Sample records for running time depending

  1. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1990-01-01

    Run time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases, where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run time, wave fronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run time reordering of loop indices can have a significant impact on performance. Furthermore, the overheads associated with this type of reordering are amortized when the loop is executed several times with the same dependency structure.

  2. Biomechanical characteristics of skeletal muscles and associations between running speed and contraction time in 8- to 13-year-old children.

    PubMed

    Završnik, Jernej; Pišot, Rado; Šimunič, Boštjan; Kokol, Peter; Blažun Vošner, Helena

    2017-02-01

    Objective To investigate associations between running speeds and contraction times in 8- to 13-year-old children. Method This longitudinal study analyzed tensiomyographic measurements of vastus lateralis and biceps femoris muscles' contraction times and maximum running speeds in 107 children (53 boys, 54 girls). Data were evaluated using multiple correspondence analysis. Results A gender difference existed between the vastus lateralis contraction times and running speeds. The running speed was less dependent on vastus lateralis contraction times in boys than in girls. Analysis of biceps femoris contraction times and running speeds revealed that running speeds of boys were much more structurally associated with contraction times than those of girls, for whom the association seemed chaotic. Conclusion Joint category plots showed that contraction times of biceps femoris were associated much more closely with running speed than those of the vastus lateralis muscle. These results provide insight into a new dimension of children's development.

  3. Mean platelet volume (MPV) predicts middle distance running performance.

    PubMed

    Lippi, Giuseppe; Salvagno, Gian Luca; Danese, Elisa; Skafidas, Spyros; Tarperi, Cantor; Guidi, Gian Cesare; Schena, Federico

    2014-01-01

    Running economy and performance in middle distance running depend on several physiological factors, which include anthropometric variables, functional characteristics, training volume and intensity. Since little information is available about hematological predictors of middle distance running time, we investigated whether some hematological parameters may be associated with middle distance running performance in a large sample of recreational runners. The study population consisted in 43 amateur runners (15 females, 28 males; median age 47 years), who successfully concluded a 21.1 km half-marathon at 75-85% of their maximal aerobic power (VO2max). Whole blood was collected 10 min before the run started and immediately thereafter, and hematological testing was completed within 2 hours after sample collection. The values of lymphocytes and eosinophils exhibited a significant decrease compared to pre-run values, whereas those of mean corpuscular volume (MCV), platelets, mean platelet volume (MPV), white blood cells (WBCs), neutrophils and monocytes were significantly increased after the run. In univariate analysis, significant associations with running time were found for pre-run values of hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), red blood cell distribution width (RDW), MPV, reticulocyte hemoglobin concentration (RetCHR), and post-run values of MCH, RDW, MPV, monocytes and RetCHR. In multivariate analysis, in which running time was entered as dependent variable whereas age, sex, blood lactate, body mass index, VO2max, mean training regimen and the hematological parameters significantly associated with running performance in univariate analysis were entered as independent variables, only MPV values before and after the trial remained significantly associated with running time. After adjustment for platelet count, the MPV value before the run (p = 0.042), but not thereafter (p = 0.247), remained significantly associated with running performance. The significant association between baseline MPV and running time suggest that hyperactive platelets may exert some pleiotropic effects on endurance performance.

  4. Effect of Light/Dark Cycle on Wheel Running and Responding Reinforced by the Opportunity to Run Depends on Postsession Feeding Time

    ERIC Educational Resources Information Center

    Belke, T. W.; Mondona, A. R.; Conrad, K. M.; Poirier, K. F.; Pickering, K. L.

    2008-01-01

    Do rats run and respond at a higher rate to run during the dark phase when they are typically more active? To answer this question, Long Evans rats were exposed to a response-initiated variable interval 30-s schedule of wheel-running reinforcement during light and dark cycles. Wheel-running and local lever-pressing rates increased modestly during…

  5. AlgoRun: a Docker-based packaging system for platform-agnostic implemented algorithms.

    PubMed

    Hosny, Abdelrahman; Vera-Licona, Paola; Laubenbacher, Reinhard; Favre, Thibauld

    2016-08-01

    There is a growing need in bioinformatics for easy-to-use software implementations of algorithms that are usable across platforms. At the same time, reproducibility of computational results is critical and often a challenge due to source code changes over time and dependencies. The approach introduced in this paper addresses both of these needs with AlgoRun, a dedicated packaging system for implemented algorithms, using Docker technology. Implemented algorithms, packaged with AlgoRun, can be executed through a user-friendly interface directly from a web browser or via a standardized RESTful web API to allow easy integration into more complex workflows. The packaged algorithm includes the entire software execution environment, thereby eliminating the common problem of software dependencies and the irreproducibility of computations over time. AlgoRun-packaged algorithms can be published on http://algorun.org, a centralized searchable directory to find existing AlgoRun-packaged algorithms. AlgoRun is available at http://algorun.org and the source code under GPL license is available at https://github.com/algorun laubenbacher@uchc.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Run-time parallelization and scheduling of loops

    NASA Technical Reports Server (NTRS)

    Saltz, Joel H.; Mirchandaney, Ravi; Crowley, Kay

    1991-01-01

    Run-time methods are studied to automatically parallelize and schedule iterations of a do loop in certain cases where compile-time information is inadequate. The methods presented involve execution time preprocessing of the loop. At compile-time, these methods set up the framework for performing a loop dependency analysis. At run-time, wavefronts of concurrently executable loop iterations are identified. Using this wavefront information, loop iterations are reordered for increased parallelism. Symbolic transformation rules are used to produce: inspector procedures that perform execution time preprocessing, and executors or transformed versions of source code loop structures. These transformed loop structures carry out the calculations planned in the inspector procedures. Performance results are presented from experiments conducted on the Encore Multimax. These results illustrate that run-time reordering of loop indexes can have a significant impact on performance.

  7. Quasinormal modes of scale dependent black holes in (1 +2 )-dimensional Einstein-power-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Rincón, Ángel; Panotopoulos, Grigoris

    2018-01-01

    We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.

  8. A temporal-spatial postprocessing model for probabilistic run-off forecast. With a case study from Ulla-Førre with five catchments and ten lead times

    NASA Astrophysics Data System (ADS)

    Engeland, K.; Steinsland, I.

    2012-04-01

    This work is driven by the needs of next generation short term optimization methodology for hydro power production. Stochastic optimization are about to be introduced; i.e. optimizing when available resources (water) and utility (prices) are uncertain. In this paper we focus on the available resources, i.e. water, where uncertainty mainly comes from uncertainty in future runoff. When optimizing a water system all catchments and several lead times have to be considered simultaneously. Depending on the system of hydropower reservoirs, it might be a set of headwater catchments, a system of upstream /downstream reservoirs where water used from one catchment /dam arrives in a lower catchment maybe days later, or a combination of both. The aim of this paper is therefore to construct a simultaneous probabilistic forecast for several catchments and lead times, i.e. to provide a predictive distribution for the forecasts. Stochastic optimization methods need samples/ensembles of run-off forecasts as input. Hence, it should also be possible to sample from our probabilistic forecast. A post-processing approach is taken, and an error model based on Box- Cox transformation, power transform and a temporal-spatial copula model is used. It accounts for both between catchment and between lead time dependencies. In operational use it is strait forward to sample run-off ensembles from this models that inherits the catchment and lead time dependencies. The methodology is tested and demonstrated in the Ulla-Førre river system, and simultaneous probabilistic forecasts for five catchments and ten lead times are constructed. The methodology has enough flexibility to model operationally important features in this case study such as hetroscadasety, lead-time varying temporal dependency and lead-time varying inter-catchment dependency. Our model is evaluated using CRPS for marginal predictive distributions and energy score for joint predictive distribution. It is tested against deterministic run-off forecast, climatology forecast and a persistent forecast, and is found to be the better probabilistic forecast for lead time grater then two. From an operational point of view the results are interesting as the between catchment dependency gets stronger with longer lead-times.

  9. Exercise Intensity-Dependent Effects on Cognitive Control Function during and after Acute Treadmill Running in Young Healthy Adults

    PubMed Central

    Wohlwend, Martin; Olsen, Alexander; Håberg, Asta K.; Palmer, Helen S.

    2017-01-01

    The idea that physical activity differentially impacts upon performance of various cognitive tasks has recently gained increased interest. However, our current knowledge about how cognition is altered by acute physical activity is incomplete. To measure how different intensity levels of physical activity affect cognition during and after 1 bout of physical activity, 30 healthy, young participants were randomized to perform a not-X continuous performance test (CPT) during low (LI)- and moderate intensity (MI) running. The same participants were subsequently randomized to perform the not-X CPT post LI, MI, and high intensity (HI) running. In addition, exercise related mood changes were assessed through a self-report measure pre and post running at LI, MI, and HI. Results showed worsening of performance accuracy on the not-X CPT during one bout of moderate compared to low intensity running. Post running, there was a linear decrease in reaction time with increasing running intensity and no change in accuracy or mood. The decreased reaction times post HI running recovered back to baseline within 20 min. We conclude that accuracy is acutely deteriorated during the most straining physical activity while a transient intensity-dependent enhancement of cognitive control function is present following physical activity. PMID:28377735

  10. Running of scalar spectral index in multi-field inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Jinn-Ouk, E-mail: jinn-ouk.gong@apctp.org

    We compute the running of the scalar spectral index in general multi-field slow-roll inflation. By incorporating explicit momentum dependence at the moment of horizon crossing, we can find the running straightforwardly. At the same time, we can distinguish the contributions from the quasi de Sitter background and the super-horizon evolution of the field fluctuations.

  11. Effects of long-term voluntary exercise on learning and memory processes: dependency of the task and level of exercise.

    PubMed

    García-Capdevila, Sílvia; Portell-Cortés, Isabel; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David

    2009-09-14

    The effect of long-term voluntary exercise (running wheel) on anxiety-like behaviour (plus maze and open field) and learning and memory processes (object recognition and two-way active avoidance) was examined on Wistar rats. Because major individual differences in running wheel behaviour were observed, the data were analysed considering the exercising animals both as a whole and grouped according to the time spent in the running wheel (low, high, and very-high running). Although some variables related to anxiety-like behaviour seem to reflect an anxiogenic compatible effect, the view of the complete set of variables could be interpreted as an enhancement of defensive and risk assessment behaviours in exercised animals, without major differences depending on the exercise level. Effects on learning and memory processes were dependent on task and level of exercise. Two-way avoidance was not affected either in the acquisition or in the retention session, while the retention of object recognition task was affected. In this latter task, an enhancement in low running subjects and impairment in high and very-high running animals were observed.

  12. Nonpreemptive run-time scheduling issues on a multitasked, multiprogrammed multiprocessor with dependencies, bidimensional tasks, folding and dynamic graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Allan Ray

    1987-05-01

    Increases in high speed hardware have mandated studies in software techniques to exploit the parallel capabilities. This thesis examines the effects a run-time scheduler has on a multiprocessor. The model consists of directed, acyclic graphs, generated from serial FORTRAN benchmark programs by the parallel compiler Parafrase. A multitasked, multiprogrammed environment is created. Dependencies are generated by the compiler. Tasks are bidimensional, i.e., they may specify both time and processor requests. Processor requests may be folded into execution time by the scheduler. The graphs may arrive at arbitrary time intervals. The general case is NP-hard, thus, a variety of heuristics aremore » examined by a simulator. Multiprogramming demonstrates a greater need for a run-time scheduler than does monoprogramming for a variety of reasons, e.g., greater stress on the processors, a larger number of independent control paths, more variety in the task parameters, etc. The dynamic critical path series of algorithms perform well. Dynamic critical volume did not add much. Unfortunately, dynamic critical path maximizes turnaround time as well as throughput. Two schedulers are presented which balance throughput and turnaround time. The first requires classification of jobs by type; the second requires selection of a ratio value which is dependent upon system parameters. 45 refs., 19 figs., 20 tabs.« less

  13. Transitionless driving on adiabatic search algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Sangchul, E-mail: soh@qf.org.qa; Kais, Sabre, E-mail: kais@purdue.edu; Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907

    We study quantum dynamics of the adiabatic search algorithm with the equivalent two-level system. Its adiabatic and non-adiabatic evolution is studied and visualized as trajectories of Bloch vectors on a Bloch sphere. We find the change in the non-adiabatic transition probability from exponential decay for the short running time to inverse-square decay in asymptotic running time. The scaling of the critical running time is expressed in terms of the Lambert W function. We derive the transitionless driving Hamiltonian for the adiabatic search algorithm, which makes a quantum state follow the adiabatic path. We demonstrate that a uniform transitionless driving Hamiltonian,more » approximate to the exact time-dependent driving Hamiltonian, can alter the non-adiabatic transition probability from the inverse square decay to the inverse fourth power decay with the running time. This may open up a new but simple way of speeding up adiabatic quantum dynamics.« less

  14. Impact of landuse/land cover change on run-off in the catchment of a hydro power project

    NASA Astrophysics Data System (ADS)

    Khare, Deepak; Patra, Diptendu; Mondal, Arun; Kundu, Sananda

    2017-05-01

    The landuse/land cover change and rainfall have a significant influence on the hydrological response of the river basins. The run-off characteristics are changing naturally due to reduction of initial abstraction that increases the run-off volume. Therefore, it is necessary to quantify the changes in the run-off characteristics of a catchment under the influence of changed landuse/land cover. Soil conservation service model has been used in the present study to analyse the impact of various landuse/land cover (past, present and future time period) change in the run-off characteristics of a part of Narmada basin at the gauge discharge site of Mandaleswar in Madhya Pradesh, India. Calculated run-off has been compared with the observed run-off data for the study. The landuse/land cover maps of 1990, 2000 and 2009 have been prepared by digital classification method with proper accuracy using satellite imageries. The impact of the run-off change on hydro power potential has been assessed in the study along with the estimation of the future changes in hydro power potential. Five types of conditions (+10, +5 %, average, -5, -10 % of average rainfall) have been applied with 90 and 75 % dependability status. The generated energy will be less in 90 % dependable flow in respect to the 75 % dependable flow. This work will be helpful for future planning related to establishment of hydropower setup.

  15. Active Nodal Task Seeking for High-Performance, Ultra-Dependable Computing

    DTIC Science & Technology

    1994-07-01

    implementation. Figure 1 shows a hardware organization of ANTS: stand-alone computing nodes inter - connected by buses. 2.1 Run Time Partitioning The...nodes in 14 respond to changing loads [27] or system reconfiguration [26]. Existing techniques are all source-initiated or server-initiated [27]. 5.1...short-running task segments. The task segments must be short-running in order that processors will become avalable often enough to satisfy changing

  16. Sex-related differences in the wheel-running activity of mice decline with increasing age.

    PubMed

    Bartling, Babett; Al-Robaiy, Samiya; Lehnich, Holger; Binder, Leonore; Hiebl, Bernhard; Simm, Andreas

    2017-01-01

    Laboratory mice of both sexes having free access to running wheels are commonly used to study mechanisms underlying the beneficial effects of physical exercise on health and aging in human. However, comparative wheel-running activity profiles of male and female mice for a long period of time in which increasing age plays an additional role are unknown. Therefore, we permanently recorded the wheel-running activity (i.e., total distance, median velocity, time of breaks) of female and male mice until 9months of age. Our records indicated higher wheel-running distances for females than males which were highest in 2-month-old mice. This was mainly reached by higher running velocities of the females and not by longer running times. However, the sex-related differences declined in parallel to the age-associated reduction in wheel-running activities. Female mice also showed more variances between the weekly running distances than males, which were recorded most often for females being 4-6months old but not older. Additional records of 24-month-old mice of both sexes indicated highly reduced wheel-running activities at old age. Surprisingly, this reduction at old age resulted mainly from lower running velocities and not from shorter running times. Old mice also differed in their course of night activity which peaked later compared to younger mice. In summary, we demonstrated the influence of sex on the age-dependent activity profile of mice which is somewhat contrasting to humans, and this has to be considered when transferring exercise-mediated mechanism from mouse to human. Copyright © 2016. Published by Elsevier Inc.

  17. Running economy : the forgotten factor in elite performance.

    PubMed

    Foster, Carl; Lucia, Alejandro

    2007-01-01

    Running performance depends on maximal oxygen uptake (VO(2max)), the ability to sustain a high percentage of VO(2max) for an extended period of time and running economy. Running economy has been studied relatively less than the other factors. Running economy, measured as steady state oxygen uptake (VO(2)) at intensities below the ventilatory threshold is the standard method. Extrapolation to a common running speed (268 m/min) or as the VO(2) required to run a kilometer is the standard method of assessment. Individuals of East African origin may be systematically more economical, although a smaller body size and a thinner lower leg may be the primary factors. Strategies for improving running economy remain to be developed, although it appears that high intensity running may be a common element acting to improve economy.

  18. Multitasking the code ARC3D. [for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  19. Framework for architecture-independent run-time reconfigurable applications

    NASA Astrophysics Data System (ADS)

    Lehn, David I.; Hudson, Rhett D.; Athanas, Peter M.

    2000-10-01

    Configurable Computing Machines (CCMs) have emerged as a technology with the computational benefits of custom ASICs as well as the flexibility and reconfigurability of general-purpose microprocessors. Significant effort from the research community has focused on techniques to move this reconfigurability from a rapid application development tool to a run-time tool. This requires the ability to change the hardware design while the application is executing and is known as Run-Time Reconfiguration (RTR). Widespread acceptance of run-time reconfigurable custom computing depends upon the existence of high-level automated design tools. Such tools must reduce the designers effort to port applications between different platforms as the architecture, hardware, and software evolves. A Java implementation of a high-level application framework, called Janus, is presented here. In this environment, developers create Java classes that describe the structural behavior of an application. The framework allows hardware and software modules to be freely mixed and interchanged. A compilation phase of the development process analyzes the structure of the application and adapts it to the target platform. Janus is capable of structuring the run-time behavior of an application to take advantage of the memory and computational resources available.

  20. Time series momentum and contrarian effects in the Chinese stock market

    NASA Astrophysics Data System (ADS)

    Shi, Huai-Long; Zhou, Wei-Xing

    2017-10-01

    This paper concentrates on the time series momentum or contrarian effects in the Chinese stock market. We evaluate the performance of the time series momentum strategy applied to major stock indices in mainland China and explore the relation between the performance of time series momentum strategies and some firm-specific characteristics. Our findings indicate that there is a time series momentum effect in the short run and a contrarian effect in the long run in the Chinese stock market. The performances of the time series momentum and contrarian strategies are highly dependent on the look-back and holding periods and firm-specific characteristics.

  1. Enabling congestion avoidance and reduction in the Michigan-Ohio transportation network to improve supply chain efficiency : freight ATIS.

    DOT National Transportation Integrated Search

    2010-01-01

    We consider dynamic vehicle routing under milk-run tours with time windows in congested : transportation networks for just-in-time (JIT) production. The arc travel times are considered : stochastic and time-dependent. The problem integrates TSP with ...

  2. Quantum algorithms for Gibbs sampling and hitting-time estimation

    DOE PAGES

    Chowdhury, Anirban Narayan; Somma, Rolando D.

    2017-02-01

    In this paper, we present quantum algorithms for solving two problems regarding stochastic processes. The first algorithm prepares the thermal Gibbs state of a quantum system and runs in time almost linear in √Nβ/Ζ and polynomial in log(1/ϵ), where N is the Hilbert space dimension, β is the inverse temperature, Ζ is the partition function, and ϵ is the desired precision of the output state. Our quantum algorithm exponentially improves the dependence on 1/ϵ and quadratically improves the dependence on β of known quantum algorithms for this problem. The second algorithm estimates the hitting time of a Markov chain. Formore » a sparse stochastic matrix Ρ, it runs in time almost linear in 1/(ϵΔ 3/2), where ϵ is the absolute precision in the estimation and Δ is a parameter determined by Ρ, and whose inverse is an upper bound of the hitting time. Our quantum algorithm quadratically improves the dependence on 1/ϵ and 1/Δ of the analog classical algorithm for hitting-time estimation. Finally, both algorithms use tools recently developed in the context of Hamiltonian simulation, spectral gap amplification, and solving linear systems of equations.« less

  3. Change in skeletal muscle stiffness after running competition is dependent on both running distance and recovery time: a pilot study.

    PubMed

    Sadeghi, Seyedali; Newman, Cassidy; Cortes, Daniel H

    2018-01-01

    Long-distance running competitions impose a large amount of mechanical loading and strain leading to muscle edema and delayed onset muscle soreness (DOMS). Damage to various muscle fibers, metabolic impairments and fatigue have been linked to explain how DOMS impairs muscle function. Disruptions of muscle fiber during DOMS exacerbated by exercise have been shown to change muscle mechanical properties. The objective of this study is to quantify changes in mechanical properties of different muscles in the thigh and lower leg as function of running distance and time after competition. A custom implementation of Focused Comb-Push Ultrasound Shear Elastography (F-CUSE) method was used to evaluate shear modulus in runners before and after a race. Twenty-two healthy individuals (age: 23 ± 5 years) were recruited using convenience sampling and split into three race categories: short distance (nine subjects, 3-5 miles), middle distance (10 subjects, 10-13 miles), and long distance (three subjects, 26+ miles). Shear Wave Elastography (SWE) measurements were taken on both legs of each subject on the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), soleus, lateral gastrocnemius (LG), medial gastrocnemius (MG), biceps femoris (BF) and semitendinosus (ST) muscles. For statistical analyses, a linear mixed model was used, with recovery time and running distance as fixed variables, while shear modulus was used as the dependent variable. Recovery time had a significant effect on the soleus ( p  = 0.05), while running distance had considerable effect on the biceps femoris ( p  = 0.02), vastus lateralis ( p  < 0.01) and semitendinosus muscles ( p  = 0.02). Sixty-seven percent of muscles exhibited a decreasing stiffness trend from before competition to immediately after competition. The preliminary results suggest that SWE could potentially be used to quantify changes of muscle mechanical properties as a way for measuring recovery procedures for runners.

  4. Graph-Based Semantic Web Service Composition for Healthcare Data Integration.

    PubMed

    Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.

  5. Graph-Based Semantic Web Service Composition for Healthcare Data Integration

    PubMed Central

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement. PMID:29065602

  6. Dose-dependent effects of wheel running on cocaine-seeking and prefrontal cortex Bdnf exon IV expression in rats.

    PubMed

    Peterson, Alexis B; Abel, Jean M; Lynch, Wendy J

    2014-04-01

    Physical activity, and specifically exercise, has shown promise as an intervention for drug addiction; however, the exercise conditions that produce the most efficacious response, as well as its underlying mechanism, are unknown. In this study, we examined the dose-dependent effects of wheel running, an animal model of exercise, during abstinence on subsequent cocaine-seeking and associated changes in prefrontal cortex (PFC) brain-derived neurotrophic factor (Bdnf) exon IV expression, a marker of epigenetic regulation implicated in cocaine relapse and known to be regulated by exercise. Cocaine-seeking was assessed under a within-session extinction/cue-induced reinstatement procedure following extended access cocaine or saline self-administration (24-h/day, 4 discrete trials/h, 10 days, 1.5 mg/kg/infusion) and a 14-day abstinence period. During abstinence, rats had either locked or unlocked running wheel access for 1, 2, or 6 h/day. Bdnf exon IV expression was assessed using quantitative real-time polymerase chain reaction. Cocaine-seeking was highest under the locked wheel condition, and wheel running dose dependently attenuated this effect. Cocaine increased Bdnf exon IV expression, and wheel running dose dependently attenuated this increase, with complete blockade in rats given 6-h/day access. Notably, the efficacy of exercise was inversely associated with Bdnf exon IV expression, and both its efficacy and its effects on Bdnf exon IV expression were mimicked by treatment during abstinence with sodium butyrate, a histone deacetylase inhibitor that, like exercise, modulates gene transcription, including Bdnf exon IV expression. Taken together, these results indicate that the efficacy of exercise is dose dependent and likely mediated through epigenetic regulation of PFC Bdnf.

  7. Match running performance and fitness in youth soccer.

    PubMed

    Buchheit, M; Mendez-Villanueva, A; Simpson, B M; Bourdon, P C

    2010-11-01

    The activity profiles of highly trained young soccer players were examined in relation to age, playing position and physical capacity. Time-motion analyses (global positioning system) were performed on 77 (U13-U18; fullbacks [FB], centre-backs [CB], midfielders [MD], wide midfielders [W], second strikers [2 (nd)S] and strikers [S]) during 42 international club games. Total distance covered (TD) and very high-intensity activities (VHIA; >16.1 km·h (-1)) were computed during 186 entire player-matches. Physical capacity was assessed via field test measures (e. g., peak running speed during an incremental field test, VVam-eval). Match running performance showed an increasing trend with age ( P<0.001, partial eta-squared (η (2)): 0.20-0.45). When adjusted for age and individual playing time, match running performance was position-dependent ( P<0.001, η (2): 0.13-0.40). MD covered the greater TD; CB the lowest ( P<0.05). Distance for VHIA was lower for CB compared with all other positions ( P<0.05); W and S displayed the highest VHIA ( P<0.05). Relationships between match running performance and physical capacities were position-dependent, with poor or non-significant correlations within FB, CB, MD and W (e. g., VHIA vs. VVam-eval: R=0.06 in FB) but large associations within 2 (nd)S and S positions (e. g., VHIA vs. VVam-eval: R=0.70 in 2 (nd)S). In highly trained young soccer players, the importance of fitness level as a determinant of match running performance should be regarded as a function of playing position.

  8. Time-Dependent Erosion of Ion Optics

    NASA Technical Reports Server (NTRS)

    Wirz, Richard E.; Anderson, John R.; Katz, Ira; Goebel, Dan M.

    2008-01-01

    The accurate prediction of thruster life requires time-dependent erosion estimates for the ion optics assembly. Such information is critical to end-of-life mechanisms such as electron backstreaming. CEX2D was recently modified to handle time-dependent erosion, double ions, and multiple throttle conditions in a single run. The modified code is called "CEX2D-t". Comparisons of CEX2D-t results with LDT and ELT post-tests results show good agreement for both screen and accel grid erosion including important erosion features such as chamfering of the downstream end of the accel grid and reduced rate of accel grid aperture enlargement with time.

  9. NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.

    2013-04-01

    We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time and both second- and fourth-order differencing in space. The integrators are written to run on NVIDIA GPUs and are interfaced with MATLAB including built-in visualization and analysis tools. Restrictions: The main restriction for the GPU integrators is the amount of RAM on the GPU as the code is currently only designed for running on a single GPU. Unusual features: Ability to visualize real-time simulations through the interaction of MATLAB and the compiled GPU integrators. Additional comments: Setup guide and Installation guide provided. Program has a dedicated web site at www.nlsemagic.com. Running time: A three-dimensional run with a grid dimension of 87×87×203 for 3360 time steps (100 non-dimensional time units) takes about one and a half minutes on a GeForce GTX 580 GPU card.

  10. The Dependability of Classroom Observations.

    ERIC Educational Resources Information Center

    Hiatt, Diana Buell; Keesling, J. Ward

    A generalizability study of timed observations was conducted in 25 primary grade classes to observe teachers' use of time--for instruction, evaluation of instruction, and classroom management--according to the hour and day observed. Observational methods used by on-site researchers included videotape, checklists, running documentaries, frequency…

  11. The influence of wearing compression stockings on performance indicators and physiological responses following a prolonged trail running exercise.

    PubMed

    Vercruyssen, Fabrice; Easthope, Christopher; Bernard, Thierry; Hausswirth, Christophe; Bieuzen, Francois; Gruet, Mathieu; Brisswalter, Jeanick

    2014-01-01

    The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1 ± 503.5 and 5696.7 ± 530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5-91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running.

  12. Interdependence between Greece and other European stock markets: A comparison of wavelet and VMD copula, and the portfolio implications

    NASA Astrophysics Data System (ADS)

    Shahzad, Syed Jawad Hussain; Kumar, Ronald Ravinesh; Ali, Sajid; Ameer, Saba

    2016-09-01

    The interdependence of Greece and other European stock markets and the subsequent portfolio implications are examined in wavelet and variational mode decomposition domain. In applying the decomposition techniques, we analyze the structural properties of data and distinguish between short and long term dynamics of stock market returns. First, the GARCH-type models are fitted to obtain the standardized residuals. Next, different copula functions are evaluated, and based on the conventional information criteria and time varying parameter, Joe-Clayton copula is chosen to model the tail dependence between the stock markets. The short-run lower tail dependence time paths show a sudden increase in comovement during the global financial crises. The results of the long-run dependence suggest that European stock markets have higher interdependence with Greece stock market. Individual country's Value at Risk (VaR) separates the countries into two distinct groups. Finally, the two-asset portfolio VaR measures provide potential markets for Greece stock market investment diversification.

  13. Prior Design for Dependent Dirichlet Processes: An Application to Marathon Modeling

    PubMed Central

    F. Pradier, Melanie; J. R. Ruiz, Francisco; Perez-Cruz, Fernando

    2016-01-01

    This paper presents a novel application of Bayesian nonparametrics (BNP) for marathon data modeling. We make use of two well-known BNP priors, the single-p dependent Dirichlet process and the hierarchical Dirichlet process, in order to address two different problems. First, we study the impact of age, gender and environment on the runners’ performance. We derive a fair grading method that allows direct comparison of runners regardless of their age and gender. Unlike current grading systems, our approach is based not only on top world records, but on the performances of all runners. The presented methodology for comparison of densities can be adopted in many other applications straightforwardly, providing an interesting perspective to build dependent Dirichlet processes. Second, we analyze the running patterns of the marathoners in time, obtaining information that can be valuable for training purposes. We also show that these running patterns can be used to predict finishing time given intermediate interval measurements. We apply our models to New York City, Boston and London marathons. PMID:26821155

  14. Stock-specific migration timing of adult spring-summer Chinook salmon in the Columbia River basin

    USGS Publications Warehouse

    Keefer, M.L.; Peery, C.A.; Jepson, M.A.; Tolotti, K.R.; Bjornn, T.C.; Stuehrenberg, L.C.

    2004-01-01

    An understanding of the migration timing patterns of Pacific salmon Oncorhynchus spp. and steelhead O. mykiss is important for managing complex mixed-stock fisheries and preserving genetic and life history diversity. We examined adult return timing for 3,317 radio-tagged fish from 38 stocks of Columbia River basin spring-summer Chinook salmon O. tshawytscha over 5 years. Stock composition varied widely within and between years depending on the strength of influential populations. Most individual stocks migrated at similar times each year relative to overall runs, supporting the hypotheses that run timing is predictable, is at least partially due to genetic adaptation, and can be used to differentiate between some conspecific populations. Arrival timing of both aggregated radio-tagged stocks and annual runs was strongly correlated with river discharge; stocks arrived earlier at Bonneville Dam and at upstream dams in years with low discharge. Migration timing analyses identified many between-stock and between-year differences in anadromous salmonid return behavior and should and managers interested in protection and recovery of evolutionary significant populations.

  15. Who Participates in Running Events? Socio-Demographic Characteristics, Psychosocial Factors and Barriers as Correlates of Non-Participation—A Pilot Study in Belgium

    PubMed Central

    de Ridder, Lisa; Willem, Annick

    2017-01-01

    In Western countries, the popularity of running events has increased exponentially during the last three decades. However, little is known about the profile of non-participants. This knowledge is crucial to tailor promotional actions towards people who are currently not participating. Therefore, this study aimed: (1) to examine which socio-ecological factors are related to participation in running events, (2) to give an overview of the barriers towards participation, and (3) to examine differences in barriers depending on gender, age and educational level. Flemish adults (n = 308) completed an online questionnaire about their socio-demographic and psychosocial characteristics, physical activity levels, participation in running events and barriers towards participation. Results showed that motivation, family social support, knowledge about running events and physical activity levels were associated with participation in running events. Among non-participants, the main barriers were bad physical condition, lack of time and lack of interest. In participants, lack of time, distance to the event and financial barriers were most prevalent. With some exceptions, barriers were relatively similar across socio-demographic subgroups. This study confirmed a democratization among participants of running events and provided evidence about which barriers should be tackled to increase participation among population subgroups that are currently underrepresented in such events. PMID:29143780

  16. Assessing experience in the deliberate practice of running using a fuzzy decision-support system

    PubMed Central

    Roveri, Maria Isabel; Manoel, Edison de Jesus; Onodera, Andrea Naomi; Ortega, Neli R. S.; Tessutti, Vitor Daniel; Vilela, Emerson; Evêncio, Nelson

    2017-01-01

    The judgement of skill experience and its levels is ambiguous though it is crucial for decision-making in sport sciences studies. We developed a fuzzy decision support system to classify experience of non-elite distance runners. Two Mamdani subsystems were developed based on expert running coaches’ knowledge. In the first subsystem, the linguistic variables of training frequency and volume were combined and the output defined the quality of running practice. The second subsystem yielded the level of running experience from the combination of the first subsystem output with the number of competitions and practice time. The model results were highly consistent with the judgment of three expert running coaches (r>0.88, p<0.001) and also with five other expert running coaches (r>0.86, p<0.001). From the expert’s knowledge and the fuzzy model, running experience is beyond the so-called "10-year rule" and depends not only on practice time, but on the quality of practice (training volume and frequency) and participation in competitions. The fuzzy rule-based model was very reliable, valid, deals with the marked ambiguities inherent in the judgment of experience and has potential applications in research, sports training, and clinical settings. PMID:28817655

  17. Who Participates in Running Events? Socio-Demographic Characteristics, Psychosocial Factors and Barriers as Correlates of Non-Participation-A Pilot Study in Belgium.

    PubMed

    van Dyck, Delfien; Cardon, Greet; de Bourdeaudhuij, Ilse; de Ridder, Lisa; Willem, Annick

    2017-10-28

    In Western countries, the popularity of running events has increased exponentially during the last three decades. However, little is known about the profile of non-participants. This knowledge is crucial to tailor promotional actions towards people who are currently not participating. Therefore, this study aimed: (1) to examine which socio-ecological factors are related to participation in running events, (2) to give an overview of the barriers towards participation, and (3) to examine differences in barriers depending on gender, age and educational level. Flemish adults ( n = 308) completed an online questionnaire about their socio-demographic and psychosocial characteristics, physical activity levels, participation in running events and barriers towards participation. Results showed that motivation, family social support, knowledge about running events and physical activity levels were associated with participation in running events. Among non-participants, the main barriers were bad physical condition, lack of time and lack of interest. In participants, lack of time, distance to the event and financial barriers were most prevalent. With some exceptions, barriers were relatively similar across socio-demographic subgroups. This study confirmed a democratization among participants of running events and provided evidence about which barriers should be tackled to increase participation among population subgroups that are currently underrepresented in such events.

  18. Consistency of internal fluxes in a hydrological model running at multiple time steps

    NASA Astrophysics Data System (ADS)

    Ficchi, Andrea; Perrin, Charles; Andréassian, Vazken

    2016-04-01

    Improving hydrological models remains a difficult task and many ways can be explored, among which one can find the improvement of spatial representation, the search for more robust parametrization, the better formulation of some processes or the modification of model structures by trial-and-error procedure. Several past works indicate that model parameters and structure can be dependent on the modelling time step, and there is thus some rationale in investigating how a model behaves across various modelling time steps, to find solutions for improvements. Here we analyse the impact of data time step on the consistency of the internal fluxes of a rainfall-runoff model run at various time steps, by using a large data set of 240 catchments. To this end, fine time step hydro-climatic information at sub-hourly resolution is used as input of a parsimonious rainfall-runoff model (GR) that is run at eight different model time steps (from 6 minutes to one day). The initial structure of the tested model (i.e. the baseline) corresponds to the daily model GR4J (Perrin et al., 2003), adapted to be run at variable sub-daily time steps. The modelled fluxes considered are interception, actual evapotranspiration and intercatchment groundwater flows. Observations of these fluxes are not available, but the comparison of modelled fluxes at multiple time steps gives additional information for model identification. The joint analysis of flow simulation performance and consistency of internal fluxes at different time steps provides guidance to the identification of the model components that should be improved. Our analysis indicates that the baseline model structure is to be modified at sub-daily time steps to warrant the consistency and realism of the modelled fluxes. For the baseline model improvement, particular attention is devoted to the interception model component, whose output flux showed the strongest sensitivity to modelling time step. The dependency of the optimal model complexity on time step is also analysed. References: Perrin, C., Michel, C., Andréassian, V., 2003. Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4): 275-289. DOI:10.1016/S0022-1694(03)00225-7

  19. Just-in-time adaptive disturbance estimation for run-to-run control of photolithography overlay

    NASA Astrophysics Data System (ADS)

    Firth, Stacy K.; Campbell, W. J.; Edgar, Thomas F.

    2002-07-01

    One of the main challenges to implementations of traditional run-to-run control in the semiconductor industry is a high mix of products in a single factory. To address this challenge, Just-in-time Adaptive Disturbance Estimation (JADE) has been developed. JADE uses a recursive weighted least-squares parameters estimation technique to identify the contributions to variation that are dependent on product, as well as the tools on which the lot was processed. As applied to photolithography overlay, JADE assigns these sources of variation to contributions from the context items: tool, product, reference tool, and reference reticle. Simulations demonstrate that JADE effectively identifies disturbances in contributing context items when the variations are known to be additive. The superior performance of JADE over traditional EWMA is also shown in these simulations. The results of application of JADE to data from a high mix production facility show that JADE still performs better than EWMA, even with the challenges of a real manufacturing environment.

  20. A wavelet based approach to measure and manage contagion at different time scales

    NASA Astrophysics Data System (ADS)

    Berger, Theo

    2015-10-01

    We decompose financial return series of US stocks into different time scales with respect to different market regimes. First, we examine dependence structure of decomposed financial return series and analyze the impact of the current financial crisis on contagion and changing interdependencies as well as upper and lower tail dependence for different time scales. Second, we demonstrate to which extent the information of different time scales can be used in the context of portfolio management. As a result, minimizing the variance of short-run noise outperforms a portfolio that minimizes the variance of the return series.

  1. Running into Trouble with the Time-Dependent Propagation of a Wavepacket

    ERIC Educational Resources Information Center

    Garriz, Abel E.; Sztrajman, Alejandro; Mitnik, Dario

    2010-01-01

    The propagation in time of a wavepacket is a conceptually rich problem suitable to be studied in any introductory quantum mechanics course. This subject is covered analytically in most of the standard textbooks. Computer simulations have become a widespread pedagogical tool, easily implemented in computer labs and in classroom demonstrations.…

  2. Acute bouts of wheel running decrease cocaine self-administration: Influence of exercise output.

    PubMed

    Smith, Mark A; Fronk, Gaylen E; Zhang, Huailin; Magee, Charlotte P; Robinson, Andrea M

    Exercise is associated with lower rates of drug use in human populations and decreases drug self-administration in laboratory animals. Most of the existing literature examining the link between exercise and drug use has focused on chronic, long-term exercise, and very few studies have examined the link between exercise output (i.e., amount of exercise) and drug self-administration. The purpose of this study was to examine the effects of acute bouts of exercise on cocaine self-administration, and to determine whether these effects were dependent on exercise output and the time interval between exercise and drug self-administration. Female rats were trained to run in automated running wheels, implanted with intravenous catheters, and allowed to self-administer cocaine on a fixed ratio (FR1) schedule of reinforcement. Immediately prior to each test session, subjects engaged in acute bouts of exercise in which they ran for 0, 30, or 60min at 12m/min. Acute bouts of exercise before test sessions decreased cocaine self-administration in an output-dependent manner, with the greatest reduction in cocaine intake observed in the 60-min exercise condition. Exercise did not reduce cocaine self-administration when wheel running and test sessions were separated by 12h, and exercise did not reduce responding maintained by food or responding during a saline substitution test. These data indicate that acute bouts of exercise decrease cocaine self-administration in a time- and output-dependent manner. These results also add to a growing body of literature suggesting that physical activity may be an effective component of drug abuse treatment programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Prediction of half-marathon race time in recreational female and male runners.

    PubMed

    Knechtle, Beat; Barandun, Ursula; Knechtle, Patrizia; Zingg, Matthias A; Rosemann, Thomas; Rüst, Christoph A

    2014-01-01

    Half-marathon running is of high popularity. Recent studies tried to find predictor variables for half-marathon race time for recreational female and male runners and to present equations to predict race time. The actual equations included running speed during training for both women and men as training variable but midaxillary skinfold for women and body mass index for men as anthropometric variable. An actual study found that percent body fat and running speed during training sessions were the best predictor variables for half-marathon race times in both women and men. The aim of the present study was to improve the existing equations to predict half-marathon race time in a larger sample of male and female half-marathoners by using percent body fat and running speed during training sessions as predictor variables. In a sample of 147 men and 83 women, multiple linear regression analysis including percent body fat and running speed during training units as independent variables and race time as dependent variable were performed and an equation was evolved to predict half-marathon race time. For men, half-marathon race time might be predicted by the equation (r(2) = 0.42, adjusted r(2) = 0.41, SE = 13.3) half-marathon race time (min) = 142.7 + 1.158 × percent body fat (%) - 5.223 × running speed during training (km/h). The predicted race time correlated highly significantly (r = 0.71, p < 0.0001) to the achieved race time. For women, half-marathon race time might be predicted by the equation (r(2) = 0.68, adjusted r(2) = 0.68, SE = 9.8) race time (min) = 168.7 + 1.077 × percent body fat (%) - 7.556 × running speed during training (km/h). The predicted race time correlated highly significantly (r = 0.89, p < 0.0001) to the achieved race time. The coefficients of determination of the models were slightly higher than for the existing equations. Future studies might include physiological variables to increase the coefficients of determination of the models.

  4. Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap

    NASA Astrophysics Data System (ADS)

    Muruganandam, P.; Adhikari, S. K.

    2009-10-01

    Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 122 907 No. of bytes in distributed program, including test data, etc.: 609 662 Distribution format: tar.gz Programming language: FORTRAN 77 and Fortran 90/95 Computer: PC Operating system: Linux, Unix RAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix) Classification: 2.9, 4.3, 4.12 Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems. Additional comments: This package consists of 12 programs, see "Program title", above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below. Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix). Program summary (1)Title of program: imagtime1d.F Title of electronic file: imagtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (2)Title of program: imagtimecir.F Title of electronic file: imagtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (3)Title of program: imagtimesph.F Title of electronic file: imagtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (4)Title of program: realtime1d.F Title of electronic file: realtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (5)Title of program: realtimecir.F Title of electronic file: realtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (6)Title of program: realtimesph.F Title of electronic file: realtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (7)Title of programs: imagtimeaxial.F and imagtimeaxial.f90 Title of electronic file: imagtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (8)Title of program: imagtime2d.F and imagtime2d.f90 Title of electronic file: imagtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (9)Title of program: realtimeaxial.F and realtimeaxial.f90 Title of electronic file: realtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (10)Title of program: realtime2d.F and realtime2d.f90 Title of electronic file: realtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (11)Title of program: imagtime3d.F and imagtime3d.f90 Title of electronic file: imagtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (12)Title of program: realtime3d.F and realtime3d.f90 Title of electronic file: realtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum Ram Memory: 8 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

  5. In-shoe loading in rearfoot and non-rearfoot strikers during running using minimalist footwear.

    PubMed

    Kernozek, T W; Meardon, S; Vannatta, C N

    2014-12-01

    Recent trends promote a "barefoot" running style to reduce injury. "Minimalist" shoes are designed to mimic the barefoot running with some foot protection. However, it is unknown how "minimalist" shoes alter plantar loading. Our purpose was to compare plantar loads between rearfoot strikers and non-rearfoot strikers after 4 weeks of running in minimalist footwear. 30 females were provided Vibram(®) Bikila shoes and instructed to gradually transition to running in these shoes. Plantar loading was measured using an in-shoe pressure sensor after the 4 weeks. Multivariate analysis was performed to detect differences in loading between rearfoot and non-rearfoot strikers in different plantar regions. Differences in plantar loading occurred between foot strike patterns running in minimalist footwear. Pressure and force variables were greater in the metatarsals and lower in the heel region in non-rearfoot strikers. Peak pressure for the whole foot was greater in non-rearfoot strikers while no difference was observed in maximum force or contact time for the whole foot between strike types. Allowing time for accommodation and adaptation to different stresses on the foot may be warranted when using minimalist footwear depending on foot strike pattern of the -runner. © Georg Thieme Verlag KG Stuttgart · New York.

  6. A FORTRAN program for multivariate survival analysis on the personal computer.

    PubMed

    Mulder, P G

    1988-01-01

    In this paper a FORTRAN program is presented for multivariate survival or life table regression analysis in a competing risks' situation. The relevant failure rate (for example, a particular disease or mortality rate) is modelled as a log-linear function of a vector of (possibly time-dependent) explanatory variables. The explanatory variables may also include the variable time itself, which is useful for parameterizing piecewise exponential time-to-failure distributions in a Gompertz-like or Weibull-like way as a more efficient alternative to Cox's proportional hazards model. Maximum likelihood estimates of the coefficients of the log-linear relationship are obtained from the iterative Newton-Raphson method. The program runs on a personal computer under DOS; running time is quite acceptable, even for large samples.

  7. Run-and-tumble-like motion of active colloids in viscoelastic media

    NASA Astrophysics Data System (ADS)

    Lozano, Celia; Ruben Gomez-Solano, Juan; Bechinger, Clemens

    2018-01-01

    Run-and-tumble motion is a prominent locomotion strategy employed by many living microorganisms. It is characterized by straight swimming intervals (runs), which are interrupted by sudden reorientation events (tumbles). In contrast, directional changes of synthetic microswimmers (active particles) are caused by rotational diffusion, which is superimposed with their translational motion and thus leads to rather continuous and slow particle reorientations. Here we demonstrate that active particles can also perform a swimming motion where translational and orientational changes are disentangled, similar to run-and-tumble. In our system, such motion is realized by a viscoelastic solvent and a periodic modulation of the self-propulsion velocity. Experimentally, this is achieved using light-activated Janus colloids, which are illuminated by a time-dependent laser field. We observe a strong enhancement of the effective translational and rotational motion when the modulation time is comparable to the relaxation time of the viscoelastic fluid. Our findings are explained by the relaxation of the elastic stress, which builds up during the self-propulsion, and is suddenly released when the activity is turned off. In addition to a better understanding of active motion in viscoelastic surroundings, our results may suggest novel steering strategies for synthetic microswimmers in complex environments.

  8. Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?

    PubMed

    Richter, Helene; Ambrée, Oliver; Lewejohann, Lars; Herring, Arne; Keyvani, Kathy; Paulus, Werner; Palme, Rupert; Touma, Chadi; Schäbitz, Wolf-Rüdiger; Sachser, Norbert

    2008-06-26

    Several studies on both humans and animals reveal benefits of physical exercise on brain function and health. A previous study on TgCRND8 mice, a transgenic model of Alzheimer's disease, reported beneficial effects of premorbid onset of long-term access to a running wheel on spatial learning and plaque deposition. Our study investigated the effects of access to a running wheel after the onset of Abeta pathology on behavioural, endocrinological, and neuropathological parameters. From day 80 of age, the time when Abeta deposition becomes apparent, TgCRND8 and wildtype mice were kept with or without running wheel. Home cage behaviour was analysed and cognitive abilities regarding object recognition memory and spatial learning in the Barnes maze were assessed. Our results show that, in comparison to Wt mice, Tg mice were characterised by impaired object recognition memory and spatial learning, increased glucocorticoid levels, hyperactivity in the home cage and high levels of stereotypic behaviour. Access to a running wheel had no effects on cognitive or neuropathological parameters, but reduced the amount of stereotypic behaviour in transgenics significantly. Furthermore, wheel-running was inversely correlated with stereotypic behaviour, suggesting that wheel-running may have stereotypic qualities. In addition, wheel-running positively correlated with plaque burden. Thus, in a phase when plaques are already present in the brain, it may be symptomatic of brain pathology, rather than protective. Whether or not access to a running wheel has beneficial effects on Alzheimer-like pathology and symptoms may therefore strongly depend on the exact time when the wheel is provided during development of the disease.

  9. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem.

    PubMed

    Schilde, M; Doerner, K F; Hartl, R F

    2014-10-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches.

  10. A field simulation study of the effectiveness of penalty kick strategies in soccer: late alterations of kick direction increase errors and reduce accuracy.

    PubMed

    van der Kamp, John

    2006-05-01

    This field experiment investigated the relative merits of approaching the penalty kick with either a keeper-independent or keeper-dependent strategy. In the keeper-independent strategy, the shooter selects a target location in advance and disregards the goalkeeper's actions during the run-up. In the keeper-dependent strategy, the shooter makes a decision resting on the anticipation of the goalkeeper's movements during the run-up. Ten intermediate-level soccer players shot at one of two visually specified targets to the right and left side of the goal. In the keeper-independent strategy condition, participants were told that the visually specified target would not change. In the keeper-dependent strategy condition, participants were told that in half of the trials the visually specified target would change side at different times before ball contact, indicating that the direction of the kick needed to be altered. The results showed that penalty-taking performance was apt to be less than perfect in the keeper-dependent strategy condition. A decrease in the time available to alter kick direction resulted in a higher risk of not only an incorrect but also inaccurate shot placement. It is concluded that anticipating the goalkeeper's movements may degrade penalty kick performance, mainly due to insufficient time to modify the kicking action.

  11. Changes in running pattern due to fatigue and cognitive load in orienteering.

    PubMed

    Millet, Guillaume Y; Divert, Caroline; Banizette, Marion; Morin, Jean-Benoit

    2010-01-01

    The aim of this study was to examine the influence of fatigue on running biomechanics in normal running, in normal running with a cognitive task, and in running while map reading. Nineteen international and less experienced orienteers performed a fatiguing running exercise of duration and intensity similar to a classic distance orienteering race on an instrumented treadmill while performing mental arithmetic, an orienteering simulation, and control running at regular intervals. Two-way repeated-measures analysis of variance did not reveal any significant difference between mental arithmetic and control running for any of the kinematic and kinetic parameters analysed eight times over the fatiguing protocol. However, these parameters were systematically different between the orienteering simulation and the other two conditions (mental arithmetic and control running). The adaptations in orienteering simulation running were significantly more pronounced in the elite group when step frequency, peak vertical ground reaction force, vertical stiffness, and maximal downward displacement of the centre of mass during contact were considered. The effects of fatigue on running biomechanics depended on whether the orienteers read their map or ran normally. It is concluded that adding a cognitive load does not modify running patterns. Therefore, all changes in running pattern observed during the orienteering simulation, particularly in elite orienteers, are the result of adaptations to enable efficient map reading and/or potentially prevent injuries. Finally, running patterns are not affected to the same extent by fatigue when a map reading task is added.

  12. Orthogonal recursive bisection data decomposition for high performance computing in cardiac model simulations: dependence on anatomical geometry.

    PubMed

    Reumann, Matthias; Fitch, Blake G; Rayshubskiy, Aleksandr; Keller, David U J; Seemann, Gunnar; Dossel, Olaf; Pitman, Michael C; Rice, John J

    2009-01-01

    Orthogonal recursive bisection (ORB) algorithm can be used as data decomposition strategy to distribute a large data set of a cardiac model to a distributed memory supercomputer. It has been shown previously that good scaling results can be achieved using the ORB algorithm for data decomposition. However, the ORB algorithm depends on the distribution of computational load of each element in the data set. In this work we investigated the dependence of data decomposition and load balancing on different rotations of the anatomical data set to achieve optimization in load balancing. The anatomical data set was given by both ventricles of the Visible Female data set in a 0.2 mm resolution. Fiber orientation was included. The data set was rotated by 90 degrees around x, y and z axis, respectively. By either translating or by simply taking the magnitude of the resulting negative coordinates we were able to create 14 data set of the same anatomy with different orientation and position in the overall volume. Computation load ratios for non - tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100 to investigate the effect of different load ratios on the data decomposition. The ten Tusscher et al. (2004) electrophysiological cell model was used in monodomain simulations of 1 ms simulation time to compare performance using the different data sets and orientations. The simulations were carried out for load ratio 1:10, 1:25 and 1:38.85 on a 512 processor partition of the IBM Blue Gene/L supercomputer. Th results show that the data decomposition does depend on the orientation and position of the anatomy in the global volume. The difference in total run time between the data sets is 10 s for a simulation time of 1 ms. This yields a difference of about 28 h for a simulation of 10 s simulation time. However, given larger processor partitions, the difference in run time decreases and becomes less significant. Depending on the processor partition size, future work will have to consider the orientation of the anatomy in the global volume for longer simulation runs.

  13. Effect of using poles on foot-ground kinetics during stance phase in trail running.

    PubMed

    Daviaux, Yannick; Hintzy, Frédérique; Samozino, Pierre; Horvais, Nicolas

    2013-01-01

    The aim of this study was to investigate the effect of using poles on foot-ground interaction during trail running with slopes of varying incline. Ten runners ran on a loop track representative of a trail running field situation with uphill (+9°), level and downhill (-6°) sections at fixed speed (3.2 m.s(-1)). Experimental conditions included running with (WP) and without (NP) the use of poles for each of the three slopes. Several quantitative and temporal foot-ground interaction parameters were calculated from plantar pressure data measured with a portable device. Using poles induced a decrease in plantar pressure intensity even when the running velocity stayed constant. However, the localisation and the magnitude of this decrease depended on the slope situations. During WP level running, regional analysis of the foot highlighted a decrease of the force time integral (FTI) for absolute (FTIabs; -12.6%; P<0.05) and relative values (FTIrel; -14.3%; P<0.05) in the medial forefoot region. FTIabs (-14.2%; P<0.05) and duration of force application (Δt; -13.5%; P<0.05) also decreased in the medial heel region when WP downhill running. These results support a facilitating effect of pole use for propulsion during level running and for the absorption phase during downhill running.

  14. The Influence of Footwear on the Modular Organization of Running.

    PubMed

    Santuz, Alessandro; Ekizos, Antonis; Janshen, Lars; Baltzopoulos, Vasilios; Arampatzis, Adamantios

    2017-01-01

    For most of our history, we predominantly ran barefoot or in minimalist shoes. The advent of modern footwear, however, might have introduced alterations in the motor control of running. The present study investigated shod and barefoot running under the perspective of the modular organization of muscle activation, in order to help addressing the neurophysiological factors underlying human locomotion. On a treadmill, 20 young and healthy inexperienced barefoot runners ran shod and barefoot at preferred speed (2.8 ± 0.4 m/s). Fundamental synergies, containing the time-dependent activation coefficients (motor primitives) and the time-invariant muscle weightings (motor modules), were extracted from 24 ipsilateral electromyographic activities using non-negative matrix factorization. In shod running, the average foot strike pattern was a rearfoot strike, while in barefoot running it was a mid-forefoot strike. In both conditions, five fundamental synergies were enough to describe as many gait cycle phases: weight acceptance, propulsion, arm swing, early swing and late swing. We found the motor primitives to be generally shifted earlier in time during the stance-related phases and later in the swing-related ones in barefoot running. The motor primitive describing the propulsion phase was significantly of shorter duration (peculiarity confirmed by the analysis of the spinal motor output). The arm swing primitive, instead, was significantly wider in the barefoot condition. The motor modules demonstrated analogous organization with some significant differences in the propulsion, arm swing and late swing synergies. Other than to the trivial absence of shoes, the differences might be deputed to the lower ankle gear ratio (and the consequent increased system instability) and to the higher recoil capabilities of the longitudinal foot arch during barefoot compared to shod running.

  15. The Influence of Footwear on the Modular Organization of Running

    PubMed Central

    Santuz, Alessandro; Ekizos, Antonis; Janshen, Lars; Baltzopoulos, Vasilios; Arampatzis, Adamantios

    2017-01-01

    For most of our history, we predominantly ran barefoot or in minimalist shoes. The advent of modern footwear, however, might have introduced alterations in the motor control of running. The present study investigated shod and barefoot running under the perspective of the modular organization of muscle activation, in order to help addressing the neurophysiological factors underlying human locomotion. On a treadmill, 20 young and healthy inexperienced barefoot runners ran shod and barefoot at preferred speed (2.8 ± 0.4 m/s). Fundamental synergies, containing the time-dependent activation coefficients (motor primitives) and the time-invariant muscle weightings (motor modules), were extracted from 24 ipsilateral electromyographic activities using non-negative matrix factorization. In shod running, the average foot strike pattern was a rearfoot strike, while in barefoot running it was a mid-forefoot strike. In both conditions, five fundamental synergies were enough to describe as many gait cycle phases: weight acceptance, propulsion, arm swing, early swing and late swing. We found the motor primitives to be generally shifted earlier in time during the stance-related phases and later in the swing-related ones in barefoot running. The motor primitive describing the propulsion phase was significantly of shorter duration (peculiarity confirmed by the analysis of the spinal motor output). The arm swing primitive, instead, was significantly wider in the barefoot condition. The motor modules demonstrated analogous organization with some significant differences in the propulsion, arm swing and late swing synergies. Other than to the trivial absence of shoes, the differences might be deputed to the lower ankle gear ratio (and the consequent increased system instability) and to the higher recoil capabilities of the longitudinal foot arch during barefoot compared to shod running. PMID:29213246

  16. A Newton-Krylov solver for fast spin-up of online ocean tracers

    NASA Astrophysics Data System (ADS)

    Lindsay, Keith

    2017-01-01

    We present a Newton-Krylov based solver to efficiently spin up tracers in an online ocean model. We demonstrate that the solver converges, that tracer simulations initialized with the solution from the solver have small drift, and that the solver takes orders of magnitude less computational time than the brute force spin-up approach. To demonstrate the application of the solver, we use it to efficiently spin up the tracer ideal age with respect to the circulation from different time intervals in a long physics run. We then evaluate how the spun-up ideal age tracer depends on the duration of the physics run, i.e., on how equilibrated the circulation is.

  17. Cache and energy efficient algorithms for Nussinov's RNA Folding.

    PubMed

    Zhao, Chunchun; Sahni, Sartaj

    2017-12-06

    An RNA folding/RNA secondary structure prediction algorithm determines the non-nested/pseudoknot-free structure by maximizing the number of complementary base pairs and minimizing the energy. Several implementations of Nussinov's classical RNA folding algorithm have been proposed. Our focus is to obtain run time and energy efficiency by reducing the number of cache misses. Three cache-efficient algorithms, ByRow, ByRowSegment and ByBox, for Nussinov's RNA folding are developed. Using a simple LRU cache model, we show that the Classical algorithm of Nussinov has the highest number of cache misses followed by the algorithms Transpose (Li et al.), ByRow, ByRowSegment, and ByBox (in this order). Extensive experiments conducted on four computational platforms-Xeon E5, AMD Athlon 64 X2, Intel I7 and PowerPC A2-using two programming languages-C and Java-show that our cache efficient algorithms are also efficient in terms of run time and energy. Our benchmarking shows that, depending on the computational platform and programming language, either ByRow or ByBox give best run time and energy performance. The C version of these algorithms reduce run time by as much as 97.2% and energy consumption by as much as 88.8% relative to Classical and by as much as 56.3% and 57.8% relative to Transpose. The Java versions reduce run time by as much as 98.3% relative to Classical and by as much as 75.2% relative to Transpose. Transpose achieves run time and energy efficiency at the expense of memory as it takes twice the memory required by Classical. The memory required by ByRow, ByRowSegment, and ByBox is the same as that of Classical. As a result, using the same amount of memory, the algorithms proposed by us can solve problems up to 40% larger than those solvable by Transpose.

  18. Constraints on running vacuum model with H(z) and f σ8

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi; Yin, Lu

    2017-08-01

    We examine the running vacuum model with Λ (H) = 3 ν H2 + Λ0, where ν is the model parameter and Λ0 is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H(z) and weighted linear growth f (z)σ8(z) measurements, we find that ν=(1.37+0.72-0.95)× 10-4 with the best fitted χ2 value slightly smaller than that in the ΛCDM model.

  19. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Time-dependent onshore tsunami response

    USGS Publications Warehouse

    Apotsos, Alex; Gelfenbaum, Guy R.; Jaffe, Bruce E.

    2012-01-01

    While bulk measures of the onshore impact of a tsunami, including the maximum run-up elevation and inundation distance, are important for hazard planning, the temporal evolution of the onshore flow dynamics likely controls the extent of the onshore destruction and the erosion and deposition of sediment that occurs. However, the time-varying dynamics of actual tsunamis are even more difficult to measure in situ than the bulk parameters. Here, a numerical model based on the non-linear shallow water equations is used to examine the effects variations in the wave characteristics, bed slope, and bottom roughness have on the temporal evolution of the onshore flow. Model results indicate that the onshore flow dynamics vary significantly over the parameter space examined. For example, the flow dynamics over steep, smooth morphologies tend to be temporally symmetric, with similar magnitude velocities generated during the run-up and run-down phases of inundation. Conversely, on shallow, rough onshore topographies the flow dynamics tend to be temporally skewed toward the run-down phase of inundation, with the magnitude of the flow velocities during run-up and run-down being significantly different. Furthermore, for near-breaking tsunami waves inundating over steep topography, the flow velocity tends to accelerate almost instantaneously to a maximum and then decrease monotonically. Conversely, when very long waves inundate over shallow topography, the flow accelerates more slowly and can remain steady for a period of time before beginning to decelerate. These results indicate that a single set of assumptions concerning the onshore flow dynamics cannot be applied to all tsunamis, and site specific analyses may be required.

  1. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    NASA Astrophysics Data System (ADS)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  2. Fast in-database cross-matching of high-cadence, high-density source lists with an up-to-date sky model

    NASA Astrophysics Data System (ADS)

    Scheers, B.; Bloemen, S.; Mühleisen, H.; Schellart, P.; van Elteren, A.; Kersten, M.; Groot, P. J.

    2018-04-01

    Coming high-cadence wide-field optical telescopes will image hundreds of thousands of sources per minute. Besides inspecting the near real-time data streams for transient and variability events, the accumulated data archive is a wealthy laboratory for making complementary scientific discoveries. The goal of this work is to optimise column-oriented database techniques to enable the construction of a full-source and light-curve database for large-scale surveys, that is accessible by the astronomical community. We adopted LOFAR's Transients Pipeline as the baseline and modified it to enable the processing of optical images that have much higher source densities. The pipeline adds new source lists to the archive database, while cross-matching them with the known cataloguedsources in order to build a full light-curve archive. We investigated several techniques of indexing and partitioning the largest tables, allowing for faster positional source look-ups in the cross matching algorithms. We monitored all query run times in long-term pipeline runs where we processed a subset of IPHAS data that have image source density peaks over 170,000 per field of view (500,000 deg-2). Our analysis demonstrates that horizontal table partitions of declination widths of one-degree control the query run times. Usage of an index strategy where the partitions are densely sorted according to source declination yields another improvement. Most queries run in sublinear time and a few (< 20%) run in linear time, because of dependencies on input source-list and result-set size. We observed that for this logical database partitioning schema the limiting cadence the pipeline achieved with processing IPHAS data is 25 s.

  3. HAL/S-FC compiler system functional specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Compiler organization is discussed, including overall compiler structure, internal data transfer, compiler development, and code optimization. The user, system, and SDL interfaces are described, along with compiler system requirements. Run-time software support package and restrictions and dependencies are also considered of the HAL/S-FC system.

  4. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem

    PubMed Central

    Schilde, M.; Doerner, K.F.; Hartl, R.F.

    2014-01-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches. PMID:25844013

  5. Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis.

    PubMed

    Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A; Soni, Nipunjot; Mandal, Raju K; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y; Govender, Thavendran; Kruger, Hendrik G; Jawed, Arshad

    2016-01-01

    For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD 600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD 600 nm ): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties.

  6. Artificial Intelligence vs. Statistical Modeling and Optimization of Continuous Bead Milling Process for Bacterial Cell Lysis

    PubMed Central

    Haque, Shafiul; Khan, Saif; Wahid, Mohd; Dar, Sajad A.; Soni, Nipunjot; Mandal, Raju K.; Singh, Vineeta; Tiwari, Dileep; Lohani, Mohtashim; Areeshi, Mohammed Y.; Govender, Thavendran; Kruger, Hendrik G.; Jawed, Arshad

    2016-01-01

    For a commercially viable recombinant intracellular protein production process, efficient cell lysis and protein release is a major bottleneck. The recovery of recombinant protein, cholesterol oxidase (COD) was studied in a continuous bead milling process. A full factorial response surface methodology (RSM) design was employed and compared to artificial neural networks coupled with genetic algorithm (ANN-GA). Significant process variables, cell slurry feed rate (A), bead load (B), cell load (C), and run time (D), were investigated and optimized for maximizing COD recovery. RSM predicted an optimum of feed rate of 310.73 mL/h, bead loading of 79.9% (v/v), cell loading OD600 nm of 74, and run time of 29.9 min with a recovery of ~3.2 g/L. ANN-GA predicted a maximum COD recovery of ~3.5 g/L at an optimum feed rate (mL/h): 258.08, bead loading (%, v/v): 80%, cell loading (OD600 nm): 73.99, and run time of 32 min. An overall 3.7-fold increase in productivity is obtained when compared to a batch process. Optimization and comparison of statistical vs. artificial intelligence techniques in continuous bead milling process has been attempted for the very first time in our study. We were able to successfully represent the complex non-linear multivariable dependence of enzyme recovery on bead milling parameters. The quadratic second order response functions are not flexible enough to represent such complex non-linear dependence. ANN being a summation function of multiple layers are capable to represent complex non-linear dependence of variables in this case; enzyme recovery as a function of bead milling parameters. Since GA can even optimize discontinuous functions present study cites a perfect example of using machine learning (ANN) in combination with evolutionary optimization (GA) for representing undefined biological functions which is the case for common industrial processes involving biological moieties. PMID:27920762

  7. A program for performing exact quantum dynamics calculations using cylindrical polar coordinates: A nanotube application

    NASA Astrophysics Data System (ADS)

    Skouteris, Dimitris; Gervasi, Osvaldo; Laganà, Antonio

    2009-03-01

    A program that uses the time-dependent wavepacket method to study the motion of structureless particles in a force field of quasi-cylindrical symmetry is presented here. The program utilises cylindrical polar coordinates to express the wavepacket, which is subsequently propagated using a Chebyshev expansion of the Schrödinger propagator. Time-dependent exit flux as well as energy-dependent S matrix elements can be obtained for all states of the particle (describing its angular momentum component along the nanotube axis and the excitation of the radial degree of freedom in the cylinder). The program has been used to study the motion of an H atom across a carbon nanotube. Program summaryProgram title: CYLWAVE Catalogue identifier: AECL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3673 No. of bytes in distributed program, including test data, etc.: 35 237 Distribution format: tar.gz Programming language: Fortran 77 Computer: RISC workstations Operating system: UNIX RAM: 120 MBytes Classification: 16.7, 16.10 External routines: SUNSOFT performance library (not essential) TFFT2D.F (Temperton Fast Fourier Transform), BESSJ.F (from Numerical Recipes, for the calculation of Bessel functions) (included in the distribution file). Nature of problem: Time evolution of the state of a structureless particle in a quasicylindrical potential. Solution method: Time dependent wavepacket propagation. Running time: 50000 secs. The test run supplied with the distribution takes about 10 minutes to complete.

  8. Essays on Commodity Prices and Macroeconomic Performance of Developing and Resources Rich Economies: Evidence from Kazakhstan

    NASA Astrophysics Data System (ADS)

    Bilgin, Ferhat I.

    My dissertation consists of three essays in empirical macroeconomics. The objective of this research is to use rigorous time-series econometric analysis to investigate the impact of commodity prices on macroeconomic performance of a small, developing and resource-rich country, which is in the process of transition from a purely command and control economy to a market oriented one. Essay 1 studies the relationship between Kazakhstan's GDP, total government expenditure, real effective exchange rate and the world oil price. Specifically, I use the cointegrated vector autoregression (CVAR) and error correction modeling (ECM) approach to identify the long and short-run relations that may exist among these macroeconomic variables. I found a long-run relationship for Kazakhstan's GDP, which depends on government spending and the oil price positively, and on the real effective exchange rate negatively. In the short run, the growth rate of GDP depends on the growth rates of the oil price, investment and the magnitude of the deviation from the long-run equilibrium. Essay 2 studies the inflation process in Kazakhstan based on the analysis of price formation in the following sectors: monetary, external, labor and goods and services. The modeling is conducted from two different perspectives: the first is the monetary model of inflation framework and the second is the mark-up modeling framework. Encompassing test results show that the mark-up model performs better than the monetary model in explaining inflation in Kazakhstan. According to the mark-up inflation model, in the long run, the price level is positively related to unit labor costs, import prices and government administered prices as well the world oil prices. In the short run, the inflation is positively influenced by the previous quarter's inflation, the contemporaneous changes in the government administered prices, oil prices and by the changes of contemporaneous and lagged unit labor costs, and negatively affected by the previous quarter's mark-up. Essay 3 empirically examines the determinants of the trade balance for a small oil exporting country within the context of Kazakhstan. The dominant theory by Harberger-Lauren-Metzler (HML) predicts that positive terms of trade shocks will improve the trade balance in the short run, but will fade away in the long run. I estimate cointegrated vector autoregression (CVAR) and vector error correction model (VECM) to study the long-run and short-run impacts on the trade balance. The results suggest that, in the long run, an increase in the terms of trade has a positive effect on the trade balance, an increase in GDP and appreciation of the real effective exchange rate have negative effect on the trade balance. In the short run, the terms of trade has a direct positive impact on the trade balance, real income and real exchange rate. On the other hand, appreciation of the currency has a negative impact on the trade balance. The error correction term, which represents the deviation from the long- run equilibrium between the trade balance, real income, terms of trade and real exchange rate, has a negative effect on the growth rate of the trade balance. These results provide further evidence to the idea that, in the long run, the HML effect not only depends on the duration of the shock, but also depends on the structure of the economy.

  9. Ada 9X Project Report, A Study of Implementation-Dependent Pragmas and Attributes in Ada

    DTIC Science & Technology

    1989-11-01

    here communicatons with the vendor were often required to firmly establish the behavior of some implementation-dependent features CMU-SEI-SR-89-19 3 2.2...compilers), by potential market penetration (percent coverage of all surveyed implementations), and by cross-compiler influence (percentage of cross...operations in the context of a tightly integrated development environment, specific underlying operating system services (beneath the Ada run- time kernel

  10. Treadmill based reference running data for healthy subjects is dependent on speed and morphological parameters.

    PubMed

    Schulze, Stephan; Schwesig, René; Edel, Melanie; Fieseler, Georg; Delank, Karl-Stefan; Hermassi, Souhail; Laudner, Kevin G

    2017-10-01

    To obtain spatiotemporal and dynamic running parameters of healthy participants and to identify relationships between running parameters, speed, and physical characteristics. A dynamometric treadmill was used to collect running data among 417 asymptomatic subjects during speeds ranging from 10 to 24km/h. Spatiotemporal and dynamic running parameters were calculated and measured. Results of the analyses showed that assessing running parameters is dependent on running speed. Body height correlated with stride length (r=0.5), cadence (r=-0.5) and plantar forefoot force (r=0.6). Body mass also had a strong relationship to plantar forefoot forces at 14 and 24km/h and plantar midfoot forces at 14 and 24km/h. This reference data base can be used in the kinematic and kinetic evaluation of running under a wide range of speeds. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. International Oil Supplies and Demands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single viewmore » of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.« less

  12. International Oil Supplies and Demands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single viewmore » of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.« less

  13. Time-spatial drift of decelerating electromagnetic pulses.

    PubMed

    Nerukh, Alexander G; Nerukh, Dmitry A

    2013-07-15

    A time dependent electromagnetic pulse generated by a current running laterally to the direction of the pulse propagation is considered in paraxial approximation. It is shown that the pulse envelope moves in the time-spatial coordinates on the surface of a parabolic cylinder for the Airy pulse and a hyperbolic cylinder for the Gaussian. These pulses propagate in time with deceleration along the dominant propagation direction and drift uniformly in the lateral direction. The Airy pulse stops at infinity while the asymptotic velocity of the Gaussian is nonzero.

  14. Geographic and Annual Influences on Optical Follow-up of Gravitational Wave Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Varun; Bhalerao, Varun; Bose, Sukanta

    2017-03-20

    We investigate the effects of observatory location on the probability of discovering optical/infrared (OIR) counterparts of gravitational wave sources. We show that, for the LIGO–Virgo network, the odds of discovering OIR counterparts show some latitude dependence. A stronger effect is seen to arise from the timing of LIGO–Virgo observing runs during the year, with northern OIR observatories having a better chance of finding the counterparts in northern winters. Assuming identical technical capabilities, the tentative mid-2017 three-detector network observing run favors southern OIR observatories for the discovery of electromagnetic counterparts.

  15. Insights in time dependent cross compartment sensitivities from ensemble simulations with the fully coupled subsurface-land surface-atmosphere model TerrSysMP

    NASA Astrophysics Data System (ADS)

    Schalge, Bernd; Rihani, Jehan; Haese, Barbara; Baroni, Gabriele; Erdal, Daniel; Haefliger, Vincent; Lange, Natascha; Neuweiler, Insa; Hendricks-Franssen, Harrie-Jan; Geppert, Gernot; Ament, Felix; Kollet, Stefan; Cirpka, Olaf; Saavedra, Pablo; Han, Xujun; Attinger, Sabine; Kunstmann, Harald; Vereecken, Harry; Simmer, Clemens

    2017-04-01

    Currently, an integrated approach to simulating the earth system is evolving where several compartment models are coupled to achieve the best possible physically consistent representation. We used the model TerrSysMP, which fully couples subsurface, land surface and atmosphere, in a synthetic study that mimicked the Neckar catchment in Southern Germany. A virtual reality run at a high resolution of 400m for the land surface and subsurface and 1.1km for the atmosphere was made. Ensemble runs at a lower resolution (800m for the land surface and subsurface) were also made. The ensemble was generated by varying soil and vegetation parameters and lateral atmospheric forcing among the different ensemble members in a systematic way. It was found that the ensemble runs deviated for some variables and some time periods largely from the virtual reality reference run (the reference run was not covered by the ensemble), which could be related to the different model resolutions. This was for example the case for river discharge in the summer. We also analyzed the spread of model states as function of time and found clear relations between the spread and the time of the year and weather conditions. For example, the ensemble spread of latent heat flux related to uncertain soil parameters was larger under dry soil conditions than under wet soil conditions. Another example is that the ensemble spread of atmospheric states was more influenced by uncertain soil and vegetation parameters under conditions of low air pressure gradients (in summer) than under conditions with larger air pressure gradients in winter. The analysis of the ensemble of fully coupled model simulations provided valuable insights in the dynamics of land-atmosphere feedbacks which we will further highlight in the presentation.

  16. Listing triangles in expected linear time on a class of power law graphs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann

    Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less

  17. An approach to combining parallel and cross-over trials with and without run-in periods using individual patient data.

    PubMed

    Tvete, Ingunn F; Olsen, Inge C; Fagerland, Morten W; Meland, Nils; Aldrin, Magne; Smerud, Knut T; Holden, Lars

    2012-04-01

    In active run-in trials, where patients may be excluded after a run-in period based on their response to the treatment, it is implicitly assumed that patients have individual treatment effects. If individual patient data are available, active run-in trials can be modelled using patient-specific random effects. With more than one trial on the same medication available, one can obtain a more precise overall treatment effect estimate. We present a model for joint analysis of a two-sequence, four-period cross-over trial (AABB/BBAA) and a three-sequence, two-period active run-in trial (AB/AA/A), where the aim is to investigate the effect of a new treatment for patients with pain due to osteoarthritis. Our approach enables us to separately estimate the direct treatment effect for all patients, for the patients excluded after the active run-in trial prior to randomisation, and for the patients who completed the active run-in trial. A similar model approach can be used to analyse other types of run-in trials, but this depends on the data and type of other trials available. We assume equality of the various carry-over effects over time. The proposed approach is flexible and can be modified to handle other designs. Our results should be encouraging for those responsible for planning cost-efficient clinical development programmes.

  18. Continuous piecewise-linear, reduced-order electrochemical model for lithium-ion batteries in real-time applications

    NASA Astrophysics Data System (ADS)

    Farag, Mohammed; Fleckenstein, Matthias; Habibi, Saeid

    2017-02-01

    Model-order reduction and minimization of the CPU run-time while maintaining the model accuracy are critical requirements for real-time implementation of lithium-ion electrochemical battery models. In this paper, an isothermal, continuous, piecewise-linear, electrode-average model is developed by using an optimal knot placement technique. The proposed model reduces the univariate nonlinear function of the electrode's open circuit potential dependence on the state of charge to continuous piecewise regions. The parameterization experiments were chosen to provide a trade-off between extensive experimental characterization techniques and purely identifying all parameters using optimization techniques. The model is then parameterized in each continuous, piecewise-linear, region. Applying the proposed technique cuts down the CPU run-time by around 20%, compared to the reduced-order, electrode-average model. Finally, the model validation against real-time driving profiles (FTP-72, WLTP) demonstrates the ability of the model to predict the cell voltage accurately with less than 2% error.

  19. Adiabatic quantum computation along quasienergies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Atushi; Nemoto, Kae; National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430

    2010-02-15

    The parametric deformations of quasienergies and eigenvectors of unitary operators are applied to the design of quantum adiabatic algorithms. The conventional, standard adiabatic quantum computation proceeds along eigenenergies of parameter-dependent Hamiltonians. By contrast, discrete adiabatic computation utilizes adiabatic passage along the quasienergies of parameter-dependent unitary operators. For example, such computation can be realized by a concatenation of parameterized quantum circuits, with an adiabatic though inevitably discrete change of the parameter. A design principle of adiabatic passage along quasienergy was recently proposed: Cheon's quasienergy and eigenspace anholonomies on unitary operators is available to realize anholonomic adiabatic algorithms [A. Tanaka and M.more » Miyamoto, Phys. Rev. Lett. 98, 160407 (2007)], which compose a nontrivial family of discrete adiabatic algorithms. It is straightforward to port a standard adiabatic algorithm to an anholonomic adiabatic one, except an introduction of a parameter |v>, which is available to adjust the gaps of the quasienergies to control the running time steps. In Grover's database search problem, the costs to prepare |v> for the qualitatively different (i.e., power or exponential) running time steps are shown to be qualitatively different.« less

  20. Temperature rise, sea level rise and increased radiative forcing - an application of cointegration methods

    NASA Astrophysics Data System (ADS)

    Schmith, Torben; Thejll, Peter; Johansen, Søren

    2016-04-01

    We analyse the statistical relationship between changes in global temperature, global steric sea level and radiative forcing in order to reveal causal relationships. There are in this, however, potential pitfalls due to the trending nature of the time series. We therefore apply a statistical method called cointegration analysis, originating from the field of econometrics, which is able to correctly handle the analysis of series with trends and other long-range dependencies. Further, we find a relationship between steric sea level and temperature and find that temperature causally depends on the steric sea level, which can be understood as a consequence of the large heat capacity of the ocean. This result is obtained both when analyzing observed data and data from a CMIP5 historical model run. Finally, we find that in the data from the historical run, the steric sea level, in turn, is driven by the external forcing. Finally, we demonstrate that combining these two results can lead to a novel estimate of radiative forcing back in time based on observations.

  1. Implementation of a multi-threaded framework for large-scale scientific applications

    DOE PAGES

    Sexton-Kennedy, E.; Gartung, Patrick; Jones, C. D.; ...

    2015-05-22

    The CMS experiment has recently completed the development of a multi-threaded capable application framework. In this paper, we will discuss the design, implementation and application of this framework to production applications in CMS. For the 2015 LHC run, this functionality is particularly critical for both our online and offline production applications, which depend on faster turn-around times and a reduced memory footprint relative to before. These applications are complex codes, each including a large number of physics-driven algorithms. While the framework is capable of running a mix of thread-safe and 'legacy' modules, algorithms running in our production applications need tomore » be thread-safe for optimal use of this multi-threaded framework at a large scale. Towards this end, we discuss the types of changes, which were necessary for our algorithms to achieve good performance of our multithreaded applications in a full-scale application. Lastly performance numbers for what has been achieved for the 2015 run are presented.« less

  2. Novel algorithm and MATLAB-based program for automated power law analysis of single particle, time-dependent mean-square displacement

    NASA Astrophysics Data System (ADS)

    Umansky, Moti; Weihs, Daphne

    2012-08-01

    In many physical and biophysical studies, single-particle tracking is utilized to reveal interactions, diffusion coefficients, active modes of driving motion, dynamic local structure, micromechanics, and microrheology. The basic analysis applied to those data is to determine the time-dependent mean-square displacement (MSD) of particle trajectories and perform time- and ensemble-averaging of similar motions. The motion of particles typically exhibits time-dependent power-law scaling, and only trajectories with qualitatively and quantitatively comparable MSD should be ensembled. Ensemble averaging trajectories that arise from different mechanisms, e.g., actively driven and diffusive, is incorrect and can result inaccurate correlations between structure, mechanics, and activity. We have developed an algorithm to automatically and accurately determine power-law scaling of experimentally measured single-particle MSD. Trajectories can then categorized and grouped according to user defined cutoffs of time, amplitudes, scaling exponent values, or combinations. Power-law fits are then provided for each trajectory alongside categorized groups of trajectories, histograms of power laws, and the ensemble-averaged MSD of each group. The codes are designed to be easily incorporated into existing user codes. We expect that this algorithm and program will be invaluable to anyone performing single-particle tracking, be it in physical or biophysical systems. Catalogue identifier: AEMD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 25 892 No. of bytes in distributed program, including test data, etc.: 5 572 780 Distribution format: tar.gz Programming language: MATLAB (MathWorks Inc.) version 7.11 (2010b) or higher, program should also be backwards compatible. Symbolic Math Toolboxes (5.5) is required. The Curve Fitting Toolbox (3.0) is recommended. Computer: Tested on Windows only, yet should work on any computer running MATLAB. In Windows 7, should be used as administrator, if the user is not the administrator the program may not be able to save outputs and temporary outputs to all locations. Operating system: Any supporting MATLAB (MathWorks Inc.) v7.11 / 2010b or higher. Supplementary material: Sample output files (approx. 30 MBytes) are available. Classification: 12 External routines: Several MATLAB subfunctions (m-files), freely available on the web, were used as part of and included in, this code: count, NaN suite, parseArgs, roundsd, subaxis, wcov, wmean, and the executable pdfTK.exe. Nature of problem: In many physical and biophysical areas employing single-particle tracking, having the time-dependent power-laws governing the time-averaged meansquare displacement (MSD) of a single particle is crucial. Those power laws determine the mode-of-motion and hint at the underlying mechanisms driving motion. Accurate determination of the power laws that describe each trajectory will allow categorization into groups for further analysis of single trajectories or ensemble analysis, e.g. ensemble and time-averaged MSD. Solution method: The algorithm in the provided program automatically analyzes and fits time-dependent power laws to single particle trajectories, then group particles according to user defined cutoffs. It accepts time-dependent trajectories of several particles, each trajectory is run through the program, its time-averaged MSD is calculated, and power laws are determined in regions where the MSD is linear on a log-log scale. Our algorithm searches for high-curvature points in experimental data, here time-dependent MSD. Those serve as anchor points for determining the ranges of the power-law fits. Power-law scaling is then accurately determined and error estimations of the parameters and quality of fit are provided. After all single trajectory time-averaged MSDs are fit, we obtain cutoffs from the user to categorize and segment the power laws into groups; cutoff are either in exponents of the power laws, time of appearance of the fits, or both together. The trajectories are sorted according to the cutoffs and the time- and ensemble-averaged MSD of each group is provided, with histograms of the distributions of the exponents in each group. The program then allows the user to generate new trajectory files with trajectories segmented according to the determined groups, for any further required analysis. Additional comments: README file giving the names and a brief description of all the files that make-up the package and clear instructions on the installation and execution of the program is included in the distribution package. Running time: On an i5 Windows 7 machine with 4 GB RAM the automated parts of the run (excluding data loading and user input) take less than 45 minutes to analyze and save all stages for an 844 trajectory file, including optional PDF save. Trajectory length did not affect run time (tested up to 3600 frames/trajectory), which was on average 3.2±0.4 seconds per trajectory.

  3. Does core strength training influence running kinetics, lower-extremity stability, and 5000-M performance in runners?

    PubMed

    Sato, Kimitake; Mokha, Monique

    2009-01-01

    Although strong core muscles are believed to help athletic performance, few scientific studies have been conducted to identify the effectiveness of core strength training (CST) on improving athletic performance. The aim of this study was to determine the effects of 6 weeks of CST on ground reaction forces (GRFs), stability of the lower extremity, and overall running performance in recreational and competitive runners. After a screening process, 28 healthy adults (age, 36.9 +/- 9.4 years; height, 168.4 +/- 9.6 cm; mass, 70.1 +/- 15.3 kg) volunteered and were divided randomly into 2 groups (n = 14 in each group). A test-retest design was used to assess the differences between CST (experimental) and no CST (control) on GRF measures, lower-extremity stability scores, and running performance. The GRF variables were determined by calculating peak impact, active vertical GRFs (vGRFs), and duration of the 2 horizontal GRFs (hGRFs), as measured while running across a force plate. Lower-extremity stability was assessed using the Star Excursion Balance Test. Running performance was determined by 5000-m run time measured on outdoor tracks. Six 2 (pre, post) x 2 (CST, control) mixed-design analyses of variance were used to determine the influence of CST on each dependent variable, p < 0.05. Twenty subjects completed the study (nexp = 12 and ncon = 8). A significant interaction occurred, with the CST group showing faster times in the 5000-m run after 6 weeks. However, CST did not significantly influence GRF variables and lower-leg stability. Core strength training may be an effective training method for improving performance in runners.

  4. Lambda: A Mathematica package for operator product expansions in vertex algebras

    NASA Astrophysics Data System (ADS)

    Ekstrand, Joel

    2011-02-01

    We give an introduction to the Mathematica package Lambda, designed for calculating λ-brackets in both vertex algebras, and in SUSY vertex algebras. This is equivalent to calculating operator product expansions in two-dimensional conformal field theory. The syntax of λ-brackets is reviewed, and some simple examples are shown, both in component notation, and in N=1 superfield notation. Program summaryProgram title: Lambda Catalogue identifier: AEHF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 18 087 No. of bytes in distributed program, including test data, etc.: 131 812 Distribution format: tar.gz Programming language: Mathematica Computer: See specifications for running Mathematica V7 or above. Operating system: See specifications for running Mathematica V7 or above. RAM: Varies greatly depending on calculation to be performed. Classification: 4.2, 5, 11.1. Nature of problem: Calculate operator product expansions (OPEs) of composite fields in 2d conformal field theory. Solution method: Implementation of the algebraic formulation of OPEs given by vertex algebras, and especially by λ-brackets. Running time: Varies greatly depending on calculation requested. The example notebook provided takes about 3 s to run.

  5. Quantifying variability in delta experiments

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Berg, S. R.; McElroy, B. J.

    2017-12-01

    Large populations of people and wildlife make their homes on river deltas, therefore it is important to be able to make useful and accurate predictions of how these landforms will change over time. However, making predictions can be a challenge due to inherent variability of the natural system. Furthermore, when we extrapolate results from the laboratory to the field setting, we bring with it random and systematic errors of the experiment. We seek to understand both the intrinsic and experimental variability of river delta systems to help better inform predictions of how these landforms will evolve. We run exact replicates of experiments with steady sediment and water discharge and record delta evolution with overhead time lapse imaging. We measure aspects of topset progradation and channel dynamics and compare these metrics of delta morphology between the 6 replicated experimental runs. We also use data from all experimental runs collectively to build a large dataset to extract statistics of the system properties. We find that although natural variability exists, the processes in the experiments must have outcomes that no longer depend on their initial conditions after some time. Applying these results to the field scale will aid in our ability to make forecasts of how these landforms will progress.

  6. Search for Length Dependent Stable Structures of Polyglutamaine Proteins with Replica Exchange Molecular Dynamic

    NASA Astrophysics Data System (ADS)

    Kluber, Alexander; Hayre, Robert; Cox, Daniel

    2012-02-01

    Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.

  7. Conditioned stimulus control in the rat circadian system depends on clock resetting during conditioning.

    PubMed

    Arvanitogiannis, A; Amir, S

    1999-12-01

    The authors examined the ability of a conditioned stimulus (CS; mild air disturbance) previously paired with an entraining light pulse to reset the circadian pacemaker in rats. Rats were entrained to a single 30-min light stimulus delivered every 25 hr or 24 hr (T cycle). Each daily light presentation was paired with the CS. After at least 20 days of stable entrainment to each of the T cycles, the rats were allowed to free run and were then presented with the CS at circadian time 15. CS-induced phase shifts in wheel-running activity rhythms were taken as evidence for conditioning. For the most part, conditioning occurred after CS-light pairings on the 25-hr but not 24-hr T cycle. The results suggest that CS control of the circadian clock phase depends on the effect that the entraining light pulse has on the clock during conditioning.

  8. International Oil Supplies and Demands. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single viewmore » of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.« less

  9. International Oil Supplies and Demands. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world`s dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single viewmore » of the likely future path for oil prices. The model results guided the group`s thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.« less

  10. Oil and the American Way of Life: Don't Ask, Don't Tell

    ScienceCinema

    Kaufmann, Robert [Boston University, Boston, Massachusetts, United States

    2018-04-19

    In the coming decades, US consumers will face a series of important decisions about oil. To make effective decisions, consumers must confront some disturbing answers to questions they would rather not ask. These questions include: is the US running out of oil, is the world running out of oil, is OPEC increasing its grip on prices, is the US economy reducing its dependence on energy, and will the competitive market address these issues in a timely fashion? Answers to these questions indicate that the market will not address these issues: the US has already run out of inexpensive sources of oil such that rising prices no longer elicit significant increases in supply. The US experience implies that within a couple of decades, the world oil market will change from increasing supply at low prices to decreasing supply at higher prices. As the world approaches this important turning point, OPEC will strengthen its grip on world oil prices. Contrary to popular belief, the US economy continues to be highly dependent on energy, especially inexpensive sources of energy. Together, these trends threaten to undermine the basic way in which the US economy generates a high standard of living.

  11. Constraints on running vacuum model with H ( z ) and f σ{sub 8}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Yin, Lu, E-mail: geng@phys.nthu.edu.tw, E-mail: lee.chungchi16@gmail.com, E-mail: yinlumail@foxmail.com

    We examine the running vacuum model with Λ ( H ) = 3 ν H {sup 2} + Λ{sub 0}, where ν is the model parameter and Λ{sub 0} is the cosmological constant. From the data of the cosmic microwave background radiation, weak lensing and baryon acoustic oscillation along with the time dependent Hubble parameter H ( z ) and weighted linear growth f ( z )σ{sub 8}( z ) measurements, we find that ν=(1.37{sup +0.72}{sub −0.95})× 10{sup −4} with the best fitted χ{sup 2} value slightly smaller than that in the ΛCDM model.

  12. The Error Reporting in the ATLAS TDAQ System

    NASA Astrophysics Data System (ADS)

    Kolos, Serguei; Kazarov, Andrei; Papaevgeniou, Lykourgos

    2015-05-01

    The ATLAS Error Reporting provides a service that allows experts and shift crew to track and address errors relating to the data taking components and applications. This service, called the Error Reporting Service (ERS), gives to software applications the opportunity to collect and send comprehensive data about run-time errors, to a place where it can be intercepted in real-time by any other system component. Other ATLAS online control and monitoring tools use the ERS as one of their main inputs to address system problems in a timely manner and to improve the quality of acquired data. The actual destination of the error messages depends solely on the run-time environment, in which the online applications are operating. When an application sends information to ERS, depending on the configuration, it may end up in a local file, a database, distributed middleware which can transport it to an expert system or display it to users. Thanks to the open framework design of ERS, new information destinations can be added at any moment without touching the reporting and receiving applications. The ERS Application Program Interface (API) is provided in three programming languages used in the ATLAS online environment: C++, Java and Python. All APIs use exceptions for error reporting but each of them exploits advanced features of a given language to simplify the end-user program writing. For example, as C++ lacks language support for exceptions, a number of macros have been designed to generate hierarchies of C++ exception classes at compile time. Using this approach a software developer can write a single line of code to generate a boilerplate code for a fully qualified C++ exception class declaration with arbitrary number of parameters and multiple constructors, which encapsulates all relevant static information about the given type of issues. When a corresponding error occurs at run time, the program just need to create an instance of that class passing relevant values to one of the available class constructors and send this instance to ERS. This paper presents the original design solutions exploited for the ERS implementation and describes how it was used during the first ATLAS run period. The cross-system error reporting standardization introduced by ERS was one of the key points for the successful implementation of automated mechanisms for online error recovery.

  13. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    PubMed

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  14. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov Websites

    Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity other propulsion source. Using electricity from the grid to run the vehicle some or all of the time levels of emissions, depending on the electricity source. There are several light-duty PHEVs commercially

  15. An original approach was used to better evaluate the capacity of a prognostic marker using published survival curves.

    PubMed

    Dantan, Etienne; Combescure, Christophe; Lorent, Marine; Ashton-Chess, Joanna; Daguin, Pascal; Classe, Jean-Marc; Giral, Magali; Foucher, Yohann

    2014-04-01

    Predicting chronic disease evolution from a prognostic marker is a key field of research in clinical epidemiology. However, the prognostic capacity of a marker is not systematically evaluated using the appropriate methodology. We proposed the use of simple equations to calculate time-dependent sensitivity and specificity based on published survival curves and other time-dependent indicators as predictive values, likelihood ratios, and posttest probability ratios to reappraise prognostic marker accuracy. The methodology is illustrated by back calculating time-dependent indicators from published articles presenting a marker as highly correlated with the time to event, concluding on the high prognostic capacity of the marker, and presenting the Kaplan-Meier survival curves. The tools necessary to run these direct and simple computations are available online at http://www.divat.fr/en/online-calculators/evalbiom. Our examples illustrate that published conclusions about prognostic marker accuracy may be overoptimistic, thus giving potential for major mistakes in therapeutic decisions. Our approach should help readers better evaluate clinical articles reporting on prognostic markers. Time-dependent sensitivity and specificity inform on the inherent prognostic capacity of a marker for a defined prognostic time. Time-dependent predictive values, likelihood ratios, and posttest probability ratios may additionally contribute to interpret the marker's prognostic capacity. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Running away from home: a longitudinal study of adolescent risk factors and young adult outcomes.

    PubMed

    Tucker, Joan S; Edelen, Maria Orlando; Ellickson, Phyllis L; Klein, David J

    2011-05-01

    Little is known about the adolescent risk factors and young adult health-related outcomes associated with running away from home. We examined these correlates of running away using longitudinal data from 4,329 youth (48% female, 85% white) who were followed from Grade 9 to age 21. Nearly 14% of the sample reported running away in the past year at Grade 10 and/or Grade 11. Controlling for demographics and general delinquency, running away from home was predicted by lack of parental support, school disengagement, greater depressive affect, and heavier substance use at Grade 9. In turn, runaways had higher drug dependence scores and more depressive symptoms at age 21 than non-runaways, even after taking these antecedent risk factors into account. Runaway status did not predict alcohol dependence risk at age 21. Results highlight the importance of substance use and depression, both as factors propelling adolescents to run away and as important long-term consequences of running away.

  17. Two modulator generalized ellipsometer for complete mueller matrix measurement

    DOEpatents

    Jellison, Jr., Gerald E.; Modine, Frank A.

    1999-01-01

    A two-modulator generalized ellipsometer (2-MGE) comprising two polarizer-photoelastic modulator (PEM) pairs, an optical light source, an optical detection system, and associated data processing and control electronics, where the PEMs are free-running. The input light passes through the first polarizer-PEM pair, reflects off the sample surface or passes through the sample, passes through the second PEM-polarizer pair, and is detected. Each PEM is free running and operates at a different resonant frequency, e.g., 50 and 60 kHz. The resulting time-dependent waveform of the light intensity is a complicated function of time, and depends upon the exact operating frequency and phase of each PEM, the sample, and the azimuthal angles of the polarizer-PEM pairs, but can be resolved into a dc component and eight periodic components. In one embodiment, the waveform is analyzed using a new spectral analysis technique that is similar to Fourier analysis to determine eight sample Mueller matrix elements (normalized to the m.sub.00 Mueller matrix element). The other seven normalized elements of the general 4.times.4 Mueller matrix can be determined by changing the azimuthal angles of the PEM-polarizer pairs with respect to the plane of incidence. Since this instrument can measure all elements of the sample Mueller matrix, it is much more powerful than standard ellipsometers.

  18. Fast Running Urban Dispersion Model for Radiological Dispersal Device (RDD) Releases: Model Description and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowardhan, Akshay; Neuscamman, Stephanie; Donetti, John

    Aeolus is an efficient three-dimensional computational fluid dynamics code based on finite volume method developed for predicting transport and dispersion of contaminants in a complex urban area. It solves the time dependent incompressible Navier-Stokes equation on a regular Cartesian staggered grid using a fractional step method. It also solves a scalar transport equation for temperature and using the Boussinesq approximation. The model also includes a Lagrangian dispersion model for predicting the transport and dispersion of atmospheric contaminants. The model can be run in an efficient Reynolds Average Navier-Stokes (RANS) mode with a run time of several minutes, or a moremore » detailed Large Eddy Simulation (LES) mode with run time of hours for a typical simulation. This report describes the model components, including details on the physics models used in the code, as well as several model validation efforts. Aeolus wind and dispersion predictions are compared to field data from the Joint Urban Field Trials 2003 conducted in Oklahoma City (Allwine et al 2004) including both continuous and instantaneous releases. Newly implemented Aeolus capabilities include a decay chain model and an explosive Radiological Dispersal Device (RDD) source term; these capabilities are described. Aeolus predictions using the buoyant explosive RDD source are validated against two experimental data sets: the Green Field explosive cloud rise experiments conducted in Israel (Sharon et al 2012) and the Full-Scale RDD Field Trials conducted in Canada (Green et al 2016).« less

  19. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    PubMed

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P < 0.001] and Össur Flex-Run (β = -0.139; P = 0.002) prostheses, respectively. Neither prosthetic stiffness ( P ≥ 0.180) nor height ( P = 0.062) affected the metabolic cost of running. The metabolic cost of running was related to lower peak (β = 0.649; P = 0.001) and stance average (β = 0.772; P = 0.018) vertical ground reaction forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P < 0.001) averaged from both legs. Metabolic cost was reduced with more symmetric peak vertical ground reaction forces (β = 0.007; P = 0.003) but was unrelated to stride kinematic symmetry ( P ≥ 0.636). Therefore, prosthetic recommendations based on symmetric stride kinematics do not necessarily minimize the metabolic cost of running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations. NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with increased in-series surface stiffness, biological limb stiffness for athletes with unilateral transtibial amputations is positively correlated with increased in-series (prosthetic) stiffness.

  20. Flux growth and characterization of cuprorivaite: the influence of temperature, flux, and silica source

    NASA Astrophysics Data System (ADS)

    Bloise, A.; Abd El Salam, S.; De Luca, R.; Crisci, G. M.; Miriello, D.

    2016-07-01

    Single crystals of cuprorivaite (CaCuSi4O10), one of the oldest synthetic color pigments of Egyptian history, have been synthesized by slow-cooling flux method. Several runs were carried out at temperatures between 800 and 960 °C and with reaction times ranging from 10 to 72 h. The starting materials and run products were characterized by binocular microscope, X-ray powder diffraction, scanning electron microscopy with annexed energy-dispersive spectrometry, and μ-Raman spectroscopy. The effects of growth parameters (temperature, flux, silica source) on yield and size of crystals were studied. The growth of cuprorivaite depends greatly on the starting materials: they are observed as run products only using natron as flux. Furthermore, colorimetric analysis performed on the synthesizing pigment was compared with the archeological samples present in the literature in order to value similarities and differences.

  1. Just-in-time connectivity for large spiking networks.

    PubMed

    Lytton, William W; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L

    2008-11-01

    The scale of large neuronal network simulations is memory limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed: just in time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities, and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON's standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that added items to the queue only when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run.

  2. Just in time connectivity for large spiking networks

    PubMed Central

    Lytton, William W.; Omurtag, Ahmet; Neymotin, Samuel A; Hines, Michael L

    2008-01-01

    The scale of large neuronal network simulations is memory-limited due to the need to store connectivity information: connectivity storage grows as the square of neuron number up to anatomically-relevant limits. Using the NEURON simulator as a discrete-event simulator (no integration), we explored the consequences of avoiding the space costs of connectivity through regenerating connectivity parameters when needed – just-in-time after a presynaptic cell fires. We explored various strategies for automated generation of one or more of the basic static connectivity parameters: delays, postsynaptic cell identities and weights, as well as run-time connectivity state: the event queue. Comparison of the JitCon implementation to NEURON’s standard NetCon connectivity method showed substantial space savings, with associated run-time penalty. Although JitCon saved space by eliminating connectivity parameters, larger simulations were still memory-limited due to growth of the synaptic event queue. We therefore designed a JitEvent algorithm that only added items to the queue when required: instead of alerting multiple postsynaptic cells, a spiking presynaptic cell posted a callback event at the shortest synaptic delay time. At the time of the callback, this same presynaptic cell directly notified the first postsynaptic cell and generated another self-callback for the next delay time. The JitEvent implementation yielded substantial additional time and space savings. We conclude that just-in-time strategies are necessary for very large network simulations but that a variety of alternative strategies should be considered whose optimality will depend on the characteristics of the simulation to be run. PMID:18533821

  3. EnergyPlus Run Time Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-09-20

    EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences,more » identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.« less

  4. Fame and obsolescence: Disentangling growth and aging dynamics of patent citations.

    PubMed

    Higham, K W; Governale, M; Jaffe, A B; Zülicke, U

    2017-04-01

    We present an analysis of citations accrued over time by patents granted by the United States Patent and Trademark Office in 1998. In contrast to previous studies, a disaggregation by technology category is performed, and exogenously caused citation-number growth is controlled for. Our approach reveals an intrinsic citation rate that clearly separates into an-in the long run, exponentially time-dependent-aging function and a completely time-independent preferential-attachment-type growth kernel. For the general case of such a separable citation rate, we obtain the time-dependent citation distribution analytically in a form that is valid for any functional form of its aging and growth parts. Good agreement between theory and long-time characteristics of patent-citation data establishes our work as a useful framework for addressing still open questions about knowledge-propagation dynamics, such as the observed excess of citations at short times.

  5. Comparison of parameterized nitric acid rainout rates using a coupled stochastic-photochemical tropospheric model

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.; Thompson, Anne M.; Owens, Melody A.; Herwehe, Jerold A.

    1989-01-01

    A major tropospheric loss of soluble species such as nitric acid results from scavenging by water droplets. Several theoretical formulations have been advanced which relate an effective time-independent loss rate for soluble species to statistical properties of precipitation such as the wet fraction and length of a precipitation cycle. In this paper, various 'effective' loss rates that have been proposed are compared with the results of detailed time-dependent model calculations carried out over a seasonal time scale. The model is a stochastic precipitation model coupled to a tropospheric photochemical model. The results of numerous time-dependent seasonal model runs are used to derive numerical values for the nitric acid residence time for several assumed sets of preciptation statistics. These values are then compared with the results obtained by utilizing theoretical 'effective' loss rates in time-independent models.

  6. TEA CO 2 Laser Simulator: A software tool to predict the output pulse characteristics of TEA CO 2 laser

    NASA Astrophysics Data System (ADS)

    Abdul Ghani, B.

    2005-09-01

    "TEA CO 2 Laser Simulator" has been designed to simulate the dynamic emission processes of the TEA CO 2 laser based on the six-temperature model. The program predicts the behavior of the laser output pulse (power, energy, pulse duration, delay time, FWHM, etc.) depending on the physical and geometrical input parameters (pressure ratio of gas mixture, reflecting area of the output mirror, media length, losses, filling and decay factors, etc.). Program summaryTitle of program: TEA_CO2 Catalogue identifier: ADVW Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVW Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer: P.IV DELL PC Setup: Atomic Energy Commission of Syria, Scientific Services Department, Mathematics and Informatics Division Operating system: MS-Windows 9x, 2000, XP Programming language: Delphi 6.0 No. of lines in distributed program, including test data, etc.: 47 315 No. of bytes in distributed program, including test data, etc.:7 681 109 Distribution format:tar.gz Classification: 15 Laser Physics Nature of the physical problem: "TEA CO 2 Laser Simulator" is a program that predicts the behavior of the laser output pulse by studying the effect of the physical and geometrical input parameters on the characteristics of the output laser pulse. The laser active medium consists of a CO 2-N 2-He gas mixture. Method of solution: Six-temperature model, for the dynamics emission of TEA CO 2 laser, has been adapted in order to predict the parameters of laser output pulses. A simulation of the laser electrical pumping was carried out using two approaches; empirical function equation (8) and differential equation (9). Typical running time: The program's running time mainly depends on both integration interval and step; for a 4 μs period of time and 0.001 μs integration step (defaults values used in the program), the running time will be about 4 seconds. Restrictions on the complexity: Using a very small integration step might leads to stop the program run due to the huge number of calculating points and to a small paging file size of the MS-Windows virtual memory. In such case, it is recommended to enlarge the paging file size to the appropriate size, or to use a bigger value of integration step.

  7. Effects of physical exercise and social isolation on anxiety-related behaviors in two inbred rat strains.

    PubMed

    Mazur, F G; Oliveira, L F G; Cunha, M P; Rodrigues, A L S; Pértile, R A N; Vendruscolo, L F; Izídio, G S

    2017-09-01

    We investigated the effects of physical exercise (PE) on locomotor activity and anxiety-like behavior in Lewis (LEW) and Spontaneously Hypertensive Rats (SHR) male rats. Rats received either four weeks of forced training, 5days/week, on a treadmill (experiment 1) or were given 21days of free access to running wheels (experiment 2). We also tested the effects of social isolation (SI) (seven days of isolation - experiment 3) on behavior. In experiment 1, 20% of LEW rats and 63% of SHR rats completed the training protocol. PE significantly increased central and peripheral locomotion in the open field (OF) and entries into the open arms in the elevated plus-maze (EPM) in both strains. In experiment 2, the distance traveled by SHR rats on running wheels was significantly higher compared with LEW rats. PE on running wheels also increased the time spent in the center of the OF in SHR rats only. In experiment 3, SI decreased central and peripheral locomotion in the OF in both strains. In summary, forced PE on a treadmill reduced anxiety-like behavior and increased locomotion in male rats of both strains, whereas voluntary PE on running wheels decreased anxiety-like behavior in SHR rats only. SI decreased locomotion in both strains in the OF. This study suggests that spontaneous activity levels are genotype-dependent and the effects of PE depend on the type of exercise performed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Havelund, Klaus

    2001-01-01

    The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.

  9. Spontaneous appetence for wheel-running: a model of dependency on physical activity in rat.

    PubMed

    Ferreira, Anthony; Lamarque, Stéphanie; Boyer, Patrice; Perez-Diaz, Fernando; Jouvent, Roland; Cohen-Salmon, Charles

    2006-12-01

    According to human observations of a syndrome of physical activity dependence and its consequences, we tried to examine if running activity in a free activity paradigm, where rats had a free access to activity wheel, may present a valuable animal model for physical activity dependence and most generally to behavioral dependence. The pertinence of reactivity to novelty, a well-known pharmacological dependence predictor was also tested. Given the close linkage observed in human between physical activity and drugs use and abuse, the influence of free activity in activity wheels on reactivity to amphetamine injection and reactivity to novelty were also assessed. It appeared that (1) free access to wheel may be used as a valuable model for physical activity addiction, (2) two populations differing in activity amount also differed in dependence to wheel-running. (3) Reactivity to novelty did not appeared as a predictive factor for physical activity dependence (4) activity modified novelty reactivity and (5) subjects who exhibited a high appetence to wheel-running, presented a strong reactivity to amphetamine. These results propose a model of dependency on physical activity without any pharmacological intervention, and demonstrate the existence of individual differences in the development of this addiction. In addition, these data highlight the development of a likely vulnerability to pharmacological addiction after intense and sustained physical activity, as also described in man. This model could therefore prove pertinent for studying behavioral dependencies and the underlying neurobiological mechanisms. These results may influence the way psychiatrists view behavioral dependencies and phenomena such as doping in sport or addiction to sport itself.

  10. Active processes in one dimension

    NASA Astrophysics Data System (ADS)

    Demaerel, Thibaut; Maes, Christian

    2018-03-01

    We consider the thermal and athermal overdamped motion of particles in one-dimensional geometries where discrete internal degrees of freedom (spin) are coupled with the translational motion. Adding a driving velocity that depends on the time-dependent spin constitutes the simplest model of active particles (run-and-tumble processes) where the violation of the equipartition principle and of the Sutherland-Einstein relation can be studied in detail even when there is generalized reversibility. We give an example (with four spin values) where the irreversibility of the translational motion manifests itself only in higher-order (than two) time correlations. We derive a generalized telegraph equation as the Smoluchowski equation for the spatial density for an arbitrary number of spin values. We also investigate the Arrhenius exponential law for run-and-tumble particles; due to their activity the slope of the potential becomes important in contrast to the passive diffusion case and activity enhances the escape from a potential well (if that slope is high enough). Finally, in the absence of a driving velocity, the presence of internal currents such as in the chemistry of molecular motors may be transmitted to the translational motion and the internal activity is crucial for the direction of the emerging spatial current.

  11. Implementation of Tree and Butterfly Barriers with Optimistic Time Management Algorithms for Discrete Event Simulation

    NASA Astrophysics Data System (ADS)

    Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia

    The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.

  12. A centralized audio presentation manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, A.L. III; Blattner, M.M.

    1994-05-16

    The centralized audio presentation manager addresses the problems which occur when multiple programs running simultaneously attempt to use the audio output of a computer system. Time dependence of sound means that certain auditory messages must be scheduled simultaneously, which can lead to perceptual problems due to psychoacoustic phenomena. Furthermore, the combination of speech and nonspeech audio is examined; each presents its own problems of perceptibility in an acoustic environment composed of multiple auditory streams. The centralized audio presentation manager receives abstract parameterized message requests from the currently running programs, and attempts to create and present a sonic representation in themore » most perceptible manner through the use of a theoretically and empirically designed rule set.« less

  13. Collider shot setup for Run 2 observations and suggestions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annala, J.; Joshel, B.

    1996-01-31

    This note is intended to provoke discussion on Collider Run II shot setup. We hope this is a start of activities that will converge on a functional description of what is needed for shot setups in Collider Run II. We will draw on observations of the present shot setup to raise questions and make suggestions for the next Collider run. It is assumed that the reader has some familiarity with the Collider operational issues. Shot setup is defined to be the time between the end of a store and the time the Main Control Room declares colliding beams. This ismore » the time between Tevatron clock events SCE and SCB. This definition does not consider the time experiments use to turn on their detectors. This analysis was suggested by David Finley. The operational scenarios for Run II will require higher levels of reliability and speed for shot setup. See Appendix I and II. For example, we estimate that a loss of 3 pb{sup {minus}1}/week (with 8 hour stores) will occur if shot setups take 90 minutes instead of 30 minutes. In other words: If you do 12 shots for one week and accept an added delay of one minute in each shot, you will loose more than 60 nb{sup {minus}1} for that week alone (based on a normal shot setup of 30 minutes). These demands should lead us to be much more pedantic about all the factors that affect shot setups. Shot setup will be viewed as a distinct process that is composed of several inter- dependent `components`: procedures, hardware, controls, and sociology. These components don`t directly align with the different Accelerator Division departments, but are topical groupings of the needed accelerator functions. Defining these components, and categorizing our suggestions within them, are part of the goal of this document. Of course, some suggestions span several of these components.« less

  14. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  15. Personal factors influencing the visual reaction time of pedestrians to detect turn indicators in the presence of Daytime Running Lamps.

    PubMed

    Peña-García, Antonio; de Oña, Rocío; García, Pedro Antonio; de Oña, Juan

    2016-12-01

    Daytime running lamps (DRL) on vehicles have proven to be an effective measure to prevent accidents during the daytime, particularly when pedestrians and cyclists are involved. However, there are negative interactions of DRL with other functions in automotive lighting, such as delays in pedestrians' visual reaction time (VRT) when turn indicators are activated in the presence of DRL. These negative interactions need to be reduced. This work analyses the influence of variables inherent to pedestrians, such as height, gender and visual defects, on the VRT using a classification and regression tree as an exploratory analysis and a generalized linear model to validate the results. Some pedestrian characteristics, such as gender, alone or combined with the DRL colour, and visual defects, were found to have a statistically significant influence on VRT and, hence, on traffic safety. These results and conclusions concerning the interaction between pedestrians and vehicles are presented and discussed. Practitioner Summary: Visual interactions of vehicle daytime running lamps (DRL) with other functions in automotive lighting, such as turn indicators, have an important impact on a vehicle's conspicuity for pedestrians. Depending on several factors inherent to pedestrians, the visual reaction time (VRT) can be remarkably delayed, which has implications in traffic safety.

  16. Extreme-Scale Stochastic Particle Tracing for Uncertain Unsteady Flow Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Hanqi; He, Wenbin; Seo, Sangmin

    2016-11-13

    We present an efficient and scalable solution to estimate uncertain transport behaviors using stochastic flow maps (SFM,) for visualizing and analyzing uncertain unsteady flows. SFM computation is extremely expensive because it requires many Monte Carlo runs to trace densely seeded particles in the flow. We alleviate the computational cost by decoupling the time dependencies in SFMs so that we can process adjacent time steps independently and then compose them together for longer time periods. Adaptive refinement is also used to reduce the number of runs for each location. We then parallelize over tasks—packets of particles in our design—to achieve highmore » efficiency in MPI/thread hybrid programming. Such a task model also enables CPU/GPU coprocessing. We show the scalability on two supercomputers, Mira (up to 1M Blue Gene/Q cores) and Titan (up to 128K Opteron cores and 8K GPUs), that can trace billions of particles in seconds.« less

  17. Time warp operating system version 2.7 internals manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Time Warp Operating System (TWOS) is an implementation of the Time Warp synchronization method proposed by David Jefferson. In addition, it serves as an actual platform for running discrete event simulations. The code comprising TWOS can be divided into several different sections. TWOS typically relies on an existing operating system to furnish some very basic services. This existing operating system is referred to as the Base OS. The existing operating system varies depending on the hardware TWOS is running on. It is Unix on the Sun workstations, Chrysalis or Mach on the Butterfly, and Mercury on the Mark 3 Hypercube. The base OS could be an entirely new operating system, written to meet the special needs of TWOS, but, to this point, existing systems have been used instead. The base OS's used for TWOS on various platforms are not discussed in detail in this manual, as they are well covered in their own manuals. Appendix G discusses the interface between one such OS, Mach, and TWOS.

  18. l-5-hydroxytryptophan resets the circadian locomotor activity rhythm of the nocturnal Indian pygmy field mouse, Mus terricolor

    NASA Astrophysics Data System (ADS)

    Basu, Priyoneel; Singaravel, Muniyandi; Haldar, Chandana

    2012-03-01

    We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light-dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (-2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase-response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.

  19. Effects of forefoot bending elasticity of running shoes on gait and running performance.

    PubMed

    Chen, Chia-Hsiang; Tu, Kuan-Hua; Liu, Chiang; Shiang, Tzyy-Yuang

    2014-12-01

    The aim of this study was to investigate the effects of forefoot bending elasticity of running shoes on kinetics and kinematics during walking and running. Twelve healthy male participants wore normal and elastic shoes while walking at 1.5m/s, jogging at 2.5m/s, and running at 3.5m/s. The elastic shoes were designed by modifying the stiffness of flexible shoes with elastic bands added to the forefoot part of the shoe sole. A Kistler force platform and Vicon system were used to collect kinetic and kinematic data during push-off. Electromyography was used to record the muscle activity of the medial gastrocnemius and medial tibialis anterior. A paired dependent t-test was used to compare the various shoes and the level of significance was set at α=.05. The range of motion of the ankle joint and the maximal anterior-posterior propulsive force differed significantly between elastic and flexible shoes in walking and jogging. The contact time and medial gastrocnemius muscle activation in the push-off phase were significantly lower for the elastic shoes compared with the flexible shoes in walking and jogging. The elastic forefoot region of shoes can alter movement characteristics in walking and jogging. However, for running, the elasticity used in this study was not strong enough to exert a similar effect. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Quantitative Index and Abnormal Alarm Strategy Using Sensor-Dependent Vibration Data for Blade Crack Identification in Centrifugal Booster Fans

    PubMed Central

    Chen, Jinglong; Sun, Hailiang; Wang, Shuai; He, Zhengjia

    2016-01-01

    Centrifugal booster fans are important equipment used to recover blast furnace gas (BFG) for generating electricity, but blade crack faults (BCFs) in centrifugal booster fans can lead to unscheduled breakdowns and potentially serious accidents, so in this work quantitative fault identification and an abnormal alarm strategy based on acquired historical sensor-dependent vibration data is proposed for implementing condition-based maintenance for this type of equipment. Firstly, three group dependent sensors are installed to acquire running condition data. Then a discrete spectrum interpolation method and short time Fourier transform (STFT) are applied to preliminarily identify the running data in the sensor-dependent vibration data. As a result a quantitative identification and abnormal alarm strategy based on compound indexes including the largest Lyapunov exponent and relative energy ratio at the second harmonic frequency component is proposed. Then for validation the proposed blade crack quantitative identification and abnormality alarm strategy is applied to analyze acquired experimental data for centrifugal booster fans and it has successfully identified incipient blade crack faults. In addition, the related mathematical modelling work is also introduced to investigate the effects of mistuning and cracks on the vibration features of centrifugal impellers and to explore effective techniques for crack detection. PMID:27171083

  1. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse.

    PubMed

    Yamashita, Takayuki; Hige, Toshihide; Takahashi, Tomoyuki

    2005-01-07

    Molecular dependence of vesicular endocytosis was investigated with capacitance measurements at the calyx of Held terminal in brainstem slices. Intraterminal loading of botulinum toxin E revealed that the rapid capacitance transient implicated as "kiss-and-run" was unrelated to transmitter release. The release-related capacitance change decayed with an endocytotic time constant of 10 to 25 seconds, depending on the magnitude of exocytosis. Presynaptic loading of the nonhydrolyzable guanosine 5'-triphosphate (GTP) analog GTPgS or dynamin-1 proline-rich domain peptide abolished endocytosis. These compounds had no immediate effect on exocytosis, but caused a use-dependent rundown of exocytosis. Thus, the guanosine triphosphatase dynamin-1 is indispensable for vesicle endocytosis at this fast central nervous system (CNS) synapse.

  2. The role of intrinsic muscle mechanics in the neuromuscular control of stable running in the guinea fowl

    PubMed Central

    Daley, Monica A; Voloshina, Alexandra; Biewener, Andrew A

    2009-01-01

    Here we investigate the interplay between intrinsic mechanical and neural factors in muscle contractile performance during running, which has been less studied than during walking. We report in vivo recordings of the gastrocnemius muscle of the guinea fowl (Numida meleagris), during the response and recovery from an unexpected drop in terrain. Previous studies on leg and joint mechanics following this perturbation suggested that distal leg extensor muscles play a key role in stabilisation. Here, we test this through direct recordings of gastrocnemius fascicle length (using sonomicrometry), muscle–tendon force (using buckle transducers), and activity (using indwelling EMG). Muscle recordings were analysed from the stride just before to the second stride following the perturbation. The gastrocnemius exhibits altered force and work output in the perturbed and first recovery strides. Muscle work correlates strongly with leg posture at the time of ground contact. When the leg is more extended in the drop step, net gastrocnemius work decreases (−5.2 J kg−1versus control), and when the leg is more flexed in the step back up, it increases (+9.8 J kg−1versus control). The muscle's work output is inherently stabilising because it pushes the body back toward its pre-perturbation (level running) speed and leg posture. Gastrocnemius length and force return to level running means by the second stride following the perturbation. EMG intensity differs significantly from level running only in the first recovery stride following the perturbation, not within the perturbed stride. The findings suggest that intrinsic mechanical factors contribute substantially to the initial changes in muscle force and work. The statistical results suggest that a history-dependent effect, shortening deactivation, may be an important factor in the intrinsic mechanical changes, in addition to instantaneous force–velocity and force–length effects. This finding suggests the potential need to incorporate history-dependent muscle properties into neuromechanical simulations of running, particularly if high muscle strains are involved and stability characteristics are important. Future work should test whether a Hill or modified Hill type model provides adequate prediction in such conditions. Interpreted in light of previous studies on walking, the findings support the concept of speed-dependent roles of reflex feedback. PMID:19359369

  3. Modulation of functionally localized right insular cortex activity using real-time fMRI-based neurofeedback.

    PubMed

    Berman, Brian D; Horovitz, Silvina G; Hallett, Mark

    2013-01-01

    The capacity for subjects to learn to volitionally control localized brain activity using neurofeedback is actively being investigated. We aimed to investigate the ability of healthy volunteers to quickly learn to use visual feedback during real-time functional MRI (rtfMRI) to modulate brain activity within their anterior right insular cortex (RIC) localized during a blink suppression task, an approach of possible interest in the use of rtfMRI to reduce urges. The RIC region of interest (RIC-ROI) was functionally localized using a blink suppression task, and blood-oxygen level dependent (BOLD) signal changes within RIC-ROI used to create a constantly updating display fed back to the subject in the scanner. Subjects were instructed to use emotional imagery to try and increase activity within RIC-ROI during four feedback training runs (FB1-FB4). A "control" run (CNTRL) before training and a "transfer" run (XSFR) after training were performed without feedback to assess for baseline abilities and learning effects. Fourteen participants completed all neurofeedback training runs. At the group-level, increased BOLD activity was seen in the anterior RIC during all the FB runs, but a significant increase in the functionally defined RIC-ROI was only attained during FB2. In atlas-defined insular cortex ROIs, significant increases were seen bilaterally during the CNTRL, FB1, FB2, and FB4 runs. Increased activity within the insular cortices did not show lateralization. Training did, however, result in a significant increase in functional connectivity between the RIC-ROI and the medial frontal gyrus when comparing FB4 to FB1. Since neurofeedback training did not lead to an increase in BOLD signal across all feedback runs, we suggest that learning to control one's brain activity in this fashion may require longer or repeated rtfMRI training sessions.

  4. Individualized real-time fMRI neurofeedback to attenuate craving in nicotine-dependent smokers.

    PubMed

    Hartwell, Karen J; Hanlon, Colleen A; Li, Xingbao; Borckardt, Jeffrey J; Canterberry, Melanie; Prisciandaro, James J; Moran-Santa Maria, Megan M Moran; LeMatty, Todd; George, Mark S; Brady, Kathleen T

    2016-01-01

    Cue-induced craving plays an important role in relapse, and the neural correlates of cue-induced craving have been elucidated using fMRI. This study examined the utility of real-time fMRI (rtfMRI) neurofeedback to strengthen self-regulation of craving-related neural activation and cue-reactivity in cigarette smokers. Nicotine-dependent smokers were randomized to rtfMRI neurofeedback or to a no-feedback control group. Participants completed 3 neuroimaging visits. Within each visit, an initial run during which smoking-related cues were used to provoke craving, an individualized craving-related region of interest (ROI) in the prefrontal cortex or anterior cingulate cortex was identified. In the rtfMRI group, activity from the ROI was fed back via a visual display during 3 subsequent runs while participants were instructed to reduce craving during cue exposure. The control group had an identical experience with no feedback provided. Forty-four nicotine-dependent smokers were recruited to participate in our study; data from the 33 participants who completed a 1-week follow-up visit were included in the analysis. Subjective craving ratings and cue-induced brain activation were lower in the rtfMRI group than in the control group. As participants were not seeking treatment, clinical outcomes are lacking. Nicotine-dependent smokers receiving rtfMRI feedback from an individualized ROI attenuated smoking cue-elicited neural activation and craving, relative to a control group. Further studies are needed in treatment-seeking smokers to determine if this intervention can translate into a clinically meaningful treatment modality.

  5. Wave run-up on a high-energy dissipative beach

    USGS Publications Warehouse

    Ruggiero, P.; Holman, R.A.; Beach, R.A.

    2004-01-01

    Because of highly dissipative conditions and strong alongshore gradients in foreshore beach morphology, wave run-up data collected along the central Oregon coast during February 1996 stand in contrast to run-up data currently available in the literature. During a single data run lasting approximately 90 min, the significant vertical run-up elevation varied by a factor of 2 along the 1.6 km study site, ranging from 26 to 61% of the offshore significant wave height, and was found to be linearly dependent on the local foreshore beach slope that varied by a factor of 5. Run-up motions on this high-energy dissipative beach were dominated by infragravity (low frequency) energy with peak periods of approximately 230 s. Incident band energy levels were 2.5 to 3 orders of magnitude lower than the low-frequency spectral peaks and typically 96% of the run-up variance was in the infragravity band. A broad region of the run-up spectra exhibited an f-4 roll off, typical of saturation, extending to frequencies lower than observed in previous studies. The run-up spectra were dependent on beach slope with spectra for steeper foreshore slopes shifted toward higher frequencies than spectra for shallower foreshore slopes. At infragravity frequencies, run-up motions were coherent over alongshore length scales in excess of 1 km, significantly greater than decorrelation length scales on moderate to reflective beaches. Copyright 2004 by the American Geophysical Union.

  6. Aftermath of early Hit-and-Run collisions in the Inner Solar System

    NASA Astrophysics Data System (ADS)

    Sarid, Gal; Stewart, Sarah T.; Leinhardt, zoe M.

    2015-08-01

    Planet formation epoch, in the terrestrial planet region and the asteroid belt, was characterized by a vigorous dynamical environment that was conducive to giant impacts among planetary embryos and asteroidal parent bodies, leading to diverse outcomes. Among these the greatest potential for producing diverse end-members lies is the erosive Hit-and-Run regime (small mass ratios, off-axis oblique impacts and non-negligible ejected mass), which is also more probable in terms of the early dynamical encounter configuration in the inner solar system. This collision regime has been invoked to explain outstanding issues, such as planetary volatile loss records, origin of the Moon and mantle stripping from Mercury and some of the larger asteroids (Vesta, Psyche).We performed and analyzed a set of simulations of Hit-and-Run events, covering a large range of mass ratios (1-20), impact parameters (0.25-0.96, for near head-on to barely grazing) and impact velocities (~1.5-5 times the mutual escape velocity, as dependent on the mass ratio). We used an SPH code with tabulated EOS and a nominal simlated time >1 day, to track the collisional shock processing and the provenance of material components. of collision debris. Prior to impact runs, all bodies were allowed to initially settle to negligible particle velocities in isolation, within ~20 simulated hrs. The total number of particles involved in each of our collision simulations was between (1-3 x 105). Resulting configurations include stripped mantles, melting/vaporization of rock and/or iron cores and strong variations of asteroid parent bodies fromcanonical chondritic composition.In the context of large planetary formation simulations, velocity and impact angle distributions are necessary to asses impact probabilities. The mass distribution and interaction within planetary embryo and asteroid swarms depends both on gravitational dynamics and the applied fragmentation mechanism. We will present results pertaining to general projectile remnant scaling relations, constitution of ejected unbound material and the composition of variedcollision remnants, which become available to seed the asteroid belt.

  7. Reducing EnergyPlus Run Time For Code Compliance Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Athalye, Rahul A.; Gowri, Krishnan; Schultz, Robert W.

    2014-09-12

    Integration of the EnergyPlus ™ simulation engine into performance-based code compliance software raises a concern about simulation run time, which impacts timely feedback of compliance results to the user. EnergyPlus annual simulations for proposed and code baseline building models, and mechanical equipment sizing result in simulation run times beyond acceptable limits. This paper presents a study that compares the results of a shortened simulation time period using 4 weeks of hourly weather data (one per quarter), to an annual simulation using full 52 weeks of hourly weather data. Three representative building types based on DOE Prototype Building Models and threemore » climate zones were used for determining the validity of using a shortened simulation run period. Further sensitivity analysis and run time comparisons were made to evaluate the robustness and run time savings of using this approach. The results of this analysis show that the shortened simulation run period provides compliance index calculations within 1% of those predicted using annual simulation results, and typically saves about 75% of simulation run time.« less

  8. Primordial gravitational waves in running vacuum cosmologies

    NASA Astrophysics Data System (ADS)

    Tamayo, D. A.; Lima, J. A. S.; Alves, M. E. S.; de Araujo, J. C. N.

    2017-01-01

    We investigate the cosmological production of gravitational waves in a nonsingular flat cosmology powered by a "running vacuum" energy density described by ρΛ ≡ ρΛ(H), a phenomenological expression potentially linked with the renormalization group approach in quantum field theory in curved spacetimes. The model can be interpreted as a particular case of the class recently discussed by Perico et al. (2013) [25] which is termed complete in the sense that the cosmic evolution occurs between two extreme de Sitter stages (early and late time de Sitter phases). The gravitational wave equation is derived and its time-dependent part numerically integrated since the primordial de Sitter stage. The generated spectrum of gravitons is also compared with the standard calculations where an abrupt transition, from the early de Sitter to the radiation phase, is usually assumed. It is found that the stochastic background of gravitons is very similar to the one predicted by the cosmic concordance model plus inflation except at higher frequencies (ν ≳ 100 kHz). This remarkable signature of a "running vacuum" cosmology combined with the proposed high frequency gravitational wave detectors and measurements of the CMB polarization (B-modes) may provide a new window to confront more conventional models of inflation.

  9. Simulation Study of Evacuation Control Center Operations Analysis

    DTIC Science & Technology

    2011-06-01

    28 4.3 Baseline Manning (Runs 1, 2, & 3) . . . . . . . . . . . . 30 4.3.1 Baseline Statistics Interpretation...46 Appendix B. Key Statistic Matrix: Runs 1-12 . . . . . . . . . . . . . 48 Appendix C. Blue Dart...Completion Time . . . 33 11. Paired T result - Run 5 v. Run 6: ECC Completion Time . . . 35 12. Key Statistics : Run 3 vs. Run 9

  10. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons

    PubMed Central

    Sobieraj, Jeffery C.; Kim, Airee; Fannon, McKenzie J.; Mandyam, Chitra D.

    2015-01-01

    Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for three weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase (TH) immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings also suggest that wheel running may be preventing certain allostatic changes in the brain reward and stress systems contributing to the negative reinforcement and perpetuation of the addiction cycle. PMID:25273280

  11. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons.

    PubMed

    Sobieraj, Jeffery C; Kim, Airee; Fannon, McKenzie J; Mandyam, Chitra D

    2016-01-01

    Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug-cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6 h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for 3 weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings also suggest that wheel running may be preventing certain allostatic changes in the brain reward and stress systems contributing to the negative reinforcement and perpetuation of the addiction cycle.

  12. Multivariable control of a rapid thermal processor using ultrasonic sensors

    NASA Astrophysics Data System (ADS)

    Dankoski, Paul C. P.

    The semiconductor manufacturing industry faces the need for tighter control of thermal budget and process variations as circuit feature sizes decrease. Strategies to meet this need include supervisory control, run-to-run control, and real-time feedback control. Typically, the level of control chosen depends upon the actuation and sensing available. Rapid Thermal Processing (RTP) is one step of the manufacturing cycle requiring precise temperature control and hence real-time feedback control. At the outset of this research, the primary ingredient lacking from in-situ RTP temperature control was a suitable sensor. This research looks at an alternative to the traditional approach of pyrometry, which is limited by the unknown and possibly time-varying wafer emissivity. The technique is based upon the temperature dependence of the propagation time of an acoustic wave in the wafer. The aim of this thesis is to evaluate the ultrasonic sensors as a potentially viable sensor for control in RTP. To do this, an experimental implementation was developed at the Center for Integrated Systems. Because of the difficulty in applying a known temperature standard in an RTP environment, calibration to absolute temperature is nontrivial. Given reference propagation delays, multivariable model-based feedback control is applied to the system. The modelling and implementation details are described. The control techniques have been applied to a number of research processes including rapid thermal annealing and rapid thermal crystallization of thin silicon films on quartz/glass substrates.

  13. Shear-rate dependence of the viscosity of the Lennard-Jones liquid at the triple point

    NASA Astrophysics Data System (ADS)

    Ferrario, M.; Ciccotti, G.; Holian, B. L.; Ryckaert, J. P.

    1991-11-01

    High-precision molecular-dynamics (MD) data are reported for the shear viscosity η of the Lennard-Jones liquid at its triple point, as a function of the shear rate ɛ˙ for a large system (N=2048). The Green-Kubo (GK) value η(ɛ˙=0)=3.24+/-0.04 is estimated from a run of 3.6×106 steps (40 nsec). We find no numerical evidence of a t-3/2 long-time tail for the GK integrand (stress-stress time-correlation function). From our nonequilibrium MD results, obtained both at small and large values of ɛ˙, a consistent picture emerges that supports an analytical (quadratic at low shear rate) dependence of the viscosity on ɛ˙.

  14. Economic barriers to implementation of innovations in health care: is the long run-short run efficiency discrepancy a paradox?

    PubMed

    Adang, Eddy M M; Wensing, Michel

    2008-12-01

    Favourable cost-effectiveness of innovative technologies is more and more a necessary condition for implementation in clinical practice. But proven cost-effectiveness itself does not guarantee successful implementation. The reason for this is a potential discrepancy between long run efficiency, on which cost-effectiveness is based, and short run efficiency. Long run and short run efficiency is dependent upon economies of scale. This paper addresses the potential discrepancy between long run and short run efficiency of innovative technologies in healthcare, explores diseconomies of scale in Dutch hospitals and suggests what strategies might help to overcome hurdles to implement innovations due to that discrepancy.

  15. NearFar: A computer program for nearside farside decomposition of heavy-ion elastic scattering amplitude

    NASA Astrophysics Data System (ADS)

    Cha, Moon Hoe

    2007-02-01

    The NearFar program is a package for carrying out an interactive nearside-farside decomposition of heavy-ion elastic scattering amplitude. The program is implemented in Java to perform numerical operations on the nearside and farside angular distributions. It contains a graphical display interface for the numerical results. A test run has been applied to the elastic O16+Si28 scattering at E=1503 MeV. Program summaryTitle of program: NearFar Catalogue identifier: ADYP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYP_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: designed for any machine capable of running Java, developed on PC-Pentium-4 Operating systems under which the program has been tested: Microsoft Windows XP (Home Edition) Program language used: Java Number of bits in a word: 64 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 3484 Number of bytes distributed program, including test data, etc.: 142 051 Distribution format: tar.gz Other software required: A Java runtime interpreter, or the Java Development Kit, version 5.0 Nature of physical problem: Interactive nearside-farside decomposition of heavy-ion elastic scattering amplitude. Method of solution: The user must supply a external data file or PPSM parameters which calculates theoretical values of the quantities to be decomposed. Typical running time: Problem dependent. In a test run, it is about 35 s on a 2.40 GHz Intel P4-processor machine.

  16. Multisite Reliability of Cognitive BOLD Data

    PubMed Central

    Brown, Gregory G.; Mathalon, Daniel H.; Stern, Hal; Ford, Judith; Mueller, Bryon; Greve, Douglas N.; McCarthy, Gregory; Voyvodic, Jim; Glover, Gary; Diaz, Michele; Yetter, Elizabeth; Burak Ozyurt, I.; Jorgensen, Kasper W.; Wible, Cynthia G.; Turner, Jessica A.; Thompson, Wesley K.; Potkin, Steven G.

    2010-01-01

    Investigators perform multi-site functional magnetic resonance imaging studies to increase statistical power, to enhance generalizability, and to improve the likelihood of sampling relevant subgroups. Yet undesired site variation in imaging methods could off-set these potential advantages. We used variance components analysis to investigate sources of variation in the blood oxygen level dependent (BOLD) signal across four 3T magnets in voxelwise and region of interest (ROI) analyses. Eighteen participants traveled to four magnet sites to complete eight runs of a working memory task involving emotional or neutral distraction. Person variance was more than 10 times larger than site variance for five of six ROIs studied. Person-by-site interactions, however, contributed sizable unwanted variance to the total. Averaging over runs increased between-site reliability, with many voxels showing good to excellent between-site reliability when eight runs were averaged and regions of interest showing fair to good reliability. Between-site reliability depended on the specific functional contrast analyzed in addition to the number of runs averaged. Although median effect size was correlated with between-site reliability, dissociations were observed for many voxels. Brain regions where the pooled effect size was large but between-site reliability was poor were associated with reduced individual differences. Brain regions where the pooled effect size was small but between-site reliability was excellent were associated with a balance of participants who displayed consistently positive or consistently negative BOLD responses. Although between-site reliability of BOLD data can be good to excellent, acquiring highly reliable data requires robust activation paradigms, ongoing quality assurance, and careful experimental control. PMID:20932915

  17. Walking or Running in the Rain--A Simple Derivation of a General Solution

    ERIC Educational Resources Information Center

    Ehrmann, Andrea; Blachowicz, Tomasz

    2011-01-01

    The question whether to walk slowly or to run when it starts raining in order to stay as dry as possible has been considered for many years--and with different results, depending on the assumptions made and the mathematical descriptions for the situation. Because of the practical meaning for real life and the inconsistent results depending on the…

  18. Short-term feeding at the wrong time is sufficient to desynchronize peripheral clocks and induce obesity with hyperphagia, physical inactivity and metabolic disorders in mice.

    PubMed

    Yasumoto, Yuki; Hashimoto, Chiaki; Nakao, Reiko; Yamazaki, Haruka; Hiroyama, Hanako; Nemoto, Tadashi; Yamamoto, Saori; Sakurai, Mutsumi; Oike, Hideaki; Wada, Naoyuki; Yoshida-Noro, Chikako; Oishi, Katsutaka

    2016-05-01

    The circadian clock regulates various physiological and behavioral rhythms such as feeding and locomotor activity. Feeding at unusual times of the day (inactive phase) is thought to be associated with obesity and metabolic disorders in experimental animals and in humans. The present study aimed to determine the underlying mechanisms through which time-of-day-dependent feeding influences metabolic homeostasis. We compared food consumption, wheel-running activity, core body temperature, hormonal and metabolic variables in blood, lipid accumulation in the liver, circadian expression of clock and metabolic genes in peripheral tissues, and body weight gain between mice fed only during the sleep phase (DF, daytime feeding) and those fed only during the active phase (NF, nighttime feeding). All mice were fed with the same high-fat high-sucrose diet throughout the experiment. To the best of our knowledge, this is the first study to examine the metabolic effects of time-imposed restricted feeding (RF) in mice with free access to a running wheel. After one week of RF, DF mice gained more weight and developed hyperphagia, higher feed efficiency and more adiposity than NF mice. The daily amount of running on the wheel was rapidly and obviously reduced by DF, which might have been the result of time-of-day-dependent hypothermia. The amount of daily food consumption and hypothalamic mRNA expression of orexigenic neuropeptide Y and agouti-related protein were significantly higher in DF, than in NF mice, although levels of plasma leptin that fluctuate in an RF-dependent circadian manner, were significantly higher in DF mice. These findings suggested that the DF induced leptin resistance. The circadian phases of plasma insulin and ghrelin were synchronized to RF, although the corticosterone phase was unaffected. Peak levels of plasma insulin were remarkably higher in DF mice, although HOMA-IR was identical between the two groups. Significantly more free fatty acids, triglycerides and cholesterol accumulated in the livers of DF, than NF mice, which resulted from the increased expression of lipogenic genes such as Scd1, Acaca, and Fasn. Temporal expression of circadian clock genes became synchronized to RF in the liver but not in skeletal muscle, suggesting that uncoupling metabolic rhythms between the liver and skeletal muscle also contribute to DF-induced adiposity. Feeding at an unusual time of day (inactive phase) desynchronizes peripheral clocks and causes obesity and metabolic disorders by inducing leptin resistance, hyperphagia, physical inactivity, hepatic fat accumulation and adiposity. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet.

    PubMed

    Yan, Lin; Sundaram, Sneha; Nielsen, Forrest H

    2017-11-01

    This study investigated the effect of voluntary running of defined distances on body adiposity in male C57BL/6 mice fed a high-fat diet. Mice were assigned to 6 groups and fed a standard AIN93G diet (sedentary) or a modified high-fat AIN93G diet (sedentary; unrestricted running; or 75%, 50%, or 25% of unrestricted running) for 12 weeks. The average running distance was 8.3, 6.3, 4.2, and 2.1 km/day for the unrestricted, 75%, 50%, and 25% of unrestricted runners, respectively. Body adiposity was 46% higher in sedentary mice when fed the high-fat diet instead of the standard diet. Running decreased adiposity in mice fed the high-fat diet in a dose-dependent manner but with no significant difference between sedentary mice and those running 2.1 km/day. In sedentary mice, the high-fat instead of the standard diet increased insulin resistance, hepatic triacylglycerides, and adipose and plasma concentrations of leptin and monocyte chemotactic protein-1 (MCP-1). Running reduced these variables in a dose-dependent manner. Adipose adiponectin was lowest in sedentary mice fed the high-fat diet; running raised adiponectin in both adipose tissue and plasma. Running 8.3 and 6.3 km/day had the greatest, but similar, effects on the aforementioned variables. Running 2.1 km/day did not affect these variables except, when compared with sedentariness, it significantly decreased MCP-1. The findings showed that running 6.3 kg/day was optimal for reducing adiposity and associated inflammation that was increased in mice by feeding a high-fat diet. The findings suggest that voluntary running of defined distances may counteract the obesogenic effects of a high-fat diet.

  20. Leisure-time running reduces all-cause and cardiovascular mortality risk.

    PubMed

    Lee, Duck-Chul; Pate, Russell R; Lavie, Carl J; Sui, Xuemei; Church, Timothy S; Blair, Steven N

    2014-08-05

    Although running is a popular leisure-time physical activity, little is known about the long-term effects of running on mortality. The dose-response relations between running, as well as the change in running behaviors over time, and mortality remain uncertain. We examined the associations of running with all-cause and cardiovascular mortality risks in 55,137 adults, 18 to 100 years of age (mean age 44 years). Running was assessed on a medical history questionnaire by leisure-time activity. During a mean follow-up of 15 years, 3,413 all-cause and 1,217 cardiovascular deaths occurred. Approximately 24% of adults participated in running in this population. Compared with nonrunners, runners had 30% and 45% lower adjusted risks of all-cause and cardiovascular mortality, respectively, with a 3-year life expectancy benefit. In dose-response analyses, the mortality benefits in runners were similar across quintiles of running time, distance, frequency, amount, and speed, compared with nonrunners. Weekly running even <51 min, <6 miles, 1 to 2 times, <506 metabolic equivalent-minutes, or <6 miles/h was sufficient to reduce risk of mortality, compared with not running. In the analyses of change in running behaviors and mortality, persistent runners had the most significant benefits, with 29% and 50% lower risks of all-cause and cardiovascular mortality, respectively, compared with never-runners. Running, even 5 to 10 min/day and at slow speeds <6 miles/h, is associated with markedly reduced risks of death from all causes and cardiovascular disease. This study may motivate healthy but sedentary individuals to begin and continue running for substantial and attainable mortality benefits. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  1. Leisure-Time Running Reduces All-Cause and Cardiovascular Mortality Risk

    PubMed Central

    Lee, Duck-chul; Pate, Russell R.; Lavie, Carl J.; Sui, Xuemei; Church, Timothy S.; Blair, Steven N.

    2014-01-01

    Background Although running is a popular leisure-time physical activity, little is known about the long-term effects of running on mortality. The dose-response relations between running, as well as the change in running behaviors over time and mortality remain uncertain. Objectives We examined the associations of running with all-cause and cardiovascular mortality risks in 55,137 adults, aged 18 to 100 years (mean age, 44). Methods Running was assessed on the medical history questionnaire by leisure-time activity. Results During a mean follow-up of 15 years, 3,413 all-cause and 1,217 cardiovascular deaths occurred. Approximately, 24% of adults participated in running in this population. Compared with non-runners, runners had 30% and 45% lower adjusted risks of all-cause and cardiovascular mortality, respectively, with a 3-year life expectancy benefit. In dose-response analyses, the mortality benefits in runners were similar across quintiles of running time, distance, frequency, amount, and speed, compared with non-runners. Weekly running even <51 minutes, <6 miles, 1-2 times, <506 metabolic equivalent-minutes, or <6 mph was sufficient to reduce risk of mortality, compared with not running. In the analyses of change in running behaviors and mortality, persistent runners had the most significant benefits with 29% and 50% lower risks of all-cause and cardiovascular mortality, respectively, compared with never-runners. Conclusions Running, even 5-10 minutes per day and slow speeds <6 mph, is associated with markedly reduced risks of death from all causes and cardiovascular disease. This study may motivate healthy but sedentary individuals to begin and continue running for substantial and attainable mortality benefits. PMID:25082581

  2. Muscle mechanical advantage of human walking and running: implications for energy cost.

    PubMed

    Biewener, Andrew A; Farley, Claire T; Roberts, Thomas J; Temaner, Marco

    2004-12-01

    Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.

  3. Implementation of unsteady sampling procedures for the parallel direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Cave, H. M.; Tseng, K.-C.; Wu, J.-S.; Jermy, M. C.; Huang, J.-C.; Krumdieck, S. P.

    2008-06-01

    An unsteady sampling routine for a general parallel direct simulation Monte Carlo method called PDSC is introduced, allowing the simulation of time-dependent flow problems in the near continuum range. A post-processing procedure called DSMC rapid ensemble averaging method (DREAM) is developed to improve the statistical scatter in the results while minimising both memory and simulation time. This method builds an ensemble average of repeated runs over small number of sampling intervals prior to the sampling point of interest by restarting the flow using either a Maxwellian distribution based on macroscopic properties for near equilibrium flows (DREAM-I) or output instantaneous particle data obtained by the original unsteady sampling of PDSC for strongly non-equilibrium flows (DREAM-II). The method is validated by simulating shock tube flow and the development of simple Couette flow. Unsteady PDSC is found to accurately predict the flow field in both cases with significantly reduced run-times over single processor code and DREAM greatly reduces the statistical scatter in the results while maintaining accurate particle velocity distributions. Simulations are then conducted of two applications involving the interaction of shocks over wedges. The results of these simulations are compared to experimental data and simulations from the literature where there these are available. In general, it was found that 10 ensembled runs of DREAM processing could reduce the statistical uncertainty in the raw PDSC data by 2.5-3.3 times, based on the limited number of cases in the present study.

  4. Wheel running decreases palatable diet preference in Sprague-Dawley rats.

    PubMed

    Moody, Laura; Liang, Joy; Choi, Pique P; Moran, Timothy H; Liang, Nu-Chu

    2015-10-15

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague-Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. Published by Elsevier Inc.

  5. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    PubMed Central

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. PMID:25791204

  6. Interval training at 95% and 100% of the velocity at VO2 max: effects on aerobic physiological indexes and running performance.

    PubMed

    Denadai, Benedito S; Ortiz, Marcelo J; Greco, Camila C; de Mello, Marco T

    2006-12-01

    The objective of this study was to analyze the effect of two different high-intensity interval training (HIT) programs on selected aerobic physiological indices and 1500 and 5000 m running performance in well-trained runners. The following tests were completed (n=17): (i) incremental treadmill test to determine maximal oxygen uptake (VO2 max), running velocity associated with VO2 max (vVO2 max), and the velocity corresponding to 3.5 mmol/L of blood lactate concentration (vOBLA); (ii) submaximal constant-intensity test to determine running economy (RE); and (iii) 1500 and 5000 m time trials on a 400 m track. Runners were then randomized into 95% vVO2 max or 100% vVO2 max groups, and undertook a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO2 max, respectively) and 4 submaximal run sessions per week. Runners were retested on all parameters at the completion of the training program. The VO2 max values were not different after training for both groups. There was a significant increase in post-training vVO2 max, RE, and 1500 m running performance in the 100% vVO2 max group. The vOBLA and 5000 m running performance were significantly higher after the training period for both groups. We conclude that vOBLA and 5000 m running performance can be significantly improved in well-trained runners using a 4 week training program consisting of 2 HIT sessions (performed at 95% or 100% vVO2 max) and 4 submaximal run sessions per week. However, the improvement in vVO2 max, RE, and 1500 m running performance seems to be dependent on the HIT program at 100% vVO2 max.

  7. Gait Asymmetry During 400- to 1000-m High-Intensity Track Running in Relation to Injury History.

    PubMed

    Gilgen-Ammann, Rahel; Taube, Wolfgang; Wyss, Thomas

    2017-04-01

    To quantify gait asymmetry in well-trained runners with and without previous injuries during interval training sessions incorporating different distances. Twelve well-trained runners participated in 8 high-intensity interval-training sessions on a synthetic track over a 4-wk period. The training consisted of 10 × 400, 8 × 600, 7 × 800, and 6 × 1000-m running. Using an inertial measurement unit, the ground-contact time (GCT) of every step was recorded. To determine gait asymmetry, the GCTs between the left and right foot were compared. Overall, gait asymmetry was 3.3% ± 1.4%, and over the course of a training session, the gait asymmetry did not change (F 1,33 = 1.673, P = .205). The gait asymmetry of the athletes with a previous history of injury was significantly greater than that of the athletes without a previous injury. However, this injury-related enlarged asymmetry was detectable only at short (400 m), but not at longer, distances (600-1000 m). The gait asymmetry of well-trained athletes differed, depending on their history of injury and the running distance. To detect gait asymmetries, high-intensity runs over relatively short distances are recommended.

  8. Did the ever dead outnumber the living and when? A birth-and-death approach

    NASA Astrophysics Data System (ADS)

    Avan, Jean; Grosjean, Nicolas; Huillet, Thierry

    2015-02-01

    This paper is an attempt to formalize analytically the question raised in 'World Population Explained: Do Dead People Outnumber Living, Or Vice Versa?' Huffington Post, Howard (2012). We start developing simple deterministic Malthusian growth models of the problem (with birth and death rates either constant or time-dependent) before running into both linear birth and death Markov chain models and age-structured models.

  9. Heuristic Modeling for TRMM Lifetime Predictions

    NASA Technical Reports Server (NTRS)

    Jordan, P. S.; Sharer, P. J.; DeFazio, R. L.

    1996-01-01

    Analysis time for computing the expected mission lifetimes of proposed frequently maneuvering, tightly altitude constrained, Earth orbiting spacecraft have been significantly reduced by means of a heuristic modeling method implemented in a commercial-off-the-shelf spreadsheet product (QuattroPro) running on a personal computer (PC). The method uses a look-up table to estimate the maneuver frequency per month as a function of the spacecraft ballistic coefficient and the solar flux index, then computes the associated fuel use by a simple engine model. Maneuver frequency data points are produced by means of a single 1-month run of traditional mission analysis software for each of the 12 to 25 data points required for the table. As the data point computations are required only a mission design start-up and on the occasion of significant mission redesigns, the dependence on time consuming traditional modeling methods is dramatically reduced. Results to date have agreed with traditional methods to within 1 to 1.5 percent. The spreadsheet approach is applicable to a wide variety of Earth orbiting spacecraft with tight altitude constraints. It will be particularly useful to such missions as the Tropical Rainfall Measurement Mission scheduled for launch in 1997, whose mission lifetime calculations are heavily dependent on frequently revised solar flux predictions.

  10. Stable Calibration of Raman Lidar Water-Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, Iain S.

    2008-01-01

    A method has been devised to ensure stable, long-term calibration of Raman lidar measurements that are used to determine the altitude-dependent mixing ratio of water vapor in the upper troposphere and lower stratosphere. Because the lidar measurements yield a quantity proportional to the mixing ratio, rather than the mixing ratio itself, calibration is necessary to obtain the factor of proportionality. The present method involves the use of calibration data from two sources: (1) absolute calibration data from in situ radiosonde measurements made during occasional campaigns and (2) partial calibration data obtained by use, on a regular schedule, of a lamp that emits in a known spectrum determined in laboratory calibration measurements. In this method, data from the first radiosonde campaign are used to calculate a campaign-averaged absolute lidar calibration factor (t(sub 1)) and the corresponding campaign-averaged ration (L(sub 1)) between lamp irradiances at the water-vapor and nitrogen wavelengths. Depending on the scenario considered, this ratio can be assumed to be either constant over a long time (L=L(sub 1)) or drifting slowly with time. The absolutely calibrated water-vapor mixing ratio (q) obtained from the ith routine off-campaign lidar measurement is given by q(sub 1)=P(sub 1)/t(sub 1)=LP(sub 1)/P(sup prime)(sub 1) where P(sub 1) is water-vapor/nitrogen measurement signal ration, t(sub 1) is the unknown and unneeded overall efficiency ratio of the lidar receiver during the ith routine off-campaign measurement run, and P(sup prime)(sub 1) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the ith routine off-campaign measurement run. If L is assumed constant, then the lidar calibration is routinely obtained without the need for new radiosonde data. In this case, one uses L=L(sub 1) = P(sup prime)(sub 1)/t(sub 1), where P(sub 1)(sup prime) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the first radiosonde campaign. If L is assumed to drift slowly, then it is necessary to postpone calculation of a(sub 1) until after a second radiosonde campaign. In this case, one obtains a new value, L(sub 2), from the second radiosonde campaign, and for the ith routine off-campaign measurement run, one uses an intermediate value of L obtained by simple linear time interpolation between L(sub 1) and L(sub 2).

  11. The Arbitrary Body of Revolution Code (ABORC) for SGEMP/IEMP

    DTIC Science & Technology

    1976-07-01

    Ill, ,4 t iwv. dependent Spect ria, I’a eallt rlllt ,ýcltllt i , itlld currll - in.icct iwill silIkit ion tests of satel I ites. "S1 1’. Waanaasl ; et...time. For example, in the case where the emission is due to,. photon interaction with materials, the photon energy and time spect run determines the...ally performed by separating the i. onse of the in-._ tn, p rtion of ’he problem from thai of the external iort(n. Thus, 0i details of tbi - internal

  12. Plasma renin activity, aldosterone and catecholamine levels when swimming and running.

    PubMed

    Guezennec, C Y; Defer, G; Cazorla, G; Sabathier, C; Lhoste, F

    1986-01-01

    The purpose of this study was to determine the response of plasma renin activity (PRA), plasma aldosterone concentration (PAC) and catecholamines to two graded exercises differing by posture. Seven male subjects (19-25 years) performed successively a running rest on a treadmill and a swimming test in a 50-m swimming pool. Each exercise was increased in severity in 5-min steps with intervals of 1 min. Oxygen consumption, heart rate and blood lactate, measured every 5 min, showed a similar progression in energy expenditure until exhaustion, but there was a shorter time to exhaustion in the last step of the running test. PRA, PAC and catecholamines were increased after both types of exercise. The PRA increase was higher after the running test (20.9 ng AngI X ml-1 X h-1) than after swimming (8.66 ng AngI X ml-1 X h-1). The PAC increase was slightly greater after running (123 pg X ml-1) than swimming (102 pg X ml-1), buth the difference was not significant. Plasma catecholamine was higher after the swimming test. These results suggest that the volume shift induced by the supine position and water pressure during swimming decreased the PRA response. The association after swimming compared to running of a decreased PRA and an enhanced catecholamine response rule out a strict dependence of renin release under the effect of plasma catecholamines and is evidence of the major role of neural pathways for renin secretion during physical exercise.

  13. Gender difference and age-related changes in performance at the long-distance duathlon.

    PubMed

    Rüst, Christoph A; Knechtle, Beat; Knechtle, Patrizia; Pfeifer, Susanne; Rosemann, Thomas; Lepers, Romuald; Senn, Oliver

    2013-02-01

    The differences in gender- and the age-related changes in triathlon (i.e., swimming, cycling, and running) performances have been previously investigated, but data are missing for duathlon (i.e., running, cycling, and running). We investigated the participation and performance trends and the gender difference and the age-related decline in performance, at the "Powerman Zofingen" long-distance duathlon (10-km run, 150-km cycle, and 30-km run) from 2002 to 2011. During this period, there were 2,236 finishers (272 women and 1,964 men, respectively). Linear regression analyses for the 3 split times, and the total event time, demonstrated that running and cycling times were fairly stable during the last decade for both male and female elite duathletes. The top 10 overall gender differences in times were 16 ± 2, 17 ± 3, 15 ± 3, and 16 ± 5%, for the 10-km run, 150-km cycle, 30-km run and the overall race time, respectively. There was a significant (p < 0.001) age effect for each discipline and for the total race time. The fastest overall race times were achieved between the 25- and 39-year-olds. Female gender and increasing age were associated with increased performance times when additionally controlled for environmental temperatures and race year. There was only a marginal time period effect ranging between 1.3% (first run) and 9.8% (bike split) with 3.3% for overall race time. In accordance with previous observations in triathlons, the age-related decline in the duathlon performance was more pronounced in running than in cycling. Athletes and coaches can use these findings to plan the career in long-distance duathletes with the age of peak performance between 25 and 39 years for both women and men.

  14. Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors.

    PubMed

    Caetano-Anollés, Kelsey; Rhodes, Justin S; Garland, Theodore; Perez, Sam D; Hernandez, Alvaro G; Southey, Bruce R; Rodriguez-Zas, Sandra L

    2016-01-01

    The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors.

  15. Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors

    PubMed Central

    Caetano-Anollés, Kelsey; Rhodes, Justin S.; Garland, Theodore; Perez, Sam D.; Hernandez, Alvaro G.; Southey, Bruce R.; Rodriguez-Zas, Sandra L.

    2016-01-01

    The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse line studied is a helpful model for understanding the molecular mechanisms in the cerebellum that influence locomotor control and reward-dependent behaviors. PMID:27893846

  16. Level 1 Processing of MODIS Direct Broadcast Data From Terra

    NASA Technical Reports Server (NTRS)

    Lynnes, Christopher; Smith, Peter; Shotland, Larry; El-Ghazawi, Tarek; Zhu, Ming

    2000-01-01

    In February 2000, an effort was begun to adapt the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1 production software to process direct broadcast data. Three Level 1 algorithms have been adapted and packaged for release: Level 1A converts raw (level 0) data into Hierarchical Data Format (HDF), unpacking packets into scans; Geolocation computes geographic information for the data points in the Level 1A; and the Level 1B computes geolocated, calibrated radiances from the Level 1A and Geolocation products. One useful aspect of adapting the production software is the ability to incorporate enhancements contributed by the MODIS Science Team. We have therefore tried to limit changes to the software. However, in order to process the data immediately on receipt, we have taken advantage of a branch in the geolocation software that reads orbit and altitude information from the packets themselves, rather than external ancillary files used in standard production. We have also verified that the algorithms can be run with smaller time increments (2.5 minutes) than the five-minute increments used in production. To make the code easier to build and run, we have simplified directories and build scripts. Also, dependencies on a commercial numerics library have been replaced by public domain software. A version of the adapted code has been released for Silicon Graphics machines running lrix. Perhaps owing to its origin in production, the software is rather CPU-intensive. Consequently, a port to Linux is underway, followed by a version to run on PC clusters, with an eventual goal of running in near-real-time (i.e., process a ten-minute pass in ten minutes).

  17. Running and Osteoarthritis: Does Recreational or Competitive Running Increase the Risk?

    PubMed

    2017-06-01

    Exercise, like running, is good for overall health and, specifically, our hearts, lungs, muscles, bones, and brains. However, some people are concerned about the impact of running on longterm joint health. Does running lead to higher rates of arthritis in knees and hips? While many researchers find that running protects bone health, others are concerned that this exercise poses a high risk for age-related changes to hips and knees. A study published in the June 2017 issue of JOSPT suggests that the difference in these outcomes depends on the frequency and intensity of running. J Orthop Sports Phys Ther 2017;47(6):391. doi:10.2519/jospt.2017.0505.

  18. A Monte-Carlo maplet for the study of the optical properties of biological tissues

    NASA Astrophysics Data System (ADS)

    Yip, Man Ho; Carvalho, M. J.

    2007-12-01

    Monte-Carlo simulations are commonly used to study complex physical processes in various fields of physics. In this paper we present a Maple program intended for Monte-Carlo simulations of photon transport in biological tissues. The program has been designed so that the input data and output display can be handled by a maplet (an easy and user-friendly graphical interface), named the MonteCarloMaplet. A thorough explanation of the programming steps and how to use the maplet is given. Results obtained with the Maple program are compared with corresponding results available in the literature. Program summaryProgram title:MonteCarloMaplet Catalogue identifier:ADZU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3251 No. of bytes in distributed program, including test data, etc.:296 465 Distribution format: tar.gz Programming language:Maple 10 Computer: Acer Aspire 5610 (any running Maple 10) Operating system: Windows XP professional (any running Maple 10) Classification: 3.1, 5 Nature of problem: Simulate the transport of radiation in biological tissues. Solution method: The Maple program follows the steps of the C program of L. Wang et al. [L. Wang, S.L. Jacques, L. Zheng, Computer Methods and Programs in Biomedicine 47 (1995) 131-146]; The Maple library routine for random number generation is used [Maple 10 User Manual c Maplesoft, a division of Waterloo Maple Inc., 2005]. Restrictions: Running time increases rapidly with the number of photons used in the simulation. Unusual features: A maplet (graphical user interface) has been programmed for data input and output. Note that the Monte-Carlo simulation was programmed with Maple 10. If attempting to run the simulation with an earlier version of Maple, appropriate modifications (regarding typesetting fonts) are required and once effected the worksheet runs without problem. However some of the windows of the maplet may still appear distorted. Running time: Depends essentially on the number of photons used in the simulation. Elapsed times for particular runs are reported in the main text.

  19. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission.

    PubMed

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-14

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  20. Nonadiabatic dynamics in intense continuous wave laser fields and real-time observation of the associated wavepacket bifurcation in terms of spectrogram of induced photon emission

    NASA Astrophysics Data System (ADS)

    Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo

    2016-11-01

    We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li+ F- and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.

  1. Computational simulation and aerodynamic sensitivity analysis of film-cooled turbines

    NASA Astrophysics Data System (ADS)

    Massa, Luca

    A computational tool is developed for the time accurate sensitivity analysis of the stage performance of hot gas, unsteady turbine components. An existing turbomachinery internal flow solver is adapted to the high temperature environment typical of the hot section of jet engines. A real gas model and film cooling capabilities are successfully incorporated in the software. The modifications to the existing algorithm are described; both the theoretical model and the numerical implementation are validated. The accuracy of the code in evaluating turbine stage performance is tested using a turbine geometry typical of the last stage of aeronautical jet engines. The results of the performance analysis show that the predictions differ from the experimental data by less than 3%. A reliable grid generator, applicable to the domain discretization of the internal flow field of axial flow turbine is developed. A sensitivity analysis capability is added to the flow solver, by rendering it able to accurately evaluate the derivatives of the time varying output functions. The complex Taylor's series expansion (CTSE) technique is reviewed. Two of them are used to demonstrate the accuracy and time dependency of the differentiation process. The results are compared with finite differences (FD) approximations. The CTSE is more accurate than the FD, but less efficient. A "black box" differentiation of the source code, resulting from the automated application of the CTSE, generates high fidelity sensitivity algorithms, but with low computational efficiency and high memory requirements. New formulations of the CTSE are proposed and applied. Selective differentiation of the method for solving the non-linear implicit residual equation leads to sensitivity algorithms with the same accuracy but improved run time. The time dependent sensitivity derivatives are computed in run times comparable to the ones required by the FD approach.

  2. Optimal flash rate and duty cycle for flashing visual indicators.

    NASA Technical Reports Server (NTRS)

    Markowitz, J.

    1971-01-01

    This experiment examined the ability of observers to determine, as quickly as possible, whether a visual indicator was steadily on or flashing. Six flash rates (periods) were combined factorially with three duty cycles (on-off ratios) to define 18 ?types' of intermittent signals. Experimental sessions were divided into six runs of 100 trials, each run utilizing one of the six flash rates. On any given trial in a run, the probability of a steady signal occurring was 0.5 and the probability of a flashing signal occurring was 0.5. A different duty cycle was employed daily for each experimental session. In all, 400 trials were devoted to each of the flash rates at each duty cycle. Accuracy and latency of response were the dependent variables of interest. The results show that the observers view the light for an interval of time appropriate to the expected flash rate and duty cycle; whether they judge the light to be steady or intermittent depends upon whether the light is extinguished during the predetermined waiting period. Adoption of this temporal criterion delays responding in comparison to those tasks involving responses to light onset. The decision or response criteria held by the observers are also sensitive to the parameters of the flashing light: observers become increasingly willing to call a flashing light ?steady' as flash duration increases.

  3. Effects of alcohol on attention orienting and dual-task performance during simulated driving: an event-related potential study.

    PubMed

    Wester, Anne E; Verster, Joris C; Volkerts, Edmund R; Böcker, Koen B E; Kenemans, J Leon

    2010-09-01

    Driving is a complex task and is susceptible to inattention and distraction. Moreover, alcohol has a detrimental effect on driving performance, possibly due to alcohol-induced attention deficits. The aim of the present study was to assess the effects of alcohol on simulated driving performance and attention orienting and allocation, as assessed by event-related potentials (ERPs). Thirty-two participants completed two test runs in the Divided Attention Steering Simulator (DASS) with blood alcohol concentrations (BACs) of 0.00%, 0.02%, 0.05%, 0.08% and 0.10%. Sixteen participants performed the second DASS test run with a passive auditory oddball to assess alcohol effects on involuntary attention shifting. Sixteen other participants performed the second DASS test run with an active auditory oddball to assess alcohol effects on dual-task performance and active attention allocation. Dose-dependent impairments were found for reaction times, the number of misses and steering error, even more so in dual-task conditions, especially in the active oddball group. ERP amplitudes to novel irrelevant events were also attenuated in a dose-dependent manner. The P3b amplitude to deviant target stimuli decreased with blood alcohol concentration only in the dual-task condition. It is concluded that alcohol increases distractibility and interference from secondary task stimuli, as well as reduces attentional capacity and dual-task integrality.

  4. Self-motivated and stress-response performance assays in mice are age-dependent.

    PubMed

    Ge, Xuan; Ciol, Marcia A; Pettan-Brewer, Christina; Goh, Jorming; Rabinovitch, Peter; Ladiges, Warren

    2017-05-01

    Chronic health conditions of the elderly lead to limitations in physical activity with disability, anxiety, and increased need for medical care and assisted living conditions. Physical performance tests are used to screen for pending loss of mobility and can serve as endpoints to monitor the effectiveness of intervention measures. Since limited mobility is associated with the physical and mental health of a person, evaluation of this in preclinical aging studies in mice will provide a translational approach for testing new intervention strategies. We assessed physiological parameters in 4, 12, 20 and 28month old C57BL/6 and CB6F1 male mice using a rotating rod, a free running wheel, and a photo beam activity field, designed to determine changes in coordinated walking ability, self-motivated running distance, and anxiety response to a novel environment, respectively. Older mice showed decreased coordinated walking times and decreased running distances, predictive of physical performance ability and motivation in the elderly. Changes in both lateral and vertical movements were observed in a novel cage environment suggesting different levels of anxiety. Because the genetic background of the two mouse strains influenced test results in an age-dependent manner, it is imperative to recognize that diverse genetic backgrounds in mice may yield different data in preclinical studies and would need to be interpreted individually for translational applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The VLBA correlator: Real-time in the distributed era

    NASA Technical Reports Server (NTRS)

    Wells, D. C.

    1992-01-01

    The correlator is the signal processing engine of the Very Long Baseline Array (VLBA). Radio signals are recorded on special wideband (128 Mb/s) digital recorders at the 10 telescopes, with sampling times controlled by hydrogen maser clocks. The magnetic tapes are shipped to the Array Operations Center in Socorro, New Mexico, where they are played back simultaneously into the correlator. Real-time software and firmware controls the playback drives to achieve synchronization, compute models of the wavefront delay, control the numerous modules of the correlator, and record FITS files of the fringe visibilities at the back-end of the correlator. In addition to the more than 3000 custom VLSI chips which handle the massive data flow of the signal processing, the correlator contains a total of more than 100 programmable computers, 8-, 16- and 32-bit CPUs. Code is downloaded into front-end CPU's dependent on operating mode. Low-level code is assembly language, high-level code is C running under a RT OS. We use VxWorks on Motorola MVME147 CPU's. Code development is on a complex of SPARC workstations connected to the RT CPU's by Ethernet. The overall management of the correlation process is dependent on a database management system. We use Ingres running on a Sparcstation-2. We transfer logging information from the database of the VLBA Monitor and Control System to our database using Ingres/NET. Job scripts are computed and are transferred to the real-time computers using NFS, and correlation job execution logs and status flow back by the route. Operator status and control displays use windows on workstations, interfaced to the real-time processes by network protocols. The extensive network protocol support provided by VxWorks is invaluable. The VLBA Correlator's dependence on network protocols is an example of the radical transformation of the real-time world over the past five years. Real-time is becoming more like conventional computing. Paradoxically, 'conventional' computing is also adopting practices from the real-time world: semaphores, shared memory, light-weight threads, and concurrency. This appears to be a convergence of thinking.

  6. Cannabis cue-induced brain activation correlates with drug craving in limbic and visual salience regions: Preliminary results

    PubMed Central

    Charboneau, Evonne J.; Dietrich, Mary S.; Park, Sohee; Cao, Aize; Watkins, Tristan J; Blackford, Jennifer U; Benningfield, Margaret M.; Martin, Peter R.; Buchowski, Maciej S.; Cowan, Ronald L.

    2013-01-01

    Craving is a major motivator underlying drug use and relapse but the neural correlates of cannabis craving are not well understood. This study sought to determine whether visual cannabis cues increase cannabis craving and whether cue-induced craving is associated with regional brain activation in cannabis-dependent individuals. Cannabis craving was assessed in 16 cannabis-dependent adult volunteers while they viewed cannabis cues during a functional MRI (fMRI) scan. The Marijuana Craving Questionnaire was administered immediately before and after each of three cannabis cue-exposure fMRI runs. FMRI blood-oxygenation-level-dependent (BOLD) signal intensity was determined in regions activated by cannabis cues to examine the relationship of regional brain activation to cannabis craving. Craving scores increased significantly following exposure to visual cannabis cues. Visual cues activated multiple brain regions, including inferior orbital frontal cortex, posterior cingulate gyrus, parahippocampal gyrus, hippocampus, amygdala, superior temporal pole, and occipital cortex. Craving scores at baseline and at the end of all three runs were significantly correlated with brain activation during the first fMRI run only, in the limbic system (including amygdala and hippocampus) and paralimbic system (superior temporal pole), and visual regions (occipital cortex). Cannabis cues increased craving in cannabis-dependent individuals and this increase was associated with activation in the limbic, paralimbic, and visual systems during the first fMRI run, but not subsequent fMRI runs. These results suggest that these regions may mediate visually cued aspects of drug craving. This study provides preliminary evidence for the neural basis of cue-induced cannabis craving and suggests possible neural targets for interventions targeted at treating cannabis dependence. PMID:24035535

  7. On the running of the spectral index to all orders: a new model-dependent approach to constrain inflationary models

    NASA Astrophysics Data System (ADS)

    Zarei, Moslem

    2016-06-01

    In conventional model-independent approaches, the power spectrum of primordial perturbations is characterized by such free parameters as the spectral index, its running, the running of running, and the tensor-to-scalar ratio. In this work we show that, at least for simple inflationary potentials, one can find the primordial scalar and tensor power spectra exactly by resumming over all the running terms. In this model-dependent method, we expand the power spectra about the pivot scale to find the series terms as functions of the e-folding number for some single field models of inflation. Interestingly, for the viable models studied here, one can sum over all the terms and evaluate the exact form of the power spectra. This in turn gives more accurate parametrization of the specific models studied in this work. We finally compare our results with recent cosmic microwave background data to find that our new power spectra are in good agreement with the data.

  8. Memory Management of Multimedia Services in Smart Homes

    NASA Astrophysics Data System (ADS)

    Kamel, Ibrahim; Muhaureq, Sanaa A.

    Nowadays there is a wide spectrum of applications that run in smart home environments. Consequently, home gateway, which is a central component in the smart home, must manage many applications despite limited memory resources. OSGi is a middleware standard for home gateways. OSGi models services as dependent components. Moreover, these applications might differ in their importance. Services collaborate and complement each other to achieve the required results. This paper addresses the following problem: given a home gateway that hosts several applications with different priorities and arbitrary dependencies among them. When the gateway runs out of memory, which application or service will be stopped or kicked out of memory to start a new service. Note that stopping a given service means that all the services that depend on it will be stopped too. Because of the service dependencies, traditional memory management techniques, in the operating system literatures might not be efficient. Our goal is to stop the least important and the least number of services. The paper presents a novel algorithm for home gateway memory management. The proposed algorithm takes into consideration the priority of the application and dependencies between different services, in addition to the amount of memory occupied by each service. We implement the proposed algorithm and performed many experiments to evaluate its performance and execution time. The proposed algorithm is implemented as a part of the OSGi framework (Open Service Gateway initiative). We used best fit and worst fit as yardstick to show the effectiveness of the proposed algorithm.

  9. Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome.

    PubMed

    Boldt, Andrew R; Willson, John D; Barrios, Joaquin A; Kernozek, Thomas W

    2013-02-01

    We examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome (PFPS). We also tested if these effects depend on standing calcaneal eversion angle. Twenty female runners with and without PFPS participated. Knee and hip joint transverse and frontal plane peak angle, excursion, and peak internal knee and hip abduction moment were calculated while running with and without a 6° full-length medially wedged foot orthoses. Separate 3-factor mixed ANOVAs (group [PFPS, control] x condition [medial wedge, no medial wedge] x standing calcaneal angle [everted, neutral, inverted]) were used to test the effect of medially wedged orthoses on each dependent variable. Knee abduction moment increased 3% (P = .03) and hip adduction excursion decreased 0.6° (P < .01) using medially wedged foot orthoses. No significant group x condition or calcaneal angle x condition effects were observed. The addition of medially wedged foot orthoses to standardized running shoes had minimal effect on knee and hip joint mechanics during running thought to be associated with the etiology or exacerbation of PFPS symptoms. These effects did not appear to depend on injury status or standing calcaneal posture.

  10. The effect of recovery duration on running speed and stroke quality during intermittent training drills in elite tennis players.

    PubMed

    Ferrauti, A; Pluim, B M; Weber, K

    2001-04-01

    The aim of this study was to assess the effect of the recovery duration in intermittent training drills on metabolism and coordination in sport games. Ten nationally ranked male tennis players (age 25.3+/-3.7 years, height 1.83+/-0.8 m, body mass 77.8+/-7.7 kg; mean +/- sx) participated in a passing-shot drill (baseline sprint with subsequent passing shot) that aimed to improve both starting speed and stroke quality (speed and precision). Time pressure for stroke preparation was individually adjusted by a ball-machine and corresponded to 80% of maximum running speed. In two trials (T10, T15) separated by 2 weeks, the players completed 30 strokes and sprints subdivided into 6 x 5 repetitions with a 1 min rest between series. The rest between each stroke-and-sprint lasted either 10 s (T10) or 15 s (T15). The sequence of both conditions was randomized between participants. Post-exercise blood lactate concentration was significantly elevated in T10 (9.04+/-3.06 vs 5.01+/-1.35 mmol x l(-1), P < 0.01). Running time for stroke preparation (1.405+/-0.044 vs 1.376+/-0.045 s, P < 0.05) and stroke speed (106+/-12 vs 114+/-8 km x h(-1), P < 0.05) were significantly decreased in T10, while stroke precision - that is, more target hits (P < 0.1) and fewer errors (P < 0.05) - tended to be higher. We conclude that running speed and stroke quality during intermittent tennis drills are highly dependent on the duration of recovery time. Optimization of training efficacy in sport games (e.g. combined improvement of conditional and technical skills) requires skilful fine-tuning of monitoring guidelines.

  11. Differential use of salmon by vertebrate consumers: implications for conservation

    PubMed Central

    Wheat, Rachel E.; Allen, Jennifer M.; Wilmers, Christopher C.

    2015-01-01

    Salmon and other anadromous fish are consumed by vertebrates with distinct life history strategies to capitalize on this ephemeral pulse of resource availability. Depending on the timing of salmon arrival, this resource may be in surplus to the needs of vertebrate consumers if, for instance, their populations are limited by food availability during other times of year. However, the life history of some consumers enables more efficient exploitation of these ephemeral resources. Bears can deposit fat and then hibernate to avoid winter food scarcity, and highly mobile consumers such as eagles, gulls, and other birds can migrate to access asynchronous pulses of salmon availability. We used camera traps on pink, chum, and sockeye salmon spawning grounds with various run times and stream morphologies, and on individual salmon carcasses, to discern potentially different use patterns among consumers. Wildlife use of salmon was highly heterogeneous. Ravens were the only avian consumer that fed heavily on pink salmon in small streams. Eagles and gulls did not feed on early pink salmon runs in streams, and only moderately at early sockeye runs, but were the dominant consumers at late chum salmon runs, particularly on expansive river flats. Brown bears used all salmon resources far more than other terrestrial vertebrates. Notably, black bears were not observed on salmon spawning grounds despite being the most frequently observed vertebrate on roads and trails. From a conservation and management perspective, all salmon species and stream morphologies are used extensively by bears, but salmon spawning late in the year are disproportionately important to eagles and other highly mobile species that are seasonally limited by winter food availability. PMID:26339539

  12. Dynamic Patterns of Forces and Loading Rate in Runners with Unilateral Plantar Fasciitis: A Cross-Sectional Study

    PubMed Central

    Ribeiro, Ana Paula; João, Silvia Maria Amado; Dinato, Roberto Casanova; Tessutti, Vitor Daniel; Sacco, Isabel Camargo Neves

    2015-01-01

    Aim/Hypothesis The etiology of plantar fasciitis (PF) has been related to several risk factors, but the magnitude of the plantar load is the most commonly described factor. Although PF is the third most-common injury in runners, only two studies have investigated this factor in runners, and their results are still inconclusive regarding the injury stage. Objective Analyze and compare the plantar loads and vertical loading rate during running of runners in the acute stage of PF to those in the chronic stage of the injury in relation to healthy runners. Methods Forty-five runners with unilateral PF (30 acute and 15 chronic) and 30 healthy control runners were evaluated while running at 12 km/h for 40 meters wearing standardized running shoes and Pedar-X insoles. The contact area and time, maximum force, and force-time integral over the rearfoot, midfoot, and forefoot were recorded and the loading rate (20–80% of the first vertical peak) was calculated. Groups were compared by ANOVAs (p<0.05). Results Maximum force and force-time integral over the rearfoot and the loading rate was higher in runners with PF (acute and chronic) compared with controls (p<0.01). Runners with PF in the acute stage showed lower loading rate and maximum force over the rearfoot compared to runners in the chronic stage (p<0.01). Conclusion Runners with PF showed different dynamic patterns of plantar loads during running over the rearfoot area depending on the injury stage (acute or chronic). In the acute stage of PF, runners presented lower loading rate and forces over the rearfoot, possibly due to dynamic mechanisms related to pain protection of the calcaneal area. PMID:26375815

  13. Reduze - Feynman integral reduction in C++

    NASA Astrophysics Data System (ADS)

    Studerus, C.

    2010-07-01

    Reduze is a computer program for reducing Feynman integrals to master integrals employing a Laporta algorithm. The program is written in C++ and uses classes provided by the GiNaC library to perform the simplifications of the algebraic prefactors in the system of equations. Reduze offers the possibility to run reductions in parallel. Program summaryProgram title:Reduze Catalogue identifier: AEGE_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGE_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:: yes No. of lines in distributed program, including test data, etc.: 55 433 No. of bytes in distributed program, including test data, etc.: 554 866 Distribution format: tar.gz Programming language: C++ Computer: All Operating system: Unix/Linux Number of processors used: The number of processors is problem dependent. More than one possible but not arbitrary many. RAM: Depends on the complexity of the system. Classification: 4.4, 5 External routines: CLN ( http://www.ginac.de/CLN/), GiNaC ( http://www.ginac.de/) Nature of problem: Solving large systems of linear equations with Feynman integrals as unknowns and rational polynomials as prefactors. Solution method: Using a Gauss/Laporta algorithm to solve the system of equations. Restrictions: Limitations depend on the complexity of the system (number of equations, number of kinematic invariants). Running time: Depends on the complexity of the system.

  14. Reinventing the wheel: comparison of two wheel cage styles for assessing mouse voluntary running activity.

    PubMed

    Seward, T; Harfmann, B D; Esser, K A; Schroder, E A

    2018-04-01

    Voluntary wheel cage assessment of mouse activity is commonly employed in exercise and behavioral research. Currently, no standardization for wheel cages exists resulting in an inability to compare results among data from different laboratories. The purpose of this study was to determine whether the distance run or average speed data differ depending on the use of two commonly used commercially available wheel cage systems. Two different wheel cages with structurally similar but functionally different wheels (electromechanical switch vs. magnetic switch) were compared side-by-side to measure wheel running data differences. Other variables, including enrichment and cage location, were also tested to assess potential impacts on the running wheel data. We found that cages with the electromechanical switch had greater inherent wheel resistance and consistently led to greater running distance per day and higher average running speed. Mice rapidly, within 1-2 days, adapted their running behavior to the type of experimental switch used, suggesting these running differences are more behavioral than due to intrinsic musculoskeletal, cardiovascular, or metabolic limits. The presence of enrichment or location of the cage had no detectable impact on voluntary wheel running. These results demonstrate that mice run differing amounts depending on the type of cage and switch mechanism used and thus investigators need to report wheel cage type/wheel resistance and use caution when interpreting distance/speed run across studies. NEW & NOTEWORTHY The results of this study highlight that mice will run different distances per day and average speed based on the inherent resistance present in the switch mechanism used to record data. Rapid changes in running behavior for the same mouse in the different cages demonstrate that a strong behavioral factor contributes to classic exercise outcomes in mice. Caution needs to be taken when interpreting mouse voluntary wheel running activity to include potential behavioral input and physiological parameters.

  15. Automatic Fitting of Spiking Neuron Models to Electrophysiological Recordings

    PubMed Central

    Rossant, Cyrille; Goodman, Dan F. M.; Platkiewicz, Jonathan; Brette, Romain

    2010-01-01

    Spiking models can accurately predict the spike trains produced by cortical neurons in response to somatically injected currents. Since the specific characteristics of the model depend on the neuron, a computational method is required to fit models to electrophysiological recordings. The fitting procedure can be very time consuming both in terms of computer simulations and in terms of code writing. We present algorithms to fit spiking models to electrophysiological data (time-varying input and spike trains) that can run in parallel on graphics processing units (GPUs). The model fitting library is interfaced with Brian, a neural network simulator in Python. If a GPU is present it uses just-in-time compilation to translate model equations into optimized code. Arbitrary models can then be defined at script level and run on the graphics card. This tool can be used to obtain empirically validated spiking models of neurons in various systems. We demonstrate its use on public data from the INCF Quantitative Single-Neuron Modeling 2009 competition by comparing the performance of a number of neuron spiking models. PMID:20224819

  16. Loss of Cdk5 function in the nucleus accumbens decreases wheel running and may mediate age-related declines in voluntary physical activity.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Childs, Thomas E; Grigsby, Kolter B; Booth, Frank W

    2017-01-01

    Physical inactivity, which drastically increases with advancing age, is associated with numerous chronic diseases. The nucleus accumbens (the pleasure and reward 'hub' in the brain) influences wheel running behaviour in rodents. RNA-sequencing and subsequent bioinformatics analysis led us to hypothesize a potential relationship between the regulation of dendritic spine density, the molecules involved in synaptic transmission, and age-related reductions in wheel running. Upon completion of follow-up studies, we developed the working model that synaptic plasticity in the nucleus accumbens is central to age-related changes in voluntary running. Testing this hypothesis, inhibition of Cdk5 (comprising a molecule central to the processes described above) in the nucleus accumbens reduced wheel running. The results of the present study show that reductions in synaptic transmission and Cdk5 function are related to decreases in voluntary running behaviour and provide guidance for understanding the neural mechanisms that underlie age-dependent reductions in the motivation to be physically active. Increases in age are often associated with reduced levels of physical activity, which, in turn, associates with the development of numerous chronic diseases. We aimed to assess molecular differences in the nucleus accumbens (NAc) (a specific brain nucleus postulated to influence rewarding behaviour) with respect to wheel running and sedentary female Wistar rats at 8 and 14 weeks of age. RNA-sequencing was used to interrogate transcriptomic changes between 8- and 14-week-old wheel running rats, and select transcripts were later analysed by quantitative RT-PCR in age-matched sedentary rats. Voluntary wheel running was greatest at 8 weeks and had significantly decreased by 12 weeks. From 619 differentially expressed mRNAs, bioinformatics suggested that cAMP-mediated signalling, dopamine- and cAMP-regulated neuronal phosphoprotein of 32 kDa feedback, and synaptic plasticity were greater in 8- vs. 14-week-old rats. In depth analysis of these networks showed significant (∼20-30%; P < 0.05) decreases in cell adhesion molecule (Cadm)4 and p39 mRNAs, as well as their proteins from 8 to 14 weeks of age in running and sedentary rats. Furthermore, Cadm4, cyclin-dependent kinase 5 (Cdk5) and p39 mRNAs were significantly correlated with voluntary running distance. Analysis of dendritic spine density in the NAc showed that wheel access increased spine density (P < 0.001), whereas spine density was lower in 14- vs. 8-week-old sedentary rats (P = 0.03). Intriguingly, intra-NAc injection of the Cdk5 inhibitor roscovitine, dose-dependently decreased wheel running. Collectively, these experiments suggest that an age-dependent loss in synaptic function and Cdk5/p39 activity in the NAc may be partially responsible for age-related declines in voluntary running behaviour. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  17. Loss of Cdk5 function in the nucleus accumbens decreases wheel running and may mediate age‐related declines in voluntary physical activity

    PubMed Central

    Ruegsegger, Gregory N.; Toedebusch, Ryan G.; Childs, Thomas E.; Grigsby, Kolter B.

    2016-01-01

    Key points Physical inactivity, which drastically increases with advancing age, is associated with numerous chronic diseases.The nucleus accumbens (the pleasure and reward ‘hub’ in the brain) influences wheel running behaviour in rodents.RNA‐sequencing and subsequent bioinformatics analysis led us to hypothesize a potential relationship between the regulation of dendritic spine density, the molecules involved in synaptic transmission, and age‐related reductions in wheel running. Upon completion of follow‐up studies, we developed the working model that synaptic plasticity in the nucleus accumbens is central to age‐related changes in voluntary running.Testing this hypothesis, inhibition of Cdk5 (comprising a molecule central to the processes described above) in the nucleus accumbens reduced wheel running.The results of the present study show that reductions in synaptic transmission and Cdk5 function are related to decreases in voluntary running behaviour and provide guidance for understanding the neural mechanisms that underlie age‐dependent reductions in the motivation to be physically active. Abstract Increases in age are often associated with reduced levels of physical activity, which, in turn, associates with the development of numerous chronic diseases. We aimed to assess molecular differences in the nucleus accumbens (NAc) (a specific brain nucleus postulated to influence rewarding behaviour) with respect to wheel running and sedentary female Wistar rats at 8 and 14 weeks of age. RNA‐sequencing was used to interrogate transcriptomic changes between 8‐ and 14‐week‐old wheel running rats, and select transcripts were later analysed by quantitative RT‐PCR in age‐matched sedentary rats. Voluntary wheel running was greatest at 8 weeks and had significantly decreased by 12 weeks. From 619 differentially expressed mRNAs, bioinformatics suggested that cAMP‐mediated signalling, dopamine‐ and cAMP‐regulated neuronal phosphoprotein of 32 kDa feedback, and synaptic plasticity were greater in 8‐ vs. 14‐week‐old rats. In depth analysis of these networks showed significant (∼20–30%; P < 0.05) decreases in cell adhesion molecule (Cadm)4 and p39 mRNAs, as well as their proteins from 8 to 14 weeks of age in running and sedentary rats. Furthermore, Cadm4, cyclin‐dependent kinase 5 (Cdk5) and p39 mRNAs were significantly correlated with voluntary running distance. Analysis of dendritic spine density in the NAc showed that wheel access increased spine density (P < 0.001), whereas spine density was lower in 14‐ vs. 8‐week‐old sedentary rats (P = 0.03). Intriguingly, intra‐NAc injection of the Cdk5 inhibitor roscovitine, dose‐dependently decreased wheel running. Collectively, these experiments suggest that an age‐dependent loss in synaptic function and Cdk5/p39 activity in the NAc may be partially responsible for age‐related declines in voluntary running behaviour. PMID:27461471

  18. Hitts Law? A test of the relationship between information load and movement precision

    NASA Technical Reports Server (NTRS)

    Zaleski, M.; Moray, N.

    1986-01-01

    Recent technological developments have made viable a man-machine interface heavily dependent on graphics and pointing devices. This has led to new interest in classical reaction and movement time work by Human Factors specialists. Two experiments were designed and run to test the dependence of target capture time on information load (Hitt's Law) and movement precision (Fitts' Law). The proposed model linearly combines Hitt's and Fitts' results into a combination law which then might be called Hitts' Law. Subjects were required to react to stimuli by manipulating a joystick so as to cause a cursor to capture a target on a CRT screen. Response entropy and the relative precision of the capture movement were crossed in a factorial design and data obtained that were found to support the model.

  19. A Computer Program for the Computation of Running Gear Temperatures Using Green's Function

    NASA Technical Reports Server (NTRS)

    Koshigoe, S.; Murdock, J. W.; Akin, L. S.; Townsend, D. P.

    1996-01-01

    A new technique has been developed to study two dimensional heat transfer problems in gears. This technique consists of transforming the heat equation into a line integral equation with the use of Green's theorem. The equation is then expressed in terms of eigenfunctions that satisfy the Helmholtz equation, and their corresponding eigenvalues for an arbitrarily shaped region of interest. The eigenfunction are obtalned by solving an intergral equation. Once the eigenfunctions are found, the temperature is expanded in terms of the eigenfunctions with unknown time dependent coefficients that can be solved by using Runge Kutta methods. The time integration is extremely efficient. Therefore, any changes in the time dependent coefficients or source terms in the boundary conditions do not impose a great computational burden on the user. The method is demonstrated by applying it to a sample gear tooth. Temperature histories at representative surface locatons are given.

  20. Running Economy from a Muscle Energetics Perspective.

    PubMed

    Fletcher, Jared R; MacIntosh, Brian R

    2017-01-01

    The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (E run ) can be obtained with this approach. E run is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of E run from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting E run are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics.

  1. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model

    NASA Technical Reports Server (NTRS)

    Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.

    1988-01-01

    The global climate effects of time-dependent atmospheric trace gas and aerosol variations are simulated by NASA-Goddard's three-dimensional climate model II, which possesses 8 x 10-deg horizontal resolution, for the cases of a 100-year control run and three different atmospheric composition scenarios in which trace gas growth is respectively a continuation of current exponential trends, a reduced linear growth, and a rapid curtailment of emissions due to which net climate forcing no longer increases after the year 2000. The experiments begin in 1958, run to the present, and encompass measured or estimated changes in CO2, CH4, N2O, chlorofluorocarbons, and stratospheric aerosols. It is shown that the greenhouse warming effect may be clearly identifiable in the 1990s.

  2. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain.

    PubMed

    Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W; Daley, Monica A

    2014-11-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force-length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force-length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. © 2014. Published by The Company of Biologists Ltd.

  3. Don't break a leg: running birds from quail to ostrich prioritise leg safety and economy on uneven terrain

    PubMed Central

    Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Blum, Yvonne; Renjewski, Daniel; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    Cursorial ground birds are paragons of bipedal running that span a 500-fold mass range from quail to ostrich. Here we investigate the task-level control priorities of cursorial birds by analysing how they negotiate single-step obstacles that create a conflict between body stability (attenuating deviations in body motion) and consistent leg force–length dynamics (for economy and leg safety). We also test the hypothesis that control priorities shift between body stability and leg safety with increasing body size, reflecting use of active control to overcome size-related challenges. Weight-support demands lead to a shift towards straighter legs and stiffer steady gait with increasing body size, but it remains unknown whether non-steady locomotor priorities diverge with size. We found that all measured species used a consistent obstacle negotiation strategy, involving unsteady body dynamics to minimise fluctuations in leg posture and loading across multiple steps, not directly prioritising body stability. Peak leg forces remained remarkably consistent across obstacle terrain, within 0.35 body weights of level running for obstacle heights from 0.1 to 0.5 times leg length. All species used similar stance leg actuation patterns, involving asymmetric force–length trajectories and posture-dependent actuation to add or remove energy depending on landing conditions. We present a simple stance leg model that explains key features of avian bipedal locomotion, and suggests economy as a key priority on both level and uneven terrain. We suggest that running ground birds target the closely coupled priorities of economy and leg safety as the direct imperatives of control, with adequate stability achieved through appropriately tuned intrinsic dynamics. PMID:25355848

  4. ScriptingRT: A Software Library for Collecting Response Latencies in Online Studies of Cognition

    PubMed Central

    Schubert, Thomas W.; Murteira, Carla; Collins, Elizabeth C.; Lopes, Diniz

    2013-01-01

    ScriptingRT is a new open source tool to collect response latencies in online studies of human cognition. ScriptingRT studies run as Flash applets in enabled browsers. ScriptingRT provides the building blocks of response latency studies, which are then combined with generic Apache Flex programming. Six studies evaluate the performance of ScriptingRT empirically. Studies 1–3 use specialized hardware to measure variance of response time measurement and stimulus presentation timing. Studies 4–6 implement a Stroop paradigm and run it both online and in the laboratory, comparing ScriptingRT to other response latency software. Altogether, the studies show that Flash programs developed in ScriptingRT show a small lag and an increased variance in response latencies. However, this did not significantly influence measured effects: The Stroop effect was reliably replicated in all studies, and the found effects did not depend on the software used. We conclude that ScriptingRT can be used to test response latency effects online. PMID:23805326

  5. Muscle Glycogen, Fiber Type, Aerobic Fitness, and Anaerobic Capacity of West Coast U.S. Navy Sea-Air-Land Personnel (SEALS).

    DTIC Science & Technology

    1992-07-01

    traininig and nutritional intake histories for the 36-48 hours preceding the biopsy. Aerobic Fitness Test. Aerobic endurance performance was evaluated...running, cycling, soccer, volleyball, Versiclimber®, calisthenics, and weightlifting . These activities are consistent with the training habits of a...success of missions requiring time-dependent coordination of unit movements. Achieving a greater degree of nutritional homogeneity and physical/mission

  6. Sound-Intensity Feedback During Running Reduces Loading Rates and Impact Peak.

    PubMed

    Tate, Jeremiah J; Milner, Clare E

    2017-08-01

    Study Design Controlled laboratory study, within-session design. Background Gait retraining has been proposed as an effective intervention to reduce impact loading in runners at risk of stress fractures. Interventions that can be easily implemented in the clinic are needed. Objective To assess the immediate effects of sound-intensity feedback related to impact during running on vertical impact peak, peak vertical instantaneous loading rate, and vertical average loading rate. Methods Fourteen healthy, college-aged runners who ran at least 9.7 km/wk participated (4 male, 10 female; mean ± SD age, 23.7 ± 2.0 years; height, 1.67 ± 0.08 m; mass, 60.9 ± 8.7 kg). A decibel meter provided real-time sound-intensity feedback of treadmill running via an iPad application. Participants were asked to reduce the sound intensity of running while receiving continuous feedback for 15 minutes, while running at their self-selected preferred speed. Baseline and follow-up ground reaction force data were collected during overground running at participants' self-selected preferred running speed. Results Dependent t tests indicated a statistically significant reduction in vertical impact peak (1.56 BW to 1.13 BW, P≤.001), vertical instantaneous loading rate (95.48 BW/s to 62.79 BW/s, P = .001), and vertical average loading rate (69.09 BW/s to 43.91 BW/s, P≤.001) after gait retraining, compared to baseline. Conclusion The results of the current study support the use of sound-intensity feedback during treadmill running to immediately reduce loading rate and impact force. The transfer of within-session reductions in impact peak and loading rates to overground running was demonstrated. Decreases in loading were of comparable magnitude to those observed in other gait retraining methods. J Orthop Sports Phys Ther 2017;47(8):565-569. Epub 6 Jul 2017. doi:10.2519/jospt.2017.7275.

  7. Recent advances in the multimodel hydrologic ensemble forecasting using the HydroProg system in the Nysa Klodzka river basin (southwestern Poland)

    NASA Astrophysics Data System (ADS)

    Niedzielski, Tomasz; Mizinski, Bartlomiej; Swierczynska-Chlasciak, Malgorzata

    2017-04-01

    The HydroProg system, the real-time multimodel hydrologic ensemble system elaborated at the University of Wroclaw (Poland) in frame of the research grant no. 2011/01/D/ST10/04171 financed by National Science Centre of Poland, has been experimentally launched in 2013 in the Nysa Klodzka river basin (southwestern Poland). Since that time the system has been working operationally to provide water level predictions in real time. At present, depending on a hydrologic gauge, up to eight hydrologic models are run. They are data- and physically-based solutions, with the majority of them being the data-based ones. The paper aims to report on the performance of the implementation of the HydroProg system for the basin in question. We focus on several high flows episodes and discuss the skills of the individual models in forecasting them. In addition, we present the performance of the multimodel ensemble solution. We also introduce a new prognosis which is determined in the following way: for a given lead time we select the most skillful prediction (from the set of all individual models running at a given gauge and their multimodel ensemble) using the performance statistics computed operationally in real time as a function of lead time.

  8. Percentiles of the run-length distribution of the Exponentially Weighted Moving Average (EWMA) median chart

    NASA Astrophysics Data System (ADS)

    Tan, K. L.; Chong, Z. L.; Khoo, M. B. C.; Teoh, W. L.; Teh, S. Y.

    2017-09-01

    Quality control is crucial in a wide variety of fields, as it can help to satisfy customers’ needs and requirements by enhancing and improving the products and services to a superior quality level. The EWMA median chart was proposed as a useful alternative to the EWMA \\bar{X} chart because the median-type chart is robust against contamination, outliers or small deviation from the normality assumption compared to the traditional \\bar{X}-type chart. To provide a complete understanding of the run-length distribution, the percentiles of the run-length distribution should be investigated rather than depending solely on the average run length (ARL) performance measure. This is because interpretation depending on the ARL alone can be misleading, as the process mean shifts change according to the skewness and shape of the run-length distribution, varying from almost symmetric when the magnitude of the mean shift is large, to highly right-skewed when the process is in-control (IC) or slightly out-of-control (OOC). Before computing the percentiles of the run-length distribution, optimal parameters of the EWMA median chart will be obtained by minimizing the OOC ARL, while retaining the IC ARL at a desired value.

  9. Children who run away from home: risks for suicidal behavior and substance misuse.

    PubMed

    Meltzer, Howard; Ford, Tamsin; Bebbington, Paul; Vostanis, Panos

    2012-11-01

    The primary aim of this study is to examine the extent to which running away from home as a child is associated with behavioral problems and victimization during childhood and with suicidal behavior and substance abuse during early adulthood. A random probability sample comprising 7,461 respondents was interviewed for the 2007 survey of psychiatric morbidity of adults in England. A subsample of 16- to 34-year-old individuals was selected for secondary analysis (N = 2,247). All survey respondents were asked whether they had run away from home and asked specific questions on being physically, emotionally and sexually abused as children. They were also asked about suicidal behavior and alcohol and drug dependence in early adulthood. Approximately 7% of 16- to 34-year-old individuals reported running away from home before the age of 16 years, with higher rates in women than in men (9.8% compared with 5.3%). Overall, 45.3% reported being bullied, 25.3% experienced violence at home, and 8.8% reported unwanted sexual intercourse. Runaways were far more likely than other children to have suffered victimization and family difficulties and to exhibit behavioral problems. Adults who reported running away from home were three times more likely than other adults to have thought about or attempted suicide, but the relationship with substance abuse was far less pronounced. Sexual, physical, and emotional abuse, along with family difficulties, can all impact children who run away from home. Running away from home was strongly associated with suicidal behavior in adulthood, regardless of other childhood adversities. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  10. Metabolic cost of running is greater on a treadmill with a stiffer running platform.

    PubMed

    Smith, James A H; McKerrow, Alexander D; Kohn, Tertius A

    2017-08-01

    Exercise testing on motorised treadmills provides valuable information about running performance and metabolism; however, the impact of treadmill type on these tests has not been investigated. This study compared the energy demand of running on two laboratory treadmills: an HP Cosmos (C) and a Quinton (Q) model, with the latter having a 4.5 times stiffer running platform. Twelve experienced runners ran identical bouts on these treadmills at a range of four submaximal velocities (reported data is for the velocity that approximated 75-81% VO 2max ). The stiffer treadmill elicited higher oxygen consumption (C: 46.7 ± 3.8; Q: 50.1 ± 4.3 ml·kg -1 · min -1 ), energy expenditure (C: 16.0 ± 2.5; Q: 17.7 ± 2.9 kcal · min -1 ), carbohydrate oxidation (C: 9.6 ± 3.1; Q: 13.0 ± 3.9 kcal · min -1 ), heart rate (C: 155 ± 16; Q: 163 ± 16 beats · min -1 ) and rating of perceived exertion (C: 13.8 ± 1.2; Q: 14.7 ± 1.2), but lower fat oxidation (C: 6.4 ± 2.3; Q: 4.6 ± 2.5 kcal · min -1 ) (all analysis of variance treadmill comparisons P < 0.01). This study confirms that caution is required when comparing performance and metabolic results between different treadmills and suggests that treadmills will vary in their comparability to over-ground running depending on the running platform stiffness.

  11. Shoe cleat position during cycling and its effect on subsequent running performance in triathletes.

    PubMed

    Viker, Tomas; Richardson, Matt X

    2013-01-01

    Research with cyclists suggests a decreased load on the lower limbs by placing the shoe cleat more posteriorly, which may benefit subsequent running in a triathlon. This study investigated the effect of shoe cleat position during cycling on subsequent running. Following bike-run training sessions with both aft and traditional cleat positions, 13 well-trained triathletes completed a 30 min simulated draft-legal triathlon cycling leg, followed by a maximal 5 km run on two occasions, once with aft-placed and once with traditionally placed cleats. Oxygen consumption, breath frequency, heart rate, cadence and power output were measured during cycling, while heart rate, contact time, 200 m lap time and total time were measured during running. Cardiovascular measures did not differ between aft and traditional cleat placement during the cycling protocol. The 5 km run time was similar for aft and traditional cleat placement, at 1084 ± 80 s and 1072 ± 64 s, respectively, as was contact time during km 1 and 5, and heart rate and running speed for km 5 for the two cleat positions. Running speed during km 1 was 2.1% ± 1.8 faster (P < 0.05) for the traditional cleat placement. There are no beneficial effects of an aft cleat position on subsequent running in a short distance triathlon.

  12. Different types of drifts in two seasonal forecast systems and their dependence on ENSO

    NASA Astrophysics Data System (ADS)

    Hermanson, L.; Ren, H.-L.; Vellinga, M.; Dunstone, N. D.; Hyder, P.; Ineson, S.; Scaife, A. A.; Smith, D. M.; Thompson, V.; Tian, B.; Williams, K. D.

    2017-11-01

    Seasonal forecasts using coupled ocean-atmosphere climate models are increasingly employed to provide regional climate predictions. For the quality of forecasts to improve, regional biases in climate models must be diagnosed and reduced. The evolution of biases as initialized forecasts drift away from the observations is poorly understood, making it difficult to diagnose the causes of climate model biases. This study uses two seasonal forecast systems to examine drifts in sea surface temperature (SST) and precipitation, and compares them to the long-term bias in the free-running version of each model. Drifts are considered from daily to multi-annual time scales. We define three types of drift according to their relation with the long-term bias in the free-running model: asymptoting, overshooting and inverse drift. We find that precipitation almost always has an asymptoting drift. SST drifts on the other hand, vary between forecasting systems, where one often overshoots and the other often has an inverse drift. We find that some drifts evolve too slowly to have an impact on seasonal forecasts, even though they are important for climate projections. The bias found over the first few days can be very different from that in the free-running model, so although daily weather predictions can sometimes provide useful information on the causes of climate biases, this is not always the case. We also find that the magnitude of equatorial SST drifts, both in the Pacific and other ocean basins, depends on the El Niño Southern Oscillation (ENSO) phase. Averaging over all hindcast years can therefore hide the details of ENSO state dependent drifts and obscure the underlying physical causes. Our results highlight the need to consider biases across a range of timescales in order to understand their causes and develop improved climate models.

  13. Heavy tailed bacterial motor switching statistics define macroscopic transport properties during upstream contamination by E. coli

    NASA Astrophysics Data System (ADS)

    Figueroa-Morales, N.; Rivera, A.; Altshuler, E.; Darnige, T.; Douarche, C.; Soto, R.; Lindner, A.; Clément, E.

    The motility of E. Coli bacteria is described as a run and tumble process. Changes of direction correspond to a switch in the flagellar motor rotation. The run time distribution is described as an exponential decay of characteristic time close to 1s. Remarkably, it has been demonstrated that the generic response for the distribution of run times is not exponential, but a heavy tailed power law decay, which is at odds with the motility findings. We investigate the consequences of the motor statistics in the macroscopic bacterial transport. During upstream contamination processes in very confined channels, we have identified very long contamination tongues. Using a stochastic model considering bacterial dwelling times on the surfaces related to the run times, we are able to reproduce qualitatively and quantitatively the evolution of the contamination profiles when considering the power law run time distribution. However, the model fails to reproduce the qualitative dynamics when the classical exponential run and tumble distribution is considered. Moreover, we have corroborated the existence of a power law run time distribution by means of 3D Lagrangian tracking. We then argue that the macroscopic transport of bacteria is essentially determined by the motor rotation statistics.

  14. Preventing Run-Time Bugs at Compile-Time Using Advanced C++

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neswold, Richard

    When writing software, we develop algorithms that tell the computer what to do at run-time. Our solutions are easier to understand and debug when they are properly modeled using class hierarchies, enumerations, and a well-factored API. Unfortunately, even with these design tools, we end up having to debug our programs at run-time. Worse still, debugging an embedded system changes its dynamics, making it tough to find and fix concurrency issues. This paper describes techniques using C++ to detect run-time bugs *at compile time*. A concurrency library, developed at Fermilab, is used for examples in illustrating these techniques.

  15. Distinct sets of locomotor modules control the speed and modes of human locomotion

    PubMed Central

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  16. Optimal chemotaxis in intermittent migration of animal cells

    NASA Astrophysics Data System (ADS)

    Romanczuk, P.; Salbreux, G.

    2015-04-01

    Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing persistent migration during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.

  17. High-Intensity Cycling Training: The Effect of Work-to-Rest Intervals on Running Performance Measures.

    PubMed

    Kavaliauskas, Mykolas; Aspe, Rodrigo R; Babraj, John

    2015-08-01

    The work-to-rest ratio during cycling-based high-intensity interval training (HIT) could be important in regulating physiological and performance adaptations. We sought to determine the effectiveness of cycling-based HIT with different work-to-rest ratios for long-distance running. Thirty-two long-distance runners (age: 39 ± 8 years; sex: 14 men, 18 women; average weekly running training volume: 25 miles) underwent baseline testing (3-km time-trial, V[Combining Dot Above]O2peak and time to exhaustion, and Wingate test) before a 2-week matched-work cycling HIT of 6 × 10-second sprints with different rest periods (30 seconds [R30], 80 seconds [R80], 120 seconds [R120], or control). Three-kilometer time trial was significantly improved in the R30 group only (3.1 ± 4.0%, p = 0.04), whereas time to exhaustion was significantly increased in the 2 groups with a lower work-to-rest ratio (R30 group 6.4 ± 6.3%, p = 0.003 vs. R80 group 4.4 ± 2.7%, p = 0.03 vs. R120 group 1.9 ± 5.0%, p = 0.2). However, improvements in average power production were significantly greater with a higher work-to-rest ratio (R30 group 0.3 ± 4.1%, p = 0.8 vs. R80 group 4.6 ± 4.2%, p = 0.03 vs. R120 group 5.3 ± 5.9%, p = 0.02), whereas peak power significantly increased only in the R80 group (8.5 ± 8.2%, p = 0.04) but not in the R30 group (4.3 ± 6.1%, p = 0.3) or in the R120 group (7.1 ± 7.9%, p = 0.09). Therefore, cycling-based HIT is an effective way to improve running performance, and the type and magnitude of adaptation is dependent on the work-to-rest ratio.

  18. Macroeconomic adjustment in developing countries: instability, short-run growth, and external dependency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leff, N.H.; Sato, K.

    1980-05-01

    This paper presents an aggregate model for analyzing macroeconomic adjustment and short-run growth in less-developed countries. The model is built on standard theoretical lines; but an important finding of the paper is that empirically, macroeconomic adjustment in the real sector of some differs from the professional expectations that may be prevalent in more-developed countries. This observation leads us to a reconsideration of the macroeconomics of the developing economies, and particularly of some short-term features that affect the long-run expansion path. The analysis also shows why these economies are often subject to chronic inflation and macroeconmic dependence on foreign-capital inflows. 13more » references, 4 tables.« less

  19. WE-C-217BCD-08: Rapid Monte Carlo Simulations of DQE(f) of Scintillator-Based Detectors.

    PubMed

    Star-Lack, J; Abel, E; Constantin, D; Fahrig, R; Sun, M

    2012-06-01

    Monte Carlo simulations of DQE(f) can greatly aid in the design of scintillator-based detectors by helping optimize key parameters including scintillator material and thickness, pixel size, surface finish, and septa reflectivity. However, the additional optical transport significantly increases simulation times, necessitating a large number of parallel processors to adequately explore the parameter space. To address this limitation, we have optimized the DQE(f) algorithm, reducing simulation times per design iteration to 10 minutes on a single CPU. DQE(f) is proportional to the ratio, MTF(f)̂2 /NPS(f). The LSF-MTF simulation uses a slanted line source and is rapidly performed with relatively few gammas launched. However, the conventional NPS simulation for standard radiation exposure levels requires the acquisition of multiple flood fields (nRun), each requiring billions of input gamma photons (nGamma), many of which will scintillate, thereby producing thousands of optical photons (nOpt) per deposited MeV. The resulting execution time is proportional to the product nRun x nGamma x nOpt. In this investigation, we revisit the theoretical derivation of DQE(f), and reveal significant computation time savings through the optimization of nRun, nGamma, and nOpt. Using GEANT4, we determine optimal values for these three variables for a GOS scintillator-amorphous silicon portal imager. Both isotropic and Mie optical scattering processes were modeled. Simulation results were validated against the literature. We found that, depending on the radiative and optical attenuation properties of the scintillator, the NPS can be accurately computed using values for nGamma below 1000, and values for nOpt below 500/MeV. nRun should remain above 200. Using these parameters, typical computation times for a complete NPS ranged from 2-10 minutes on a single CPU. The number of launched particles and corresponding execution times for a DQE simulation can be dramatically reduced allowing for accurate computation with modest computer hardware. NIHRO1 CA138426. Several authors work for Varian Medical Systems. © 2012 American Association of Physicists in Medicine.

  20. Non-exchangeability of running vs. other exercise in their association with adiposity, and its implications for public health recommendations.

    PubMed

    Williams, Paul T

    2012-01-01

    Current physical activity recommendations assume that different activities can be exchanged to produce the same weight-control benefits so long as total energy expended remains the same (exchangeability premise). To this end, they recommend calculating energy expenditure as the product of the time spent performing each activity and the activity's metabolic equivalents (MET), which may be summed to achieve target levels. The validity of the exchangeability premise was assessed using data from the National Runners' Health Study. Physical activity dose was compared to body mass index (BMI) and body circumferences in 33,374 runners who reported usual distance run and pace, and usual times spent running and other exercises per week. MET hours per day (METhr/d) from running was computed from: a) time and intensity, and b) reported distance run (1.02 MET • hours per km). When computed from time and intensity, the declines (slope±SE) per METhr/d were significantly greater (P<10(-15)) for running than non-running exercise for BMI (slopes±SE, male: -0.12 ± 0.00 vs. 0.00±0.00; female: -0.12 ± 0.00 vs. -0.01 ± 0.01 kg/m(2) per METhr/d) and waist circumference (male: -0.28 ± 0.01 vs. -0.07±0.01; female: -0. 31±0.01 vs. -0.05 ± 0.01 cm per METhr/d). Reported METhr/d of running was 38% to 43% greater when calculated from time and intensity than distance. Moreover, the declines per METhr/d run were significantly greater when estimated from reported distance for BMI (males: -0.29 ± 0.01; females: -0.27 ± 0.01 kg/m(2) per METhr/d) and waist circumference (males: -0.67 ± 0.02; females: -0.69 ± 0.02 cm per METhr/d) than when computed from time and intensity (cited above). The exchangeability premise was not supported for running vs. non-running exercise. Moreover, distance-based running prescriptions may provide better weight control than time-based prescriptions for running or other activities. Additional longitudinal studies and randomized clinical trials are required to verify these results prospectively.

  1. A hazard-based duration model for analyzing crossing behavior of cyclists and electric bike riders at signalized intersections.

    PubMed

    Yang, Xiaobao; Huan, Mei; Abdel-Aty, Mohamed; Peng, Yichuan; Gao, Ziyou

    2015-01-01

    This paper presents a hazard-based duration approach to investigate riders' waiting times, violation hazards, associated risk factors, and their differences between cyclists and electric bike riders at signalized intersections. A total of 2322 two-wheeled riders approaching the intersections during red light periods were observed in Beijing, China. The data were classified into censored and uncensored data to distinguish between safe crossing and red-light running behavior. The results indicated that the red-light crossing behavior of most riders was dependent on waiting time. They were inclined to terminate waiting behavior and run against the traffic light with the increase of waiting duration. Over half of the observed riders cannot endure 49s or longer. 25% of the riders can endure 97s or longer. Rider type, gender, waiting position, conformity tendency and crossing traffic volume were identified to have significant effects on riders' waiting times and violation hazards. Electric bike riders were found to be more sensitive to the external risk factors such as other riders' crossing behavior and crossing traffic volume than cyclists. Moreover, unobserved heterogeneity was examined in the proposed models. The finding of this paper can explain when and why cyclists and electric bike riders run against the red light at intersections. The results of this paper are useful for traffic design and management agencies to implement strategies to enhance the safety of riders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Effect of Minimalist Footwear on Running Efficiency: A Randomized Crossover Trial.

    PubMed

    Gillinov, Stephen M; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M

    2015-05-01

    Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Randomized crossover trial. Level 3. Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes.

  3. Real time animation of space plasma phenomena

    NASA Technical Reports Server (NTRS)

    Jordan, K. F.; Greenstadt, E. W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images.

  4. Compilation time analysis to minimize run-time overhead in preemptive scheduling on multiprocessors

    NASA Astrophysics Data System (ADS)

    Wauters, Piet; Lauwereins, Rudy; Peperstraete, J.

    1994-10-01

    This paper describes a scheduling method for hard real-time Digital Signal Processing (DSP) applications, implemented on a multi-processor. Due to the very high operating frequencies of DSP applications (typically hundreds of kHz) runtime overhead should be kept as small as possible. Because static scheduling introduces very little run-time overhead it is used as much as possible. Dynamic pre-emption of tasks is allowed if and only if it leads to better performance in spite of the extra run-time overhead. We essentially combine static scheduling with dynamic pre-emption using static priorities. Since we are dealing with hard real-time applications we must be able to guarantee at compile-time that all timing requirements will be satisfied at run-time. We will show that our method performs at least as good as any static scheduling method. It also reduces the total amount of dynamic pre-emptions compared with run time methods like deadline monotonic scheduling.

  5. An asymptotic induced numerical method for the convection-diffusion-reaction equation

    NASA Technical Reports Server (NTRS)

    Scroggs, Jeffrey S.; Sorensen, Danny C.

    1988-01-01

    A parallel algorithm for the efficient solution of a time dependent reaction convection diffusion equation with small parameter on the diffusion term is presented. The method is based on a domain decomposition that is dictated by singular perturbation analysis. The analysis is used to determine regions where certain reduced equations may be solved in place of the full equation. Parallelism is evident at two levels. Domain decomposition provides parallelism at the highest level, and within each domain there is ample opportunity to exploit parallelism. Run time results demonstrate the viability of the method.

  6. Ontological Model of Business Process Management Systems

    NASA Astrophysics Data System (ADS)

    Manoilov, G.; Deliiska, B.

    2008-10-01

    The activities which constitute business process management (BPM) can be grouped into five categories: design, modeling, execution, monitoring and optimization. Dedicated software packets for business process management system (BPMS) are available on the market. But the efficiency of its exploitation depends on used ontological model in the development time and run time of the system. In the article an ontological model of BPMS in area of software industry is investigated. The model building is preceded by conceptualization of the domain and taxonomy of BPMS development. On the base of the taxonomy an simple online thesaurus is created.

  7. Navier-Stokes Simulation of Homogeneous Turbulence on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Wu, C. T.; Ferziger, J. H.; Chapman, D. R.; Rogallo, R. S.

    1984-01-01

    A computer code which solves the Navier-Stokes equations for three dimensional, time-dependent, homogenous turbulence has been written for the CYBER 205. The code has options for both 64-bit and 32-bit arithmetic. With 32-bit computation, mesh sizes up to 64 (3) are contained within core of a 2 million 64-bit word memory. Computer speed timing runs were made for various vector lengths up to 6144. With this code, speeds a little over 100 Mflops have been achieved on a 2-pipe CYBER 205. Several problems encountered in the coding are discussed.

  8. Limits to high-speed simulations of spiking neural networks using general-purpose computers.

    PubMed

    Zenke, Friedemann; Gerstner, Wulfram

    2014-01-01

    To understand how the central nervous system performs computations using recurrent neuronal circuitry, simulations have become an indispensable tool for theoretical neuroscience. To study neuronal circuits and their ability to self-organize, increasing attention has been directed toward synaptic plasticity. In particular spike-timing-dependent plasticity (STDP) creates specific demands for simulations of spiking neural networks. On the one hand a high temporal resolution is required to capture the millisecond timescale of typical STDP windows. On the other hand network simulations have to evolve over hours up to days, to capture the timescale of long-term plasticity. To do this efficiently, fast simulation speed is the crucial ingredient rather than large neuron numbers. Using different medium-sized network models consisting of several thousands of neurons and off-the-shelf hardware, we compare the simulation speed of the simulators: Brian, NEST and Neuron as well as our own simulator Auryn. Our results show that real-time simulations of different plastic network models are possible in parallel simulations in which numerical precision is not a primary concern. Even so, the speed-up margin of parallelism is limited and boosting simulation speeds beyond one tenth of real-time is difficult. By profiling simulation code we show that the run times of typical plastic network simulations encounter a hard boundary. This limit is partly due to latencies in the inter-process communications and thus cannot be overcome by increased parallelism. Overall, these results show that to study plasticity in medium-sized spiking neural networks, adequate simulation tools are readily available which run efficiently on small clusters. However, to run simulations substantially faster than real-time, special hardware is a prerequisite.

  9. Dynamic sensitivity analysis of long running landslide models through basis set expansion and meta-modelling

    NASA Astrophysics Data System (ADS)

    Rohmer, Jeremy

    2016-04-01

    Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.

  10. Local tsunamis and earthquake source parameters

    USGS Publications Warehouse

    Geist, Eric L.; Dmowska, Renata; Saltzman, Barry

    1999-01-01

    This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.

  11. 16 CFR 803.10 - Running of time.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Running of time. 803.10 Section 803.10 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 TRANSMITTAL RULES § 803.10 Running of time. (a...

  12. Effects of intermittent hypoxia on running economy.

    PubMed

    Burtscher, M; Gatterer, H; Faulhaber, M; Gerstgrasser, W; Schenk, K

    2010-09-01

    We investigated the effects of two 5-wk periods of intermittent hypoxia on running economy (RE). 11 male and female middle-distance runners were randomly assigned to the intermittent hypoxia group (IHG) or to the control group (CG). All athletes trained for a 13-wk period starting at pre-season until the competition season. The IHG spent additionally 2 h at rest on 3 days/wk for the first and the last 5 weeks in normobaric hypoxia (15-11% FiO2). RE, haematological parameters and body composition were determined at low altitude (600 m) at baseline, after the 5 (th), the 8 (th) and the 13 (th) week of training. RE, determined by the relative oxygen consumption during submaximal running, (-2.3+/-1.2 vs. -0.3+/-0.7 ml/min/kg, P<0.05) and total running time (+1.0+/-0.9 vs. +0.4+/-0.5 min, P<0.05) changed significantly between the IHG and CG only during the first 5-wk period. Haematological and cardiorespiratory changes indicate that the improved RE was associated with decreased cardiorespiratory costs and greater reliance on carbohydrate. Intermittent hypoxia did not affect RE during the second 5-wk period. These findings suggest that the effects of intermittent hypoxia on RE strongly depend on the training phase. Georg Thieme Verlag KG Stuttgart . New York.

  13. Altered Running Economy Directly Translates to Altered Distance-Running Performance.

    PubMed

    Hoogkamer, Wouter; Kipp, Shalaya; Spiering, Barry A; Kram, Rodger

    2016-11-01

    Our goal was to quantify if small (1%-3%) changes in running economy quantitatively affect distance-running performance. Based on the linear relationship between metabolic rate and running velocity and on earlier observations that added shoe mass increases metabolic rate by ~1% per 100 g per shoe, we hypothesized that adding 100 and 300 g per shoe would slow 3000-m time-trial performance by 1% and 3%, respectively. Eighteen male sub-20-min 5-km runners completed treadmill testing, and three 3000-m time trials wearing control shoes and identical shoes with 100 and 300 g of discreetly added mass. We measured rates of oxygen consumption and carbon dioxide production and calculated metabolic rates for the treadmill tests, and we recorded overall running time for the time trials. Adding mass to the shoes significantly increased metabolic rate at 3.5 m·s by 1.11% per 100 g per shoe (95% confidence interval = 0.88%-1.35%). While wearing the control shoes, participants ran the 3000-m time trial in 626.1 ± 55.6 s. Times averaged 0.65% ± 1.36% and 2.37% ± 2.09% slower for the +100-g and +300-g shoes, respectively (P < 0.001). On the basis of a linear fit of all the data, 3000-m time increased 0.78% per added 100 g per shoe (95% confidence interval = 0.52%-1.04%). Adding shoe mass predictably degrades running economy and slows 3000-m time-trial performance proportionally. Our data demonstrate that laboratory-based running economy measurements can accurately predict changes in distance-running race performance due to shoe modifications.

  14. Circadian Clocks for All Meal-Times: Anticipation of 2 Daily Meals in Rats

    PubMed Central

    Mistlberger, Ralph E.; Kent, Brianne A.; Chan, Sofina; Patton, Danica F.; Weinberg, Alexander; Parfyonov, Maksim

    2012-01-01

    Anticipation of a daily meal in rats has been conceptualized as a rest-activity rhythm driven by a food-entrained circadian oscillator separate from the pacemaker generating light-dark (LD) entrained rhythms. Rats can also anticipate two daily mealtimes, but whether this involves independently entrained oscillators, one ‘continuously consulted’ clock, cue-dependent non-circadian interval timing or a combination of processes, is unclear. Rats received two daily meals, beginning 3-h (meal 1) and 13-h (meal 2) after lights-on (LD 14∶10). Anticipatory wheel running began 68±8 min prior to meal 1 and 101±9 min prior to meal 2 but neither the duration nor the variability of anticipation bout lengths exhibited the scalar property, a hallmark of interval timing. Meal omission tests in LD and constant dark (DD) did not alter the timing of either bout of anticipation, and anticipation of meal 2 was not altered by a 3-h advance of meal 1. Food anticipatory running in this 2-meal protocol thus does not exhibit properties of interval timing despite the availability of external time cues in LD. Across all days, the two bouts of anticipation were uncorrelated, a result more consistent with two independently entrained oscillators than a single consulted clock. Similar results were obtained for meals scheduled 3-h and 10-h after lights-on, and for a food-bin measure of anticipation. Most rats that showed weak or no anticipation to one or both meals exhibited elevated activity at mealtime during 1 or 2 day food deprivation tests in DD, suggesting covert operation of circadian timing in the absence of anticipatory behavior. A control experiment confirmed that daytime feeding did not shift LD-entrained rhythms, ruling out displaced nocturnal activity as an explanation for daytime activity. The results favor a multiple oscillator basis for 2-meal anticipatory rhythms and provide no evidence for involvement of cue-dependent interval timing. PMID:22355393

  15. Insurer Competition In Federally Run Marketplaces Is Associated With Lower Premiums.

    PubMed

    Jacobs, Paul D; Banthin, Jessica S; Trachtman, Samuel

    2015-12-01

    Federal subsidies for health insurance premiums sold through the Marketplaces are tied to the cost of the benchmark plan, the second-lowest-cost silver plan. According to economic theory, the presence of more competitors should lead to lower premiums, implying smaller federal outlays for premium subsidies. The long-term impact of the Affordable Care Act on government spending will depend on the cost of these premium subsidies over time, with insurer participation and the level of competition likely to influence those costs. We studied insurer participation and premiums during the first two years of the Marketplaces. We found that the addition of a single insurer in a county was associated with a 1.2 percent lower premium for the average silver plan and a 3.5 percent lower premium for the benchmark plan in the federally run Marketplaces. We found that the effect of insurer entry was muted after two or three additional entrants. These findings suggest that increased insurer participation in the federally run Marketplaces reduces federal payments for premium subsidies. Project HOPE—The People-to-People Health Foundation, Inc.

  16. Isotemporal Substitution Paradigm for Physical Activity Epidemiology and Weight Change

    PubMed Central

    Willett, Walter C.; Hu, Frank B.; Ding, Eric L.

    2009-01-01

    For a fixed amount of time engaged in physical activity, activity choice may affect body weight differently depending partly on other activities’ displacement. Typical models used to evaluate effects of physical activity on body weight do not directly address these substitutions. An isotemporal substitution paradigm was developed as a new analytic model to study the time-substitution effects of one activity for another. In 1991–1997, the authors longitudinally examined the associations of discretionary physical activities, with varying activity displacements, with 6-year weight loss maintenance among 4,558 healthy, premenopausal US women who had previously lost >5% of their weight. Results of isotemporal substitution models indicated widely heterogeneous relations with each physical activity type (P < 0.001) depending on the displaced activities. Notably, whereas 30 minutes/day of brisk walking substituted for 30 minutes/day of jogging/running was associated with weight increase (1.57 kg, 95% confidence interval: 0.33, 2.82), brisk walking was associated with lower weight when substituted for slow walking (−1.14 kg, 95% confidence interval: −1.75, −0.53) and with even lower weight when substituted for TV watching. Similar heterogeneous relations with weight change were found for each activity type (TV watching, slow walking, brisk walking, jogging/running) when displaced by other activities across these various models. The isotemporal substitution paradigm may offer new insights for future public health recommendations. PMID:19584129

  17. Cerebral vascular structure in the motor cortex of adult mice is stable and is not altered by voluntary exercise.

    PubMed

    Cudmore, Robert H; Dougherty, Sarah E; Linden, David J

    2017-12-01

    The cerebral vasculature provides blood flow throughout the brain, and local changes in blood flow are regulated to match the metabolic demands of the active brain regions. This neurovascular coupling is mediated by real-time changes in vessel diameter and depends on the underlying vascular network structure. Neurovascular structure is configured during development by genetic and activity-dependent factors. In adulthood, it can be altered by experiences such as prolonged hypoxia, sensory deprivation and seizure. Here, we have sought to determine whether exercise could alter cerebral vascular structure in the adult mouse. We performed repeated in vivo two-photon imaging in the motor cortex of adult transgenic mice expressing membrane-anchored green fluorescent protein in endothelial cells (tyrosine endothelial kinase 2 receptor (Tie2)-Cre:mTmG). This strategy allows for high-resolution imaging of the vessel walls throughout the lifespan. Vascular structure, as measured by capillary branch point number and position, segment diameter and length remained stable over a time scale of months as did pericyte number and position. Furthermore, we compared the vascular structure before, during, and after periods of voluntary wheel running and found no alterations in these same parameters. In both running and control mice, we observed a low rate of capillary segment subtraction. Interestingly, these rare subtraction events preferentially remove short vascular loops.

  18. Healthcare4VideoStorm: Making Smart Decisions Based on Storm Metrics.

    PubMed

    Zhang, Weishan; Duan, Pengcheng; Chen, Xiufeng; Lu, Qinghua

    2016-04-23

    Storm-based stream processing is widely used for real-time large-scale distributed processing. Knowing the run-time status and ensuring performance is critical to providing expected dependability for some applications, e.g., continuous video processing for security surveillance. The existing scheduling strategies' granularity is too coarse to have good performance, and mainly considers network resources without computing resources while scheduling. In this paper, we propose Healthcare4Storm, a framework that finds Storm insights based on Storm metrics to gain knowledge from the health status of an application, finally ending up with smart scheduling decisions. It takes into account both network and computing resources and conducts scheduling at a fine-grained level using tuples instead of topologies. The comprehensive evaluation shows that the proposed framework has good performance and can improve the dependability of the Storm-based applications.

  19. Investigations of timing during the schedule and reinforcement intervals with wheel-running reinforcement.

    PubMed

    Belke, Terry W; Christie-Fougere, Melissa M

    2006-11-01

    Across two experiments, a peak procedure was used to assess the timing of the onset and offset of an opportunity to run as a reinforcer. The first experiment investigated the effect of reinforcer duration on temporal discrimination of the onset of the reinforcement interval. Three male Wistar rats were exposed to fixed-interval (FI) 30-s schedules of wheel-running reinforcement and the duration of the opportunity to run was varied across values of 15, 30, and 60s. Each session consisted of 50 reinforcers and 10 probe trials. Results showed that as reinforcer duration increased, the percentage of postreinforcement pauses longer than the 30-s schedule interval increased. On probe trials, peak response rates occurred near the time of reinforcer delivery and peak times varied with reinforcer duration. In a second experiment, seven female Long-Evans rats were exposed to FI 30-s schedules leading to 30-s opportunities to run. Timing of the onset and offset of the reinforcement period was assessed by probe trials during the schedule interval and during the reinforcement interval in separate conditions. The results provided evidence of timing of the onset, but not the offset of the wheel-running reinforcement period. Further research is required to assess if timing occurs during a wheel-running reinforcement period.

  20. QPA-CLIPS: A language and representation for process control

    NASA Technical Reports Server (NTRS)

    Freund, Thomas G.

    1994-01-01

    QPA-CLIPS is an extension of CLIPS oriented towards process control applications. Its constructs define a dependency network of process actions driven by sensor information. The language consists of three basic constructs: TASK, SENSOR, and FILTER. TASK's define the dependency network describing alternative state transitions for a process. SENSOR's and FILTER's define sensor information sources used to activate state transitions within the network. Deftemplate's define these constructs and their run-time environment is an interpreter knowledge base, performing pattern matching on sensor information and so activating TASK's in the dependency network. The pattern matching technique is based on the repeatable occurrence of a sensor data pattern. QPA-CIPS has been successfully tested on a SPARCStation providing supervisory control to an Allen-Bradley PLC 5 controller driving molding equipment.

  1. An overview of Booster and AGS polarized proton operation during Run 15

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, K.

    2015-10-20

    This note is an overview of the Booster and AGS for the 2015 Polarized Proton RHIC run from an operations perspective. There are some notable differences between this and previous runs. In particular, the polarized source intensity was expected to be, and was, higher this year than in previous RHIC runs. The hope was to make use of this higher input intensity by allowing the beam to be scraped down more in the Booster to provide a brighter and smaller beam for the AGS and RHIC. The RHIC intensity requirements were also higher this run than in previous runs, whichmore » caused additional challenges because the AGS polarization and emittance are normally intensity dependent.« less

  2. 40 CFR Table 1 to Subpart III of... - Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determining compliance using this method Cadmium 0.004 milligrams per dry standard cubic meter 3-run average (1 hour minimum sample time per run) Performance test (Method 29 of appendix A of part 60). Carbon monoxide 157 parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance...

  3. 40 CFR Table 1 to Subpart Eeee of... - Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... determiningcompliance using this method 1. Cadmium 18 micrograms per dry standard cubic meter 3-run average (1 hour minimum sample time per run) Method 29 of appendix A of this part. 2. Carbon monoxide 40 parts per million by dry volume 3-run average (1 hour minimum sample time per run during performance test), and 12-hour...

  4. 40 CFR Table 1 to Subpart III of... - Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determining compliance using this method Cadmium 0.004 milligrams per dry standard cubic meter 3-run average (1 hour minimum sample time per run) Performance test (Method 29 of appendix A of part 60). Carbon monoxide 157 parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance...

  5. 40 CFR Table 1 to Subpart Eeee of... - Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... determiningcompliance using this method 1. Cadmium 18 micrograms per dry standard cubic meter 3-run average (1 hour minimum sample time per run) Method 29 of appendix A of this part. 2. Carbon monoxide 40 parts per million by dry volume 3-run average (1 hour minimum sample time per run during performance test), and 12-hour...

  6. Semi-Infinite Geology Modeling Algorithm (SIGMA): a Modular Approach to 3D Gravity

    NASA Astrophysics Data System (ADS)

    Chang, J. C.; Crain, K.

    2015-12-01

    Conventional 3D gravity computations can take up to days, weeks, and even months, depending on the size and resolution of the data being modeled. Additional modeling runs, due to technical malfunctions or additional data modifications, only compound computation times even further. We propose a new modeling algorithm that utilizes vertical line elements to approximate mass, and non-gridded (point) gravity observations. This algorithm is (1) magnitudes faster than conventional methods, (2) accurate to less than 0.1% error, and (3) modular. The modularity of this methodology means that researchers can modify their geology/terrain or gravity data, and only the modified component needs to be re-run. Additionally, land-, sea-, and air-based platforms can be modeled at their observation point, without having to filter data into a synthesized grid.

  7. Stability and Hopf bifurcation of a delayed ratio-dependent predator-prey system

    NASA Astrophysics Data System (ADS)

    Wang, Wan-Yong; Pei, Li-Jun

    2011-04-01

    Since the ratio-dependent theory reflects the fact that predators must share and compete for food, it is suitable for describing the relationship between predators and their preys and has recently become a very important theory put forward by biologists. In order to investigate the dynamical relationship between predators and their preys, a so-called Michaelis-Menten ratio-dependent predator-prey model is studied in this paper with gestation time delays of predators and preys taken into consideration. The stability of the positive equilibrium is investigated by the Nyquist criteria, and the existence of the local Hopf bifurcation is analyzed by employing the theory of Hopf bifurcation. By means of the center manifold and the normal form theories, explicit formulae are derived to determine the stability, direction and other properties of bifurcating periodic solutions. The above theoretical results are validated by numerical simulations with the help of dynamical software WinPP. The results show that if both the gestation delays are small enough, their sizes will keep stable in the long run, but if the gestation delays of predators are big enough, their sizes will periodically fluctuate in the long term. In order to reveal the effects of time delays on the ratio-dependent predator-prey model, a ratio-dependent predator-prey model without time delays is considered. By Hurwitz criteria, the local stability of positive equilibrium of this model is investigated. The conditions under which the positive equilibrium is locally asymptotically stable are obtained. By comparing the results with those of the model with time delays, it shows that the dynamical behaviors of ratio-dependent predator-prey model with time delays are more complicated. Under the same conditions, namely, with the same parameters, the stability of positive equilibrium of ratio-dependent predator-prey model would change due to the introduction of gestation time delays for predators and preys. Moreover, with the variation of time delays, the positive equilibrium of the ratio-dependent predator-prey model subjects to Hopf bifurcation.

  8. An empirically derived figure of merit for the quality of overall task performance

    NASA Technical Reports Server (NTRS)

    Lemay, Moira

    1989-01-01

    The need to develop an operationally relevant figure of merit for the quality of performance of a complex system such as an aircraft cockpit stems from a hypothesized dissociation between measures of performance and those of workload. Performance can be measured in terms of time, errors, or a combination of these. In most tasks performed by expert operators, errors are relatively rare and often corrected in time to avoid consequences. Moreover, perfect performance is seldom necessary to accomplish a particular task. Moreover, how well an expert performs a complex task consisting of a series of discrete cognitive tasks superimposed on a continuous task, such as flying an aircraft, does not depend on how well each discrete task is performed, but on their smooth sequencing. This makes the amount of time spent on each subtask of paramount importance in measuring overall performance, since smooth sequencing requires a minimum amount of time spent on each task. Quality consists in getting tasks done within a crucial time interval while maintaining acceptable continuous task performance. Thus, a figure of merit for overall quality of performance should be primarily a measure of time to perform discrete subtasks combined with a measure of basic vehicle control. Thus, the proposed figure of merit requires doing a task analysis on a series of performance, or runs, of a particular task, listing each discrete task and its associated time, and calculating the mean and standard deviation of these times, along with the mean and standard deviation of tracking error for the whole task. A set of simulator data on 30 runs of a landing task was obtained and a figure of merit will be calculated for each run. The figure of merit will be compared for voice and data link, so that the impact of this technology on total crew performance (not just communication performance) can be assessed. The effect of data link communication on other cockpit tasks will also be considered.

  9. Simultaneous Introduction of a Novel High Fat Diet and Wheel Running Induces Anorexia

    PubMed Central

    Scarpace, E. T.; Matheny, M.; Strehler, K. Y. E.; Shapiro, A.; Cheng, K. Y.; Tümer, N.; Scarpace, P. J.

    2011-01-01

    Voluntary wheel running (WR) is a form of physical activity in rodents that influences ingestive behavior. The present report describes an anorexic behavior triggered by the simultaneous introduction of a novel diet and WR. This study examined the sequential, compared with the simultaneous, introduction of a novel high-fat (HF) diet and voluntary WR in rats of three different ages and revealed a surprising finding; the simultaneous introduction of HF food and voluntary WR induced a behavior in which the animals chose not to eat although food was available at all times. This phenomenon was apparently not due to an aversion to the novel HF diet because introduction of the running wheels plus the HF diet, while continuing the availability of the normal chow diet did not prevent the anorexia. Moreover, the anorexia was prevented with prior exposure to the HF diet. In addition, the anorexia was not related to extent of WR but dependent on the act of WR. The introduction a HF diet and locked running wheels did not induce the anorexia. This voluntary anorexia was accompanied by substantial weight loss, and the anorexia was rapidly reversed by removal of the running wheels. Moreover, the HF/WR-induced anorexia is preserved across the age span despite the intrinsic decrease in WR activity and increased consumption of HF food with advancing age. The described phenomenon provides a new model to investigate anorexia behavior in rodents. PMID:22115947

  10. Effect of Minimalist Footwear on Running Efficiency

    PubMed Central

    Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.

    2015-01-01

    Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304

  11. 5K Run: 7-Week Training Schedule for Beginners

    MedlinePlus

    ... This 5K training schedule incorporates a mix of running, walking and resting. This combination helps reduce the ... you'll gradually increase the amount of time running and reduce the amount of time walking. If ...

  12. Effects of a minimalist shoe on running economy and 5-km running performance.

    PubMed

    Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D

    2016-09-01

    The purpose of this study was to determine if minimalist shoes improve time trial performance of trained distance runners and if changes in running economy, shoe mass, stride length, stride rate and footfall pattern were related to any difference in performance. Twenty-six trained runners performed three 6-min sub-maximal treadmill runs at 11, 13 and 15 km·h(-1) in minimalist and conventional shoes while running economy, stride length, stride rate and footfall pattern were assessed. They then performed a 5-km time trial. In the minimalist shoe, runners completed the trial in less time (effect size 0.20 ± 0.12), were more economical during sub-maximal running (effect size 0.33 ± 0.14) and decreased stride length (effect size 0.22 ± 0.10) and increased stride rate (effect size 0.22 ± 0.11). All but one runner ran with a rearfoot footfall in the minimalist shoe. Improvements in time trial performance were associated with improvements in running economy at 15 km·h(-1) (r = 0.58), with 79% of the improved economy accounted for by reduced shoe mass (P < 0.05). The results suggest that running in minimalist shoes improves running economy and 5-km running performance.

  13. An Empirical Derivation of the Run Time of the Bubble Sort Algorithm.

    ERIC Educational Resources Information Center

    Gonzales, Michael G.

    1984-01-01

    Suggests a moving pictorial tool to help teach principles in the bubble sort algorithm. Develops such a tool applied to an unsorted list of numbers and describes a method to derive the run time of the algorithm. The method can be modified to run the times of various other algorithms. (JN)

  14. The relationship between aerobic fitness and recovery from high-intensity exercise in infantry soldiers.

    PubMed

    Hoffman, J R

    1997-07-01

    The relationship between aerobic fitness and recovery from high-intensity exercise was examined in 197 infantry soldiers. Aerobic fitness was determined by a maximal-effort, 2,000-m run (RUN). High-intensity exercise consisted of three bouts of a continuous 140-m sprint with several changes of direction. A 2-minute passive rest separated each sprint. A fatigue index was developed by dividing the mean time of the three sprints by the fastest time. Times for the RUN were converted into standardized T scores and separated into five groups (group 1 had the slowest run time and group 5 had the fastest run time). Significant differences in the fatigue index were seen between group 1 (4.9 +/- 2.4%) and groups 3 (2.6 +/- 1.7%), 4 (2.3 +/- 1.6%), and 5 (2.3 +/- 1.3%). It appears that recovery from high-intensity exercise is improved at higher levels of aerobic fitness (faster time for the RUN). However, as the level of aerobic fitness improves above the population mean, no further benefit in the recovery rate from high-intensity exercise is apparent.

  15. Methods Developed by the Tools for Engine Diagnostics Task to Monitor and Predict Rotor Damage in Real Time

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Smith, Kevin; Raulerson, David; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Brasche, Lisa

    2003-01-01

    Tools for Engine Diagnostics is a major task in the Propulsion System Health Management area of the Single Aircraft Accident Prevention project under NASA s Aviation Safety Program. The major goal of the Aviation Safety Program is to reduce fatal aircraft accidents by 80 percent within 10 years and by 90 percent within 25 years. The goal of the Propulsion System Health Management area is to eliminate propulsion system malfunctions as a primary or contributing factor to the cause of aircraft accidents. The purpose of Tools for Engine Diagnostics, a 2-yr-old task, is to establish and improve tools for engine diagnostics and prognostics that measure the deformation and damage of rotating engine components at the ground level and that perform intermittent or continuous monitoring on the engine wing. In this work, nondestructive-evaluation- (NDE-) based technology is combined with model-dependent disk spin experimental simulation systems, like finite element modeling (FEM) and modal norms, to monitor and predict rotor damage in real time. Fracture mechanics time-dependent fatigue crack growth and damage-mechanics-based life estimation are being developed, and their potential use investigated. In addition, wireless eddy current and advanced acoustics are being developed for on-wing and just-in-time NDE engine inspection to provide deeper access and higher sensitivity to extend on-wing capabilities and improve inspection readiness. In the long run, these methods could establish a base for prognostic sensing while an engine is running, without any overt actions, like inspections. This damage-detection strategy includes experimentally acquired vibration-, eddy-current- and capacitance-based displacement measurements and analytically computed FEM-, modal norms-, and conventional rotordynamics-based models of well-defined damages and critical mass imbalances in rotating disks and rotors.

  16. Dominant takeover regimes for genetic algorithms

    NASA Technical Reports Server (NTRS)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    The genetic algorithm (GA) is a machine-based optimization routine which connects evolutionary learning to natural genetic laws. The present work addresses the problem of obtaining the dominant takeover regimes in the GA dynamics. Estimated GA run times are computed for slow and fast convergence in the limits of high and low fitness ratios. Using Euler's device for obtaining partial sums in closed forms, the result relaxes the previously held requirements for long time limits. Analytical solution reveal that appropriately accelerated regimes can mark the ascendancy of the most fit solution. In virtually all cases, the weak (logarithmic) dependence of convergence time on problem size demonstrates the potential for the GA to solve large N-P complete problems.

  17. 40 CFR Table 2 to Subpart Ffff of... - Model Rule-Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... micrograms per dry standard cubic meter 3-run average (1 hour minimum sample time per run) Method 29 of appendix A of this part. 2. Carbon monoxide 40 parts per million by dry volume 3-run average (1 hour minimum sample time per run during performance test), and 12-hour rolling averages measured using CEMS b...

  18. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... per dry standard cubic meter 3-run average (1 hour minimum sample time per run) Performance test (Method 29 of appendix A of this part). Carbon monoxide 157 parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method 10, 10A, or 10B of appendix A of this...

  19. 40 CFR Table 2 to Subpart Ffff of... - Model Rule-Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... micrograms per dry standard cubic meter 3-run average (1 hour minimum sample time per run) Method 29 of appendix A of this part. 2. Carbon monoxide 40 parts per million by dry volume 3-run average (1 hour minimum sample time per run during performance test), and 12-hour rolling averages measured using CEMS b...

  20. 40 CFR Table 1 to Subpart Cccc of... - Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... per dry standard cubic meter 3-run average (1 hour minimum sample time per run) Performance test (Method 29 of appendix A of this part). Carbon monoxide 157 parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method 10, 10A, or 10B of appendix A of this...

  1. 40 CFR Table 2 to Subpart Dddd of... - Model Rule-Emission Limitations

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meter 3-run average (1 hour minimum sample time per run) Performance test (Method 29 of appendix A of this part) Carbon monoxide 157 parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method 10, 10A, or 10B, of appendix A of this part) Dioxins/furans...

  2. Rollout and Turnoff (ROTO) Guidance and Information Displays: Effect on Runway Occupancy Time in Simulated Low-Visibility Landings

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Hankins, Walter W., III; Barker, L. Keith

    2001-01-01

    This report examines a rollout and turnoff (ROTO) system for reducing the runway occupancy time for transport aircraft in low-visibility weather. Simulator runs were made to evaluate the system that includes a head-up display (HUD) to show the pilot a graphical overlay of the runway along with guidance and steering information to a chosen exit. Fourteen pilots (airline, corporate jet, and research pilots) collectively flew a total of 560 rollout and turnoff runs using all eight runways at Hartsfield Atlanta International Airport. The runs consisted of 280 runs for each of two runway visual ranges (RVRs) (300 and 1200 ft). For each visual range, half the runs were conducted with the HUD information and half without. For the runs conducted with the HUD information, the runway occupancy times were lower and more consistent. The effect was more pronounced as visibility decreased. For the 1200-ft visibility, the runway occupancy times were 13% lower with HUD information (46.1 versus 52.8 sec). Similarly, for the 300-ft visibility, the times were 28% lower (45.4 versus 63.0 sec). Also, for the runs with HUD information, 78% (RVR 1200) and 75% (RVR 300) had runway occupancy times less than 50 sec, versus 41 and 20%, respectively, without HUD information.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeno, K.

    There were only a few differences in the setup between this year’s Polarized Proton run and the previous one (Run 15). Consequently, this note will focus on these differences as well as a few more notable studies done during the course of the run. This year, the Booster input intensity was kept around 7e11 for the majority of the run whereas in Run 15 it was kept around 9e11. It was lowered because there was some indication that the source polarization was higher with this lower input. Some of the polarization measurements that motivated this change will be discussed. Bothmore » the emittance and polarization on the AGS flattop show intensity dependence, thought to be related to the peak current, especially early in the AGS acceleration ramp. In Run 15, the AGS Rf was configured for h=8, but in this run h=6 was used to reduce the peak current and also to allow for the possibility of using a dual harmonic to reduce it further. Eventually, a dual harmonic configuration was used for the first 100 ms or so of the AGS acceleration cycle. Two cavities were set to h=12 and phased differently than the other 8 to accomplish this. Quad pumping was also used at Booster extraction to make the bunch injected into the AGS wider in order to match the dual harmonic bucket right at injection. This configuration, which was used for the majority of the run, will be described. Measurements of the intensity dependence of the transverse emittance and polarization with and without it will be compared.« less

  4. Assessing locomotor skills development in childhood using wearable inertial sensor devices: the running paradigm.

    PubMed

    Masci, Ilaria; Vannozzi, Giuseppe; Bergamini, Elena; Pesce, Caterina; Getchell, Nancy; Cappozzo, Aurelio

    2013-04-01

    Objective quantitative evaluation of motor skill development is of increasing importance to carefully drive physical exercise programs in childhood. Running is a fundamental motor skill humans adopt to accomplish locomotion, which is linked to physical activity levels, although the assessment is traditionally carried out using qualitative evaluation tests. The present study aimed at investigating the feasibility of using inertial sensors to quantify developmental differences in the running pattern of young children. Qualitative and quantitative assessment tools were adopted to identify a skill-sensitive set of biomechanical parameters for running and to further our understanding of the factors that determine progression to skilled running performance. Running performances of 54 children between the ages of 2 and 12 years were submitted to both qualitative and quantitative analysis, the former using sequences of developmental level, the latter estimating temporal and kinematic parameters from inertial sensor measurements. Discriminant analysis with running developmental level as dependent variable allowed to identify a set of temporal and kinematic parameters, within those obtained with the sensor, that best classified children into the qualitative developmental levels (accuracy higher than 67%). Multivariate analysis of variance with the quantitative parameters as dependent variables allowed to identify whether and which specific parameters or parameter subsets were differentially sensitive to specific transitions between contiguous developmental levels. The findings showed that different sets of temporal and kinematic parameters are able to tap all steps of the transitional process in running skill described through qualitative observation and can be prospectively used for applied diagnostic and sport training purposes. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Static Stretching Alters Neuromuscular Function and Pacing Strategy, but Not Performance during a 3-Km Running Time-Trial

    PubMed Central

    Damasceno, Mayara V.; Duarte, Marcos; Pasqua, Leonardo A.; Lima-Silva, Adriano E.; MacIntosh, Brian R.; Bertuzzi, Rômulo

    2014-01-01

    Purpose Previous studies report that static stretching (SS) impairs running economy. Assuming that pacing strategy relies on rate of energy use, this study aimed to determine whether SS would modify pacing strategy and performance in a 3-km running time-trial. Methods Eleven recreational distance runners performed a) a constant-speed running test without previous SS and a maximal incremental treadmill test; b) an anthropometric assessment and a constant-speed running test with previous SS; c) a 3-km time-trial familiarization on an outdoor 400-m track; d and e) two 3-km time-trials, one with SS (experimental situation) and another without (control situation) previous static stretching. The order of the sessions d and e were randomized in a counterbalanced fashion. Sit-and-reach and drop jump tests were performed before the 3-km running time-trial in the control situation and before and after stretching exercises in the SS. Running economy, stride parameters, and electromyographic activity (EMG) of vastus medialis (VM), biceps femoris (BF) and gastrocnemius medialis (GA) were measured during the constant-speed tests. Results The overall running time did not change with condition (SS 11:35±00:31 s; control 11:28±00:41 s, p = 0.304), but the first 100 m was completed at a significantly lower velocity after SS. Surprisingly, SS did not modify the running economy, but the iEMG for the BF (+22.6%, p = 0.031), stride duration (+2.1%, p = 0.053) and range of motion (+11.1%, p = 0.0001) were significantly modified. Drop jump height decreased following SS (−9.2%, p = 0.001). Conclusion Static stretch impaired neuromuscular function, resulting in a slow start during a 3-km running time-trial, thus demonstrating the fundamental role of the neuromuscular system in the self-selected speed during the initial phase of the race. PMID:24905918

  6. Effects of size, sex, and voluntary running speeds on costs of locomotion in lines of laboratory mice selectively bred for high wheel-running activity.

    PubMed

    Rezende, Enrico L; Kelly, Scott A; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2006-01-01

    Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.

  7. An alternative approach to the Army Physical Fitness Test two-mile run using critical velocity and isoperformance curves.

    PubMed

    Fukuda, David H; Smith, Abbie E; Kendall, Kristina L; Cramer, Joel T; Stout, Jeffrey R

    2012-02-01

    The purpose of this study was to evaluate the use of critical velocity (CV) and isoperformance curves as an alternative to the Army Physical Fitness Test (APFT) two-mile running test. Seventy-eight men and women (mean +/- SE; age: 22.1 +/- 0.34 years; VO2(MAX): 46.1 +/- 0.82 mL/kg/min) volunteered to participate in this study. A VO2(MAX) test and four treadmill running bouts to exhaustion at varying intensities were completed. The relationship between total distance and time-to-exhaustion was tracked for each exhaustive run to determine CV and anaerobic running capacity. A VO2(MAX) prediction equation (Coefficient of determination: 0.805; Standard error of the estimate: 3.2377 mL/kg/min) was developed using these variables. Isoperformance curves were constructed for men and women to correspond with two-mile run times from APFT standards. Individual CV and anaerobic running capacity values were plotted and compared to isoperformance curves for APFT 2-mile run scores. Fifty-four individuals were determined to receive passing scores from this assessment. Physiological profiles identified from this procedure can be used to assess specific aerobic or anaerobic training needs. With the use of time-to-exhaustion as opposed to a time-trial format used in the two-mile run test, pacing strategies may be limited. The combination of variables from the CV test and isoperformance curves provides an alternative to standardized time-trial testing.

  8. Hierarchical structure of the energy landscape of proteins revisited by time series analysis. I. Mimicking protein dynamics in different time scales

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Camurdan, Mehmet C.; Doruker, Pemra

    2005-10-01

    Time series models, which are constructed from the projections of the molecular-dynamics (MD) runs on principal components (modes), are used to mimic the dynamics of two proteins: tendamistat and immunity protein of colicin E7 (ImmE7). Four independent MD runs of tendamistat and three independent runs of ImmE7 protein in vacuum are used to investigate the energy landscapes of these proteins. It is found that mean-square displacements of residues along the modes in different time scales can be mimicked by time series models, which are utilized in dividing protein dynamics into different regimes with respect to the dominating motion type. The first two regimes constitute the dominance of intraminimum motions during the first 5ps and the random walk motion in a hierarchically higher-level energy minimum, which comprise the initial time period of the trajectories up to 20-40ps for tendamistat and 80-120ps for ImmE7. These are also the time ranges within which the linear nonstationary time series are completely satisfactory in explaining protein dynamics. Encountering energy barriers enclosing higher-level energy minima constrains the random walk motion of the proteins, and pseudorelaxation processes at different levels of minima are detected in tendamistat, depending on the sampling window size. Correlation (relaxation) times of 30-40ps and 150-200ps are detected for two energy envelopes of successive levels for tendamistat, which gives an overall idea about the hierarchical structure of the energy landscape. However, it should be stressed that correlation times of the modes are highly variable with respect to conformational subspaces and sampling window sizes, indicating the absence of an actual relaxation. The random-walk step sizes and the time length of the second regime are used to illuminate an important difference between the dynamics of the two proteins, which cannot be clarified by the investigation of relaxation times alone: ImmE7 has lower-energy barriers enclosing the higher-level energy minimum, preventing the protein to relax and letting it move in a random-walk fashion for a longer period of time.

  9. Rat Strains Bred for Low and High Aerobic Running Capacity do not Differ in Their Survival Time to Hemorrhage

    DTIC Science & Technology

    2009-12-01

    23. Ensunsa JL, Symons JD, Lanoue L, Schrader HR, Keen CL. Reducing arginase activity via dietary manganese deficiency enhances endothelium- dependent ...maximal oxygen consumption (Vo2max) was 12% greater during normoxia and 20% greater during hypoxia in the HCR vs LCR (12). This enhanced Vo2max...was ∼ 40% greater in HCR vs LCR due to both increased oxygen delivery-- resulting from an enhanced stroke volume-- and oxygen tissue transfer (13

  10. The SYSGEN user package

    NASA Technical Reports Server (NTRS)

    Carlson, C. R.

    1981-01-01

    The user documentation of the SYSGEN model and its links with other simulations is described. The SYSGEN is a production costing and reliability model of electric utility systems. Hydroelectric, storage, and time dependent generating units are modeled in addition to conventional generating plants. Input variables, modeling options, output variables, and reports formats are explained. SYSGEN also can be run interactively by using a program called FEPS (Front End Program for SYSGEN). A format for SYSGEN input variables which is designed for use with FEPS is presented.

  11. Stochastic demographic forecasting.

    PubMed

    Lee, R D

    1992-11-01

    "This paper describes a particular approach to stochastic population forecasting, which is implemented for the U.S.A. through 2065. Statistical time series methods are combined with demographic models to produce plausible long run forecasts of vital rates, with probability distributions. The resulting mortality forecasts imply gains in future life expectancy that are roughly twice as large as those forecast by the Office of the Social Security Actuary.... Resulting stochastic forecasts of the elderly population, elderly dependency ratios, and payroll tax rates for health, education and pensions are presented." excerpt

  12. Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function.

    PubMed

    Moon, Hyo Youl; Becke, Andreas; Berron, David; Becker, Benjamin; Sah, Nirnath; Benoni, Galit; Janke, Emma; Lubejko, Susan T; Greig, Nigel H; Mattison, Julie A; Duzel, Emrah; van Praag, Henriette

    2016-08-09

    Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition. Published by Elsevier Inc.

  13. Are renewable energy policies upsetting carbon dioxide emissions? The case of Latin America countries.

    PubMed

    Fuinhas, José Alberto; Marques, António Cardoso; Koengkan, Matheus

    2017-06-01

    The impact of renewable energy policies in carbon dioxide emissions was analysed for a panel of ten Latin American countries, for the period from 1991 to 2012. Panel autoregressive distributed lag methodology was used to decompose the total effect of renewable energy policies on carbon dioxide emissions in its short- and long-run components. There is evidence for the presence of cross-sectional dependence, confirming that Latin American countries share spatial patterns. Heteroskedasticity, contemporaneous correlation, and first-order autocorrelation cross-sectional dependence are also present. To cope with these phenomena, the robust dynamic Driscoll-Kraay estimator, with fixed effects, was used. It was confirmed that the primary energy consumption per capita, in both the short- and long-run, contributes to an increase in carbon dioxide emissions, and also that renewable energy policies in the long-run, and renewable electricity generation per capita both in the short- and long-run, help to mitigate per capita carbon dioxide emissions.

  14. Comparison of Sprint and Run Times with Performance on the Wingate Anaerobic Test.

    ERIC Educational Resources Information Center

    Tharp, Gerald D.; And Others

    1985-01-01

    Male volunteers were studied to examine the relationship between the Wingate Anaerobic Test (WAnT) and sprint-run times and to determine the influence of age and weight. Results indicate the WAnT is a moderate predictor of dash and run times but becomes a stronger predictor when adjusted for body weight. (Author/MT)

  15. 12 CFR 1102.306 - Procedures for requesting records.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... section; (B) Where the running of such time is suspended for the calculation of a cost estimate for the... section; (C) Where the running of such time is suspended for the payment of fees pursuant to the paragraph... of the invoice. (ix) The time limit for the ASC to respond to a request will not begin to run until...

  16. Variability of GPS-derived running performance during official matches in elite professional soccer players.

    PubMed

    Al Haddad, Hani; Méndez-Villanueva, Alberto; Torreño, Nacho; Munguía-Izquierdo, Diego; Suárez-Arrones, Luis

    2017-09-22

    The aim of this study was to assess the match-to-match variability obtained using GPS devices, collected during official games in professional soccer players. GPS-derived data from nineteen elite soccer players were collected over two consecutive seasons. Time-motion data for players with more than five full-match were analyzed (n=202). Total distance covered (TD), TD >13-18 km/h, TD >18-21 km/h, TD >21 km/h, number of acceleration >2.5-4 m.s-2 and >4 m.s-2 were calculated. The match-to-match variation in running activity was assessed by the typical error expressed as a coefficient of variation (CV,%) and the magnitude of the CV was calculated (effect size). When all players were pooled together, CVs ranged from 5% to 77% (first half) and from 5% to 90% (second half), for TD and number of acceleration >4 m.s-2, and the magnitude of the CVs were rated from small to moderate (effect size = 0.57-0.98). The CVs were likely to increase with running/acceleration intensity, and were likely to differ between playing positions (e.g., TD > 13-18 km/h 3.4% for second strikers vs 14.2% for strikers and 14.9% for wide-defenders vs 9.7% for wide-midfielders). Present findings indicate that variability in players' running performance is high in some variables and likely position-dependent. Such variability should be taken into account when using these variables to prescribe and/or monitor training intensity/load. GPS-derived match-to-match variability in official games' locomotor performance of professional soccer players is high in some variables, particularly for high-speed running, due to the complexity of match running performance and its most influential factors and reliability of the devices.

  17. Whole blood coagulation and platelet activation in the athlete: a comparison of marathon, triathlon and long distance cycling.

    PubMed

    Hanke, Alexander A; Staib, A; Görlinger, K; Perrey, M; Dirkmann, D; Kienbaum, P

    2010-02-26

    Serious thrombembolic events occur in otherwise healthy marathon athletes during competition. We tested the hypothesis that during heavy endurance sports coagulation and platelets are activated depending on the type of endurance sport with respect to its running fraction. 68 healthy athletes participating in marathon (MAR, running 42 km, n = 24), triathlon (TRI, swimming 2.5 km + cycling 90 km + running 21 km, n = 22), and long distance cycling (CYC, 151 km, n = 22) were included in the study. Blood samples were taken before and immediately after completion of competition to perform rotational thrombelastometry. We assessed coagulation time (CT), maximum clot firmness (MCF) after intrinsically activation and fibrin polymerization (FIBTEM). Furthermore, platelet aggregation was tested after activation with ADP and thrombin activating peptide 6 (TRAP) by using multiple platelet function analyzer. Complete data sets were obtained in 58 athletes (MAR: n = 20, TRI: n = 19, CYC: n = 19). CT significantly decreased in all groups (MAR -9.9%, TRI -8.3%, CYC -7.4%) without differences between groups. In parallel, MCF (MAR +7.4%, TRI +6.1%, CYC +8.3%) and fibrin polymerization (MAR +14.7%, TRI +6.1%, CYC +8.3%) were significantly increased in all groups. However, platelets were only activated during MAR and TRI as indicated by increased AUC during TRAP-activation (MAR +15.8%) and increased AUC during ADP-activation in MAR (+50.3%) and TRI (+57.5%). While coagulation is activated during physical activity irrespective of type we observed significant platelet activation only during marathon and to a lesser extent during triathlon. We speculate that prolonged running may increase platelet activity, possibly, due to mechanical alteration. Thus, particularly prolonged running may increase the risk of thrombembolic incidents in running athletes.

  18. Whole blood coagulation and platelet activation in the athlete: A comparison of marathon, triathlon and long distance cycling

    PubMed Central

    2010-01-01

    Introduction Serious thrombembolic events occur in otherwise healthy marathon athletes during competition. We tested the hypothesis that during heavy endurance sports coagulation and platelets are activated depending on the type of endurance sport with respect to its running fraction. Materials and Methods 68 healthy athletes participating in marathon (MAR, running 42 km, n = 24), triathlon (TRI, swimming 2.5 km + cycling 90 km + running 21 km, n = 22), and long distance cycling (CYC, 151 km, n = 22) were included in the study. Blood samples were taken before and immediately after completion of competition to perform rotational thrombelastometry. We assessed coagulation time (CT), maximum clot firmness (MCF) after intrinsically activation and fibrin polymerization (FIBTEM). Furthermore, platelet aggregation was tested after activation with ADP and thrombin activating peptide 6 (TRAP) by using multiple platelet function analyzer. Results Complete data sets were obtained in 58 athletes (MAR: n = 20, TRI: n = 19, CYC: n = 19). CT significantly decreased in all groups (MAR -9.9%, TRI -8.3%, CYC -7.4%) without differences between groups. In parallel, MCF (MAR +7.4%, TRI +6.1%, CYC +8.3%) and fibrin polymerization (MAR +14.7%, TRI +6.1%, CYC +8.3%) were significantly increased in all groups. However, platelets were only activated during MAR and TRI as indicated by increased AUC during TRAP-activation (MAR +15.8%) and increased AUC during ADP-activation in MAR (+50.3%) and TRI (+57.5%). Discussion While coagulation is activated during physical activity irrespective of type we observed significant platelet activation only during marathon and to a lesser extent during triathlon. We speculate that prolonged running may increase platelet activity, possibly, due to mechanical alteration. Thus, particularly prolonged running may increase the risk of thrombembolic incidents in running athletes. PMID:20452885

  19. Medial shoe-ground pressure and specific running injuries: A 1-year prospective cohort study.

    PubMed

    Brund, René B K; Rasmussen, Sten; Nielsen, Rasmus O; Kersting, Uwe G; Laessoe, Uffe; Voigt, Michael

    2017-09-01

    Achilles tendinitis, plantar fasciopathy and medial tibial stress syndrome injuries (APM-injuries) account for approximately 25% of the total number of running injuries amongst recreational runners. Reports on the association between static foot pronation and APM-injuries are contradictory. Possibly, dynamic measures of pronation may display a stronger relationship with the risk of APM-injuries. Therefore, the purpose of the present study was to investigate if running distance until the first APM-injury was dependent on the foot balance during stance phase in recreational male runners. Prospective cohort study. Foot balance for both feet was measured during treadmill running at the fastest possible 5000-m running pace in 79 healthy recreational male runners. Foot balance was calculated by dividing the average of medial pressure with the average of lateral pressure. Foot balance was categorized into those which presented a higher lateral shod pressure (LP) than medial pressure, and those which presented a higher medial shod pressure (MP) than lateral pressure during the stance phase. A time-to-event model was used to compare differences in incidence between foot balance groups. Compared with the LP-group (n=59), the proportion of APM-injuries was greater in the MP-group (n=99) after 1500km of running, resulting in a cumulative risk difference of 16%-points (95% CI=3%-point; 28%-point, p=0.011). Runners displaying a more medial pressure during stance phase at baseline sustained a greater amount of APM-injuries compared to those displaying a lateral shod pressure during stance phase. Prospective studies including a greater amount of runners are needed to confirm this relationship. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Build and Execute Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Qiang

    At exascale, the challenge becomes to develop applications that run at scale and use exascale platforms reliably, efficiently, and flexibly. Workflows become much more complex because they must seamlessly integrate simulation and data analytics. They must include down-sampling, post-processing, feature extraction, and visualization. Power and data transfer limitations require these analysis tasks to be run in-situ or in-transit. We expect successful workflows will comprise multiple linked simulations along with tens of analysis routines. Users will have limited development time at scale and, therefore, must have rich tools to develop, debug, test, and deploy applications. At this scale, successful workflows willmore » compose linked computations from an assortment of reliable, well-defined computation elements, ones that can come and go as required, based on the needs of the workflow over time. We propose a novel framework that utilizes both virtual machines (VMs) and software containers to create a workflow system that establishes a uniform build and execution environment (BEE) beyond the capabilities of current systems. In this environment, applications will run reliably and repeatably across heterogeneous hardware and software. Containers, both commercial (Docker and Rocket) and open-source (LXC and LXD), define a runtime that isolates all software dependencies from the machine operating system. Workflows may contain multiple containers that run different operating systems, different software, and even different versions of the same software. We will run containers in open-source virtual machines (KVM) and emulators (QEMU) so that workflows run on any machine entirely in user-space. On this platform of containers and virtual machines, we will deliver workflow software that provides services, including repeatable execution, provenance, checkpointing, and future proofing. We will capture provenance about how containers were launched and how they interact to annotate workflows for repeatable and partial re-execution. We will coordinate the physical snapshots of virtual machines with parallel programming constructs, such as barriers, to automate checkpoint and restart. We will also integrate with HPC-specific container runtimes to gain access to accelerators and other specialized hardware to preserve native performance. Containers will link development to continuous integration. When application developers check code in, it will automatically be tested on a suite of different software and hardware architectures.« less

  1. Acute differences in foot strike and spatiotemporal variables for shod, barefoot or minimalist male runners.

    PubMed

    McCallion, Ciara; Donne, Bernard; Fleming, Neil; Blanksby, Brian

    2014-05-01

    This study compared stride length, stride frequency, contact time, flight time and foot-strike patterns (FSP) when running barefoot, and in minimalist and conventional running shoes. Habitually shod male athletes (n = 14; age 25 ± 6 yr; competitive running experience 8 ± 3 yr) completed a randomised order of 6 by 4-min treadmill runs at velocities (V1 and V2) equivalent to 70 and 85% of best 5-km race time, in the three conditions. Synchronous recording of 3-D joint kinematics and ground reaction force data examined spatiotemporal variables and FSP. Most participants adopted a mid-foot strike pattern, regardless of condition. Heel-toe latency was less at V2 than V1 (-6 ± 20 vs. -1 ± 13 ms, p < 0.05), which indicated a velocity related shift towards a more FFS pattern. Stride duration and flight time, when shod and in minimalist footwear, were greater than barefoot (713 ± 48 and 701 ± 49 vs. 679 ± 56 ms, p < 0.001; and 502 ± 45 and 503 ± 41 vs. 488 ±4 9 ms, p < 0.05, respectively). Contact time was significantly longer when running shod than barefoot or in minimalist footwear (211±30 vs. 191 ± 29 ms and 198 ± 33 ms, p < 0.001). When running barefoot, stride frequency was significantly higher (p < 0.001) than in conventional and minimalist footwear (89 ± 7 vs. 85 ± 6 and 86 ± 6 strides·min(-1)). In conclusion, differences in spatiotemporal variables occurred within a single running session, irrespective of barefoot running experience, and, without a detectable change in FSP. Key pointsDifferences in spatiotemporal variables occurred within a single running session, without a change in foot strike pattern.Stride duration and flight time were greater when shod and in minimalist footwear than when barefoot.Stride frequency when barefoot was higher than when shod or in minimalist footwear.Contact time when shod was longer than when barefoot or in minimalist footwear.Spatiotemporal variables when running in minimalist footwear more closely resemble shod than barefoot running.

  2. Acute Differences in Foot Strike and Spatiotemporal Variables for Shod, Barefoot or Minimalist Male Runners

    PubMed Central

    McCallion, Ciara; Donne, Bernard; Fleming, Neil; Blanksby, Brian

    2014-01-01

    This study compared stride length, stride frequency, contact time, flight time and foot-strike patterns (FSP) when running barefoot, and in minimalist and conventional running shoes. Habitually shod male athletes (n = 14; age 25 ± 6 yr; competitive running experience 8 ± 3 yr) completed a randomised order of 6 by 4-min treadmill runs at velocities (V1 and V2) equivalent to 70 and 85% of best 5-km race time, in the three conditions. Synchronous recording of 3-D joint kinematics and ground reaction force data examined spatiotemporal variables and FSP. Most participants adopted a mid-foot strike pattern, regardless of condition. Heel-toe latency was less at V2 than V1 (-6 ± 20 vs. -1 ± 13 ms, p < 0.05), which indicated a velocity related shift towards a more FFS pattern. Stride duration and flight time, when shod and in minimalist footwear, were greater than barefoot (713 ± 48 and 701 ± 49 vs. 679 ± 56 ms, p < 0.001; and 502 ± 45 and 503 ± 41 vs. 488 ±4 9 ms, p < 0.05, respectively). Contact time was significantly longer when running shod than barefoot or in minimalist footwear (211±30 vs. 191 ± 29 ms and 198 ± 33 ms, p < 0.001). When running barefoot, stride frequency was significantly higher (p < 0.001) than in conventional and minimalist footwear (89 ± 7 vs. 85 ± 6 and 86 ± 6 strides·min-1). In conclusion, differences in spatiotemporal variables occurred within a single running session, irrespective of barefoot running experience, and, without a detectable change in FSP. Key points Differences in spatiotemporal variables occurred within a single running session, without a change in foot strike pattern. Stride duration and flight time were greater when shod and in minimalist footwear than when barefoot. Stride frequency when barefoot was higher than when shod or in minimalist footwear. Contact time when shod was longer than when barefoot or in minimalist footwear. Spatiotemporal variables when running in minimalist footwear more closely resemble shod than barefoot running. PMID:24790480

  3. The NLstart2run study: Training-related factors associated with running-related injuries in novice runners.

    PubMed

    Kluitenberg, Bas; van der Worp, Henk; Huisstede, Bionka M A; Hartgens, Fred; Diercks, Ron; Verhagen, Evert; van Middelkoop, Marienke

    2016-08-01

    The incidence of running-related injuries is high. Some risk factors for injury were identified in novice runners, however, not much is known about the effect of training factors on injury risk. Therefore, the purpose of this study was to examine the associations between training factors and running-related injuries in novice runners, taking the time varying nature of these training-related factors into account. Prospective cohort study. 1696 participants completed weekly diaries on running exposure and injuries during a 6-week running program for novice runners. Total running volume (min), frequency and mean intensity (Rate of Perceived Exertion) were calculated for the seven days prior to each training session. The association of these time-varying variables with injury was determined in an extended Cox regression analysis. The results of the multivariable analysis showed that running with a higher intensity in the previous week was associated with a higher injury risk. Running frequency was not significantly associated with injury, however a trend towards running three times per week being more hazardous than two times could be observed. Finally, lower running volume was associated with a higher risk of sustaining an injury. These results suggest that running more than 60min at a lower intensity is least injurious. This finding is contrary to our expectations and is presumably the result of other factors. Therefore, the findings should not be used plainly as a guideline for novices. More research is needed to establish the person-specific training patterns that are associated with injury. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  4. A time-domain digitally controlled oscillator composed of a free running ring oscillator and flying-adder

    NASA Astrophysics Data System (ADS)

    Wei, Liu; Wei, Li; Peng, Ren; Qinglong, Lin; Shengdong, Zhang; Yangyuan, Wang

    2009-09-01

    A time-domain digitally controlled oscillator (DCO) is proposed. The DCO is composed of a free-running ring oscillator (FRO) and a two lap-selectors integrated flying-adder (FA). With a coiled cell array which allows uniform loading capacitances of the delay cells, the FRO produces 32 outputs with consistent tap spacing for the FA as reference clocks. The FA uses the outputs from the FRO to generate the output of the DCO according to the control number, resulting in a linear dependence of the output period, instead of the frequency on the digital controlling word input. Thus the proposed DCO ensures a good conversion linearity in a time-domain, and is suitable for time-domain all-digital phase locked loop applications. The DCO was implemented in a standard 0.13 μm digital logic CMOS process. The measurement results show that the DCO has a linear and monotonic tuning curve with gain variation of less than 10%, and a very low root mean square period jitter of 9.3 ps in the output clocks. The DCO works well at supply voltages ranging from 0.6 to 1.2 V, and consumes 4 mW of power with 500 MHz frequency output at 1.2 V supply voltage.

  5. Differential Effects of 7 and 16 Groups of Muscle Relaxation Training Following Repeated Submaximal Intensity Exercise in Young Football Players.

    PubMed

    Sharifah Maimunah, S M P; Hashim, H A

    2016-02-01

    This study compares two versions of progressive muscle relaxation (PMR) training (7 and 16 muscle groups) on oxygen consumption (VO2), heart rates, rating of perceived exertion and choice reaction time. Football (soccer) players (N = 26; M age = 13.4 yr., SD = 0.5) were randomly assigned to either 7 muscle groups PMR, 16 muscle groups PMR, or a control group. PMR training requires the participants to tense a muscle, hold the muscle contraction, and then relax it. Measurement was conducted prior to and after the completion of 12 sessions of PMR. The dependent variables were measured following four bouts of intermittent exercise consisting of 12 min. of running at 60% VO2max for 10 min. followed by running at 90% VO2max for 2 min. with a 3-min. rest for each bout. Lower VO2, heart rate, perceived exertion, and quicker reaction time were expected in both relaxation groups compared to the control group. The results revealed a significant reduction in heart rates and choice reaction time for both relaxation groups, but the longer version produced significantly quicker choice reaction time. © The Author(s) 2016.

  6. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    PubMed

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  7. Performance and Kinematics of Various Throwing Techniques in Team-Handball

    PubMed Central

    Wagner, Herbert; Pfusterschmied, Jürgen; von Duvillard, Serge P.; Müller, Erich

    2011-01-01

    In team-handball competition, the players utilize various throwing techniques that differ in the lower body movements (with and without run-up or jump). These different lower body movements influence changes in the upper body movements and thus also affect the performance. A comprehensive analysis of 3D-kinematics of team-handball throws that may explain these differences in performance is lacking. Consequently, the purpose of this study was (1) to compare performance (ball velocity and throwing accuracy) between the jump throw, standing throw with and without run-up, and the pivot throw; (2) to calculate the influence of kinematic parameters to ball velocity; and (3) to determine if these four throwing techniques differ significantly in kinematics. Three-dimensional kinematic data (angles, angular velocities and their timing, ball velocity and velocity of the center of mass) of 14 elite team-handball players were measured using an 8 camera Vicon MX13 motion capture system (Vicon, Oxford, UK), at 250 Hz. Significant difference was found between the four throwing techniques for ball velocity (p < 0. 001), maximal velocity of the center of mass in goal-directed movement (p < 0.001), and 15 additional kinematic variables (p < 0.003). Ball velocity was significant impacted by the run-up and the pelvis and trunk movements. Depending on floor contact (standing vs. jump throws), elite players in the study used two different strategies (lead leg braces the body vs. opposed leg movements during flight) to accelerate the pelvis and trunk to yield differences in ball velocity. However, these players were able to utilize the throwing arm similarly in all four throwing techniques. Key points Elite team-handball players achieved the greatest ball velocity in the standing throw with run-up (100%), followed by the standing throw without run-up (93%), jump throw (92%) and pivot throw (85%). Depending on the floor contact (standing vs. jump throws) the elite players of the study used two different strategies (lead leg braces the body vs. opposed leg movements during flight) to accelerate the pelvis and trunk that caused differences in ball velocity. Elite team-handball players were able to utilize the throwing arm similarly in all four throwing techniques. PMID:24149298

  8. Slowdown of surface diffusion during early stages of bacterial colonization

    NASA Astrophysics Data System (ADS)

    Vourc'h, T.; Peerhossaini, H.; Léopoldès, J.; Méjean, A.; Chauvat, F.; Cassier-Chauvat, C.

    2018-03-01

    We study the surface diffusion of the model cyanobacterium Synechocystis sp. PCC6803 during the incipient stages of cell contact with a glass surface in the dilute regime. We observe a twitching motility with alternating immobile tumble and mobile run periods, resulting in a normal diffusion described by a continuous-time random walk with a coefficient of diffusion D . Surprisingly, D is found to decrease with time down to a plateau. This is observed only when the cyanobacterial cells are able to produce released extracellular polysaccharides, as shown by a comparative study between the wild-type strain and various polysaccharides-depleted mutants. The analysis of the trajectories taken by the bacterial cells shows that the temporal characteristics of their intermittent motion depend on the instantaneous fraction of visited sites during diffusion. This describes quantitatively the time dependence of D , related to the progressive surface coverage by the polysaccharides. The observed slowdown of the surface diffusion may constitute a basic precursor mechanism for microcolony formation and provides clues for controlling biofilm formation.

  9. Solution of 3-dimensional time-dependent viscous flows. Part 3: Application to turbulent and unsteady flows

    NASA Technical Reports Server (NTRS)

    Weinberg, B. C.; Mcdonald, H.

    1982-01-01

    A numerical scheme is developed for solving the time dependent, three dimensional compressible viscous flow equations to be used as an aid in the design of helicopter rotors. In order to further investigate the numerical procedure, the computer code developed to solve an approximate form of the three dimensional unsteady Navier-Stokes equations employing a linearized block implicit technique in conjunction with a QR operator scheme is tested. Results of calculations are presented for several two dimensional boundary layer flows including steady turbulent and unsteady laminar cases. A comparison of fourth order and second order solutions indicate that increased accuracy can be obtained without any significant increases in cost (run time). The results of the computations also indicate that the computer code can be applied to more complex flows such as those encountered on rotating airfoils. The geometry of a symmetric NACA four digit airfoil is considered and the appropriate geometrical properties are computed.

  10. Long-Term Isothermal Aging Effects on Carbon Fabric-Reinforced PMR-15 Composites: Compression Strength

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.

    1996-01-01

    A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.

  11. Punchets: nonlinear transport in Hamiltonian pump-ratchet hybrids

    NASA Astrophysics Data System (ADS)

    Dittrich, Thomas; Medina Sánchez, Nicolás

    2018-02-01

    ‘Punchets’ are hybrids between ratchets and pumps, combining a spatially periodic static potential, typically asymmetric under space inversion, with a local driving that breaks time-reversal invariance, and are intended to model metal or semiconductor surfaces irradiated by a collimated laser beam. Their crucial feature is irregular driven scattering between asymptotic regions supporting periodic (as opposed to free) motion. With all binary spatio-temporal symmetries broken, scattering in punchets typically generates directed currents. We here study the underlying nonlinear transport mechanisms, from chaotic scattering to the parameter dependence of the currents, in three types of Hamiltonian models, (i) with spatially periodic potentials where only in the driven scattering region, spatial and temporal symmetries are broken, and (ii), spatially asymmetric (ratchet) potentials with a driving that only breaks time-reversal invariance. As more realistic models of laser-irradiated surfaces, we consider (iii), a driving in the form of a running wave confined to a compact region by a static envelope. In this case, the induced current can even run against the direction of wave propagation, drastically evidencing its nonlinear nature. Quantizing punchets is indicated as a viable research perspective.

  12. Statistical mechanics of the vertex-cover problem

    NASA Astrophysics Data System (ADS)

    Hartmann, Alexander K.; Weigt, Martin

    2003-10-01

    We review recent progress in the study of the vertex-cover problem (VC). The VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits a coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping the VC to a hard-core lattice gas, and then applying techniques such as the replica trick or the cavity approach. Using these methods, the phase diagram of the VC could be obtained exactly for connectivities c < e, where the VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c > e, the solution of the VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for the VC. Finally, we describe recent results for the VC when studied on other ensembles of finite- and infinite-dimensional graphs.

  13. Comparison of scientific computing platforms for MCNP4A Monte Carlo calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, J.S.; Brockhoff, R.C.

    1994-04-01

    The performance of seven computer platforms is evaluated with the widely used and internationally available MCNP4A Monte Carlo radiation transport code. All results are reproducible and are presented in such a way as to enable comparison with computer platforms not in the study. The authors observed that the HP/9000-735 workstation runs MCNP 50% faster than the Cray YMP 8/64. Compared with the Cray YMP 8/64, the IBM RS/6000-560 is 68% as fast, the Sun Sparc10 is 66% as fast, the Silicon Graphics ONYX is 90% as fast, the Gateway 2000 model 4DX2-66V personal computer is 27% as fast, and themore » Sun Sparc2 is 24% as fast. In addition to comparing the timing performance of the seven platforms, the authors observe that changes in compilers and software over the past 2 yr have resulted in only modest performance improvements, hardware improvements have enhanced performance by less than a factor of [approximately]3, timing studies are very problem dependent, MCNP4Q runs about as fast as MCNP4.« less

  14. Influence of daytime running lamps on visual reaction time of pedestrians when detecting turn indicators.

    PubMed

    Peña-García, Antonio; de Oña Lopez, Rocío; Espín Estrella, Antonio; Aznar Dols, Fernando; Calvo Poyo, Franscisco J; Molero Mesa, Evaristo; de Oña López, Juan

    2010-10-01

    This article describes one experiment that studied the influence of Daytime Running Lamps (DRL) on pedestrian detection of turn indicators. An experimental device including one DRL and one turn indicator was used in order to determine Visual Reaction Times (VRT) of 148 observers in different situations involving turn indicator activation. Such situations were combinations of three main variables: color of DRL, separation between DRL and Turn Indicator, and observation angle. Significant changes in VRT were found depending on the configurations above, especially the observation angle and the color of DRL. This second result demonstrates that amber DRLs inhibit the detection of Turn Indicators. One of the main targets of this paper is to recommend that carmakers introduce only white DRLs on new vehicles. We also intend to advise regulatory bodies working on automotive regulation about the consequences of allowing amber DRLs and also about the danger of introducing constrains on the distance between DRL and Turn Indicator without further experimental evidences. Copyright © 2010 Elsevier Ltd and National Safety Council. All rights reserved.

  15. A Monotonic Degradation Assessment Index of Rolling Bearings Using Fuzzy Support Vector Data Description and Running Time

    PubMed Central

    Shen, Zhongjie; He, Zhengjia; Chen, Xuefeng; Sun, Chuang; Liu, Zhiwen

    2012-01-01

    Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD) and running time. FSVDD constructs the fuzzy-monitoring coefficient ε̄ which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter ε̄ describes the accelerating relationships between the damage development and running time. However, the index ε̄ with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI). DSI inherits all advantages of ε̄ and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly. PMID:23112591

  16. A monotonic degradation assessment index of rolling bearings using fuzzy support vector data description and running time.

    PubMed

    Shen, Zhongjie; He, Zhengjia; Chen, Xuefeng; Sun, Chuang; Liu, Zhiwen

    2012-01-01

    Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD) and running time. FSVDD constructs the fuzzy-monitoring coefficient ε⁻ which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter ε⁻ describes the accelerating relationships between the damage development and running time. However, the index ε⁻ with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI). DSI inherits all advantages of ε⁻ and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly.

  17. Interest of intra-operative 3D imaging in spine surgery: a prospective randomized study.

    PubMed

    Ruatti, Sébastien; Dubois, C; Chipon, E; Kerschbaumer, G; Milaire, M; Moreau-Gaudry, A; Tonetti, J; Merloz, Ph

    2016-06-01

    We report a single-center, prospective, randomized study for pedicle screw insertion in opened and percutaneous spine surgeries, using a computer-assisted surgery (CAS) technique with three-dimensional (3D) intra-operative images intensifier (without planification on pre-operative CT scan) vs conventional surgical procedure. We included 143 patients: Group C (conventional, 72 patients) and Group N (3D Fluoronavigation, 71 patients). We measured the pedicle screw running time, and surgeon's radiation exposure. All pedicle runs were assessed according to Heary by two independent radiologists on a post-operative CT scan. 3D Fluoronavigation appeared less accurate in percutaneous procedures (24 % of misplaced pedicle screws vs 5 % in Group C) (p = 0.007), but more accurate in opened surgeries (5 % of misplaced pedicle screws vs 17 % in Group C) (p = 0.025). For one vertebra, the average surgical running time reached 8 min in Group C vs 21 min in Group N for percutaneous surgeries (p = 3.42 × 10(-9)), 7.33 min in Group C vs 16.33 min in Group N (p = 2.88 × 10(-7)) for opened surgeries. The 3D navigation device delivered less radiation in percutaneous procedures [0.6 vs 1.62 mSv in Group C (p = 2.45 × 10(-9))]. For opened surgeries, it was twice higher in Group N with 0.21 vs 0.1 mSv in Group C (p = 0.022). The rate of misplaced pedicle screws with conventional techniques was nearly the same as most papers and a little bit higher with CAS. Surgical running time and radiation exposure were consistent with many studies. Our work hypothesis is partially confirmed, depending on the type of surgery (opened or closed procedure).

  18. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    NASA Technical Reports Server (NTRS)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  19. Impact of water quality on chlorine demand of corroding copper.

    PubMed

    Lytle, Darren A; Liggett, Jennifer

    2016-04-01

    Copper is widely used in drinking water premise plumbing system materials. In buildings such as hospitals, large and complicated plumbing networks make it difficult to maintain good water quality. Sustaining safe disinfectant residuals throughout a building to protect against waterborne pathogens such as Legionella is particularly challenging since copper and other reactive distribution system materials can exert considerable demands. The objective of this work was to evaluate the impact of pH and orthophosphate on the consumption of free chlorine associated with corroding copper pipes over time. A copper test-loop pilot system was used to control test conditions and systematically meet the study objectives. Chlorine consumption trends attributed to abiotic reactions with copper over time were different for each pH condition tested, and the total amount of chlorine consumed over the test runs increased with increasing pH. Orthophosphate eliminated chlorine consumption trends with elapsed time (i.e., chlorine demand was consistent across entire test runs). Orthophosphate also greatly reduced the total amount of chlorine consumed over the test runs. Interestingly, the total amount of chlorine consumed and the consumption rate were not pH dependent when orthophosphate was present. The findings reflect the complex and competing reactions at the copper pipe wall including corrosion, oxidation of Cu(I) minerals and ions, and possible oxidation of Cu(II) minerals, and the change in chlorine species all as a function of pH. The work has practical applications for maintaining chlorine residuals in premise plumbing drinking water systems including large buildings such as hospitals. Published by Elsevier Ltd.

  20. 77 FR 50198 - Self-Regulatory Organizations; The Fixed Income Clearing Corporation; Notice of Filing Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... Time at Which the Mortgage-Backed Securities Division Runs Its Daily Morning Pass August 14, 2012... Division (``MBSD'') runs its first processing pass of the day from 2 p.m. to 4 p.m. Eastern Standard Time... MBSD intends to move the time at which it runs its first processing pass of the day (historically...

  1. Towards Run-time Assurance of Advanced Propulsion Algorithms

    NASA Technical Reports Server (NTRS)

    Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy

    2014-01-01

    This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.

  2. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Bradley, A.; Bramante, R.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Chapman, J. J.; Chiller, A. A.; Chiller, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; de Viveiros, L.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Ghag, C.; Gibson, K. R.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Ihm, M.; Jacobsen, R. G.; Ji, W.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Malling, D. C.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Ott, R. A.; Palladino, K. J.; Pangilinan, M.; Pease, E. K.; Phelps, P.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solovov, V. N.; Sorensen, P.; Stephenson, S.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2016-04-01

    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 ×104 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σn=9.4 ×10-41 cm2 (σp=2.9 ×10-39 cm2 ) at 33 GeV /c2 . The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

  3. MOST: A Powerful Tool to Reveal the True Nature of the Mysterious Dust-Forming Wolf-Rayet Binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, A.; Moffat, A. F. J.; Chené, A.-N.; MOST Collaboration

    2012-12-01

    The WR + O binary CV Ser has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. However, the first high-precision time-dependent photometric observations obtained with the MOST space telescope in 2009 show two consecutive eclipses over the 29 day orbit, with varying depths. A subsequent MOST run in 2010 showed a somewhat asymmetric eclipse profile. Parallel optical spectroscopy was obtained from the Observatoire du Mont-Mégantic (2009 and 2010) and from the Dominion Astrophysical Observatory (2009).

  4. Performance of FORTRAN floating-point operations on the Flex/32 multicomputer

    NASA Technical Reports Server (NTRS)

    Crockett, Thomas W.

    1987-01-01

    A series of experiments has been run to examine the floating-point performance of FORTRAN programs on the Flex/32 (Trademark) computer. The experiments are described, and the timing results are presented. The time required to execute a floating-point operation is found to vary considerbaly depending on a number of factors. One factor of particular interest from an algorithm design standpoint is the difference in speed between common memory accesses and local memory accesses. Common memory accesses were found to be slower, and guidelines are given for determinig when it may be cost effective to copy data from common to local memory.

  5. Three essays in energy consumption: Time series analyses

    NASA Astrophysics Data System (ADS)

    Ahn, Hee Bai

    1997-10-01

    Firstly, this dissertation investigates that which demand specification is an appropriate model for long-run energy demand between the conventional demand specification and the limited demand specification. In order to determine the components of a stable long-run demand for different sectors of the energy industry, I perform cointegration tests by using the Johansen test procedure. First, I test the conventional demand specification including prices and income as components. Second, I test a limited demand specification only income as a component. The reason for performing these tests is that we can determine that which demand specification is a good long-run predictor of energy consumption between the two demand specifications by using the cointegration tests. Secondly, for the purpose of planning and forecasting energy demand in case of cointegrated system, long-run elasticities are of particular interest. To retrieve the optimal level of energy demand in case of price shock, we need long-run elasticities rather than short-run elasticities. The energy demand study provides valuable information to the energy policy makers who are concerned about the long-run impact of taxes and tariffs. A long-run price elasticity is a primary barometer of the substitution effect between energy and non-energy inputs and long-run income elasticity is an important factor since we can measure the energy demand growing slowly or fast than in the past depending on the magnitude of long-run elasticity. The one other problem in estimating the total energy demand is that there exists an aggregation bias stemming from the process of summation in four different energy types for the total aggregation prices and total aggregation energy consumption. In order to measure the aggregation bias between the Btu aggregation method and the Divisia Index method, i.e., which methodology has less aggregation bias in the long-run, I compare the two estimation results with calculated results estimated on a disaggregated basis. Thus, we can confirm whether or not the theoretically superior methodology has less aggregation bias in empirical estimation. Thirdly, I investigate the causal relationships between energy use and GDP. In order to detect causal relationships both in the long-run and in the short-run, the VECM (Vector Error Correction Model) can be used if there exists cointegration relationships among the variables. I detect the causal effects between energy use and GDP by estimating the VECM based on the multivariate production function including the labor and capital variables.

  6. 40 CFR Table 1b to Subpart Ce of... - Emissions Limits for Small, Medium, and Large HMIWI at Designated Facilities as Defined in § 60...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....011) 3-run average (1-hour minimum sample time per run) EPA Reference Method 5 of appendix A-3 of part... by volume (ppmv) 20 5.5 11 3-run average (1-hour minimum sample time per run) EPA Reference Method 10... dscf) 16 (7.0) or 0.013 (0.0057) 0.85 (0.37) or 0.020 (0.0087) 9.3 (4.1) or 0.054 (0.024) 3-run average...

  7. Running Economy from a Muscle Energetics Perspective

    PubMed Central

    Fletcher, Jared R.; MacIntosh, Brian R.

    2017-01-01

    The economy of running has traditionally been quantified from the mass-specific oxygen uptake; however, because fuel substrate usage varies with exercise intensity, it is more accurate to express running economy in units of metabolic energy. Fundamentally, the understanding of the major factors that influence the energy cost of running (Erun) can be obtained with this approach. Erun is determined by the energy needed for skeletal muscle contraction. Here, we approach the study of Erun from that perspective. The amount of energy needed for skeletal muscle contraction is dependent on the force, duration, shortening, shortening velocity, and length of the muscle. These factors therefore dictate the energy cost of running. It is understood that some determinants of the energy cost of running are not trainable: environmental factors, surface characteristics, and certain anthropometric features. Other factors affecting Erun are altered by training: other anthropometric features, muscle and tendon properties, and running mechanics. Here, the key features that dictate the energy cost during distance running are reviewed in the context of skeletal muscle energetics. PMID:28690549

  8. Non-destructive Faraday imaging of dynamically controlled ultracold atoms

    NASA Astrophysics Data System (ADS)

    Gajdacz, Miroslav; Pedersen, Poul; Mørch, Troels; Hilliard, Andrew; Arlt, Jan; Sherson, Jacob

    2013-05-01

    We investigate non-destructive measurements of ultra-cold atomic clouds based on dark field imaging of spatially resolved Faraday rotation. In particular, we pursue applications to dynamically controlled ultracold atoms. The dependence of the Faraday signal on laser detuning, atomic density and temperature is characterized in a detailed comparison with theory. In particular the destructivity per measurement is extremely low and we illustrate this by imaging the same cloud up to 2000 times. The technique is applied to avoid the effect of shot-to-shot fluctuations in atom number calibration. Adding dynamic changes to system parameters, we demonstrate single-run vector magnetic field imaging and single-run spatial imaging of the system's dynamic behavior. The method can be implemented particularly easily in standard imaging systems by the insertion of an extra polarizing beam splitter. These results are steps towards quantum state engineering using feedback control of ultracold atoms.

  9. Acute and Chronic Exercise in Animal Models.

    PubMed

    Thu, Vu Thi; Kim, Hyoung Kyu; Han, Jin

    2017-01-01

    Numerous animal cardiac exercise models using animal subjects have been established to uncover the cardiovascular physiological mechanism of exercise or to determine the effects of exercise on cardiovascular health and disease. In most cases, animal-based cardiovascular exercise modalities include treadmill running, swimming, and voluntary wheel running with a series of intensities, times, and durations. Those used animals include small rodents (e.g., mice and rats) and large animals (e.g., rabbits, dogs, goats, sheep, pigs, and horses). Depending on the research goal, each experimental protocol should also describe whether its respective exercise treatment can produce the anticipated acute or chronic cardiovascular adaptive response. In this chapter, we will briefly describe the most common kinds of animal models of acute and chronic cardiovascular exercises that are currently being conducted and are likely to be chosen in the near future. Strengths and weakness of animal-based cardiac exercise modalities are also discussed.

  10. Influence of fluid dynamic conditions on enzymatic hydrolysis of lignocellulosic biomass: Effect of mass transfer rate.

    PubMed

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-09-01

    The effect of fluid dynamic conditions on enzymatic hydrolysis of acid pretreated corn stover (PCS) has been assessed. Runs were performed in stirred tanks at several stirrer speed values, under typical conditions of temperature (50°C), pH (4.8) and solid charge (20% w/w). A complex mixture of cellulases, xylanases and mannanases was employed for PCS saccharification. At low stirring speeds (<150rpm), estimated mass transfer coefficients and rates, when compared to chemical hydrolysis rates, lead to results that clearly show low mass transfer rates, being this phenomenon the controlling step of the overall process rate. However, for stirrer speed from 300rpm upwards, the overall process rate is controlled by hydrolysis reactions. The ratio between mass transfer and overall chemical reaction rates changes with time depending on the conditions of each run. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, G.J.

    1994-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  12. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, Gary J.

    1997-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  13. Agricultural Airplane Mission Time Structure Characteristics

    NASA Technical Reports Server (NTRS)

    Jewel, J. W., Jr.

    1982-01-01

    The time structure characteristics of agricultural airplane missions were studied by using records from NASA VGH flight recorders. Flight times varied from less than 3 minutes to more than 103 minutes. There was a significant reduction in turning time between spreading runs as pilot experience in the airplane type increased. Spreading runs accounted for only 25 to 29 percent of the flight time of an agricultural airplane. Lowering the longitudinal stick force appeared to reduce both the turning time between spreading runs and pilot fatigue at the end of a working day.

  14. Thermoregulatory Response to Exercise After Exertional Heat Stroke.

    PubMed

    Sagui, Emmanuel; Beighau, Sophie; Jouvion, Arnaud; Trichereau, Julie; Cornet, Delphine; Berthelot, René Charles; Canini, Frédéric; Grélot, Laurent

    2017-07-01

    After one episode of exertional heat stroke (EHS), risk factors must be identified to determine the potential for subsequent episodes. One of these risk factors, core body temperature (T co ) kinetics during strenuous exercise, may be a surrogate marker suggestive of impaired thermoregulation. This study aimed to determine the kinetics of increases in T co among military subjects who had a history of EHS. Forty subjects (38 males, mean age 28.4 ± 4.9 years, mean body mass index 24.9 ± 2.4) who had a history of EHS ran 8 km in full combat gear with continuous monitoring of T co and heart rate. The run was a qualifying event for military service. T co was assessed using an ingestible sensor (Cortemp HQ Inc., Palmetto, Florida). Maximum oxygen uptake (VO 2max ) was measured on the day before the run. The mean performance time for the run was 44.6 ± 6.6 minutes achieved under mild climatic conditions. No neurological impairment was observed. The mean maximum T co was 39.9 ± 0.5°C. On the basis of T co during the last 10 minutes of running, two T co profiles were identified: increased T co (T co increase > 0.5°C) and plateaued T co . Neither profile depended on initial, mid-run, or maximal T co , VO 2max , speed running, body surface area or body fat mass. Subjects who had a history of EHS exhibited different T co profiles at the end of an 8-km run. Laboratory studies will be necessary to identify the mechanisms underlying these profiles; future longitudinal studies can determine whether a T co increase >0.5°C during the last 10 minutes is a risk factor for EHS recurrence. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  15. Rational temporal predictions can underlie apparent failures to delay gratification.

    PubMed

    McGuire, Joseph T; Kable, Joseph W

    2013-04-01

    An important category of seemingly maladaptive decisions involves failure to postpone gratification. A person pursuing a desirable long-run outcome may abandon it in favor of a short-run alternative that has been available all along. Here we present a theoretical framework in which this seemingly irrational behavior emerges from stable preferences and veridical judgments. Our account recognizes that decision makers generally face uncertainty regarding the time at which future outcomes will materialize. When timing is uncertain, the value of persistence depends crucially on the nature of a decision maker's prior temporal beliefs. Certain forms of temporal beliefs imply that a delay's predicted remaining length increases as a function of time already waited. In this type of situation, the rational, utility-maximizing strategy is to persist for a limited amount of time and then give up. We show empirically that people's explicit predictions of remaining delay lengths indeed increase as a function of elapsed time in several relevant domains, implying that temporal judgments offer a rational basis for limiting persistence. We then develop our framework into a simple working model and show how it accounts for individual differences in a laboratory task (the well-known "marshmallow test"). We conclude that delay-of-gratification failure, generally viewed as a manifestation of limited self-control capacity, can instead arise as an adaptive response to the perceived statistics of one's environment.

  16. Rational temporal predictions can underlie apparent failures to delay gratification

    PubMed Central

    McGuire, Joseph T.; Kable, Joseph W.

    2013-01-01

    An important category of seemingly maladaptive decisions involves failure to postpone gratification. A person pursuing a desirable long-run outcome may abandon it in favor of a short-run alternative that has been available all along. Here we present a theoretical framework in which this seemingly irrational behavior emerges from stable preferences and veridical judgments. Our account recognizes that decision makers generally face uncertainty regarding the time at which future outcomes will materialize. When timing is uncertain, the value of persistence depends crucially on the nature of a decision-maker’s prior temporal beliefs. Certain forms of temporal beliefs imply that a delay’s predicted remaining length increases as a function of time already waited. In this type of situation, the rational, utility-maximizing strategy is to persist for a limited amount of time and then give up. We show empirically that people’s explicit predictions of remaining delay lengths indeed increase as a function of elapsed time in several relevant domains, implying that temporal judgments offer a rational basis for limiting persistence. We then develop our framework into a simple working model and show how it accounts for individual differences in a laboratory task (the well-known “marshmallow test”). We conclude that delay-of-gratification failure, generally viewed as a manifestation of limited self-control capacity, can instead arise as an adaptive response to the perceived statistics of one’s environment. PMID:23458085

  17. Blocking of conditioned taste avoidance induced by wheel running.

    PubMed

    Pierce, W David; Heth, C Donald

    2010-01-01

    In Experiment 1, compared to non-reinforced presentation of a food stimulus (A-->no US), the association of a food stimulus with wheel running (A-->US) blocked subsequent avoidance of a distinctive flavor (X), when both the food and flavor were followed by wheel running (AX-->US). Experiment 2 replicated and extended the blocking effect, demonstrating that the amount of avoidance of X after AX-->wheel training depended on the correlation between A-alone trials and wheel running-the predictiveness of the A stimulus. The present study is the first to demonstrate associative blocking of conditioned taste avoidance (CTA) induced by wheel running and strongly implicates associative learning as the basis for this kind of avoidance. 2009 Elsevier B.V. All rights reserved.

  18. 76 FR 13683 - Self-Regulatory Organizations; The Fixed Income Clearing Corporation; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... To Move the Time at Which It Runs Its Daily Morning Pass March 8, 2011. Pursuant to Section 19(b)(1... Backed Securities Division (``MBSD'') intends to move the time at which it runs its daily morning pass... notify participants that MBSD intends to move the time at which it runs its daily morning pass from 10:30...

  19. Integration of space weather into space situational awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoffrey D

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent com plexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts.more » The penetrating radiation environment is highly dynamic and highly orbit-dependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which will allow operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather was the cause of anomalous operations, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. In this paper we discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed . We also present some prototype data products and user interfaces for DREAM and discuss how space environment information can be seamlessly integrated into operational SSA systems.« less

  20. Mechanics and energetics of human locomotion on sand.

    PubMed

    Lejeune, T M; Willems, P A; Heglund, N C

    1998-07-01

    Moving about in nature often involves walking or running on a soft yielding substratum such as sand, which has a profound effect on the mechanics and energetics of locomotion. Force platform and cinematographic analyses were used to determine the mechanical work performed by human subjects during walking and running on sand and on a hard surface. Oxygen consumption was used to determine the energetic cost of walking and running under the same conditions. Walking on sand requires 1.6-2.5 times more mechanical work than does walking on a hard surface at the same speed. In contrast, running on sand requires only 1.15 times more mechanical work than does running on a hard surface at the same speed. Walking on sand requires 2.1-2.7 times more energy expenditure than does walking on a hard surface at the same speed; while running on sand requires 1.6 times more energy expenditure than does running on a hard surface. The increase in energy cost is due primarily to two effects: the mechanical work done on the sand, and a decrease in the efficiency of positive work done by the muscles and tendons.

  1. Isocapnic hyperpnea training improves performance in competitive male runners.

    PubMed

    Leddy, John J; Limprasertkul, Atcharaporn; Patel, Snehal; Modlich, Frank; Buyea, Cathy; Pendergast, David R; Lundgren, Claes E G

    2007-04-01

    The effects of voluntary isocapnic hyperpnea (VIH) training (10 h over 4 weeks, 30 min/day) on ventilatory system and running performance were studied in 15 male competitive runners, 8 of whom trained twice weekly for 3 more months. Control subjects (n = 7) performed sham-VIH. Vital capacity (VC), FEV1, maximum voluntary ventilation (MVV), maximal inspiratory and expiratory mouth pressures, VO2max, 4-mile run time, treadmill run time to exhaustion at 80% VO2max, serum lactate, total ventilation (V(E)), oxygen consumption (VO2) oxygen saturation and cardiac output were measured before and after 4 weeks of VIH. Respiratory parameters and 4-mile run time were measured monthly during the 3-month maintenance period. There were no significant changes in post-VIH VC and FEV1 but MVV improved significantly (+10%). Maximal inspiratory and expiratory mouth pressures, arterial oxygen saturation and cardiac output did not change post-VIH. Respiratory and running performances were better 7- versus 1 day after VIH. Seven days post-VIH, respiratory endurance (+208%) and treadmill run time (+50%) increased significantly accompanied by significant reductions in respiratory frequency (-6%), V(E) (-7%), VO2 (-6%) and lactate (-18%) during the treadmill run. Post-VIH 4-mile run time did not improve in the control group whereas it improved in the experimental group (-4%) and remained improved over a 3 month period of reduced VIH frequency. The improvements cannot be ascribed to improved blood oxygen delivery to muscle or to psychological factors.

  2. 40 CFR Table 6 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Incinerators on and After [Date to be specified in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... per million dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method 10... (Reapproved 2008) c. Oxides of nitrogen 53 parts per million dry volume 3-run average (1 hour minimum sample... average (1 hour minimum sample time per run) Performance test (Method 6 or 6c at 40 CFR part 60, appendix...

  3. 40 CFR Table 6 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Incinerators on and After [Date to be specified in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... per million dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method 10... (Reapproved 2008) c. Oxides of nitrogen 53 parts per million dry volume 3-run average (1 hour minimum sample... average (1 hour minimum sample time per run) Performance test (Method 6 or 6c at 40 CFR part 60, appendix...

  4. 40 CFR Table 2 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Incinerators Before [Date to be specified in state...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test..., appendix A-4). Oxides of nitrogen 388 parts per million by dry volume 3-run average (1 hour minimum sample... (1 hour minimum sample time per run) Performance test (Method 6 or 6c of appendix A of this part) a...

  5. 40 CFR Table 2 to Subpart Dddd of... - Model Rule-Emission Limitations That Apply to Incinerators Before [Date to be specified in state...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parts per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test..., appendix A-4). Oxides of nitrogen 388 parts per million by dry volume 3-run average (1 hour minimum sample... (1 hour minimum sample time per run) Performance test (Method 6 or 6c of appendix A of this part) a...

  6. Fatigue associated with prolonged graded running.

    PubMed

    Giandolini, Marlene; Vernillo, Gianluca; Samozino, Pierre; Horvais, Nicolas; Edwards, W Brent; Morin, Jean-Benoît; Millet, Guillaume Y

    2016-10-01

    Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed.

  7. Automatic Adaptation of Basal Insulin Using Sensor-Augmented Pump Therapy.

    PubMed

    Herrero, Pau; Bondia, Jorge; Giménez, Marga; Oliver, Nick; Georgiou, Pantelis

    2018-03-01

    People with insulin-dependent diabetes rely on an intensified insulin regimen. Despite several guidelines, they are usually impractical and fall short in achieving optimal glycemic outcomes. In this work, a novel technique for automatic adaptation of the basal insulin profile of people with diabetes on sensor-augmented pump therapy is presented. The presented technique is based on a run-to-run control law that overcomes some of the limitations of previously proposed methods. To prove its validity, an in silico validation was performed. Finally, the artificial intelligence technique of case-based reasoning is proposed as a potential solution to deal with variability in basal insulin requirements. Over a period of 4 months, the proposed run-to-run control law successfully adapts the basal insulin profile of a virtual population (10 adults, 10 adolescents, and 10 children). In particular, average percentage time in target [70, 180] mg/dl was significantly improved over the evaluated period (first week versus last week): 70.9 ± 11.8 versus 91.1 ± 4.4 (adults), 46.5 ± 11.9 versus 80.1 ± 10.9 (adolescents), 49.4 ± 12.9 versus 73.7 ± 4.1 (children). Average percentage time in hypoglycemia (<70 mg/dl) was also significantly reduced: 9.7 ± 6.6 versus 0.9 ± 1.2 (adults), 10.5 ± 8.3 versus 0.83 ± 1.0 (adolescents), 10.9 ± 6.1 versus 3.2 ± 3.5 (children). When compared against an existing technique over the whole evaluated period, the presented approach achieved superior results on percentage of time in hypoglycemia: 3.9 ± 2.6 versus 2.6 ± 2.2 (adults), 2.9 ± 1.9 versus 2.0 ± 1.5 (adolescents), 4.6 ± 2.8 versus 3.5 ± 2.0 (children), without increasing the percentage time in hyperglycemia. The present study shows the potential of a novel technique to effectively adjust the basal insulin profile of a type 1 diabetes population on sensor-augmented insulin pump therapy.

  8. Quantum algorithm for linear regression

    NASA Astrophysics Data System (ADS)

    Wang, Guoming

    2017-07-01

    We present a quantum algorithm for fitting a linear regression model to a given data set using the least-squares approach. Differently from previous algorithms which yield a quantum state encoding the optimal parameters, our algorithm outputs these numbers in the classical form. So by running it once, one completely determines the fitted model and then can use it to make predictions on new data at little cost. Moreover, our algorithm works in the standard oracle model, and can handle data sets with nonsparse design matrices. It runs in time poly( log2(N ) ,d ,κ ,1 /ɛ ) , where N is the size of the data set, d is the number of adjustable parameters, κ is the condition number of the design matrix, and ɛ is the desired precision in the output. We also show that the polynomial dependence on d and κ is necessary. Thus, our algorithm cannot be significantly improved. Furthermore, we also give a quantum algorithm that estimates the quality of the least-squares fit (without computing its parameters explicitly). This algorithm runs faster than the one for finding this fit, and can be used to check whether the given data set qualifies for linear regression in the first place.

  9. Representation of Serendipitous Scientific Data

    NASA Technical Reports Server (NTRS)

    James, Mark

    2006-01-01

    A computer program defines and implements an innovative kind of data structure than can be used for representing information derived from serendipitous discoveries made via collection of scientific data on long exploratory spacecraft missions. Data structures capable of collecting any kind of data can easily be implemented in advance, but the task of designing a fixed and efficient data structure suitable for processing raw data into useful information and taking advantage of serendipitous scientific discovery is becoming increasingly difficult as missions go deeper into space. The present software eases the task by enabling definition of arbitrarily complex data structures that can adapt at run time as raw data are transformed into other types of information. This software runs on a variety of computers, and can be distributed in either source code or binary code form. It must be run in conjunction with any one of a number of Lisp compilers that are available commercially or as shareware. It has no specific memory requirements and depends upon the other software with which it is used. This program is implemented as a library that is called by, and becomes folded into, the other software with which it is used.

  10. Emergence of Lévy walks in systems of interacting individuals

    NASA Astrophysics Data System (ADS)

    Fedotov, Sergei; Korabel, Nickolay

    2017-03-01

    We propose a model of superdiffusive Lévy walk as an emergent nonlinear phenomenon in systems of interacting individuals. The aim is to provide a qualitative explanation of recent experiments [G. Ariel et al., Nat. Commun. 6, 8396 (2015), 10.1038/ncomms9396] revealing an intriguing behavior: swarming bacteria fundamentally change their collective motion from simple diffusion into a superdiffusive Lévy walk dynamics. We introduce microscopic mean-field kinetic equations in which we combine two key ingredients: (1) alignment interactions between individuals and (2) non-Markovian effects. Our interacting run-and-tumble model leads to the superdiffusive growth of the mean-squared displacement and the power-law distribution of run length with infinite variance. The main result is that the superdiffusive behavior emerges as a cooperative effect without using the standard assumption of the power-law distribution of run distances from the inception. At the same time, we find that the collision and repulsion interactions lead to the density-dependent exponential tempering of power-law distributions. This qualitatively explains the experimentally observed transition from superdiffusion to the diffusion of mussels as their density increases [M. de Jager et al., Proc. R. Soc. B 281, 20132605 (2014), 10.1098/rspb.2013.2605].

  11. Ambiguity in running spectral index with an extra light field during inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohri, Kazunori; Matsuda, Tomohiro, E-mail: kohri@post.kek.jp, E-mail: matsuda@sit.ac.jp

    At the beginning of inflation there could be extra dynamical scalar fields that will soon disappear (become static) before the end of inflation. In the light of multi-field inflation, those extra degrees of freedom may alter the time-dependence of the original spectrum of the curvature perturbation. It is possible to remove such fields introducing extra number of e-foldings prior to 0N{sub e}∼ 6, however such extra e-foldings may make the trans-Planckian problem worse due to the Lyth bound. We show that such extra scalar fields can change the running of the spectral index to give correction of ± 0.01 without adding significantmore » contribution to the spectral index. The corrections to the spectral index (and the amplitude) could be important in considering global behavior of the corrected spectrum, although they can be neglected in the estimation of the spectrum and its spectral index at the pivot scale. The ambiguity in the running of the spectral index, which could be due to such fields, can be used to nullify tension between BICEP2 and Planck experiments.« less

  12. Performance implications from sizing a VM on multi-core systems: A Data analytic application s view

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Horey, James L; Begoli, Edmon

    In this paper, we present a quantitative performance analysis of data analytics applications running on multi-core virtual machines. Such environments form the core of cloud computing. In addition, data analytics applications, such as Cassandra and Hadoop, are becoming increasingly popular on cloud computing platforms. This convergence necessitates a better understanding of the performance and cost implications of such hybrid systems. For example, the very rst step in hosting applications in virtualized environments, requires the user to con gure the number of virtual processors and the size of memory. To understand performance implications of this step, we benchmarked three Yahoo Cloudmore » Serving Benchmark (YCSB) workloads in a virtualized multi-core environment. Our measurements indicate that the performance of Cassandra for YCSB workloads does not heavily depend on the processing capacity of a system, while the size of the data set is critical to performance relative to allocated memory. We also identi ed a strong relationship between the running time of workloads and various hardware events (last level cache loads, misses, and CPU migrations). From this analysis, we provide several suggestions to improve the performance of data analytics applications running on cloud computing environments.« less

  13. Using a two-step matrix solution to reduce the run time in KULL's magnetic diffusion package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunner, T A; Kolev, T V

    2010-12-17

    Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the fullmore » system. Significant improvements in the solution time are observed for several test problems.« less

  14. Thermoregulation is impaired in an environment without circadian time cues

    NASA Technical Reports Server (NTRS)

    Fuller, C. A.; Sulzman, F. M.; Moore-Ede, M. C.

    1978-01-01

    Thirteen adult male squirrel monkeys were restrained to a metabolism chair for periods of two or more weeks within an isolation chamber having controlled environmental lighting and ambient temperature. The monkeys were subjected to mild 6-hour cold exposures at all circadian phases of the day. It was found that a prominent circadian rhythm in body temperature, regulated against mild cold exposure, was present in those monkeys synchronized in a 24-hour light-dark cycle. Cold exposures were found to produce decreased core body temperatures when the circadian rhythms were free running or when environmental time indicators were not present. It is concluded that the thermoregulating system depends on the internal synchronization of the circadian time-keeping system.

  15. Velocity changes, long runs, and reversals in the Chromatium minus swimming response.

    PubMed Central

    Mitchell, J G; Martinez-Alonso, M; Lalucat, J; Esteve, I; Brown, S

    1991-01-01

    The velocity, run time, path curvature, and reorientation angle of Chromatium minus were measured as a function of light intensity, temperature, viscosity, osmotic pressure, and hydrogen sulfide concentration. C. minus changed both velocity and run time. Velocity decreased with increasing light intensity in sulfide-depleted cultures and increased in sulfide-replete cultures. The addition of sulfide to cultures grown at low light intensity (10 microeinsteins m-2 s-1) caused mean run times to increase from 10.5 to 20.6 s. The addition of sulfide to cultures grown at high light intensity (100 microeinsteins m-2 s-1) caused mean run times to decrease from 15.3 to 7.7 s. These changes were maintained for up to an hour and indicate that at least some members of the family Chromatiaceae simultaneously modulate velocity and turning frequency for extended periods as part of normal taxis. Images PMID:1991736

  16. State politics and the creation of health insurance exchanges.

    PubMed

    Jones, David K; Greer, Scott L

    2013-08-01

    Health insurance exchanges are a key component of the Affordable Care Act. Each exchange faces the challenge of minimizing friction with existing policies, coordinating churn between programs, and maximizing take-up. State-run exchanges would likely be better positioned to address these issues than a federally run exchange, yet only one third of states chose this path. Policymakers must ensure that their exchange-whether state or federally run-succeeds. Whether this happens will greatly depend on the political dynamics in each state.

  17. drPACS: A Simple UNIX Execution Pipeline

    NASA Astrophysics Data System (ADS)

    Teuben, P.

    2011-07-01

    We describe a very simple yet flexible and effective pipeliner for UNIX commands. It creates a Makefile to define a set of serially dependent commands. The commands in the pipeline share a common set of parameters by which they can communicate. Commands must follow a simple convention to retrieve and store parameters. Pipeline parameters can optionally be made persistent across multiple runs of the pipeline. Tools were added to simplify running a large series of pipelines, which can then also be run in parallel.

  18. Voluntary wheel running produces resistance to inescapable stress-induced potentiation of morphine conditioned place preference.

    PubMed

    Rozeske, Robert R; Greenwood, Benjamin N; Fleshner, Monika; Watkins, Linda R; Maier, Steven F

    2011-06-01

    In rodents, exposure to acute inescapable, but not escapable, stress potentiates morphine conditioned place preference (CPP), an effect that is dependent upon hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN). Six weeks of voluntary wheel running constrains activation of DRN 5-HT neurons during exposure to inescapable stress. Six weeks of voluntary wheel running before inescapable stress blocked stress-induced potentiation of morphine CPP. Published by Elsevier B.V.

  19. Personal best marathon time and longest training run, not anthropometry, predict performance in recreational 24-hour ultrarunners.

    PubMed

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Lepers, Romuald

    2011-08-01

    In recent studies, a relationship between both low body fat and low thicknesses of selected skinfolds has been demonstrated for running performance of distances from 100 m to the marathon but not in ultramarathon. We investigated the association of anthropometric and training characteristics with race performance in 63 male recreational ultrarunners in a 24-hour run using bi and multivariate analysis. The athletes achieved an average distance of 146.1 (43.1) km. In the bivariate analysis, body mass (r = -0.25), the sum of 9 skinfolds (r = -0.32), the sum of upper body skinfolds (r = -0.34), body fat percentage (r = -0.32), weekly kilometers ran (r = 0.31), longest training session before the 24-hour run (r = 0.56), and personal best marathon time (r = -0.58) were related to race performance. Stepwise multiple regression showed that both the longest training session before the 24-hour run (p = 0.0013) and the personal best marathon time (p = 0.0015) had the best correlation with race performance. Performance in these 24-hour runners may be predicted (r2 = 0.46) by the following equation: Performance in a 24-hour run, km) = 234.7 + 0.481 (longest training session before the 24-hour run, km) - 0.594 (personal best marathon time, minutes). For practical applications, training variables such as volume and intensity were associated with performance but not anthropometric variables. To achieve maximum kilometers in a 24-hour run, recreational ultrarunners should have a personal best marathon time of ∼3 hours 20 minutes and complete a long training run of ∼60 km before the race, whereas anthropometric characteristics such as low body fat or low skinfold thicknesses showed no association with performance.

  20. Relationship between 1.5-mile run time, injury risk and training outcome in British Army recruits.

    PubMed

    Hall, Lianne J

    2017-12-01

    1.5-mile run time, as a surrogate measure of aerobic fitness, is associated with musculoskeletal injury (MSI) risk in military recruits. This study aimed to determine if 1.5-mile run times can predict injury risk and attrition rates from phase 1 (initial) training and determine if a link exists between phase 1 and 2 discharge outcomes in British Army recruits. 1.5-mile times from week 1 of initial training and MSI reported during training were retrieved for 3446 male recruits. Run times were examined against injury occurrence and training outcomes for 3050 recruits, using a Binary Logistic Regression and χ 2 analysis. The 1.5-mile run can predict injury risk and phase 1 attrition rates (χ 2 (1)=59.3 p<0.001, χ 2 (1)=66.873 p<0.001). Slower 1.5-mile run times were associated with higher injury occurrence (χ 2 (1)=59.3 p<0.001) and reduced phase 1 ( χ 2 104.609 a p<0.001) and 2 (χ 2 84.978 a p<0.001) success. The 1.5-mile run can be used to guide a future standard that will in turn help reduce injury occurrence and improve training success. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  2. Effect of match-run frequencies on the number of transplants and waiting times in kidney exchange.

    PubMed

    Ashlagi, Itai; Bingaman, Adam; Burq, Maximilien; Manshadi, Vahideh; Gamarnik, David; Murphey, Cathi; Roth, Alvin E; Melcher, Marc L; Rees, Michael A

    2018-05-01

    Numerous kidney exchange (kidney paired donation [KPD]) registries in the United States have gradually shifted to high-frequency match-runs, raising the question of whether this harms the number of transplants. We conducted simulations using clinical data from 2 KPD registries-the Alliance for Paired Donation, which runs multihospital exchanges, and Methodist San Antonio, which runs single-center exchanges-to study how the frequency of match-runs impacts the number of transplants and the average waiting times. We simulate the options facing each of the 2 registries by repeated resampling from their historical pools of patient-donor pairs and nondirected donors, with arrival and departure rates corresponding to the historical data. We find that longer intervals between match-runs do not increase the total number of transplants, and that prioritizing highly sensitized patients is more effective than waiting longer between match-runs for transplanting highly sensitized patients. While we do not find that frequent match-runs result in fewer transplanted pairs, we do find that increasing arrival rates of new pairs improves both the fraction of transplanted pairs and waiting times. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  3. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures

    PubMed Central

    Long, Leroy L.; Srinivasan, Manoj

    2013-01-01

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk–run mixture at intermediate speeds and a walk–rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients—a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk–run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill. PMID:23365192

  4. Lower-volume muscle-damaging exercise protects against high-volume muscle-damaging exercise and the detrimental effects on endurance performance.

    PubMed

    Burt, Dean; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2015-07-01

    This study examined whether lower-volume exercise-induced muscle damage (EIMD) performed 2 weeks before high-volume muscle-damaging exercise protects against its detrimental effect on running performance. Sixteen male participants were randomly assigned to a lower-volume (five sets of ten squats, n = 8) or high-volume (ten sets of ten squats, n = 8) EIMD group and completed baseline measurements for muscle soreness, knee extensor torque, creatine kinase (CK), a 5-min fixed-intensity running bout and a 3-km running time-trial. Measurements were repeated 24 and 48 h after EIMD, and the running time-trial after 48 h. Two weeks later, both groups repeated the baseline measurements, ten sets of ten squats and the same follow-up testing (Bout 2). Data analysis revealed increases in muscle soreness and CK and decreases in knee extensor torque 24-48 h after the initial bouts of EIMD. Increases in oxygen uptake [Formula: see text], minute ventilation [Formula: see text] and rating of perceived exertion were observed during fixed-intensity running 24-48 h after EIMD Bout 1. Likewise, time increased and speed and [Formula: see text] decreased during a 3-km running time-trial 48 h after EIMD. Symptoms of EIMD, responses during fixed-intensity and running time-trial were attenuated in the days after the repeated bout of high-volume EIMD performed 2 weeks after the initial bout. This study demonstrates that the protective effect of lower-volume EIMD on subsequent high-volume EIMD is transferable to endurance running. Furthermore, time-trial performance was found to be preserved after a repeated bout of EIMD.

  5. Integration Of Space Weather Into Space Situational Awareness

    NASA Astrophysics Data System (ADS)

    Reeves, G.

    2010-09-01

    Rapid assessment of space weather effects on satellites is a critical step in anomaly resolution and satellite threat assessment. That step, however, is often hindered by a number of factors including timely collection and delivery of space weather data and the inherent complexity of space weather information. As part of a larger, integrated space situational awareness program, Los Alamos National Laboratory has developed prototype operational space weather tools that run in real time and present operators with customized, user-specific information. The Dynamic Radiation Environment Assimilation Model (DREAM) focuses on the penetrating radiation environment from natural or nuclear-produced radiation belts. The penetrating radiation environment is highly dynamic and highly orbitdependent. Operators often must rely only on line plots of 2 MeV electron flux from the NOAA geosynchronous GOES satellites which is then assumed to be representative of the environment at the satellite of interest. DREAM uses data assimilation to produce a global, real-time, energy dependent specification. User tools are built around a distributed service oriented architecture (SOA) which allows operators to select any satellite from the space catalog and examine the environment for that specific satellite and time of interest. Depending on the application operators may need to examine instantaneous dose rates and/or dose accumulated over various lengths of time. Further, different energy thresholds can be selected depending on the shielding on the satellite or instrument of interest. In order to rapidly assess the probability that space weather effects, the current conditions can be compared against the historical distribution of radiation levels for that orbit. In the simplest operation a user would select a satellite and time of interest and immediately see if the environmental conditions were typical, elevated, or extreme based on how often those conditions occur in that orbit. This allows users to rapidly rule in or out environmental causes of anomalies. The same user interface can also allow users to drill down for more detailed quantitative information. DREAM can be run either from a distributed web-based user interface or as a stand-alone application for secure operations. We will discuss the underlying structure of the DREAM model and demonstrate the user interface that we have developed. We will also discuss future development plans for DREAM and how the same paradigm can be applied to integrating other space environment information into operational SSA systems.

  6. Self-Motion Perception during Locomotor Recalibration: More than Meets the Eye

    ERIC Educational Resources Information Center

    Durgin, Frank H.; Pelah, Adar; Fox, Laura F.; Lewis, Jed; Kane, Rachel; Walley, Katherine A.

    2005-01-01

    Do locomotor after effects depend specifically on visual feedback? In 7 experiments, 116 college students were tested, with closed eyes, at stationary running or at walking to a previewed target after adaptation, with closed eyes, to treadmill locomotion. Subjects showed faster inadvertent drift during stationary running and increased distance…

  7. Effect of cycle run time of backwash and relaxation on membrane fouling removal in submerged membrane bioreactor treating sewage at higher flux.

    PubMed

    Tabraiz, Shamas; Haydar, Sajjad; Sallis, Paul; Nasreen, Sadia; Mahmood, Qaisar; Awais, Muhammad; Acharya, Kishor

    2017-08-01

    Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m 2 ·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.

  8. PARLO: PArallel Run-Time Layout Optimization for Scientific Data Explorations with Heterogeneous Access Pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhenhuan; Boyuka, David; Zou, X

    Download Citation Email Print Request Permissions Save to Project The size and scope of cutting-edge scientific simulations are growing much faster than the I/O and storage capabilities of their run-time environments. The growing gap is exacerbated by exploratory, data-intensive analytics, such as querying simulation data with multivariate, spatio-temporal constraints, which induces heterogeneous access patterns that stress the performance of the underlying storage system. Previous work addresses data layout and indexing techniques to improve query performance for a single access pattern, which is not sufficient for complex analytics jobs. We present PARLO a parallel run-time layout optimization framework, to achieve multi-levelmore » data layout optimization for scientific applications at run-time before data is written to storage. The layout schemes optimize for heterogeneous access patterns with user-specified priorities. PARLO is integrated with ADIOS, a high-performance parallel I/O middleware for large-scale HPC applications, to achieve user-transparent, light-weight layout optimization for scientific datasets. It offers simple XML-based configuration for users to achieve flexible layout optimization without the need to modify or recompile application codes. Experiments show that PARLO improves performance by 2 to 26 times for queries with heterogeneous access patterns compared to state-of-the-art scientific database management systems. Compared to traditional post-processing approaches, its underlying run-time layout optimization achieves a 56% savings in processing time and a reduction in storage overhead of up to 50%. PARLO also exhibits a low run-time resource requirement, while also limiting the performance impact on running applications to a reasonable level.« less

  9. The General Circulation Model Response to a North Pacific SST Anomaly: Dependence on Time Scale and Pattern Polarity.

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Lau, Ngar-Cheung

    1992-04-01

    A general circulation model was integrated with perpetual January conditions and prescribed sea surface temperature (SST) anomalies in the North Pacific. A characteristic pattern with a warm region centered northeast of Hawaii and a cold region along the western seaboard of North America was alternately added to and subtracted from the climatological SST field. Long 1350-day runs, as well as short 180-day runs, each starting from different initial conditions, were performed. The results were compared to a control integration with climatological SSTs.The model's quasi-stationary response does not exhibit a simple linear relationship with the polarity of the prescribed SST anomaly. In the short runs with a negative SST anomaly over the central ocean, a large negative height anomaly, with an equivalent barotropic vertical structure, occurs over the Gulf of Alaska. For the same SST forcing, the long run yields a different response pattern in which an anomalous high prevails over northern Canada and the Alaskan Peninsula. A significant reduction in the northward heat flux associated with baroclinic eddies and a concomitant reduction in convective heating occur along the model's Pacific storm track. In the runs with a positive SST anomaly over the central ocean, the average height response during the first 90-day period of the short runs is too weak to be significant. In the subsequent 90-day period and in the long run an equivalent barotropic low occurs downstream from the warm SST anomaly. All positive anomaly runs exhibit little change in baroclinic eddy activity or in the patterns of latent heat release. Horizontal momentum transports by baroclinic eddies appear to help sustain the quasi-stationary response in the height field regardless of the polarity of the SST anomaly. These results emphasize the important role played by baroclinic eddies in determining the quasi-stationary response to midlatitude SST anomalies. Differences between the response patterns of the short and long integrations may be relevant to future experimental design for studying air-sea interactions in the extratropies.

  10. Renal hypertension prevents run training modification of cardiomyocyte diastolic Ca2+ regulation in male rats.

    PubMed

    Palmer, B M; Lynch, J M; Snyder, S M; Moore, R L

    2001-06-01

    The combined effects of endurance run training and renal hypertension on cytosolic Ca2+ concentration ([Ca2+]c) dynamics and Na+-dependent Ca2+ regulation in rat left ventricular cardiomyocytes were examined. Male Fischer 344 rats underwent stenosis of the left renal artery [hypertensive (Ht), n = 18] or a sham operation [normotensive (Nt), n = 20]. One-half of the rats from each group were treadmill trained for >16 wk. Cardiomyocyte fura 2 fluorescence ratio transients were recorded for 7 min during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degrees C. The rate of [Ca2+]c decline was not changed by run training in the Nt group but was reduced in the Ht group. At 7 min, cardiomyocytes were exposed to 10 mM caffeine in the absence of Na+ and Ca2+, which triggered sarcoplasmic reticular Ca2+ release and suppressed Ca2+ efflux via Na+/Ca2+ exchanger. External Na+ was then added, and Na+-dependent Ca2+ efflux rate was recorded. Treadmill training significantly enhanced Na+-dependent Ca2+ efflux rate under these conditions in the Nt group but not in the Ht group. These data provide evidence that renal hypertension prevents the normal run training-induced modifications in diastolic [Ca2+]c regulation mechanisms, including Na+/Ca2+ exchanger.

  11. Attenuation of foot pressure during running on four different surfaces: asphalt, concrete, rubber, and natural grass.

    PubMed

    Tessutti, Vitor; Ribeiro, Ana Paula; Trombini-Souza, Francis; Sacco, Isabel C N

    2012-01-01

    The practice of running has consistently increased worldwide, and with it, related lower limb injuries. The type of running surface has been associated with running injury etiology, in addition other factors, such as the relationship between the amount and intensity of training. There is still controversy in the literature regarding the biomechanical effects of different types of running surfaces on foot-floor interaction. The aim of this study was to investigate the influence of running on asphalt, concrete, natural grass, and rubber on in-shoe pressure patterns in adult recreational runners. Forty-seven adult recreational runners ran twice for 40 m on all four different surfaces at 12 ± 5% km · h(-1). Peak pressure, pressure-time integral, and contact time were recorded by Pedar X insoles. Asphalt and concrete were similar for all plantar variables and pressure zones. Running on grass produced peak pressures 9.3% to 16.6% lower (P < 0.001) than the other surfaces in the rearfoot and 4.7% to 12.3% (P < 0.05) lower in the forefoot. The contact time on rubber was greater than on concrete for the rearfoot and midfoot. The behaviour of rubber was similar to that obtained for the rigid surfaces - concrete and asphalt - possibly because of its time of usage (five years). Running on natural grass attenuates in-shoe plantar pressures in recreational runners. If a runner controls the amount and intensity of practice, running on grass may reduce the total stress on the musculoskeletal system compared with the total musculoskeletal stress when running on more rigid surfaces, such as asphalt and concrete.

  12. Nocturnal to Diurnal Switches with Spontaneous Suppression of Wheel-Running Behavior in a Subterranean Rodent

    PubMed Central

    Tachinardi, Patricia; Tøien, Øivind; Valentinuzzi, Veronica S.; Buck, C. Loren; Oda, Gisele A.

    2015-01-01

    Several rodent species that are diurnal in the field become nocturnal in the lab. It has been suggested that the use of running-wheels in the lab might contribute to this timing switch. This proposition is based on studies that indicate feed-back of vigorous wheel-running on the period and phase of circadian clocks that time daily activity rhythms. Tuco-tucos (Ctenomys aff. knighti) are subterranean rodents that are diurnal in the field but are robustly nocturnal in laboratory, with or without access to running wheels. We assessed their energy metabolism by continuously and simultaneously monitoring rates of oxygen consumption, body temperature, general motor and wheel running activity for several days in the presence and absence of wheels. Surprisingly, some individuals spontaneously suppressed running-wheel activity and switched to diurnality in the respirometry chamber, whereas the remaining animals continued to be nocturnal even after wheel removal. This is the first report of timing switches that occur with spontaneous wheel-running suppression and which are not replicated by removal of the wheel. PMID:26460828

  13. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, G.J.

    1997-12-23

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data is disclosed. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer. 3 figs.

  14. Can anti-gravity running improve performance to the same degree as over-ground running?

    PubMed

    Brennan, Christopher T; Jenkins, David G; Osborne, Mark A; Oyewale, Michael; Kelly, Vincent G

    2018-03-11

    This study examined the changes in running performance, maximal blood lactate concentrations and running kinematics between 85%BM anti-gravity (AG) running and normal over-ground (OG) running over an 8-week training period. Fifteen elite male developmental cricketers were assigned to either the AG or over-ground (CON) running group. The AG group (n = 7) ran twice a week on an AG treadmill and once per week over-ground. The CON group (n = 8) completed all sessions OG on grass. Both AG and OG training resulted in similar improvements in time trial and shuttle run performance. Maximal running performance showed moderate differences between the groups, however the AG condition resulted in less improvement. Large differences in maximal blood lactate concentrations existed with OG running resulting in greater improvements in blood lactate concentrations measured during maximal running. Moderate increases in stride length paired with moderate decreases in stride rate also resulted from AG training. The use of AG training to supplement regular OG training for performance should be used cautiously, as extended use over long periods of time could lead to altered stride mechanics and reduced blood lactate.

  15. Results on the Spin-Dependent Scattering of Weakly Interacting Massive Particles on Nucleons from the Run 3 Data of the LUX Experiment.

    PubMed

    Akerib, D S; Araújo, H M; Bai, X; Bailey, A J; Balajthy, J; Beltrame, P; Bernard, E P; Bernstein, A; Biesiadzinski, T P; Boulton, E M; Bradley, A; Bramante, R; Cahn, S B; Carmona-Benitez, M C; Chan, C; Chapman, J J; Chiller, A A; Chiller, C; Currie, A; Cutter, J E; Davison, T J R; de Viveiros, L; Dobi, A; Dobson, J E Y; Druszkiewicz, E; Edwards, B N; Faham, C H; Fiorucci, S; Gaitskell, R J; Gehman, V M; Ghag, C; Gibson, K R; Gilchriese, M G D; Hall, C R; Hanhardt, M; Haselschwardt, S J; Hertel, S A; Hogan, D P; Horn, M; Huang, D Q; Ignarra, C M; Ihm, M; Jacobsen, R G; Ji, W; Kazkaz, K; Khaitan, D; Knoche, R; Larsen, N A; Lee, C; Lenardo, B G; Lesko, K T; Lindote, A; Lopes, M I; Malling, D C; Manalaysay, A; Mannino, R L; Marzioni, M F; McKinsey, D N; Mei, D-M; Mock, J; Moongweluwan, M; Morad, J A; Murphy, A St J; Nehrkorn, C; Nelson, H N; Neves, F; O'Sullivan, K; Oliver-Mallory, K C; Ott, R A; Palladino, K J; Pangilinan, M; Pease, E K; Phelps, P; Reichhart, L; Rhyne, C; Shaw, S; Shutt, T A; Silva, C; Solovov, V N; Sorensen, P; Stephenson, S; Sumner, T J; Szydagis, M; Taylor, D J; Taylor, W; Tennyson, B P; Terman, P A; Tiedt, D R; To, W H; Tripathi, M; Tvrznikova, L; Uvarov, S; Verbus, J R; Webb, R C; White, J T; Whitis, T J; Witherell, M S; Wolfs, F L H; Yazdani, K; Young, S K; Zhang, C

    2016-04-22

    We present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4×10^{4}  kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ_{n}=9.4×10^{-41}  cm^{2} (σ_{p}=2.9×10^{-39}  cm^{2}) at 33  GeV/c^{2}. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.

  16. Results on the spin-dependent scattering of weakly interacting massive particles on nucleons from the Run 3 Data of the LUX Experiment

    DOE PAGES

    Akerib, D. S.

    2016-04-20

    Here, we present experimental constraints on the spin-dependent WIMP (weakly interacting massive particle)-nucleon elastic cross sections from LUX data acquired in 2013. LUX is a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility (Lead, South Dakota), which is designed to observe the recoil signature of galactic WIMPs scattering from xenon nuclei. A profile likelihood ratio analysis of 1.4 × 10 4 kg day of fiducial exposure allows 90% C.L. upper limits to be set on the WIMP-neutron (WIMP-proton) cross section of σ n = 9.4 × 10 –41 cm 2 (σ p = 2.9 × 10more » –39 cm 2) at 33 GeV/c 2. The spin-dependent WIMP-neutron limit is the most sensitive constraint to date.« less

  17. Internally heated mantle convection and the thermal and degassing history of the earth

    NASA Technical Reports Server (NTRS)

    Williams, David R.; Pan, Vivian

    1992-01-01

    An internally heated model of parameterized whole mantle convection with viscosity dependent on temperature and volatile content is examined. The model is run for 4l6 Gyr, and temperature, heat flow, degassing and regassing rates, stress, and viscosity are calculated. A nominal case is established which shows good agreement with accepted mantle values. The effects of changing various parameters are also tested. All cases show rapid cooling early in the planet's history and strong self-regulation of viscosity due to the temperature and volatile-content dependence. The effects of weakly stress-dependent viscosity are examined within the bounds of this model and are found to be small. Mantle water is typically outgassed rapidly to reach an equilibrium concentration on a time scale of less than 200 Myr for almost all models, the main exception being for models which start out with temperatures well below the melting temperature.

  18. CHANGES IN PATELLOFEMORAL JOINT STRESS DURING RUNNING WITH THE APPLICATION OF A PREFABRICATED FOOT ORTHOTIC.

    PubMed

    Almonroeder, Thomas G; Benson, Lauren C; O'Connor, Kristian M

    2015-12-01

    Foot orthotics are commonly utilized in the treatment of patellofemoral pain (PFP) and have shown clinical benefit; however, their mechanism of action remains unclear. Patellofemoral joint stress (PFJS) is thought to be one of the main etiological factors associated with PFP. The primary purpose of this study was to investigate the effects of a prefabricated foot orthotic with 5 ° of medial rearfoot wedging on the magnitude and the timing of the peak PFJS in a group of healthy female recreational athletes. The hypothesis was that there would be significant reduction in the peak patellofemoral joint stress and a delay in the timing of this peak in the orthotic condition. Cross-sectional. Kinematic and kinetic data were collected during running trials in a group of healthy, female recreational athletes. The knee angle and moment data in the sagittal plane were incorporated into a previously developed model to estimate patellofemoral joint stress. The dependent variables of interest were the peak patellofemoral joint stress as well as the percentage of stance at which this peak occurred, as both the magnitude and the timing of the joint loading are thought to be important in overuse running injuries. The peak patellofemoral joint stress significantly increased in the orthotic condition by 5.8% (p=.02, ES=0.24), which does not support the initial hypothesis. However, the orthotic did significantly delay the timing of the peak during the stance phase by 3.8% (p=.002, ES=0.47). The finding that the peak patellofemoral joint stress increased in the orthotic condition did not support the initial hypothesis. However, the finding that the timing of this peak was delayed to later in the stance phase in the orthotic condition did support the initial hypothesis and may be related to the clinical improvements previously reported in subjects with PFP. Level 4.

  19. The timing of Mediterranean sapropel deposition relative to insolation, sea-level and African monsoon changes

    NASA Astrophysics Data System (ADS)

    Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.

    2016-05-01

    The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for sapropel S1, whereas monsoon forcing was more important for sapropels S3, S4, and S5.

  20. The impact of moderate distance recreational running and ageing on cardiac physiology.

    PubMed

    Kim, Jonathan H; Ko, Yi-An; Hedley, Jeff; MacNamara, James; Awad, Mosaab; Taylor, William; Healy, Sean; Aida, Hiroshi; Le, Ngoc-Anh; Wilson, Peter W; White, Melissa; Sperling, Laurence S; Wilson, Joseph S; Baggish, Aaron L

    2017-02-01

    Exercise-induced cardiac dysfunction and corollary biomarker release have been documented following long-distance running events. To what degree these processes occur during shorter distance running events is unknown. 72 healthy recreational runners (54% male/46% female) recruited by age (group 1 (18-20 years old, N=19); group 2 (45-50 years old, N=27); group 3 (70-75 years old, N=26)) were studied with echocardiography and biochemical profiling during participation in a 10 km running race. Despite age-dependent baseline differences in ventricular size and diastolic tissue velocities, there were no significant within group or across group decrements in ventricular systolic or diastolic function following race completion. Postrace increases in cardiac troponin-I (cTnI), B-type natriuretic peptide (BNP) and high-sensitivity C-reactive protein (hs-CRP) were common and demonstrated distinct age dependent profiles. Specifically, BNP increases were most pronounced among older runners (group 3Δ: 16±22 pg/mL, p=0.001), hs-CRP increased only among younger runners (group 1Δ: 1.5±2.7 mg/L, p=0.03) and cTnI increased in both younger (group 1Δ: 0.01±0.02 ng/mL, p=0.028) and older (group 3Δ: 0.01±0.01 ng/mL, p=0.007) runners, but not middle aged runners (group 2Δ: 0.00±0.00 ng/mL, p=0.57). Moderate distance recreational running leads to distinct age-dependent biomarker release but is not associated with cardiac fatigue, a proposed stimulus for pathologic cardiac remodelling that has been observed following longer distance running events. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Scaling NS-3 DCE Experiments on Multi-Core Servers

    DTIC Science & Technology

    2016-06-15

    that work well together. 3.2 Simulation Server Details We ran the simulations on a Dell® PowerEdge M520 blade server[8] running Ubuntu Linux 14.04...To minimize the amount of time needed to complete all of the simulations, we planned to run multiple simulations at the same time on a blade server...MacBook was running the simulation inside a virtual machine (Ubuntu 14.04), while the blade server was running the same operating system directly on

  2. 40 CFR Table 1a to Subpart Ce of... - Emissions Limits for Small, Medium, and Large HMIWI at Designated Facilities as Defined in § 60...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) (grains per dry standard cubic foot (gr/dscf)) 115 (0.05) 69 (0.03) 34 (0.015) 3-run average (1-hour minimum sample time per run) EPA Reference Method 5 of appendix A-3 of part 60, or EPA Reference Method...-run average (1-hour minimum sample time per run) EPA Reference Method 10 or 10B of appendix A-4 of...

  3. 40 CFR Table 1a to Subpart Ce of... - Emissions Limits for Small, Medium, and Large HMIWI at Designated Facilities as Defined in § 60...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) (grains per dry standard cubic foot (gr/dscf)) 115 (0.05) 69 (0.03) 34 (0.015) 3-run average (1-hour minimum sample time per run) EPA Reference Method 5 of appendix A-3 of part 60, or EPA Reference Method...-run average (1-hour minimum sample time per run) EPA Reference Method 10 or 10B of appendix A-4 of...

  4. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.

    PubMed

    Oudenhoven, Laura M; Boes, Judith M; Hak, Laura; Faber, Gert S; Houdijk, Han

    2017-01-25

    Running specific prostheses (RSP) are designed to replicate the spring-like behaviour of the human leg during running, by incorporating a real physical spring in the prosthesis. Leg stiffness is an important parameter in running as it is strongly related to step frequency and running economy. To be able to select a prosthesis that contributes to the required leg stiffness of the athlete, it needs to be known to what extent the behaviour of the prosthetic leg during running is dominated by the stiffness of the prosthesis or whether it can be regulated by adaptations of the residual joints. The aim of this study was to investigate whether and how athletes with an RSP could regulate leg stiffness during distance running at different step frequencies. Seven endurance runners with an unilateral transtibial amputation performed five running trials on a treadmill at a fixed speed, while different step frequencies were imposed (preferred step frequency (PSF) and -15%, -7.5%, +7.5% and +15% of PSF). Among others, step time, ground contact time, flight time, leg stiffness and joint kinetics were measured for both legs. In the intact leg, increasing step frequency was accompanied by a decrease in both contact and flight time, while in the prosthetic leg contact time remained constant and only flight time decreased. In accordance, leg stiffness increased in the intact leg, but not in the prosthetic leg. Although a substantial contribution of the residual leg to total leg stiffness was observed, this contribution did not change considerably with changing step frequency. Amputee athletes do not seem to be able to alter prosthetic leg stiffness to regulate step frequency during running. This invariant behaviour indicates that RSP stiffness has a large effect on total leg stiffness and therefore can have an important influence on running performance. Nevertheless, since prosthetic leg stiffness was considerably lower than stiffness of the RSP, compliance of the residual leg should not be ignored when selecting RSP stiffness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sex differences in association of race performance, skin-fold thicknesses, and training variables for recreational half-marathon runners.

    PubMed

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Senn, Oliver

    2010-12-01

    The purpose of this study was to investigate the association between selected skin-fold thicknesses and training variables with a half-marathon race time, for both male and female recreational runners, using bi- and multivariate analysis. In 52 men, two skin-fold thicknesses (abdominal and calf) were significantly and positively correlated with race time; whereas in 15 women, five (pectoral, mid-axilla, subscapular, abdominal, and suprailiac) showed positive and significant relations with total race time. In men, the mean weekly running distance, minimum distance run per week, maximum distance run per week, mean weekly hours of running, number of running training sessions per week, and mean speed of the training sessions were significantly and negatively related to total race time, but not in women. Interaction analyses suggested that race time was more strongly associated with anthropometry in women than men. Race time for the women was independently associated with the sum of eight skin-folds; but for the men, only the mean speed during training sessions was independently associated. Skin-fold thicknesses and training variables in these groups were differently related to race time according to their sex.

  6. American Academy of Podiatric Sports Medicine

    MedlinePlus

    ... Runblogger Running Product Reviews Running Research Junkie Running Times The ... © American Academy of Podiatric Sports Medicine Website Design, Maintenance and Hosting by Catalyst Marketing / Worry Free ...

  7. Jumping and hopping in elite and amateur orienteering athletes and correlations to sprinting and running.

    PubMed

    Hébert-Losier, Kim; Jensen, Kurt; Holmberg, Hans-Christer

    2014-11-01

    Jumping and hopping are used to measure lower-body muscle power, stiffness, and stretch-shortening-cycle utilization in sports, with several studies reporting correlations between such measures and sprinting and/or running abilities in athletes. Neither jumping and hopping nor correlations with sprinting and/or running have been examined in orienteering athletes. The authors investigated squat jump (SJ), countermovement jump (CMJ), standing long jump (SLJ), and hopping performed by 8 elite and 8 amateur male foot-orienteering athletes (29 ± 7 y, 183 ± 5 cm, 73 ± 7 kg) and possible correlations to road, path, and forest running and sprinting performance, as well as running economy, velocity at anaerobic threshold, and peak oxygen uptake (VO(2peak)) from treadmill assessments. During SJs and CMJs, elites demonstrated superior relative peak forces, times to peak force, and prestretch augmentation, albeit lower SJ heights and peak powers. Between-groups differences were unclear for CMJ heights, hopping stiffness, and most SLJ parameters. Large pairwise correlations were observed between relative peak and time to peak forces and sprinting velocities; time to peak forces and running velocities; and prestretch augmentation and forest-running velocities. Prestretch augmentation and time to peak forces were moderately correlated to VO(2peak). Correlations between running economy and jumping or hopping were small or trivial. Overall, the elites exhibited superior stretch-shortening-cycle utilization and rapid generation of high relative maximal forces, especially vertically. These functional measures were more closely related to sprinting and/or running abilities, indicating benefits of lower-body training in orienteering.

  8. Optimization of microwave-assisted extraction of hydrocarbons in marine sediments: comparison with the Soxhlet extraction method.

    PubMed

    Vázquez Blanco, E; López Mahía, P; Muniategui Lorenzo, S; Prada Rodríguez, D; Fernández Fernández, E

    2000-02-01

    Microwave energy was applied to extract polycyclic aromatic hydrocarbons (PAHs) and linear aliphatic hydrocarbons (LAHs) from marine sediments. The influence of experimental conditions, such as different extracting solvents and mixtures, microwave power, irradiation time and number of samples extracted per run has been tested using real marine sediment samples; volume of the solvent, sample quantity and matrix effects were also evaluated. The yield of extracted compounds obtained by microwave irradiation was compared with that obtained using the traditional Soxhlet extraction. The best results were achieved with a mixture of acetone and hexane (1:1), and recoveries ranged from 92 to 106%. The extraction time is dependent on the irradiation power and the number of samples extracted per run, so when the irradiation power was set to 500 W, the extraction times varied from 6 min for 1 sample to 18 min for 8 samples. Analytical determinations were carried out by high-performance liquid chromatography (HPLC) with an ultraviolet-visible photodiode-array detector for PAHs and gas chromatography (GC) using a FID detector for LAHs. To test the accuracy of the microwave-assisted extraction (MAE) technique, optimized methodology was applied to the analysis of standard reference material (SRM 1941), obtaining acceptable results.

  9. Simultaneous detection of genetically modified organisms by multiplex ligation-dependent genome amplification and capillary gel electrophoresis with laser-induced fluorescence.

    PubMed

    García-Cañas, Virginia; Mondello, Monica; Cifuentes, Alejandro

    2010-07-01

    In this work, an innovative method useful to simultaneously analyze multiple genetically modified organisms is described. The developed method consists in the combination of multiplex ligation-dependent genome dependent amplification (MLGA) with CGE and LIF detection using bare-fused silica capillaries. The MLGA process is based on oligonucleotide constructs, formed by a universal sequence (vector) and long specific oligonucleotides (selectors) that facilitate the circularization of specific DNA target regions. Subsequently, the circularized target sequences are simultaneously amplified with the same couple of primers and analyzed by CGE-LIF using a bare-fused silica capillary and a run electrolyte containing 2-hydroxyethyl cellulose acting as both sieving matrix and dynamic capillary coating. CGE-LIF is shown to be very useful and informative for optimizing MLGA parameters such as annealing temperature, number of ligation cycles, and selector probes concentration. We demonstrate the specificity of the method in detecting the presence of transgenic DNA in certified reference and raw commercial samples. The method developed is sensitive and allows the simultaneous detection in a single run of percentages of transgenic maize as low as 1% of GA21, 1% of MON863, and 1% of MON810 in maize samples with signal-to-noise ratios for the corresponding DNA peaks of 15, 12, and 26, respectively. These results demonstrate, to our knowledge for the first time, the great possibilities of MLGA techniques for genetically modified organisms analysis.

  10. Short-term changes in running mechanics and foot strike pattern after introduction to minimalistic footwear.

    PubMed

    Willson, John D; Bjorhus, Jordan S; Williams, D S Blaise; Butler, Robert J; Porcari, John P; Kernozek, Thomas W

    2014-01-01

    Minimalistic footwear has garnered widespread interest in the running community, based largely on the premise that the footwear may reduce certain running-related injury risk factors through adaptations in running mechanics and foot strike pattern. To examine short-term adaptations in running mechanics among runners who typically run in conventional cushioned heel running shoes as they transition to minimalistic footwear. A 2-week, prospective, observational study. A movement science laboratory. Nineteen female runners with a rear foot strike (RFS) pattern who usually train in conventional running shoes. The participants trained for 20 minutes, 3 times per week for 2 weeks by using minimalistic footwear. Three-dimensional lower extremity running mechanics were analyzed before and after this 2-week period. Hip, knee, and ankle joint kinematics at initial contact; step length; stance time; peak ankle joint moment and joint work; impact peak; vertical ground reaction force loading rate; and foot strike pattern preference were evaluated before and after the intervention. The knee flexion angle at initial contact increased 3.8° (P < .01), but the ankle and hip flexion angles at initial contact did not change after training. No changes in ankle joint kinetics or running temporospatial parameters were observed. The majority of participants (71%), before the intervention, demonstrated an RFS pattern while running in minimalistic footwear. The proportion of runners with an RFS pattern did not decrease after 2 weeks (P = .25). Those runners who chose an RFS pattern in minimalistic shoes experienced a vertical loading rate that was 3 times greater than those who chose to run with a non-RFS pattern. Few systematic changes in running mechanics were observed among participants after 2 weeks of training in minimalistic footwear. The majority of the participants continued to use an RFS pattern after training in minimalistic footwear, and these participants experienced higher vertical loading rates. Continued exposure to these greater loading rates may have detrimental effects over time. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  11. 77 FR 60165 - Self-Regulatory Organizations; Fixed Income Clearing Corporation; Order Approving Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... Time at Which the Mortgage-Backed Securities Division Runs Its Daily Morning Pass September 26, 2012. I... FICC proposes to move the time at which its Mortgage-Backed Securities Division (``MBSD'') runs its... processing passes. MBSD currently runs its first processing pass of the day (historically referred to as the...

  12. Lower-body determinants of running economy in male and female distance runners.

    PubMed

    Barnes, Kyle R; Mcguigan, Michael R; Kilding, Andrew E

    2014-05-01

    A variety of training approaches have been shown to improve running economy in well-trained athletes. However, there is a paucity of data exploring lower-body determinants that may affect running economy and account for differences that may exist between genders. Sixty-three male and female distance runners were assessed in the laboratory for a range of metabolic, biomechanical, and neuromuscular measures potentially related to running economy (ml·kg(-1)·min(-1)) at a range of running speeds. At all common test velocities, women were more economical than men (effect size [ES] = 0.40); however, when compared in terms of relative intensity, men had better running economy (ES = 2.41). Leg stiffness (r = -0.80) and moment arm length (r = 0.90) were large-extremely largely correlated with running economy and each other (r = -0.82). Correlations between running economy and kinetic measures (peak force, peak power, and time to peak force) for both genders were unclear. The relationship in stride rate (r = -0.27 to -0.31) was in the opposite direction to that of stride length (r = 0.32-0.49), and the relationship in contact time (r = -0.21 to -0.54) was opposite of that of flight time (r = 0.06-0.74). Although both leg stiffness and moment arm length are highly related to running economy, it seems that no single lower-body measure can completely explain differences in running economy between individuals or genders. Running economy is therefore likely determined from the sum of influences from multiple lower-body attributes.

  13. Fame and obsolescence: Disentangling growth and aging dynamics of patent citations

    NASA Astrophysics Data System (ADS)

    Higham, K. W.; Governale, M.; Jaffe, A. B.; Zülicke, U.

    2017-04-01

    We present an analysis of citations accrued over time by patents granted by the United States Patent and Trademark Office in 1998. In contrast to previous studies, a disaggregation by technology category is performed, and exogenously caused citation-number growth is controlled for. Our approach reveals an intrinsic citation rate that clearly separates into an—in the long run, exponentially time-dependent—aging function and a completely time-independent preferential-attachment-type growth kernel. For the general case of such a separable citation rate, we obtain the time-dependent citation distribution analytically in a form that is valid for any functional form of its aging and growth parts. Good agreement between theory and long-time characteristics of patent-citation data establishes our work as a useful framework for addressing still open questions about knowledge-propagation dynamics, such as the observed excess of citations at short times.

  14. The Influence of Running on Foot Posture and In-Shoe Plantar Pressures.

    PubMed

    Bravo-Aguilar, María; Gijón-Noguerón, Gabriel; Luque-Suarez, Alejandro; Abian-Vicen, Javier

    2016-03-01

    Running can be considered a high-impact practice, and most people practicing continuous running experience lower-limb injuries. The aim of this study was to determine the influence of 45 min of running on foot posture and plantar pressures. The sample comprised 116 healthy adults (92 men and 24 women) with no foot-related injuries. The mean ± SD age of the participants was 28.31 ± 6.01 years; body mass index, 23.45 ± 1.96; and training time, 11.02 ± 4.22 h/wk. Outcome measures were collected before and after 45 min of running at an average speed of 12 km/h, and included the Foot Posture Index (FPI) and a baropodometric analysis. The results show that foot posture can be modified after 45 min of running. The mean ± SD FPI changed from 6.15 ± 2.61 to 4.86 ± 2.65 (P < .001). Significant decreases in mean plantar pressures in the external, internal, rearfoot, and forefoot edges were found after 45 min of running. Peak plantar pressures in the forefoot decreased after running. The pressure-time integral decreased during the heel strike phase in the internal edge of the foot. In addition, a decrease was found in the pressure-time integral during the heel-off phase in the internal and rearfoot edges. The findings suggest that after 45 min of running, a pronated foot tends to change into a more neutral position, and decreased plantar pressures were found after the run.

  15. Empirical performance of the multivariate normal universal portfolio

    NASA Astrophysics Data System (ADS)

    Tan, Choon Peng; Pang, Sook Theng

    2013-09-01

    Universal portfolios generated by the multivariate normal distribution are studied with emphasis on the case where variables are dependent, namely, the covariance matrix is not diagonal. The moving-order multivariate normal universal portfolio requires very long implementation time and large computer memory in its implementation. With the objective of reducing memory and implementation time, the finite-order universal portfolio is introduced. Some stock-price data sets are selected from the local stock exchange and the finite-order universal portfolio is run on the data sets, for small finite order. Empirically, it is shown that the portfolio can outperform the moving-order Dirichlet universal portfolio of Cover and Ordentlich[2] for certain parameters in the selected data sets.

  16. Speed versus accuracy in decision-making ants: expediting politics and policy implementation.

    PubMed

    Franks, Nigel R; Dechaume-Moncharmont, François-Xavier; Hanmore, Emma; Reynolds, Jocelyn K

    2009-03-27

    Compromises between speed and accuracy are seemingly inevitable in decision-making when accuracy depends on time-consuming information gathering. In collective decision-making, such compromises are especially likely because information is shared to determine corporate policy. This political process will also take time. Speed-accuracy trade-offs occur among house-hunting rock ants, Temnothorax albipennis. A key aspect of their decision-making is quorum sensing in a potential new nest. Finding a sufficient number of nest-mates, i.e. a quorum threshold (QT), in a potential nest site indicates that many ants find it suitable. Quorum sensing collates information. However, the QT is also used as a switch, from recruitment of nest-mates to their new home by slow tandem running, to recruitment by carrying, which is three times faster. Although tandem running is slow, it effectively enables one successful ant to lead and teach another the route between the nests. Tandem running creates positive feedback; more and more ants are shown the way, as tandem followers become, in turn, tandem leaders. The resulting corps of trained ants can then quickly carry their nest-mates; but carried ants do not learn the route. Therefore, the QT seems to set both the amount of information gathered and the speed of the emigration. Low QTs might cause more errors and a slower emigration--the worst possible outcome. This possible paradox of quick decisions leading to slow implementation might be resolved if the ants could deploy another positive-feedback recruitment process when they have used a low QT. Reverse tandem runs occur after carrying has begun and lead ants back from the new nest to the old one. Here we show experimentally that reverse tandem runs can bring lost scouts into an active role in emigrations and can help to maintain high-speed emigrations. Thus, in rock ants, although quick decision-making and rapid implementation of choices are initially in opposition, a third recruitment method can restore rapid implementation after a snap decision. This work reveals a principle of widespread importance: the dynamics of collective decision-making (i.e. the politics) and the dynamics of policy implementation are sometimes intertwined, and only by analysing the mechanisms of both can we understand certain forms of adaptive organization.

  17. Running speed during training and percent body fat predict race time in recreational male marathoners.

    PubMed

    Barandun, Ursula; Knechtle, Beat; Knechtle, Patrizia; Klipstein, Andreas; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-01-01

    Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners. Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times. After multivariate regression, running speed of the training units (β = -0.52, P < 0.0001) and percent body fat (β = 0.27, P < 0.0001) were the two variables most strongly correlated with marathon race times. Marathon race time for recreational male runners may be estimated to some extent by using the following equation (r (2) = 0.44): race time ( minutes) = 326.3 + 2.394 × (percent body fat, %) - 12.06 × (speed in training, km/hours). Running speed during training sessions correlated with prerace percent body fat (r = 0.33, P = 0.0002). The model including anthropometric and training variables explained 44% of the variance of marathon race times, whereas running speed during training sessions alone explained 40%. Thus, training speed was more predictive of marathon performance times than anthropometric characteristics. The present results suggest that low body fat and running speed during training close to race pace (about 11 km/hour) are two key factors for a fast marathon race time in recreational male marathoner runners.

  18. Distribution, stock composition and timing, and tagging response of wild Chinook Salmon returning to a large, free-flowing river basin

    USGS Publications Warehouse

    Eiler, John H.; Masuda, Michele; Spencer, Ted R.; Driscoll, Richard J.; Schreck, Carl B.

    2014-01-01

    Chinook Salmon Oncorhynchus tshawytscha returns to the Yukon River basin have declined dramatically since the late 1990s, and detailed information on the spawning distribution, stock structure, and stock timing is needed to better manage the run and facilitate conservation efforts. A total of 2,860 fish were radio-tagged in the lower basin during 2002–2004 and tracked upriver. Fish traveled to spawning areas throughout the basin, ranging from several hundred to over 3,000 km from the tagging site. Similar distribution patterns were observed across years, suggesting that the major components of the run were identified. Daily and seasonal composition estimates were calculated for the component stocks. The run was dominated by two regional components comprising over 70% of the return. Substantially fewer fish returned to other areas, ranging from 2% to 9% of the return, but their collective contribution was appreciable. Most regional components consisted of several principal stocks and a number of small, spatially isolated populations. Regional and stock composition estimates were similar across years even though differences in run abundance were reported, suggesting that the differences in abundance were not related to regional or stock-specific variability. Run timing was relatively compressed compared with that in rivers in the southern portion of the species’ range. Most stocks passed through the lower river over a 6-week period, ranging in duration from 16 to 38 d. Run timing was similar for middle- and upper-basin stocks, limiting the use of timing information for management. The lower-basin stocks were primarily later-run fish. Although differences were observed, there was general agreement between our composition and timing estimates and those from other assessment projects within the basin, suggesting that the telemetry-based estimates provided a plausible approximation of the return. However, the short duration of the run, complex stock structure, and similar stock timing complicate management of Yukon River returns.

  19. Running with a minimalist shoe increases plantar pressure in the forefoot region of healthy female runners.

    PubMed

    Bergstra, S A; Kluitenberg, B; Dekker, R; Bredeweg, S W; Postema, K; Van den Heuvel, E R; Hijmans, J M; Sobhani, S

    2015-07-01

    Minimalist running shoes have been proposed as an alternative to barefoot running. However, several studies have reported cases of forefoot stress fractures after switching from standard to minimalist shoes. Therefore, the aim of the current study was to investigate the differences in plantar pressure in the forefoot region between running with a minimalist shoe and running with a standard shoe in healthy female runners during overground running. Randomized crossover design. In-shoe plantar pressure measurements were recorded from eighteen healthy female runners. Peak pressure, maximum mean pressure, pressure time integral and instant of peak pressure were assessed for seven foot areas. Force time integral, stride time, stance time, swing time, shoe comfort and landing type were assessed for both shoe types. A linear mixed model was used to analyze the data. Peak pressure and maximum mean pressure were higher in the medial forefoot (respectively 13.5% and 7.46%), central forefoot (respectively 37.5% and 29.2%) and lateral forefoot (respectively 37.9% and 20.4%) for the minimalist shoe condition. Stance time was reduced with 3.81%. No relevant differences in shoe comfort or landing strategy were found. Running with a minimalist shoe increased plantar pressure without a change in landing pattern. This increased pressure in the forefoot region might play a role in the occurrence of metatarsal stress fractures in runners who switched to minimalist shoes and warrants a cautious approach to transitioning to minimalist shoe use. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Effect of a prior intermittent run at vVO2max on oxygen kinetics during an all-out severe run in humans.

    PubMed

    Billat, V L; Bocquet, V; Slawinski, J; Laffite, L; Demarle, A; Chassaing, P; Koralsztein, J P

    2000-09-01

    The purpose of this study was to examine the influence of prior intermittent running at VO2max on oxygen kinetics during a continuous severe intensity run and the time spent at VO2max. Eight long-distance runners performed three maximal tests on a synthetic track (400 m) whilst breathing through the COSMED K4 portable telemetric metabolic analyser: i) an incremental test which determined velocity at the lactate threshold (vLT), VO2max and velocity associated with VO2max (vVO2max), ii) a continuous severe intensity run at vLT+50% (vdelta50) of the difference between vLT and vVO2max (91.3+/-1.6% VO2max)preceded by a light continuous 20 minute run at 50% of vVO2max (light warm-up), iii) the same continuous severe intensity run at vdelta50 with a prior interval training exercise (hard warm-up) of repeated hard running bouts performed at 100% of vVO2max and light running at 50% of vVO2max (of 30 seconds each) performed until exhaustion (on average 19+/-5 min with 19+/-5 interval repetitions). This hard warm-up speeded the VO2 kinetics: the time constant was reduced by 45% (28+/-7 sec vs 51+/-37 sec) and the slow component of VO2 (deltaVO2 6-3 min) was deleted (-143+/-271 ml x min(-1) vs 291+/-153 ml x min(-1)). In conclusion, despite a significantly lower total run time at vdelta50 (6 min 19+/-0) min 17 vs 8 min 20+/-1 min 45, p=0.02) after the intermittent warm-up at VO2max, the time spent specifically at VO2max in the severe continuous run at vdelta50 was not significantly different.

  1. An automated metrics system to measure and improve the success of laboratory automation implementation.

    PubMed

    Benn, Neil; Turlais, Fabrice; Clark, Victoria; Jones, Mike; Clulow, Stephen

    2007-03-01

    The authors describe a system for collecting usage metrics from widely distributed automation systems. An application that records and stores usage data centrally, calculates run times, and charts the data was developed. Data were collected over 20 months from at least 28 workstations. The application was used to plot bar charts of date versus run time for individual workstations, the automation in a specific laboratory, or automation of a specified type. The authors show that revised user training, redeployment of equipment, and running complimentary processes on one workstation can increase the average number of runs by up to 20-fold and run times by up to 450%. Active monitoring of usage leads to more effective use of automation. Usage data could be used to determine whether purchasing particular automation was a good investment.

  2. Stride-to-stride variability and complexity between novice and experienced runners during a prolonged run at anaerobic threshold speed.

    PubMed

    Mo, Shiwei; Chow, Daniel H K

    2018-05-19

    Motor control, related to running performance and running related injuries, is affected by progression of fatigue during a prolonged run. Distance runners are usually recommended to train at or slightly above anaerobic threshold (AT) speed for improving performance. However, running at AT speed may result in accelerated fatigue. It is not clear how one adapts running gait pattern during a prolonged run at AT speed and if there are differences between runners with different training experience. To compare characteristics of stride-to-stride variability and complexity during a prolonged run at AT speed between novice runners (NR) and experienced runners (ER). Both NR (n = 17) and ER (n = 17) performed a treadmill run for 31 min at his/her AT speed. Stride interval dynamics was obtained throughout the run with the middle 30 min equally divided into six time intervals (denoted as T1, T2, T3, T4, T5 and T6). Mean, coefficient of variation (CV) and scaling exponent alpha of stride intervals were calculated for each interval of each group. This study revealed mean stride interval significantly increased with running time in a non-linear trend (p<0.001). The stride interval variability (CV) maintained relatively constant for NR (p = 0.22) and changed nonlinearly for ER (p = 0.023) throughout the run. Alpha was significantly different between groups at T2, T5 and T6, and nonlinearly changed with running time for both groups with slight differences. These findings provided insights into how the motor control system adapts to progression of fatigue and evidences that long-term training enhances motor control. Although both ER and NR could regulate gait complexity to maintain AT speed throughout the prolonged run, ER also regulated stride interval variability to achieve the goal. Copyright © 2018. Published by Elsevier B.V.

  3. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    PubMed

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  4. Space station contamination modeling

    NASA Technical Reports Server (NTRS)

    Gordon, T. D.

    1989-01-01

    Current plans for the operation of Space Station Freedom allow the orbit to decay to approximately an altitude of 200 km before reboosting to approximately 450 km. The Space Station will encounter dramatically increasing ambient and induced environmental effects as the orbit decays. Unfortunately, Shuttle docking, which has been of concern as a high contamination period, will likely occur during the time when the station is in the lowest orbit. The combination of ambient and induced environments along with the presence of the docked Shuttle could cause very severe contamination conditions at the lower orbital altitudes prior to Space Station reboost. The purpose here is to determine the effects on the induced external environment of Space Station Freedom with regard to the proposed changes in altitude. The change in the induced environment will be manifest in several parameters. The ambient density buildup in front of ram facing surfaces will change. The source of such contaminants can be outgassing/offgassing surfaces, leakage from the pressurized modules or experiments, purposeful venting, and thruster firings. The third induced environment parameter with altitude dependence is the glow. In order to determine the altitude dependence of the induced environment parameters, researchers used the integrated Spacecraft Environment Model (ISEM) which was developed for Marshall Space Flight Center. The analysis required numerous ISEM runs. The assumptions and limitations for the ISEM runs are described.

  5. Reliability of Vibrating Mesh Technology.

    PubMed

    Gowda, Ashwin A; Cuccia, Ann D; Smaldone, Gerald C

    2017-01-01

    For delivery of inhaled aerosols, vibrating mesh systems are more efficient than jet nebulizers are and do not require added gas flow. We assessed the reliability of a vibrating mesh nebulizer (Aerogen Solo, Aerogen Ltd, Galway Ireland) suitable for use in mechanical ventilation. An initial observational study was performed with 6 nebulizers to determine run time and efficiency using normal saline and distilled water. Nebulizers were run until cessation of aerosol production was noted, with residual volume and run time recorded. Three controllers were used to assess the impact of the controller on nebulizer function. Following the observational study, a more detailed experimental protocol was performed using 20 nebulizers. For this analysis, 2 controllers were used, and time to cessation of aerosol production was noted. Gravimetric techniques were used to measure residual volume. Total nebulization time and residual volume were recorded. Failure was defined as premature cessation of aerosol production represented by residual volume of > 10% of the nebulizer charge. In the initial observational protocol, an unexpected sporadic failure rate was noted of 25% in 55 experimental runs. In the experimental protocol, a failure rate was noted of 30% in 40 experimental runs. Failed runs in the experimental protocol exhibited a wide range of retained volume averaging ± SD 36 ± 21.3% compared with 3.2 ± 1.5% (P = .001) in successful runs. Small but significant differences existed in nebulization time between controllers. Aerogen Solo nebulization was often randomly interrupted with a wide range of retained volumes. Copyright © 2017 by Daedalus Enterprises.

  6. Phylogenetic community structure: temporal variation in fish assemblage

    PubMed Central

    Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia

    2014-01-01

    Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales (grouped at three temporal scales). Phylogenetic distance was measured as the mean pairwise distances (MPD) and as mean nearest-neighbor distance (MNTD). Both distances were based on counts of nodes. We compared the observed values of MPD and MNTD with values that were generated randomly using null model independent swap. A serial runs test was used to assess the temporal independence of indices over time. The phylogenetic pattern in the whole assemblage and the functional groups varied widely over time. Conclusions about phylogenetic clustering or dispersion depended on the temporal scales. Conclusions about the frequency with which biotic processes and environmental filters affect the local assembly do not depend only on taxonomic grouping and spatial scales. While these analyzes allow the assertion that all proposed patterns apply to the fish assemblages in the floodplain, the assessment of the relative importance of these processes, and how they vary depending on the temporal scale and functional group studied, cannot be determined with the effort commonly used. It appears that, at least in the system that we studied, the assemblages are forming and breaking continuously, resulting in various phylogeny-related structures that makes summarizing difficult. PMID:25360256

  7. Dependence of the propagators on the sampling of Gribov copies inside the first Gribov region of Landau gauge

    NASA Astrophysics Data System (ADS)

    Maas, Axel

    2017-12-01

    Beyond perturbation theory the number of gauge copies drastically increases due to the Gribov-Singer ambiguity. Any way of treating them defines, in principle, a new, non-perturbative gauge, and the gauge-dependent correlation functions can vary between them. Herein various such gauges will be constructed as completions of the Landau gauge inside the first Gribov region. The dependence of the propagators and the running coupling on these gauges will be studied for SU(2) Yang-Mills theory in two, three, and four dimensions using lattice gauge theory, and for a wide range of lattice parameters. While the gluon propagator is rather insensitive to the choice, the ghost propagator and the running coupling show a stronger dependence. It is also found that the influence of lattice artifacts is larger than in minimal Landau gauge.

  8. Fixed-interval matching-to-sample: intermatching time and intermatching error runs1

    PubMed Central

    Nelson, Thomas D.

    1978-01-01

    Four pigeons were trained on a matching-to-sample task in which reinforcers followed either the first matching response (fixed interval) or the fifth matching response (tandem fixed-interval fixed-ratio) that occurred 80 seconds or longer after the last reinforcement. Relative frequency distributions of the matching-to-sample responses that concluded intermatching times and runs of mismatches (intermatching error runs) were computed for the final matching responses directly followed by grain access and also for the three matching responses immediately preceding the final match. Comparison of these two distributions showed that the fixed-interval schedule arranged for the preferential reinforcement of matches concluding relatively extended intermatching times and runs of mismatches. Differences in matching accuracy and rate during the fixed interval, compared to the tandem fixed-interval fixed-ratio, suggested that reinforcers following matches concluding various intermatching times and runs of mismatches influenced the rate and accuracy of the last few matches before grain access, but did not control rate and accuracy throughout the entire fixed-interval period. PMID:16812032

  9. Lack of sensitivity of staffing for 8-hour sessions to standard deviation in daily actual hours of operating room time used for surgeons with long queues.

    PubMed

    Pandit, Jaideep J; Dexter, Franklin

    2009-06-01

    At multiple facilities including some in the United Kingdom's National Health Service, the following are features of many surgical-anesthetic teams: i) there is sufficient workload for each operating room (OR) list to almost always be fully scheduled; ii) the workdays are organized such that a single surgeon is assigned to each block of time (usually 8 h); iii) one team is assigned per block; and iv) hardly ever would a team "split" to do cases in more than one OR simultaneously. We used Monte-Carlo simulation using normal and Weibull distributions to estimate the times to complete lists of cases scheduled into such 8 h sessions. For each combination of mean and standard deviation, inefficiencies of use of OR time were determined for 10 h versus 8 h of staffing. When the mean actual hours of OR time used averages < or = 8 h 25 min, 8 h of staffing has higher OR efficiency than 10 h for all combinations of standard deviation and relative cost of over-run to under-run. When mean > or = 8 h 50 min, 10 h staffing has higher OR efficiency. For 8 h 25 min < mean < 8 h 50 min, the economic break-even point depends on conditions. For example, break-even is: (a) 8 h 27 min for Weibull, standard deviation of 60 min and relative cost of over-run to under-run of 2.0 versus (b) 8 h 48 min for normal, standard deviation of 0 min and relative cost ratio of 1.50. Although the simplest decision rule would be to staff for 8 h if the mean workload is < or = 8 h 40 min and to staff for 10 h otherwise, performance was poor. For example, for the Weibull distribution with mean 8 h 40 min, standard deviation 60 min, and relative cost ratio of 2.00, the inefficiency of use of OR time would be 34% larger if staffing were planned for 8 h instead of 10 h. For surgical teams with 8 h sessions, use the following decision rule for anesthesiology and OR nurse staffing. If actual hours of OR time used averages < or = 8 h 25 min, plan 8 h staffing. If average > or = 8 h 50 min, plan 10 h staffing. For averages in between, perform the full analysis of McIntosh et al. (Anesth Analg 2006;103:1499-516).

  10. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE PAGES

    Gizhko, A.; Geiser, A.; Moch, S.; ...

    2017-11-07

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  11. Running of the charm-quark mass from HERA deep-inelastic scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gizhko, A.; Geiser, A.; Moch, S.

    Combined HERA data on charm production in deep-inelastic scattering have previously been used to determine the charm-quark running mass m c(m c) in the MS¯ renormalisation scheme. Here, the same data are used as a function of the photon virtuality Q 2 to evaluate the charm-quark running mass at different scales to one-loop order, in the context of a next-to-leading order QCD analysis. Lastly, the scale dependence of the mass is found to be consistent with QCD expectations.

  12. Influence of the method of production of eggs on the daily intake of polycyclic aromatic hydrocarbons and organochlorine contaminants: an independent study in the Canary Islands (Spain).

    PubMed

    Luzardo, Octavio P; Rodríguez-Hernández, Angel; Quesada-Tacoronte, Yohana; Ruiz-Suárez, Norberto; Almeida-González, Maira; Henríquez-Hernández, Luis Alberto; Zumbado, Manuel; Boada, Luis D

    2013-10-01

    Analysis of 16 polycyclic aromatic hydrocarbons (PAHs), 20 organochlorine pesticides (OCPs) and 18 polychlorinated biphenyls (PCBs) were performed on eggs from three different production types (conventional, free-run and organic) collected from the markets of the Canary Islands (Spain). Unlike other studies we did not found differences in the content of PCBs or OCPs of eggs in relation to its production type. Median ∑OCPs content was 3.87 ng g⁻¹ fat, being dieldrin, dicofol, hexachlorobenzene, p,p'-DDE and p,p'-DDT the most frequently detected. Median ∑PCBs value was 3.93 ng g⁻¹ fat, with 79.9% of this amount coming from the marker PCBs. Two samples, one free-run and one organic, greatly exceeded the current European Commission (EC) limit of 2.5 pg TEQ(PCDD/F) g⁻¹ lipid, but the rest were well below of this limit. The concentrations of PAHs in conventionally produced eggs were almost 4 times higher than in free-run or organic eggs. Mean dietary intake estimates of the organochlorine contaminants based on consumption of eggs, regardless of the type chosen, is negligible for the Canary Islands' population. However, the median dietary intake estimates of PAHs greatly depend on the type of eggs chosen, being much lower when free-run and organic eggs are consumed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Influence of the world's most challenging mountain ultra-marathon on energy cost and running mechanics.

    PubMed

    Vernillo, Gianluca; Savoldelli, Aldo; Zignoli, Andrea; Trabucchi, Pietro; Pellegrini, Barbara; Millet, Grégoire P; Schena, Federico

    2014-05-01

    To examine the effects of the world's most challenging mountain ultra-marathon (Tor des Géants(®) 2012) on the energy cost of three types of locomotion (cycling, level and uphill running) and running kinematics. Before (pre-) and immediately after (post-) the competition, a group of ten male experienced ultra-marathon runners performed in random order three submaximal 4-min exercise trials: cycling at a power of 1.5 W kg(-1) body mass; level running at 9 km h(-1) and uphill running at 6 km h(-1) at an inclination of +15 % on a motorized treadmill. Two video cameras recorded running mechanics at different sampling rates. Between pre- and post-, the uphill-running energy cost decreased by 13.8 % (P = 0.004); no change was noted in the energy cost of level running or cycling (NS). There was an increase in contact time (+10.3 %, P = 0.019) and duty factor (+8.1 %, P = 0.001) and a decrease in swing time (-6.4 %, P = 0.008) in the uphill-running condition. After this extreme mountain ultra-marathon, the subjects modified only their uphill-running patterns for a more economical step mechanics.

  14. Agreement between VO[subscript 2peak] Predicted from PACER and One-Mile Run Time-Equated Laps

    ERIC Educational Resources Information Center

    Saint-Maurice, Pedro F.; Anderson, Katelin; Bai, Yang; Welk, Gregory J.

    2016-01-01

    Purpose: This study examined the agreement between estimated peak oxygen consumption (VO[subscript 2peak]) obtained from the Progressive Aerobic Cardiovascular Endurance Run (PACER) fitness test and equated PACER laps derived from One-Mile Run time (MR). Methods: A sample of 680 participants (324 boys and 356 girls) in Grades 7 through 12…

  15. The Reliability of a 5km Run Test on a Motorized Treadmill

    ERIC Educational Resources Information Center

    Driller, Matthew; Brophy-Williams, Ned; Walker, Anthony

    2017-01-01

    The purpose of the present study was to determine the reliability of a 5km run test on a motorized treadmill. Over three consecutive weeks, 12 well-trained runners completed three 5km time trials on a treadmill following a standardized warm-up. Runners were partially-blinded to their running speed and distance covered. Total time to complete the…

  16. 40 CFR Table 2 to Subpart Dddd of... - Model Rule-Emission Limitations

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... part) Hydrogen chloride 62 parts per million by dry volume 3-run average (1 hour minimum sample time...) Sulfur dioxide 20 parts per million by dry volume 3-run average (1 hour minimum sample time per run...-8) or ASTM D6784-02 (Reapproved 2008).c Opacity 10 percent Three 1-hour blocks consisting of ten 6...

  17. Critical Velocity Is Associated With Combat-Specific Performance Measures in a Special Forces Unit.

    PubMed

    Hoffman, Mattan W; Stout, Jeffrey R; Hoffman, Jay R; Landua, Geva; Fukuda, David H; Sharvit, Nurit; Moran, Daniel S; Carmon, Erez; Ostfeld, Ishay

    2016-02-01

    The purpose of this study was to examine the relationship between critical velocity (CV) and anaerobic distance capacity (ADC) to combat-specific tasks (CST) in a special forces (SFs) unit. Eighteen male soldiers (mean ± SD; age: 19.9 ± 0.8 years; height: 177.6 ± 6.6 cm; body mass: 74.1 ± 5.8 kg; body mass index [BMI]: 23.52 ± 1.63) from an SF unit of the Israel Defense Forces volunteered to complete a 3-minute all-out run along with CST (2.5-km run, 50-m casualty carry, and 30-m repeated sprints with "rush" shooting [RPTDS]). Estimates of CV and ADC from the 3-minute all-out run were determined from data downloaded from a global position system device worn by each soldier, with CV calculated as the average velocity of the final 30 seconds of the run and ADC as the velocity-time integral above CV. Critical velocity exhibited significant negative correlations with the 2.5-km run time (r = -0.62, p < 0.01) and RPTDS time (r = -0.71, p < 0.01). In addition, CV was positively correlated with the average velocity during the 2.5-km run (r = 0.64, p < 0.01). Stepwise regression identified CV as the most significant performance measure associated with the 2.5-km run time, whereas BMI and CV measures were significant predictors of RPTDS time (R(2) = 0.67, p ≤ 0.05). Using the 3-minute all-out run as a testing measurement in combat, personnel may offer a more efficient and simpler way in assessing both aerobic and anaerobic capabilities (CV and ADC) within a relatively large sample.

  18. Time-dependent resilience assessment and improvement of urban infrastructure systems

    NASA Astrophysics Data System (ADS)

    Ouyang, Min; Dueñas-Osorio, Leonardo

    2012-09-01

    This paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systems' ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systems' future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.

  19. Time-dependent resilience assessment and improvement of urban infrastructure systems.

    PubMed

    Ouyang, Min; Dueñas-Osorio, Leonardo

    2012-09-01

    This paper introduces an approach to assess and improve the time-dependent resilience of urban infrastructure systems, where resilience is defined as the systems' ability to resist various possible hazards, absorb the initial damage from hazards, and recover to normal operation one or multiple times during a time period T. For different values of T and its position relative to current time, there are three forms of resilience: previous resilience, current potential resilience, and future potential resilience. This paper mainly discusses the third form that takes into account the systems' future evolving processes. Taking the power transmission grid in Harris County, Texas, USA as an example, the time-dependent features of resilience and the effectiveness of some resilience-inspired strategies, including enhancement of situational awareness, management of consumer demand, and integration of distributed generators, are all simulated and discussed. Results show a nonlinear nature of resilience as a function of T, which may exhibit a transition from an increasing function to a decreasing function at either a threshold of post-blackout improvement rate, a threshold of load profile with consumer demand management, or a threshold number of integrated distributed generators. These results are further confirmed by studying a typical benchmark system such as the IEEE RTS-96. Such common trends indicate that some resilience strategies may enhance infrastructure system resilience in the short term, but if not managed well, they may compromise practical utility system resilience in the long run.

  20. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    NASA Technical Reports Server (NTRS)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  1. Effect of metrology time delay on overlay APC

    NASA Astrophysics Data System (ADS)

    Carlson, Alan; DiBiase, Debra

    2002-07-01

    The run-to-run control strategy of lithography APC is primarily composed of a feedback loop as shown in the diagram below. It is known that the insertion of a time delay in a feedback loop can cause degradation in control performance and could even cause a stable system to become unstable, if the time delay becomes sufficiently large. Many proponents of integrated metrology methods have cited the damage caused by metrology time delays as the primary justification for moving from a stand-alone to integrated metrology. While there is little dispute over the qualitative form of this argument, there has been very light published about the quantitative effects under real fab conditions - precisely how much control is lost due to these time delays. Another issue regarding time delays is that the length of these delays is not typically fixed - they vary from lot to lot and in some cases this variance can be large - from one hour on the short side to over 32 hours on the long side. Concern has been expressed that the variability in metrology time delays can cause undesirable dynamics in feedback loops that make it difficult to optimize feedback filters and gains and at worst could drive a system unstable. By using data from numerous fabs, spanning many sizes and styles of operation, we have conducted a quantitative study of the time delay effect on overlay run- to-run control. Our analysis resulted in the following conclusions: (1) There is a significant and material relationship between metrology time delay and overlay control under a variety of real world production conditions. (2) The run-to-run controller can be configured to minimize sensitivity to time delay variations. (3) The value of moving to integrated metrology can be quantified.

  2. Segmentation, dynamic storage, and variable loading on CDC equipment

    NASA Technical Reports Server (NTRS)

    Tiffany, S. H.

    1980-01-01

    Techniques for varying the segmented load structure of a program and for varying the dynamic storage allocation, depending upon whether a batch type or interactive type run is desired, are explained and demonstrated. All changes are based on a single data input to the program. The techniques involve: code within the program to suppress scratch pad input/output (I/O) for a batch run or translate the in-core data storage area from blank common to the end-of-code+1 address of a particular segment for an interactive run; automatic editing of the segload directives prior to loading, based upon data input to the program, to vary the structure of the load for interactive and batch runs; and automatic editing of the load map to determine the initial addresses for in core data storage for an interactive run.

  3. A Hybrid OFDM-TDM Architecture with Decentralized Dynamic Bandwidth Allocation for PONs

    PubMed Central

    Cevik, Taner

    2013-01-01

    One of the major challenges of passive optical networks is to achieve a fair arbitration mechanism that will prevent possible collisions from occurring at the upstream channel when multiple users attempt to access the common fiber at the same time. Therefore, in this study we mainly focus on fair bandwidth allocation among users, and present a hybrid Orthogonal Frequency Division Multiplexed/Time Division Multiplexed architecture with a dynamic bandwidth allocation scheme that provides satisfying service qualities to the users depending on their varying bandwidth requirements. Unnecessary delays in centralized schemes occurring during bandwidth assignment stage are eliminated by utilizing a decentralized approach. Instead of sending bandwidth demands to the optical line terminal (OLT) which is the only competent authority, each optical network unit (ONU) runs the same bandwidth demand determination algorithm. ONUs inform each other via signaling channel about the status of their queues. This information is fed to the bandwidth determination algorithm which is run by each ONU in a distributed manner. Furthermore, Light Load Penalty, which is a phenomenon in optical communications, is mitigated by limiting the amount of bandwidth that an ONU can demand. PMID:24194684

  4. Simulating an Exploding Fission-Bomb Core

    NASA Astrophysics Data System (ADS)

    Reed, Cameron

    2016-03-01

    A time-dependent desktop-computer simulation of the core of an exploding fission bomb (nuclear weapon) has been developed. The simulation models a core comprising a mixture of two isotopes: a fissile one (such as U-235) and an inert one (such as U-238) that captures neutrons and removes them from circulation. The user sets the enrichment percentage and scattering and fission cross-sections of the fissile isotope, the capture cross-section of the inert isotope, the number of neutrons liberated per fission, the number of ``initiator'' neutrons, the radius of the core, and the neutron-reflection efficiency of a surrounding tamper. The simulation, which is predicated on ordinary kinematics, follows the three-dimensional motions and fates of neutrons as they travel through the core. Limitations of time and computer memory render it impossible to model a real-life core, but results of numerous runs clearly demonstrate the existence of a critical mass for a given set of parameters and the dramatic effects of enrichment and tamper efficiency on the growth (or decay) of the neutron population. The logic of the simulation will be described and results of typical runs will be presented and discussed.

  5. Quantum trajectories for time-dependent adiabatic master equations

    NASA Astrophysics Data System (ADS)

    Yip, Ka Wa; Albash, Tameem; Lidar, Daniel A.

    2018-02-01

    We describe a quantum trajectories technique for the unraveling of the quantum adiabatic master equation in Lindblad form. By evolving a complex state vector of dimension N instead of a complex density matrix of dimension N2, simulations of larger system sizes become feasible. The cost of running many trajectories, which is required to recover the master equation evolution, can be minimized by running the trajectories in parallel, making this method suitable for high performance computing clusters. In general, the trajectories method can provide up to a factor N advantage over directly solving the master equation. In special cases where only the expectation values of certain observables are desired, an advantage of up to a factor N2 is possible. We test the method by demonstrating agreement with direct solution of the quantum adiabatic master equation for 8-qubit quantum annealing examples. We also apply the quantum trajectories method to a 16-qubit example originally introduced to demonstrate the role of tunneling in quantum annealing, which is significantly more time consuming to solve directly using the master equation. The quantum trajectories method provides insight into individual quantum jump trajectories and their statistics, thus shedding light on open system quantum adiabatic evolution beyond the master equation.

  6. Overview of Proposal on High Resolution Climate Model Simulations of Recent Hurricane and Typhoon Activity: The Impact of SSTs and the Madden Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Schubert, Siegfried; Kang, In-Sik; Reale, Oreste

    2009-01-01

    This talk gives an update on the progress and further plans for a coordinated project to carry out and analyze high-resolution simulations of tropical storm activity with a number of state-of-the-art global climate models. Issues addressed include, the mechanisms by which SSTs control tropical storm. activity on inter-annual and longer time scales, the modulation of that activity by the Madden Julian Oscillation on sub-seasonal time scales, as well as the sensitivity of the results to model formulation. The project also encourages companion coarser resolution runs to help assess resolution dependence, and. the ability of the models to capture the large-scale and long-terra changes in the parameters important for hurricane development. Addressing the above science questions is critical to understanding the nature of the variability of the Asian-Australian monsoon and its regional impacts, and thus CLIVAR RAMP fully endorses the proposed tropical storm simulation activity. The project is open to all interested organizations and investigators, and the results from the runs will be shared among the participants, as well as made available to the broader scientific community for analysis.

  7. Euclidean distance and Kolmogorov-Smirnov analyses of multi-day auditory event-related potentials: a longitudinal stability study

    NASA Astrophysics Data System (ADS)

    Durato, M. V.; Albano, A. M.; Rapp, P. E.; Nawang, S. A.

    2015-06-01

    The validity of ERPs as indices of stable neurophysiological traits is partially dependent on their stability over time. Previous studies on ERP stability, however, have reported diverse stability estimates despite using the same component scoring methods. This present study explores a novel approach in investigating the longitudinal stability of average ERPs—that is, by treating the ERP waveform as a time series and then applying Euclidean Distance and Kolmogorov-Smirnov analyses to evaluate the similarity or dissimilarity between the ERP time series of different sessions or run pairs. Nonlinear dynamical analysis show that in the absence of a change in medical condition, the average ERPs of healthy human adults are highly longitudinally stable—as evaluated by both the Euclidean distance and the Kolmogorov-Smirnov test.

  8. Numerical solutions of 3-dimensional Navier-Stokes equations for closed bluff-bodies

    NASA Technical Reports Server (NTRS)

    Abolhassani, J. S.; Tiwari, S. N.

    1985-01-01

    The Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallelepiped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDc VPS 32 computer. The codes are written in 32-bit (half word) FORTRAN, which provides an approximate factor of two decreasing in computational time and doubles the memory size compared to the 54-bit word size.

  9. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    PubMed Central

    Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322

  10. Data reduction software for LORAN-C flight test evaluation

    NASA Technical Reports Server (NTRS)

    Fischer, J. P.

    1979-01-01

    A set of programs designed to be run on an IBM 370/158 computer to read the recorded time differences from the tape produced by the LORAN data collection system, convert them to latitude/longitude and produce various plotting input files are described. The programs were written so they may be tailored easily to meet the demands of a particular data reduction job. The tape reader program is written in 370 assembler language and the remaining programs are written in standard IBM FORTRAN-IV language. The tape reader program is dependent upon the recording format used by the data collection system and on the I/O macros used at the computing facility. The other programs are generally device-independent, although the plotting routines are dependent upon the plotting method used. The data reduction programs convert the recorded data to a more readily usable form; convert the time difference (TD) numbers to latitude/longitude (lat/long), to format a printed listing of the TDs, lat/long, reference times, and other information derived from the data, and produce data files which may be used for subsequent plotting.

  11. Application of Positron Doppler Broadening Spectroscopy to the Measurement of the Uniformity of Composite Materials

    NASA Astrophysics Data System (ADS)

    Quarles, C. A.; Sheffield, Thomas; Stacy, Scott; Yang, Chun

    2009-03-01

    The uniformity of rubber-carbon black composite materials has been investigated with positron Doppler Broadening Spectroscopy (DBS). The number of grams of carbon black (CB) mixed into one hundred grams of rubber, phr, is used to characterize a sample. A typical concentration for rubber in tires is 50 phr. The S parameter measured by DBS has been found to depend on the phr of the sample as well as the type of rubber and carbon black. The variation in carbon black concentration within a surface area of about 5 mm diameter can be measured by moving a standard Na-22 or Ge-68 positron source over an extended sample. The precision of the concentration measurement depends on the dwell time at a point on the sample. The time required to determine uniformity over an extended sample can be reduced by running with much higher counting rate than is typical in DBS and correcting for the systematic variation of S parameter with counting rate. Variation in CB concentration with mixing time at the level of about 0.5% has been observed.

  12. Changes in Contributions of Swimming, Cycling, and Running Performances on Overall Triathlon Performance Over a 26-Year Period.

    PubMed

    Figueiredo, Pedro; Marques, Elisa A; Lepers, Romuald

    2016-09-01

    Figueiredo, P, Marques, EA, and Lepers, R. Changes in contributions of swimming, cycling, and running performances on overall triathlon performance over a 26-year period. J Strength Cond Res 30(9): 2406-2415, 2016-This study examined the changes in the individual contribution of each discipline to the overall performance of Olympic and Ironman distance triathlons among men and women. Between 1989 and 2014, overall performances and their component disciplines (swimming, cycling and running) were analyzed from the top 50 overall male and female finishers. Regression analyses determined that for the Olympic distance, the split times in swimming and running decreased over the years (r = 0.25-0.43, p ≤ 0.05), whereas the cycling split and total time remained unchanged (p > 0.05), for both sexes. For the Ironman distance, the cycling and running splits and the total time decreased (r = 0.19-0.88, p ≤ 0.05), whereas swimming time remained stable, for both men and women. The average contribution of the swimming stage (∼18%) was smaller than the cycling and running stages (p ≤ 0.05), for both distances and both sexes. Running (∼47%) and then cycling (∼36%) had the greatest contribution to overall performance for the Olympic distance (∼47%), whereas for the Ironman distance, cycling and running presented similar contributions (∼40%, p > 0.05). Across the years, in the Olympic distance, swimming contribution significantly decreased for women and men (r = 0.51 and 0.68, p < 0.001, respectively), whereas running increased for men (r = 0.33, p = 0.014). In the Ironman distance, swimming and cycling contributions changed in an undulating fashion, being inverse between the two segments, for both sexes (p < 0.01), whereas running contribution decreased for men only (r = 0.61, p = 0.001). These findings highlight that strategies to improve running performance should be the main focus on the preparation to compete in the Olympic distance; whereas, in the Ironman, both cycling and running are decisive and should be well developed.

  13. Reliability and validity of pressure and temporal parameters recorded using a pressure-sensitive insole during running.

    PubMed

    Mann, Robert; Malisoux, Laurent; Brunner, Roman; Gette, Paul; Urhausen, Axel; Statham, Andrew; Meijer, Kenneth; Theisen, Daniel

    2014-01-01

    Running biomechanics has received increasing interest in recent literature on running-related injuries, calling for new, portable methods for large-scale measurements. Our aims were to define running strike pattern based on output of a new pressure-sensitive measurement device, the Runalyser, and to test its validity regarding temporal parameters describing running gait. Furthermore, reliability of the Runalyser measurements was evaluated, as well as its ability to discriminate different running styles. Thirty-one healthy participants (30.3 ± 7.4 years, 1.78 ± 0.10 m and 74.1 ± 12.1 kg) were involved in the different study parts. Eleven participants were instructed to use a rearfoot (RFS), midfoot (MFS) and forefoot (FFS) strike pattern while running on a treadmill. Strike pattern was subsequently defined using a linear regression (R(2)=0.89) between foot strike angle, as determined by motion analysis (1000 Hz), and strike index (SI, point of contact on the foot sole, as a percentage of foot sole length), as measured by the Runalyser. MFS was defined by the 95% confidence interval of the intercept (SI=43.9-49.1%). High agreement (overall mean difference 1.2%) was found between stance time, flight time, stride time and duty factor as determined by the Runalyser and a force-measuring treadmill (n=16 participants). Measurements of the two devices were highly correlated (R ≥ 0.80) and not significantly different. Test-retest intra-class correlation coefficients for all parameters were ≥ 0.94 (n=14 participants). Significant differences (p<0.05) between FFS, RFS and habitual running were detected regarding SI, stance time and stride time (n=24 participants). The Runalyser is suitable for, and easily applicable in large-scale studies on running biomechanics. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The Validity and Reliability of an iPhone App for Measuring Running Mechanics.

    PubMed

    Balsalobre-Fernández, Carlos; Agopyan, Hovannes; Morin, Jean-Benoit

    2017-07-01

    The purpose of this investigation was to analyze the validity of an iPhone application (Runmatic) for measuring running mechanics. To do this, 96 steps from 12 different runs at speeds ranging from 2.77-5.55 m·s -1 were recorded simultaneously with Runmatic, as well as with an opto-electronic device installed on a motorized treadmill to measure the contact and aerial time of each step. Additionally, several running mechanics variables were calculated using the contact and aerial times measured, and previously validated equations. Several statistics were computed to test the validity and reliability of Runmatic in comparison with the opto-electronic device for the measurement of contact time, aerial time, vertical oscillation, leg stiffness, maximum relative force, and step frequency. The running mechanics values obtained with both the app and the opto-electronic device showed a high degree of correlation (r = .94-.99, p < .001). Moreover, there was very close agreement between instruments as revealed by the ICC (2,1) (ICC = 0.965-0.991). Finally, both Runmatic and the opto-electronic device showed almost identical reliability levels when measuring each set of 8 steps for every run recorded. In conclusion, Runmatic has been proven to be a highly reliable tool for measuring the running mechanics studied in this work.

  15. Effect of 8 weeks of concurrent plyometric and running training on spatiotemporal and physiological variables of novice runners.

    PubMed

    Gómez-Molina, Josué; Ogueta-Alday, Ana; Camara, Jesus; Stickley, Christopher; García-López, Juan

    2018-03-01

    Concurrent plyometric and running training has the potential to improve running economy (RE) and performance through increasing muscle strength and power, but the possible effect on spatiotemporal parameters of running has not been studied yet. The aim of this study was to compare the effect of 8 weeks of concurrent plyometric and running training on spatiotemporal parameters and physiological variables of novice runners. Twenty-five male participants were randomly assigned into two training groups; running group (RG) (n = 11) and running + plyometric group (RPG) (n = 14). Both groups performed 8 weeks of running training programme, and only the RPG performed a concurrent plyometric training programme (two sessions per week). Anthropometric, physiological (VO 2max , heart rate and RE) and spatiotemporal variables (contact and flight times, step rate and length) were registered before and after the intervention. In comparison to RG, the RPG reduced step rate and increased flight times at the same running speeds (P < .05) while contact times remained constant. Significant increases in pre- and post-training (P < .05) were found in RPG for squat jump and 5 bound test, while RG remained unchanged. Peak speed, ventilatory threshold (VT) speed and respiratory compensation threshold (RCT) speed increased (P < .05) for both groups, although peak speed and VO 2max increased more in the RPG than in the RG. In conclusion, concurrent plyometric and running training entails a reduction in step rate, as well as increases in VT speed, RCT speed, peak speed and VO 2max . Athletes could benefit from plyometric training in order to improve their strength, which would contribute to them attaining higher running speeds.

  16. Toward real-time performance benchmarks for Ada

    NASA Technical Reports Server (NTRS)

    Clapp, Russell M.; Duchesneau, Louis; Volz, Richard A.; Mudge, Trevor N.; Schultze, Timothy

    1986-01-01

    The issue of real-time performance measurements for the Ada programming language through the use of benchmarks is addressed. First, the Ada notion of time is examined and a set of basic measurement techniques are developed. Then a set of Ada language features believed to be important for real-time performance are presented and specific measurement methods discussed. In addition, other important time related features which are not explicitly part of the language but are part of the run-time related features which are not explicitly part of the language but are part of the run-time system are also identified and measurement techniques developed. The measurement techniques are applied to the language and run-time system features and the results are presented.

  17. Run charts revisited: a simulation study of run chart rules for detection of non-random variation in health care processes.

    PubMed

    Anhøj, Jacob; Olesen, Anne Vingaard

    2014-01-01

    A run chart is a line graph of a measure plotted over time with the median as a horizontal line. The main purpose of the run chart is to identify process improvement or degradation, which may be detected by statistical tests for non-random patterns in the data sequence. We studied the sensitivity to shifts and linear drifts in simulated processes using the shift, crossings and trend rules for detecting non-random variation in run charts. The shift and crossings rules are effective in detecting shifts and drifts in process centre over time while keeping the false signal rate constant around 5% and independent of the number of data points in the chart. The trend rule is virtually useless for detection of linear drift over time, the purpose it was intended for.

  18. The Impact of a Food Elimination Diet on Collegiate Athletes' 300-meter Run Time and Concentration

    PubMed Central

    Breshears, Karen; Baker, David McA.

    2014-01-01

    Background: Optimal human function and performance through diet strategies are critical for everyone but especially for those involved in collegiate or professional athletics. Currently, individualized medicine (IM) is emerging as a more efficacious approach to health with emphasis on personalized diet strategies for the public and is common practice for elite athletes. One method for directing patient-specific foods in the diet, while concomitantly impacting physical performance, may be via IgG food sensitivity and Candida albicans analysis from dried blood spot (DBS) collections. Methods: The authors designed a quasi-experimental, nonrandomized, pilot study without a control group. Twenty-three participants, 15 female, 8 male, from soccer/volleyball and football athletic teams, respectively, mean age 19.64+0.86 years, were recruited for the study, which examined preposttest 300-meter run times and questionnaire responses after a 14-day IgG DBS–directed food elimination diet based on IgG reactivity to 93 foods. DBS specimen collection, 300-meter run times, and Learning Difficulties Assessment (LDA) questionnaires were collected at the participants' university athletics building on campus. IgG, C albicans, and S cerevisiae analyses were conducted at the Great Plains Laboratory, Lenexa, Kansas. Results: Data indicated a change in 300-meter run time but not of statistical significance (run time baseline mean=50.41 sec, run time intervention mean=50.14 sec). Descriptive statistics for frequency of responses and chi-square analysis revealed that 4 of the 23 items selected from the LDA (Listening-Memory and Concentration subscale R=.8669; Listening-Information Processing subscale R=.8517; and General Concentration and Memory subscale R=.9019) were improved posttest. Conclusion: The study results did not indicate merit in eliminating foods based on IgG reactivity for affecting athletic performance (faster 300-meter run time) but did reveal potential for affecting academic qualities of listening, information processing, concentration, and memory. Further studies are warranted evaluating IgG-directed food elimination diets for improving run time, concentration, and memory among college athletes as well as among other populations. PMID:25568830

  19. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models.

    PubMed

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients.

  20. Virtual Systems Pharmacology (ViSP) software for simulation from mechanistic systems-level models

    PubMed Central

    Ermakov, Sergey; Forster, Peter; Pagidala, Jyotsna; Miladinov, Marko; Wang, Albert; Baillie, Rebecca; Bartlett, Derek; Reed, Mike; Leil, Tarek A.

    2014-01-01

    Multiple software programs are available for designing and running large scale system-level pharmacology models used in the drug development process. Depending on the problem, scientists may be forced to use several modeling tools that could increase model development time, IT costs and so on. Therefore, it is desirable to have a single platform that allows setting up and running large-scale simulations for the models that have been developed with different modeling tools. We developed a workflow and a software platform in which a model file is compiled into a self-contained executable that is no longer dependent on the software that was used to create the model. At the same time the full model specifics is preserved by presenting all model parameters as input parameters for the executable. This platform was implemented as a model agnostic, therapeutic area agnostic and web-based application with a database back-end that can be used to configure, manage and execute large-scale simulations for multiple models by multiple users. The user interface is designed to be easily configurable to reflect the specifics of the model and the user's particular needs and the back-end database has been implemented to store and manage all aspects of the systems, such as Models, Virtual Patients, User Interface Settings, and Results. The platform can be adapted and deployed on an existing cluster or cloud computing environment. Its use was demonstrated with a metabolic disease systems pharmacology model that simulates the effects of two antidiabetic drugs, metformin and fasiglifam, in type 2 diabetes mellitus patients. PMID:25374542

  1. Changes in Running Mechanics During a 6-Hour Running Race.

    PubMed

    Giovanelli, Nicola; Taboga, Paolo; Lazzer, Stefano

    2017-05-01

    To investigate changes in running mechanics during a 6-h running race. Twelve ultraendurance runners (age 41.9 ± 5.8 y, body mass 68.3 ± 12.6 kg, height 1.72 ± 0.09 m) were asked to run as many 874-m flat loops as possible in 6 h. Running speed, contact time (t c ), and aerial time (t a ) were measured in the first lap and every 30 ± 2 min during the race. Peak vertical ground-reaction force (F max ), stride length (SL), vertical downward displacement of the center of mass (Δz), leg-length change (ΔL), vertical stiffness (k vert ), and leg stiffness (k leg ) were then estimated. Mean distance covered by the athletes during the race was 62.9 ± 7.9 km. Compared with the 1st lap, running speed decreased significantly from 4 h 30 min onward (mean -5.6% ± 0.3%, P < .05), while t c increased after 4 h 30 min of running, reaching the maximum difference after 5 h 30 min (+6.1%, P = .015). Conversely, k vert decreased after 4 h, reaching the lowest value after 5 h 30 min (-6.5%, P = .008); t a and F max decreased after 4 h 30 min through to the end of the race (mean -29.2% and -5.1%, respectively, P < .05). Finally, SL decreased significantly (-5.1%, P = .010) during the last hour of the race. Most changes occurred after 4 h continuous self-paced running, suggesting a possible time threshold that could affect performance regardless of absolute running speed.

  2. The immediate effect of long-distance running on T2 and T2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging

    PubMed Central

    Welsch, Goetz H; Laqmani, Azien; Henes, Frank O; Kaul, Michael G; Schoen, Gerhard; Adam, Gerhard; Regier, Marc

    2016-01-01

    Objective: To quantitatively assess the immediate effect of long-distance running on T2 and T2* relaxation times of the articular cartilage of the knee at 3.0 T in young healthy adults. Methods: 30 healthy male adults (18–31 years) who perform sports at an amateur level underwent an initial MRI at 3.0 T with T2 weighted [16 echo times (TEs): 9.7–154.6 ms] and T2* weighted (24 TEs: 4.6–53.6 ms) relaxation measurements. Thereafter, all participants performed a 45-min run. After the run, all individuals were immediately re-examined. Data sets were post-processed using dedicated software (ImageJ; National Institute of Health, Bethesda, MD). 22 regions of interest were manually drawn in segmented areas of the femoral, tibial and patellar cartilage. For statistical evaluation, Pearson product–moment correlation coefficients and confidence intervals were computed. Results: Mean initial values were 35.7 ms for T2 and 25.1 ms for T2*. After the run, a significant decrease in the mean T2 and T2* relaxation times was observed for all segments in all participants. A mean decrease of relaxation time was observed for T2 with 4.6 ms (±3.6 ms) and for T2* with 3.6 ms (±5.1 ms) after running. Conclusion: A significant decrease could be observed in all cartilage segments for both biomarkers. Both quantitative techniques, T2 and T2*, seem to be valuable parameters in the evaluation of immediate changes in the cartilage ultrastructure after running. Advances in knowledge: This is the first direct comparison of immediate changes in T2 and T2* relaxation times after running in healthy adults. PMID:27336705

  3. The immediate effect of long-distance running on T2 and T2* relaxation times of articular cartilage of the knee in young healthy adults at 3.0 T MR imaging.

    PubMed

    Behzadi, Cyrus; Welsch, Goetz H; Laqmani, Azien; Henes, Frank O; Kaul, Michael G; Schoen, Gerhard; Adam, Gerhard; Regier, Marc

    2016-08-01

    To quantitatively assess the immediate effect of long-distance running on T2 and T2* relaxation times of the articular cartilage of the knee at 3.0 T in young healthy adults. 30 healthy male adults (18-31 years) who perform sports at an amateur level underwent an initial MRI at 3.0 T with T2 weighted [16 echo times (TEs): 9.7-154.6 ms] and T2* weighted (24 TEs: 4.6-53.6 ms) relaxation measurements. Thereafter, all participants performed a 45-min run. After the run, all individuals were immediately re-examined. Data sets were post-processed using dedicated software (ImageJ; National Institute of Health, Bethesda, MD). 22 regions of interest were manually drawn in segmented areas of the femoral, tibial and patellar cartilage. For statistical evaluation, Pearson product-moment correlation coefficients and confidence intervals were computed. Mean initial values were 35.7 ms for T2 and 25.1 ms for T2*. After the run, a significant decrease in the mean T2 and T2* relaxation times was observed for all segments in all participants. A mean decrease of relaxation time was observed for T2 with 4.6 ms (±3.6 ms) and for T2* with 3.6 ms (±5.1 ms) after running. A significant decrease could be observed in all cartilage segments for both biomarkers. Both quantitative techniques, T2 and T2*, seem to be valuable parameters in the evaluation of immediate changes in the cartilage ultrastructure after running. This is the first direct comparison of immediate changes in T2 and T2* relaxation times after running in healthy adults.

  4. Running speed during training and percent body fat predict race time in recreational male marathoners

    PubMed Central

    Barandun, Ursula; Knechtle, Beat; Knechtle, Patrizia; Klipstein, Andreas; Rüst, Christoph Alexander; Rosemann, Thomas; Lepers, Romuald

    2012-01-01

    Background Recent studies have shown that personal best marathon time is a strong predictor of race time in male ultramarathoners. We aimed to determine variables predictive of marathon race time in recreational male marathoners by using the same characteristics of anthropometry and training as used for ultramarathoners. Methods Anthropometric and training characteristics of 126 recreational male marathoners were bivariately and multivariately related to marathon race times. Results After multivariate regression, running speed of the training units (β = −0.52, P < 0.0001) and percent body fat (β = 0.27, P < 0.0001) were the two variables most strongly correlated with marathon race times. Marathon race time for recreational male runners may be estimated to some extent by using the following equation (r2 = 0.44): race time ( minutes) = 326.3 + 2.394 × (percent body fat, %) − 12.06 × (speed in training, km/hours). Running speed during training sessions correlated with prerace percent body fat (r = 0.33, P = 0.0002). The model including anthropometric and training variables explained 44% of the variance of marathon race times, whereas running speed during training sessions alone explained 40%. Thus, training speed was more predictive of marathon performance times than anthropometric characteristics. Conclusion The present results suggest that low body fat and running speed during training close to race pace (about 11 km/hour) are two key factors for a fast marathon race time in recreational male marathoner runners. PMID:24198587

  5. Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance.

    PubMed

    Nimmerichter, Alfred; Novak, Nina; Triska, Christoph; Prinz, Bernhard; Breese, Brynmor C

    2017-03-01

    Nimmerichter, A, Novak, N, Triska, C, Prinz, B, and Breese, BC. Validity of treadmill-derived critical speed on predicting 5,000-meter track-running performance. J Strength Cond Res 31(3): 706-714, 2017-To evaluate 3 models of critical speed (CS) for the prediction of 5,000-m running performance, 16 trained athletes completed an incremental test on a treadmill to determine maximal aerobic speed (MAS) and 3 randomly ordered runs to exhaustion at the [INCREMENT]70% intensity, at 110% and 98% of MAS. Critical speed and the distance covered above CS (D') were calculated using the hyperbolic speed-time (HYP), the linear distance-time (LIN), and the linear speed inverse-time model (INV). Five thousand meter performance was determined on a 400-m running track. Individual predictions of 5,000-m running time (t = [5,000-D']/CS) and speed (s = D'/t + CS) were calculated across the 3 models in addition to multiple regression analyses. Prediction accuracy was assessed with the standard error of estimate (SEE) from linear regression analysis and the mean difference expressed in units of measurement and coefficient of variation (%). Five thousand meter running performance (speed: 4.29 ± 0.39 m·s; time: 1,176 ± 117 seconds) was significantly better than the predictions from all 3 models (p < 0.0001). The mean difference was 65-105 seconds (5.7-9.4%) for time and -0.22 to -0.34 m·s (-5.0 to -7.5%) for speed. Predictions from multiple regression analyses with CS and D' as predictor variables were not significantly different from actual running performance (-1.0 to 1.1%). The SEE across all models and predictions was approximately 65 seconds or 0.20 m·s and is therefore considered as moderate. The results of this study have shown the importance of aerobic and anaerobic energy system contribution to predict 5,000-m running performance. Using estimates of CS and D' is valuable for predicting performance over race distances of 5,000 m.

  6. Political model of social evolution

    PubMed Central

    Acemoglu, Daron; Egorov, Georgy; Sonin, Konstantin

    2011-01-01

    Almost all democratic societies evolved socially and politically out of authoritarian and nondemocratic regimes. These changes not only altered the allocation of economic resources in society but also the structure of political power. In this paper, we develop a framework for studying the dynamics of political and social change. The society consists of agents that care about current and future social arrangements and economic allocations; allocation of political power determines who has the capacity to implement changes in economic allocations and future allocations of power. The set of available social rules and allocations at any point in time is stochastic. We show that political and social change may happen without any stochastic shocks or as a result of a shock destabilizing an otherwise stable social arrangement. Crucially, the process of social change is contingent (and history-dependent): the timing and sequence of stochastic events determine the long-run equilibrium social arrangements. For example, the extent of democratization may depend on how early uncertainty about the set of feasible reforms in the future is resolved. PMID:22198760

  7. Transition of multidiffusive states in a biased periodic potential

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-Ming; Bao, Jing-Dong

    2017-03-01

    We study a frequency-dependent damping model of hyperdiffusion within the generalized Langevin equation. The model allows for the colored noise defined by its spectral density, assumed to be proportional to ωδ -1 at low frequencies with 0 <δ <1 (sub-Ohmic damping) or 1 <δ <2 (super-Ohmic damping), where the frequency-dependent damping is deduced from the noise by means of the fluctuation-dissipation theorem. It is shown that for super-Ohmic damping and certain parameters, the diffusive process of the particle in a titled periodic potential undergos sequentially four time regimes: thermalization, hyperdiffusion, collapse, and asymptotical restoration. For analyzing transition phenomenon of multidiffusive states, we demonstrate that the first exist time of the particle escaping from the locked state into the running state abides by an exponential distribution. The concept of an equivalent velocity trap is introduced in the present model; moreover, reformation of ballistic diffusive system is also considered as a marginal situation but does not exhibit the collapsed state of diffusion.

  8. Interpreting the Dependence of Mutation Rates on Age and Time

    PubMed Central

    Gao, Ziyue; Wyman, Minyoung J.; Sella, Guy; Przeworski, Molly

    2016-01-01

    Mutations can originate from the chance misincorporation of nucleotides during DNA replication or from DNA lesions that arise between replication cycles and are not repaired correctly. We introduce a model that relates the source of mutations to their accumulation with cell divisions, providing a framework for understanding how mutation rates depend on sex, age, and cell division rate. We show that the accrual of mutations should track cell divisions not only when mutations are replicative in origin but also when they are non-replicative and repaired efficiently. One implication is that observations from diverse fields that to date have been interpreted as pointing to a replicative origin of most mutations could instead reflect the accumulation of mutations arising from endogenous reactions or exogenous mutagens. We further find that only mutations that arise from inefficiently repaired lesions will accrue according to absolute time; thus, unless life history traits co-vary, the phylogenetic “molecular clock” should not be expected to run steadily across species. PMID:26761240

  9. Political model of social evolution.

    PubMed

    Acemoglu, Daron; Egorov, Georgy; Sonin, Konstantin

    2011-12-27

    Almost all democratic societies evolved socially and politically out of authoritarian and nondemocratic regimes. These changes not only altered the allocation of economic resources in society but also the structure of political power. In this paper, we develop a framework for studying the dynamics of political and social change. The society consists of agents that care about current and future social arrangements and economic allocations; allocation of political power determines who has the capacity to implement changes in economic allocations and future allocations of power. The set of available social rules and allocations at any point in time is stochastic. We show that political and social change may happen without any stochastic shocks or as a result of a shock destabilizing an otherwise stable social arrangement. Crucially, the process of social change is contingent (and history-dependent): the timing and sequence of stochastic events determine the long-run equilibrium social arrangements. For example, the extent of democratization may depend on how early uncertainty about the set of feasible reforms in the future is resolved.

  10. Time-dependent transport of a localized surface plasmon through a linear array of metal nanoparticles: Precursor and normal mode contributions

    NASA Astrophysics Data System (ADS)

    Compaijen, P. J.; Malyshev, V. A.; Knoester, J.

    2018-02-01

    We theoretically investigate the time-dependent transport of a localized surface plasmon excitation through a linear array of identical and equidistantly spaced metal nanoparticles. Two different signals propagating through the array are found: one traveling with the group velocity of the surface plasmon polaritons of the system and damped exponentially, and the other running with the speed of light and decaying in a power-law fashion, as x-1 and x-2 for the transversal and longitudinal polarizations, respectively. The latter resembles the Sommerfeld-Brillouin forerunner and has not been identified in previous studies. The contribution of this signal dominates the plasmon transport at large distances. In addition, even though this signal is spread in the propagation direction and has the lateral dimension larger than the wavelength, the field profile close to the chain axis does not change with distance, indicating that this part of the signal is confined to the array.

  11. Tolerance of centrifuge-simulated suborbital spaceflight in subjects with implanted insulin pumps.

    PubMed

    Levin, Dana R; Blue, Rebecca S; Castleberry, Tarah L; Vanderploeg, James M

    2015-04-01

    With commercial spaceflight comes the possibility of spaceflight participants (SFPs) with significant medical conditions. Those with previously untested medical conditions, such as diabetes mellitus (DM) and the use of indwelling medical devices, represent a unique challenge. It is unclear how SFPs with such devices will react to the stresses of spaceflight. This case report describes two subjects with Type I DM using insulin pumps who underwent simulated dynamic phases of spaceflight via centrifuge G force exposure. Two Type I diabetic subjects with indwelling Humalog insulin pumps, a 23-yr-old man averaging 50 u of Humalog daily and a 27-yr-old man averaging 60 u of Humalog daily, underwent seven centrifuge runs over 48 h. Day 1 consisted of two +Gz runs (peak = +3.5 Gz, run 2) and two +Gx runs (peak = +6.0 Gx, run 4). Day 2 consisted of three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz). Data collected included blood pressure, electrocardiogram, pulse oximetry, neurovestibular evaluation, and questionnaires regarding motion sickness, disorientation, greyout, and other symptoms. Neither subject experienced adverse clinical responses to the centrifuge exposure. Both maintained blood glucose levels between 110-206 mg · dl(-1). Potential risks to SFPs with insulin pump dependent DM include hypo/hyperglycemia, pump damage, neurovestibular dysfunction, skin breakdown, and abnormal stress responses. A search of prior literature did not reveal any previous studies of individuals with DM on insulin pumps exposed to prolonged accelerations. These cases suggest that individuals with conditions dependent on continuous medication delivery might tolerate the accelerations anticipated for commercial spaceflight.

  12. Actual situation analyses of rat-run traffic on community streets based on car probe data

    NASA Astrophysics Data System (ADS)

    Sakuragi, Yuki; Matsuo, Kojiro; Sugiki, Nao

    2017-10-01

    Lowering of so-called "rat-run" traffic on community streets has been one of significant challenges for improving the living environment of neighborhood. However, it has been difficult to quantitatively grasp the actual situation of rat-run traffic by the traditional surveys such as point observations. This study aims to develop a method for extracting rat-run traffic based on car probe data. In addition, based on the extracted rat-run traffic in Toyohashi city, Japan, we try to analyze the actual situation such as time and location distribution of the rat-run traffic. As a result, in Toyohashi city, the rate of using rat-run route increases in peak time period. Focusing on the location distribution of rat-run traffic, in addition, they pass through a variety of community streets. There is no great inter-district bias of the route frequently used as rat-run traffic. Next, we focused on some trips passing through a heavily used route as rat-run traffic. As a result, we found the possibility that they habitually use the route as rat-run because their trips had some commonalities. We also found that they tend to use the rat-run route due to shorter distance than using the alternative highway route, and that the travel speeds were faster than using the alternative highway route. In conclusions, we confirmed that the proposed method can quantitatively grasp the actual situation and the phenomenal tendencies of the rat-run traffic.

  13. Voluntary wheel running in dystrophin-deficient (mdx) mice: Relationships between exercise parameters and exacerbation of the dystrophic phenotype.

    PubMed

    Smythe, Gayle M; White, Jason D

    2011-12-18

    Voluntary wheel running can potentially be used to exacerbate the disease phenotype in dystrophin-deficient mdx mice. While it has been established that voluntary wheel running is highly variable between individuals, the key parameters of wheel running that impact the most on muscle pathology have not been examined in detail. We conducted a 2-week test of voluntary wheel running by mdx mice and the impact of wheel running on disease pathology. There was significant individual variation in the average daily distance (ranging from 0.003 ± 0.005 km to 4.48 ± 0.96 km), culminating in a wide range (0.040 km to 67.24 km) of total cumulative distances run by individuals. There was also variation in the number and length of run/rest cycles per night, and the average running rate. Correlation analyses demonstrated that in the quadriceps muscle, a low number of high distance run/rest cycles was the most consistent indicator for increased tissue damage. The amount of rest time between running bouts was a key factor associated with gastrocnemius damage. These data emphasize the need for detailed analysis of individual running performance, consideration of the length of wheel exposure time, and the selection of appropriate muscle groups for analysis, when applying the use of voluntary wheel running to disease exacerbation and/or pre-clinical testing of the efficacy of therapeutic agents in the mdx mouse.

  14. Sex difference in top performers from Ironman to double deca iron ultra-triathlon

    PubMed Central

    Knechtle, Beat; Zingg, Matthias A; Rosemann, Thomas; Rüst, Christoph A

    2014-01-01

    This study investigated changes in performance and sex difference in top performers for ultra-triathlon races held between 1978 and 2013 from Ironman (3.8 km swim, 180 km cycle, and 42 km run) to double deca iron ultra-triathlon distance (76 km swim, 3,600 km cycle, and 844 km run). The fastest men ever were faster than the fastest women ever for split and overall race times, with the exception of the swimming split in the quintuple iron ultra-triathlon (19 km swim, 900 km cycle, and 210.1 km run). Correlation analyses showed an increase in sex difference with increasing length of race distance for swimming (r2=0.67, P=0.023), running (r2=0.77, P=0.009), and overall race time (r2=0.77, P=0.0087), but not for cycling (r2=0.26, P=0.23). For the annual top performers, split and overall race times decreased across years nonlinearly in female and male Ironman triathletes. For longer distances, cycling split times decreased linearly in male triple iron ultra-triathletes, and running split times decreased linearly in male double iron ultra-triathletes but increased linearly in female triple and quintuple iron ultra-triathletes. Overall race times increased nonlinearly in female triple and male quintuple iron ultra-triathletes. The sex difference decreased nonlinearly in swimming, running, and overall race time in Ironman triathletes but increased linearly in cycling and running and nonlinearly in overall race time in triple iron ultra-triathletes. These findings suggest that women reduced the sex difference nonlinearly in shorter ultra-triathlon distances (ie, Ironman), but for longer distances than the Ironman, the sex difference increased or remained unchanged across years. It seems very unlikely that female top performers will ever outrun male top performers in ultratriathlons. The nonlinear change in speed and sex difference in Ironman triathlon suggests that female and male Ironman triathletes have reached their limits in performance. PMID:25114605

  15. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons.

    PubMed

    Fernandes, Maria Fernanda A; Matthys, Dominique; Hryhorczuk, Cécile; Sharma, Sandeep; Mogra, Shabana; Alquier, Thierry; Fulton, Stephanie

    2015-10-06

    The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Navigation in wood ants Formica japonica: context dependent use of landmarks.

    PubMed

    Fukushi, Tsukasa; Wehner, Rüdiger

    2004-09-01

    Wood ants Formica japonica can steer their outbound (foraging) and inbound (homing) courses without using celestial compass information, by relying exclusively on landmark cues. This is shown by training ants to run back and forth between the nest and an artificial feeder, and later displacing the trained ants either from the nest (when starting their foraging runs: outbound full-vector ants) or from the feeder (when starting their home runs: inbound full-vector ants) to various nearby release sites. In addition, ants that have already completed their foraging and homing runs are displaced after arrival either at the feeder (outbound zero-vector ants) or at the nest (inbound zero-vector ants), respectively, to the very same release sites. Upon release, the full-vector ants steer their straight courses by referring to panoramic landmark cues, while the zero-vector ants presented with the very same visual scenery immediately search for local landmark cues defining their final goal. Hence, it depends on the context, in this case on the state of the forager's round-trip cycle, what visual cues are picked out from a given set of landmarks and used for navigation.

  17. Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields

    NASA Astrophysics Data System (ADS)

    Su, Kung-Yi; Hayward, Christopher C.; Hopkins, Philip F.; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan

    2018-01-01

    Using high-resolution magnetohydrodynamic simulations of idealized, non-cosmological galaxies, we investigate how cooling, star formation and stellar feedback affect galactic magnetic fields. We find that the amplification histories, saturation values and morphologies of the magnetic fields vary considerably depending on the baryonic physics employed, primarily because of differences in the gas density distribution. In particular, adiabatic runs and runs with a subgrid (effective equation of state) stellar feedback model yield lower saturation values and morphologies that exhibit greater large-scale order compared with runs that adopt explicit stellar feedback and runs with cooling and star formation but no feedback. The discrepancies mostly lie in gas denser than the galactic average, which requires cooling and explicit fragmentation to capture. Independent of the baryonic physics included, the magnetic field strength scales with gas density as B ∝ n2/3, suggesting isotropic flux freezing or equipartition between the magnetic and gravitational energies during the field amplification. We conclude that accurate treatments of cooling, star formation and stellar feedback are crucial for obtaining the correct magnetic field strength and morphology in dense gas, which, in turn, is essential for properly modelling other physical processes that depend on the magnetic field, such as cosmic ray feedback.

  18. Performance analysis of local area networks

    NASA Technical Reports Server (NTRS)

    Alkhatib, Hasan S.; Hall, Mary Grace

    1990-01-01

    A simulation of the TCP/IP protocol running on a CSMA/CD data link layer was described. The simulation was implemented using the simula language, and object oriented discrete event language. It allows the user to set the number of stations at run time, as well as some station parameters. Those parameters are the interrupt time and the dma transfer rate for each station. In addition, the user may configure the network at run time with stations of differing characteristics. Two types are available, and the parameters of both types are read from input files at run time. The parameters include the dma transfer rate, interrupt time, data rate, average message size, maximum frame size and the average interarrival time of messages per station. The information collected for the network is the throughput and the mean delay per packet. For each station, the number of messages attempted as well as the number of messages successfully transmitted is collected in addition to the throughput and mean packet delay per station.

  19. Compression socks and functional recovery following marathon running: a randomized controlled trial.

    PubMed

    Armstrong, Stuart A; Till, Eloise S; Maloney, Stephen R; Harris, Gregory A

    2015-02-01

    Compression socks have become a popular recovery aid for distance running athletes. Although some physiological markers have been shown to be influenced by wearing these garments, scant evidence exists on their effects on functional recovery. This research aims to shed light onto whether the wearing of compression socks for 48 hours after marathon running can improve functional recovery, as measured by a timed treadmill test to exhaustion 14 days following marathon running. Athletes (n = 33, age, 38.5 ± 7.2 years) participating in the 2012 Melbourne, 2013 Canberra, or 2013 Gold Coast marathons were recruited and randomized into the compression sock or placebo group. A graded treadmill test to exhaustion was performed 2 weeks before and 2 weeks after each marathon. Time to exhaustion, average and maximum heart rates were recorded. Participants were asked to wear their socks for 48 hours immediately after completion of the marathon. The change in treadmill times (seconds) was recorded for each participant. Thirty-three participants completed the treadmill protocols. In the compression group, average treadmill run to exhaustion time 2 weeks after the marathon increased by 2.6% (52 ± 103 seconds). In the placebo group, run to exhaustion time decreased by 3.4% (-62 ± 130 seconds), P = 0.009. This shows a significant beneficial effect of compression socks on recovery compared with placebo. The wearing of below-knee compression socks for 48 hours after marathon running has been shown to improve functional recovery as measured by a graduated treadmill test to exhaustion 2 weeks after the event.

  20. Time-dependent areal mass density for disc-shaped substrates in a corona-activated flow stream at atmospheric pressure for argon/acetylene admixture

    NASA Astrophysics Data System (ADS)

    Xie, Shuzheng; Islam, Rokibul; Hussein, Bashir; Englund, Karl; Pedrow, Patrick

    2015-09-01

    In this research we use a 40-needle array energized with 60 Hz AC voltage in the range 5 to 15 kV RMS. Plasma processing takes place downstream from a grounded planar screen (the opposing electrode). The needle-to-screen gap is in the range 4 to 10 cm and its E-field generates weakly ionized plasma via streamers and back corona. Deposited material is plasma-polymerized acetylene. Substrates are potassium bromide, mica, wood, paper, and gold-covered solids. Substrate chemical species influence the efficiency with which the disc amasses plasma-polymerized material, at least until the substrate is fully covered with film. Early plasma-polymerization is accompanied by nucleation-site-dominated nodules but longer term deposition results in a film that fully covers the substrate. We will report on time-dependent areal mass density associated with run times in the range 5-60 minutes. Film thickness will be measured using instruments that include visible light microscopy, TEM, and SEM. Others in our research group are studying areal mass density for early times (1-5 minutes) when nodule growth (at nucleation sites) dominates the deposition process.

  1. HYPERDIRE-HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function FC of three variables

    NASA Astrophysics Data System (ADS)

    Bytev, Vladimir V.; Kniehl, Bernd A.

    2016-09-01

    We present a further extension of the HYPERDIRE project, which is devoted to the creation of a set of Mathematica-based program packages for manipulations with Horn-type hypergeometric functions on the basis of differential equations. Specifically, we present the implementation of the differential reduction for the Lauricella function FC of three variables. Catalogue identifier: AEPP_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPP_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 243461 No. of bytes in distributed program, including test data, etc.: 61610782 Distribution format: tar.gz Programming language: Mathematica. Computer: All computers running Mathematica. Operating system: Operating systems running Mathematica. Classification: 4.4. Does the new version supersede the previous version?: No, it significantly extends the previous version. Nature of problem: Reduction of hypergeometric function FC of three variables to a set of basis functions. Solution method: Differential reduction. Reasons for new version: The extension package allows the user to handle the Lauricella function FC of three variables. Summary of revisions: The previous version goes unchanged. Running time: Depends on the complexity of the problem.

  2. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots.

    PubMed

    Jayaram, Kaushik; Mongeau, Jean-Michel; Mohapatra, Anand; Birkmeyer, Paul; Fearing, Ronald S; Full, Robert J

    2018-02-01

    Exceptional performance is often considered to be elegant and free of 'errors' or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the 'Haldane limit'. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation. © 2018 The Authors.

  3. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots

    PubMed Central

    Mongeau, Jean-Michel; Mohapatra, Anand; Birkmeyer, Paul; Fearing, Ronald S.; Full, Robert J.

    2018-01-01

    Exceptional performance is often considered to be elegant and free of ‘errors’ or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the ‘Haldane limit’. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation. PMID:29445036

  4. Preliminary Optimization for Spring-Run Chinook Salmon Environmental Flows in Lassen Foothill Watersheds

    NASA Astrophysics Data System (ADS)

    Ta, J.; Kelsey, R.; Howard, J.; Hall, M.; Lund, J. R.; Viers, J. H.

    2014-12-01

    Stream flow controls physical and ecological processes in rivers that support freshwater ecosystems and biodiversity vital for services that humans depend on. This master variable has been impaired by human activities like dam operations, water diversions, and flood control infrastructure. Furthermore, increasing water scarcity due to rising water demands and droughts has further stressed these systems, calling for the need to find better ways to identify and allocate environmental flows. In this study, a linear optimization model was developed for environmental flows in river systems that have minimal or no regulation from dam operations, but still exhibit altered flow regimes due to surface water diversions and groundwater abstraction. Flow regime requirements for California Central Valley spring-run Chinook salmon (Oncorhynchus tshawytscha) life history were used as a test case to examine how alterations to the timing and magnitude of water diversions meet environmental flow objectives while minimizing impact to local water supply. The model was then applied to Mill Creek, a tributary of the Sacramento River, in northern California, and its altered flow regime that currently impacts adult spring-run Chinook spawning and migration. The resulting optimized water diversion schedule can be used to inform water management decisions that aim to maximize benefit for the environment while meeting local water demands.

  5. Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac.

    PubMed

    Huang, Bin; Dong, Wei-Jiang; Yang, Gao-Yi; Wang, Wei; Ji, Cong-Hua; Zhou, Fei-Ni

    2015-01-01

    The purpose of the present study was to develop a novel transdermal drug-delivery system comprising a polyamidoamine dendrimer coupled with sonophoresis to enhance the permeation of diclofenac (DF) through the skin. The novel transdermal drug-delivery system was developed by using a statistical Plackett-Burman design. Hairless male Wistar rat skin was used for the DF-permeation study. Coupling media concentration, ultrasound-application time, duty cycle, distance from probe to skin, and a third-generation polyamidoamine-dendrimer concentration were selected as independent variables, while in vitro drug release was selected as a dependent variable. Independent variables were found to be statistically significant (P<0.05). DF gel without dendrimer and ultrasound treatment to skin (passive delivery, run 13) showed 56.69 µg/cm(2) cumulative drug permeated through the skin, while the DF-dendrimer gel without sonophoresis treatment (run 14) showed 257.3 µg/cm(2) cumulative drug permeated through the skin after 24 hours. However, when the same gel was applied to sonophoresis-treated skin, drastic permeation enhancement was observed. In the case of run 3, the cumulative drug that permeated through the skin was 935.21 µg/cm(2). It was concluded that dendrimer-coupled sonophoresis-mediated transdermal drug delivery system has the potential to enhance the permeation of DF through the skin.

  6. Is there potential added value in COSMO-CLM forced by ERA reanalysis data?

    NASA Astrophysics Data System (ADS)

    Lenz, Claus-Jürgen; Früh, Barbara; Adalatpanah, Fatemeh Davary

    2017-12-01

    An application of the potential added value (PAV) concept suggested by Di Luca et al. (Clim Dyn 40:443-464, 2013a) is applied to ERA Interim driven runs of the regional climate model COSMO-CLM. They are performed for the time period 1979-2013 for the EURO-CORDEX domain at horizontal grid resolutions 0.11°, 0.22°, and 0.44° such that the higher resolved model grid fits into the next coarser grid. The concept of the potential added value is applied to annual, seasonal, and monthly means of the 2 m air temperature. Results show the highest potential added value at the run with the finest grid and generally increasing PAV with increasing resolution. The potential added value strongly depends on the season as well as the region of consideration. The gain of PAV is higher enhancing the resolution from 0.44° to 0.22° than from 0.22° to 0.11°. At grid aggregations to 0.88° and 1.76° the differences in PAV between the COSMO-CLM runs on the mentioned grid resolutions are maximal. They nearly vanish at aggregations to even coarser grids. In all cases the PAV is dominated by at least 80% by its stationary part.

  7. Do climate model predictions agree with long-term precipitation trends in the arid southwestern United States?

    NASA Astrophysics Data System (ADS)

    Elias, E.; Rango, A.; James, D.; Maxwell, C.; Anderson, J.; Abatzoglou, J. T.

    2016-12-01

    Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based upon a multimodel mean of 20 Coupled Model Intercomparison Project 5 models using a business-as-usual (Representative Concentration Pathway 8.5) trajectory, midcentury precipitation is projected to increase slightly during the monsoonal time period (July-September; 6%) and decrease slightly during the remainder of the year (October-June; -4%). We use observed long-term (1915-2015) monthly precipitation records from 16 weather stations to investigate how well measured trends corroborate climate model predictions during the monsoonal and non-monsoonal timeframe. Running trend analysis using the Mann-Kendall test for 15 to 101 year moving windows reveals that half the stations showed significant (p≤0.1), albeit small, increasing trends based on the longest term record. Trends based on shorter-term records reveal a period of significant precipitation decline at all stations representing the 1950s drought. Trends from 1930 to 2015 reveal significant annual, monsoonal and non-monsoonal increases in precipitation (Fig 1). The 1960 to 2015 time window shows no significant precipitation trends. The more recent time window (1980 to 2015) shows a slight, but not significant, increase in monsoonal precipitation and a larger, significant decline in non-monsoonal precipitation. GCM precipitation projections are consistent with more recent trends for the region. Running trends from the most recent time window (mid-1990s to 2015) at all stations show increasing monsoonal precipitation and decreasing Oct-Jun precipitation, with significant trends at 6 of 16 stations. Running trend analysis revealed that the long-term trends were not persistent throughout the series length, but depended on the period examined. Recent trends in Southwest precipitation are directionally consistent with anthropogenic climate change.

  8. Diffusion of Brownian particles in a tilted periodic potential under the influence of an external Ornstein-Uhlenbeck noise

    NASA Astrophysics Data System (ADS)

    Bai, Zhan-Wu; Zhang, Wei

    2018-01-01

    The diffusion behaviors of Brownian particles in a tilted periodic potential under the influence of an internal white noise and an external Ornstein-Uhlenbeck noise are investigated through numerical simulation. In contrast to the case when the bias force is smaller or absent, the diffusion coefficient exhibits a nonmonotonic dependence on the correlation time of the external noise when bias force is large. A mechanism different from locked-to-running transition theory is presented for the diffusion enhancement by a bias force in intermediate to large damping. In the underdamped regime and the presence of external noise, the diffusion coefficient is a monotonically decreasing function of low temperature rather than a nonmonotonic function when external noise is absent. The diffusive process undergoes four regimes when bias force approaches but is less than its critical value and noises intensities are small. These behaviors can be attributed to the locked-to-running transition of particles.

  9. Programming the social computer.

    PubMed

    Robertson, David; Giunchiglia, Fausto

    2013-03-28

    The aim of 'programming the global computer' was identified by Milner and others as one of the grand challenges of computing research. At the time this phrase was coined, it was natural to assume that this objective might be achieved primarily through extending programming and specification languages. The Internet, however, has brought with it a different style of computation that (although harnessing variants of traditional programming languages) operates in a style different to those with which we are familiar. The 'computer' on which we are running these computations is a social computer in the sense that many of the elementary functions of the computations it runs are performed by humans, and successful execution of a program often depends on properties of the human society over which the program operates. These sorts of programs are not programmed in a traditional way and may have to be understood in a way that is different from the traditional view of programming. This shift in perspective raises new challenges for the science of the Web and for computing in general.

  10. Tagging Efficiency for Nuclear Physics Measurements at MAX-lab

    NASA Astrophysics Data System (ADS)

    Miller, Nevin; Elofson, David; Lewis, Codie; O'Brien, Erin; Buggelli, Kelsey; O'Connor, Kyle; O'Rielly, Grant; Maxtagg Team

    2014-09-01

    A careful study of the tagging efficiency during measurements of near threshold pion photoproduction and high energy Compton scattering has been performed. These experiments are being done at the MAX-lab tagged photon Facility during the June 2014 run period. The determination of the final results from these experiments depends on knowledge of the incident photon flux. The tagging efficiency is a critical part of the photon flux calculation. In addition to daily measurements of the tagging efficiency, a beam monitor was used during the production data runs to monitor the relative tagging efficiency. Two trigger types were used in the daily measurements; one was a logical OR from the tagger array and the other was from the Pb-glass photon detector. Investigations were made to explore the effect of the different trigger conditions and the differences between single and multi hit TDCs on the tagging efficiency. In addition the time evolution and overall uncertainty in the tagging efficiency for each tagger channel was determined. The results will be discussed.

  11. Integral representations of solutions of the wave equation based on relativistic wavelets

    NASA Astrophysics Data System (ADS)

    Perel, Maria; Gorodnitskiy, Evgeny

    2012-09-01

    A representation of solutions of the wave equation with two spatial coordinates in terms of localized elementary ones is presented. Elementary solutions are constructed from four solutions with the help of transformations of the affine Poincaré group, i.e. with the help of translations, dilations in space and time and Lorentz transformations. The representation can be interpreted in terms of the initial-boundary value problem for the wave equation in a half-plane. It gives the solution as an integral representation of two types of solutions: propagating localized solutions running away from the boundary under different angles and packet-like surface waves running along the boundary and exponentially decreasing away from the boundary. Properties of elementary solutions are discussed. A numerical investigation of coefficients of the decomposition is carried out. An example of the decomposition of the field created by sources moving along a line with different speeds is considered, and the dependence of coefficients on speeds of sources is discussed.

  12. Design of ProjectRun21: a 14-week prospective cohort study of the influence of running experience and running pace on running-related injury in half-marathoners.

    PubMed

    Damsted, Camma; Parner, Erik Thorlund; Sørensen, Henrik; Malisoux, Laurent; Nielsen, Rasmus Oestergaard

    2017-11-06

    Participation in half-marathon has been steeply increasing during the past decade. In line, a vast number of half-marathon running schedules has surfaced. Unfortunately, the injury incidence proportion for half-marathoners has been found to exceed 30% during 1-year follow-up. The majority of running-related injuries are suggested to develop as overuse injuries, which leads to injury if the cumulative training load over one or more training sessions exceeds the runners' load capacity for adaptive tissue repair. Owing to an increase of load capacity along with adaptive running training, the runners' running experience and pace abilities can be used as estimates for load capacity. Since no evidence-based knowledge exist of how to plan appropriate half-marathon running schedules considering the level of running experience and running pace, the aim of ProjectRun21 is to investigate the association between running experience or running pace and the risk of running-related injury. Healthy runners using Global Positioning System (GPS) watch between 18 and 65 years will be invited to participate in this 14-week prospective cohort study. Runners will be allowed to self-select one of three half-marathon running schedules developed for the study. Running data will be collected objectively by GPS. Injury will be based on the consensus-based time loss definition by Yamato et al.: "Running-related (training or competition) musculoskeletal pain in the lower limbs that causes a restriction on or stoppage of running (distance, speed, duration, or training) for at least 7 days or 3 consecutive scheduled training sessions, or that requires the runner to consult a physician or other health professional". Running experience and running pace will be included as primary exposures, while the exposure to running is pre-fixed in the running schedules and thereby conditioned by design. Time-to-event models will be used for analytical purposes. ProjectRun21 will examine if particular subgroups of runners with certain running experiences and running paces seem to sustain more running-related injuries compared with other subgroups of runners. This will enable sport coaches, physiotherapists as well as the runners to evaluate their injury risk of taking up a 14-week running schedule for half-marathon.

  13. Shallow-Water Nitrox Diving, the NASA Experience

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Daniel T.

    2009-01-01

    NASA s Neutral Buoyancy Laboratory (NBL) contains a 6.2 million gallon, 12-meter deep pool where astronauts prepare for space missions involving space walks (extravehicular activity EVA). Training is conducted in a space suit (extravehicular mobility unit EMU) pressurized to 4.0 - 4.3 PSI for up to 6.5 hours while breathing a 46% NITROX mix. Since the facility opened in 1997, over 30,000 hours of suited training has been completed with no occurrence of decompression sickness (DCS) or oxygen toxicity. This study examines the last 5 years of astronaut suited training runs. All suited runs are computer monitored and data is recorded in the Environmental Control System (ECS) database. Astronaut training runs from 2004 - 2008 were reviewed and specific data including total run time, maximum depth and average depth were analyzed. One hundred twenty seven astronauts and cosmonauts completed 2,231 training runs totaling 12,880 exposure hours. Data was available for 96% of the runs. It was revealed that the suit configuration produces a maximum equivalent air depth of 7 meters, essentially eliminating the risk of DCS. Based on average run depth and time, approximately 17% of the training runs exceeded the NOAA oxygen maximum single exposure limits, with no resulting oxygen toxicity. The NBL suited training protocols are safe and time tested. Consideration should be given to reevaluate the NOAA oxygen exposure limits for PO2 levels at or below 1 ATA.

  14. Using wheel availability to shape running behavior of the rat towards improved behavioral and neurobiological outcomes.

    PubMed

    Basso, Julia C; Morrell, Joan I

    2017-10-01

    Though voluntary wheel running (VWR) has been used extensively to induce changes in both behavior and biology, little attention has been given to the way in which different variables influence VWR. This lack of understanding has led to an inability to utilize this behavior to its full potential, possibly blunting its effects on the endpoints of interest. We tested how running experience, sex, gonadal hormones, and wheel apparatus influence VWR in a range of wheel access "doses". VWR increases over several weeks, with females eventually running 1.5 times farther and faster than males. Limiting wheel access can be used as a tool to motivate subjects to run but restricts maximal running speeds attained by the rodents. Additionally, circulating gonadal hormones regulate wheel running behavior, but are not the sole basis of sex differences in running. Limitations from previous studies include the predominate use of males, emphasis on distance run, variable amounts of wheel availability, variable light-dark cycles, and possible food and/or water deprivation. We designed a comprehensive set of experiments to address these inconsistencies, providing data regarding the "microfeatures" of running, including distance run, time spent running, running rate, bouting behavior, and daily running patterns. By systematically altering wheel access, VWR behavior can be finely tuned - a feature that we hypothesize is due to its positive incentive salience. We demonstrate how to maximize VWR, which will allow investigators to optimize exercise-induced changes in their behavioral and/or biological endpoints of interest. Published by Elsevier B.V.

  15. RNA-Sequencing Reveals Unique Transcriptional Signatures of Running and Running-Independent Environmental Enrichment in the Adult Mouse Dentate Gyrus.

    PubMed

    Grégoire, Catherine-Alexandra; Tobin, Stephanie; Goldenstein, Brianna L; Samarut, Éric; Leclerc, Andréanne; Aumont, Anne; Drapeau, Pierre; Fulton, Stephanie; Fernandes, Karl J L

    2018-01-01

    Environmental enrichment (EE) is a powerful stimulus of brain plasticity and is among the most accessible treatment options for brain disease. In rodents, EE is modeled using multi-factorial environments that include running, social interactions, and/or complex surroundings. Here, we show that running and running-independent EE differentially affect the hippocampal dentate gyrus (DG), a brain region critical for learning and memory. Outbred male CD1 mice housed individually with a voluntary running disk showed improved spatial memory in the radial arm maze compared to individually- or socially-housed mice with a locked disk. We therefore used RNA sequencing to perform an unbiased interrogation of DG gene expression in mice exposed to either a voluntary running disk (RUN), a locked disk (LD), or a locked disk plus social enrichment and tunnels [i.e., a running-independent complex environment (CE)]. RNA sequencing revealed that RUN and CE mice showed distinct, non-overlapping patterns of transcriptomic changes versus the LD control. Bio-informatics uncovered that the RUN and CE environments modulate separate transcriptional networks, biological processes, cellular compartments and molecular pathways, with RUN preferentially regulating synaptic and growth-related pathways and CE altering extracellular matrix-related functions. Within the RUN group, high-distance runners also showed selective stress pathway alterations that correlated with a drastic decline in overall transcriptional changes, suggesting that excess running causes a stress-induced suppression of running's genetic effects. Our findings reveal stimulus-dependent transcriptional signatures of EE on the DG, and provide a resource for generating unbiased, data-driven hypotheses for novel mediators of EE-induced cognitive changes.

  16. Running biomechanics: shorter heels, better economy.

    PubMed

    Scholz, M N; Bobbert, M F; van Soest, A J; Clark, J R; van Heerden, J

    2008-10-01

    Better running economy (i.e. a lower rate of energy consumption at a given speed) is correlated with superior distance running performance. There is substantial variation in running economy, even among elite runners. This variation might be due to variation in the storage and reutilization of elastic energy in tendons. Using a simple musculoskeletal model, it was predicted that the amount of energy stored in a tendon during a given movement depends more critically on moment arm than on mechanical properties of the tendon, with the amount of stored energy increasing as the moment arm gets smaller. Assuming a link between elastic energy reutilization and overall metabolic cost of running, a smaller moment arm should therefore be associated with superior running economy. This prediction was confirmed experimentally in a group of 15 highly trained runners. The moment arm of the Achilles tendon was determined from standardized photographs of the ankle, using the position of anatomical landmarks. Running economy was measured as the rate of metabolic energy consumption during level treadmill running at a speed of 16 km h(-1). A strong correlation was found between the moment arm of the Achilles tendon and running economy. Smaller muscle moment arms correlated with lower rates of metabolic energy consumption (r(2)=0.75, P<0.001).

  17. Matching optical flow to motor speed in virtual reality while running on a treadmill

    PubMed Central

    Lafortuna, Claudio L.; Mugellini, Elena; Abou Khaled, Omar

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed–i.e., treadmill’s speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care. PMID:29641564

  18. Matching optical flow to motor speed in virtual reality while running on a treadmill.

    PubMed

    Caramenti, Martina; Lafortuna, Claudio L; Mugellini, Elena; Abou Khaled, Omar; Bresciani, Jean-Pierre; Dubois, Amandine

    2018-01-01

    We investigated how visual and kinaesthetic/efferent information is integrated for speed perception in running. Twelve moderately trained to trained subjects ran on a treadmill at three different speeds (8, 10, 12 km/h) in front of a moving virtual scene. They were asked to match the visual speed of the scene to their running speed-i.e., treadmill's speed. For each trial, participants indicated whether the scene was moving slower or faster than they were running. Visual speed was adjusted according to their response using a staircase until the Point of Subjective Equality (PSE) was reached, i.e., until visual and running speed were perceived as equivalent. For all three running speeds, participants systematically underestimated the visual speed relative to their actual running speed. Indeed, the speed of the visual scene had to exceed the actual running speed in order to be perceived as equivalent to the treadmill speed. The underestimation of visual speed was speed-dependent, and percentage of underestimation relative to running speed ranged from 15% at 8km/h to 31% at 12km/h. We suggest that this fact should be taken into consideration to improve the design of attractive treadmill-mediated virtual environments enhancing engagement into physical activity for healthier lifestyles and disease prevention and care.

  19. Development and testing of a new system for assessing wheel-running behaviour in rodents.

    PubMed

    Chomiak, Taylor; Block, Edward W; Brown, Andrew R; Teskey, G Campbell; Hu, Bin

    2016-05-05

    Wheel running is one of the most widely studied behaviours in laboratory rodents. As a result, improved approaches for the objective monitoring and gathering of more detailed information is increasingly becoming important for evaluating rodent wheel-running behaviour. Here our aim was to develop a new quantitative wheel-running system that can be used for most typical wheel-running experimental protocols. Here we devise a system that can provide a continuous waveform amenable to real-time integration with a high-speed video ideal for wheel-running experimental protocols. While quantification of wheel running behaviour has typically focused on the number of revolutions per unit time as an end point measure, the approach described here allows for more detailed information like wheel rotation fluidity, directionality, instantaneous velocity, and acceleration, in addition to total number of rotations, and the temporal pattern of wheel-running behaviour to be derived from a single trace. We further tested this system with a running-wheel behavioural paradigm that can be used for investigating the neuronal mechanisms of procedural learning and postural stability, and discuss other potentially useful applications. This system and its ability to evaluate multiple wheel-running parameters may become a useful tool for screening new potentially important therapeutic compounds related to many neurological conditions.

  20. Can nudging be used to quantify model sensitivities in precipitation and cloud forcing?

    NASA Astrophysics Data System (ADS)

    Lin, Guangxing; Wan, Hui; Zhang, Kai; Qian, Yun; Ghan, Steven J.

    2016-09-01

    Efficient simulation strategies are crucial for the development and evaluation of high-resolution climate models. This paper evaluates simulations with constrained meteorology for the quantification of parametric sensitivities in the Community Atmosphere Model version 5 (CAM5). Two parameters are perturbed as illustrating examples: the convection relaxation time scale (TAU), and the threshold relative humidity for the formation of low-level stratiform clouds (rhminl). Results suggest that the fidelity of the constrained simulations depends on the detailed implementation of nudging and the mechanism through which the perturbed parameter affects precipitation and cloud. The relative computational costs of nudged and free-running simulations are determined by the magnitude of internal variability in the physical quantities of interest, as well as the magnitude of the parameter perturbation. In the case of a strong perturbation in convection, temperature, and/or wind nudging with a 6 h relaxation time scale leads to nonnegligible side effects due to the distorted interactions between resolved dynamics and parameterized convection, while 1 year free-running simulations can satisfactorily capture the annual mean precipitation and cloud forcing sensitivities. In the case of a relatively weak perturbation in the large-scale condensation scheme, results from 1 year free-running simulations are strongly affected by natural noise, while nudging winds effectively reduces the noise, and reasonably reproduces the sensitivities. These results indicate that caution is needed when using nudged simulations to assess precipitation and cloud forcing sensitivities to parameter changes in general circulation models. We also demonstrate that ensembles of short simulations are useful for understanding the evolution of model sensitivities.

  1. MESAFace, a graphical interface to analyze the MESA output

    NASA Astrophysics Data System (ADS)

    Giannotti, M.; Wise, M.; Mohammed, A.

    2013-04-01

    MESA (Modules for Experiments in Stellar Astrophysics) has become very popular among astrophysicists as a powerful and reliable code to simulate stellar evolution. Analyzing the output data thoroughly may, however, present some challenges and be rather time-consuming. Here we describe MESAFace, a graphical and dynamical interface which provides an intuitive, efficient and quick way to analyze the MESA output. Catalogue identifier: AEOQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOQ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 19165 No. of bytes in distributed program, including test data, etc.: 6300592 Distribution format: tar.gz Programming language: Mathematica. Computer: Any computer capable of running Mathematica. Operating system: Any capable of running Mathematica. Tested on Linux, Mac, Windows XP, Windows 7. RAM: Recommended 2 Gigabytes or more. Supplementary material: Additional test data files are available. Classification: 1.7, 14. Nature of problem: Find a way to quickly and thoroughly analyze the output of a MESA run, including all the profiles, and have an efficient method to produce graphical representations of the data. Solution method: We created two scripts (to be run consecutively). The first one downloads all the data from a MESA run and organizes the profiles in order of age. All the files are saved as tables or arrays of tables which can then be accessed very quickly by Mathematica. The second script uses the Manipulate function to create a graphical interface which allows the user to choose what to plot from a set of menus and buttons. The information shown is updated in real time. The user can access very quickly all the data from the run under examination and visualize it with plots and tables. Unusual features: Moving the slides in certain regions may cause an error message. This happens when Mathematica is asked to read nonexistent data. The error message, however, disappears when the slides are moved back. This issue does not preclude the good functioning of the interface. Additional comments: The program uses the dynamical capabilities of Mathematica. When the program is opened, Mathematica prompts the user to “Enable Dynamics”. It is necessary to accept before proceeding. Running time: Depends on the size of the data downloaded, on where the data are stored (hard-drive or web), and on the speed of the computer or network connection. In general, downloading the data may take from a minute to several minutes. Loading directly from the web is slower. For example, downloading a 200 MB data folder (a total of 102 files) with a dual-core Intel laptop, P8700, 2 GB of RAM, at 2.53 GHz took about a minute from the hard-drive and about 23 min from the web (with a basic home wireless connection).

  2. 29 CFR 4003.4 - Extension of time.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION GENERAL RULES FOR ADMINISTRATIVE REVIEW... an extension shall stop the running of the prescribed period of time. When a request for an extension... writing, and the prescribed period of time shall resume running from the date of denial. (b) Disaster...

  3. Economic growth, combustible renewables and waste consumption, and CO₂ emissions in North Africa.

    PubMed

    Ben Jebli, Mehdi; Ben Youssef, Slim

    2015-10-01

    This paper uses panel cointegration techniques and Granger causality tests to examine the dynamic causal link between per capita real gross domestic product (GDP), combustible renewables and waste (CRW) consumption, and CO2 emissions for a panel of five North African countries during the period 1971-2008. Granger causality test results suggest short- and long-run unidirectional causalities running from CO2 emissions and CRW consumption to real GDP and a short-run unidirectional causality running from CRW to CO2 emissions. The results from panel long-run fully modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) estimates show that CO2 emissions and CRW consumption have a positive and statistically significant impact on GDP. Our policy recommendations are that these countries should use more CRW because this increases their output, reduces their energy dependency on fossil energy, and may decrease their CO2 emissions.

  4. Run-off regime of the small rivers in mountain landscapes (on an example of the mountain "Mongun-taiga

    NASA Astrophysics Data System (ADS)

    Pryahina, G.; Zelepukina, E.; Guzel, N.

    2012-04-01

    Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of the basin is formed by underground waters and melting snowfields, during the absence of rainfall period the part of one amounted to 10% of the run-off in the lower profile. We suggest that this water discharge corresponds to base flow value in the lower profile because the area of snowfields of the basin was < 0.1 km2 that year. Run-off monitoring has showed that rivers with a small glacial food are characterized by absence of diurnal balance of runoff. During rainfall the water content of river has being increased due to substantial derivation of basin and, as a result, fast flowing rain water into bed of river. The sharp decrease in water content of river during periods of rainfall absence indicates low inventory of soil and groundwater and the low rate of glacial. Thus, glaciers and character of the relief influence the formation of run-off small mountain rivers. Results of researches will be used for mathematical modeling mountain rivers run-off.

  5. Linear Regression Quantile Mapping (RQM) - A new approach to bias correction with consistent quantile trends

    NASA Astrophysics Data System (ADS)

    Passow, Christian; Donner, Reik

    2017-04-01

    Quantile mapping (QM) is an established concept that allows to correct systematic biases in multiple quantiles of the distribution of a climatic observable. It shows remarkable results in correcting biases in historical simulations through observational data and outperforms simpler correction methods which relate only to the mean or variance. Since it has been shown that bias correction of future predictions or scenario runs with basic QM can result in misleading trends in the projection, adjusted, trend preserving, versions of QM were introduced in the form of detrended quantile mapping (DQM) and quantile delta mapping (QDM) (Cannon, 2015, 2016). Still, all previous versions and applications of QM based bias correction rely on the assumption of time-independent quantiles over the investigated period, which can be misleading in the context of a changing climate. Here, we propose a novel combination of linear quantile regression (QR) with the classical QM method to introduce a consistent, time-dependent and trend preserving approach of bias correction for historical and future projections. Since QR is a regression method, it is possible to estimate quantiles in the same resolution as the given data and include trends or other dependencies. We demonstrate the performance of the new method of linear regression quantile mapping (RQM) in correcting biases of temperature and precipitation products from historical runs (1959 - 2005) of the COSMO model in climate mode (CCLM) from the Euro-CORDEX ensemble relative to gridded E-OBS data of the same spatial and temporal resolution. A thorough comparison with established bias correction methods highlights the strengths and potential weaknesses of the new RQM approach. References: A.J. Cannon, S.R. Sorbie, T.Q. Murdock: Bias Correction of GCM Precipitation by Quantile Mapping - How Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate, 28, 6038, 2015 A.J. Cannon: Multivariate Bias Correction of Climate Model Outputs - Matching Marginal Distributions and Inter-variable Dependence Structure. Journal of Climate, 29, 7045, 2016

  6. Transport of plutonium in snowmelt run-off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtymun, W.D.; Peters, R.; Maes, M.N.

    1990-07-01

    Plutonium in treated low-level radioactive effluents released into intermittent streams is bound by ion exchange or adsorption to bed sediments in the stream channel. These sediments are subject to transport with summer and spring snowmelt run-off. A study was made of the transport of plutonium during seven spring run-off events in Los Alamos and Pueblo canyons from the Laboratory boundary to Otowi on the Rio Grande. The melting of the snowpack during these years resulted in run-off that was large enough to reach the eastern edge of the Laboratory. Of these seven run-off events recorded at the Laboratory boundary, onlymore » five had sufficient flow to reach the Rio Grande. The volume of the five events that reached the river ranged from 5 {times} 10{sup 3} m{sup 3} to 104 {times} 10{sup 3} m{sup 3}. The five run-off events carried 119 {times} 10{sup 3} kg of suspended sediments and 1073 {times} 10{sup 3} kg of bed sediments, and transported 598 {mu}Ci of plutonium to the river. Of the 598 {mu}Ci of plutonium, 3% was transported in solution, 57% with suspended sediments, and 40% with bed sediments. 13 refs., 3 figs., 6 tabs.« less

  7. Physiological characteristics of elite short- and long-distance triathletes.

    PubMed

    Millet, Grégoire P; Dréano, Patrick; Bentley, David J

    2003-01-01

    The purpose of this study was to compare the physiological responses in cycling and running of elite short-distance (ShD) and long-distance (LD) triathletes. Fifteen elite male triathletes participating in the World Championships were divided into two groups (ShD and LD) and performed a laboratory trial that comprised submaximal treadmill running, maximal then submaximal ergometry cycling and then an additional submaximal run. "In situ" best ShD triathlon performances were also analysed for each athlete. ShD demonstrated a significantly faster swim time than LD whereas .VO(2max) (ml kg(-1) min(-1)), cycling economy (W l(-1) min(-1)), peak power output (.W(peak),W) and ventilatory threshold (%.VO(2max)) were all similar between ShD and LD. Moreover, there were no differences between the two groups in the change (%) in running economy from the first to the second running bout. Swimming time was correlated to .W(peak)(r=-0.76; P<0.05) and economy ( r=-0.89; P<0.01) in the ShD athletes. Also, cycling time in the triathlon was correlated to .W(peak)(r=-0.83; P<0.05) in LD. In conclusion, ShD triathletes had a faster swimming time but did not exhibit different maximal or submaximal physiological characteristics measured in cycling and running than LD triathletes.

  8. Comparisons of spawning areas and times for two runs of chinook salmon (Oncorhynchus tshawytscha) in the Kenai River, Alaska

    USGS Publications Warehouse

    Burger, C.V.; Wilmot, R.L.; Wangaard, D.B.

    1985-01-01

    From 1979 to 1982,188 chinook salmon (Oncorhynchus tshawytscha) were tagged with radio transmitters to locate spawning areas in the glacial Kenai River, southcentral Alaska. Results confirmed that an early run entered the river in May and June and spawned in tributaries, and a late run entered the river from late June through August and spawned in the main stem. Spawning peaked during August in tributaries influenced by lakes, but during July in other tributaries. Lakes may have increased fall and winter temperatures of downstream waters, enabling successful reproduction for later spawning fish within these tributaries. This hypothesis assumes that hatching and emergence can be completed in a shorter time in lake-influenced waters. The time of upstream migration and spawning (mid- to late August) of the late run is unique among chinook stocks in Cook Inlet. This behavior may have developed only because two large lakes (Kenai and Skilak) directly influence the main-stem Kenai River. If run timing is genetically controlled, and if the various components of the two runs are isolated stocks that have adapted to predictable stream temperatures, there are implications for stock transplantation programs and for any activities of man that alter stream temperatures.

  9. The virtual slice setup.

    PubMed

    Lytton, William W; Neymotin, Samuel A; Hines, Michael L

    2008-06-30

    In an effort to design a simulation environment that is more similar to that of neurophysiology, we introduce a virtual slice setup in the NEURON simulator. The virtual slice setup runs continuously and permits parameter changes, including changes to synaptic weights and time course and to intrinsic cell properties. The virtual slice setup permits shocks to be applied at chosen locations and activity to be sampled intra- or extracellularly from chosen locations. By default, a summed population display is shown during a run to indicate the level of activity and no states are saved. Simulations can run for hours of model time, therefore it is not practical to save all of the state variables. These, in any case, are primarily of interest at discrete times when experiments are being run: the simulation can be stopped momentarily at such times to save activity patterns. The virtual slice setup maintains an automated notebook showing shocks and parameter changes as well as user comments. We demonstrate how interaction with a continuously running simulation encourages experimental prototyping and can suggest additional dynamical features such as ligand wash-in and wash-out-alternatives to typical instantaneous parameter change. The virtual slice setup currently uses event-driven cells and runs at approximately 2 min/h on a laptop.

  10. Setting Time Limits on Tests

    ERIC Educational Resources Information Center

    van der Linden, Wim J.

    2011-01-01

    It is shown how the time limit on a test can be set to control the probability of a test taker running out of time before completing it. The probability is derived from the item parameters in the lognormal model for response times. Examples of curves representing the probability of running out of time on a test with given parameters as a function…

  11. The Preferred Movement Path Paradigm: Influence of Running Shoes on Joint Movement.

    PubMed

    Nigg, Benno M; Vienneau, Jordyn; Smith, Aimée C; Trudeau, Matthieu B; Mohr, Maurice; Nigg, Sandro R

    2017-08-01

    (A) To quantify differences in lower extremity joint kinematics for groups of runners subjected to different running footwear conditions, and (B) to quantify differences in lower extremity joint kinematics on an individual basis for runners subjected to different running footwear conditions. Three-dimensional ankle and knee joint kinematics were collected for 35 heel-toe runners when wearing three different running shoes and when running barefoot. Absolute mean differences in ankle and knee joint kinematics were computed between running shoe conditions. The percentage of individual runners who displayed differences below a 2°, 3°, and 5° threshold were also calculated. The results indicate that the mean kinematics of the ankle and knee joints were similar between running shoe conditions. Aside from ankle dorsiflexion and knee flexion, the percentage of runners maintaining their movement path between running shoes (i.e., less than 3°) was in the order of magnitude of about 80% to 100%. Many runners showed ankle and knee joint kinematics that differed between a conventional running shoe and barefoot by more than 3°, especially for ankle dorsiflexion and knee flexion. Many runners stay in the same movement path (the preferred movement path) when running in various different footwear conditions. The percentage of runners maintaining their preferred movement path depends on the magnitude of the change introduced by the footwear condition.

  12. Acceleration of high resolution temperature based optimization for hyperthermia treatment planning using element grouping.

    PubMed

    Kok, H P; de Greef, M; Bel, A; Crezee, J

    2009-08-01

    In regional hyperthermia, optimization is useful to obtain adequate applicator settings. A speed-up of the previously published method for high resolution temperature based optimization is proposed. Element grouping as described in literature uses selected voxel sets instead of single voxels to reduce computation time. Elements which achieve their maximum heating potential for approximately the same phase/amplitude setting are grouped. To form groups, eigenvalues and eigenvectors of precomputed temperature matrices are used. At high resolution temperature matrices are unknown and temperatures are estimated using low resolution (1 cm) computations and the high resolution (2 mm) temperature distribution computed for low resolution optimized settings using zooming. This technique can be applied to estimate an upper bound for high resolution eigenvalues. The heating potential of elements was estimated using these upper bounds. Correlations between elements were estimated with low resolution eigenvalues and eigenvectors, since high resolution eigenvectors remain unknown. Four different grouping criteria were applied. Constraints were set to the average group temperatures. Element grouping was applied for five patients and optimal settings for the AMC-8 system were determined. Without element grouping the average computation times for five and ten runs were 7.1 and 14.4 h, respectively. Strict grouping criteria were necessary to prevent an unacceptable exceeding of the normal tissue constraints (up to approximately 2 degrees C), caused by constraining average instead of maximum temperatures. When strict criteria were applied, speed-up factors of 1.8-2.1 and 2.6-3.5 were achieved for five and ten runs, respectively, depending on the grouping criteria. When many runs are performed, the speed-up factor will converge to 4.3-8.5, which is the average reduction factor of the constraints and depends on the grouping criteria. Tumor temperatures were comparable. Maximum exceeding of the constraint in a hot spot was 0.24-0.34 degree C; average maximum exceeding over all five patients was 0.09-0.21 degree C, which is acceptable. High resolution temperature based optimization using element grouping can achieve a speed-up factor of 4-8, without large deviations from the conventional method.

  13. Effect of Compression Garments on Physiological Responses After Uphill Running.

    PubMed

    Struhár, Ivan; Kumstát, Michal; Králová, Dagmar Moc

    2018-03-01

    Limited practical recommendations related to wearing compression garments for athletes can be drawn from the literature at the present time. We aimed to identify the effects of compression garments on physiological and perceptual measures of performance and recovery after uphill running with different pressure and distributions of applied compression. In a random, double blinded study, 10 trained male runners undertook three 8 km treadmill runs at a 6% elevation rate, with the intensity of 75% VO2max while wearing low, medium grade compression garments and high reverse grade compression. In all the trials, compression garments were worn during 4 hours post run. Creatine kinase, measurements of muscle soreness, ankle strength of plantar/dorsal flexors and mean performance time were then measured. The best mean performance time was observed in the medium grade compression garments with the time difference being: medium grade compression garments vs. high reverse grade compression garments. A positive trend in increasing peak torque of plantar flexion (60º·s-1, 120º·s-1) was found in the medium grade compression garments: a difference between 24 and 48 hours post run. The highest pain tolerance shift in the gastrocnemius muscle was the medium grade compression garments, 24 hour post run, with the shift being +11.37% for the lateral head and 6.63% for the medial head. In conclusion, a beneficial trend in the promotion of running performance and decreasing muscle soreness within 24 hour post exercise was apparent in medium grade compression garments.

  14. Element Verification and Comparison in Sierra/Solid Mechanics Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Yuki; Roth, William

    2016-05-01

    The goal of this project was to study the effects of element selection on the Sierra/SM solutions to five common solid mechanics problems. A total of nine element formulations were used for each problem. The models were run multiple times with varying spatial and temporal discretization in order to ensure convergence. The first four problems have been compared to analytical solutions, and all numerical results were found to be sufficiently accurate. The penetration problem was found to have a high mesh dependence in terms of element type, mesh discretization, and meshing scheme. Also, the time to solution is shown formore » each problem in order to facilitate element selection when computer resources are limited.« less

  15. Linear response approach to active Brownian particles in time-varying activity fields

    NASA Astrophysics Data System (ADS)

    Merlitz, Holger; Vuijk, Hidde D.; Brader, Joseph; Sharma, Abhinav; Sommer, Jens-Uwe

    2018-05-01

    In a theoretical and simulation study, active Brownian particles (ABPs) in three-dimensional bulk systems are exposed to time-varying sinusoidal activity waves that are running through the system. A linear response (Green-Kubo) formalism is applied to derive fully analytical expressions for the torque-free polarization profiles of non-interacting particles. The activity waves induce fluxes that strongly depend on the particle size and may be employed to de-mix mixtures of ABPs or to drive the particles into selected areas of the system. Three-dimensional Langevin dynamics simulations are carried out to verify the accuracy of the linear response formalism, which is shown to work best when the particles are small (i.e., highly Brownian) or operating at low activity levels.

  16. Python-based dynamic scheduling assistant for atmospheric measurements by Bruker instruments using OPUS.

    PubMed

    Geddes, Alexander; Robinson, John; Smale, Dan

    2018-02-01

    Atmospheric remote sensing by instruments such as spectrometers and interferometers often requires scheduling that is dependent on external factors, for example; time and solar (or lunar) zenith angle. Such instruments manufactured by Bruker often use the software package OPUS, which, while useful, is not flexible enough for automatic, repeated, atmospheric measurements of this nature. In this brief paper, we describe ASAP, a Python tool developed to run our network of Fourier transform interferometers in New Zealand and Antarctica. It allows the automated scheduling of measurements by time, lunar, or solar zenith angle while accounting for weather or other external parameters. There is a wide range of useful functions, all packaged in a simple graphical user interface; it is available on request.

  17. Towards Time Automata and Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Hutzler, G.; Klaudel, H.; Wang, D. Y.

    2004-01-01

    The design of reactive systems must comply with logical correctness (the system does what it is supposed to do) and timeliness (the system has to satisfy a set of temporal constraints) criteria. In this paper, we propose a global approach for the design of adaptive reactive systems, i.e., systems that dynamically adapt their architecture depending on the context. We use the timed automata formalism for the design of the agents' behavior. This allows evaluating beforehand the properties of the system (regarding logical correctness and timeliness), thanks to model-checking and simulation techniques. This model is enhanced with tools that we developed for the automatic generation of code, allowing to produce very quickly a running multi-agent prototype satisfying the properties of the model.

  18. Inverse dynamics of adaptive structures used as space cranes

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    As a precursor to the real-time control of fast moving adaptive structures used as space cranes, a formulation is given for the flexibility induced motion relative to the nominal motion (i.e., the motion that assumes no flexibility) and for obtaining the open loop time varying driving forces. An algorithm is proposed for the computation of the relative motion and driving forces. The governing equations are given in matrix form with explicit functional dependencies. A simulator is developed to implement the algorithm on a digital computer. In the formulations, the distributed mass of the crane is lumped by two schemes, vz., 'trapezoidal' lumping and 'Simpson's rule' lumping. The effects of the mass lumping schemes are shown by simulator runs.

  19. Optical diagnostics on ETA-II for x-ray spot size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, R A

    1999-03-22

    Improvements have been made in the performance of the ETA-II accelerator that allow a nominal 2 kA, 6 MeV beam to be focused to a spot size less that 1 mm in diameter. The improvements include reducing the energy sweep to less than +/- 0.5 & over 40 ns of the pulse using a real time energy diagnostic and improving the magnetic tune of the accelerator to reduce the emittance to 8 cm-mrad. Finally, an automated tuning system (MAESTRO) was run to minimize the time dependent centroid motion (corkscrew) by adjusting the steering dipoles over the focusing solenoids. The corkscrewmore » motion was reduced to less than +/- 0.5 mm at the output of the accelerator.« less

  20. Improved ETA-II accelerator performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, A C; Boyd, J K; Chen, Y J

    1999-03-22

    Improvements have been made in the performance of the ETA-II accelerator that allow a nominal 2 kA, 6 MeV beam to be focused to a spot size less that 1 mm in diameter. The improvements include reducing the energy sweep to less than +/- 0.5 & over 40 ns of the pulse using a real time energy diagnostic and improving the magnetic tune of the accelerator to reduce the emittance to 8 cm-mrad. Finally, an automated tuning system (MAESTRO) was run to minimize the time dependent centroid motion (corkscrew) by adjusting the steering dipoles over the focusing solenoids. The corkscrewmore » motion was reduced to less than +/- 0.5 mm at the output of the accelerator.« less

  1. 24 CFR 15.110 - What fees will HUD charge?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... duplicating machinery. The computer run time includes the cost of operating a central processing unit for that... Applies. (6) Computer run time (includes only mainframe search time not printing) The direct cost of... estimated fee is more than $250.00 or you have a history of failing to pay FOIA fees to HUD in a timely...

  2. A Simplified Shuttle Payload Thermal Analyzer /SSPTA/ program

    NASA Technical Reports Server (NTRS)

    Bartoszek, J. T.; Huckins, B.; Coyle, M.

    1979-01-01

    A simple thermal analysis program for Space Shuttle payloads has been developed to accommodate the user who requires an easily understood but dependable analytical tool. The thermal analysis program includes several thermal subprograms traditionally employed in spacecraft thermal studies, a data management system for data generated by the subprograms, and a master program to coordinate the data files and thermal subprograms. The language and logic used to run the thermal analysis program are designed for the small user. In addition, analytical and storage techniques which conserve computer time and minimize core requirements are incorporated into the program.

  3. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    PubMed Central

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  4. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    PubMed

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  5. 75 FR 37311 - Airplane and Engine Certification Requirements in Supercooled Large Drop, Mixed Phase, and Ice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... maximum time interval between any engine run-ups from idle and the minimum ambient temperature associated with that run-up interval. This limitation is necessary because we do not currently have any specific requirements for run-up procedures for engine ground operation in icing conditions. The engine run-up procedure...

  6. A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing

    PubMed Central

    Roach, Grahm C.; Edke, Mangesh

    2012-01-01

    Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628

  7. Time and Space Partitioning the EagleEye Reference Misson

    NASA Astrophysics Data System (ADS)

    Bos, Victor; Mendham, Peter; Kauppinen, Panu; Holsti, Niklas; Crespo, Alfons; Masmano, Miguel; de la Puente, Juan A.; Zamorano, Juan

    2013-08-01

    We discuss experiences gained by porting a Software Validation Facility (SVF) and a satellite Central Software (CSW) to a platform with support for Time and Space Partitioning (TSP). The SVF and CSW are part of the EagleEye Reference mission of the European Space Agency (ESA). As a reference mission, EagleEye is a perfect candidate to evaluate practical aspects of developing satellite CSW for and on TSP platforms. The specific TSP platform we used consists of a simulated LEON3 CPU controlled by the XtratuM separation micro-kernel. On top of this, we run five separate partitions. Each partition runs its own real-time operating system or Ada run-time kernel, which in turn are running the application software of the CSW. We describe issues related to partitioning; inter-partition communication; scheduling; I/O; and fault-detection, isolation, and recovery (FDIR).

  8. cellGPU: Massively parallel simulations of dynamic vertex models

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  9. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control.

    PubMed

    Daley, M A; Felix, G; Biewener, A A

    2007-02-01

    We currently know little about how animals achieve dynamic stability when running over uneven and unpredictable terrain, often characteristic of their natural environment. Here we investigate how limb and joint mechanics of an avian biped, the helmeted guinea fowl Numida meleagris, respond to an unexpected drop in terrain during running. In particular, we address how joint mechanics are coordinated to achieve whole limb dynamics. Based on muscle-tendon architecture and previous studies of steady and incline locomotion, we hypothesize a proximo-distal gradient in joint neuromechanical control. In this motor control strategy, (1) proximal muscles at the hip and knee joints are controlled primarily in a feedforward manner and exhibit load-insensitive mechanical performance, and (2) distal muscles at the ankle and tarsometatarso-phalangeal (TMP) joints are highly load-sensitive, due to intrinsic mechanical effects and rapid, higher gain proprioceptive feedback. Limb kinematics and kinetics during the unexpected perturbation reveal that limb retraction, controlled largely by the hip, remains similar to level running throughout the perturbed step, despite altered limb loading. Individual joints produce or absorb energy during both level and perturbed running steps, such that the net limb work depends on the balance of energy among the joints. The hip maintains the same mechanical role regardless of limb loading, whereas the ankle and TMP switch between spring-like or damping function depending on limb posture at ground contact. Initial knee angle sets limb posture and alters the balance of work among the joints, although the knee contributes little work itself. This distribution of joint function results in posture-dependent changes in work performance of the limb, which allow guinea fowl to rapidly produce or absorb energy in response to the perturbation. The results support the hypothesis that a proximo-distal gradient exists in limb neuromuscular performance and motor control. This control strategy allows limb cycling to remain constant, whereas limb posture, loading and energy performance are interdependent. We propose that this control strategy provides simple, rapid mechanisms for managing energy and controlling velocity when running over rough terrain.

  10. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control

    PubMed Central

    Daley, M. A.; Felix, G.; Biewener, A. A.

    2008-01-01

    Summary We currently know little about how animals achieve dynamic stability when running over uneven and unpredictable terrain, often characteristic of their natural environment. Here we investigate how limb and joint mechanics of an avian biped, the helmeted guinea fowl Numida meleagris, respond to an unexpected drop in terrain during running. In particular, we address how joint mechanics are coordinated to achieve whole limb dynamics. Based on muscle–tendon architecture and previous studies of steady and incline locomotion, we hypothesize a proximo-distal gradient in joint neuromechanical control. In this motor control strategy, (1) proximal muscles at the hip and knee joints are controlled primarily in a feedforward manner and exhibit load-insensitive mechanical performance, and (2) distal muscles at the ankle and tarsometatarso-phalangeal (TMP) joints are highly load-sensitive, due to intrinsic mechanical effects and rapid, higher gain proprioceptive feedback. Limb kinematics and kinetics during the unexpected perturbation reveal that limb retraction, controlled largely by the hip, remains similar to level running throughout the perturbed step, despite altered limb loading. Individual joints produce or absorb energy during both level and perturbed running steps, such that the net limb work depends on the balance of energy among the joints. The hip maintains the same mechanical role regardless of limb loading, whereas the ankle and TMP switch between spring-like or damping function depending on limb posture at ground contact. Initial knee angle sets limb posture and alters the balance of work among the joints, although the knee contributes little work itself. This distribution of joint function results in posture-dependent changes in work performance of the limb, which allow guinea fowl to rapidly produce or absorb energy in response to the perturbation. The results support the hypothesis that a proximo-distal gradient exists in limb neuromuscular performance and motor control. This control strategy allows limb cycling to remain constant, whereas limb posture, loading and energy performance are interdependent. We propose that this control strategy provides simple, rapid mechanisms for managing energy and controlling velocity when running over rough terrain. PMID:17234607

  11. ACCURACY OF SELF-REPORTED FOOT STRIKE PATTERN IN INTERCOLLEGIATE AND RECREATIONAL RUNNERS DURING SHOD RUNNING

    PubMed Central

    Bade, Michael B.; Aaron, Katie

    2016-01-01

    ABSTRACT Background Clinicians are interested in the foot strike pattern (FSP) in runners because of the suggested relationship between the strike pattern and lower extremity injury. Purpose The purpose of this study was to assess the ability of collegiate cross-country runners and recreational runners to self-report their foot strike pattern during running. Study Design Cross-sectional Study Methods Twenty-three collegiate cross-country and 23 recreational runners voluntarily consented to participate. Inclusion criteria included running at least 18 miles per week, experience running on a treadmill, no history of lower extremity congenital or traumatic deformity, or acute injury three months prior to the start of the study. All participants completed a pre-test survey to indicate their typical foot strike pattern during a training run (FSPSurvey). Prior to running, reflective markers were placed on the posterior midsole and the vamp of the running shoe. A high-speed camera was used to film each runner in standing and while running at his or her preferred speed on a treadmill. The angle between the vector formed by the two reflective markers and the superior surface of the treadmill was used to calculate the foot strike angle (FSA). To determine the foot strike pattern from the video data (FSPVideo), the static standing angle was subtracted from the FSA at initial contact of the shoe on the treadmill. In addition to descriptive statistics, percent agreement and Chi square analysis was used to determine distribution differences between the video analysis results and the survey. Results The results of the chi-square analysis on the distribution of the FSPSurvey in comparison to the FSPVideo were significantly different for both the XCRunners (p < .01; Chi-square = 8.77) and the REC Runners (p < .0002; Chi-square = 16.70). The cross-country and recreational runners could correctly self-identified their foot strike pattern 56.5% and 43.5% of the time, respectively. Conclusion The findings of this study suggest that the clinician cannot depend on an experienced runner to correctly self-identify their FSP. Clinicians interested in knowing the FSP of a runner should consider performing the two-dimensional video analysis described in this paper. Level of Evidence 3 PMID:27274421

  12. Wheel running during chronic nicotine exposure is protective against mecamylamine-precipitated withdrawal and up-regulates hippocampal α7 nACh receptors in mice.

    PubMed

    Keyworth, Helen; Georgiou, Polymnia; Zanos, Panos; Rueda, André Veloso; Chen, Ying; Kitchen, Ian; Camarini, Rosana; Cropley, Mark; Bailey, Alexis

    2018-06-01

    Evidence suggests that exercise decreases nicotine withdrawal symptoms in humans; however, the mechanisms mediating this effect are unclear. We investigated, in a mouse model, the effect of exercise intensity during chronic nicotine exposure on nicotine withdrawal severity, binding of α4β2*, α7 nicotinic acetylcholine (nAChR), μ-opioid (μ receptors) and D 2 dopamine receptors and on brain-derived neurotrophic factor (BDNF) and plasma corticosterone levels. Male C57Bl/6J mice treated with nicotine (minipump, 24 mg·kg -1 ·day -1 ) or saline for 14 days underwent one of three concurrent exercise regimes: 24, 2 or 0 h·day -1 voluntary wheel running. Mecamylamine-precipitated withdrawal symptoms were assessed on day 14. Quantitative autoradiography of α4β2*, α7 nAChRs, μ receptors and D 2 receptor binding was performed in brain sections of these mice. Plasma corticosterone and brain BDNF levels were also measured. Nicotine-treated mice undertaking 2 or 24 h·day -1 wheel running displayed a significant reduction in withdrawal symptom severity compared with the sedentary group. Wheel running induced a significant up-regulation of α7 nAChR binding in the CA2/3 area of the hippocampus of nicotine-treated mice. Neither exercise nor nicotine treatment affected μ or D 2 receptor binding or BDNF levels. Nicotine withdrawal increased plasma corticosterone levels and α4β2* nAChR binding, irrespective of exercise regimen. We demonstrated for the first time a profound effect of exercise on α7 nAChRs in nicotine-dependent animals, irrespective of exercise intensity. These findings shed light onto the mechanism underlining the protective effect of exercise on the development of nicotine dependence. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  13. Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2010-01-01

    We consider a spatially homogeneous and isotropic system of Dirac particles coupled to classical gravity. The dust and radiation dominated closed Friedmann-Robertson-Walker space-times are recovered as limiting cases. We find a mechanism where quantum oscillations of the Dirac wave functions can prevent the formation of the big bang or big crunch singularity. Thus before the big crunch, the collapse of the universe is stopped by quantum effects and reversed to an expansion, so that the universe opens up entering a new era of classical behavior. Numerical examples of such space-times are given, and the dependence on various parameters is discussed. Generically, one has a collapse after a finite number of cycles. By fine-tuning the parameters we construct an example of a space-time which satisfies the dominant energy condition and is time-periodic, thus running through an infinite number of contraction and expansion cycles.

  14. Physiology and Pathophysiology in Ultra-Marathon Running

    PubMed Central

    Knechtle, Beat; Nikolaidis, Pantelis T.

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10–20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35–45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra-marathons, ~50–60% of the participants experience musculoskeletal problems. The most common injuries in ultra-marathoners involve the lower limb, such as the ankle and the knee. An ultra-marathon can lead to an increase in creatine-kinase to values of 100,000–200,000 U/l depending upon the fitness level of the athlete and the length of the race. Furthermore, an ultra-marathon can lead to changes in the heart as shown by changes in cardiac biomarkers, electro- and echocardiography. Ultra-marathoners often suffer from digestive problems and gastrointestinal bleeding after an ultra-marathon is not uncommon. Liver enzymes can also considerably increase during an ultra-marathon. An ultra-marathon often leads to a temporary reduction in renal function. Ultra-marathoners often suffer from upper respiratory infections after an ultra-marathon. Considering the increased number of participants in ultra-marathons, the findings of the present review would have practical applications for a large number of sports scientists and sports medicine practitioners working in this field. PMID:29910741

  15. Physiology and Pathophysiology in Ultra-Marathon Running.

    PubMed

    Knechtle, Beat; Nikolaidis, Pantelis T

    2018-01-01

    In this overview, we summarize the findings of the literature with regards to physiology and pathophysiology of ultra-marathon running. The number of ultra-marathon races and the number of official finishers considerably increased in the last decades especially due to the increased number of female and age-group runners. A typical ultra-marathoner is male, married, well-educated, and ~45 years old. Female ultra-marathoners account for ~20% of the total number of finishers. Ultra-marathoners are older and have a larger weekly training volume, but run more slowly during training compared to marathoners. Previous experience (e.g., number of finishes in ultra-marathon races and personal best marathon time) is the most important predictor variable for a successful ultra-marathon performance followed by specific anthropometric (e.g., low body mass index, BMI, and low body fat) and training (e.g., high volume and running speed during training) characteristics. Women are slower than men, but the sex difference in performance decreased in recent years to ~10-20% depending upon the length of the ultra-marathon. The fastest ultra-marathon race times are generally achieved at the age of 35-45 years or older for both women and men, and the age of peak performance increases with increasing race distance or duration. An ultra-marathon leads to an energy deficit resulting in a reduction of both body fat and skeletal muscle mass. An ultra-marathon in combination with other risk factors, such as extreme weather conditions (either heat or cold) or the country where the race is held, can lead to exercise-associated hyponatremia. An ultra-marathon can also lead to changes in biomarkers indicating a pathological process in specific organs or organ systems such as skeletal muscles, heart, liver, kidney, immune and endocrine system. These changes are usually temporary, depending on intensity and duration of the performance, and usually normalize after the race. In longer ultra-marathons, ~50-60% of the participants experience musculoskeletal problems. The most common injuries in ultra-marathoners involve the lower limb, such as the ankle and the knee. An ultra-marathon can lead to an increase in creatine-kinase to values of 100,000-200,000 U/l depending upon the fitness level of the athlete and the length of the race. Furthermore, an ultra-marathon can lead to changes in the heart as shown by changes in cardiac biomarkers, electro- and echocardiography. Ultra-marathoners often suffer from digestive problems and gastrointestinal bleeding after an ultra-marathon is not uncommon. Liver enzymes can also considerably increase during an ultra-marathon. An ultra-marathon often leads to a temporary reduction in renal function. Ultra-marathoners often suffer from upper respiratory infections after an ultra-marathon. Considering the increased number of participants in ultra-marathons, the findings of the present review would have practical applications for a large number of sports scientists and sports medicine practitioners working in this field.

  16. Four eyes match better than two: Sharing of precise patch-use time among socially foraging domestic chicks.

    PubMed

    Xin, Qiuhong; Ogura, Yukiko; Matsushima, Toshiya

    2017-07-01

    To examine how resource competition contributes to patch-use behaviour, we examined domestic chicks foraging in an I-shaped maze equipped with two terminal feeders. In a variable interval schedule, one feeder supplied grains three times more frequently than the other, and the sides were reversed midway through the experiment. The maze was partitioned into two lanes by a transparent wall, so that chicks fictitiously competed without actual interference. Stay time at feeders was compared among three groups. The "single" group contained control chicks; the "pair" group comprised the pairs of chicks tested in the fictitious competition; "mirror" included single chicks accompanied by their respective mirror images. Both "pair" and "mirror" chicks showed facilitated running. In terms of the patch-use ratio, "pair" chicks showed precise matching at approximately 3:1 with significant mutual dependence, whereas "single" and "mirror" chicks showed a comparable under-matching. The facilitated running increased visits to feeders, but failed to predict the patch-use ratio of the subject. At the reversal, quick switching occurred similarly in all groups, but the "pair" chicks revealed a stronger memory-based matching. Perceived competition therefore contributes to precise matching and lasting memory of the better feeder, in a manner dissociated from socially facilitated food search. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Gender Systematics in Telescope Time Allocation at ESO

    NASA Astrophysics Data System (ADS)

    Patat, F.

    2016-09-01

    The results of a comprehensive statistical analysis of gender systematics in the time allocation process at ESO are presented. The sample on which the study is based includes more than 13 000 Normal and Short proposals, submitted by about 3000 principal investigators (PI) over eight years. The genders of PIs, and of the panel members of the Observing Programmes Committee (OPC), were used, together with their career level, to analyse the grade distributions and the proposal success rates. Proposals submitted by female PIs show a significantly lower probability of being allocated time. The proposal success rates (defined as number of top ranked runs over requested runs) are 16.0 ± 0.6% and 22.0 ± 0.4% for females and males, respectively. To a significant extent the disparity is related to different input distributions in terms of career level. The seniority of male PIs is significantly higher than that of female PIs, with only 34% of the female PIs being professionally employed astronomers (compared to 53% for male PIs). A small, but statistically significant, gender-dependent behaviour is measured for the OPC referees: both genders show the same systematics, but they are larger for males than females. The PI female/male fraction is very close to 30/70; although far from parity, the fraction is higher than that observed, for instance, among IAU membership.

  18. Parallel program debugging with flowback analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jongdeok.

    1989-01-01

    This thesis describes the design and implementation of an integrated debugging system for parallel programs running on shared memory multi-processors. The goal of the debugging system is to present to the programmer a graphical view of the dynamic program dependences while keeping the execution-time overhead low. The author first describes the use of flowback analysis to provide information on causal relationship between events in a programs' execution without re-executing the program for debugging. Execution time overhead is kept low by recording only a small amount of trace during a program's execution. He uses semantic analysis and a technique called incrementalmore » tracing to keep the time and space overhead low. As part of the semantic analysis, he uses a static program dependence graph structure that reduces the amount of work done at compile time and takes advantage of the dynamic information produced during execution time. The cornerstone of the incremental tracing concept is to generate a coarse trace during execution and fill incrementally, during the interactive portion of the debugging session, the gap between the information gathered in the coarse trace and the information needed to do the flowback analysis using the coarse trace. Then, he describes how to extend the flowback analysis to parallel programs. The flowback analysis can span process boundaries; i.e., the most recent modification to a shared variable might be traced to a different process than the one that contains the current reference. The static and dynamic program dependence graphs of the individual processes are tied together with synchronization and data dependence information to form complete graphs that represent the entire program.« less

  19. Improved performance of the LHCb Outer Tracker in LHC Run 2

    NASA Astrophysics Data System (ADS)

    d'Argent, P.; Dufour, L.; Grillo, L.; de Vries, J. A.; Ukleja, A.; Aaij, R.; Archilli, F.; Bachmann, S.; Berninghoff, D.; Birnkraut, A.; Blouw, J.; De Cian, M.; Ciezarek, G.; Färber, C.; Demmer, M.; Dettori, F.; Gersabeck, E.; Grabowski, J.; Hulsbergen, W. D.; Khanji, B.; Kolpin, M.; Kucharczyk, M.; Malecki, B. P.; Merk, M.; Mulder, M.; Müller, J.; Mueller, V.; Pellegrino, A.; Pikies, M.; Rachwal, B.; Schmelzer, T.; Spaan, B.; Szczekowski, M.; van Tilburg, J.; Tolk, S.; Tuning, N.; Uwer, U.; Wishahi, J.; Witek, M.

    2017-11-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5 × 6 m2 with 12 double layers of straw tubes. The performance of the detector is presented based on data of the LHC Run 2 running period from 2015 and 2016. Occupancies and operational experience for data collected in pp, pPb and PbPb collisions are described. An updated study of the ageing effects is presented showing no signs of gain deterioration or other radiation damage effects. In addition several improvements with respect to LHC Run 1 data taking are introduced. A novel real-time calibration of the time-alignment of the detector and the alignment of the single monolayers composing detector modules are presented, improving the drift-time and position resolution of the detector by 20%. Finally, a potential use of the improved resolution for the timing of charged tracks is described, showing the possibility to identify low-momentum hadrons with their time-of-flight.

  20. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution.

    PubMed

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H; Lauenborg, Britt; Nookaew, Intawat; Hansen, Rasmus Hvass; Johannesen, Helle Hjorth; Becker, Jürgen C; Pedersen, Katrine S; Dethlefsen, Christine; Nielsen, Jens; Gehl, Julie; Pedersen, Bente K; Thor Straten, Per; Hojman, Pernille

    2016-03-08

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models. Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed that NK cells were mobilized by epinephrine, and blockade of β-adrenergic signaling blunted training-dependent tumor inhibition. Moreover, epinephrine induced a selective mobilization of IL-6-sensitive NK cells, and IL-6-blocking antibodies blunted training-induced tumor suppression, intratumoral NK cell infiltration, and NK cell activation. Together, these results link exercise, epinephrine, and IL-6 to NK cell mobilization and redistribution, and ultimately to control of tumor growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Metal/silicate partitioning of Pt and the origin of the "late veneer"

    NASA Astrophysics Data System (ADS)

    Ertel, W.; Walter, M. J.; Drake, M. J.; Sylvester, P. J.

    2002-12-01

    Highly siderophile elements (HSEs) are perfect tools for investigating core forming processes in planetary bodies due to their Fe-loving (siderophile) geochemical behavior. Tremendous scientific effort was invested into this field during the past 10 years - mostly in 1 atm experiments. However, little is known about their high-pressure geochemistry and partitioning behavior between core and mantle forming phases. This knowledge is essential to distinguish between equilibrium (Magma Ocean) and non-equilibrium (heterogeneous accretion, late veneer) models for the accretion history for the early Earth. We therefore chose to investigate the partitioning behavior of Pt up to pressures of 140 kbar (14 GPa) and temperatures of 1950°C. The used melt composition - identical to melt systems used in 1 atm experiments - is the eutectic composition of Anorthite-Diopside (AnDi), a pseudo-basalt. A series of runs were performed which were internaly buffered by the piston cylinder apparatus, and were followed by duplicate experiments buffered in the AnDi-C-CO2 system. These experiments constitute reversals since they approach equilibrium from an initially higher and lower Pt solubility (8 ppm in the non-buffered runs, and essentially Pt free in the buffered runs). Experimental charges were encapsulated in Pt capsules which served as source for Pt. Experiments up to 20 kbar were performed in a Quickpress piston cylinder apparatus, while experiments at higher pressures were performed in a Walker-type (Tucson, AZ) and a Kawai-type (Misasa, Japan) multi anvil apparatus. Time series experiments were performed in piston-cylinder runs to determine minimum run durations for the achievement of equilibrium, and to guarantee high-quality partitioning data. 6 hours was found to be sufficient to obtain equilibrium. In practice, all experiments exceeded 12 hours to assure equilibrium. In a second set of runs the temperature dependence of the partitioning behavior of Pt was investigated between the melting point of the 1 atm, AnDi system and the melting point of the Pt capsule material. Over 150 piston cylinder and 12 multi anvil experiments have been performed. Pt solubility is only slightly dependent on temperature, decreasing between 1800 and 1400°C by less than an order of magnitude. In consequence, the partitioning behavior of Pt is mostly determined by its oxygen fugacity dependence, which has only been determined in 1 atm experiments. At 10 kbar, metal/silicate partition coefficients (D's) decrease by about 3 orders of magnitude. The reason for this is not understood, but might be attributed to a first order phase transition as found for, e.g., SiO2 or H2O. Above 10 kbar any increase in pressure does not lead to any further significant decrease in partition coefficients. Solubilities stay roughly constant up to 140 kbar. Abundances of moderately siderophile elements were possibly established by metal/silicate equilibrium in a magma ocean. These results for Pt suggest that the abundances of HSEs were most probably established by the accretion of a chondritic veneer following core formation, as metal/silicate partition coefficients are too high to be consistent with metal/silicate equilibrium in a magma ocean.

  2. [The vulnerability of the human atrium. I. Correlations between vulnerability, sinus node recovery time and intraatrial conduction time (author's transl)].

    PubMed

    Pop, T; Fleischmann, D; Effert, S

    1976-09-01

    Using the extrastimulus method in 100 patients, premature impulses were applied during the relative refractory period of the right atrium. Depending on the atrial response to these impulses we divided our patients in the following 3 groups: Group A: no repetitive firing (61 patients); group B: 1 to 5 additional atrial extrasystoles with a total duration of maximum 1.5 s (27 patients); group C: runs of atrial flutter or fibrilation for at least 8 s (12 patients). The statistical analysis of the following parameters: age, PA interval, absolute and corrected sinus node recovery time did not show any significant difference between the 3 groups. These results suggest that the investigated parameters are of no great importance in the genesis of the atrial vulnerability.

  3. Gait-cycle characteristics and running economy in elite Eritrean and European runners.

    PubMed

    Santos-Concejero, Jordan; Oliván, Jesús; Maté-Muñoz, José L; Muniesa, Carlos; Montil, Marta; Tucker, Ross; Lucia, Alejandro

    2015-04-01

    This study aimed to determine whether biomechanical characteristics such as ground-contact time, swing time, and stride length and frequency contribute to the exceptional running economy of East African runners. Seventeen elite long-distance runners (9 Eritrean, 8 European) performed an incremental maximal running test and 3 submaximal running bouts at 17, 19, and 21 km/h. During the tests, gas-exchange parameters were measured to determine maximal oxygen uptake (VO2max) and running economy (RE). In addition, ground-contact time, swing time, stride length, and stride frequency were measured. The European runners had higher VO2max values than the Eritrean runners (77.2 ± 5.2 vs 73.5 ± 6.0 mL · kg-1 · min-1, P = .011, effect sizes [ES] = 0.65), although Eritrean runners were more economical at 19 km/h (191.4 ± 10.4 vs 205.9 ± 13.3 mL · kg-1 · min-1, P = .026, ES = 1.21). There were no differences between groups for ground-contact time, swing time, stride length, or stride frequency at any speed. Swing time was associated with running economy at 21 km/h in the Eritrean runners (r = .71, P = .033), but no other significant association was found between RE and biomechanical variables. Finally, best 10-km performance was significantly correlated with RE (r = -.57; P = .013). Eritrean runners have superior RE compared with elite European runners. This appears to offset their inferior VO2max. However, the current data suggest that their better RE does not have a biomechanical basis. Other factors, not measured in the current study, may contribute to this RE advantage.

  4. Concurrent schedules of wheel-running reinforcement: choice between different durations of opportunity to run in rats.

    PubMed

    Belke, Terry W

    2006-02-01

    How do animals choose between opportunities to run of different durations? Are longer durations preferred over shorter durations because they permit a greater number of revolutions? Are shorter durations preferred because they engender higher rates of running? Will longer durations be chosen because running is less constrained? The present study reports on three experiments that attempted to address these questions. In the first experiment, five male Wistar rats chose between 10-sec and 50-sec opportunities to run on modified concurrent variable-interval (VI) schedules. Across conditions, the durations associated with the alternatives were reversed. Response, time, and reinforcer proportions did not vary from indifference. In a second experiment, eight female Long-Evans rats chose between opportunities to run of equal (30 sec) and unequal durations (10 sec and 50 sec) on concurrent variable-ratio (VR) schedules. As in Experiment 1, between presentations of equal duration conditions, 10-sec and 50-sec durations were reversed. Results showed that response, time, and reinforcer proportions on an alternative did not vary with reinforcer duration. In a third experiment, using concurrent VR schedules, durations were systematically varied to decrease the shorter duration toward 0 sec. As the shorter duration decreased, response, time, and reinforcer proportions shifted toward the longer duration. In summary, differences in durations of opportunities to run did not affect choice behavior in a manner consistent with the assumption that a longer reinforcer is a larger reinforcer.

  5. PEP-II Hardware Reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C. W.

    2005-04-28

    Hardware reliability takes on special importance in large accelerator facilities intended to work as factories; i.e., when they are expected to deliver design performance for extended periods of time. The PEP-II B-Factory at SLAC is such a facility. In this paper, we summarize PEP-II reliability statistics from the first four years of production running. The four running periods extended from January 12 through October 31, 2000, from February 4, 2001 through June 30, 2002, from November 15, 2002 through June 30, 2003, and from September 9, 2003 through July 31, 2004. These four periods are designated Runs 1, 2, 3,more » and 4 in the discussion and tables presented in the paper. The first four runs encompassed 30,359 hours. During this time, PEP-II was delivering luminosity to the BaBar detector 57.9 percent of the time. In addition, 5.3 percent of the time was used for scheduled dedicated machine development work, and 4.5 percent was scheduled off for maintenance, installations, or safety checks. Injection and tuning accounted for 19.9 percent. The remaining 12.4 percent was lost due to malfunctions. During this time period, a total of 9701 malfunctions were reported, but most did not interrupt the running program. The unscheduled down time, a total of 3883 hours, was attributed to 1724 of these malfunctions. Mean Time to Fail (MTTF) and Mean Time to Repair (MTTR) are presented for each of the major subsystems, and long-term availability trends are discussed.« less

  6. A Maxwell-Schrödinger solver for quantum optical few-level systems

    NASA Astrophysics Data System (ADS)

    Fleischhaker, Robert; Evers, Jörg

    2011-03-01

    The msprop program presented in this work is capable of solving the Maxwell-Schrödinger equations for one or several laser fields propagating through a medium of quantum optical few-level systems in one spatial dimension and in time. In particular, it allows to numerically treat systems in which a laser field interacts with the medium with both its electric and magnetic component at the same time. The internal dynamics of the few-level system is modeled by a quantum optical master equation which includes coherent processes due to optical transitions driven by the laser fields as well as incoherent processes due to decay and dephasing. The propagation dynamics of the laser fields is treated in slowly varying envelope approximation resulting in a first order wave equation for each laser field envelope function. The program employs an Adams predictor formula second order in time to integrate the quantum optical master equation and a Lax-Wendroff scheme second order in space and time to evolve the wave equations for the fields. The source function in the Lax-Wendroff scheme is specifically adapted to allow taking into account the simultaneous coupling of a laser field to the polarization and the magnetization of the medium. To reduce execution time, a customized data structure is implemented and explained. In three examples the features of the program are demonstrated and the treatment of a system with a phase-dependent cross coupling of the electric and magnetic field component of a laser field is shown. Program summaryProgram title: msprop Catalogue identifier: AEHR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 507 625 No. of bytes in distributed program, including test data, etc.: 10 698 552 Distribution format: tar.gz Programming language: C (C99 standard), Mathematica, bash script, gnuplot script Computer: Tested on x86 architecture Operating system: Unix/Linux environment RAM: Less than 30 MB Classification: 2.5 External routines: Standard C math library, accompanying bash script uses gnuplot, bc (basic calculator), and convert (ImageMagick) Nature of problem: We consider a system of quantum optical few-level atoms exposed to several near-resonant continuous-wave or pulsed laser fields. The complexity of the problem arises from the combination of the coherent and incoherent time evolution of the atoms and its dependence on the spatially varying fields. In systems with a coupling to the electric and magnetic field component the simultaneous treatment of both field components poses an additional challenge. Studying the system dynamics requires solving the quantum optical master equation coupled to the wave equations governing the spatio-temporal dynamics of the fields [1,2]. Solution method: We numerically integrate the equations of motion using a second order Adams predictor method for the time evolution of the atomic density matrix and a second order Lax-Wendroff scheme for iterating the fields in space [3]. For the Lax-Wendroff scheme, the source function is adapted such that a simultaneous coupling to the polarization and the magnetization of the medium can be taken into account. Restrictions: The evolution of the fields is treated in slowly varying envelope approximation [2] such that variations of the fields in space and time must be on a scale larger than the wavelength and the optical cycle. Propagation is restricted to the forward direction and to one dimension. Concerning the description of the atomic system, only a finite number of basis states can be treated and the laser-driven transitions have to be near-resonant such that the rotating-wave approximation can be applied [2]. Unusual features: The program allows the dipole interaction of both the electric and the magnetic component of a laser field to be taken into account at the same time. Thus, a system with a phase-dependent cross coupling of electric and magnetic field component can be treated (see Section 4.2 and [4]). Concerning the implementation of the data structure, it has been optimized for faster memory access. Compared to using standard memory allocation methods, shorter run times are achieved (see Section 3.2). Additional comments: Three examples are given. They each include a readme file, a Mathematica notebook to generate the C-code form of the quantum optical master equation, a parameter file, a bash script which runs the program and converts the numerical data into a movie, two gnuplot scripts, and all files that are produced by running the bash script. Running time: For the first two examples the running time is less than a minute, the third example takes about 12 minutes. On a Pentium 4 (3 GHz) system, a rough estimate can be made with a value of 1 second per million grid points and per field variable.

  7. Metabolic Power in Team Sports - Part 1: An Update.

    PubMed

    di Prampero, Pietro Enrico; Osgnach, Cristian

    2018-06-14

    Team sports are characterised by frequent episodes of accelerated/decelerated running. The corresponding energy cost can be estimated on the basis of the biomechanical equivalence between accelerated/decelerated running on flat terrain and constant speed running uphill/downhill. This approach allows one to: (i) estimate the time course of the instantaneous metabolic power requirement of any given player and (ii) infer therefrom the overall energy expenditure of any given time window of a soccer drill or match. In the original approach, walking and running were aggregated and energetically considered as running, even if in team sports several walking periods are interspersed among running bouts. However, since the transition speed between walking and running is known for any given incline of the terrain, we describe here an approach to identify walking episodes, thus utilising the corresponding energy cost which is smaller than in running. In addition, the new algorithm also takes into account the energy expenditure against the air resistance, for both walking and running. The new approach yields overall energy expenditure values, for a whole match,≈14% smaller than the original algorithm; moreover, it shows that the energy expenditure against the air resistance is≈2% of the total. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Runner's Knee

    MedlinePlus

    ... you want to run over a period of time. If you're used to only running a mile or so, don't try to go out and suddenly run 5 miles. Work up to it with a series of intermediate steps. If you've had runner's ...

  9. Coordinating the 2009 RHIC Run

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brookhaven Lab - Mei Bai

    2009-04-13

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  10. Coordinating the 2009 RHIC Run

    ScienceCinema

    Brookhaven Lab - Mei Bai

    2017-12-09

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  11. Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding.

    PubMed

    Couvillon, Margaret J; Riddell Pearce, Fiona C; Harris-Jones, Elisabeth L; Kuepfer, Amanda M; Mackenzie-Smith, Samantha J; Rozario, Laura A; Schürch, Roger; Ratnieks, Francis L W

    2012-05-15

    Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances.

  12. Intra-dance variation among waggle runs and the design of efficient protocols for honey bee dance decoding

    PubMed Central

    Couvillon, Margaret J.; Riddell Pearce, Fiona C.; Harris-Jones, Elisabeth L.; Kuepfer, Amanda M.; Mackenzie-Smith, Samantha J.; Rozario, Laura A.; Schürch, Roger; Ratnieks, Francis L. W.

    2012-01-01

    Summary Noise is universal in information transfer. In animal communication, this presents a challenge not only for intended signal receivers, but also to biologists studying the system. In honey bees, a forager communicates to nestmates the location of an important resource via the waggle dance. This vibrational signal is composed of repeating units (waggle runs) that are then averaged by nestmates to derive a single vector. Manual dance decoding is a powerful tool for studying bee foraging ecology, although the process is time-consuming: a forager may repeat the waggle run 1- >100 times within a dance. It is impractical to decode all of these to obtain the vector; however, intra-dance waggle runs vary, so it is important to decode enough to obtain a good average. Here we examine the variation among waggle runs made by foraging bees to devise a method of dance decoding. The first and last waggle runs within a dance are significantly more variable than the middle run. There was no trend in variation for the middle waggle runs. We recommend that any four consecutive waggle runs, not including the first and last runs, may be decoded, and we show that this methodology is suitable by demonstrating the goodness-of-fit between the decoded vectors from our subsamples with the vectors from the entire dances. PMID:23213438

  13. Running over rough terrain reveals limb control for intrinsic stability.

    PubMed

    Daley, Monica A; Biewener, Andrew A

    2006-10-17

    Legged animals routinely negotiate rough, unpredictable terrain with agility and stability that outmatches any human-built machine. Yet, we know surprisingly little about how animals accomplish this. Current knowledge is largely limited to studies of steady movement. These studies have revealed fundamental mechanisms used by terrestrial animals for steady locomotion. However, it is unclear whether these models provide an appropriate framework for the neuromuscular and mechanical strategies used to achieve dynamic stability over rough terrain. Perturbation experiments shed light on this issue, revealing the interplay between mechanics and neuromuscular control. We measured limb mechanics of helmeted guinea fowl (Numida meleagris) running over an unexpected drop in terrain, comparing their response to predictions of the mass-spring running model. Adjustment of limb contact angle explains 80% of the variation in stance-phase limb loading following the perturbation. Surprisingly, although limb stiffness varies dramatically, it does not influence the response. This result agrees with a mass-spring model, although it differs from previous findings on humans running over surfaces of varying compliance. However, guinea fowl sometimes deviate from mass-spring dynamics through posture-dependent work performance of the limb, leading to substantial energy absorption following the perturbation. This posture-dependent actuation allows the animal to absorb energy and maintain desired velocity on a sudden substrate drop. Thus, posture-dependent work performance of the limb provides inherent velocity control over rough terrain. These findings highlight how simple mechanical models extend to unsteady conditions, providing fundamental insights into neuromuscular control of movement and the design of dynamically stable legged robots and prosthetic devices.

  14. Effects of surface removal on rolling-element fatigue

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1987-01-01

    The Lundberg-Palmgren equation was modified to show the effect on rolling-element fatigue life of removing by grinding a portion of the stressed volume of the raceways of a rolling-element bearing. Results of this analysis show that depending on the amount of material removed, and depending on the initial running time of the bearing when material removal occurs, the 10-percent life of the reground bearings ranges from 74 to 100 percent of the 10-percent life of a brand new bearing. Three bearing types were selected for testing. A total of 250 bearings were reground. Of this matter, 30 bearings from each type were endurance tested to 1600 hr. No bearing failure occurred related to material removal. Two bearing failures occurred due to defective rolling elements and were typical of those which may occur in new bearings.

  15. Study of Rubber Composites with Positron Doppler Broadening Spectroscopy: Consideration of Counting Rate

    NASA Astrophysics Data System (ADS)

    Yang, Chun; Quarles, C. A.

    2007-10-01

    We have used positron Doppler Broadening Spectroscopy (DBS) to investigate the uniformity of rubber-carbon black composite samples. The amount of carbon black added to a rubber sample is characterized by phr, the number of grams of carbon black per hundred grams of rubber. Typical concentrations in rubber tires are 50 phr. It has been shown that the S parameter measured by DBS depends on the phr of the sample, so the variation in carbon black concentration can be easily measured to 0.5 phr. In doing the experiments we observed a dependence of the S parameter on small variation in the counting rate or deadtime. By carefully calibrating this deadtime correction we can significantly reduce the experimental run time and thus make faster determination of the uniformity of extended samples.

  16. Instrument front-ends at Fermilab during Run II

    NASA Astrophysics Data System (ADS)

    Meyer, T.; Slimmer, D.; Voy, D.

    2011-11-01

    The optimization of an accelerator relies on the ability to monitor the behavior of the beam in an intelligent and timely fashion. The use of processor-driven front-ends allowed for the deployment of smart systems in the field for improved data collection and analysis during Run II. This paper describes the implementation of the two main systems used: National Instruments LabVIEW running on PCs, and WindRiver's VxWorks real-time operating system running in a VME crate processor. Work supported by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.

  17. Resting sympatho-vagal balance is related to 10 km running performance in master endurance athletes.

    PubMed

    Cataldo, Angelo; Bianco, Antonino; Paoli, Antonio; Cerasola, Dario; Alagna, Saverio; Messina, Giuseppe; Zangla, Daniele; Traina, Marcello

    2018-01-12

    Relationships between heart rate recovery after exercise (HRR, baseline heart rate variability measures (HRV), and time to perform a 10Km running trial (t10Km) were evaluated in "master" athletes of endurance to assess whether the measured indexes may be useful for monitoring the training status of the athletes. Ten "master" athletes of endurance, aged 40-60 years, were recruited. After baseline measures of HRV, the athletes performed a graded maximal test on treadmill and HRR was measured at 1 and 2 minutes from recovery. Subsequently they performed a 10Km running trial and t10Km was related to HRV and HRR indexes. The time to perform a 10Km running trial was significantly correlated with baseline HRV indexes. No correlation was found between t10Km and HRR. Baseline HRV measures, but not HRR, were significantly correlated with the time of performance on 10km running in "master" athletes. The enhanced parasympathetic function at rest appears to be a condition to a better performance on 10km running. HRV can be simple and useful measurements for monitoring the training stratus of athletes and their physical condition in proximity of a competition.

  18. Using Integration and Autonomy to Teach an Elementary Running Unit

    ERIC Educational Resources Information Center

    Sluder, J. Brandon; Howard-Shaughnessy, Candice

    2015-01-01

    Cardiovascular fitness is an important aspect of overall fitness, health, and wellness, and running can be an excellent lifetime physical activity. One of the most simple and effective means of exercise, running raises heart rate in a short amount of time and can be done with little to no cost for equipment. There are many benefits to running,…

  19. 40 CFR Table 2 to Subpart Dddd of... - Model Rule-Emission Limitations

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... this part) Carbon monoxide 157 parts per million by dry volume 3-run average (1 hour minimum sample... per million by dry volume 3-run average (1 hour minimum sample time per run) Performance test (Method... appendix A of this part) Oxides of nitrogen 388 parts per million by dry volume 3-run average (1 hour...

  20. Modeling low-temperature serpentinization reactions to estimate molecular hydrogen production with implications for potential microbial life on Saturn's moon Enceladus.

    NASA Astrophysics Data System (ADS)

    Zwicker, Jennifer; Smrzka, Daniel; Taubner, Ruth-Sophie; Bach, Wolfgang; Rittmann, Simon; Schleper, Christa; Peckmann, Jörn

    2017-04-01

    Serpentinization of ultramafic rocks attracts much interest in research on the origin of life on Earth and the search for life on extraterrestrial bodies including icy moons like Enceladus. Serpentinization on Earth occurs in peridotite-hosted systems at slow-spreading mid-ocean ridges, and produces large amounts of molecular hydrogen and methane. These reduced compounds can be utilized by diverse chemosynthetic microbial consortia as a metabolic energy source. Although many hydrothermal vents emit hot and acidic fluids today, it is more likely that life originated in the Archean at sites producing much cooler and more alkaline fluids that allowed for the synthesis and stability of essential organic molecules necessary for life. Therefore, a detailed understanding of water-rock interaction processes during low-temperature serpentinization is of crucial importance in assessing the life-sustaining potential of these environments. In the course of serpentinization, the metasomatic hydration of olivine and pyroxene produces various minerals including serpentine minerals, magnetite, brucite, and carbonates. Hydrogen production only occurs if ferrous iron within iron-bearing minerals is oxidized and incorporated as ferric iron into magnetite. The PHREEQC code was used to model the pH- and temperature-dependent dissolution of olivine and pyroxene to form serpentine, magnetite and hydrogen under pressure and temperature conditions that may exist on Saturn's icy moon Enceladus. Various model setups at 25 and 50°C were run to assess the influence of environmental parameters on hydrogen production. The results reveal that hydrogen production rates depend on the composition of the initial mineral assemblage and temperature. The current assumption is that there is a gaseous phase between Enceladus' ice sheet and subsurface ocean. To test various scenarios, model runs were conducted with and without the presence of a gas phase. The model results show that hydrogen production is further dependent on carbon dioxide partial pressure within the gas phase. Moreover, no other gases apart from hydrogen, such as methane, were produced in any of the model runs. The combined results offer a constraint on hydrogen production over time, and may aid habitability assessments of extraterrestrial bodies where serpentinization could occur.

Top