral energy distribution suggests that its mass is 0.9-1.1 M ⊙, which corresponds to very high eccentricity, near edge-on orbits from a Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2σ, which is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.
Diabetic nephropathy: a strong predictor of sleep quality in hemodialysis patients.
Edalat-Nejad, Mahnaz; Jafarian, Nahid; Yousefichaijan, Parsa
2014-07-01
Sleep complaints are common in hemodialysis (HD) patients. Sleep quality (SQ) is a predictor of quality of life and mortality risk in HD. The aim of this study was to examine factors that may have a role in SQ. In this cross-sectional analytic study, 138 end-stage renal disease patients receiving maintenance HD for >3 months were included. The Pittsburgh Sleep Quality Index (PSQI) was used to measure individual's SQ. Patients with a global PSQI score >5 were assumed as poor sleepers. Eighty-eight patients (64%) were classified as poor sleepers. Poor sleepers were older and more likely had diabetes. They had significantly higher serum ferritin and calcium levels and lower serum parathyroid hormone level (all P-values <0.05). The global PSQI score was positively correlated with age, serum calcium level and presence of diabetes as the underlying cause of renal failure. In the multi-variable binary regression model, presence of diabetes (Odds Ratio (OR) = 3.67, P = 0.008) and body pain (OR = 1.182, P = 0.014) were the significant independent predictors for poor SQ. Poor SQ was common among our HD patients, especially among diabetic cases and, therefore, there is a need to pay more attention to the care of this subgroup with regard to the diagnosis and management of sleep complaints.
A solution for the binary system V1373 Orionis
NASA Astrophysics Data System (ADS)
Hauck, Norbert
2016-02-01
Binary system V1373 Ori (HD 36107) has been investigated in the photometric passbands VIc and by spectroscopy (radial velocities). Modelling of the data delivered a single and consistent solution for a detached configuration consisting of a large K-type giant primary component having a radius of 39.40 ± 0.43 Rsun and a mass of 1.132 ± 0.043 Msun, and an invisible dwarf secondary component having a mass of 0.661 ± 0.025 Msun. The red giant fits into a stellar model for a moderately sub-solar metallicity of Z = 0.008. [English and German online-version available under www.bav-astro.eu/rb/rb2016-2/4.html].
RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra
2016-12-20
The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the largemore » orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.« less
The Prototypical Young L/T-Transition Dwarf HD 203030B Likely Has Planetary Mass
NASA Astrophysics Data System (ADS)
Miles-Páez, Paulo A.; Metchev, Stanimir; Luhman, Kevin L.; Marengo, Massimo; Hulsebus, Alan
2017-12-01
Upon its discovery in 2006, the young L7.5 companion to the solar analog HD 203030 was found to be ≈ 200 K cooler than older late-L dwarfs, which is quite unusual. HD 203030B offered the first clear indication that the effective temperature at the L-to-T spectral type transition depends on surface gravity: now a well-known characteristic of low-gravity ultra-cool dwarfs. An initial age analysis of the G8V primary star indicated that the system was 130-400 Myr old, and so the companion would be between 12 and 31 {M}{Jup}. Using moderate-resolution near-infrared spectra of HD 203030B, we now find features of very low gravity comparable to those of 10-150 Myr old L7-L8 dwarfs. We also obtained more accurate near-infrared and Spitzer/IRAC photometry, and we find a {(J-K)}{MKO} color of 2.56 ± 0.13 mag—comparable to those observed in other young planetary-mass objects—and a luminosity of log({L}{bol}/{L}⊙ ) = -4.75 ± 0.04 dex. We further re-assess the evidence for the young age of the host star, HD 203030, with a more comprehensive analysis of the photometry and updated stellar activity measurements and age calibrations. Summarizing the age diagnostics for both components of the binary, we adopt an age of 100 Myr for HD 203030B and an age range of 30-150 Myr. Using cloudy evolutionary models, the new companion age range and luminosity result in a mass of 11 {M}{Jup} with a range of 8-15 {M}{Jup}, and an effective temperature of 1040 ± 50 K.
Stationary-Afterglow measurements of dissociative recombination of H2D+ and HD2+ ions
NASA Astrophysics Data System (ADS)
Dohnal, Petr; Kalosi, Abel; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj
2016-09-01
Binary recombination rate coefficients of H2D+ and HD2+ ions have been measured at a temperature of 80 K in an afterglow plasma experiment in which the fractional abundances of H3+, H2D+, HD2+, and D3+ ions were varied by adjusting the [D2]/([D2] + [H2]) ratio of the neutral gas. The fractional abundances of the four ion species during the afterglow and their rotational states were determined in situ by continuous-wave cavity ring-down absorption spectroscopy (CRDS), using overtone transitions from the ground vibrational states of the ions. The experimentally determined recombination rate coefficients will be compared to results of advanced theoretical calculations and to the known H3+ and D3+ recombination rate coefficients. We conclude that the recombination coefficients depend only weakly on the isotopic composition. Astrophysical implications of the measured recombination rate coefficients will be also discussed. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.
NASA Astrophysics Data System (ADS)
Price, Daniel J.; Cuello, Nicolás; Pinte, Christophe; Mentiplay, Daniel; Casassus, Simon; Christiaens, Valentin; Kennedy, Grant M.; Cuadra, Jorge; Sebastian Perez, M.; Marino, Sebastian; Armitage, Philip J.; Zurlo, Alice; Juhasz, Attila; Ragusa, Enrico; Laibe, Guillaume; Lodato, Giuseppe
2018-06-01
We present 3D hydrodynamical models of the HD 142527 protoplanetary disc, a bright and well-studied disc that shows spirals and shadows in scattered light around a 100 au gas cavity, a large horseshoe dust structure in mm continuum emission, together with mysterious fast radial flows and streamers seen in gas kinematics. By considering several possible orbits consistent with the observed arc, we show that all of the main observational features can be explained by one mechanism - the interaction between the disc and the observed binary companion. We find that the spirals, shadows, and horseshoe are only produced in the correct position angles by a companion on an inclined and eccentric orbit approaching periastron - the `red' family from Lacour et al. Dust-gas simulations show radial and azimuthal concentration of dust around the cavity, consistent with the observed horseshoe. The success of this model in the HD 142527 disc suggests other mm-bright transition discs showing cavities, spirals, and dust asymmetries may also be explained by the interaction with central companions.
Enhancement of runaway production by resonant magnetic perturbation on J-TEXT
NASA Astrophysics Data System (ADS)
Chen, Z. Y.; Huang, D. W.; Izzo, V. A.; Tong, R. H.; Jiang, Z. H.; Hu, Q. M.; Wei, Y. N.; Yan, W.; Rao, B.; Wang, S. Y.; Ma, T. K.; Li, S. C.; Yang, Z. J.; Ding, D. H.; Wang, Z. J.; Zhang, M.; Zhuang, G.; Pan, Y.; J-TEXT Team
2016-07-01
The suppression of runaways following disruptions is key for the safe operation of ITER. The massive gas injection (MGI) has been developed to mitigate heat loads, electromagnetic forces and runaway electrons (REs) during disruptions. However, MGI may not completely prevent the generation of REs during disruptions on ITER. Resonant magnetic perturbation (RMP) has been applied to suppress runaway generation during disruptions on several machines. It was found that strong RMP results in the enhancement of runaway production instead of runaway suppression on J-TEXT. The runaway current was about 50% pre-disruption plasma current in argon induced reference disruptions. With moderate RMP, the runway current decreased to below 30% pre-disruption plasma current. The runaway current plateaus reach 80% of the pre-disruptive current when strong RMP was applied. Strong RMP may induce large size magnetic islands that could confine more runaway seed during disruptions. This has important implications for runaway suppression on large machines.
X-RAY EMISSION FROM THE DOUBLE-BINARY OB-STAR SYSTEM QZ CAR (HD 93206)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parkin, E. R.; Naze, Y.; Rauw, G.
X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The respective orbits of systems A (O9.7 I+b2 v, P{sub A} = 21 days) and B (O8 III+o9 v, P{sub B} = 6 days) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three-temperature thermal plasma model, characterized by cool, moderate, and hot plasma components at kT {approx_equal} 0.2, 0.7, and 2 keV, respectively,more » and a circumstellar absorption of {approx_equal}0.2 x 10{sup 22} cm{sup -2}. Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of {approx_equal}7 x 10{sup -13} erg s{sup -1} cm{sup -2}, do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer, the model and observations are in far better agreement, which lends support to the previous suggestion of mass transfer in the O8 III + o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B.« less
ESO 2.2-m WFI Image of the Tarantula Nebula
2017-12-08
NASA image release May 11, 2010 Hubble Catches Heavyweight Runaway Star Speeding from 30 Doradus Image: ESO 2.2-m WFI Image of the Tarantula Nebula A blue-hot star, 90 times more massive than our Sun, is hurtling across space fast enough to make a round trip from Earth to the Moon in merely two hours. Though the speed is not a record-breaker, it is unique to find a homeless star that has traveled so far from its nest. The only way the star could have been ejected from the star cluster where it was born is through a tussle with a rogue star that entered the binary system where the star lived, which ejected the star through a dynamical game of stellar pinball. This is strong circumstantial evidence for stars as massive as 150 times our Sun's mass living in the cluster. Only a very massive star would have the gravitational energy to eject something weighing 90 solar masses. The runaway star is on the outskirts of the 30 Doradus nebula, a raucous stellar breeding ground in the nearby Large Magellanic Cloud. The finding bolsters evidence that the most massive stars in the local universe reside in 30 Doradus, making it a unique laboratory for studying heavyweight stars. 30 Doradus, also called the Tarantula Nebula, is roughly 170,000 light-years from Earth. To learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/runaway-star.html Credit: NASA/ESO, J. Alves (Calar Alto, Spain), and B. Vandame and Y. Beletski (ESO) NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Clumpy wind accretion in Supergiant X-ray Binaries
NASA Astrophysics Data System (ADS)
El Mellah, I.; Sundqvist, J. O.; Keppens, R.
2017-12-01
Supergiant X-ray binaries (\\sgx) contain a neutron star (NS) orbiting a Supergiant O/B star. The fraction of the dense and fast line-driven wind from the stellar companion which is accreted by the NS is responsible for most of the X-ray emission from those system. Classic \\sgx display photometric variability of their hard X-ray emission, typically from a few 10^{35} to a few 10^{37}erg\\cdots^{-1}. Inhomogeneities (\\aka clumps) in the wind from the star are expected to play a role in this time variability. We run 3D hydrodynamical (HD) finite volume simulations to follow the accretion of the inhomogeneous stellar wind by the NS over almost 3 orders of magnitude. To model the unperturbed wind far upstream the NS, we use recent simulations which managed to resolve its micro-structure. We observe the formation of a Bondi-Hoyle-Lyttleton (BHL) like bow shock around the accretor and follow the clumps as they cross it, down to the NS magnetosphere. Compared to previous estimations discarding the HD effects, we measure lower time variability due to both the damping effect of the shock and the necessity to evacuate angular momentum to enable accretion. We also compute the associated time-variable column density and compare it to recent observations in Vela X-1.
Perpendicular dynamics of runaway electrons in tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez-Gomez, I.; Martin-Solis, J. R.; Sanchez, R.
2012-10-15
In this paper, it will be shown that the runaway phenomenon in tokamak plasmas cannot be reduced to a one-dimensional problem, based on the competence between electric field acceleration and collisional friction losses in the parallel direction. A Langevin approach, including collisional diffusion in velocity space, will be used to analyze the two-dimensional runaway electron dynamics. An investigation of the runaway probability in velocity space will yield a criterion for runaway, which will be shown to be consistent with the results provided by the more simple test particle description of the runaway dynamics [Fuchs et al., Phys. Fluids 29, 2931more » (1986)]. Electron perpendicular collisional scattering will be found to play an important role, relaxing the conditions for runaway. Moreover, electron pitch angle scattering perpendicularly broadens the runaway distribution function, increasing the electron population in the runaway plateau region in comparison with what it should be expected from electron acceleration in the parallel direction only. The perpendicular broadening of the runaway distribution function, its dependence on the plasma parameters, and the resulting enhancement of the runaway production rate will be discussed.« less
Runaway Children Twelve Years Later: A Follow-Up.
ERIC Educational Resources Information Center
Olson, Lucy; And Others
1980-01-01
This study was based on intensive interviews with former runaways, nonrunaway siblings, parents, and other relatives. Differences in outcome were found between: (1) runaways and siblings; (2) runaway repeaters and nonrepeaters; and (3) runaways from working-class and middle-class backgrounds. (Author)
What is the fate of runaway positrons in tokamaks?
Liu, Jian; Qin, Hong; Fisch, Nathaniel J.; ...
2014-06-19
In this study, massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.
What is the fate of runaway positrons in tokamaks?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian; Qin, Hong, E-mail: hongqin@ustc.edu.cn; Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543
2014-06-15
Massive runaway positrons are generated by runaway electrons in tokamaks. The fate of these positrons encodes valuable information about the runaway dynamics. The phase space dynamics of a runaway position is investigated using a Lagrangian that incorporates the tokamak geometry, loop voltage, radiation and collisional effects. It is found numerically that runaway positrons will drift out of the plasma to annihilate on the first wall, with an in-plasma annihilation possibility less than 0.1%. The dynamics of runaway positrons provides signatures that can be observed as diagnostic tools.
Formation and termination of runaway beams in ITER disruptions
NASA Astrophysics Data System (ADS)
Martín-Solís, J. R.; Loarte, A.; Lehnen, M.
2017-06-01
A self-consistent analysis of the relevant physics regarding the formation and termination of runaway beams during mitigated disruptions by Ar and Ne injection is presented for selected ITER scenarios with the aim of improving our understanding of the physics underlying the runaway heat loads onto the plasma facing components (PFCs) and identifying open issues for developing and accessing disruption mitigation schemes for ITER. This is carried out by means of simplified models, but still retaining sufficient details of the key physical processes, including: (a) the expected dominant runaway generation mechanisms (avalanche and primary runaway seeds: Dreicer and hot tail runaway generation, tritium decay and Compton scattering of γ rays emitted by the activated wall), (b) effects associated with the plasma and runaway current density profile shape, and (c) corrections to the runaway dynamics to account for the collisions of the runaways with the partially stripped impurity ions, which are found to have strong effects leading to low runaway current generation and low energy conversion during current termination for mitigated disruptions by noble gas injection (particularly for Ne injection) for the shortest current quench times compatible with acceptable forces on the ITER vessel and in-vessel components ({τ\\text{res}}∼ 22~\\text{ms} ). For the case of long current quench times ({τ\\text{res}}∼ 66~\\text{ms} ), runaway beams up to ∼10 MA can be generated during the disruption current quench and, if the termination of the runaway current is slow enough, the generation of runaways by the avalanche mechanism can play an important role, increasing substantially the energy deposited by the runaways onto the PFCs up to a few hundreds of MJs. Mixed impurity (Ar or Ne) plus deuterium injection proves to be effective in controlling the formation of the runaway current during the current quench, even for the longest current quench times, as well as in decreasing the energy deposited on the runaway electrons during current termination.
Problems of Maltreated Runaway Youth.
ERIC Educational Resources Information Center
Kurtz, P. David; And Others
1991-01-01
Shelter staff from 8 states completed Client Information Records on 2,019 runaways. Found significant differences in problems reported by physically abused and sexually abused runaways when compared to nonabused runaway peers. Runaways who were both physically and sexually maltreated were significantly more vulnerable and much worse off than those…
Needs and Self-Concept of Runaway Adolescents.
ERIC Educational Resources Information Center
Post, Phyllis; McCoard, Douglas
1994-01-01
Developed Needs of Adolescent Runaways to assess needs of runaway adolescents housed in runaway shelter. Findings from 76 adolescent runaways revealed that greatest needs were concerned with living arrangements, family relationships, and communication with parents. Respondents perceived information about sex, drugs, and alcohol as least important.…
NASA Astrophysics Data System (ADS)
Oh, Semyeong; Price-Whelan, Adrian M.; Brewer, John M.; Hogg, David W.; Spergel, David N.; Myles, Justin
2018-02-01
We report and discuss the discovery of a significant difference in the chemical abundances of a comoving pair of bright solar-type stars, HD 240430 and HD 240429. The two stars have an estimated 3D separation of ≈0.6 pc (≈0.01 pc projected) at a distance of r ≈ 100 pc with nearly identical 3D velocities, as inferred from Gaia TGAS parallaxes and proper motions, and high-precision radial velocity measurements. Stellar parameters determined from high-resolution spectra obtained with the High Resolution Echelle Spectrometer (HIRES) at the Keck Observatory indicate that the two stars are ∼4 Gyr old. The more metal-rich of the two, HD 240430, shows an enhancement of refractory ({T}C> 1200 K) elements by ≈0.2 dex and a marginal enhancement of (moderately) volatile elements ({T}C< 1200 K; {{C}}, {{N}}, {{O}}, {Na}, and {Mn}). This is the largest metallicity difference found in a wide binary pair to date. Additionally, HD 240430 shows an anomalously high surface lithium abundance (A({Li})=2.75), higher than its cooler companion by 0.5 dex. The proximity in phase-space and ages between the two stars suggests that they formed together with the same composition, which is at odds with the observed differences in metallicity and abundance patterns. We therefore suggest that the star HD 240430, “Kronos,” accreted 15 {M}\\oplus of rocky material after birth, selectively enhancing the refractory elements as well as lithium in its surface and convective envelope.
Social Adjustment and Symptomatology in Two Types of Homeless Adolescents: Runaways and Throwaways.
ERIC Educational Resources Information Center
Hier, Sally J.; And Others
1990-01-01
Compared 52 homeless male and female runaways and throwaways for social adjustment and symptomatology. Found that male runaways were significantly more hostile than male throwaways and significantly more socially isolated than female runaways. Female throwaways were significantly more hostile than male throwaways and female runaways. Homeless…
The Prevalence of Disabilities and Maltreatment among Runaway Children.
ERIC Educational Resources Information Center
Sullivan, Patricia M.; Knutson, John F.
2000-01-01
Descriptive information was analyzed for maltreated and nonmaltreated runaways from hospital (N=39,352, 255 runaways) and school (N=40,211, 562 runaways) populations. Children and youth with disabilities (especially those with behavior disorders, mental retardation, and communication disorders) were at increased risk to become runaways in both…
Resources for Runaway and Missing Children.
ERIC Educational Resources Information Center
Illinois Univ., Champaign. Community Research Center.
Following a brief introduction, chapter 2 presents a typology of runaways in which four types of runaways are profiled (healthy, unhealthy, curious, chronic). The behaviors of each type are described and the services needed by each are discussed. General techniques for working with runaways are detailed, including developing a runaway profile,…
Role of bremsstrahlung radiation in limiting the energy of runaway electrons in tokamaks.
Bakhtiari, M; Kramer, G J; Takechi, M; Tamai, H; Miura, Y; Kusama, Y; Kamada, Y
2005-06-03
Bremsstrahlung radiation of runaway electrons is found to be an energy limit for runaway electrons in tokamaks. The minimum and maximum energy of runaway electron beams is shown to be limited by collisions and bremsstrahlung radiation, respectively. It is also found that a massive injection of a high-Z gas such as xenon can terminate a disruption-generated runaway current before the runaway electrons hit the walls.
Control of runaway electron energy using externally injected whistler waves
NASA Astrophysics Data System (ADS)
Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu
2018-03-01
One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.
Controlling runaway vortex via externally injected high-frequency electromagnetic waves
NASA Astrophysics Data System (ADS)
Guo, Zehua; McDevitt, Chris; Tang, Xianzhu
2017-10-01
One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as the whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by parallel electric field. By introducing a wave that resonantly interacts with runaways at a particular range of energy that is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodigas, Timothy J.; Arriagada, Pamela; Faherty, Jacqueline K.
HD 11112 is an old, Sun-like star that has a long-term radial velocity (RV) trend indicative of a massive companion on a wide orbit. Here we present direct images of the source responsible for the trend using the Magellan Adaptive Optics system. We detect the object (HD 11112B) at a separation of 2.″2 (100 au) at multiple wavelengths spanning 0.6–4 μ m and show that it is most likely a gravitationally bound cool white dwarf. Modeling its spectral energy distribution suggests that its mass is 0.9–1.1 M {sub ⊙}, which corresponds to very high eccentricity, near edge-on orbits from amore » Markov chain Monte Carlo analysis of the RV and imaging data together. The total age of the white dwarf is >2 σ , which is discrepant with that of the primary star under most assumptions. The problem can be resolved if the white dwarf progenitor was initially a double white dwarf binary that then merged into the observed high-mass white dwarf. HD 11112B is a unique and intriguing benchmark object that can be used to calibrate atmospheric and evolutionary models of cool white dwarfs and should thus continue to be monitored by RV and direct imaging over the coming years.« less
On the spectroscopic nature of the cool evolved Am star HD151878
NASA Astrophysics Data System (ADS)
Freyhammer, L. M.; Elkin, V. G.; Kurtz, D. W.
2008-10-01
Recently, Tiwari, Chaubey & Pandey detected the bright component of the visual binary HD151878 to exhibit rapid photometric oscillations through a Johnson B filter with a period of 6min (2.78mHz) and a high, modulated amplitude up to 22mmag peak-to-peak, making this star by far the highest amplitude rapidly oscillating Ap (roAp) star known. As a new roAp star, HD151878 is of additional particular interest as a scarce example of the class in the northern sky, and only the second known case of an evolved roAp star - the other being HD116114. We used the FIbre-fed Echelle Spectrograph at the Nordic Optical Telescope to obtain high time-resolution spectra at high dispersion to attempt to verify the rapid oscillations. We show here that the star at this epoch is spectroscopically stable to rapid oscillations of no more than a few tens of ms-1. The high-resolution spectra furthermore show the star to be of type Am rather than Ap and we show the star lacks most of the known characteristics for roAp stars. We conclude that this is an Am star that does not pulsate with a 6-min period. The original discovery of pulsation is likely to be an instrumental artefact. Based on observations collected at the Nordic Optical Telescope as part of programme 36-418. E-mail: lfreyham@gmail.com
First Detection of the Hatchett-McCray Effect in the High-Mass X-ray Binary
NASA Technical Reports Server (NTRS)
Sonneborn, G.; Iping, R. C.; Kaper, L.; Hammerschiag-Hensberge, G.; Hutchings, J. B.
2004-01-01
The orbital modulation of stellar wind UV resonance line profiles as a result of ionization of the wind by the X-ray source has been observed in the high-mass X-ray binary 4U1700-37/HD 153919 for the first time. Far-UV observations (905-1180 Angstrom, resolution 0.05 Angstroms) were made at the four quadrature points of the binary orbit with the Far Ultraviolet Spectroscopic Explorer (FUSE) in 2003 April and August. The O6.5 laf primary eclipses the X-ray source (neutron star or black hole) with a 3.41-day period. Orbital modulation of the UV resonance lines, resulting from X-ray photoionization of the dense stellar wind, the so-called Hatchett-McCray (HM) effect, was predicted for 4U1700-37/HD153919 (Hatchett 8 McCray 1977, ApJ, 211, 522) but was not seen in N V 1240, Si IV 1400, or C IV 1550 in IUE and HST spectra. The FUSE spectra show that the P V 1118-1128 and S IV 1063-1073 P-Cygni lines appear to vary as expected for the HM effect, weakest at phase 0.5 (X-ray source conjunction) and strongest at phase 0.0 (X-ray source eclipse). The phase modulation of the O VI 1032-1037 lines, however, is opposite to P V and S IV, implying that O VI may be a byproduct of the wind's ionization by the X-ray source. Such variations were not observed in N V, Si IV, and C IV because of their high optical depth. Due to their lower cosmic abundance, the P V and S IV wind lines are unsaturated, making them excellent tracers of the ionization conditions in the O star's wind.
Code of Federal Regulations, 2013 CFR
2013-10-01
... THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND... Runaway and Homeless Youth Program grant? 1351.20 Section 1351.20 Public Welfare Regulations Relating to... Runaway and Homeless Youth Program grant? (a) To improve the administration of the Runaway and Homeless...
Equilibrium, confinement and stability of runaway electrons in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D A
1976-03-01
Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits aremore » analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models. (MOW)« less
On the avalanche generation of runaway electrons during tokamak disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín-Solís, J. R., E-mail: solis@fis.uc3m.es; Loarte, A.; Lehnen, M.
2015-08-15
A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway currentmore » at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model.« less
Runaway Children in America: A Review of the Literature.
ERIC Educational Resources Information Center
Burke, William H.; Burkhead, E. Jane
1989-01-01
The paper reviews the literature regarding runaway children, defines runaway youth, and discusses predisposing factors. Suggestions are offered for further research on the etiology and treatment of runaway behavior. (JDD)
MESA models of the evolutionary state of the interacting binary epsilon Aurigae
NASA Astrophysics Data System (ADS)
Gibson, Justus L.; Stencel, Robert E.
2018-06-01
Using MESA code (Modules for Experiments in Stellar Astrophysics, version 9575), an evaluation was made of the evolutionary state of the epsilon Aurigae binary system (HD 31964, F0Iap + disc). We sought to satisfy several observational constraints: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C/13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 M⊙, with a 100 d initial period, produces a 1.2 + 10.6 M⊙ result having a 547 d period, and a single digit 12C/13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main-sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long-period binary stars.
Spectral energy distributions and colours of hot subluminous stars
NASA Astrophysics Data System (ADS)
Heber, Ulrich; Irrgang, Andreas; Schaffenroth, Johannes
2018-02-01
Photometric surveys at optical, ultraviolet, and infrared wavelengths provide ever-growing datasets as major surveys proceed. Colour-colour diagrams are useful tools to identify classes of star and provide large samples. However, combining all photometric measurements of a star into a spectral energy distribution will allow quantitative analyses to be carried out. We demonstrate how to construct and exploit spectral energy distributions and colours for sublumious B (sdB) stars. The aim is to identify cool companions to hot subdwarfs and to determine atmospheric parameters of apparently single sdB stars as well as composite spectrum sdB binaries.We analyse two sdB stars with high-quality photometric data which serve as our benchmarks, the apparently single sdB HD205805 and the sdB + K5 binary PG 0749+658, briefly present preliminary results for the sample of 142 sdB binaries with known orbits, and discuss future prospects from ongoing all-sky optical space- (Gaia) and ground-based (e.g. SkyMapper) as well as NIR surveys.
Colliding winds from early-type stars in binary systems
NASA Technical Reports Server (NTRS)
Stevens, Ian R.; Blondin, John M.; Pollock, A. M. T.
1992-01-01
The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.
Curious properties of the recycled pulsars and the potential of high precision timing
NASA Astrophysics Data System (ADS)
Bailes, Matthew
2010-03-01
Binary and Millisecond pulsars have a great deal to teach us about stellar evolution and are invaluable tools for tests of relativistic theories of gravity. Our understanding of these objects has been transformed by large-scale surveys that have uncovered a great deal of new objects, exquisitely timed by ever-improving instrumentation. Here we argue that there exists a fundamental relation between the spin period of a pulsar and its companion mass, and that this determines many of the observable properties of a binary pulsar. No recycled pulsars exist in which the minimum companion mass exceeds (P/10 ms) M ⊙. Furthermore, the three fastest disk millisecond pulsars are either single, or possess extremely low-mass companions ( Mc ˜ 0.02 M ⊙), consistent with this relation. Finally, the four relativistic binaries for which we have actual measurements of neutron star masses, suggest that not only are their spin periods related to the companion neutron star mass, but that the kick imparted to the system depends upon it too, leading to a correlation between orbital eccentricity and spin period. The isolation of the relativistic binary pulsars in the magnetic field-Period diagram is used to argue that this must be because the kicks imparted to proto-relativistic systems are usually small, leading to very few if any isolated runaway mildly-recycled pulsars. This calls into question the magnitude of supernova kicks in close binaries, which have been usually assumed to be similar to those imparted to the bulk of the pulsar population. Finally, we review some of the highlights of the Parkes precision timing efforts, which suggest 10 ns timing is obtainable on PSR J1909-3744 that will aid us in searching for a cosmological sources of gravitational waves.
Proper-motion age dating of the progeny of Nova Scorpii AD 1437.
Shara, M M; Iłkiewicz, K; Mikołajewska, J; Pagnotta, A; Bode, M F; Crause, L A; Drozd, K; Faherty, J; Fuentes-Morales, I; Grindlay, J E; Moffat, A F J; Pretorius, M L; Schmidtobreick, L; Stephenson, F R; Tappert, C; Zurek, D
2017-08-30
'Cataclysmic variables' are binary star systems in which one star of the pair is a white dwarf, and which often generate bright and energetic stellar outbursts. Classical novae are one type of outburst: when the white dwarf accretes enough matter from its companion, the resulting hydrogen-rich atmospheric envelope can host a runaway thermonuclear reaction that generates a rapid brightening. Achieving peak luminosities of up to one million times that of the Sun, all classical novae are recurrent, on timescales of months to millennia. During the century before and after an eruption, the 'novalike' binary systems that give rise to classical novae exhibit high rates of mass transfer to their white dwarfs. Another type of outburst is the dwarf nova: these occur in binaries that have stellar masses and periods indistinguishable from those of novalikes but much lower mass-transfer rates, when accretion-disk instabilities drop matter onto the white dwarfs. The co-existence at the same orbital period of novalike binaries and dwarf novae-which are identical but for their widely varying accretion rates-has been a longstanding puzzle. Here we report the recovery of the binary star underlying the classical nova eruption of 11 March AD 1437 (refs 12, 13), and independently confirm its age by proper-motion dating. We show that, almost 500 years after a classical-nova event, the system exhibited dwarf-nova eruptions. The three other oldest recovered classical novae display nova shells, but lack firm post-eruption ages, and are also dwarf novae at present. We conclude that many old novae become dwarf novae for part of the millennia between successive nova eruptions.
Note: Measurement of the runaway electrons in the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.
2012-05-01
The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.
45 CFR 1351.16 - What costs are not allowable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false What costs are not allowable under a Runaway and... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.16 What costs are not allowable under a Runaway and...
45 CFR 1351.15 - What costs are supportable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false What costs are supportable under a Runaway and... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.15 What costs are supportable under a Runaway and Homeless...
45 CFR 1351.10 - What is the purpose of the Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false What is the purpose of the Runaway and Homeless... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.10 What is the purpose of the Runaway and Homeless Youth...
45 CFR 1351.17 - How is application made for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false How is application made for a Runaway and Homeless... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.17 How is application made for a Runaway and Homeless...
45 CFR 1351.11 - Who is eligible to apply for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Who is eligible to apply for a Runaway and... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.11 Who is eligible to apply for a Runaway and Homeless...
45 CFR 1351.10 - What is the purpose of the Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.10 What is the purpose of the Runaway and Homeless Youth... 45 Public Welfare 4 2014-10-01 2014-10-01 false What is the purpose of the Runaway and Homeless...
45 CFR 1351.11 - Who is eligible to apply for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.11 Who is eligible to apply for a Runaway and Homeless... 45 Public Welfare 4 2012-10-01 2012-10-01 false Who is eligible to apply for a Runaway and...
45 CFR 1351.11 - Who is eligible to apply for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.11 Who is eligible to apply for a Runaway and Homeless... 45 Public Welfare 4 2014-10-01 2014-10-01 false Who is eligible to apply for a Runaway and...
45 CFR 1351.10 - What is the purpose of the Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.10 What is the purpose of the Runaway and Homeless Youth... 45 Public Welfare 4 2011-10-01 2011-10-01 false What is the purpose of the Runaway and Homeless...
45 CFR 1351.15 - What costs are supportable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.15 What costs are supportable under a Runaway and Homeless... 45 Public Welfare 4 2011-10-01 2011-10-01 false What costs are supportable under a Runaway and...
45 CFR 1351.10 - What is the purpose of the Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.10 What is the purpose of the Runaway and Homeless Youth... 45 Public Welfare 4 2012-10-01 2012-10-01 false What is the purpose of the Runaway and Homeless...
45 CFR 1351.17 - How is application made for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.17 How is application made for a Runaway and Homeless... 45 Public Welfare 4 2011-10-01 2011-10-01 false How is application made for a Runaway and Homeless...
45 CFR 1351.15 - What costs are supportable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.15 What costs are supportable under a Runaway and Homeless... 45 Public Welfare 4 2014-10-01 2014-10-01 false What costs are supportable under a Runaway and...
45 CFR 1351.16 - What costs are not allowable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.16 What costs are not allowable under a Runaway and... 45 Public Welfare 4 2011-10-01 2011-10-01 false What costs are not allowable under a Runaway and...
45 CFR 1351.15 - What costs are supportable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.15 What costs are supportable under a Runaway and Homeless... 45 Public Welfare 4 2013-10-01 2013-10-01 false What costs are supportable under a Runaway and...
45 CFR 1351.16 - What costs are not allowable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.16 What costs are not allowable under a Runaway and... 45 Public Welfare 4 2013-10-01 2013-10-01 false What costs are not allowable under a Runaway and...
45 CFR 1351.16 - What costs are not allowable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.16 What costs are not allowable under a Runaway and... 45 Public Welfare 4 2012-10-01 2012-10-01 false What costs are not allowable under a Runaway and...
45 CFR 1351.11 - Who is eligible to apply for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.11 Who is eligible to apply for a Runaway and Homeless... 45 Public Welfare 4 2011-10-01 2011-10-01 false Who is eligible to apply for a Runaway and...
45 CFR 1351.15 - What costs are supportable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.15 What costs are supportable under a Runaway and Homeless... 45 Public Welfare 4 2012-10-01 2012-10-01 false What costs are supportable under a Runaway and...
45 CFR 1351.16 - What costs are not allowable under a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.16 What costs are not allowable under a Runaway and... 45 Public Welfare 4 2014-10-01 2014-10-01 false What costs are not allowable under a Runaway and...
45 CFR 1351.17 - How is application made for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.17 How is application made for a Runaway and Homeless... 45 Public Welfare 4 2014-10-01 2014-10-01 false How is application made for a Runaway and Homeless...
45 CFR 1351.17 - How is application made for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.17 How is application made for a Runaway and Homeless... 45 Public Welfare 4 2012-10-01 2012-10-01 false How is application made for a Runaway and Homeless...
45 CFR 1351.10 - What is the purpose of the Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.10 What is the purpose of the Runaway and Homeless Youth... 45 Public Welfare 4 2013-10-01 2013-10-01 false What is the purpose of the Runaway and Homeless...
45 CFR 1351.17 - How is application made for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.17 How is application made for a Runaway and Homeless... 45 Public Welfare 4 2013-10-01 2013-10-01 false How is application made for a Runaway and Homeless...
45 CFR 1351.11 - Who is eligible to apply for a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.11 Who is eligible to apply for a Runaway and Homeless... 45 Public Welfare 4 2013-10-01 2013-10-01 false Who is eligible to apply for a Runaway and...
Youth at Risk: Understanding Runaway and Exploited Youth.
ERIC Educational Resources Information Center
Burgess, Ann Wolbert
This document describes a study of runaways (N=149) at a Toronto, Canada shelter which examined why urban adolescents run away from home; the role of sexual abuse in the life histories of runaways; and why runaways return home. The report begins with a discussion about adolescents at risk, with a definition of terms, numbers of runaways, and a new…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chang
The generation of runaway electrons is a complex and important phenomenon that impacts many areas of plasma physics. Due to the decrease of electron collision frequency with increasing velocity, electrons under strong electric field can experience unlimited “runaway” acceleration. In tokamaks, runaway electrons can be produced in disruptions, due to the strong inductive electric field formed as the thermal energy of plasma gets rapidly lost. This population of runaway electrons can undergo an exponential growth, denoted the runaway electron avalanche, due to hard collisions between relativistic runaway electrons and low energy electrons. It is predicted that in a large tokamakmore » device like the International Thermonuclear Experimental Reactor (ITER), a runway electron beam generated in a disruption event can potentially cause severe damage to the device, which poses a significant challenge for ITER to achieve its mission. It is therefore extremely important to seek an effective mitigation mechanism for runaway electrons. Experimental efforts have been made to study the properties of runaway electrons in tokamaks, including their generation, diffusion, and radiation. In order to understand these experimental results, extensive theoretical and simulation studies of runaway electron physics are required. The main topic of this thesis is to study the wave particle interaction associated with runaway electron beams in tokamaks. The runaway electrons can emit and absorb electromagnetic waves through resonances, and can be diffused in momentum space by the waves. Initially, we address the Cherenkov radiation of runaway electrons, which originates from the polarization of the plasma medium. The energy and momentum loss of the Cherenkov radiation can be modeled by adding a correction to the Coulomb logarithm in the collisional drag force. Subsequently, we address pitch angle scattering caused by normal modes in the plasma, which are driven unstable by the anisotropicity of the runaway electron beam. The fluctuating electromagnetic fields are found to act as a seed for the unstable normal modes. Numerical simulations show that the pitch angle scattering effect from the normal modes, mainly whistler waves, can be significantly larger than that from collisional pitch angle scattering. Finally, we present a synthetic diagnostic tool we developed to calculate the electron cyclotron emission (ECE) from the runaway electrons, and successfully reproduce the prompt growth of the ECE signal observed in DIII-D quiescent runaway electron (QRE) experiments. Within the thesis, we also present the application of the adjoint method to runaway electron research, and show the calculations of the runaway probability function (RPF) and the expected loss time (ELT). These calculations not only help depict the dynamics of runaway electrons in momentum space, but also can be used to efficiently calculate experimentally relevant quantities such as the critical electric field for runaway electron avalanche and the avalanche growth rate.« less
You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2017-01-01
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.
Chromospherically active stars. X - Spectroscopy and photometry of HD 212280
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Browning, Jared C.; Henry, Gregory W.; Morton, Mary D.; Hall, Douglas S.
1993-01-01
The system HD 212280 is a chromospherically active double lined spectroscopic binary with an orbital period of 45.284 days and an eccentricity of 0.50. The spectrum is composite with spectral types of G8 IV and F5-8 V for the components. An estimated inclination of 78 +/- 8 deg results in masses of 1.7 and 1.4 solar mass for the G subgiant and mid-F star, respectively. The distance to the system is estimated to be 112 pc. Photometric observations obtained between 1987 November and 1992 June reveal that HD 212280 is a newly identified variable star with a V amplitude of about 0.15 mag and a mean period of 29.46 days. Our V data were divided into 11 sets and in all but one case two spots were required to fit the data. Lifetimes of 650 days and a minimum of 1350 days have been determined for two of the four spots. The differential rotation coefficient of 0.05 is relatively small. The age of the system is about 1.9 X 10 exp 9 yrs. The G subgiant is rotating slower than pseudosynchronously while the F-type star is rotating faster.
Synchrotron radiation from a runaway electron distribution in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, A.; Fülöp, T.; Landreman, M.
2013-09-15
The synchrotron radiation emitted by runaway electrons in a fusion plasma provides information regarding the particle momenta and pitch-angles of the runaway electron population through the strong dependence of the synchrotron spectrum on these parameters. Information about the runaway density and its spatial distribution, as well as the time evolution of the above quantities, can also be deduced. In this paper, we present the synchrotron radiation spectra for typical avalanching runaway electron distributions. Spectra obtained for a distribution of electrons are compared with the emission of mono-energetic electrons with a prescribed pitch-angle. We also examine the effects of magnetic fieldmore » curvature and analyse the sensitivity of the resulting spectrum to perturbations to the runaway distribution. The implications for the deduced runaway electron parameters are discussed. We compare our calculations to experimental data from DIII-D and estimate the maximum observed runaway energy.« less
45 CFR 1351.12 - Who gets priority for the award of a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 45 Public Welfare 4 2010-10-01 2010-10-01 false Who gets priority for the award of a Runaway and... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.12 Who gets priority for the award of a Runaway and...
45 CFR 1351.12 - Who gets priority for the award of a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2011 CFR
2011-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.12 Who gets priority for the award of a Runaway and... 45 Public Welfare 4 2011-10-01 2011-10-01 false Who gets priority for the award of a Runaway and...
45 CFR 1351.12 - Who gets priority for the award of a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2014 CFR
2014-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.12 Who gets priority for the award of a Runaway and... 45 Public Welfare 4 2014-10-01 2014-10-01 false Who gets priority for the award of a Runaway and...
45 CFR 1351.12 - Who gets priority for the award of a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2013 CFR
2013-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.12 Who gets priority for the award of a Runaway and... 45 Public Welfare 4 2013-10-01 2013-10-01 false Who gets priority for the award of a Runaway and...
45 CFR 1351.12 - Who gets priority for the award of a Runaway and Homeless Youth Program grant?
Code of Federal Regulations, 2012 CFR
2012-10-01
... FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.12 Who gets priority for the award of a Runaway and... 45 Public Welfare 4 2012-10-01 2012-10-01 false Who gets priority for the award of a Runaway and...
Revisiting the birth locations of pulsars B1929+10, B2020+28, and B2021+51
NASA Astrophysics Data System (ADS)
Kirsten, Franz; Vlemmings, Wouter; Campbell, Robert M.; Kramer, Michael; Chatterjee, Shami
2015-05-01
We present new proper motion and parallax measurements obtained with the European VLBI Network (EVN) at 5GHz for the three isolated pulsars B1929+10, B2020+28, and B2021+51. For B1929+10 we combined our data with earlier VLBI measurements and confirm the robustness of the astrometric parameters of this pulsar. For pulsars B2020+28 and B2021+51 our observations indicate that both stars are almost a factor of two closer to the solar system than previously thought, placing them at a distance of 1.39-0.06+0.05 and 1.25-0.17+ 0.14kpc. Using our new astrometry, we simulated the orbits of all three pulsars in the Galactic potential with the aim to confirm or reject previously proposed birth locations. Our observations ultimately rule out a claimed binary origin of B1929+10 and the runaway star ζ Ophiuchi in Upper Scorpius. A putative common binary origin of B2020+28 and B2021+51 in the Cygnus Superbubble is also very unlikely.
ABSOLUTE PROPERTIES OF THE HIGHLY ECCENTRIC, SOLAR-TYPE ECLIPSING BINARY HD 74057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, James R.; Henry, Gregory W.; Fekel, Francis C., E-mail: jim.sowell@physics.gatech.edu, E-mail: gregory.w.henry@gmail.com, E-mail: fekel@evans.tsuniv.edu
2012-01-15
We have obtained Stroemgren b and y differential photometric observations of the solar-type eclipsing binary HD 74057 plus follow-up high-resolution, red wavelength spectroscopic observations. The system has an orbital period of 31.2198 days, a high eccentricity of 0.47, and is seen almost exactly edge on with an inclination of 89.{sup 0}8. The two main-sequence G0 stars are nearly identical in all physical characteristics. We used the Wilson-Devinney program to obtain a simultaneous solution of our photometric and spectroscopic observations. The resulting masses of the components are M{sub 1} = 1.138 {+-} 0.003 M{sub Sun} and M{sub 2} = 1.131 {+-}more » 0.003 M{sub Sun }, and the radii are R{sub 1} = 1.064 {+-} 0.002 R{sub Sun} and R{sub 2} = 1.049 {+-} 0.002 R{sub Sun }. The effective temperatures are 5900 K (fixed) and 5843 K, and the iron abundance, [Fe/H], is estimated to be +0.07. A comparison with evolutionary tracks suggests that the system may be even more metal rich. The components rotate with periods of 8.4 days, significantly faster than the predicted pseudosynchronous period of 12.7 days. We see evidence that one or both components have cool spots. Both stars are close to the zero-age main sequence and are about 1.0 Gyr old.« less
Generating large misalignments in gapped and binary discs
NASA Astrophysics Data System (ADS)
Owen, James E.; Lai, Dong
2017-08-01
Many protostellar gapped and binary discs show misalignments between their inner and outer discs; in some cases, ˜70° misalignments have been observed. Here, we show that these misalignments can be generated through a secular resonance between the nodal precession of the inner disc and the precession of the gap-opening (stellar or massive planetary) companion. An evolving protostellar system may naturally cross this resonance during its lifetime due to disc dissipation and/or companion migration. If resonance crossing occurs on the right time-scale, of the order of a few million years, characteristic for young protostellar systems, the inner and outer discs can become highly misaligned, with misalignments ≳ 60° typical. When the primary star has a mass of order a solar mass, generating a significant misalignment typically requires the companion to have a mass of ˜0.01-0.1 M⊙ and an orbital separation of tens of astronomical units. The recently observed companion in the cavity of the gapped, highly misaligned system HD 142527 satisfies these requirements, indicating that a previous resonance crossing event misaligned the inner and outer discs. Our scenario for HD 142527's misaligned discs predicts that the companion's orbital plane is aligned with the outer disc's; this prediction should be testable with future observations as the companion's orbit is mapped out. Misalignments observed in several other gapped disc systems could be generated by the same secular resonance mechanism.
Few Skewed Disks Found in First Closure-Phase Survey of Herbig Ae/Be Stars
NASA Astrophysics Data System (ADS)
Monnier, J. D.; Berger, J.-P.; Millan-Gabet, R.; Traub, W. A.; Schloerb, F. P.; Pedretti, E.; Benisty, M.; Carleton, N. P.; Haguenauer, P.; Kern, P.; Labeye, P.; Lacasse, M. G.; Malbet, F.; Perraut, K.; Pearlman, M.; Zhao, M.
2006-08-01
Using the three-telescope IOTA interferometer on Mount Hopkins, we report results from the first near-infrared (λ=1.65 μm) closure-phase survey of young stellar objects (YSOs). These closure phases allow us to unambiguously detect departures from centrosymmetry (i.e., skew) in the emission pattern from YSO disks on the scale of ~4 mas, expected from generic ``flared disk'' models. Six of 14 targets showed small, yet statistically significant nonzero closure phases, with largest values from the young binary system MWC 361-A and the (pre-main-sequence?) Be star HD 45677. Our observations are quite sensitive to the vertical structure of the inner disk, and we confront the predictions of the ``puffed-up inner wall'' models of Dullemond, Dominik, & Natta (DDN). Our data support disk models with curved inner rims because the expected emission appears symmetrically distributed around the star over a wide range of inclination angles. In contrast, our results are incompatible with the models possessing vertical inner walls because they predict extreme skewness (i.e., large closure phases) from the near-IR disk emission that is not seen in our data. In addition, we also present the discovery of mysterious H-band ``halos'' (~5%-10% of light on scales 0.01"-0.50") around a few objects, a preliminary ``parametric imaging'' study for HD 45677, and the first astrometric orbit for the young binary MWC 361-A.
Photoelectric photometry of the RS CVn binary EI Eridani = HD 26337
NASA Technical Reports Server (NTRS)
Hooten, J. T.; Strassmeier, K. G.; Hall, D. S.; Barksdale, W. S., Jr.; Bertoglio, A.
1989-01-01
Differential UBV(RI)sub KC and UBVRI photometry of the RS CVn binary EI Eridani obtained during December 1987 and January 1988 at fourteen different observatories is presented. A combined visual bandpass light curve, corrected for systematic errors of different observatories, utilizes the photometric period of 1,945 days to produce useful results. The analysis shows the visual light curve to have twin maxima, separated by about 0.4 phase, and a full amplitude of approximately 0.06 mag for the period of observation, a smaller amplitude than reported in the past. The decrease in amplitude may be due to a decrease or homogenization of spot coverage. To fit the asymmetrical light curve, a starspot model would have to employ at least two spotted regions separated in longitude.
Enhanced Hα activity at periastron in the young and massive spectroscopic binary HD 200775
NASA Astrophysics Data System (ADS)
Benisty, M.; Perraut, K.; Mourard, D.; Stee, P.; Lima, G. H. R. A.; Le Bouquin, J. B.; Borges Fernandes, M.; Chesneau, O.; Nardetto, N.; Tallon-Bosc, I.; McAlister, H.; Ten Brummelaar, T.; Ridgway, S.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.
2013-07-01
Context. Young close binaries clear central cavities in their surrounding circumbinary disk from which the stellar objects can still accrete material. This process takes place within the first astronomical unit and is still not well constrained because the observational evidence has been gathered, until now, only by means of spectroscopy. Theoretical models for T Tauri stars in close binaries predict a variability of the hydrogen emission lines attributable to periodic changes in the accretion rates as the secondary approaches periastron. Whether a similar scenario applies to more massive objects is unclear, and still needs to be proven observationally. Aims: The young object HD 200775 (MWC 361) is a massive spectroscopic binary (separation of ~15.9 mas, ~5.0 AU), with uncertain classification (early/late Be), that shows a strong and variable Hα emission. We aim to study the mechanisms that produce the Hα line at the AU-scale, and their dependence on binarity. Methods: Combining the radial velocity measurements and astrometric data available in the literature, we determined new orbital parameters and revised the distance to 320 ± 51 pc. With the VEGA instrument on the CHARA array, we spatially and spectrally resolved the Hα emission of HD 200775 on a scale of a few milliarcseconds, at low and medium spectral resolutions (R ~ 1600 and 5000). Our observations cover a single orbital period (~3.6 years). Spectra, spectral visibilities, and differential phases have been derived. A simple analytical model of a face-on Gaussian located along the binary axis was used to analyze the interferometric observables over the spectral range. Results: We observe that the Hα equivalent width varies with the orbital phase, and increases close to periastron, as expected from theoretical models that predict an increase of the mass transfer from the circumbinary disk to the primary disk. In addition, using spectral visibilities and differential phases, we find marginal variations of the typical extent of the Hα emission (at 1 to 2σ level) and location (at 1 to 5σ level). The spatial extent of the Hα emission, as probed by the Gaussian FWHM, is minimum at the ascending node (0.67 ± 0.20 mas, i.e., 0.22 ± 0.06 AU), and more than doubles at the periastron. In addition, the Gaussian photocenter is slightly displaced in the direction opposite to the secondary, ruling out the scenario in which all or most of the Hα emission is due to accretion onto the secondary. This favors a scenario in which the primary is responsible for the enhanced Hα activity at periastron. These findings, together with the wide Hα line profile, may be due to a non-spherical wind enhanced at periastron. Conclusions: For the first time in a system of this kind, we spatially resolve the Hα line and estimate that it is emitted in a region larger than the one usually inferred in accretion processes. The Hα line could be emitted in a stellar or disk-wind, enhanced at periastron as a result of gravitational perturbation, after a period of increased mass accretion rate. Our results suggest a strong connection between accretion and ejection in these massive objects, consistent with the predictions for lower-mass close binaries. Based on observations made with the VEGA/CHARA instrument.
Radial velocity measurements of the chromospherically-active stars (2): HD 28591 = V492 Per
NASA Technical Reports Server (NTRS)
Dadonas, V.; Sperauskas, J.; Fekel, F. C.; Morton, M. D.
1994-01-01
From two sets of the spectroscopic observations covering a ten year period we have obtained 59 radial velocities of the chromospherically-active star HD 28591 = V492 Per. It is a G9III single-lined spectroscopic binary with a period of 21.2910 days and a circular orbit. The upsilon sin i of 24.6 km/sec, results in a minimum radius 10.3 solar radii. We estimate a distance of 165 +/- 40 pc and an orbital inclination of 65 +/- 25 degrees. The secondary is probably a mid to late-type K dwarf. The star is brighter than the limiting magnitude of the Bright Star Catalogue. The mean photometric and the orbital periods are identical within their uncertainties. Since the star fills a significant fraction of its Roche lobe, about 62%, the photometric light curve may be the result of starspots and a modest ellipticity effect.
Ekramzadeh, Maryam; Mazloom, Zohreh; Jafari, Peyman; Ayatollahi, Maryam; Sagheb, Mohammad Mahdi
2014-01-01
Background: Nutritional barriers may contribute to malnutrition in hemodialysis (HD) patients. Higher rates of morbidity and mortality rates have been reported in malnourished HD patients. These patients are faced with different challenges affecting their nutritional status. Objectives: The aim of this cross-sectional study was to identify most important barriers responsible for malnutrition in HD patients. Patients and Methods: We randomly selected 255 of 800 stable HD patients from three HD centers with an age range of 18-85 years, who had been on hemodialysis for at least three months without any acute illness. Each patient was interviewed to evaluate malnutrition [subjective global assessment (SGA), malnutrition inflammation score (MIS)], and potential medical, behavioral and socioeconomic barriers. Body composition of patients was checked through bioelectrical impedance analysis (BIA). Routine clinical markers of malnutrition such as serum albumin and total protein were measured using standard automated techniques. Binary logistic regression model was used to find the association between nutritional markers and potential barriers. Results: Patients with higher SGA had lower knowledge about general nutrition [odds ratio (OR), 1.3], potassium (OR, 1.89), difficulty chewing (OR, 1.16), and shopping (OR, 1.16). Those with greater MIS scores had poor appetite (OR, 1.3), depression (OR, 1.21), and difficulty with cooking (OR, 1.15). Lower BCM (body cell mass) was associated with poor appetite (OR, 0.92) and needed help for cooking (OR, 0.88). Patients with higher BFMI (body fat mass index) had insufficient general nutrition (OR, 1.15), and protein (OR, 1.27) knowledge, and needed help for shopping (OR, 1.14). Moreover, patients with higher SGA scores were those with older age and longer duration of HD. Conclusions: Three medical barriers (poor appetite, depression and difficulty chewing), one behavioral barrier (poor total nutrition, protein, and potassium knowledge), and one socioeconomic barrier (needing help for shopping and cooking) were independently associated with nutritional markers. PMID:25738117
NASA Astrophysics Data System (ADS)
Doering, Ryan L.
2009-01-01
Determining Herbig Ae/Be star dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation talk, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two-component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r-0.5 and r-1.8, giving disk dust masses of 3.0 x 10-4 and 5.9 x 10-5 Msun for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. Furthermore, I have participated in the development of the WIYN High Resolution Infrared Camera. The instrument operates in the near-infrared ( 0.8 - 2.5 microns), includes 13 filters, and has a pixel size of 0.1 arcsec, resulting in a field of view of 3 arcmin x 3 arcmin. An angular resolution of 0.25 arcsec is anticipated. I provide an overview of the instrument and report performance results.
NASA Astrophysics Data System (ADS)
Endl, Michael; Brugamyer, Erik J.; Cochran, William D.; MacQueen, Phillip J.; Robertson, Paul; Meschiari, Stefano; Ramirez, Ivan; Shetrone, Matthew; Gullikson, Kevin; Johnson, Marshall C.; Wittenmyer, Robert; Horner, Jonathan; Ciardi, David R.; Horch, Elliott; Simon, Attila E.; Howell, Steve B.; Everett, Mark; Caldwell, Caroline; Castanheira, Barbara G.
2016-02-01
We report the detection of two new long-period giant planets orbiting the stars HD 95872 and HD 162004 (ψ1 Dra B) by the McDonald Observatory planet search. The planet HD 95872b has a minimum mass of 4.6 {M}{{Jup}} and an orbital semimajor axis of 5.2 AU. The giant planet ψ1 Dra Bb has a minimum mass of 1.5 {M}{{Jup}} and an orbital semimajor axis of 4.4 AU. Both of these planets qualify as Jupiter analogs. These results are based on over one and a half decades of precise radial velocity (RV) measurements collected by our program using the McDonald Observatory Tull Coude spectrograph at the 2.7 m Harlan J. Smith Telescope. In the case of ψ1 Dra B we also detect a long-term nonlinear trend in our data that indicates the presence of an additional giant planet, similar to the Jupiter-Saturn pair. The primary of the binary star system, ψ1 Dra A, exhibits a very large amplitude RV variation due to another stellar companion. We detect this additional member using speckle imaging. We also report two cases—HD 10086 and HD 102870 (β Virginis)—of significant RV variation consistent with the presence of a planet, but that are probably caused by stellar activity, rather than reflexive Keplerian motion. These two cases stress the importance of monitoring the magnetic activity level of a target star, as long-term activity cycles can mimic the presence of a Jupiter-analog planet.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
This document contains witnesses testimonies from the Congressional hearing on runaway and homeless youth called to examine the problem of runaway children and the relationship between runaway and missing children services. In his opening statement Representative Kildee recognizes benefits of the Runaway and Homeless Youth Act. Six witnesses give…
On the inward drift of runaway electrons during the plateau phase of runaway current
Hu, Di; Qin, Hong
2016-03-29
The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less
On the inward drift of runaway electrons during the plateau phase of runaway current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Di, E-mail: hudi-2@pku.edu.cn; Qin, Hong; School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.« less
On the inward drift of runaway electrons during the plateau phase of runaway current
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Di; Qin, Hong
The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less
NASA Astrophysics Data System (ADS)
Metchev, Stanimir A.; Hillenbrand, Lynne A.
2004-12-01
We present first results from the Palomar Adaptive Optics Survey of Young Stars conducted at the Hale 5 m telescope. Through direct imaging we have discovered a brown dwarf and two low-mass stellar companions to the young solar-type stars HD 49197, HD 129333 (EK Dra), and V522 Per and confirmed a previously suspected companion to RX J0329.1+0118 (Sterzik et al.), at respective separations of 0.95" (43 AU), 0.74" (25 AU), 2.09" (400 AU), and 3.78" (380 AU). Physical association of each binary system is established through common proper motion and/or low-resolution infrared spectroscopy. Based on the companion spectral types, we estimate their masses at 0.06, 0.20, 0.13, and 0.20 Msolar, respectively. From analysis of our imaging data combined with archival radial velocity data, we find that the spatially resolved companion to HD 129333 is potentially identical to the previously identified spectroscopic companion to this star (Duquennoy & Mayor). However, a discrepancy with the absolute magnitude suggests that the two companions could also be distinct, with the resolved one being the outermost component of a triple system. The brown dwarf HD 49197B is a new member of a growing list of directly imaged substellar companions at 10-1000 AU separations from main-sequence stars, indicating that such brown dwarfs may be more common than initially speculated.
HD 66051, an eclipsing binary hosting a highly peculiar, HgMn-related star.
Niemczura, Ewa; Hümmerich, Stefan; Castelli, Fiorella; Paunzen, Ernst; Bernhard, Klaus; Hambsch, Franz-Josef; Hełminiak, Krzysztof
2017-07-19
HD 66051 is an eclipsing system with an orbital period of about 4.75 d that exhibits out-of-eclipse variability with the same period. New multicolour photometric observations confirm the longevity of the secondary variations, which we interpret as a signature of surface inhomogeneities on one of the components. Using archival and newly acquired high-resolution spectra, we have performed a detailed abundance analysis. The primary component is a slowly rotating late B-type star (T eff = 12500 ± 200 K; log g = 4.0, v sin i = 27 ± 2 km s -1 ) with a highly peculiar composition reminiscent of the singular HgMn-related star HD 65949, which seems to be its closest analogue. Some light elements as He, C, Mg, Al are depleted, while Si and P are enhanced. Except for Ni, all the iron-group elements, as well as most of the heavy elements, and in particular the REE elements, are overabundant. The secondary component was estimated to be a slowly rotating A-type star (T eff ~ 8000 K; log g = 4.0, v sin i ~ 18 km s -1 ). The unique configuration of HD 66051 opens up intriguing possibilities for future research, which might eventually and significantly contribute to the understanding of such diverse phenomena as atmospheric structure, mass transfer, magnetic fields, photometric variability and the origin of chemical anomalies observed in HgMn stars and related objects.
Runaway Children and Their Families: A Treatment Typology.
ERIC Educational Resources Information Center
Orten, James D.; Soll, Sharon Kelts
1980-01-01
Analyzes the development of the runaway problem and the dramatic increases in number of runaways. This typology classifies runaways by level of alienation with family and the degree to which the child internalizes running away as response to stress. Treatment is discussed. (Author/NRB)
NASA Astrophysics Data System (ADS)
Smith, Nathan; Götberg, Ylva; de Mink, Selma E.
2018-03-01
Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.
NASA Astrophysics Data System (ADS)
Lennon, Daniel J.; van der Marel, Roeland P.; Ramos Lerate, Mercedes; O'Mullane, William; Sahlmann, Johannes
2017-07-01
Aims: Our research aims to search for runaway stars in the Large Magellanic Cloud (LMC) among the bright Hipparcos supergiant stars included in the Gaia DR1 Tycho-Gaia astrometric solution (TGAS) catalogue. Methods: We compute the space velocities of the visually brightest stars in the Large Magellanic Cloud that are included in the TGAS proper motion catalogue. This sample of 31 stars contains a luminous blue variable (LBV), emission line stars, blue and yellow supergiants, and an SgB[e] star. We combine these results with published radial velocities to derive their space velocities, and by comparing with predictions from stellar dynamical models we obtain each star's (peculiar) velocity relative to its local stellar environment. Results: Two of the 31 stars have unusually high proper motions. Of the remaining 29 stars we find that most objects in this sample have velocities that are inconsistent with a runaway nature, being in very good agreement with model predictions of a circularly rotating disk model. Indeed the excellent fit to the model implies that the TGAS uncertainty estimates are likely overestimated. The fastest outliers in this subsample contain the LBV R 71 and a few other well known emission line objects though in no case do we derive velocities consistent with fast ( 100 km s-1) runaways. On the contrary our results imply that R 71 in particular has a moderate deviation from the local stellar velocity field (40 km s-1) lending support to the proposition that this object cannot have evolved as a normal single star since it lies too far from massive star forming complexes to have arrived at its current position during its lifetime. Our findings therefore strengthen the case for this LBV being the result of binary evolution. Of the two stars with unusually high proper motions we find that one, the isolated B1.5 Ia+ supergiant Sk-67 2 (HIP 22237), is a candidate hypervelocity star, the TGAS proper motion implying a very large peculiar transverse velocity ( 360 km s-1) directed radially away from the LMC centre. If confirmed, for example by Gaia Data Release 2, it would imply that this massive supergiant, on the periphery of the LMC, is leaving the galaxy where it will explode as a supernova.
ERIC Educational Resources Information Center
Brennan, Tim
1980-01-01
A review of prior classification systems of runaways is followed by a descriptive taxonomy of runaways developed using cluster-analytic methods. The empirical types illustrate patterns of weakness in bonds between runaways and families, schools, or peer relationships. (Author)
Study of runaway electrons with Hard X-ray spectrometry of tokamak plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shevelev, A.; Chugunov, I.; Khilkevitch, E.
2014-08-21
Hard-X-ray spectrometry is a tool widely used for diagnostic of runaway electrons in existing tokamaks. In future machines, ITER and DEMO, HXR spectrometry will be useful providing information on runaway electron energy, runaway beam current and its profile during disruption.
NASA Astrophysics Data System (ADS)
Degroote, P.; Aerts, C.; Michel, E.; Briquet, M.; Pápics, P. I.; Amado, P.; Mathias, P.; Poretti, E.; Rainer, M.; Lombaert, R.; Hillen, M.; Morel, T.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.
2012-06-01
Context. B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. Aims: We deduce and summarise observational constraints for the hybrid pulsator, HD 50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD 50230 in the HR diagram. Methods: To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. Results: We identify HD 50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations made with the ESO telescopes at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations obtained with the HERMES spectrograph, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany.Appendix A is available in electronic form at http://www.aanda.org
A modern study of HD 166734: a massive supergiant system
NASA Astrophysics Data System (ADS)
Mahy, L.; Damerdji, Y.; Gosset, E.; Nitschelm, C.; Eenens, P.; Sana, H.; Klotz, A.
2017-11-01
Aims: HD 166734 is an eccentric eclipsing binary system composed of two supergiant O-type stars, orbiting with a 34.5-day period. In this rare configuration for such stars, the two objects mainly evolve independently, following single-star evolution so far. This system provides a chance to study the individual parameters of two supergiant massive stars and to derive their real masses. Methods: An intensive monitoring was dedicated to HD 166734. We analyzed mid- and high-resolution optical spectra to constrain the orbital parameters of this system. We also studied its light curve for the first time, obtained in the VRI filters. Finally, we disentangled the spectra of the two stars and modeled them with the CMFGEN atmosphere code in order to determine the individual physical parameters. Results: HD 166734 is a O7.5If+O9I(f) binary. We confirm its orbital period but we revise the other orbital parameters. In comparison to what we found in the literature, the system is more eccentric and, now, the hottest and the most luminous component is also the most massive one. The light curve exhibits only one eclipse and its analysis indicates an inclination of 63.0° ± 2.7°. The photometric analysis provides us with a good estimation of the luminosities of the stars, and therefore their exact positions in the Hertzsprung-Russell diagram. The evolutionary and the spectroscopic masses show good agreement with the dynamical masses of 39.5 M⊙ for the primary and 33.5 M⊙ for the secondary, within the uncertainties. The two components are both enriched in helium and in nitrogen and depleted in carbon. In addition, the primary also shows a depletion in oxygen. Their surface abundances are however not different from those derived from single supergiant stars, yielding, for both components, an evolution similar to that of single stars. Based on observations collected at the European Southern Observatory (La Silla, Chile) with FEROS and TAROT and on data collected at the San Pedro Mártir observatory (Mexico).The reduced spectra and the light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A96
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q.
2015-07-15
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot andmore » its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.« less
NASA Astrophysics Data System (ADS)
Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.
2015-07-01
Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.
Interstellar Abundances Toward X Per, Revisited
NASA Technical Reports Server (NTRS)
Valencic, Lynne A.; Smith, Randall K.
2014-01-01
The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of 0, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.
Interstellar Abundances Toward X Per, Revisited
NASA Technical Reports Server (NTRS)
Valencic, Lynne A.; Smith, Randall K.
2012-01-01
The nearby X-ray binary X Per (HD 24534) provides a useful beacon with which to measure elemental abundances in the local ISM. We examine absorption features of O, Mg, and Si along this line of sight using spectra from the Chandra Observatory's LETG/ACIS-S and XMM-Newton's RGS instruments. In general, we find that the abundances and their ratios are similar to those of young F and G stars and the most recent solar values. We compare our results with abundances required by dust grain models.
ERIC Educational Resources Information Center
Greenberg, Keith Elliot
This essay with photographs describes the experiences of two runaways, examining why they left home and how they found help. Although runaways have a reputation for being irresponsible, they usually have good reasons for leaving home. The nun who ran Noah's Ark, where both the runaways featured found shelter and help, estimated that only about two…
30 CFR 56.9302 - Protection against moving or runaway railroad equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against moving or runaway railroad..., and Loading and Dumping Sites § 56.9302 Protection against moving or runaway railroad equipment. Stopblocks, derail devices, or other devices that protect against moving or runaway rail equipment shall be...
Comprehensive Treatment of Runaway Children and Their Parents.
ERIC Educational Resources Information Center
Wodarski, John S.; Ammons, Paul W.
This paper reviews the scope of the problem of runaway children and presents treatment approaches currently in use. Several findings on runaway children are discussed: (1) the multiple social and psychological difficulties faced by parents; (2) the high degree of family strain; and (3) the runaways' dissatisfactions with peer and adult…
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. Senate Committee on Labor and Human Resources.
This document contains testimonies from witnesses and prepared statements from the Congressional hearing called to examine the exploitation of runaway children and adolescents. Opening statements are included from Senators Hawkins, Dodd, and Grassley which briefly describe runaway statistics, the dangers faced by runaways, and efforts to help…
Passive runaway electron suppression in tokamak disruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, H. M.; Helander, P.; Boozer, A. H.
2013-07-15
Runaway electrons created in disruptions pose a serious problem for tokamaks with large current. It would be desirable to have a runaway electron suppression method which is passive, i.e., a method that does not rely on an uncertain disruption prediction system. One option is to let the large electric field inherent in the disruption drive helical currents in the wall. This would create ergodic regions in the plasma and increase the runaway losses. Whether these regions appear at a suitable time and place to affect the formation of the runaway beam depends on disruption parameters, such as electron temperature andmore » density. We find that it is difficult to ergodize the central plasma before a beam of runaway current has formed. However, the ergodic outer region will make the Ohmic current profile contract, which can lead to instabilities that yield large runaway electron losses.« less
Adjoint Fokker-Planck equation and runaway electron dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chang; Brennan, Dylan P.; Bhattacharjee, Amitava
2016-01-15
The adjoint Fokker-Planck equation method is applied to study the runaway probability function and the expected slowing-down time for highly relativistic runaway electrons, including the loss of energy due to synchrotron radiation. In direct correspondence to Monte Carlo simulation methods, the runaway probability function has a smooth transition across the runaway separatrix, which can be attributed to effect of the pitch angle scattering term in the kinetic equation. However, for the same numerical accuracy, the adjoint method is more efficient than the Monte Carlo method. The expected slowing-down time gives a novel method to estimate the runaway current decay timemore » in experiments. A new result from this work is that the decay rate of high energy electrons is very slow when E is close to the critical electric field. This effect contributes further to a hysteresis previously found in the runaway electron population.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-05
... the Publication of Funding Opportunity Announcements Under the Runaway and Homeless Youth Act AGENCY... Statutory Authority: Runaway and Homeless Youth Act, 42 U.S.C. sections 5701-5752, as amended by the.... Porter, Director, Runaway and Homeless Youth Program, Family and Youth Services Bureau, 1250 Maryland Ave...
Predictors of Social Network Composition among Homeless and Runaway Adolescents
ERIC Educational Resources Information Center
Johnson, K.D.; Whitbeck, L.B.; Hoyt, D.R.
2005-01-01
Recent research on the social support networks of homeless and runaway youth suggest the social networks of runaway youth are made up largely of transient deviant peer relationships. This paper examined social network characteristics of 428 homeless and runaway adolescents from small-to moderate-sized cities in four Midwestern states. We…
30 CFR 57.9302 - Protection against moving or runaway railroad equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protection against moving or runaway railroad..., Railroads, and Loading and Dumping Sites § 57.9302 Protection against moving or runaway railroad equipment. Stopblocks, derail devices, or other devices that protect against moving or runaway rail equipment shall be...
Identifying Adolescent Runaways: The Predictive Utility of the Personality Inventory for Children.
ERIC Educational Resources Information Center
Rohr, Michael E.
1996-01-01
Investigated whether runaway behavior could be related to six problematic areas. Selected scales of the Personality Inventory for Children, representing the six areas, were hypothesized to discriminate between an adolescent runaway group (N=60) and a control group (N-60). The runaway group was not significantly different from a known clinical…
ERIC Educational Resources Information Center
Rohr, Michael E.; James, Richard
1994-01-01
Examines how school counselors can assist runaways. The authors focus on prevention, runaway programs, and how to expedite school reentry. Because school counselors invariably spend time with runaways, counselors can become more effective and efficient both in the short and long term in helping these troubled clients. (RJM)
Spontaneous dissipation of elastic energy by self-localizing thermal runaway
NASA Astrophysics Data System (ADS)
Braeck, S.; Podladchikov, Y. Y.; Medvedev, S.
2009-10-01
Thermal runaway instability induced by material softening due to shear heating represents a potential mechanism for mechanical failure of viscoelastic solids. In this work we present a model based on a continuum formulation of a viscoelastic material with Arrhenius dependence of viscosity on temperature and investigate the behavior of the thermal runaway phenomenon by analytical and numerical methods. Approximate analytical descriptions of the problem reveal that onset of thermal runaway instability is controlled by only two dimensionless combinations of physical parameters. Numerical simulations of the model independently verify these analytical results and allow a quantitative examination of the complete time evolutions of the shear stress and the spatial distributions of temperature and displacement during runaway instability. Thus we find that thermal runaway processes may well develop under nonadiabatic conditions. Moreover, nonadiabaticity of the unstable runaway mode leads to continuous and extreme localization of the strain and temperature profiles in space, demonstrating that the thermal runaway process can cause shear banding. Examples of time evolutions of the spatial distribution of the shear displacement between the interior of the shear band and the essentially nondeforming material outside are presented. Finally, a simple relation between evolution of shear stress, displacement, shear-band width, and temperature rise during runaway instability is given.
Formation and dissipation of runaway current by MGI on J-TEXT
NASA Astrophysics Data System (ADS)
Wei, Yunong; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai; Zhang, Xiaolong
2017-10-01
Plasma disruptions are one of the major concern for ITER. A large fraction of runaway current may be formed due to the avalanche generation of runaway electrons (REs) during disruptions and ruin the device structure. Experiments of runaway current formation and dissipation have been done on J-TEXT. Two massive gas injection (MGI) valves are used to form and dissipate the runaway current. Hot tail RE generation caused by the fast thermal quench leads to an abnormal formation of runaway current when the pre-TQ electron density increases in a range of 0.5-2-10 19m-3. 1020-22 quantities of He, Ne, Ar or Kr impurities are injected by MGI2 to dissipate the runaway current. He injection shows no obvious effect on runaway current dissipation in the experiments and Kr injection shows the best. The kinetic energy of REs and the magnetic energy of RE beam will affect the dissipation efficiency to a certain extent. Runaway current decay rate is found increasing quickly with the increase of the gas injection when the quantity is moderate, and then reaches to a saturation value with large quantity injection. A possible reason to explain the saturation of dissipation effect is the saturation of gas assimilation efficiency.
Largescale Long-term particle Simulations of Runaway electrons in Tokamaks
NASA Astrophysics Data System (ADS)
Liu, Jian; Qin, Hong; Wang, Yulei
2016-10-01
To understand runaway dynamical behavior is crucial to assess the safety of tokamaks. Though many important analytical and numerical results have been achieved, the overall dynamic behaviors of runaway electrons in a realistic tokamak configuration is still rather vague. In this work, the secular full-orbit simulations of runaway electrons are carried out based on a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different timescales spanning 11 orders. A detailed analysis of the collisionless neoclassical scattering is provided when considering the coupling between the rotation of momentum vector and the background field. In large timescale, the initial condition of runaway electrons in phase space globally influences the runaway distribution. It is discovered that parameters and field configuration of tokamaks can modify the runaway electron dynamics significantly. Simulations on 10 million cores of supercomputer using the APT code have been completed. A resolution of 107 in phase space is used, and simulations are performed for 1011 time steps. Largescale simulations show that in a realistic fusion reactor, the concern of runaway electrons is not as serious as previously thought. This research was supported by National Magnetic Connement Fusion Energy Research Project (2015GB111003, 2014GB124005), the National Natural Science Foundation of China (NSFC-11575185, 11575186) and the GeoAlgorithmic Plasma Simulator (GAPS) Project.
3D Hydrodynamic & Radiative Transfer Models of HETG Line Profiles from Colliding Winds
NASA Astrophysics Data System (ADS)
Russell, Christopher
2016-09-01
Chandra has invested 2.52 Ms of HETG observations into 4 colliding-wind binary (CWB) systems. WR140 and eta Car are massive-star binaries with long periods that produce X-rays in a 3D, warped shock cone, while delta Ori A and HD150136 are short-period systems that show line profile changes due to embedded-wind-shock emission in the primary wind being partially evacuated by the secondary wind. HETG observations resolve the velocity structure in both types of systems. We propose 3D line-profile radiative-transfer calculations on existing 3D hydrodynamic simulations of these 4 CWBs. This is the first confrontation of these data with this level of modeling, and will provide greater understanding of their stellar, wind, and orbital properties, as well as the underlying CWB shock physics.
A mysterious dust clump in a disk around an evolved binary star system.
Jura, M; Turner, J
1998-09-10
The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.
NASA Technical Reports Server (NTRS)
Guinan, E. F.; Maloney, F. P.
1985-01-01
The apsidal motion of the eccentric eclipsing binary DI Herculis (HD 175227) is determined from an analysis of the available observations and eclipse timings from 1959 to 1984. Least squares solutions to the primary and secondary minima extending over an 84-yr interval yielded a small advance of periastron omega dot of 0.65 deg/100 yr + or - 0.18/100 yr. The observed advance of the periastron is about one seventh of the theoretical value of 4.27 deg/100 yr that is expected from the combined relativistic and classical effects. The discrepancy is about -3.62 deg/100 yr, or a magnitude of about 20 sigma. Classical mechanisms which explain the discrepancy are discussed, together with the possibility that there may be problems with general relativity itself.
Stability of general-relativistic accretion disks
NASA Astrophysics Data System (ADS)
Korobkin, Oleg; Abdikamalov, Ernazar B.; Schnetter, Erik; Stergioulas, Nikolaos; Zink, Burkhard
2011-02-01
Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core collapse of massive stars. We explore the stability of such disks against runaway and nonaxisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the Thor code. We model the disk matter using the ideal fluid approximation with a Γ-law equation of state with Γ=4/3. We explore three disk models around nonrotating black holes with disk-to-black hole mass ratios of 0.24, 0.17, and 0.11. Because of metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable nonaxisymmetric modes on a dynamical time scale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the nonaxisymmetric mode with azimuthal number m=1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m=1 mode in some cases. Overall, our simulations show that the properties of the unstable nonaxisymmetric modes in our disk models are qualitatively similar to those in the Newtonian theory.
Code of Federal Regulations, 2014 CFR
2014-10-01
... which Runaway and Homeless Youth Program grant applications to fund? 1351.18 Section 1351.18 Public..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.18 What...
Code of Federal Regulations, 2013 CFR
2013-10-01
... grantee have about a Runaway and Homeless Youth Program grant? 1351.19 Section 1351.19 Public Welfare... AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.19 What...
Code of Federal Regulations, 2013 CFR
2013-10-01
... which Runaway and Homeless Youth Program grant applications to fund? 1351.18 Section 1351.18 Public..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.18 What...
Code of Federal Regulations, 2012 CFR
2012-10-01
... grantee have about a Runaway and Homeless Youth Program grant? 1351.19 Section 1351.19 Public Welfare... AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.19 What...
Code of Federal Regulations, 2014 CFR
2014-10-01
... grantee have about a Runaway and Homeless Youth Program grant? 1351.19 Section 1351.19 Public Welfare... AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.19 What...
Code of Federal Regulations, 2012 CFR
2012-10-01
... which Runaway and Homeless Youth Program grant applications to fund? 1351.18 Section 1351.18 Public..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.18 What...
Code of Federal Regulations, 2011 CFR
2011-10-01
... grantee have about a Runaway and Homeless Youth Program grant? 1351.19 Section 1351.19 Public Welfare... AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.19 What...
Code of Federal Regulations, 2011 CFR
2011-10-01
... which Runaway and Homeless Youth Program grant applications to fund? 1351.18 Section 1351.18 Public..., DEPARTMENT OF HEALTH AND HUMAN SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.18 What...
Confluence Analysis for Distributed Programs: A Model-Theoretic Approach
2011-12-18
groom_i_do()@async← groom_i_do_edb(). bride_i_do()@async← bride_i_do_edb(). runaway ()← ¬bride_i_do(), groom_i_do(). runaway ()← ¬groom_i_do(), bride_i_do... runaway ()@next← runaway (). groom_i_do()@next← groom_i_do(). bride_i_do()@next← bride_i_do(). In a classic paper, Gray notes the similarity between...fixed set of members: a bride and a groom. The marriage is off ( runaway () is true) if one party says “I do” and the other does not. However, the Dedalus
CFD research on runaway transient of pumped storage power station caused by pumping power failure
NASA Astrophysics Data System (ADS)
Zhang, L. G.; Zhou, D. Q.
2013-12-01
To study runaway transient of pumped storage power station caused by pumping power failure, three dimensional unsteady numerical simulations were executed on geometrical model of the whole flow system. Through numerical calculation, the changeable flow configuration and variation law of some parameters such as unit rotate speed,flow rate and static pressure of measurement points were obtained and compared with experimental data. Numerical results show that runaway speed agrees well with experimental date and its error was 3.7%. The unit undergoes pump condition, brake condition, turbine condition and runaway condition with flow characteristic changing violently. In runaway condition, static pressure in passage pulses very strongly which frequency is related to runaway speed.
Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokol, G. I.; Kómár, A.; Budai, A.
2014-10-15
Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 100–1000 μs time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing amore » possible experimental detection method for such an interaction.« less
Observation of runaway electrons by infrared camera in J-TEXT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, R. H.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Zhang, M.
2016-11-15
When the energy of confined runaway electrons approaches several tens of MeV, the runaway electrons can emit synchrotron radiation in the range of infrared wavelength. An infrared camera working in the wavelength of 3-5 μm has been developed to study the runaway electrons in the Joint Texas Experimental Tokamak (J-TEXT). The camera is located in the equatorial plane looking tangentially into the direction of electron approach. The runaway electron beam inside the plasma has been observed at the flattop phase. With a fast acquisition of the camera, the behavior of runaway electron beam has been observed directly during the runawaymore » current plateau following the massive gas injection triggered disruptions.« less
Observation of the avalanche of runaway electrons in air in a strong electric field.
Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A
2012-08-24
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field
NASA Astrophysics Data System (ADS)
Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.
2012-08-01
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Code of Federal Regulations, 2010 CFR
2010-10-01
... requirements under a Runaway and Homeless Youth grant? 1351.13 Section 1351.13 Public Welfare Regulations... SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.13 What are the Federal and non...
Rural Runaways: Rurality and Its Implications for Services to Children and Young People Who Run Away
ERIC Educational Resources Information Center
Franks, Myfanwy; Goswami, Haridhan
2010-01-01
This article debates options for service provision to young rural runaways in the UK. Using data drawn from two national surveys and follow-on qualitative studies, the authors trace urban myths of rurality and their effects on runaway provision. The authors review models of rural refuge, systemic advocacy and mobile services for rural runaways.…
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.13 What are the Federal and non... requirements under a Runaway and Homeless Youth grant? 1351.13 Section 1351.13 Public Welfare Regulations...
Code of Federal Regulations, 2012 CFR
2012-10-01
... SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.13 What are the Federal and non... requirements under a Runaway and Homeless Youth grant? 1351.13 Section 1351.13 Public Welfare Regulations...
Defining Strategic Methods with Which To Access Runaway Youth into a Runaway Program.
ERIC Educational Resources Information Center
Bray, Sheldon
Thousands of children run away from home or placements each year. The many programs for these children require evaluation to determine effectiveness; one runaway program for at-risk children is examined here. It was felt that if the runaway youth could receive some counseling, then it might help these children and families to solve some of their…
Code of Federal Regulations, 2014 CFR
2014-10-01
... SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.13 What are the Federal and non... requirements under a Runaway and Homeless Youth grant? 1351.13 Section 1351.13 Public Welfare Regulations...
Code of Federal Regulations, 2013 CFR
2013-10-01
... SERVICES THE ADMINISTRATION FOR CHILDREN, YOUTH AND FAMILIES, FAMILY AND YOUTH SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Runaway and Homeless Youth Program Grant § 1351.13 What are the Federal and non... requirements under a Runaway and Homeless Youth grant? 1351.13 Section 1351.13 Public Welfare Regulations...
Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery
Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng
2017-01-01
This study addresses the effects of the SOC (State of Charge) and the charging–discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging. PMID:28772588
Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.
Liu, Jingjing; Wang, Zhirong; Gong, Junhui; Liu, Kai; Wang, Hao; Guo, Linsheng
2017-02-25
This study addresses the effects of the SOC (State of Charge) and the charging-discharging process on the thermal runaway of 18650 lithium-ion batteries. A series of experiments were conducted on an electric heating and testing apparatus. The experimental results indicate that 6 W is the critical heating power for 40% SOC. With a 20 W constant heating rate, the thermal runaway initial temperature of the lithium-ion battery decreases with the increasing SOC. The final thermal runaway temperature increases with the SOC when the SOC is lower than 80%. However, a contrary conclusion was obtained when the SOC was higher than 80%. Significant mass loss, accompanied by an intense exothermic reaction, took place under a higher SOC. The critical charging current, beyond which the thermal runaway occurs, was found to be 2.6 A. The thermal runaway initial temperature decreases with the increasing charging current, while the intensity of the exothermic reaction varies inversely. Mass ejection of gas and electrolytes exists during thermal runaway when the charging current is higher than 10.4 A, below which only a large amount of gas is released. The thermal runaway initial temperature of discharging is higher than that of non-discharging.
NASA Astrophysics Data System (ADS)
Shi, Yuejiang; Fu, Jia; Li, Jiahong; Yang, Yu; Wang, Fudi; Li, Yingying; Zhang, Wei; Wan, Baonian; Chen, Zhongyong
2010-03-01
The synchrotron radiation originated from the energetic runaway electrons has been measured by a visible complementary metal oxide semiconductor camera working in the wavelength ranges of 380-750 nm in the Experimental Advanced Superconducting Tokamak [H. Q. Liu et al., Plasma Phys. Contr. Fusion 49, 995 (2007)]. With a tangential viewing into the plasma in the direction of electron approach on the equatorial plane, the synchrotron radiation from the energetic runaway electrons was measured in full poloidal cross section. The synchrotron radiation diagnostics provides a direct pattern of the runaway beam inside the plasma. The energy and pitch angle of runaway electrons have been obtained according to the synchrotron radiation pattern. A stable shell shape of synchrotron radiation has been observed in a few runaway discharges.
Structure of the runaway electron loss during induced disruptions in TEXTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wongrach, K.; Finken, K. H.; Willi, O.
2015-10-15
The loss of runaway electrons during an induced disruption is recorded by a synchrotron imaging technique using a fast infrared CCD camera. The loss is predominantly diffuse. During the “spiky-loss phase”, when the runaway beam moves close to the wall, a narrow channel between the runaway column and a scintillator probe is formed and lasts until the runaway beam is terminated. In some cases, the processed images show a stripe pattern at the plasma edge. A comparison between the MHD dominated disruptions and the MHD-free disruption is performed. A new mechanism of plasma disruptions with the runaway electron generation andmore » a novel model which reproduces many characteristic features of the plasma beam evolution during a disruption is briefly described.« less
Runaway electron dynamics in tokamak plasmas with high impurity content
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martín-Solís, J. R., E-mail: solis@fis.uc3m.es; Loarte, A.; Lehnen, M.
2015-09-15
The dynamics of high energy runaway electrons is analyzed for plasmas with high impurity content. It is shown that modified collision terms are required in order to account for the collisions of the relativistic runaway electrons with partially stripped impurity ions, including the effect of the collisions with free and bound electrons, as well as the scattering by the full nuclear and the electron-shielded ion charge. The effect of the impurities on the avalanche runaway growth rate is discussed. The results are applied, for illustration, to the interpretation of the runaway electron behavior during disruptions, where large amounts of impuritiesmore » are expected, particularly during disruption mitigation by massive gas injection. The consequences for the electron synchrotron radiation losses and the resulting runaway electron dynamics are also analyzed.« less
Jasuja, S.; Gupta, A. K.; Choudhry, R.; Kher, V.; Aggarwal, D. K.; Mishra, A.; Agarwal, M.; Sarin, A.; Mishra, M. K.; Raina, V.
2009-01-01
Hepatitis C virus (HCV) infection in hemodialysis (HD) is a significant problem. We evaluated the prevalence and associations of HCV viremia in our HD patients. All patients undergoing maintenance HD at our center were tested for HCV RNA by PCR after written informed consent. Detailed history regarding age, sex, and duration of dialysis, frequency of dialysis, blood transfusions in one year, number of dialysis centers, dialyzer reuse/fresh use, and recent laboratory data was recorded. A total of 119 patients (77 males and 42 females) were tested for HCV RNA. Thirty three (27.7%) tested positive. Duration of dialysis was significantly longer in HCV RNA positive group (P = 0.001). 45.2% of patients with duration of dialysis more than 16 months were HCV RNA positive while only 7.4% of patients with dialysis duration ≤16 months were HCV RNA positive (P < 0.001). In univariate analysis, in HCV RNA group patients, ALT, AST, and GGTP were significantly elevated and albumin was significantly lower. 39% of patients who had dialysis at more than one center were HCV RNA positive as compared to 20% for patients undergoing dialysis at single center (P = 0.024). Binary logistic regression analysis showed albumin, duration of dialysis, and serum ALT to be significant variables. Sensitivity and specificity of anti-HCV ELISA was 72.7 and 97.7%, respectively. Prevalence of HCV RNA in the HD population is 27.7%. Duration of dialysis, getting dialysis at more than one center, elevated transaminase levels, and low serum albumin are important associations for HCV RNA positivity. PMID:20368926
A vigorous activity cycle mimicking a planetary system in HD 200466
NASA Astrophysics Data System (ADS)
Carolo, E.; Desidera, S.; Gratton, R.; Martinez Fiorenzano, A. F.; Marzari, F.; Endl, M.; Mesa, D.; Barbieri, M.; Cecconi, M.; Claudi, R. U.; Cosentino, R.; Scuderi, S.
2014-07-01
Stellar activity can be a source of radial velocity (RV) noise and can reproduce periodic RV variations similar to those produced by an exoplanet. We present the vigorous activity cycle in the primary of the visual binary HD 200466, a system made of two almost identical solar-type stars with an apparent separation of 4.6 arcsec at a distance of 44 ± 2 pc. High precision RV over more than a decade, adaptive optics (AO) images, and abundances have been obtained for both components. A linear trend in the RV is found for the secondary. We assumed that it is due to the binary orbit and once coupled with the astrometric data, it strongly constrains the orbital solution of the binary at high eccentricities (e ~ 0.85) and quite small periastron of ~21 AU. If this orbital motion is subtracted from the primary radial velocity curve, a highly significant (false alarm probability <0.1%) period of about 1300 d is obtained, suggesting in a first analysis the presence of a giant planet, but it turned out to be due to the stellar activity cycle. Since our spectra do not include the Ca II resonance lines, we measured a chromospheric activity indicator based on the Hα line to study the correlation between activity cycles and long-term activity variations. While the bisector analysis of the line profile does not show a clear indication of activity, the correlation between the Hα line indicator and the RV measurements identify the presence of a strong activity cycle. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the Istituto Nazionale di Astrofisica (INAF) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Tables 5 and 6 are available in electronic form at http://www.aanda.org
The magnetic field of the double-lined spectroscopic binary system HD 5550
NASA Astrophysics Data System (ADS)
Alecian, E.; Tkachenko, A.; Neiner, C.; Folsom, C. P.; Leroy, B.
2016-05-01
Context. The origin of fossil fields in intermediate- and high-mass stars is poorly understood, as is the interplay between binarity and magnetism during stellar evolution. Thus we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems as a function of binarity properties. Aims: This paper specifically aims to characterise the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate mass. Methods: We gathered 25 high-resolution spectropolarimetric observations of HD 5550 using the instrument Narval. We first fitted the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light ratio of the system. We then applied the multi-line least-square deconvolution (LSD) technique to the intensity and circularly polarised spectra, which provided us with mean LSD I and V line profiles. We fitted the Stokes I line profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the V profiles using the oblique rotator model to characterise the magnetic fields of both stars. Results: We confirm the Ap nature of the primary, which has previously been reported, and find that the secondary displays spectral characteristics typical of an Am star. While a magnetic field is clearly detected in the lines of the primary, no magnetic field is detected in the secondary in any of our observations. If a dipolar field were present at the surface of the Am star, its polar strength must be below 40 G. The faint variability observed in the Stokes V profiles of the Ap star allowed us to propose a rotation period of 6.84-0.39+0.61 d, which is close to the orbital period (~6.82 d), suggesting that the star is synchronised with its orbit. By fitting the variability of the V profiles, we propose that the Ap component hosts a dipolar field inclined with the rotation axis at an angle β = 156 ± 17 ° and a polar strength Bd = 65 ± 20 G. The field strength is the weakest known for an Ap star. Based on the BinaMIcS Large Programme (PI: C. Neiner, runID: L131N02) obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.
Nova V2214 Ophiuchi 1988 - A magnetic nova inside the period gap
NASA Technical Reports Server (NTRS)
Baptista, R.; Jablonski, F. J.; Cieslinski, D.; Steiner, J. E.
1993-01-01
The discovery of a coherent photometric modulation in Nova Oph 1988 with period 0.117515 +/- 0.000002 d, which is associated with the orbital period of the underlying binary, is reported. On the basis of photometric observations, it is concluded that Nova V2214 Oph 1988 is a magnetic nova with an orbital period inside the period gap. The inclusion of this system in the statistics of novae suggests that there is no period gap for novae and that there is a clear correlation between the occurrence of novae with short orbital periods and the presence of magnetic white dwarfs. It is suggested that funneling of the accretion flow onto the magnetic poles favors the conditions for a thermonuclear runaway, increasing the frequency of eruptions for magnetic systems.
Fermi Establishes Classical Novae as a Distinct Class of Gamma-ray Sources
NASA Technical Reports Server (NTRS)
Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.;
2014-01-01
A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in gamma rays and stood in contrast to the first gamma-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient gamma-ray sources detected over 2-3 week durations. The gamma-ray detections point to unexpected high-energy particle acceleration processes linked to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic gamma-ray sources.
Fermi establishes classical novae as a distinct class of gamma-ray sources
Cheung, C. C.
2014-07-31
A classical nova results from runaway thermonuclear explosions on the surface of a white dwarf that accretes matter from a low-mass main-sequence stellar companion. In 2012 and 2013, three novae were detected in γ rays and stood in contrast to the first γ-ray detected nova V407 Cygni 2010, which belongs to a rare class of symbiotic binary systems. Despite likely differences in the compositions and masses of their white dwarf progenitors, the three classical novae are similarly characterized as soft spectrum transient γ-ray sources detected over 2-3 week durations. The γ-ray detections point to unexpected high-energy particle acceleration processes linkedmore » to the mass ejection from thermonuclear explosions in an unanticipated class of Galactic γ-ray sources.« less
Study of runaway electrons in TUMAN-3M tokamak plasmas
NASA Astrophysics Data System (ADS)
Shevelev, A.; Khilkevitch, E.; Tukachinsky, A.; Pandya, S.; Askinazi, L.; Belokurov, A.; Chugunov, I.; Doinikov, D.; Gin, D.; Iliasova, M.; Kiptily, V.; Kornev, V.; Lebedev, S.; Naidenov, V.; Plyusnin, V.; Polunovsky, I.; Zhubr, N.
2018-07-01
Studies of runaway electrons in present day tokamaks are essential to improve theoretical models and to support possible avoidance or suppression mechanisms in future large-scale plasma devices. Some of the phenomena associated with the runaway electrons take place at faster time scales, and thus it is essential to probe the runaway electrons to investigate underlying physics. The present article reports a few experimental observations of runaway electron associated events, at fast time scales, using a state-of-the-art multi-detector system developed at the Ioffe Institute and recently deployed on the TUMAN-3M tokamak. The system is based on the high-performance scintillation gamma-ray spectrometers for measurements of bremsstrahlung generated during the interaction of accelerated electrons with plasma and materials of the tokamak chamber. It includes a total three detectors configured in the spectroscopic mode having different lines of sight. Along with this hardware, dedicated algorithms were developed and validated that enables the separation of piled-up pulses, maximize the dynamic range of the detector and provides a counting rate as high as 107 counts per second. The inversion code, DeGaSum, has been used for the reconstruction of a runaway electron energy distribution function from the measured gamma-ray spectra. Using this tool, experimental analysis of the runaway electron beam generation and evolution of their energy distribution in the TUMAN-3M representative plasma discharges is performed. The effect on gamma-ray count rate during the magnetohydrodynamic activities and possible changes in the runaway electron energy distribution function during sawtooth oscillations is discussed in detail. Possible maximum limit of the runaway electron energy in TUMAN-3M is investigated and compared with the numerical analysis. In addition, the probability of the runaway electron generation throughout the plasma discharge is estimated analytically and compared with the experimental observation that suggests a balance between production and loss of the runaway electrons.
Evolution of the symbiotic binary system AG Dranconis
NASA Technical Reports Server (NTRS)
Mikolajewska, Joanna; Kenyon, Scott J; Mikolajewski, Maciej; Garcia, Michael R.; Polidan, Ronald S.
1995-01-01
We present an analysis of new and archival photometric and spectroscopic observations of the symbiotic star AG Draconis. This binary has undergone several 1 - 3 mag optical and ultraviolet eruptions during the past 15 years. Our combination of optical and ultraviolet spectroscopic data allow a more complete analysis of this system than in previous papers. AG Dra is composed of a K-type bright giant M(sub g) approximately 1.5 solar mass) and a hot, compact star M(sub h approximatelly 0.4 - 0.6 solar mass) embedded in a dense, low metallicity nebula. The hot component undergoes occasional thermonuclear runaways that produce 2 - 3 mag optical/ultraviolet eruptions. During these eruptions, the hot component develops a low velocity wind that quenches x-ray emission from the underlying hot white dwarf. The photoionized nebula changes its volume by a factor of 5 throughout an eruptin cycle. The K bright giant occults low ionization emission lines during superior conjunctions at all outburst phases but does not occult high ionization lines in outburst (and perhaps quiescence). This geometry and the component masses suggest a system inclination of i approximately 30 deg - 45 deg.
Was the nineteenth century giant eruption of Eta Carinae a merger event in a triple system?
NASA Astrophysics Data System (ADS)
Portegies Zwart, S. F.; van den Heuvel, E. P. J.
2016-03-01
We discuss the events that led to the giant eruption of Eta Carinae, and find that the mid-nineteenth century (in 1838-1843) giant mass-loss outburst has the characteristics of being produced by the merger event of a massive close binary, triggered by the gravitational interaction with a massive third companion star, which is the current binary companion in the Eta Carinae system. We come to this conclusion by a combination of theoretical arguments supported by computer simulations using the Astrophysical Multipurpose Software Environment. According to this model the ˜90 M⊙ present primary star of the highly eccentric Eta Carinae binary system is the product of this merger, and its ˜30 M⊙ companion originally was the third star in the system. In our model, the Homunculus nebula was produced by an extremely enhanced stellar wind, energized by tidal energy dissipation prior to the merger, which enormously boosted the radiation-driven wind mass-loss. The current orbital plane is then aligned with the equatorial plane of the Homunculus, and the symmetric lobes are roughly aligned with the argument of periastron of the current Eta Carina binary. The merger itself then occurred in 1838, which resulted in a massive asymmetric outflow in the equatorial plane of the Homunculus. The 1843 outburst can in our model be attributed to the subsequent encounter when the companion star (once the outermost star in the triple system) plunges through the bloated envelope of the merger product, once when it passed periastron again. We predict that the system has an excess space velocity of order 50 km s-1 in the equatorial plane of the Homunculus. Our triple model gives a viable explanation for the high runaway velocities typically observed in LBVs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, R. J.; Hu, L. Q.; Li, E. Z.
2013-03-15
The nature of runaway electrons is such that the confinement and dynamics of the electrons can be strongly affected by magnetic fluctuations in plasma. Experimental results in the HT-7 tokamak indicated significant losses of runaway electrons due to magnetic fluctuations, but the loss processes did not only rely on the fluctuation amplitude. Efficient radial runaway transport required that there were no more than small regions of the plasma volume in which there was very low transport of runaways. A radial runaway diffusion coefficient of D{sub r} Almost-Equal-To 10 m{sup 2}s{sup -1} was derived for the loss processes, and diffusion coefficientmore » near the resonant magnetic surfaces and shielding factor #Greek Upsilon With Hook Symbol#=0.8 were deduced. Test particle equations were used to analyze the effect of magnetic fluctuations on runaway dynamics. It was found that the maximum energy that runaways can gain is very sensitive to the value of {alpha}{sub s} (i.e., the fraction of plasma volume with reduced transport). {alpha}{sub s}=(0.28-0.33) was found for the loss processes in the experiment, and maximum runaway energy could be controlled in the range of E=(4 MeV-6 MeV) in this case. Additionally, to control the maximum runaway energy below 5 MeV, the normalized electric field needed to be under a critical value D{sub {alpha}}=6.8, and the amplitude normalized magnetic fluctuations b(tilde sign) needed to be at least of the order of b(tilde sign) Almost-Equal-To 3 Multiplication-Sign 10{sup -5}.« less
NASA Technical Reports Server (NTRS)
Fekel, Francis C.; Quigley, Robert; Gillies, Kim; Africano, John L.
1987-01-01
Spectroscopic observations of the chromospherically active G5 IV single-lined binary HD 26337 = EI Eri are presented. An orbital period of 1.94722 days is found for the star. It has moderately strong Ca II H and K emission and strong ultraviolet emission features, while H-alpha is a weak absorption feature that is variable in strength. The inclination of the system is 46 + or - 12 deg, and the unseen secondary is probably a late K or early M dwarf. The v sin i of the primary is 50 + or - 3 km/s, resulting in a minimum radius of 1.9 + or - 0.1 solar radius. The star is within the required limits for Doppler imaging. The primary is close to filling its Roche lobe, resulting in a strong constraint that the mass ratio is 2.6 or greater, with a primary mass of at least 1.4 solar mass. The distance to the system is estimated at 75 pc.
Determination of the core temperature of a Li-ion cell during thermal runaway
NASA Astrophysics Data System (ADS)
Parhizi, M.; Ahmed, M. B.; Jain, A.
2017-12-01
Safety and performance of Li-ion cells is severely affected by thermal runaway where exothermic processes within the cell cause uncontrolled temperature rise, eventually leading to catastrophic failure. Most past experimental papers on thermal runaway only report surface temperature measurement, while the core temperature of the cell remains largely unknown. This paper presents an experimentally validated method based on thermal conduction analysis to determine the core temperature of a Li-ion cell during thermal runaway using surface temperature and chemical kinetics data. Experiments conducted on a thermal test cell show that core temperature computed using this method is in good agreement with independent thermocouple-based measurements in a wide range of experimental conditions. The validated method is used to predict core temperature as a function of time for several previously reported thermal runaway tests. In each case, the predicted peak core temperature is found to be several hundreds of degrees Celsius higher than the measured surface temperature. This shows that surface temperature alone is not sufficient for thermally characterizing the cell during thermal runaway. Besides providing key insights into the fundamental nature of thermal runaway, the ability to determine the core temperature shown here may lead to practical tools for characterizing and mitigating thermal runaway.
Detection of a large increase of the size of the Be disk from the X-ray binary A 0535+262
NASA Astrophysics Data System (ADS)
Camero-Arranz, A.; Ozbey-Arabaci, M.; Fabregat, J.; Gutierrez-Soto, J.; Finger, Mark H.; Peris, V.; Brevia, O.
2014-04-01
We report on the evolution of the H & alpha; equivalent width (EW) of the Be/X-ray binary system A 0535+262/HD 245770, using observations performed with the spectrograph Albireo, at the 1.5 m telescope of the Observatorio de Sierra Nevada (Granada, Spain) on 2012-03-26 22:27:59.000 UTC (MJD 56012.936), and recently with the spectrograph located at the 51 cm telescope of the Observatorio de Aras de los Olmos of the University of Valencia on 2014-Mar-07 at 21:07:00.000 UTC (MJD 56723.879), and also with the TFOSC spectrometer at the 1.5 m telescope RTT150 of the T & Uuml;B & #304TAK National Observatory (Antalya, Turkey) on 2014-03-18 19:57:14.688 UTC (MJD 56734.831) and 2014-03-19 19:58:30.746 UTC (MJD 56735.832). ...
Massive Stars in Interactive Binaries
NASA Astrophysics Data System (ADS)
St.-Louis, Nicole; Moffat, Anthony F. J.
Massive stars start their lives above a mass of ~8 time solar, finally exploding after a few million years as core-collapse or pair-production supernovae. Above ~15 solar masses, they also spend most of their lives driving especially strong, hot winds due to their extreme luminosities. All of these aspects dominate the ecology of the Universe, from element enrichment to stirring up and ionizing the interstellar medium. But when they occur in close pairs or groups separated by less than a parsec, the interaction of massive stars can lead to various exotic phenomena which would not be seen if there were no binaries. These depend on the actual separation, and going from wie to close including colliding winds (with non-thermal radio emission and Wolf-Rayet dust spirals), cluster dynamics, X-ray binaries, Roche-lobe overflow (with inverse mass-ratios and rapid spin up), collisions, merging, rejuventation and massive blue stragglers, black-hole formation, runaways and gamma-ray bursts. Also, one wonders whether the fact that a massive star is in a binary affects its parameters compared to its isolated equivalent. These proceedings deal with all of these phenomena, plus binary statistics and determination of general physical properties of massive stars, that would not be possible with their single cousins. The 77 articles published in these proceedings, all based on oral talks, vary from broad revies to the lates developments in the field. About a third of the time was spent in open discussion of all participants, both for ~5 minutes after each talk and 8 half-hour long general dialogues, all audio-recorded, transcribed and only moderately edited to yield a real flavour of the meeting. The candid information in these discussions is sometimes more revealing than the article(s) that preceded them and also provide entertaining reading. The book is suitable for researchers and graduate students interested in stellar astrophysics and in various physical processes involved when stars occur in bound pairs, groups or tight clusters.
2015-03-04
the second confirmed quadruple system known to host an exoplanet. HD 2638 hosts a hot Jupiter and the discovery of a new companion strengthens the...connection between hot Jupiters and binary stars. We place the systems on a color–magnitude diagram and derive masses for the companions which turn out to...system. Naoz et al. (2012) found that it can account for about 30% of the observed hot Jupiter planets, which matches well with the projected spin–orbit
PSR J1755-2550: a young radio pulsar with a massive, compact companion
NASA Astrophysics Data System (ADS)
Ng, C.; Kruckow, M. U.; Tauris, T. M.; Lyne, A. G.; Freire, P. C. C.; Ridolfi, A.; Caiazzo, I.; Heyl, J.; Kramer, M.; Cameron, A. D.; Champion, D. J.; Stappers, B.
2018-06-01
Radio pulsars found in binary systems with short orbital periods are usually fast spinning as a consequence of recycling via mass transfer from their companion stars; this process is also thought to decrease the magnetic field of the neutron star being recycled. Here, we report on timing observations of the recently discovered binary PSR J1755-2550 and find that this pulsar is an exception: with a characteristic age of 2.1 Myr, it is relatively young; furthermore, with a spin period of 315 ms and a surface magnetic field strength at its poles of 0.88 × 1012 G, the pulsar shows no sign of having been recycled. Based on its timing and orbital characteristics, the pulsar either has a massive white dwarf (WD) or a neutron star (NS) companion. To distinguish between these two cases, we searched radio observations for a potential recycled pulsar companion and analysed archival optical data for a potential WD companion. Neither work returned conclusive detections. We apply population synthesis modelling and find that both solutions are roughly equally probable. Our population synthesis also predicts a minimum mass of 0.90 M⊙ for the companion star to PSR J1755-2550 and we simulate the systemic runaway velocities for the resulting WDNS systems which may merge and possibly produce Ca-rich supernovae. Whether PSR J1755-2550 hosts a WD or a NS companion star, it is certainly a member of a rare subpopulation of binary radio pulsars.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-28
...-0001] RIN 0584-AD60 Direct Certification and Certification of Homeless, Migrant and Runaway Children... interim rule entitled Direct Certification and Certification of Homeless, Migrant and Runaway Children for...
NASA Astrophysics Data System (ADS)
Dai, A. J.; Chen, Z. Y.; Huang, D. W.; Tong, R. H.; Zhang, J.; Wei, Y. N.; Ma, T. K.; Wang, X. L.; Yang, H. Y.; Gao, H. L.; Pan, Y.; the J-TEXT Team
2018-05-01
A large number of runaway electrons (REs) with energies as high as several tens of mega-electron volt (MeV) may be generated during disruptions on a large-scale tokamak. The kinetic energy carried by REs is eventually deposited on the plasma-facing components, causing damage and posing a threat on the operation of the tokamak. The remaining magnetic energy following a thermal quench is significant on a large-scale tokamak. The conversion of magnetic energy to runaway kinetic energy will increase the threat of runaway electrons on the first wall. The magnetic energy dissipated inside the vacuum vessel (VV) equals the decrease of initial magnetic energy inside the VV plus the magnetic energy flowing into the VV during a disruption. Based on the estimated magnetic energy, the evolution of magnetic-kinetic energy conversion are analyzed through three periods in disruptions with a runaway current plateau.
First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks
NASA Astrophysics Data System (ADS)
Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.
2018-04-01
DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenyon, Scott J.; Brown, Warren R.; Geller, Margaret J.
We predict the distinctive three-dimensional space motions of hypervelocity stars (HVSs) and runaway stars moving in a realistic Galactic potential. For nearby stars with distances less than 10 kpc, unbound stars are rare; proper motions alone rarely isolate bound HVSs and runaways from indigenous halo stars. At large distances of 20-100 kpc, unbound HVSs are much more common than runaways; radial velocities easily distinguish both from indigenous halo stars. Comparisons of the predictions with existing observations are encouraging. Although the models fail to match observations of solar-type HVS candidates from SEGUE, they agree well with data for B-type HVS andmore » runaways from other surveys. Complete samples of g ≲ 20 stars with Gaia should provide clear tests of formation models for HVSs and runaways and will enable accurate probes of the shape of the Galactic potential.« less
Experiments in DIII-D Toward Achieving Rapid Shutdown with Runaway Electron Suppression
NASA Astrophysics Data System (ADS)
Hollmann, E. M.
2009-11-01
For safe discharge shutdown in future large tokamaks in the event of an unavoidable disruption, it is important to develop rapid (˜ several ms)shutdown methods to avoid large runaway electron currents, which pose a serious threat to plasma facing components. Prevention of runaway current formation has been proposed by either increasing electron-electron collisionality with massive particle injection, or magnetically by using externally applied non-axisymmetric fields to increase radial diffusive losses of a runaway seed population. Experiments studying both approaches have been pursued in the DIII-D tokamak. For collisional suppression, three different rapid shutdown methods are being investigated: massive gas injection, massive shattered cryogenic pellet injection, and polystyrene shell pellet injection. First-of-kind demonstrations of fast shutdowns were produced by 3000 Torr-l (0.8-g) shattered D2 pellets and large, 10-mm diameter, 0.3-g polystyrene shell pellets filled with boron powder. The application of external magnetic perturbations shows promising preliminary results in suppressing seed runaway electrons, although lack of repeatability in the runaway seed term made these results challenging to interpret. Experiments have been performed to help understand how runaways form and are transported during rapid shutdown. These experiments confirm that the commonly used 0D loop voltage + Dreicer evaporation picture of runaway seed formation is not applicable here, with relativistic E > 0.5,MeV electrons forming before any external loop voltage appears. Present applications of 0D, 1D, and 2D models to the rapid shutdown and runaway confinement experiments, as well as preliminary extrapolations to ITER, will be discussed.
Thermal Runaway Severity Reduction Assessment and Implementation: On Li-Ion Batteries
NASA Technical Reports Server (NTRS)
Darcy, Eric
2015-01-01
Preventing cell-cell thermal runaway propagation and flames/sparks from exiting battery enclosure is possible with proper thermal & electrical design and cell thermal runaway ejecta/effluent management and can be had with minimal mass/volume penalty.
Mitigating Thermal Runaway Risk in Lithium Ion Batteries
NASA Technical Reports Server (NTRS)
Darcy, Eric; Jeevarajan, Judy; Russell, Samuel
2014-01-01
The JSC/NESC team has successfully demonstrated Thermal Runaway (TR) risk reduction in a lithium ion battery for human space flight by developing and implementing verifiable design features which interrupt energy transfer between adjacent electrochemical cells. Conventional lithium ion (li-Ion) batteries can fail catastrophically as a result of a single cell going into thermal runaway. Thermal runaway results when an internal component fails to separate electrode materials leading to localized heating and complete combustion of the lithium ion cell. Previously, the greatest control to minimize the probability of cell failure was individual cell screening. Combining thermal runaway propagation mitigation design features with a comprehensive screening program reduces both the probability, and the severity, of a single cell failure.
NASA Astrophysics Data System (ADS)
Mack, Claude E., III; Schuler, Simon C.; Stassun, Keivan G.; Norris, John
2014-06-01
Using high-resolution, high signal-to-noise echelle spectra obtained with Magellan/MIKE, we present a detailed chemical abundance analysis of both stars in the planet-hosting wide binary system HD 20782 + HD 20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters lsim0.2 AU. Here, we investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperature, T C ≈ 40-1660 K. The two stars are found to have a mean element-to-element abundance difference of 0.04 ± 0.07 dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements (T C >900 K) exhibit a positive correlation between abundance (relative to solar) and T C, with similar slopes of ≈1×10-4 dex K-1. The measured positive correlations are not perfect; both stars exhibit a scatter of ≈5×10-5 dex K-1 about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive—but imperfect—correlation between refractory elemental abundances and T C. Our measured slopes are consistent with what is predicted for the ingestion of 10-20 Earths by each star in the system. In addition, the specific element-by-element scatter might be used to distinguish between planetary accretion and Galactic chemical evolution scenarios. The data presented herein were obtained at the Las Campanas Observatory with the Magellan/MIKE spectrograph.
Goldblatt, Colin; Watson, Andrew J
2012-09-13
The ultimate climate emergency is a 'runaway greenhouse': a hot and water-vapour-rich atmosphere limits the emission of thermal radiation to space, causing runaway warming. Warming ceases only after the surface reaches approximately 1400 K and emits radiation in the near-infrared, where water is not a good greenhouse gas. This would evaporate the entire ocean and exterminate all planetary life. Venus experienced a runaway greenhouse in the past, and we expect that the Earth will in around 2 billion years as solar luminosity increases. But could we bring on such a catastrophe prematurely, by our current climate-altering activities? Here, we review what is known about the runaway greenhouse to answer this question, describing the various limits on outgoing radiation and how climate will evolve between these. The good news is that almost all lines of evidence lead us to believe that is unlikely to be possible, even in principle, to trigger full a runaway greenhouse by addition of non-condensible greenhouse gases such as carbon dioxide to the atmosphere. However, our understanding of the dynamics, thermodynamics, radiative transfer and cloud physics of hot and steamy atmospheres is weak. We cannot therefore completely rule out the possibility that human actions might cause a transition, if not to full runaway, then at least to a much warmer climate state than the present one. High climate sensitivity might provide a warning. If we, or more likely our remote descendants, are threatened with a runaway greenhouse, then geoengineering to reflect sunlight might be life's only hope. Injecting reflective aerosols into the stratosphere would be too short-lived, and even sunshades in space might require excessive maintenance. In the distant future, modifying Earth's orbit might provide a sustainable solution. The runaway greenhouse also remains relevant in planetary sciences and astrobiology: as extrasolar planets smaller and nearer to their stars are detected, some will be in a runaway greenhouse state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, R. W.; Chan, V. S.; Chiu, S. C.
2000-11-01
Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from ''killer pellet'' injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon , Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, ''The CQL3D Code,'' in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker--Planck code, including the effect ofmore » small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Z{sub eff} are evolved according to the KPRAD [D. G. Whyte and T. E. Evans , in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet--plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt ''hot-tail runaways'' due to the residual hot electron tail remaining from the pre-cooling phase, (2) ''knock-on'' runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer ''drizzle'' runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below {approx}1x10{sup 15}cm{sup -3}, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of {approx}0.1% of the background field, i.e., {delta}B{sub r}/B{>=}0.001, the losses prevent late-time electron runaway.« less
2d axisymmetric "beam-bulk" modelling of the generation of runaway electrons by streamers.
NASA Astrophysics Data System (ADS)
Chanrion, Olivier; Bonaventura, Zdenek; Bourdon, Anne; Neubert, Torsten
2017-04-01
We present results from a 2d axisymmetric numerical model of streamers based on a "beam-bulk" approach which describes cold electrons with a fluid model and high energy electrons with a particle model. The interest is motivated by the generation of runaway electrons by streamers which may participate in the recently observed TGFs and which challenge the modelling. Runaway electrons are known to be generated from streamers when the electric field in its negative tip is of sufficient magnitude. After overtaking the streamer tip, runaways can affect the streamer propagation ahead and may produce high energy photons through the bremsstrahlung process. In conventional model of streamers, the evolution of the streamer discharge is mostly governed by cold electrons. By including runaway electrons, we model their production, their impact on the discharge propagation and can address their role in TGFs. Results of streamer propagation in leader electric field show that the runaway electrons accelerate the streamers, reduce the electric field in its tip and enlarge its radius by pre-ionizing the gas ahead. We observed that if we increase the electric field, the discharge is getting more diffuse, with a pattern driven by the increase in runaway induced ionisation.
Diffusion with Varying Drag; the Runaway Problem.
NASA Astrophysics Data System (ADS)
Rollins, David Kenneth
We study the motion of electrons in an ionized plasma of electrons and ions in an external electric field. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron runaway phenomenon. We treat the electric field as a small perturbation. We consider various diffusion coefficients for the one dimensional problem and determine the runaway current as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coefficient decays with velocity are then considered. To determine the runaway current, the equivalent Schrodinger eigenvalue problem is analysed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem.
NASA Astrophysics Data System (ADS)
Zheng, Siqi; Wang, Li; Feng, Xuning; He, Xiangming
2018-02-01
Safety issue is very important for the lithium ion battery used in electric vehicle or other applications. This paper probes the heat sources in the thermal runaway processes of lithium ion batteries composed of different chemistries using accelerating rate calorimetry (ARC) and differential scanning calorimetry (DSC). The adiabatic thermal runaway features for the 4 types of commercial lithium ion batteries are tested using ARC, whereas the reaction characteristics of the component materials, including the cathode, the anode and the separator, inside the 4 types of batteries are measured using DSC. The peaks and valleys of the critical component reactions measured by DSC can match the fluctuations in the temperature rise rate measured by ARC, therefore the relevance between the DSC curves and the ARC curves is utilized to probe the heat source in the thermal runaway process and reveal the thermal runaway mechanisms. The results and analysis indicate that internal short circuit is not the only way to thermal runaway, but can lead to extra electrical heat, which is comparable with the heat released by chemical reactions. The analytical approach of the thermal runaway mechanisms in this paper can guide the safety design of commercial lithium ion batteries.
VizieR Online Data Catalog: Field RR Lyrae stars (Liska+, 2016)
NASA Astrophysics Data System (ADS)
Liska, J.; Skarka, M.; Zejda, M.; Mikulasek, Z.; de Villiers, S. N.
2016-05-01
Differential photometry for VX Her in 'table1.dat' file. New photometric measurements for VX Her were performed at Masaryk University Observatory, Brno, Czech Republic during 13 nights (April-August 2014) with 0.6-m (24-inch) Newtonian telescope, CCD G2-0402, in BVRI bands. CCD images were calibrated in a standard way (dark frame and flat field corrections). The C-Munipack software (Motl 2009) was used for this processing as well as for differential photometry. TYC 1510-269-1 and TYC 1510-149-1 were used as comparison and check stars, respectively. Differential photometry for AT Ser and SS Leo is in 'table2.dat' file. New photometric measurements for these two stars were obtained using 1-inch refractor (a photographic lens Sonnar 4/135mm, lens focal ratio/focal length) and ATIK 16IC CCD camera with green photometric filter with similar throughput as the Johnson V filter. Exposures were 30s and each five frames were combined to a single image to achieve a better signal-to-noise ratio. The time resolution of a such combined frame is about 170s. The comparison stars were HD 142799 for AT Ser and HD 100763 for SS Leo. List with candidates for binaries with RR Lyrae component - RRLyrBinCan database (version 2016 May 5) is in 'table3.dat' file. 'table4.dat' file contains false-positives binary candidates among RR Lyrae stars. 'table5.dat' and 'table6.dat' files contain used maxima timings given in GEOS RR Lyr database, or newly determined in this study. (7 data files).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raston, Paul L., E-mail: paul.raston@adelaide.edu.au; Jäger, Wolfgang
We report the Fourier transform microwave spectra of the a-type J = 1-0 transitions of the binary and ternary CO-(pH{sub 2}){sub 2}, CO-pH{sub 2}-He, CO-HD, and CO-(oD{sub 2}){sub N=1,2} clusters. In addition to the normal isotopologue of CO for all clusters, we observed the transitions of the minor isotopologues, {sup 13}C{sup 16}O, {sup 12}C{sup 18}O, and {sup 13}C{sup 18}O, for CO-(pH{sub 2}){sub 2} and CO-pH{sub 2}-He. All transitions lie within 335 MHz of the experimentally or theoretically predicted values. In comparison to previously reported infrared spectra [Moroni et al., J. Chem. Phys. 122, 094314 (2005)], we are able to tentativelymore » determine the vibrational shift for CO-pH{sub 2}-He, in addition to its b-type J = 1-0 transition frequency. The a-type frequency of CO-pH{sub 2}-He is similar to that of CO-He{sub 2} [Surin et al., Phys. Rev. Lett. 101, 233401 (2008)], suggesting that the pH{sub 2} molecule has a strong localizing effect on the He density. Perturbation theory analysis of CO-oD{sub 2} reveals that it is approximately T-shaped, with an anisotropy of the intermolecular potential amounting to ∼9 cm{sup −1}.« less
NASA Astrophysics Data System (ADS)
Genovese, Mariangela; Napoli, Ettore
2013-05-01
The identification of moving objects is a fundamental step in computer vision processing chains. The development of low cost and lightweight smart cameras steadily increases the request of efficient and high performance circuits able to process high definition video in real time. The paper proposes two processor cores aimed to perform the real time background identification on High Definition (HD, 1920 1080 pixel) video streams. The implemented algorithm is the OpenCV version of the Gaussian Mixture Model (GMM), an high performance probabilistic algorithm for the segmentation of the background that is however computationally intensive and impossible to implement on general purpose CPU with the constraint of real time processing. In the proposed paper, the equations of the OpenCV GMM algorithm are optimized in such a way that a lightweight and low power implementation of the algorithm is obtained. The reported performances are also the result of the use of state of the art truncated binary multipliers and ROM compression techniques for the implementation of the non-linear functions. The first circuit has commercial FPGA devices as a target and provides speed and logic resource occupation that overcome previously proposed implementations. The second circuit is oriented to an ASIC (UMC-90nm) standard cell implementation. Both implementations are able to process more than 60 frames per second in 1080p format, a frame rate compatible with HD television.
The Runaway Crisis: Is Family Therapy the Answer?
ERIC Educational Resources Information Center
Ostensen, Kay Wickett
1981-01-01
Presents research on the relationship of two family counseling models (one with temporary foster placement, one without) to the recidivism of runaway teenagers. Research shows the Brief Family Intervention counseling model to be a statistically viable tool in deterring repeated runaway episodes. (Author)
Becoming a Chronic Runaway: The Effects of Race and Family in Hawaii.
ERIC Educational Resources Information Center
Mathews, Luon J.; Ilon, Lynn
1980-01-01
Hawaiian children are most likely to become chronic runaways, perhaps due to an available family network for shelter. Caucasians and those from single parent families were least likely to become chronic runaways. There were no sex differences. (JAC)
A long-period massive planet around HD 106515A
NASA Astrophysics Data System (ADS)
Desidera, S.; Gratton, R.; Carolo, E.; Martinez Fiorenzano, A. F.; Endl, M.; Mesa, D.; Cecconi, M.; Claudi, R.; Cosentino, R.; Scuderi, S.; Sozzetti, A.; Zurlo, A.
2012-10-01
We have performed radial velocity (RV) monitoring of the components of the binary system HD 106515 over almost 11 years using the high-resolution spectrograph SARG at Telescopio Nazionale Galileo (TNG). The primary shows long-period radial velocity variations that indicate the presence of a low-mass companion whose projected mass is in the planetary regime (msini = 9.33 MJ). The 9.8 year orbit is quite eccentric (e = 0.57), as is typical for massive giant planets. Our results confirm the previously made preliminary announcement of the planet by Mayor et al. (2011, A&A, submitted [arXiv:1109.2497]). The secondary instead does not show significant RV variations. The two components do not differ significantly in chemical composition, as was also found for other pairs of which one component hosts giant planets. Adaptive optics images obtained with TNG/AdOpt do not reveal additional stellar companions. From the analysis of the relative astrometry of the components of the wide pair we compute an upper limit on the mass of the newly detected companion of about 0.25 M⊙. State-of-the-art or near-future instrumentation can provide true mass determination, thanks to the availability of the wide companion HD106515B as reference. Therefore, HD 106515Ab will allow a deeper insight into the transition region between planets and brown dwarfs. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundacion Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.Tables 3 and 4 are available in electronic form at http://www.aanda.org
Influence of the angular scattering of electrons on the runaway threshold in air
NASA Astrophysics Data System (ADS)
Chanrion, O.; Bonaventura, Z.; Bourdon, A.; Neubert, T.
2016-04-01
The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare the outcome of different Fokker-Planck and Monte Carlo models with increasing complexity in the description of the scattering. The results show that the inclusion of the stochastic nature of collisions smooths the probability to run away around the threshold. Furthermore, we observe that a significant number of electrons diffuse out of the runaway regime when we take into account the diffusion in angle due to the scattering. Those results suggest using a runaway threshold energy based on the Fokker-Planck model assuming the angular equilibrium that is 1.6 to 1.8 times higher than the one proposed by [1, 2], depending on the magnitude of the ambient electric field. The threshold also is found to be 5 to 26 times higher than the one assuming forward scattering. We give a fitted formula for the threshold field valid over a large range of electric fields. Furthermore, we have shown that the assumption of forward scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation.
Massive binary stars as a probe of massive star formation
NASA Astrophysics Data System (ADS)
Kiminki, Daniel C.
2010-10-01
Massive stars are among the largest and most influential objects we know of on a sub-galactic scale. Binary systems, composed of at least one of these stars, may be responsible for several types of phenomena, including type Ib/c supernovae, short and long gamma ray bursts, high-velocity runaway O and B-type stars, and the density of the parent star clusters. Our understanding of these stars has met with limited success, especially in the area of their formation. Current formation theories rely on the accumulated statistics of massive binary systems that are limited because of their sample size or the inhomogeneous environments from which the statistics are collected. The purpose of this work is to provide a higher-level analysis of close massive binary characteristics using the radial velocity information of 113 massive stars (B3 and earlier) and binary orbital properties for the 19 known close massive binaries in the Cygnus OB2 Association. This work provides an analysis using the largest amount of massive star and binary information ever compiled for an O-star rich cluster like Cygnus OB2, and compliments other O-star binary studies such as NGC 6231, NGC 2244, and NGC 6611. I first report the discovery of 73 new O or B-type stars and 13 new massive binaries by this survey. This work involved the use of 75 successful nights of spectroscopic observation at the Wyoming Infrared Observatory in addition to observations obtained using the Hydra multi-object spectrograph at WIYN, the HIRES echelle spectrograph at KECK, and the Hamilton spectrograph at LICK. I use these data to estimate the spectrophotometric distance to the cluster and to measure the mean systemic velocity and the one-sided velocity dispersion of the cluster. Finally, I compare these data to a series of Monte Carlo models, the results of which indicate that the binary fraction of the cluster is 57 +/- 5% and that the indices for the power law distributions, describing the log of the periods, mass-ratios, and eccentricities, are --0.2 +/- 0.3, 0.3 +/- 0.3, and --0.8 +/- 0.3 respectively (or not consistent with a simple power law distribution). The observed distributions indicate a preference for short period systems with nearly circular orbits and companions that are not likely drawn from a standard initial mass function, as would be expected from random pairing. An interesting and unexpected result is that the period distribution is inconsistent with a standard power-law slope stemming mainly from an excess of periods between 3 and 5 days and an absence of periods between 7 and 14 days. One possible explanation of this phenomenon is that the binary systems with periods from 7--14 days are migrating to periods of 3--5 days. In addition, the binary distribution here is not consistent with previous suggestions in the literature that 45% of OB binaries are members of twin systems (mass ratio near 1).
MESA models for the evolutionary status of the epsilon Aurigae disk-eclipsed binary system
NASA Astrophysics Data System (ADS)
Stencel, Robert E.; Gibson, Justus
2018-06-01
The brightest member of the class of disk-eclipsed binary stars is the Algol-like long-period binary, epsilon Aurigae (HD 31964, F0Iap + disk, http://adsabs.harvard.edu/abs/2016SPIE.9907E..17S ). Using MESA (Modules for Experiments in Stellar Astrophysics, version 9575), we have made an evaluation of its evolutionary state. We sought to satisfy several observational constraints, including: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C / 13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 solar masses, with a 100 day initial period, produces a 1.2 + 10.6 solar masses result having a 547 day period, plus a single digit 12C / 13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long period binary stars. This report has been submitted to MNRAS, along with a parallel investigation of mass transfer stream and disk sub-structure. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver.
Histories of Sexual Abuse in Adolescent Male Runaways.
ERIC Educational Resources Information Center
Janus, Mark-David; And Others
1987-01-01
Evaluated data on sexual victimization, physical victimization, family structure, family financial stability, delinquent and criminal activities, and reasons for running away in histories of 89 Canadian male runaways. Runaways evidenced dramatically higher rates of sexual and physical abuse than did randomly sampled populations. Sexually abused…
First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks
Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; ...
2018-04-11
DIII-D experiments at low density (n e ~10 19 m -3) have directly measured whistler waves in the 100– 200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limitcycle- like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission thatmore » follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.« less
First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks.
Spong, D A; Heidbrink, W W; Paz-Soldan, C; Du, X D; Thome, K E; Van Zeeland, M A; Collins, C; Lvovskiy, A; Moyer, R A; Austin, M E; Brennan, D P; Liu, C; Jaeger, E F; Lau, C
2018-04-13
DIII-D experiments at low density (n_{e}∼10^{19} m^{-3}) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.
First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.
DIII-D experiments at low density (n e ~10 19 m -3) have directly measured whistler waves in the 100– 200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limitcycle- like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission thatmore » follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.« less
Observation of thermal quench induced by runaway electrons in magnetic perturbation
NASA Astrophysics Data System (ADS)
Cheon, MunSeong; Seo, Dongcheol; Kim, Junghee
2018-04-01
Experimental observations in Korea Superconducting Tokamak Advanced Research (KSTAR) plasmas show that a loss of pre-disruptive runaway electrons can induce a rapid radiative cooling of the plasma, by generating impurity clouds from the first wall. The synchrotron radiation image shows that the loss of runaway electrons occurs from the edge region when the resonant magnetic perturbation is applied on the plasma. When the impact of the runaway electrons on the wall is strong enough, a sudden drop of the electron cyclotron emission (ECE) signal occurs with the characteristic plasma behaviors such as the positive spike and following decay of the plasma current, Dα spike, big magnetic fluctuation, etc. The visible images at this runaway loss show an evidence of the generation of impurity cloud and the following radiative cooling. When the runaway beam is located on the plasma edge, thermal quenches are expected to occur without global destruction of the magnetic structure up to the core.
Coupled Orbital and Thermal Evolution of Ganymede
NASA Astrophysics Data System (ADS)
Showman, Adam P.; Stevenson, David J.; Malhotra, Renu
1997-10-01
We explore the hypothesis that passage through an eccentricity-pumping resonance could lead to the resurfacing of Ganymede. To do so, we couple R. Malhotra's (1991,Icarus94,399-412) orbital model for the tidal evolution of the Laplace resonance to an internal model of Ganymede. Our model explores the conditions under which Ganymede can undergo global thermal runaway, assuming that theQ/kof Ganymede is strongly dependent on internal temperature. (HereQis the tidal dissipation function andkis the second-degree Love number.) We allow the system to pass through the ω1/ω2≈ 2 or ω1/ω2≈ 1/2 resonance, where ω1≡ 2n2-n1, ω2≡ 2n3-n2, andn1,n2, andn3are the mean motions of Io, Europa, and Ganymede. If Ganymede's initial internal temperature is either “too hot” or “too cold,” no runaway occurs, while for intermediate temperatures (∼200 K in the upper mantle), conditions are “just right,” and runaway occurs. The range of mantle temperatures that allows runaway depends on the model for tidalQ; we use the Maxwell model, which tiesQto the creep viscosity of ice. Runaways can induce up to ∼50-100 K warming and formation of a large internal ocean; they occur over a 107to 108-year period. Assuming carbonaceous chondritic abundances of radionuclides in Ganymede's rocky portion, however, we find that the interior cannot cool to the initial temperatures needed to allow large runaways. If our model is correct, large runaways cannot occur, although small runaways are still possible. Different formulations of tidalQor convective cooling may allow large runaways. Large runaways are also possible if radionuclides are substantially depleted, although this is unlikely. We next consider the consequences of a large runaway, assuming it can occur. Ganymede can undergo 0.5% thermal expansion (by volume) during the largest thermal runaways. Melting of the ice mantle provides up to 2% expansion despite the fact that contraction produced by melting ice I offsets expansion produced by melting high-pressure ice phases. Solid-solid phase transitions cause negligible satellite expansion. Lithospheric stresses caused by expansion of 2% over 107to 108years are ∼102bars at the surface, and drop to a few bars at several kilometers depth. Such stresses could cause cracking to depths of several kilometers. The cracking and near-surface production of warm or partially molten ice make resurfacing a plausible outcome of a large thermal runaway. The tidal heating events proposed here may also be relevant for generation of Ganymede's modern-day magnetic field.
X ray and gamma ray emission from classical nova outbursts
NASA Technical Reports Server (NTRS)
Truran, James W.; Starrfield, Sumner; Sparks, Warren M.
1992-01-01
The outbursts of classical novae are now recognized to be consequences of thermonuclear runaways proceeding in accreted hydrogen-rich shells on white dwarfs in close binary systems. For the conditions that are known to exist in these environments, it is expected that soft x-rays can be emitted, and indeed x-rays were detected from a number of novae. The circumstances for which we expect novae to produce significant x-ray fluxes and provide estimates of the luminosities and effective temperatures are described. It is also known that at the high temperatures that are known to be achieved in this explosive hydrogen-burning environment, significant production of both Na-22 and Al-26 will occur. In this context, we identify the conditions for which gamma-ray emission may be expected to result from nova outbursts.
Two drastically different climate states on an Earth-like land planet with overland water recycling
NASA Astrophysics Data System (ADS)
Kalidindi, S.; Reick, C. H.; Raddatz, T.; Claussen, M.
2017-12-01
Prior studies have demonstrated that habitable areas on low-obliquity land planets are confined to the edges of frozen ice caps. Whether such dry planets can maintain long-lived liquid water is unclear. Leconte et al. 2013 argue that on such planets mechanisms like gravity driven ice flows and geothermal flux can maintain liquid water at the edges of thick ice caps and this water may flow back to the lower latitudes through rivers. However, there exists no modelling study which investigates the climate of an Earth-like land planet with an overland recycling mechanism bringing fresh water back from higher to lower latitudes. In our study, by using a comprehensive climate model ICON, we find that an Earth-like land planet with an overland recycling mechanism can exist in two drastically different climate states for the same set of boundary conditions and parameter values: A Cold and Wet (CW) state with dominant low-latitude precipitation and, a Hot and Dry (HD) state with only high-latitude precipitation. For perpetual equinox conditions, both climate states are stable below a certain threshold value of background soil albedo (α) while above that only the CW state is stable. Starting from the HD state and increasing α above the threshold causes an abrupt shift from the HD state to the CW state resulting in a sudden cooling of about 35°C globally which is of the order of the temperature difference between the present-day and the Snowball Earth state. In contrast to the Snowball Earth instability, we find that the sudden cooling in our study is driven by the cloud albedo feedback rather than the snow-albedo feedback. Also, when α in the CW state is reduced back to zero the land planet does not display a closed hysteresis. Our study also has implications for the habitability of Earth-like land planets. At the inner edge of the habitable zone, the higher cloud cover in the CW state cools the planet and may prevent the onset of a runaway greenhouse state. At the outer edge, the resupply of water at lower latitudes stabilizes the greenhouse effect and keeps the planet in the HD state and may prevent water from getting trapped at higher latitudes in frozen form. Overall, the existence of bi-stability in the presence of an overland recycling mechanism hints at the possibility of a wider habitable zone for Earth-like land planets at lower obliquities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... child, Homeless child, a Migrant child, a Head Start child and a Runaway child, as defined in this... child and a Runaway child, as defined in this section. Disclosure means reveal or use individual... a Runaway child as defined in this section. (iii) Information from the local educational agency...
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Carroll, T. A.; Weber, M.; Granzer, T.; Bartus, J.; Oláh, K.; Rice, J. B.
2011-11-01
Context. Multi-wavelength time-series observations with high cadence and long duration are needed to resolve and understand the many variations of magnetically active late-type stars, which is an approach often used to observe the Sun. Aims: We present a first and detailed study of the bright and active K0IV-III star HD 123351. Methods: We acquired a total of 955 high-resolution STELLA echelle spectra during the years 2006-2010 and a total of 2260 photometric VIC data points during 1998-2010. These data are complemented by some spectra from CFHT and KPNO. Results: The star is found to be a single-lined spectroscopic binary with a period of 147.8919 ± 0.0003 days and a large eccentricity of e = 0.8086 ± 0.0001. The rms of the orbital solution is just 47 m s-1, making it the most precise orbit ever obtained for an active binary system. The rotation period is constrained from long-term photometry to be 58.32 ± 0.01 days. It shows that HD 123351 is a very asynchronous rotator, rotating five times slower than the expected pseudo-synchronous value. Two spotted regions persisted throughout the 12 years of our observations. We interpret them as active longitudes on a differentially rotating surface with a ΔP/P of 0.076. Four years of Hα, Ca ii H&K and He i D3 monitoring identifies the same main periodicity as the photometry but dynamic spectra also indicate that there is an intermittent dependence on the orbital period, in particular for Ca ii H&K in 2008. Line-profile inversions of a pair of Zeeman sensitive/insensitive iron lines yield an average surface magnetic-flux density of 542 ± 72 G. The time series for 2008 is modulated by the stellar rotation as well as the orbital motion, such that the magnetic flux is generally weaker during times of periastron and that the chromospheric emissions vary in anti-phase with the magnetic flux. We also identify a broad and asymmetric lithium line profile and measure an abundance of log n(Li) = 1.70 ± 0.05. The star's position in the H-R diagram indicates a mass of 1.2 ± 0.1 M⊙ and an age of 6-7 Gyr. Conclusions: We interpret the anti-phase relation of the magnetic flux with the chromospheric emissions as evidence that there are two magnetic fields present at the same time, a localized surface magnetic field associated with spots and a global field that is oriented towards the (low-mass) secondary component. We suggest that the inter-binary field is responsible for the magnetic-flux dilution at periastron. It is also likely to be responsible for the unexpected slow and asynchronous rotation of the primary star. Based on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC, and the Potsdam Automatic Photoelectric Telescopes (APT) in Arizona, jointly operated by AIP and Fairborn Observatory.
ERIC Educational Resources Information Center
Thompson, Sanna J.; Safyer, Andrew W.; Pollio, David E.
2001-01-01
Article discusses two questions: (1) What are the differences among runaway-homeless, throwaway, and independent youth? (2) What youth demographics, personal characteristics, and family factors predict youth's reunification? Among runaway-homeless youths, family characteristics were most important for reunification; among throwaway youths, problem…
Parents, Teachers, and Peers and Early Adolescent Runaway in Hong Kong
ERIC Educational Resources Information Center
Cheung, Chan-Kiu; Liu, Suk-Ching; Lee, Tak-Yan
2005-01-01
Parental monitoring, teacher support, classmate support, and friend relationship presumably affect adolescents' runaway from home. According to social control theory, social control based on conventional social norms would prevent adolescent runaway, but association with friends may erode such control. This expectation appears to hold true in a…
45 CFR 1351.1 - Significant terms.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES BUREAU RUNAWAY AND HOMELESS YOUTH PROGRAM Definition of Terms § 1351.1 Significant terms. For the purposes of this part: (a) Aftercare services means the provision of services to runaway or otherwise... homeless. (b) Area means a specific neighborhood or section of the locality in which the runaway and...
Runaway Slave Advertisements: Teaching from Primary Documents
ERIC Educational Resources Information Center
Costa, Tom; Doyle, Brooke
2004-01-01
In this article, the authors discuss how children can learn from runaway slave advertisements. The advertisements for runaway slaves that masters placed in eighteenth- and nineteenth-century newspapers are among the documentary sources available to teachers for studying the lives of African-American slaves. Such advertisements often describe a…
Predictors of Trauma-Related Symptoms among Runaway Adolescents
ERIC Educational Resources Information Center
McCarthy, Michael D.; Thompson, Sanna J.
2010-01-01
Little is known about trauma-related symptoms among runaway adolescents. Precocious departure from familial homes often exposes youth to traumatic victimization. This study examined the extent to which runaway adolescents present trauma symptomotology and assessed factors that predict trauma symptoms. Participants (N = 350) were 12-18 years of age…
Runaway Youth Program Directory.
ERIC Educational Resources Information Center
New England Association for the Education of Young Children, Springvale, ME.
This directory provides a state-by-state listing of 212 runaway programs which exist, for the most part, outside the juvenile justice system and serve primarily the self-referred runaway and "throwaway" youth. The directory is designed to aid those persons seeking appropriate referrals for youth in need of crisis shelter as well as those…
Adjoint method and runaway electron avalanche
Liu, Chang; Brennan, Dylan P.; Boozer, Allen H.; ...
2016-12-16
The adjoint method for the study of runaway electron dynamics in momentum space Liu et al (2016 Phys. Plasmas 23 010702) is rederived using the Green's function method, for both the runaway probability function (RPF) and the expected loss time (ELT). The RPF and ELT obtained using the adjoint method are presented, both with and without the synchrotron radiation reaction force. In conclusion, the adjoint method is then applied to study the runaway electron avalanche. Both the critical electric field and the growth rate for the avalanche are calculated using this fast and novel approach.
Slesnick, Natasha; Guo, Xiamei; Brakenhoff, Brittany; Feng, Xin
2013-01-01
Given high levels of health and psychological costs associated with the family disruption of homelessness, identifying predictors of runaway and homeless episodes is an important goal. The current study followed 179 substance abusing, shelter-recruited adolescents who participated in a randomized clinical trial. Predictors of runaway and homeless episodes were examined over a two year period. Results from the hierarchical linear modeling analysis showed that family cohesion and substance use, but not family conflict or depressive symptoms, delinquency, or school enrollment predicted future runaway and homeless episodes. Findings suggest that increasing family support, care and connection and reducing substance use are important targets of intervention efforts in preventing future runaway and homeless episodes amongst a high risk sample of adolescents. PMID:24011094
HABITABILITY OF EXOMOONS AT THE HILL OR TIDAL LOCKING RADIUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkel, Natalie R.; Kane, Stephen R., E-mail: natalie.hinkel@gmail.com
2013-09-01
Moons orbiting extrasolar planets are the next class of object to be observed and characterized for possible habitability. Like the host-planets to their host-star, exomoons have a limiting radius at which they may be gravitationally bound, or the Hill radius. In addition, they also have a distance at which they will become tidally locked and therefore in synchronous rotation with the planet. We have examined the flux phase profile of a simulated, hypothetical moon orbiting at a distant radius around the confirmed exoplanets {mu} Ara b, HD 28185 b, BD +14 4559 b, and HD 73534 b. The irradiated fluxmore » on a moon at its furthest, stable distance from the planet achieves its largest flux gradient, which places a limit on the flux ranges expected for subsequent (observed) moons closer in orbit to the planet. We have also analyzed the effect of planetary eccentricity on the flux on the moon, examining planets that traverse the habitable zone either fully or partially during their orbit. Looking solely at the stellar contributions, we find that moons around planets that are totally within the habitable zone experience thermal equilibrium temperatures above the runaway greenhouse limit, requiring a small heat redistribution efficiency. In contrast, exomoons orbiting planets that only spend a fraction of their time within the habitable zone require a heat redistribution efficiency near 100% in order to achieve temperatures suitable for habitability. This means that a planet does not need to spend its entire orbit within the habitable zone in order for the exomoon to be habitable. Because the applied systems comprise giant planets around bright stars, we believe that the transit detection method is most likely to yield an exomoon discovery.« less
Microstructural Analysis of the Effects of Thermal Runaway on Li-Ion and Na-Ion Battery Electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finegan, Donal; Robinson, James B.; Heenan, Thomas M. M.
Thermal runaway is a phenomenon that occurs due to self-sustaining reactions within batteries at elevated temperatures resulting in catastrophic failure. Here, the thermal runaway process is studied for a Li-ion and Na-ion pouch cells of similar energy density (10.5 Wh, 12 Wh, respectively) using accelerating rate calorimetry (ARC). Both cells were constructed with a z-fold configuration, with a standard shutdown separator in the Li-ion and a low-cost polypropylene (PP) separator in the Na-ion. Even with the shutdown separator, it is shown that the self-heating rate and rate of thermal runaway in Na-ion cells is significantly slower than that observed inmore » Li-ion systems. The thermal runaway event initiates at a higher temperature in Na-ion cells. The effect of thermal runaway on the architecture of the cells is examined using X-ray microcomputed tomography, and scanning electron microscopy (SEM) is used to examine the failed electrodes of both cells. Finally, from examination of the respective electrodes, likely due to the carbonate solvent containing electrolyte, it is suggested that thermal runaway in Na-ion batteries (NIBs) occurs via a similar mechanism to that reported for Li-ion cells.« less
NASA Astrophysics Data System (ADS)
Larsson, Fredrik; Bertilsson, Simon; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik
2018-01-01
Commercial 6.8 Ah lithium-ion cells with different ageing/status have been abused by external heating in an oven. Prior to the abuse test, selected cells were aged either by C/2 cycling up to 300 cycles or stored at 60 °C. Gas emissions were measured by FTIR and three separate vents were identified, two well before the thermal runaway while the third occurred simultaneously with the thermal runaway releasing heavy smoke and gas. Emissions of toxic carbon monoxide (CO), hydrogen fluoride (HF) and phosphorous oxyfluoride (POF3) were detected in the third vent, regardless if there was a fire or not. All abused cells went into thermal runaway and emitted smoke and gas, the working cells also released flames as well as sparks. The dead cells were however less reactive but still underwent thermal runaway. For about half of the working cells, for all levels of cycle ageing, ignition of the accumulated battery released gases occurred about 15 s after the thermal runaway resulting in a gas explosion. The thermal runaway temperature, about 190 °C, varied somewhat for the different cell ageing/status where a weak local minimum was found for cells cycled between 100 and 200 times.
Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuga, H., E-mail: nuga@p-grp.nucleng.kyoto-u.ac.jp; Fukuyama, A.; Yagi, M.
2016-06-15
To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electronmore » generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.« less
Five Spectroscopic Categories of O-Type Candidate GRB Progenitors
NASA Astrophysics Data System (ADS)
Walborn, Nolan R.; Rojas-Montes, Eliceth; Evans, Chris J.; Maíz Apellániz, Jesús; Wade, Gregg A.
2013-06-01
Five categories of peculiar O-type stars in the Galaxy and Magellanic Clouds that each combine three or four of the canonical GRB properties of magnetic fields, high mass, rarity, rapid rotation, and runaway space motions are displayed. (1) The Of?p stars were initially isolated as a peculiar spectroscopic category which was later found to undergo spectacular periodic variations; they are now understood as the most massive oblique magnetic rotators. All five Galactic members plus two related objects now have magnetic field detections, including one of 20 kG, with rotational periods ranging from a week to >50 yrs. There are also three spectroscopic members in the MCs, for which magnetic observations remain to be undertaken. (2) The ONn stars are rapidly rotating, nitrogen-rich, late-O giants at least several of which are runaways. (3) The Onfp stars are another category first described in terms of certain spectral peculiarities; they are now known to be massive, evolved rapid rotators with strong winds, which theoretically should not exist in the single-star regime. Many are in binary systems, perhaps spun up by mass transfer, while others may be mergers, and at least some are runaways. This category calls into question the assumption that GRBs can occur only at low metallicity where weaker winds allow high rotation to be preserved in evolved objects. (4) A population of young extreme rotators, including the two most rapid known at v sin i of 600 km/sec, lies at the peripheries of the 30 Doradus ionizing clusters. Peculiar radial velocities as well as their locations support an ejection hypothesis, currently under further investigation by means of proper motions. (5) At least two extremely massive O2 stars have also been ejected from 30 Doradus, most likely by dynamical processes since there have not yet been any SN in the dense central cluster R136. Presumably all of these stars must reach LBV and/or WR stages before collapsing, so they are not immediate GRB progenitors, but rather their precursors that provide information about their origins.
First Detection of Phase-dependent Colliding Wind X-ray Emission outside the Milky Way
NASA Technical Reports Server (NTRS)
Naze, Yael; Koenigsberger, Gloria; Moffat, Anthony F. J.
2007-01-01
After having reported the detection of X-rays emitted by the peculiar system HD 5980, we assess here the origin of this high-energy emission from additional X-ray observations obtained with XMM-Newton. This research provides the first detection of apparently periodic X-ray emission from hot gas produced by the collision of winds in an evolved massive binary outside the Milky Way. It also provides the first X-ray monitoring of a Luminous Blue Variable only years after its eruption and shows that the source of the X-rays is not associated with the ejecta.
Spectroscopic binary orbits from ultraviolet radial velocities. X - CW Cephei (HD 218066)
NASA Technical Reports Server (NTRS)
Stickland, D. J.; Koch, R. H.; Pfeiffer, R. J.
1992-01-01
Observations of CW Cephei were carried out repeatedly in the course of three days in December 1991, using the high-resolution, short-wavelength spectrograph of IUE, with an additional spectrum taken on February 6, 1992. The paper presents a log of these observations, which represent the only high-resolution observations of this star in the archive. The observations have an advantage of Popper's (1974) optical observations that they do not stretch out over a significant part of the apsidal cycle and can thus be treated with the value of omega taken as fixed.
NASA Astrophysics Data System (ADS)
Dewey, M. C.; Goldblatt, C.
2017-12-01
Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced moistening of the upper troposphere through active convection. That convection itself may be initiated by the changes to the atmospheric optical depth and consequent need for adjustment of the surface energy budget.Refs: Goldblatt et al., 2013, Nature Geoscience, 6, 661-667, doi:10.1038/NGEO1892.
The relativistic feedback discharge model of terrestrial gamma ray flashes
NASA Astrophysics Data System (ADS)
Dwyer, Joseph R.
2012-02-01
As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.
ERIC Educational Resources Information Center
Ellenwood, Audrey E.; And Others
This paper discusses several factors that contribute to running away, characteristics of runaways, and approaches to dealing with runaway youth. The decision of a youth to run away is usually the climax of several smaller events that have built over time and contribute to the youth's feeling out-of-control at home, in school, and in society. Peers…
Family Risk Factors and Prevalence of Dissociative Symptoms among Homeless and Runaway Youth
ERIC Educational Resources Information Center
Tyler, Kimberly A.; Cauce, Ana Mari; Whitbeck, Les
2004-01-01
Objective: To examine family risk factors associated with dissociative symptoms among homeless and runaway youth. Method: Three hundred and twenty-eight homeless and runaway youth were interviewed using a systematic sampling strategy in metropolitan Seattle. Homeless young people were interviewed on the streets and in shelters by outreach workers…
ERIC Educational Resources Information Center
Thompson, Sanna J.; Kost, Kathleen A.; Pollio, David E.
2003-01-01
Investigates the likelihood of family reunification across ethnic groups of youth using runaway shelter services nationwide. Youths who reported abuse or neglect by their parental figures or had parent(s) who were unemployed were less likely to reunify following a runaway episode. However, completing youth shelter services markedly increased the…
ERIC Educational Resources Information Center
Thompson, Sanna J.; Zittel-Palmara, Kimberley M.; Forehand, Gregory
2005-01-01
The high rates of substance use among American adolescents are challenging; however, runaway youth are at particularly high-risk for substance use. Runaway youth utilizing two service sectors, emergency crisis shelters and juvenile detention centers, were recruited to evaluate differences in risk factors associated with substance use. Findings…
Ecologically Based Family Therapy Outcome with Substance Abusing Runaway Adolescents
ERIC Educational Resources Information Center
Slesnick, N.; Prestopnik, J.L.
2005-01-01
Runaway youth report a broader range and higher severity of substance-related, mental health and family problems relative to non-runaway youth. Most studies to date have collected self-report data on the family and social history; virtually no research has examined treatment effectiveness with this population. This study is a treatment development…
Comparison of Family Therapy Outcome with Alcohol-Abusing, Runaway Adolescents
ERIC Educational Resources Information Center
Slesnick, Natasha; Prestopnik, Jillian L
2009-01-01
Treatment evaluation for alcohol problem, runaway adolescents and their families is rare. This study recruited primary alcohol problem adolescents (N = 119) and their primary caretakers from two runaway shelters and assigned them to (a) home-based ecologically based family therapy (EBFT), (b) office-based functional family therapy (FFT), or (c)…
ERIC Educational Resources Information Center
Slesnick, Natasha
2001-01-01
Evaluated predictors of therapy attendance in a sample of substance abusing youth in two southwestern runaway shelters. Runaway youth and their families were engaged into a 15-session ecologically-based family therapy (EBFT) intervention. Fewer days between pretreatment assessment and first therapy session predicted more sessions attended. No…
Code of Federal Regulations, 2012 CFR
2012-01-01
... child, a Migrant child, a Head Start child and a Runaway child, as defined in this section, are also... this section; a Homeless child, a Migrant child, a Head Start child and a Runaway child, as defined in... for a Migrant child, Homeless child, Runaway child, or Head Start child, as defined in this section...
Code of Federal Regulations, 2013 CFR
2013-01-01
... child, a Migrant child, a Head Start child and a Runaway child, as defined in this section, are also... this section; a Homeless child, a Migrant child, a Head Start child and a Runaway child, as defined in... for a Migrant child, Homeless child, Runaway child, or Head Start child, as defined in this section...
Runaway and Homeless Youth: FY 1984 Annual Report to the Congress.
ERIC Educational Resources Information Center
Administration for Children, Youth, and Families (DHHS), Washington, DC.
This report describes the activities of the Administration for Children, Youth and Families in the Department of Health and Human Services, and the status and accomplishments of runaway and homeless youth centers funded during fiscal year 1984 under the Runaway and Homeless Youth Act. The report also examines the status, operations, and…
Runaways in Juvenile Courts. OJJDP Update on Statistics.
ERIC Educational Resources Information Center
Sickmund, Melissa
The National Center for Juvenile Justice (NCJJ) analyzed records in the Center's National Juvenile Court Data Archive to examine how the juvenile courts handled runaway cases. NCJJ examined 40,000 records of runaway cases processed between 1985 and 1986 in 611 jurisdictions from 12 states representing about one-quarter of the U.S. youth population…
Runaways: A Review of the Literature.
ERIC Educational Resources Information Center
Taylor, Jennifer; Mosteller, Frederick
More than half of runaway adolescents cite poor family communication and conflict as the primary reasons for running. Runaways (.5-1.5 million annually) generally arrive on the streets with few survival skills and little money. They are often subject to abuse of various sorts, and many eventually resort to criminal activity or use drugs in efforts…
Runaway greenhouse atmospheres: Applications to Earth and Venus
NASA Technical Reports Server (NTRS)
Kasting, James F.
1991-01-01
Runaway greenhouse atmospheres are discussed from a theoretical standpoint and with respect to various practical situation in which they might occur. The following subject areas are covered: (1) runaway greenhouse atmospheres; (2) moist greenhouse atmospheres; (3) loss of water from Venus; (4) steam atmosphere during accretion; and (5) the continuously habitable zone.
Jiang, Chaozhe; Xu, Yibo; Wen, Chao; Chen, Dilin
2017-12-19
Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication.
Jiang, Chaozhe; Xu, Yibo; Chen, Dilin
2017-01-01
Anti-runaway prevention of rolling stocks at a railway station is essential in railway safety management. The traditional track skates for anti-runaway prevention of rolling stocks have some disadvantages since they are operated and monitored completely manually. This paper describes an anti-runaway prevention system (ARPS) based on intelligent track skates equipped with sensors and real-time monitoring and management system. This system, which has been updated from the traditional track skates, comprises four parts: intelligent track skates, a signal reader, a database station, and a monitoring system. This system can monitor the real-time situation of track skates without changing their workflow for anti-runaway prevention, and thus realize the integration of anti-runaway prevention information management. This system was successfully tested and practiced at Sunjia station in Harbin Railway Bureau in 2014, and the results confirmed that the system showed 100% accuracy in reflecting the usage status of the track skates. The system could meet practical demands, as it is highly reliable and supports long-distance communication. PMID:29257108
Dynamics of runaway tails with time-dependent sub-Dreicer dc fields in magnetized plasmas
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Vlahos, L.
1987-01-01
The evolution of runaway tails driven by sub-Dreicer time-dependent dc fields in a magnetized plasma are studied numerically using a quasi-linear code based on the Ritz-Galerkin method and finite elements. It is found that the runaway tail maintained a negative slope during the dc field increase. Depending on the values of the dc electric field at t = 0 and the electron gyrofrequency to the plasma frequency ratio the runaway tail became unstable to the anomalous Doppler resonance or remained stable before the saturation of the dc field at some maximum value. The systems that remained stable during this stage became unstable to the anomalous Doppler or the Cerenkov resonances when the dc field was kept at the saturation level or decreased. Once the instability is triggered, the runaway tail is isotropized.
Family Functioning, Substance Use and Related Problem Behaviors: Hispanic vs. Anglo Runaway Youths
Slesnick, Natasha; Vasquez, Christina; Bittinger, Joyce
2008-01-01
Runaway youths represent a neglected clinical group, and few studies have examined ethnicity differences within this population. Substance use, family functioning and related problem behaviors were examined in a sample of Hispanic and Anglo runaway youths with substance abuse diagnoses (N = 145). Youths, aged 12–17, were recruited from two urban, southwestern runaway shelters. Within single-parent families, Anglo youths reported more marijuana use, and, regardless of family constitution, reported more tobacco use than did Hispanic youths. Overall, Anglo youths reported more externalizing problems and more conflict tactics used in resolving disagreements with their primary caretaker while Hispanic youths reported higher depression and familism scores. Given the differences found between Hispanic and Anglo youths, the findings argue that culturally sensitive interventions for runaway youths and families are warranted. PMID:18795144
Empirical Quantification of the Runaway Greenhouse Limit on Earth
NASA Astrophysics Data System (ADS)
Goldblatt, C.; Dewey, M. C.
2015-12-01
There have been many modeling studies of the runaway greenhouse effect and the conditions required to produce one on an Earth-like planet, however these models have not been verified with empirical evidence. It has been suggested that the Earth's tropics may be near a state of localized runaway greenhouse, meaning the surface temperature and atmospheric composition in those areas could cause runaway greenhouse, were it not for the tempering effects of meridional heat transport and circulation (Pierrehumbert, 1995). Using the assumption that some areas of the Earth's tropics may be under these conditions, this study uses measurements of the atmospheric properties, surface properties, and radiation budgets of these areas to quantify a radiation limit for runaway greenhouse on Earth, by analyzing the dependence of outgoing longwave radiation (OLR) at the top of the atmosphere on surface temperature and total column water vapour. An upper limit on OLR for clear-sky conditions was found between 289.8 W/m2 and 292.2 W/m2, which occurred at surface temperatures near 300K. For surface temperatures above this threshold, total column water vapour increased, but OLR initially decreased and then remained relatively constant, between 273.6 W/m2 and 279.7 W/m2. These limits are in good agreement with recent modeling results (Goldblatt et al., 2013), supporting the idea that some of the Earth's tropics may be in localized runaway greenhouse, and that radiation limits for runaway greenhouse on Earth can be empirically derived. This research was done as part of Maura Dewey's undergraduate honours thesis at the University of Victoria. Refs: Robert T. Pierrehumbert. Thermostats, radiator fins, and the local runaway greenhouse. Journal of Atmospheric Sciences, 52(10):1784-1806, 1995. Colin Goldblatt, Tyler D. Robinson, Kevin J. Zahnle, and David Crisp. Low simulated radiation limit for runaway greenhouse climates. Nature Geoscience, 6:661-667, 2013.
Runaway of energetic test ions in a toroidal plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eilerman, S., E-mail: eilerman@wisc.edu; Anderson, J. K.; Sarff, J. S.
2015-02-15
Ion runaway in the presence of a large-scale, reconnection-driven electric field has been conclusively measured in the Madison Symmetric Torus reversed-field pinch (RFP). Measurements of the acceleration of a beam of fast ions agree well with test particle and Fokker-Planck modeling of the runaway process. However, the runaway mechanism does not explain all measured ion heating in the RFP, particularly previous measurements of strong perpendicular heating. It is likely that multiple energization mechanisms occur simultaneously and with differing significance for magnetically coupled thermal ions and magnetically decoupled tail and beam ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026
In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s,more » it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.« less
Ex-companions of Supernovae Progenitors
NASA Astrophysics Data System (ADS)
Xue, Zinchao
Supernovae (SNe) are titanic explosions that end the life of stars. Fast expanding ejecta can create brightness that is comparable to the entire luminosity of the host galaxy for weeks. Eventually, the ejecta run into the ambient medium, creating the so-called supernova remnant (SNR) that fades away in 10,000 years. SNe come from two completely different mechanisms. The Type Ia SNe (SNIa) are powered by thermonuclear runaway when a white dwarf (WD) in a binary system accretes enough mass from a companion star. The Core Collapse supernovae (CCSNe) are massive stars that run out of fuel at the end of their lives and collapse. The basic scenario for SNIa is well established, but the type of the binary system containing the WD is the long-debated 'Type Ia Progenitor Problem'. (1) Searching for an ex-companion within a SNIa SNR would directly solve this problem as a binary system including two WDs should leave nothing behind, while others should leave a non-degenerate star near the site of the explosion. One of the results from this thesis is the determination of the explosion site of Tycho's SN (SN 1572). From this, I reject popular ex-companion candidates, e.g. Tycho star 'G' and a few other ones as they are too far away from the explosion site I determined. (2) Another attempt to address this problem is carried out by studying a rare kind of Type Ia SNe. Detailed photometric and spectral analysis indicates that ASASSN-14dc resembles features from the so-called SN Ia-CSM, in which, a SNIa explodes inside of dense Hydrogen-rich Circumstellar Material (CSM). The origin of the CSM brings serious questions to the traditional views of SNIa formation as none of them can comfortably explain the derived mass and distribution of the CSM. A recent realization of a particular model might solve a lot of puzzles around this rare class of SNIa. (3) CCSNe are known to be massive stars that rapidly evolve off the main sequence and soon explode. Nearly 80% of such stars have one or more massive companion stars, and these companions will survive the SN event with nearly the same luminosity in most cases. Interestingly, there is a runaway O-type star, Muzzio 10, that sits just 18'' to the north of PSR B1509-58 in SNR G320.4-01.2. This makes Muzzio 10 a remarkable object for an ex-companion candidate. I will present the result from using HST and Chandra to measure both the O star and the pulsar's proper motion and to see whether they came from the same spot.
Life on the Streets: The Victimization of Runaway and Homeless Adolescents.
ERIC Educational Resources Information Center
Whitbeck, Les B.; Simons, Ronald L.
1990-01-01
Examines the victimization of runaways using a sample of 84 adolescents in a midwestern city of about 250,000 people. Finds that these youth, like runaways in larger cities, are doubly victimized by abusive family situations and by life on the streets. Sex differences in the processes that influence victimization are discussed. (FMW)
Longitudinal Outcomes for Youth Receiving Runaway/Homeless Shelter Services
ERIC Educational Resources Information Center
Pollio, David E.; Thompson, Sanna J.; Tobias, Lisa; Reid, Donna; Spitznagel, Edward
2006-01-01
This research examined outcomes and use of specific types of services 6 weeks, 3 and 6 months post-discharge for a large sample of runaway/homeless youth using crisis shelter services. Data were collected for 371 runaway/homeless youth using emergency shelter and crisis services at eleven agencies across a four-state midwestern region. Outcomes…
The Meaning of Home for Runaway Girls
ERIC Educational Resources Information Center
Peled, Einat; Muzicant, Amit
2008-01-01
This naturalistic qualitative study examines the concept of "home" for runaway girls. Through the "home story" of girls who run away from home, the authors hoped to understand the many facets of home, as well as broaden the existing knowledge-base about the phenomenon of adolescent runaway girls. Data consisted of in-depth interviews with 15 girls…
ERIC Educational Resources Information Center
Liu, E. Suk-Ching
2005-01-01
This qualitative research explores, from the perspectives of runaway adolescents, what kind of family responses facilitate and attract a runaway adolescent to return home and what kind of parental characteristics facilitate the adolescents' adjustment to family reunification. The study carried out in-depth interviews with 16 adolescent boys…
Nowhere to Run: HIV Prevention for Runaway and Homeless Youth.
ERIC Educational Resources Information Center
Posner, Marc
This volume is a guide to providing effective Human Immunodeficiency Virus (HIV) and substance abuse prevention services to runaway and homeless youth. The guide is based on current research and the best programs in this field. Chapters 1 and 2 summarize what is known about runaway and homeless youth, the services these youth require if they are…
Runaways in Texas: A Statistical Estimate, 1985.
ERIC Educational Resources Information Center
Rhodes, Lodis
Public concern for children has become more visible during the last decade as awareness of child abuse and neglect has increased. It is difficult to design policies to deal with troubled youth who run away. Because families of runaways are often looked upon as failures, there is a reluctance among families to report the runaway. Families may not…
Model Experiment of Thermal Runaway Reactions Using the Aluminum-Hydrochloric Acid Reaction
ERIC Educational Resources Information Center
Kitabayashi, Suguru; Nakano, Masayoshi; Nishikawa, Kazuyuki; Koga, Nobuyoshi
2016-01-01
A laboratory exercise for the education of students about thermal runaway reactions based on the reaction between aluminum and hydrochloric acid as a model reaction is proposed. In the introductory part of the exercise, the induction period and subsequent thermal runaway behavior are evaluated via a simple observation of hydrogen gas evolution and…
Propensity for Violence among Homeless and Runaway Adolescents: An Event History Analysis
ERIC Educational Resources Information Center
Crawford, Devan M.; Whitbeck, Les B.; Hoyt, Dan R.
2011-01-01
Little is known about the prevalence of violent behaviors among homeless and runaway adolescents or the specific behavioral factors that influence violent behaviors across time. In this longitudinal study of 300 homeless and runaway adolescents aged 16 to 19 at baseline, the authors use event history analysis to assess the factors associated with…
76 FR 37251 - Airworthiness Directives; Dassault Aviation Model FALCON 7X Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... trim runaway during descent. We are issuing this AD to prevent loss of control of the airplane. DATES... pitch trim runaway during descent. The crew succeeded in recovering a stable situation and performed an...) confirmed the event, but did not identify the cause of the pitch trim runaway. This condition, if not...
NASA Technical Reports Server (NTRS)
Wiggs, Michael S.; Gies, Douglas R.
1992-01-01
New evidence for colliding winds in the massive O-type binary system Plaskett's star is reported. High S/N ratio spectra of the H-alpha and He I 6678 emission lines are presented, and their orbital phase-related variations are examined in order to derive the locations and motions of the high-density gas in the system. Radial velocity cures for several absorption and emission lines associated with the photosphere of the primary are also provided. The H-alpha emission profiles are complex, with very broad wings and a sharp spikelike feature that approximately follows the motion of the primary star. The radial velocity curve for this spike lags behind the photospheric velocity curve of the primary by 0.066 in phase. It is suggested that the high-velocity H-alpha emission is related to instabilities in the intershock region between the two component stars. The H-alpha phase-related variations are compared with those observed in the UV wind lines in IUE archival spectra.
NASA Technical Reports Server (NTRS)
Giampapa, Mark S. (Editor); Bookbinder, Jay A. (Editor)
1992-01-01
Consideration is given to HST observations of late-type stars, molecular absorption in the UV spectrum of Alpha Ori, EUV emission from late-type stars, Rosat observations of the Pleiades cluster, a deep ROSAT observation of the Hyades cluster, optical spectroscopy detected by EXOSAT, stellar photospheric convection, a structure of the solar X-ray corona, magnetic surface images of the BY Dra Star HD 82558, a Zebra interpretatin of BY Dra stars, optical flares on II Peg, a low-resolution spectroscopic survey of post-T tauri candidates, millimeter and sub-millimeter emission from flare stars, and activity in tidally interacting binaries. Attention is also given to modeling stellar angular momentum evolution, extended 60-micron emission from nearby Mira variables, the PANDORA atmosphere program, the global properties of active regions, oscillations in a stratified atmosphere, lithium abundances in northern RS CVn binaries, a new catalog of cool dwarf stars, the Far UV Spectrograph Explorer, and development of reflecting coronagraphs.
NASA Astrophysics Data System (ADS)
Truran, J. W., Jr.; Heger, A.
2003-12-01
Nucleosynthesis is the study of the nuclear processes responsible for the formation of the elements which constitute the baryonic matter of the Universe. The elements of which the Universe is composed indeed have a quite complicated nucleosynthesis history, which extends from the first three minutes of the Big Bang through to the present. Contemporary nucleosynthesis theory associates the production of certain elements/isotopes or groups of elements with a number of specific astrophysical settings, the most significant of which are: (i) the cosmological Big Bang, (ii) stars, and (iii) supernovae.Cosmological nucleosynthesis studies predict that the conditions characterizing the Big Bang are consistent with the synthesis only of the lightest elements: 1H, 2H, 3He, 4He, and 7Li (Burles et al., 2001; Cyburt et al., 2002). These contributions define the primordial compositions both of galaxies and of the first stars formed therein. Within galaxies, stars and supernovae play the dominant role both in synthesizing the elements from carbon to uranium and in returning heavy-element-enriched matter to the interstellar gas from which new stars are formed. The mass fraction of our solar system (formed ˜4.6 Gyr ago) in the form of heavy elements is ˜1.8%, and stars formed today in our galaxy can be a factor 2 or 3 more enriched (Edvardsson et al., 1993). It is the processes of nucleosynthesis operating in stars and supernovae that we will review in this chapter. We will confine our attention to three broad categories of stellar and supernova site with which specific nucleosynthesis products are understood to be identified: (i) intermediate mass stars, (ii) massive stars and associated type II supernovae, and (iii) type Ia supernovae. The first two of these sites are the straightforward consequence of the evolution of single stars, while type Ia supernovae are understood to result from binary stellar evolution.Stellar nucleosynthesis resulting from the evolution of single stars is a strong function of stellar mass (Woosley et al., 2002). Following phases of hydrogen and helium burning, all stars consist of a carbon-oxygen core. In the mass range of the so-called "intermediate mass" stars (1<˜M/M⊙<˜10), the temperatures realized in their degenerate cores never reach levels at which carbon ignition can occur. Substantial element production occurs in such stars during the asymptotic giant branch (AGB) phase of evolution, accompanied by significant mass loss, and they evolve to white dwarfs of carbon-oxygen (or, less commonly, oxygen-neon) composition. In contrast, the increased pressures that are experienced in the cores of stars of masses M>˜10M⊙ yield higher core temperatures that enable subsequent phases of carbon, neon, oxygen, and silicon burning to proceed. Collapse of an iron core devoid of further nuclear energy then gives rise to a type II supernova and the formation of a neutron star or black hole remnant (Heger et al., 2003). The ejecta of type IIs contain the ashes of nuclear burning of the entire life of the star, but are also modified by the explosion itself. They are the source of most material (by mass) heavier than helium.Observations reveal that binary stellar systems comprise roughly half of all stars in our galaxy. Single star evolution, as noted above, can leave in its wake compact stellar remnants: white dwarfs, neutron stars, and black holes. Indeed, we have evidence for the occurrence of all three types of condensed remnant in binaries. In close binary systems, mass transfer can take place from an evolving companion onto a compact object. This naturally gives rise to a variety of interesting phenomena: classical novae (involving hydrogen thermonuclear runaways in accreted shells on white dwarfs (Gehrz et al., 1998)), X-ray bursts (hydrogen/helium thermonuclear runaways on neutron stars (Strohmayer and Bildsten, 2003)), and X-ray binaries (accretion onto black holes). For some range of conditions, accretion onto carbon-oxygen white dwarfs will permit growth of the CO core to the Chandrasekhar limit MCh=1.4M⊙, and a thermonuclear runaway in to core leads to a type Ia supernova.In this chapter, we will review the characteristics of thermonuclear processing in the three environments we have identified: (i) intermediate-mass stars; (ii) massive stars and type II supernovae; and (iii) type Ia supernovae. This will be followed by a brief discussion of galactic chemical evolution, which illustrates how the contributions from each of these environments are first introduced into the interstellar media of galaxies. Reviews of nucleosynthesis processes include those by Arnett (1995), Trimble (1975), Truran (1984), Wallerstein et al. (1997), and Woosley et al. (2002). An overview of galactic chemical evolution is presented by Tinsley (1980).
Slesnick, Natasha; Guo, Xiamei; Brakenhoff, Brittany; Feng, Xin
2013-10-01
Given high levels of health and psychological costs associated with the family disruption of homelessness, identifying predictors of runaway and homeless episodes is an important goal. The current study followed 179 substance abusing, shelter-recruited adolescents who participated in a randomized clinical trial. Predictors of runaway and homeless episodes were examined over a two year period. Results from the hierarchical linear modeling analysis showed that family cohesion and substance use, but not family conflict or depressive symptoms, delinquency, or school enrollment predicted future runaway and homeless episodes. Findings suggest that increasing family support, care and connection and reducing substance use are important targets of intervention efforts in preventing future runaway and homeless episodes amongst a high risk sample of adolescents. Copyright © 2013 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Dual and multiple diagnosis among substance using runaway youth.
Slesnick, Natasha; Prestopnik, Jillian
2005-01-01
Although research on runaway and homeless youth is increasing, relatively little is known about the diagnostic profile of runaway adolescents. The current study examined patterns of psychiatric dual and multiple diagnosis among a sample (N=226) of treatment-engaged substance-abusing youth (ages 13 to 17) who were residing at a runaway shelter. As part of a larger treatment outcome study, the youths' psychiatric status was assessed using the DSM-IV based computerized diagnostic interview schedule for children [CDISC; (1)]. The majority of the youth in our sample met criteria for dual or multiple diagnosis (60%) with many having more than one substance-use diagnosis (56%). The severity of mental-health and substance-use problems in this sample of substance-abusing runaways suggests the need for continued development of comprehensive services. The range and intensity of diagnoses seen indicates a need for greater focus on treatment development and strategies to address their multiple areas of risk.
A new way to make Thorne-Zytkow objects
NASA Technical Reports Server (NTRS)
Leonard, Peter J. T.; Hills, Jack G.; Dewey, Rachel J.
1994-01-01
We have found a new way to make Thorne-Zytkow objects, which are massive stars with degenerate neutron cores. The asymmetric kick given to the neutron star formed when the primary of a massive tight binary system explodes as a supernova sometimes has the appropriate direction and amplitude to place the newly formed neutron star into a bound orbit with a pericenter distance smaller than the radius of the secondary. Consequently, the neutron star becomes embedded in the secondary. Thorne-Zytkow objects are expected to look like extreme M-type supergiants, assuming that they can avoid a runaway neutrino instability. Accretion onto the embedded neutron star will produce either an isolated, spun-up neutron star (possibly a short-period pulsar) or a black hole. Whether neutron star or black hole remnants predominate depends on the lifetime of Thorne-Zytkow objects, the accretion rates involved, and the maximum neutron star mass, none of which are definitively understood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jilinski, E.; Ortega, V. G.; Drake, N. A.
2010-09-20
We address the question of identifying possible past supernovae events taking place in the region of the Scorpius-Centaurus (Sco-Cen) OB association based on stars proposed by Hoogerwerf et al. With this purpose, we obtained a time series of high-resolution spectra of six stars (HIP 42038, HIP 46950, HIP 48943, HIP 69491, HIP 76013, and HIP 82868) which, according to Hoogerwerf et al., may have been runaway stars with origins in the region of the Sco-Cen association. This also includes the nearby young open clusters IC 2391 and IC 2602. If confirmed, such supernovae events could, in principle, have played amore » role in triggering the formation of some small stellar groups thought to be associated with the Sco-Cen association. Our analysis shows that, except for HIP 48943, the remaining stars are spectroscopic binary systems. For HIP 46950 and HIP 69491, this was already noted by other authors. Our high-resolution spectra allowed us to obtain the radial velocities for all the stars which, combined with their proper motions and parallaxes from Hipparcos, provide a means to investigate, by retracing their orbits, if the Sco-Cen region was, in fact, the origin of these stars. We find that none of these systems originated in the Sco-Cen region. Exploring the possibility that the birthplace of the studied stars occurred in the clusters IC 2391 and IC 2602, we noticed that at the epoch of 2-3 Myr ago these clusters were at a distance comparable with their tidal radii.« less
ERIC Educational Resources Information Center
Johnson, Bassin, and Shaw, Inc., Silver Spring, MD.
Professionals who work with runaway, throwaway, and homeless youth have long known that many of these young people leave home to escape abusive and/or destructive family situations. This update presents the findings of a national study on such children. Results of the study, "Youth with Runaway, Throwaway, and Homeless Experiences:…
Understanding and Preventing Runaway Behavior: Indicators and Strategies for Teachers
ERIC Educational Resources Information Center
Rafferty, Lisa A.; Raimondi, Sharon
2009-01-01
Runaway behavior is a national epidemic that affects many school-aged youths. Although there are no definitive numbers, it has been estimated that between 1.3 and 2.8 million youths run away each year, and youths with disabilities are more at risk for engaging in runaway behavior than their nondisabled peers. Considering the high number of youths…
ERIC Educational Resources Information Center
Thrane, Lisa E.; Hoyt, Danny R.; Whitbeck, Les B.; Yoder, Kevin A.
2006-01-01
Problem: Various demographic and familial risk factors have been linked to runaway behavior. To date, there has not been a systematic investigation of the impact of size of community on runaway behavior. This study will compare runaways from smaller cities and rural areas to their urban counterparts. Methods: A convenience sample of 602…
Children in Crisis: A Report on Runaway and Homeless Youth in Alaska.
ERIC Educational Resources Information Center
Alaska State Dept. of Health and Social Services, Juneau. Div. of Family and Youth Services.
Participants, at a conference convened by the Division of Family and Youth Services in Alaska on November 7th and 8th, 1991, began the development of a framework for a statewide plan for runaway and homeless youth. With the assistance of Division staff and the Northwest Network of Runaway and Youth Services, over 100 professionals and citizens…
ERIC Educational Resources Information Center
National Network of Runaway and Youth Services, Inc., Washington, DC.
A profile and needs assessment of runaway and homeless children was produced using survey data gathered from 210 youth services agencies throughout the United States. The National Network of Runaway and Youth Services conducted this survey to provide policymakers and the media with information about successful, cost-effective crisis intervention…
Runaway Children Twelve Years Later: A Follow-Up.
ERIC Educational Resources Information Center
Olson, Lucy; And Others
Fourteen young men and women, who as teenagers had run away from home, were subjects of an intensive clinical case study which was a followup of a larger-scale survey of runaways conducted in the early 1960s. A major purpose of the research was to determine how the former runaways had fared as adults and whether or not their early behavior had…
Family Functioning and Predictors of Runaway Behavior Among At-Risk Youth.
Holliday, Stephanie Brooks; Edelen, Maria Orlando; Tucker, Joan S
2017-06-01
Adolescent runaway behavior is associated with a host of negative outcomes in young adulthood. Therefore, it is important to understand the factors that predict running away in youth. Longitudinal data from 111 at-risk families were used to identify proximal predictors of runaway behavior over a 12-week period. On average, youth were 14.96 years old, and 45% were female. Ten percent of youth ran away during the 12-week follow-up period. In bivariate analyses, running away was predicted by poorer youth- and parent-rated family functioning, past runaway behavior, and other problem behaviors (e.g., substance use, delinquency), but not poorer perceived academic functioning. Results of a hierarchical logistic regression revealed a relationship between youth-rated family functioning and runaway behavior. However, this effect became non-significant after accounting for past runaway behavior and other problem behaviors, both of which remained significant predictors in the multivariable model. These findings suggest that youth who run away may be engaged in a more pervasive pattern of problematic behavior, and that screening and prevention programs need to address the cycle of adolescent defiant behavior associated with running away. Recommendations for clinical practice with this at-risk population are discussed.
VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)
NASA Astrophysics Data System (ADS)
Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.
2016-02-01
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in qad as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution. (3 data files).
The 2011 Periastron Passage of the Be Binary δ Scorpii
NASA Astrophysics Data System (ADS)
Miroshnichenko, A. S.; Pasechnik, A. V.; Manset, N.; Carciofi, A. C.; Rivinius, Th.; Štefl, S.; Gvaramadze, V. V.; Ribeiro, J.; Fernando, A.; Garrel, T.; Knapen, J. H.; Buil, C.; Heathcote, B.; Pollmann, E.; Mauclaire, B.; Thizy, O.; Martin, J.; Zharikov, S. V.; Okazaki, A. T.; Gandet, T. L.; Eversberg, T.; Reinecke, N.
2013-04-01
We describe the results of the world-wide observing campaign of the highly eccentric Be binary system δ Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measurement of the system orbital period at 10.8092 ± 0.0005 yr. Fitting of the He II 4686 Å line radial velocity curve determined the periastron passage time on 2011 July 3, UT 9:20 with a 0.9-day uncertainty. Both these results are in a very good agreement with recent findings from interferometry. We also derived new evolutionary masses of the binary components (13 and 8.2 M ⊙) and a new distance of 136 pc from the Sun, consistent with the HIPPARCOS parallax. The radial velocity and profile variations observed in the Hα line near the 2011 periastron reflected the interaction of the secondary component and the circumstellar disk around the primary component. Using these data, we estimated a disk radius of 150 R ⊙. Our analysis of the radial velocity variations measured during the periastron passage time in 2000 and 2011 along with those measured during the 20th century, the high eccentricity of the system, and the presence of a bow shock-like structure around it suggest that δ Sco might be a runaway triple system. The third component should be external to the known binary and move on an elliptical orbit that is tilted by at least 40° with respect to the binary orbital plane for such a system to be stable and responsible for the observed long-term radial velocity variations. This paper is partially based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique de France, and the University of Hawaii, the 2.2 m MPG telescope operated at ESO/La Silla under program IDs 086.A-9019 and 087.A-9005, the IAC80 telescope in the Spanish Observatorio del Teide of the Instituto de Astrofiísica de Canarias, and data from the ELODIE archive at the Observatoire de Haute-Provence.
The origin of RX J1856.5-3754 and RX J0720.4-3125 - updated using new parallax measurements
NASA Astrophysics Data System (ADS)
Tetzlaff, N.; Eisenbeiss, T.; Neuhäuser, R.; Hohle, M. M.
2011-10-01
RX J1856.5-3754 and RX J0720.4-3125 are the only young isolated radio-quiet neutron stars (NSs) for which trigonometric parallaxes were measured. Due to detection of their thermal emission in X-rays, they are important to study NS cooling and to probe theoretical cooling models. Hence, a precise determination of their age is essential. Recently, new parallax measurements of RX J1856.5-3754 and RX J0720.4-3125 were obtained. Considering that NSs may originate from binary systems that got disrupted due to an asymmetric supernova, we attempt to identify runaway stars which may have been former companions to the NS progenitors. Such an identification would strongly support a particular birth scenario with time and place. We trace back each NS, runaway star and the centres of possible birth associations (assuming that most NSs are ejected directly from their parent association) to find close encounters. The kinematic age is then given by the time since the encounter. We use Monte Carlo simulations to account for observational uncertainties and evaluate the outcome statistically. Using the most recent parallax measurement of 8.16 ± 0.80 mas for RX J1856.5-3754 by Walter et al., we find that it originated in the Upper Scorpius association 0.46 ± 0.05 Myr ago. This kinematic age is slightly larger than the value we reported earlier (0.3 Myr) using the old parallax value of 5.6 ± 0.6 mas by Kaplan. Our result is strongly supported by its current radial velocity which we predict to be 6+19- 20 km s-1. This implies an inclination angle to the line of sight of 88°± 6° consistent with estimates by van Kerkwijk & Kulkarni from the bow shock. No suitable runaway star was found to be a potential former companion of RX J1856.5-3754. Making use of a recent parallax measurement for RX J0720.4-3125 of 3.6 ± 1.6 mas by Eisenbeiss, we find that this NS was possibly born in Trumpler 10 0.85 ± 0.15 Myr ago. This kinematic age is somewhat larger than the one obtained using the old parallax value of 2.77 ± 1.29 mas by Kaplan et al. (0.5 Myr). We suggest the B0 runaway supergiant HIP 43158 as a candidate for a former companion of the progenitor star. Then, the current distance of RX J0720.4-3125 to the Sun should be 286+27- 23 pc, in agreement with recent measurements. We then expect the radial velocity of RX J0720.4-3125 to be -76+34- 17 km s-1.
Yet Another Model for the Gamma-Ray Bursts
NASA Astrophysics Data System (ADS)
Leonard, P. J. T.
2000-05-01
We consider whether a gamma-ray burst can result from a merger between a neutron star and a massive main-sequence star in a binary system following a supernova explosion. The scenario for how this can happen is outlined in Leonard, Hills & Dewey 1994, ApJ, 423, L19-L22. The initially more massive star in a massive binary system evolves and undergoes core collapse to produce a neutron star and supernova. Since the outer layers of the originally more massive star have been transferred to the other star, then the supernova may be hydrogen deficient. The newly-formed neutron star receives a random kick during the explosion. In a small fraction of the cases, the kick has the appropriate direction and amplitude to remove most of the orbital angular momentum of the post-supernova binary system. The result is an orbit with a pericenter smaller than the radius of the non-exploding star. The neutron star rather quickly becomes embedded in the other star, and sinks to its center, giving the envelope of the merged object a lot of rotational angular momentum in the process. Leonard, Hills & Dewey estimate the rate of this process in the Galaxy to be 0.06 per square kpc per Myr for secondaries more massive than 15 solar masses. The fate of the merged object has been the source of much speculation, and we shall assume that a collapsar-like scenario results. That is, the neutron star experiences runaway accretion, collapses into a black hole, which continues to accrete, and produces a pair of jets that bore their way out of the merged object. Observers who lie in the direction of either jet will see a gamma-ray burst. Roughly 1% of supernovae in massive binary systems result in neutron stars quickly becoming embedded in the secondaries, and of those which produce black holes, only 1% would be observable as gamma-ray bursts, if the jets are beamed into 1% of the sky.
NASA Astrophysics Data System (ADS)
Perrier, C.; Breysacher, J.; Rauw, G.
2009-09-01
Aims: We present a technique to determine the orbital and physical parameters of eclipsing eccentric Wolf-Rayet + O-star binaries, where one eclipse is produced by the absorption of the O-star light by the stellar wind of the W-R star. Methods: Our method is based on the use of the empirical moments of the light curve that are integral transforms evaluated from the observed light curves. The optical depth along the line of sight and the limb darkening of the W-R star are modelled by simple mathematical functions, and we derive analytical expressions for the moments of the light curve as a function of the orbital parameters and the key parameters of the transparency and limb-darkening functions. These analytical expressions are then inverted in order to derive the values of the orbital inclination, the stellar radii, the fractional luminosities, and the parameters of the wind transparency and limb-darkening laws. Results: The method is applied to the SMC W-R eclipsing binary HD 5980, a remarkable object that underwent an LBV-like event in August 1994. The analysis refers to the pre-outburst observational data. A synthetic light curve based on the elements derived for the system allows a quality assessment of the results obtained.
ERIC Educational Resources Information Center
Chen, Xiaojin; Thrane, Lisa; Whitbeck, Les B.; Johnson, Kurt D.; Hoyt, Dan R.
2007-01-01
This study examines the effects of childhood-onset conduct disorder on later antisocial behavior and street victimization among a group of homeless and runaway adolescents. Four hundred twenty-eight homeless and runaway youth were interviewed directly on the streets and in shelters from four Midwestern states. Key findings include the following.…
Runaway Geneeration In Disruptions Of Plasmas In TFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, E. D.; Bell, M. G.; Taylor, G.
2014-03-31
Many disruptions in the Tokamak Fusion Test Reactor (TFTR) [D. Meade and the TFTR Group, in Proceedings of the International Conference on Plasma Physics and Controlled Nuclear Fusion, Washington, DC, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 1, pp. 9-24] produced populations of runaway electrons which carried a significant fraction of the original plasma current. In this paper, we describe experiments where, following a disruption of a low-beta, reversed shear plasma, currents of up to 1 MA carried mainly by runaway electrons were controlled and then ramped down to near zero using the ohmic transformer. In the longer lastingmore » runaway plasmas, Parail-Pogutse instabilities were observed.« less
On the relativistic large-angle electron collision operator for runaway avalanches in plasmas
NASA Astrophysics Data System (ADS)
Embréus, O.; Stahl, A.; Fülöp, T.
2018-02-01
Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.
Phase-space dynamics of runaway electrons in magnetic fields
Guo, Zehua; McDevitt, Christopher Joseph; Tang, Xian-Zhu
2017-02-16
Dynamics of runaway electrons in magnetic fields are governed by the competition of three dominant physics: parallel electric field acceleration, Coulomb collision, and synchrotron radiation. Examination of the energy and pitch-angle flows reveals that the presence of local vortex structure and global circulation is crucial to the saturation of primary runaway electrons. Models for the vortex structure, which has an O-point to X-point connection, and the bump of runaway electron distribution in energy space have been developed and compared against the simulation data. Lastly, identification of these velocity-space structures opens a new venue to re-examine the conventional understanding of runawaymore » electron dynamics in magnetic fields.« less
High-resolution optical spectroscopy of Plaskett's star
NASA Astrophysics Data System (ADS)
Linder, N.; Rauw, G.; Martins, F.; Sana, H.; De Becker, M.; Gosset, E.
2008-10-01
Context: Plaskett's star (HD 47 129) is a very massive O + O binary that belongs to the Mon OB2 association. Previous work suggests that this system displays the Struve-Sahade effect although the measurements of the secondary radial velocities are very difficult and give controversial results. Both components have powerful stellar winds that collide and produce a strong X-ray emission. Aims: Our aim is to study the physical parameters of this system in detail and to investigate the relation between its spectral properties and its evolutionary status. Methods: We present here analysis of an extensive set of high-resolution optical spectra of HD 47 129. We used a disentangling method to separate the individual spectra of each star. We derived a new orbital solution and discuss the spectral classification of both components. A Doppler tomography technique applied to the emission lines Hα and He II λ 4686 yields a Doppler map that illustrates the wind interactions in the system. Finally, an atmosphere code is used to determine the different chemical abundances of the system components and the wind parameters. Results: HD 47 129 appears to be an O8 III/I + O7.5 III binary system in a post RLOF evolutionary stage, where matter has been transferred from the primary to the secondary star. The He overabundance of the secondary supports this scenario. In addition, the N overabundance and C underabundance of the primary component confirm previous results based on X-ray spectroscopy and indicate that the primary is an evolved massive star. We also determined a new orbital solution, with MP sin^3i = 45.4 ± 2.4 M⊙ and MS sin^3i = 47.3 ± 0.3 M⊙. Furthermore, the secondary star has a high rotational velocity (v sin i ˜ 300 km s-1) that deforms its surface, leading to a non-uniform distribution in effective temperature. This could explain the variations in the equivalent widths of the secondary lines with phase. We suggest that the wind of the secondary star is confined near the equatorial plane because of its high rotational velocity, affecting the ram pressure equilibrium in the wind interaction zone. Based on observations made at the European Southern Observatory (La Silla, Chile) and at the Observatoire de Haute Provence (France).
On the Absence of Non-thermal X-Ray Emission around Runaway O Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toalá, J. A.; Oskinova, L. M.; Ignace, R.
Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations ofmore » AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.« less
Temporal and spatial evolution of runaway electrons at the instability moments in Damavand tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourshahab, B.; Abdi, M. R.; Sadighzadeh, A.
2016-07-15
The time and position behavior of runaway electrons at the Parail–Pogutse instability moments has been investigated using experimental observations in plasma current, loop voltage, the Hard X-ray (HXR) radiations, and 18 poloidal pickup coils signals received by data acquisition system simultaneously. The conditional average sampling (CAS) method was used to analyze the output data. Moreover, a filament current code was modified to study the runaway electrons beam movement in the event of instabilities. The results display a rapid drift of runaway beam toward the inner wall of the vacuum vessel and the collision with the wall components at the instabilitymore » moments. The existence of the collisions in these experiments is evident in the HXR bursts which are considered as the main trigger for CAS Analysis. Also, the variation of HXR bursts with the toroidal magnetic field shows that the hard X-ray bursts drop with increase in the toroidal magnetic field and runaway electrons confinement quality.« less
Failure Analysis to Identify Thermal Runaway of Bypass Diodes in Fielded Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Chuanxiao, Uchida, Yasunori; Johnston, Steve; Hacke, Peter
We studied a bypass diode recuperated from fielded modules in a rooftop installation to determine the failure mechanism. The field-failed diode showed similar characteristics to thermal runaway, specifically X-ray tomography evidence of migrated metal. We also observed burn marks on the silicon surface like those lab-stressed for thermal runaway. Reaction products are more soluble than silicon and the surface is oxygen rich.
Thermonuclear runaways in nova outbursts
NASA Technical Reports Server (NTRS)
Shankar, Anurag; Arnett, David; Fryxell, Bruce A.
1992-01-01
Results of exploratory, two-dimensional numerical calculations of a local thermonuclear runaway on the surface of a white dwarf are reported. It is found that the energy released by the runaway can induce a significant amount of vorticity near the burning region. Such mass motions account naturally for mixing of core matter into the envelope during the explosion. A new mechanism for the lateral spread of nuclear burning is also discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
... runaway when the BCM is activated. * * * * * The unsafe condition is loss of control of the airplane. The... runaway when the BCM is activated. EASA AD 2009-0153 retained the requirements of EASA AD 2008-0131 and... consequently to a potential rudder runaway when the BCM is activated. * * * * * The unsafe condition is loss of...
ERIC Educational Resources Information Center
Jennings, Susan
Runaways are rapidly becoming one of the highest at risk populations for contracting and spreading the Acquired Immune Deficiency Syndrome (AIDS) virus. This practicum was therefore designed to provide an AIDS policy and awareness training for the employees of a state-licensed and federally recognized center for troubled and runaway youth. Its…
NASA Astrophysics Data System (ADS)
Zhang, Guannan; Del-Castillo-Negrete, Diego
2017-10-01
Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.
Family Functioning and Predictors of Runaway Behavior Among At-Risk Youth
Holliday, Stephanie Brooks; Edelen, Maria Orlando; Tucker, Joan S.
2016-01-01
Purpose Adolescent runaway behavior is associated with a host of negative outcomes in young adulthood. Therefore, it is important to understand the factors that predict running away in youth. Methods Longitudinal data from 111 at-risk families were used to identify proximal predictors of runaway behavior over a 12-week period. On average, youth were 14.96 years old, and 45% were female. Ten percent of youth ran away during the 12-week follow-up period. Results In bivariate analyses, running away was predicted by poorer youth- and parent-rated family functioning, past runaway behavior, and other problem behaviors (e.g., substance use, delinquency), but not poorer perceived academic functioning. Results of a hierarchical logistic regression revealed a relationship between youth-rated family functioning and runaway behavior. However, this effect became non-significant after accounting for past runaway behavior and other problem behaviors, both of which remained significant predictors in the multivariable model. Conclusion These findings suggest that youth who run away may be engaged in a more pervasive pattern of problematic behavior, and that screening and prevention programs need to address the cycle of adolescent defiant behavior associated with running away. Recommendations for clinical practice with this at-risk population are discussed. PMID:28496291
Can Increased CO2 Levels Trigger a Runaway Greenhouse on the Earth?
NASA Astrophysics Data System (ADS)
Ramirez, R.
2014-04-01
Recent one-dimensional (globally averaged) climate model calculations suggest that increased atmospheric CO2 could conceivably trigger a runaway greenhouse if CO2 concentrations were approximately 100 times higher than today. The new prediction runs contrary to previous calculations, which indicated that CO2 increases could not trigger a runaway, even at Venus-like CO2 concentrations. Goldblatt et al. argue that this different behavior is a consequence of updated absorption coefficients for H2O that make a runaway more likely. Here, we use a 1-D cloud-free climate model with similar, up-to-date absorption coefficients, but with a self-consistent methodology, to demonstrate that CO2 increases cannot induce a runaway greenhouse on the modern Earth. However, these initial calculations do not include cloud feedback, which may be positive at higher temperatures, destabilizing Earth's climate. We then show new calculations demonstrating that cirrus clouds cannot trigger a runaway, even in the complete absence of low clouds. Thus, the habitability of an Earth-like planet at Earth's distance appears to be ensured, irrespective of the sign of cloud feedback. Our results are of importance to Earth-like planets that receive similar insolation levels as does the Earth and to the ongoing question about cloud response at higher temperatures.
Suppression of runaway electrons with a resonant magnetic perturbation in MST tokamak plasmas
NASA Astrophysics Data System (ADS)
Munaretto, Stefano; Chapman, B. E.; Almagri, A. F.; Cornille, B. S.; Dubois, A. M.; Goetz, J. A.; McCollam, K. J.; Sovinec, C. R.
2016-10-01
Runaway electrons generated in MST tokamak plasmas are now being probed with resonant magnetic perturbations (RMP's). An RMP with m =3 strongly suppresses the runaway electrons. Initial modeling of these plasmas with NIMROD shows the degradation of flux surfaces with an m =3 RMP, which may account for the runaway electron suppression. These MST tokamak plasmas have Bt =0.14 T, Ip =50kA, and q(a) =2.2, with a bulk electron density and temperature of 5x1017 m-3 and 150 eV. Runaway electrons are detected via x-ray emission. The RMP is produced by a poloidal array of 32 saddle coils at the narrow vertical insulated cut in MST's thick conducting shell. Each RMP has a single m but a broad n spectrum. A sufficiently strong m =3 RMP completely suppresses the runaway electrons, while a comparable m =1 RMP has little effect. The impact of the RMP's on the magnetic topology of these plasmas is being studied with the nonlinear MHD code, NIMROD. With an m =3 RMP, stochasticity is introduced in the outer third of the plasma. No such change is observed with the m =1 RMP. NIMROD also predicts regularly occurring sawtooth oscillations with a period comparable to MHD activity observed in the experiment. Work supported by USDOE.
NASA Astrophysics Data System (ADS)
Chauvin, G.; Ménard, F.; Fusco, T.; Lagrange, A.-M.; Beuzit, J.-L.; Mouillet, D.; Augereau, J.-C.
2002-11-01
We report adaptive optics (AO) observations of the young and nearby association MBM 12 obtained with the Canada-France-Hawaii Telescope. Our main observational result is the discovery of six new binary systems, LkHα 264, E 0255+2018, RX J0255.4+2005, S18, MBM 12-10, RX J0255.3+1915, and the confirmation of HD 17332, already known as a binary. We also detected a possible quadruple system. It is composed of the close binary LkHα 263 AB (separation of ~ 0.41''), of LkHα 262 located ~ 15.25'' from LkHα 263 A, and of LkHα 263 C, located ~ 4.1'' from LkHα 263 A. A preliminary study of the binary fraction suggests a binary excess in the MBM 12 association as compared to the field and IC 348. Because of the high binarity rate, previous estimations of spectral types and measurements of IR excesses for several candidate members of MBM 12 have to be revised. LkHα 263 C is a nebulous object that we interpret as a disk oriented almost perfectly edge-on and seen in scattered light. This object has already been reported by Jayawardhana et al. (\\cite{Jayawardhana2002}). Scattered light models allow us to estimate some of the structural parameters (i.e. inclination, diameter and to a lesser extent dust mass) of the circumstellar disk. We find an inclination of 89o and a outer radius for the disk, ~ 165 AU if the distance to MBM 12 is 275 pc. With the present data set, we do not attempt to re-assess the distance to MBM 12. We estimate however that the distance to the candidate member RX J0255.3+1915 is d > 175 pc. Based on data collected at the Canada-France-Hawaii Telescope. The CFHT corporation is funded by the Governments of Canada and France, and by the University of Hawaii.
SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sana, H.; Le Bouquin, J.-B.; Duvert, G.
2014-11-01
Multiplicity is one of the most fundamental observable properties of massive O-type stars and offers a promising way to discriminate between massive star formation theories. Nevertheless, companions at separations between 1 and 100 milliarcsec (mas) remain mostly unknown due to intrinsic observational limitations. At a typical distance of 2 kpc, this corresponds to projected physical separations of 2-200 AU. The Southern MAssive Stars at High angular resolution survey (SMaSH+) was designed to fill this gap by providing the first systematic interferometric survey of Galactic massive stars. We observed 117 O-type stars with VLTI/PIONIER and 162 O-type stars with NACO/Sparse Aperturemore » Masking (SAM), probing the separation ranges 1-45 and 30-250 mas and brightness contrasts of ΔH < 4 and ΔH < 5, respectively. Taking advantage of NACO's field of view, we further uniformly searched for visual companions in an 8'' radius down to ΔH = 8. This paper describes observations and data analysis, reports the discovery of almost 200 new companions in the separation range from 1 mas to 8'' and presents a catalog of detections, including the first resolved measurements of over a dozen known long-period spectroscopic binaries. Excluding known runaway stars for which no companions are detected, 96 objects in our main sample (δ < 0°; H < 7.5) were observed both with PIONIER and NACO/SAM. The fraction of these stars with at least one resolved companion within 200 mas is 0.53. Accounting for known but unresolved spectroscopic or eclipsing companions, the multiplicity fraction at separation ρ < 8'' increases to f {sub m} = 0.91 ± 0.03. The fraction of luminosity class V stars that have a bound companion reaches 100% at 30 mas while their average number of physically connected companions within 8'' is f {sub c} = 2.2 ± 0.3. This demonstrates that massive stars form nearly exclusively in multiple systems. The nine non-thermal radio emitters observed by SMaSH+ are all resolved, including the newly discovered pairs HD 168112 and CPD–47°2963. This lends strong support to the universality of the wind-wind collision scenario to explain the non-thermal emission from O-type stars.« less
Relation of the runaway avalanche threshold to momentum space topology
NASA Astrophysics Data System (ADS)
McDevitt, Christopher J.; Guo, Zehua; Tang, Xian-Zhu
2018-02-01
The underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accurately described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.
Predictors of posttraumatic stress symptoms among runaway youth utilizing two service sectors.
Thompson, Sanna J; Maccio, Elaine M; Desselle, Sherry K; Zittel-Palamara, Kimberly
2007-08-01
Youth who run away often experience situations that produce symptoms of traumatic distress. This exploratory study assessed predictors of trauma symptomatology among runaway youth who had been admitted to youth emergency shelter services or juvenile detention. Findings demonstrated high levels of trauma-related symptoms for both groups. Worry about family, greater runaway episodes, and living with a father who abused alcohol/drugs significantly predicted higher posttraumatic stress symptoms in detained youth, whereas only worry about family relationships predicted higher trauma symptom scores among youth in emergency shelter care. Findings suggest distressful family life may induce complex emotional responses in youth. Although services to runaway youth must continue to focus on safe, short-term residential care, trauma issues must be acknowledged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bandhauer, Todd M.; Farmer, Joseph C.
A battery management system with thermally integrated fire suppression includes a multiplicity of individual battery cells in a housing; a multiplicity of cooling passages in the housing within or between the multiplicity of individual battery cells; a multiplicity of sensors operably connected to the individual battery cells, the sensors adapted to detect a thermal runaway event related to one or more of the multiplicity of individual battery cells; and a management system adapted to inject coolant into at least one of the multiplicity of cooling passages upon the detection of the thermal runaway event by the any one of themore » multiplicity of sensors, so that the thermal runaway event is rapidly quenched.« less
NASA Astrophysics Data System (ADS)
Doering, Ryan Lee
Herbig Ae/Be stars are considered the intermediate-mass analogs of the low-mass pre-main sequence T Tauri stars. Observations reveal that they are surrounded by dusty matter that may provide the solid-state material for building planets. Determining the dust parameters provides constraints for planet formation theory, and yields information about the matter around intermediate-mass stars as they approach the main sequence. In this dissertation, I present the results of a multiwavelength imaging and radiative transfer modeling study of Herbig Ae/Be stars, and a near-infrared instrumentation project, with the aim of parameterizing the dust in these systems. The Hubble Space Telescope was used to search for optical light scattered by dust in a sample of young stars. This survey provided the first scattered-light image of the circumstellar environment around the Herbig Ae/Be star HD 97048. Structure is observed in the dust distribution similar to that seen in other Herbig Ae/Be systems. A ground-based near-infrared imaging study of Herbig Ae/ Be candidates was also carried out. Photometry was collected for spectral energy distribution construction, and binary candidates were resolved. A mid- infrared image of the low-mass debris system, AU Microscopii, is presented, being relevant to the study of Herbig Ae/Be stars. Detailed dust modeling of HD 97048 and HD 100546 was carried out with a two- component geometry consisting of a flared disk and an extended envelope. The models achieve a reasonable global fit to the spectral energy distributions, and produce images with the desired geometry. The disk midplane densities are found to go as r -0.5 and r -1.8 , giving disk dust masses of 3.0 × 10^-4 and 5.9 × 10 ^5 [Special characters omitted.] for HD 97048 and HD 100546, respectively. A gas-to-dust mass ratio lower limit of 3.2 was calculated for HD 97048. In order to advance the imaging capabilities available for observations of Herbig Ae/Be stars, I have participated in the development of the WIYN High Resolution Infrared Camera. The instrument operates in the near-infrared (~0.8 - 2.5 mm), includes 13 filters, and has a pixel size of ~0.1 inches, resulting in a field of view of ~3' × 3'. An angular resolution of ~0.25 inches is anticipated. I provide an overview of the instrument, and report performance results with an emphasis on detector characterization.
Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra
NASA Astrophysics Data System (ADS)
Leonard, Douglas
2006-02-01
The progenitor systems of Type Ia supernovae (SNe Ia) are observationally unconstrained. Prevailing theory invokes a carbon- oxygen white dwarf accreting matter from a companion until a thermonuclear runaway ensues that incinerates the white dwarf. While models of exploding carbon-oxygen white dwarfs faithfully reproduce the main characteristics of SNe Ia, we are ignorant about the nature of the proposed companion star. Simulations resulting from this single- degenerate binary channel, however, demand the presence of low-velocity, H(alpha) emission in spectra taken in the nebular phase (250 - 400 days after maximum light), since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, and only generally weak limits have heretofore been set from ~ 6 SNe Ia observed during the nebular phase at low resolution and often with a low signal-to-noise ratio (S/N). We propose to remedy this situation through high S/N observations of two nearby, nebular-phase SNe Ia, with sufficient sensitivity and resolution to detect ~ 0.01 Msun of solar abundance material in the ejecta. The detection of late- time H(alpha) emission would be considered a ``smoking gun'' for the binary scenario. If H(alpha) is not detected, the limits will effectively rule out sub-giant, red giant, and all but the most widely separated main-sequence companions.
A Classical Nova Explosion in a Binary System with B[e] Star
NASA Astrophysics Data System (ADS)
Filippova, E.; Revnivtsev, M.; Lutovinov, A.
2011-09-01
The description of a thermonuclear runaway on a white dwarf, which causes a Classical Nova (CN) explosion, has several uncertainties. Observational tests of models are challenging because the majority of CNe are observed in optical and NIR spectral bands days after the onset of the explosion. We propose to use the properties of the X-ray emission of CNe for these tests. We have developed a model for the 1998 CN explosion in the binary system CI Cam. According to the adopted model the stellar wind from the optical component (a B[e] star), heated by a strong shock wave that was produced when matter was ejected from the white dwarf as the result of a thermonuclear explosion on its surface, is the source of X-ray emission in the standard X-ray band (˜ 2 - 10 keV). We use this model to explain the behaviour of the X-ray luminosity and of the mean temperature of the heated material during the explosion, and obtain velocity and mass estimates of the ejected matter from the WD surface. Discrepancies between model and observations, for example the slower decline of the theoretical luminosity compared to the observed one, are likely caused by the rough assumption of spherical symmetry. Using 3D calculations we find possible density perturbations (accretion wakes) that can reconcile theory with observations.
Revisiting hypervelocity stars after Gaia DR2
NASA Astrophysics Data System (ADS)
Boubert, D.; Guillochon, J.; Hawkins, K.; Ginsburg, I.; Evans, N. W.; Strader, J.
2018-06-01
Hypervelocity stars are intriguing rare objects traveling at speeds large enough to be unbound from the Milky Way. Several mechanisms have been proposed for producing them, including the interaction of the Galaxy's super-massive black hole (SMBH) with a binary; rapid mass-loss from a companion to a star in a short-period binary; the tidal disruption of an infalling galaxy and finally ejection from the Large Magellanic Cloud. While previously discovered high-velocity early-type stars are thought to be the result of an interaction with the SMBH, the origin of high-velocity late type stars is ambiguous. The second data release of Gaia (DR2) enables a unique opportunity to resolve this ambiguity and determine whether any late-type candidates are truly unbound from the Milky Way. In this paper, we utilize the new proper motion and velocity information available from DR2 to re-evaluate a collection of historical data compiled on the newly-created Open Fast Stars Catalog. We find that almost all previously-known high-velocity late-type stars are most likely bound to the Milky Way. Only one late-type object (LAMOST J115209.12+120258.0) is unbound from the Galaxy. Performing integrations of orbital histories, we find that this object cannot have been ejected from the Galactic centre and thus may be either debris from the disruption of a satellite galaxy or a disc runaway.
An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.
Gilfanov, Marat; Bogdán, Akos
2010-02-18
There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate.
An X-ray view of HD 166734, a massive supergiant system
NASA Astrophysics Data System (ADS)
Nazé, Yaël; Gosset, Eric; Mahy, Laurent; Parkin, Elliot Ross
2017-11-01
The X-ray emission of the O+O binary HD 166734 was monitored using Swift and XMM-Newton observatories, leading to the discovery of phase-locked variations. The presence of an f line in the He-like triplets further supports a wind-wind collision as the main source of the X-rays in HD 166734. While temperature and absorption do not vary significantly along the orbit, the X-ray emission strength varies by one order of magnitude, with a long minimum state (Δ(φ) 0.1) occurring after a steep decrease. The flux at minimum is compatible with the intrinsic emission of the O-stars in the system, suggesting a possible disappearance of colliding wind emission. While this minimum cannot be explained by eclipse or occultation effects, a shock collapse may occur at periastron in view of the wind properties. Afterwards, the recovery is long, with an X-ray flux proportional to the separation d (in hard band) or to d2 (in soft band). This is incompatible with an adiabatic nature for the collision (which would instead lead to FX ∝ 1 /d), but could be reconciled with a radiative character of the collision, though predicted temperatures are lower and more variable than in observations. An increase in flux around φ 0.65 and the global asymmetry of the light curve remain unexplained, however. Based on observations collected with Swift and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).
Discovery of a stellar companion to the nearby solar-analogue HD 104304
NASA Astrophysics Data System (ADS)
Schnupp, C.; Bergfors, C.; Brandner, W.; Daemgen, S.; Fischer, D.; Marcy, G.; Henning, Th.; Hippler, S.; Janson, M.
2010-06-01
Context. Sun-like stars are promising candidates to host exoplanets and are often included in exoplanet surveys by radial velocity (RV) and direct imaging. In this paper we report on the detection of a stellar companion to the nearby solar-analogue star HD 104304, which previously was considered to host a planetary mass or brown dwarf companion. Aims: We searched for close stellar and substellar companions around extrasolar planet host stars with high angular resolution imaging to characterize planet formation environments. Methods: The detection of the stellar companion was achieved by high angular resolution measurements, using the “Lucky Imaging” technique at the ESO NTT 3.5 m with the AstraLux Sur instrument. We combined the results with VLT/NACO archive data, where the companion could also be detected. The results were compared to precise RV measurements of HD 104304, obtained at the Lick and Keck observatories from 2001-2010. Results: We confirmed common proper motion of the binary system. A spectral type of M4V of the companion and a mass of 0.21 M_⊙ was derived. Due to comparison of the data with RV measurements of the unconfirmed planet candidate listed in the Extrasolar Planets Encyclopaedia, we suggest that the discovered companion is the origin of the RV trend and that the inclination of the orbit of i≈35°explains the relatively small RV signal. Based on observations made with ESO Telescopes at the La Silla and Paranal Observatory under programme IDs 083.C-0145 and 084.C-0812, and on data obtained from the ESO Science Archive Facility.
Poša, Mihalj; Tepavčević, Vesna
2011-09-01
The formation of mixed micelles built of 7,12-dioxolithocholic and the following hydrophobic bile acids was examined by conductometric method: cholic (C), deoxycholic (D), chenodeoxycholic (CD), 12-oxolithocholic (12-oxoL), 7-oxolithocholic (7-oxoL), ursodeoxycholic (UD) and hiodeoxycholic (HD). Interaction parameter (β) in the studied binary mixed micelles had negative value, suggesting synergism between micelle building units. Based on β value, the hydrophobic bile acids formed two groups: group I (C, D and CD) and group II (12-oxoL, 7-oxoL, UD and HD). Bile acids from group II had more negative β values than bile acids from group I. Also, bile acids from group II formed intermolecular hydrogen bonds in aggregates with both smaller (2) and higher (4) aggregation numbers, according to the analysis of their stereochemical (conformational) structures and possible structures of mixed micelles built of these bile acids and 7,12-dioxolithocholic acid. Haemolytic potential and partition coefficient of nitrazepam were higher in mixed micelles built of the more hydrophobic bile acids (C, D, CD) and 7,12-dioxolithocholic acid than in micelles built only of 7,12-dioxolithocholic acid. On the other hand, these mixed micelles still had lower values of haemolytic potential than micelles built of C, D or CD. The mixed micelles that included bile acids: 12-oxoL, 7-oxoL, UD or HD did not significantly differ from the micelles of 7,12-dioxolithocholic acid, observing the values of their haemolytic potential. Copyright © 2011 Elsevier B.V. All rights reserved.
Serendipitous discovery of an irregular and a semi-regular type variable in the field of BY Draconis
NASA Astrophysics Data System (ADS)
Messina, S.; Marino, G.; Rodonò, M.; Cutispoto, G.
2000-12-01
We present new evidence of the optical variability of two red giant stars: HD 172468 and HK Dra, based on photometric and spectroscopic observations. These stars had been included as check stars in our photometric monitoring program of BY Dra and turned out to be variable. HD 172468, whereas almost constant for most of the time, suddenly started to drop in brightness to such a low level to become undetectable. We suspect that such an abrupt event may be an ``obscurational'' minimum, that is typical of eruptive RCB stars, or may be due to the variable extinction by circumstellar dust in a young Orion type object. HK Dra, already known as an irregular variable, is characterised by periodic flux modulation with season-to-season changes of the photometric period, as inferred from a periodogram analysis. It also shows changes of the light curve peak-to-peak amplitude and shape. Such a behaviour in giant stars is commonly found among semi-regular giants (SR) at the Asymptotic Giant Branch (AGB). Our radial velocity measurements rule out that HK Dra may be a close binary system.
Test of the Hill Stability Criterion against Chaos Indicators
NASA Astrophysics Data System (ADS)
Satyal, Suman; Quarles, Billy; Hinse, Tobias
2012-10-01
The efficacy of Hill Stability (HS) criterion is tested against other known chaos indicators such as Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth of Nearby Orbits (MEGNO) maps. First, orbits of four observationally verified binary star systems: γ Cephei, Gliese-86, HD41004, and HD196885 are integrated using standard integration packages (MERCURY, SWIFTER, NBI, C/C++). The HS which measures orbital perturbation of a planet around the primary star due to the secondary star is calculated for each system. The LEs spectra are generated to measure the divergence/convergence rate of stable manifolds and the MEGNO maps are generated by using the variational equations of the system during the integration process. These maps allow to accurately differentiate between stable and unstable dynamical systems. Then the results obtained from the analysis of HS, MLE, and MEGNO maps are checked for their dynamical variations and resemblance. The HS of most of the planets seems to be stable, quasi-periodic for at least ten million years. The MLE and the MEGNO maps also indicate the local quasi-periodicity and global stability in relatively short integration period. The HS criterion is found to be a comparably efficient tool to measure the stability of planetary orbits.
An Unusual Massive Be Star HD 53367: Circumstellar Activity and Evidence for Binarity
NASA Astrophysics Data System (ADS)
Pogodin, M. A.; Malanushenko, V. P.; Kozlova, O. V.; Tarasova, T. N.; Franco, G. A. P.
2006-12-01
We present the results of high-resolution spectroscopy of the young B0e star HD 53367 obtained within the framework of a cooperative observing program in 1994--2005. We confirm that a long-term photometric variability of the object is indeed connected with the alternation of two states of the object when the gaseous circumstellar envelope disappears and arises again. Both these processes start near the star and then spread to remote parts of the envelope. We find that the radial velocities of He I and O II photospheric lines demonstrate a cyclic variability with the period P=183.7 days and the semi-amplitude K=19 km s-1. The radial velocity variation is interpreted in the framework of a model, in which the star is a companion of an eccentric binary system. An orbital solution is derived and the system's parameters are estimated. We find that the orbital eccentricity is e=0.28, the mean companion separation is 1.7 AU, and the secondary companion is most likely to be a 5 solar mass pre-main sequence object. The main part of circumstellar gas in the system is collected near the secondary companion.
Toubaei, Shahin; Nateghi, GholamReza; Dehbozorgi, Gholam Reza; Sadr Esfahani, Hasan
2012-01-01
Objective: The problem of runaway girls is one of the social problems which has become more prevalent and is considered a serious challenge for families, welfare centers and governmental organizations in Iran. This study aimed at determining the demographic, personality and psychopathology characteristic of a sample of runaway girls in Shiraz, Iran. Methods: Fifty girls who had escaped from their home and were referred to the Women’s Social Emergency and Rehabilitant Centre of Shiraz were compared with fifty girls who lived with their parents (control group). They were assessed by semi-structured interview based on the DSMIV-TR criteria, demographic questionnaire, the General Health Questionnaire-28 (GHQ-28) and the Eysenck Personality Questionnaire-R-106 (EPQ-R-106). Results: Mean (±SD) age of the runaway girls was 19.9 (±3.81) years. Twenty (40%) were the first child of the family. Forty-three subjects (86%) were resident of cities. Physical abuse and neglect were more prevalent in the runaway girls (P < 0.05). There were no significant differences between two groups in history of major psychiatric disorders. Regarding GHQ-28, only in social function subscale, the runaway girls showed more disturbances in their social function compared to control group (P < 0.05). There were significant differences in extroversion, lying tendency, addiction tendency and crime seeking (P < 0.05) between the two groups and escaped girls showed more disturbances in comparison with the control group. Conclusion: The social burden of runaway girls in Shiraz is of significance and this subject warrants more attention from non-governmental and governmental organizations in order to provide more psychological and social support for these girls. PMID:24644467
Parameters of an avalanche of runaway electrons in air under atmospheric pressure
NASA Astrophysics Data System (ADS)
Oreshkin, E. V.
2018-01-01
The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
These hearings present a performance review of and information about the Federal administration of the Runaway and Homeless Youth Act, which assists 169 centers for runaways throughout the country. The centers provide emergency shelter and family mediation for many of the youngsters who run away or who are directed to leave home by their parents.…
Acceleration of runaway electrons in solar flares
NASA Technical Reports Server (NTRS)
Moghaddam-Taaheri, E.; Goertz, C. K.
1990-01-01
The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.
Effects of Hot Limiter Biasing on Tokamak Runaway Discharges
NASA Astrophysics Data System (ADS)
Salar Elahi, A.; Ghoranneviss, M.; Ghanbari, M. R.
2013-10-01
In this research hot limiter biasing effects on the Runaway discharges were investigated. First wall of the tokamak reactors can affects serious damage due to the high energy runaway electrons during a major disruption and therefore its life time can be reduced. Therefore, it is important to find methods to decrease runaway electron generation and their energy. Tokamak limiter biasing is one of the methods for controlling the radial electric field and can induce a transition to an improved confinement state. In this article generation of runaway electrons and the energy they can obtain will be investigated theoretically. Moreover, in order to apply radial biasing an emissive limiter biasing is utilized. The biased limiter can apply +380 V in the status of cold and hot to the plasma and result in the increase of negative bias current in hot status. In fact, in this experiment we try to decrease the generation of runaway electrons and their energy by using emissive limiter biasing inserted on the IR-T1 tokamak. The mean energy of these electrons was obtained by spectroscopy of hard X-ray. Also, the plasma current center shift was measured from the vertical field coil characteristics in presence of limiter biasing. The calculation is made focusing on the vertical field coil current and voltage changes due to a horizontal displacement of plasma column.
Low simulated radiation limit for runaway greenhouse climates
NASA Astrophysics Data System (ADS)
Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David
2013-08-01
The atmospheres of terrestrial planets are expected to be in long-term radiation balance: an increase in the absorption of solar radiation warms the surface and troposphere, which leads to a matching increase in the emission of thermal radiation. Warming a wet planet such as Earth would make the atmosphere moist and optically thick such that only thermal radiation emitted from the upper troposphere can escape to space. Hence, for a hot moist atmosphere, there is an upper limit on the thermal emission that is unrelated to surface temperature. If the solar radiation absorbed exceeds this limit, the planet will heat uncontrollably and the entire ocean will evaporate--the so-called runaway greenhouse. Here we model the solar and thermal radiative transfer in incipient and complete runaway greenhouse atmospheres at line-by-line spectral resolution using a modern spectral database. We find a thermal radiation limit of 282Wm-2 (lower than previously reported) and that 294Wm-2 of solar radiation is absorbed (higher than previously reported). Therefore, a steam atmosphere induced by such a runaway greenhouse may be a stable state for a planet receiving a similar amount of solar radiation as Earth today. Avoiding a runaway greenhouse on Earth requires that the atmosphere is subsaturated with water, and that the albedo effect of clouds exceeds their greenhouse effect. A runaway greenhouse could in theory be triggered by increased greenhouse forcing, but anthropogenic emissions are probably insufficient.
... Asked Questions Leadership Financials Events Media Resource Center Work at NRS Visit the Blog Youth & Teens Do you need help? The National Runaway Safeline (NRS) is here to listen whether you are ...
Runaway breakdown and electrical discharges in thunderstorms
NASA Astrophysics Data System (ADS)
Milikh, Gennady; Roussel-Dupré, Robert
2010-12-01
This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/lightning include γ-ray and X-ray flux intensifications over thunderstorms, γ-ray and X-ray bursts in conjunction with stepped leaders, terrestrial γ-ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character are touched upon briefly.
Ecologically-Based Family Therapy Outcome with Substance Abusing Runaway Adolescents
Slesnick, Natasha; Prestopnik, Jillian L.
2007-01-01
Runaway youth report a broader range and higher severity of substance-related, mental health and family problems relative to non-runaway youth. Most studies to date have collected self-report data on the family and social history; virtually no research has examined treatment effectiveness with this population. This study is a treatment development project in which 124 runaway youth were randomly assigned to 1) Ecologically-Based Family Therapy (EBFT) or 2) Service as Usual (SAU) through a shelter. Youth completed an intake, posttreatment, 6 and 12 month follow-up assessment. Youth assigned to EBFT reported greater reductions in overall substance abuse compared to youth assigned to SAU while other problem areas improved in both conditions. Findings suggest that EBFT is an efficacious intervention for this relatively severe population of youth. PMID:15878048
Effects of Spatial Gradients on Electron Runaway Acceleration
NASA Technical Reports Server (NTRS)
MacNeice, Peter; Ljepojevic, N. N.
1996-01-01
The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shayestehaminzadeh, Seyedmohammad, E-mail: ses30@hi.is, E-mail: shayesteh@mch.rwth-aachen.de; Arnalds, Unnar B.; Magnusson, Rögnvaldur L.
2015-11-15
This paper reports the observation of a periodic runaway of plasma to a higher density for the reactive discharge of the target material (Ti) with moderate sputter yield. Variable emission of secondary electrons, for the alternating transition of the target from metal mode to oxide mode, is understood to be the main reason for the runaway occurring periodically. Increasing the pulsing frequency can bring the target back to a metal (or suboxide) mode, and eliminate the periodic transition of the target. Therefore, a pulsing frequency interval is defined for the reactive Ar/O{sub 2} discharge in order to sustain the plasmamore » in a runaway-free mode without exceeding the maximum power that the magnetron can tolerate.« less
Relativistic runaway ionization fronts.
Luque, A
2014-01-31
We investigate the first example of self-consistent impact ionization fronts propagating at relativistic speeds and involving interacting, high-energy electrons. These fronts, which we name relativistic runaway ionization fronts, show remarkable features such as a bulk speed within less than one percent of the speed of light and the stochastic selection of high-energy electrons for further acceleration, which leads to a power-law distribution of particle energies. A simplified model explains this selection in terms of the overrun of Coulomb-scattered electrons. Appearing as the electromagnetic interaction between electrons saturates the exponential growth of a relativistic runaway electron avalanche, relativistic runaway ionization fronts may occur in conjunction with terrestrial gamma-ray flashes and thus explain recent observations of long, power-law tails in the terrestrial gamma-ray flash energy spectrum.
Relation of the runaway avalanche threshold to momentum space topology
McDevitt, Christopher J.; Guo, Zehua; Tang, Xian -Zhu
2018-01-05
Here, the underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accuratelymore » described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.« less
Relation of the runaway avalanche threshold to momentum space topology
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDevitt, Christopher J.; Guo, Zehua; Tang, Xian -Zhu
Here, the underlying physics responsible for the formation of an avalanche instability due to the generation of secondary electrons is studied. A careful examination of the momentum space topology of the runaway electron population is carried out with an eye toward identifying how qualitative changes in the momentum space of the runaway electrons is correlated with the avalanche threshold. It is found that the avalanche threshold is tied to the merger of an O and X point in the momentum space of the primary runaway electron population. Such a change of the momentum space topology is shown to be accuratelymore » described by a simple analytic model, thus providing a powerful means of determining the avalanche threshold for a range of model assumptions.« less
78 FR 41781 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-11
... Nutrition Service Title: Direct Certification and Certification of Homeless, Migrant and Runaway Children... (SNAP) benefits and also the certification of certain children who are homeless, runaway, or migratory...
First Visual Orbit for the Prototypical Colliding-wind Binary WR 140
NASA Astrophysics Data System (ADS)
Monnier, John D.; Zhao, M.; Pedretti, E.; Millan-Gabet, R.; Berger, J.; Schloerb, F.; Traub, W.; ten Brummelaar, T.; McAlister, H.; Ridgway, S.; Turner, N.; Sturmann, L.; Sturmann, J.; Baron, F.; Tannirkulam, A.; Kraus, S.; Williams, P.
2012-01-01
Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140 (=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we can estimate the distance to WR 140 with about 2% error and estimate component masses with about 4% error. Our precision orbit yields key parameters with uncertainties about 6 times smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.
NASA Technical Reports Server (NTRS)
Rowland, H. L.; Palmadesso, P. J.
1983-01-01
Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Education and Labor.
The discussions center on two bills before Congress which would: (1) provide a comprehensive coordinated approach to the problems of juvenile delinquency; (2) strengthen interstate reporting and interstate services for parents of runaway children; (3) conduct research on the size of the runaway youth population; and (4) establish, maintain, and…
The Herbig B0e star HD 53367: circumstellar activity and evidence of binarity
NASA Astrophysics Data System (ADS)
Pogodin, M. A.; Malanushenko, V. P.; Kozlova, O. V.; Tarasova, T. N.; Franco, G. A. P.
2006-06-01
Aims.We investigate the spectroscopic behaviour of the young B0e star HD 53367 within a cooperative observing programme conducted from 1994 to 2005. Methods: .The data include more than 100 high-resolution spectra collected at the Crimean Astronomical Observatory (CrAO) near Hα, Hβ, He i λ 5876, 6678 Å, DNa i, and O ii λ 6641 Å lines. Two spectra obtained at the Observatório do Pico dos Dias (LNA), in the spectral bands λλ 4575-4725 Å and λλ 5625-5775 Å, were used for spectral classification of HD 53367. The temporal behaviour of the circumstellar lines Hα and Hβ as well as the photospheric lines O ii λ 6641 Å and He i λ 6678 Å were investigated during different stages of the photometric activity of this object. Results: .We confirm that the long-term photometric variability of HD 53367 is related to the alternation of two states of this object when the gaseous circumstellar envelope disappears and rises again. Both these processes start near the star and spread to the outlying parts of the envelope. We find that the radial velocities of He i and O ii photospheric lines demonstrate a cyclic variability with a period of P=183.7 days and semi-amplitude K=19 km s-1. The radial velocity change is interpreted in the framework of a model in which the star is a component of an eccentric binary system. An orbital solution is derived and the system's parameters estimated. We find that the orbital eccentricity is e=0.28, and the mean companion separation is 1.7 AU. Conclusions: .Based on the estimated parameters, we conclude that the system consists of a massive (~20 M_⊙) main sequence primary B0e star, and a secondary which is most likely a 5 solar mass pre-main sequence object. We found evidence that the main part of the circumstellar gas in this system is concentrated near the secondary companion. Although the young age of HD 53367, its evolved primary B0e star seems to have already became a classical Be star exhibiting a specific alternation of the B-Be stages.
Coronal temperatures of unusually active K-dwarf binary systems
NASA Technical Reports Server (NTRS)
Stern, Robert A.
1994-01-01
We report the results of a ROSAT pointed study of 4 BY Dra systems. Good quality pulse-height spectra are available from all four systems. Except for a required interstellar absorption component in HD 319139, the four systems have remarkably similar x-ray spectra; the two systems BD +22deg.669 and BD +23deg.635 look virtually identical in x rays. Analysis of the 4 x-ray spectra reveals that, in all cases, a single-temperature hot plasma (RS or Mewe) spectra is inadequate to fit the data, and two temperatures are required. We present examples of fitted pulse-height spectra and chi squared contours in kT(sub 1)-kT(sub 2) space.
Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshkin, E. V., E-mail: oreshkinev@scalpnet.ru; Barengolts, S. A.; A. M. Prokhorov General Physics Institute, RAS, 119991 Moscow
2015-12-15
To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beammore » in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons.« less
NASA Astrophysics Data System (ADS)
Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.
2017-07-01
We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.
Thompson, Sanna J; Bender, Kimberly A; Lewis, Carol M; Watkins, Rita
2008-08-01
Homeless youth are at particularly high risk for teen pregnancy; research indicates as many as 20% of homeless young women become pregnant. These pregnant and homeless teens lack financial resources and adequate health care, resulting in increased risk for low-birth-weight babies and high infant mortality. This study investigated individual and family-level predictors of teen pregnancy among a national sample of runaway/homeless youth in order to better understand the needs of this vulnerable population. Data from the Runaway/Homeless Youth Management Information System (RHY MIS) provided a national sample of youth seeking services at crisis shelters. A sub-sample of pregnant females and a random sub-sample (matched by age) of nonpregnant females comprised the study sample (N = 951). Chi-square and t tests identified differences between pregnant and nonpregnant runaway females; maximum likelihood logistic regression identified individual and family-level predictors of teen pregnancy. Teen pregnancy was associated with being an ethnic minority, dropping out of school, being away from home for longer periods of time, having a sexually transmitted disease, and feeling abandoned by one's family. Family factors, such as living in a single parent household and experiencing emotional abuse by one's mother, increased the odds of a teen being pregnant. The complex problems associated with pregnant runaway/homeless teens create challenges for short-term shelter services. Suggestions are made for extending shelter services to include referrals and coordination with teen parenting programs and other systems of care.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostyrya, I. D.; Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru
2015-03-15
Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ∼0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap (U{sub m} ∼ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of U{submore » m} behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ∼100 ps was detected. At voltages of ∼50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ∼2 ns was generated, whereas the FWHM of the X-ray pulse increased to ∼100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime.« less
NASA Astrophysics Data System (ADS)
Goldblatt, C.; Zahnle, K. J.; Crisp, D.; Robinson, T. D.
2013-12-01
For water-vapour rich atmospheres, there is an asymptotic limit on thermal emission to space. If more sunlight is absorbed than this limit, energy balance is no longer possible and runaway heating occurs, evaporating the ocean and sterilizing the planet en route. Here, we present recently published work (Goldblatt et al., 2013) which was the first full re-evaluation of the problem since classic 1980's era work (e.g. Watson et al., 1984; Abe & Matsui, 1988; Kasting, 1988). With modern molecular absorption databases and a line-by-line resolution model, we find that the thermal limit is lower than previous estimates (282Wm-2, down from 310Wm-2) and that much more sunlight is absorbed by a steam atmosphere (294Wm-2, up from 222Wm-2). The immediate implication is that a cloud-free moist atmosphere on Earth would cause a runaway greenhouse. Triggering it would simply be a matter of sufficient heating, with around 30,000ppmv being sufficient in our most Earth-like model. This is substantially different than previous calculations, where weak solar absorption meant that a higher solar flux was required. Our published calculations are for the limit of clear-skies; any clouds would reduce both the thermal radiation emitted and the solar radiation absorbed, so clouds could make the runaway greenhouse either more or less likely. It can be shown that and excess of cloud reflection over cloud greenhouse is required to maintain temperate climate on Earth today - but how clouds will change in a warming atmosphere is far from clear. Work in progress (and hopefully ready by December!) on cloudy runaway greenhouse models will hopefully constrain this better. Wider implications for planetary stability will also be discussed. For example, water-world planets, with minimal background gas in the atmosphere may be highly susceptible to runaway greenhouses (heating Europa might take it directly from a snowball to a runaway). High CO2 levels after previous Snowball Earth events did not trigger a runaway as the solar flux was less then, whereas the hot aftermath of deglaciation from any future Snowball Earth might well trigger a runaway greenhouse. Refs: Goldblatt, C., Robinson, T.D., Zahnle, K.J. & Crisp, D., Nat. Geosci, Advance online publication, doi:10.1038/NGEO1892 Watson, A.J., Donahue, T.M. & Kuhn, W.R., Earth Planet. Sci. Lett. 68, 1-6 (1984). Abe, Y. & Matsui, T., J. Atmos. Sci. 45, 3081-3101 (1988). Kasting, J.F., Icarus 74, 472-494 (1988).
ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Hongwei; Chen, Xuefei; Han, Zhanwen
2015-10-10
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. Formore » intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in q{sub ad} as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution.« less
Low Simulated Radiation Limit for Runaway Greenhouse Climates
NASA Technical Reports Server (NTRS)
Goldblatt, Colin; Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David
2013-01-01
Terrestrial planet atmospheres must be in long-term radiation balance, with solar radiation absorbed matched by thermal radiation emitted. For hot moist atmospheres, however, there is an upper limit on the thermal emission which is decoupled from the surface temperature. If net absorbed solar radiation exceeds this limit the planet will heat uncontrollably, the so-called \\runaway greenhouse". Here we show that a runaway greenhouse induced steam atmosphere may be a stable state for a planet with the same amount of incident solar radiation as Earth has today, contrary to previous results. We have calculated the clear-sky radiation limits at line-by-line spectral resolution for the first time. The thermal radiation limit is lower than previously reported (282 W/sq m rather than 310W/sq m) and much more solar radiation would be absorbed (294W/sq m rather than 222W/sq m). Avoiding a runaway greenhouse under the present solar constant requires that the atmosphere is subsaturated with water, and that cloud albedo forcing exceeds cloud greenhouse forcing. Greenhouse warming could in theory trigger a runaway greenhouse but palaeoclimate comparisons suggest that foreseeable increases in greenhouse gases will be insufficient to do this.
Thermal-Responsive Polymers for Enhancing Safety of Electrochemical Storage Devices.
Yang, Hui; Leow, Wan Ru; Chen, Xiaodong
2018-03-01
Thermal runway constitutes the most pressing safety issue in lithium-ion batteries and supercapacitors of large-scale and high-power density due to risks of fire or explosion. However, traditional strategies for averting thermal runaway do not enable the charging-discharging rate to change according to temperature or the original performance to resume when the device is cooled to room temperature. To efficiently control thermal runaway, thermal-responsive polymers provide a feasible and reversible strategy due to their ability to sense and subsequently act according to a predetermined sequence when triggered by heat. Herein, recent research progress on the use of thermal-responsive polymers to enhance the thermal safety of electrochemical storage devices is reviewed. First, a brief discussion is provided on the methods of preventing thermal runaway in electrochemical storage devices. Subsequently, a short review is provided on the different types of thermal-responsive polymers that can efficiently avoid thermal runaway, such as phase change polymers, polymers with sol-gel transitions, and polymers with positive temperature coefficients. The results represent the important development of thermal-responsive polymers toward the prevention of thermal runaway in next-generation smart electrochemical storage devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thrane, Lisa E; Hoyt, Danny R; Whitbeck, Les B; Yoder, Kevin A
2006-10-01
Various demographic and familial risk factors have been linked to runaway behavior. To date, there has not been a systematic investigation of the impact of size of community on runaway behavior. This study will compare runaways from smaller cities and rural areas to their urban counterparts. A convenience sample of 602 adolescents was interviewed between 1995 and August of 1996 in Missouri, Iowa, Nebraska, and Kansas, USA. Multiple regression was used to examine the association between gender, neglect, sexual abuse, physical abuse, geographic and family structure change, and community size of first runaway to predict age at first runaway, deviant subsistence strategies, and street victimization. Findings indicate that adolescents exposed to neglect (beta=-.20) and sexual abuse (beta=-.16) ran away sooner and were more likely to be victimized on the street. Rural adolescents who experienced higher levels of physical abuse relied more heavily on deviant subsistence strategies (beta=.15) and remained in abusive homes longer (beta=.15) than their similarly situated urban counterparts. Rural youth who have been subjected to elevated levels of familial abuse are at greater risk of deviant subsistence strategies, which increase the likelihood of street victimization.
Cherenkov neutron detector for fusion reaction and runaway electron diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheon, MunSeong, E-mail: munseong@nfri.re.kr; Kim, Junghee
2015-08-15
A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.
Runaway electrons and magnetic island confinement
Boozer, Allen H.
2016-08-19
The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativisticmore » energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. Furthermore, the physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.« less
NASA Astrophysics Data System (ADS)
Scudder, J. D.; Salem, C. S.
2016-12-01
A new model for solar wind electrons provides an explanation for the origin of the non-thermal core-halo-strahl-superhalo VDF ubiquitously observed in the solar wind. Such kurtotic VDF's should be as common as the gradient induced occurrence of finite parallel electric fields that enforce quasi-neutrality in astrophysical plasmas. The velocity space separatrix of coulomb runaway predicts the observed scaling of the break point energy at 1AU of the electron VDF between thermal and suprathermal components and agrees well with the tabulations of its variation with radius. SERM quantitatively reproduces: 14 year IMP archives of the fraction of supra thermal electrons and the observed variation of the supra thermal density with local (nearly asymptotic) solar wind speed; the observed inverse correlation between halo density fraction and Th/Tc; and the reported, but theoretically unusual relative slippage of the core and halo that supports the heat flux. Requirements for quasi-neutrality (in the presence of runaways) lead to a quantitative non-local specification of the required supra thermal density fraction and the lowest even Legendre order approximate VDF that is symmetric, but kurtotic in the proton rest frame. The Stokes drift of the thermals suggested by runaway physics requires a counter drift of the non-locally returning suprathermals which determine the observed heat flux and thermal force contributions and the lowest order odd Legendre dependence of the VDF. The strahl is recovered as an extreme part of the non-local suprathermals. "Direct'' runaways caused by the parallel electric field are identified as an omnipresent source for the observed sunward portion of the non-thermal VDF. The source of the super halo electrons is suggested to be mirrored runaways produced at the base of the corona with subsequent near isotropization in the interplanetary medium.
Runaway electrons and magnetic island confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boozer, Allen H., E-mail: ahb17@columbia.edu
The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativisticmore » energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.« less
Runaway electrons and magnetic island confinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boozer, Allen H.
The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativisticmore » energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. Furthermore, the physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.« less
NASA Astrophysics Data System (ADS)
Colon, Knicole; Ford, E. B.
2012-01-01
With over 180 confirmed transiting exoplanets and NASA's Kepler mission's recent discovery of over 1200 transiting exoplanet candidates, we can conduct detailed investigations into the (i) properties of exoplanet atmospheres and (ii) false positive rates for planet search surveys. To aid these investigations, we developed a novel technique of using the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) installed on the 10.4-meter Gran Telescopio Canarias (GTC) to acquire near-simultaneous multi-color photometry of (i) HD 80606b in bandpasses around the potassium (K I) absorption feature, (ii) GJ 1214b in bandpasses around a possible methane absorption feature and (iii) several Kepler planet candidates. For HD 80606b, we measure a significant color change during transit between wavelengths that probe the K I line core and the K I wing, equivalent to a 4.2% change in the apparent planetary radius. We hypothesize that the excess absorption may be due to K I in a high-speed wind being driven from the exoplanet's exosphere. This is one of the first detections of K I in an exoplanet atmosphere. For GJ 1214b, we compare the transit depths measured "on” and "off” a possible methane absorption feature and use our results to help resolve conflicting results from other studies regarding the composition of this super-Earth-size planet's atmosphere. For Kepler candidates, we use the color change during transit to reject candidates that are false positives (e.g., a blend with an eclipsing binary either in the background/foreground or bound to the target star). We target small planets (<6 Earth radii) with short orbital periods (<6 days), since eclipsing binaries can mimic planets in this regime. Our results include identification of two false positives and test recent predictions of the false positive rates for the Kepler sample. This research demonstrates the value of the GTC for exoplanet follow-up.