Science.gov

Sample records for running wheel exercise

  1. Improved infrared-sensing running wheel systems with an effective exercise activity indicator.

    PubMed

    Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung

    2015-01-01

    This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.

  2. Improved Infrared-Sensing Running Wheel Systems with an Effective Exercise Activity Indicator

    PubMed Central

    Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung

    2015-01-01

    This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat’s real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments. PMID:25875841

  3. Wheel running exercise attenuates vulnerability to self-administer nicotine in rats

    PubMed Central

    Sanchez, Victoria; Lycas, Matthew D; Lynch, Wendy J; Brunzell, Darlene H

    2015-01-01

    Background Preventing or postponing tobacco use initiation could greatly reduce the number of tobacco-related deaths. While evidence suggests that exercise is a promising treatment for tobacco addiction, it is not clear whether exercise could prevent initial vulnerability to tobacco use. Thus, using an animal model, we examined whether exercise attenuates vulnerability to the use and reinforcing effects of nicotine, the primary addictive chemical in tobacco. Methods Initial vulnerability was assessed using an acquisition procedure wherein exercising (unlocked running wheel, n = 10) and sedentary (locked or no wheel, n = 12) male adolescent rats had access to nicotine infusions (0.01-mg/kg) during daily 21.5-hr sessions beginning on postnatal day 30. Exercise/sedentary sessions (2-hr/day) were conducted prior to each of the acquisition sessions. The effects of exercise on nicotine’s reinforcing effects were further assessed in separate groups of exercising (unlocked wheel, n = 7) and sedentary (no wheel, n = 5) rats responding for nicotine under a progressive-ratio schedule with exercise/sedentary sessions (2-hr/day) conducted before the daily progressive-ratio sessions. Results While high rates of acquisition of nicotine self-administration were observed among both groups of sedentary controls, acquisition was robustly attenuated in the exercise group with only 20% of exercising rats meeting the acquisition criterion within the 16-day testing period as compared to 67% of the sedentary controls. Exercise also decreased progressive-ratio responding for nicotine as compared to baseline and to sedentary controls. Conclusions Exercise may effectively prevent the initiation of nicotine use in adolescents by reducing the reinforcing effects of nicotine. PMID:26433561

  4. Voluntary Wheel Running in Mice

    PubMed Central

    Goh, Jorming; Ladiges, Warren

    2015-01-01

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. The basic protocol consists of allowing mice to run freely on the open surface of a slanted plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured to a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running. PMID:26629772

  5. Wheel running in the wild.

    PubMed

    Meijer, Johanna H; Robbers, Yuri

    2014-07-07

    The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

  6. Metabolic adaptations of skeletal muscle to voluntary wheel running exercise in hypertensive heart failure rats.

    PubMed

    Schultz, R L; Kullman, E L; Waters, R P; Huang, H; Kirwan, J P; Gerdes, A M; Swallow, J G

    2013-01-01

    The Spontaneously Hypertensive Heart Failure (SHHF) rat mimics the human progression of hypertension from hypertrophy to heart failure. However, it is unknown whether SHHF animals can exercise at sufficient levels to observe beneficial biochemical adaptations in skeletal muscle. Thirty-seven female SHHF and Wistar-Furth (WF) rats were randomized to sedentary (SHHFsed and WFsed) and exercise groups (SHHFex and WFex). The exercise groups had access to running wheels from 6-22 months of age. Hindlimb muscles were obtained for metabolic measures that included mitochondrial enzyme function and expression, and glycogen utilization. The SHHFex rats ran a greater distance and duration as compared to the WFex rats (P<0.05), but the WFex rats ran at a faster speed (P<0.05). Skeletal muscle citrate synthase and beta-hydroxyacyl-CoA dehydrogenase enzyme activity was not altered in the SHHFex group, but was increased (P<0.05) in the WFex animals. Citrate synthase protein and gene expression were unchanged in SHHFex animals, but were increased in WFex rats (P<0.05). In the WFex animals muscle glycogen was significantly depleted after exercise (P<0.05), but not in the SHHFex group. We conclude that despite robust amounts of aerobic activity, voluntary wheel running exercise was not sufficiently intense to improve the oxidative capacity of skeletal muscle in adult SHHF animals, indicating an inability to compensate for declining heart function by improving peripheral oxidative adaptations in the skeletal muscle.

  7. Wheel-running exercise alters rat diaphragm action potentials and their regulation by K+ channels.

    PubMed

    Van Lunteren, Erik; Moyer, Michelle

    2003-08-01

    Endurance exercise modifies regulatory systems that control skeletal muscle Na+ and K+ fluxes, in particular Na+-K+-ATPase-mediated transport of these ions. Na+ and K+ ion channels also play important roles in the regulation of ionic movements, specifically mediating Na+ influx and K+ efflux that occur during contractions resulting from action potential depolarization and repolarization. Whether exercise alters skeletal muscle electrophysiological properties controlled by these ion channels is unclear. The present study tested the hypothesis that endurance exercise modifies diaphragm action potential properties. Exercised rats spent 8 wk with free access to running wheels, and they were compared with sedentary rats living in conventional rodent housing. Diaphragm muscle was subsequently removed under anesthesia and studied in vitro. Resting membrane potential was not affected by endurance exercise. Muscle from exercised rats had a slower rate of action potential repolarization than that of sedentary animals (P = 0.0098), whereas rate of depolarization was similar in the two groups. The K+ channel blocker 3,4-diaminopyridine slowed action potential repolarization and increased action potential area of both exercised and sedentary muscle. However, these effects were significantly smaller in diaphragm from exercised than sedentary rats. These data indicate that voluntary running slows diaphragm action potential repolarization, most likely by modulating K+ channel number or function.

  8. Running Wheel for Earthworms

    PubMed Central

    Wilson, W. Jeffrey; Johnson, Brandon A.

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  9. Increased Skeletal Muscle GLUT4 Expression in Obese Mice After Voluntary Wheel Running Exercise Is Posttranscriptional.

    PubMed

    Gurley, Jami M; Griesel, Beth A; Olson, Ann Louise

    2016-10-01

    Exercise promotes glucose clearance by increasing skeletal muscle GLUT4-mediated glucose uptake. Importantly, exercise upregulates muscle GLUT4 expression in an insulin-independent manner under conditions of insulin resistance, such as with type 2 diabetes. However, the insulin-independent mechanism responsible for rescued muscle GLUT4 expression is poorly understood. We used voluntary wheel running (VWR) in mice to test the prevailing hypothesis that insulin-independent upregulation of skeletal muscle GLUT4 protein expression with exercise is through increased Glut4 transcription. We demonstrate that 4 weeks of VWR exercise in obese mice rescued high-fat diet-induced decreased muscle GLUT4 protein and improved both fasting plasma insulin and hepatic triacylglyceride levels, but did not rescue muscle Glut4 mRNA. Persistent reduction in Glut4 mRNA suggests that a posttranscriptional mechanism regulated insulin-independent muscle GLUT4 protein expression in response to exercise in lean and obese mice. Reduction of GLUT4 protein in sedentary animals upon treatment with rapamycin revealed mTORC1-dependent GLUT4 regulation. However, no difference in GLUT4 protein expression was observed in VWR-exercised mice treated with either rapamycin or Torin 1, indicating that exercise-dependent regulation on GLUT4 was mTOR independent. The findings provide new insight into the mechanisms responsible for exercise-dependent regulation of GLUT4 in muscle.

  10. Inhibitory effects of voluntary running wheel exercise on UVB-induced skin carcinogenesis in SKH-1 mice.

    PubMed

    Michna, Laura; Wagner, George C; Lou, You-Rong; Xie, Jian-Guo; Peng, Qing-Yun; Lin, Yong; Carlson, Kirsten; Shih, Weichung Joe; Conney, Allan H; Lu, Yao-Ping

    2006-10-01

    Earlier studies showed that oral administration of green tea or caffeine to SKH-1 mice inhibited ultraviolet B light (UVB)-induced skin carcinogenesis, decreased dermal fat thickness and increased locomotor activity. In the present study, the effects of voluntary running wheel exercise on thickness of dermal fat as well as on UVB-induced tumorigenesis in SKH-1 mice were studied in UVB-initiated high-risk and UVB-induced complete carcinogenesis models. In the high-risk model, animals were exposed to UVB (30 mJ/cm(2)) 3 times/week for 16 weeks. For 14 weeks subsequent to UVB exposure, half of the animals had access to running wheels in their cages whereas the other half did not. In the complete carcinogenesis model, animals were exposed to UVB (30 mJ/cm(2)) 2 times/week for 33 weeks. From the beginning, half of the animals had access to running wheels whereas the other half did not. At the conclusion of each study, body weights were not different between groups, although animals with running wheels consumed significantly more food and water than animals without running wheels. In addition, animals with running wheels had decreases in parametrial fat pad weight and thickness of the dermal fat layer. In both UVB-initiated high-risk and complete carcinogenesis models, voluntary running wheel exercise delayed the appearance of tumors, decreased the number of tumors per mouse and decreased tumor volume per mouse. Histopathology studies revealed that running wheel exercise decreased the number of non-malignant tumors (primarily keratoacanthomas) by 34% and total tumors per mouse by 32% in both models, and running wheel exercise decreased the formation of squamous cell carcinomas in the UVB-induced complete carcinogenesis model by 27%. In addition, the size of keratoacanthomas and squamous cell carcinomas were decreased substantially in both models. The effects described here indicate that voluntary running wheel exercise inhibits UVB-induced skin tumorigenesis and may also

  11. Exercise training effects on hypoxic and hypercapnic ventilatory responses in mice selected for increased voluntary wheel running.

    PubMed

    Kelly, Scott A; Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Rhodes, Justin S; Mitchell, Gordon S; Garland, Theodore

    2014-02-01

    What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits

  12. Circadian rhythm disruption by a novel running wheel: roles of exercise and arousal in blockade of the luteinizing hormone surge.

    PubMed

    Duncan, Marilyn J; Franklin, Kathleen M; Peng, Xiaoli; Yun, Christopher; Legan, Sandra J

    2014-05-28

    Exposure of proestrous Syrian hamsters to a new room, cage, and novel running wheel blocks the luteinizing hormone (LH) surge until the next day in ~75% of hamsters [1]. The studies described here tested the hypotheses that 1) exercise and/or 2) orexinergic neurotransmission mediate novel wheel blockade of the LH surge and circadian phase advances. Female hamsters were exposed to a 14L:10D photoperiod and activity rhythms were monitored with infra-red detectors. In Expt. 1, to test the effect of exercise, hamsters received jugular cannulae and on the next day, proestrus (Day 1), shortly before zeitgeber time 5 (ZT 5, 7h before lights-off) the hamsters were transported to the laboratory. After obtaining a blood sample at ZT 5, the hamsters were transferred to a new cage with a novel wheel that was either freely rotating (unlocked), or locked until ZT 9, and exposed to constant darkness (DD). Blood samples were collected hourly for 2days from ZT 5-11 under red light for determination of plasma LH levels by radioimmunoassay. Running rhythms were monitored continuously for the next 10-14days. The locked wheels were as effective as unlocked wheels in blocking LH surges (no Day 1 LH surge in 6/9 versus 8/8 hamsters, P>0.05) and phase advances in the activity rhythms did not differ between the groups (P=0.28), suggesting that intense exercise is not essential for novel wheel blockade and phase advance of the proestrous LH surge. Expt. 2 tested whether orexin neurotransmission is essential for these effects. Hamsters were treated the same as those in Expt. 1 except that they were injected (i.p.) at ZT 4.5 and 5 with either the orexin 1 receptor antagonist SB334867 (15mg/kg per injection) or vehicle (25% DMSO in 2-hydroxypropyl-beta-cyclodextrin (HCD)). SB-334867 inhibited novel wheel blockade of the LH surge (surges blocked in 2/6 SB334867-injected animals versus 16/18 vehicle-injected animals, P<0.02) and also inhibited wheel running and circadian phase shifts, indicating

  13. Effects of chemically induced ovarian failure on voluntary wheel-running exercise and cardiac adaptation in mice.

    PubMed

    Perez, Jessica N; Chen, Hao; Regan, Jessica A; Emert, Ashlie; Constantopoulos, Eleni; Lynn, Melissa; Konhilas, John P

    2013-06-01

    The role of exercise in decreasing the risk of cardiovascular disease in postmenopausal women has not been studied sufficiently. Accordingly, we investigated the effect of voluntary wheel-running and forced treadmill exercise on cardiac adaptation in mice treated with 4-vinylcyclohexine diepoxide (VCD), which selectively accelerates the loss of primary and primordial follicles and results in a state that closely mimics human menopause. Two-month-old female C57BL/6 mice injected with VCD (160 mg/kg) for 20 consecutive days underwent ovarian failure by 60 to 90 d after injection. Responses to voluntary wheel running and treadmill exercise did not differ between VCD- and vehicle-treated 7-mo-old C57BL/6 or outbred B6C3F1 mice. Moreover, adaptive cardiac hypertrophy, hypertrophic marker expression, and skeletal muscle characteristics after voluntary cage-wheel exercise did not differ between VCD- and vehicle-treated mice. Because 5' AMP-activated protein kinase (AMPK) is a key component for the maintenance of cardiac energy balance during exercise, we determined the effect of exercise and VCD-induced ovarian failure on the AMPK signaling axis in the heart. According to Western blotting, VCD treatment followed by voluntary cage-wheel exercise differently affected the upstream AMPK regulatory components AMPKα1 and AMPKα2. In addition, net downstream AMPK signaling was reduced after VCD treatment and exercise. Our data suggest that VCD did not affect exercise-induced cardiac hypertrophy but did alter cellular cardiac adaptation in a mouse model of menopause.

  14. The protective effects of free wheel-running against cocaine psychomotor sensitization persist after exercise cessation in C57BL/6J mice.

    PubMed

    Lespine, L-F; Tirelli, E

    2015-12-03

    Previous literature suggests that free access to a running wheel can attenuate the behavioral responsiveness to addictive drugs in rodents. In a few studies, wheel-running cessation accentuated drug responsiveness. Here, we tested whether free wheel-running cessation is followed by (1) an accentuation or (2) an attenuation of cocaine psychomotor sensitization, knowing that no cessation of (continuous) wheel-running is associated with an attenuation of cocaine responsiveness. Male C57BL/6J mice, aged 35 days, were housed singly either with (exercising mice) or without (non-exercising mice) a running wheel. At the end of a period of 36 days, half of the exercising mice were deprived of their wheel whereas the other half of exercising mice kept their wheel until the end of experimentation (which lasted 85 days). The non-exercising mice were housed without wheel throughout experimentation. Testing took place 3 days after exercise cessation. After 2 once-daily drug-free test sessions, mice were tested for initiation of psychomotor sensitization over 13 once-daily injections of 8 mg/kg cocaine. Post-sensitization conditioned activation (saline challenge) and long-term expression of sensitization were assessed 2 or 30 days after the last sensitizing injection (same treatments as for initiation of sensitization), respectively. Exercising mice and mice undergoing wheel-running cessation exhibited comparable degrees of attenuation of all cocaine effects in comparison with the continuously non-exercising mice, which showed the greatest effects. Thus, the efficaciousness of wheel-running at attenuating cocaine sensitization not only resisted to exercise cessation but was also unambiguously persistent (an important effect rarely reported in previous literature).

  15. Reduced wheel running and blunted effects of voluntary exercise in LPA1-null mice: The importance of assessing the amount of running in transgenic mice studies

    PubMed Central

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Blanco, Eduardo; Pedraza, Carmen; Chun, Jerold; de Fonseca, Fernando Rodríguez; Estivill-Torrús, Guillermo; Santín, Luis J.

    2014-01-01

    This work was aimed to assess whether voluntary exercise rescued behavioral and hippocampal alterations in mice lacking the lysophosphatidic acid LPA1 receptor (LPA1-null mice), studying the potential relationship between the amount of exercise performed and its effects. Normal and LPA1-null mice underwent 23 days of free wheel running and were tested for open-field behavior and adult hippocampal neurogenesis (cell proliferation, immature neurons, cell survival). Running decreased anxiety-like behavior in both genotypes but increased exploration only in the normal mice. While running affected all neurogenesis-related measures in normal mice (especially in the suprapyramidal blade of the dentate gyrus), only a moderate increase in cell survival was found in the mutants. Importantly, the LPA1-nulls showed notably reduced running. Analysis suggested that defective running in the LPA1-null mice could contribute to explain the scarce benefit of the voluntary exercise treatment. On the other hand, a literature review revealed that voluntary exercise is frequently used to modulate behavior and the hippocampus in transgenic mice, but half of the studies did not assess the quantity of running, overlooking any potential running impairments. This study adds evidence to the relevance of the quantity of exercise performed, emphasizing the importance of its assessment in transgenic mice research. PMID:24055600

  16. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes.

    PubMed

    Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas

    2017-03-01

    The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA

  17. Different effects of running wheel exercise and skilled reaching training on corticofugal tract plasticity in hypertensive rats with cortical infarctions.

    PubMed

    Zhang, ChanJuan; Zou, Yan; Li, Kui; Li, Chao; Jiang, YingPing; Sun, Ju; Sun, Ruifang; Wen, HongMei

    2017-09-04

    The approaches that facilitate white matter plasticity may prompt functional recovery after a stroke. The effects of different exercise methods on motor recovery in stroke rats have been investigated. However, it is not clear whether their effects on axonal plasticity different. The aim of this study was to compare the effects of the forced running wheel exercise (RWE) and skilled reaching training (SRT) on axonal plasticity and motor recovery. Cortical infarctions were generated in stroke-prone renovascular hypertensive rats. The rats were randomly divided into the following three groups: the control (Con) group, the RWE group, and the SRT group. A sham group was also included. The mNSS and forelimb grip strength tests were performed on days 3, 7, 14, 21, 28, 35, and 42 after ischemia. The anterograde tract tracer biotinylated dextran amine (BDA) was injected into the rats to trace the axonal plasticity of the contralesional corticofugal tracts. Compared with the Con group, the mNSS scores in the SRT and RWE groups decreased on day 28 (P<0.05) and on days 35 and 42 (P<0.01). The grip strength in the SRT group increased relative to that in the RWE group at 42day post-ischemia (P<0.01). Both the RWE and SRT groups exhibited enhanced plasticity of the contralesional corticofugal tract axons at the level of the red nucleus (P<0.01) and the cervical enlargement (P<0.01). More contralateral corticorubral tract remodeling was observed at the red nucleus level in the SRT group than in the RWE group (P<0.001). Taken together, these results suggest that SRT may enhance axon plasticity in the corticorubral tract more effectively than the forced RWE and is associated with better motor recovery after cerebral ischemia. Copyright © 2017. Published by Elsevier B.V.

  18. Lifelong wheel running exercise and mild caloric restriction attenuate nuclear EndoG in the aging plantaris muscle.

    PubMed

    Kim, Jong-Hee; Lee, Yang; Kwak, Hyo-Bum; Lawler, John M

    2015-09-01

    Apoptosis plays an important role in atrophy and sarcopenia in skeletal muscle. Recent evidence suggests that insufficient heat shock proteins (HSPs) may contribute to apoptosis and muscle wasting. In addition, long-term caloric restriction (CR) and lifelong wheel running exercise (WR) with CR provide significant protection against caspase-dependent apoptosis and sarcopenia. Caspase-independent mediators (endonuclease G: EndoG; apoptosis-inducing factor: AIF) of apoptosis are also linked to muscles wasting with disuse and aging. However, the efficacy of CR and WR with CR to attenuate caspase-independent apoptosis and preserve HSPs in aging skeletal muscle are unknown. Therefore, we tested the hypothesis that CR and WR with CR would ameliorate age-induced elevation of EndoG and AIF while protecting HSP27 and HSP70 levels in the plantaris. Male Fischer-344 rats were divided into 4 groups at 11weeks: ad libitum feeding until 6months (YAL); fed ad libitum until 24months old (OAL); 8%CR to 24months (OCR); WR+8%CR to 24months (OExCR). Nuclear EndoG levels were significantly higher in OAL (+153%) than in YAL, while CR (-38%) and WR with CR (-46%) significantly attenuated age-induced increment in nuclear EndoG. HSP27 (-63%) protein content and phosphorylation at Ser82 (-49%) were significantly lower in OAL than in YAL, while HSP27 protein content was significantly higher in OCR (+136%) and OExCR (+155%) and p-HSP27 (+254%) was significantly higher in OExCR compared with OAL, respectively. In contrast, AIF and HSP70 were unaltered by CR or WR with CR in aging muscle. These data indicate that CR and WR with CR attenuate age-associated upregulation of EndoG translocation in the nucleus, potentially involved with HSP27 signaling. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Lifelong Wheel Running Exercise and Mild Caloric Restriction Attenuate Nuclear EndoG in the Aging Plantaris Muscle

    PubMed Central

    Kim, Jong-Hee; Lee, Yang; Kwak, Hyo-Bum; Lawler, John M.

    2016-01-01

    Apoptosis plays an important role in atrophy and sarcopenia in skeletal muscle. Recent evidence suggests that insufficient heat shock proteins (HSPs) may contribute to apoptosis and muscle wasting. In addition, long-term caloric restriction (CR) and lifelong wheel running exercise (WR) with CR provide significant protection against caspase-dependent apoptosis and sarcopenia. Caspase-independent mediators (endonuclease G: EndoG; apoptosis-inducing factor: AIF) of apoptosis are also linked to muscles wasting with disuse and aging. However, the efficacy of CR and WR with CR to attenuate caspase-independent apoptosis and preserve HSPs in aging skeletal muscle are unknown. Therefore, we tested the hypothesis that CR and WR with CR would ameliorate age-induced elevation of EndoG and AIF while protecting HSP27 and HSP70 levels in the plantaris. Male Fischer-344 rats were divided into 4 groups at 11 weeks: ad libitum feeding until 6 mo. (YAL); fed ad libitum until 24 mo. old (OAL); 8%CR to 24 mo. (OCR); WR + 8%CR to 24 mo. (OExCR). Nuclear EndoG levels were significantly higher in OAL (+153%) than in YAL, while CR (−38%) and WR with CR (−46%) significantly attenuated age-induced increment in nuclear EndoG. HSP27 (−63%) protein content and phosphorylation at Ser82 (−49%) were significantly lower in OAL than in YAL, while HSP27 protein content was significantly higher in OCR (+136%) and OExCR (+155%) and p-HSP27 (+254%) was significantly higher in OExCR compared with OAL, respectively. In contrast, AIF and HSP70 were unaltered by CR or WR with CR in aging muscle. These data indicate that CR and WR with CR attenuate age-associated upregulation of EndoG translocation in the nucleus, potentially involved with HSP27 signaling. PMID:26055450

  20. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model.

    PubMed

    Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T

    2014-10-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  1. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    PubMed Central

    Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.

    2014-01-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816

  2. Effects of a ketogenic diet on adipose tissue, liver, and serum biomarkers in sedentary rats and rats that exercised via resisted voluntary wheel running.

    PubMed

    Holland, Angelia Maleah; Kephart, Wesley C; Mumford, Petey W; Mobley, Christopher Brooks; Lowery, Ryan P; Shake, Joshua J; Patel, Romil K; Healy, James C; McCullough, Danielle J; Kluess, Heidi A; Huggins, Kevin W; Kavazis, Andreas N; Wilson, Jacob M; Roberts, Michael D

    2016-08-01

    We investigated the effects of different diets on adipose tissue, liver, serum morphology, and biomarkers in rats that voluntarily exercised. Male Sprague-Dawley rats (∼9-10 wk of age) exercised with resistance-loaded voluntary running wheels (EX; wheels loaded with 20-60% body mass) or remained sedentary (SED) over 6 wk. EX and SED rats were provided isocaloric amounts of either a ketogenic diet (KD; 20.2%-10.3%-69.5% protein-carbohydrate-fat), a Western diet (WD; 15.2%-42.7-42.0%), or standard chow (SC; 24.0%-58.0%-18.0%); n = 8-10 in each diet for SED and EX rats. Following the intervention, body mass and feed efficiency were lowest in KD rats, independent of exercise (P < 0.05). Absolute and relative (body mass-adjusted) omental adipose tissue (OMAT) masses were greatest in WD rats (P < 0.05), and OMAT adipocyte diameters were lowest in KD-fed rats (P < 0.05). None of the assayed OMAT or subcutaneous (SQ) protein markers were affected by the diets [total acetyl coA carboxylase (ACC), CD36, and CEBPα or phosphorylated NF-κB/p65, AMPKα, and hormone-sensitive lipase (HSL)], although EX unexpectedly altered some OMAT markers (i.e., higher ACC and phosphorylated NF-κB/p65, and lower phosphorylated AMPKα and phosphorylated HSL). Liver triglycerides were greatest in WD rats (P < 0.05), and liver phosphorylated NF-κB/p65 was lowest in KD rats (P < 0.05). Serum insulin, glucose, triglycerides, and total cholesterol were greater in WD and/or SC rats compared with KD rats (P < 0.05), and serum β-hydroxybutyrate was greater in KD vs. SC rats (P < 0.05). In conclusion, KD rats presented a healthier metabolic profile, albeit the employed exercise protocol minimally impacts any potentiating effects that KD has on fat loss.

  3. Eating meals before wheel-running exercise attenuate high fat diet-driven obesity in mice under two meals per day schedule.

    PubMed

    Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Shibata, Shigenobu

    2015-06-01

    Mice that exercise after meals gain less body weight and visceral fat compared to those that exercised before meals under a one meal/exercise time per day schedule. Humans generally eat two or three meals per day, and rarely have only one meal. To extend our previous observations, we examined here whether a "two meals, two exercise sessions per day" schedule was optimal in terms of maintaining a healthy body weight. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). We found that 2-h feeding before 2-h exercise in the morning and evening (F-Ex/F-Ex) resulted in greater attenuation of high fat diet (HFD)-induced weight gain compared to other combinations of feeding and exercise under two daily meals and two daily exercise periods. There were no significant differences in total food intake and total wheel counts, but feeding before exercise in the morning groups (F-Ex/F-Ex and F-Ex/Ex-F) increased the morning wheel counts. These results suggest that habitual exercise after feeding in the morning and evening is more effective for preventing HFD-induced weight gain. We also determined whether there were any correlations between food intake, wheel rotation, visceral fat volume and skeletal muscle volumes. We found positive associations between gastrocnemius muscle volumes and morning wheel counts, as well as negative associations between morning food intake volumes/body weight and morning wheel counts. These results suggest that morning exercise-induced increase of muscle volume may refer to anti-obesity. Evening exercise is negatively associated with fat volume increases, suggesting that this practice may counteract fat deposition. Our multifactorial analysis revealed that morning food intake helps to increase exercise, and that evening exercise reduced fat volumes. Thus, exercise in the morning or evening is important for preventing the onset of obesity.

  4. Running wheel activity restores MPTP-induced functional deficits.

    PubMed

    Fredriksson, Anders; Stigsdotter, Ingels Maria; Hurtig, Anders; Ewalds-Kvist, Béatrice; Archer, Trevor

    2011-03-01

    Wheel-running and treadmill running physical exercise have been shown to alleviate parkinsonism in both laboratory and clinical studies. MPTP was administered to C57/BL6 mice using two different procedures: (a) administration of a double-dose regime (MPTP 2 × 20 or 2 × 40 mg/kg, separated by a 24-h interval), vehicle (saline 5 ml/kg) or saline (vehicle 2 × 5 ml/kg), and (b) administration of a single-dose weekly regime (MPTP 1 × 40 mg/kg) or saline (vehicle 1 × 5 ml/kg) repeated over 4 consecutive weeks. For each procedure, two different physical exercise regimes were followed: (a) after the double-dose MPTP regime, mice were given daily 30-min periods of wheel-running exercise over 5 consecutive days/week or placed in a cage in close proximity to the running wheels for 3 weeks. (b) Mice were either given wheel-running activity on 4 consecutive days (30-min periods) or placed in a cage nearby for 14 weeks. Behavioral testing was as follows: (a) after 3 weeks of exercise/no exercise, mice were tested for spontaneous motor activity (60 min) and subthreshold L-Dopa (5 mg/kg)-induced activity. (b) Spontaneous motor activity was measured on the fifth day during each of the each of the first 5 weeks (Tests 1-5), about 1 h before injections (first 4 weeks), and continued on the 5th days of the 6th to the 14th weeks (Tests 6-14). Subthreshold L-Dopa (5 mg/kg)-induced activity was tested on the 6th, 8th, 10th, 12th and 14th weeks. (b) Mice from the single-dose MPTP weekly regime were killed during the 15th week and striatal regions taken for dopamine analysis, whereas frontal and parietal cortex and hippocampus were taken for analysis of brain-derived neurotrophic factor (BDNF). It was shown that in both experiments, i.e., the double-dose regime and single-dose weekly regime of MPTP administration, physical activity attenuated markedly the MPTP-induced akinesia/hypokinesia in both the spontaneous motor activity and restored motor activity completely in subthreshold L

  5. Intracerebroventricular injection of ghrelin decreases wheel running activity in rats.

    PubMed

    Miyatake, Yumiko; Shiuchi, Tetsuya; Mawatari, Kazuaki; Toda, Satomi; Taniguchi, Yasuko; Futami, Akari; Sato, Fukiko; Kuroda, Masashi; Sebe, Mayu; Tsutsumi, Rie; Harada, Nagakatsu; Minokoshi, Yasuhiko; Kitamura, Tadahiro; Gotoh, Koro; Ueno, Masaki; Nakaya, Yutaka; Sakaue, Hiroshi

    2017-01-01

    There is an increasing interest in elucidating the molecular mechanisms by which voluntary exercise is regulated. In this study, we examined how the central nervous system regulates exercise. We used SPORTS rats, which were established in our laboratory as a highly voluntary murine exercise model. SPORTS rats showed lower levels of serum ghrelin compared with those of the parental line of Wistar rats. Intracerebroventricular and intraperitoneal injection of ghrelin decreased wheel-running activity in SPORTS rats. In addition, daily injection of the ghrelin inhibitor JMV3002 into the lateral ventricles of Wistar rats increased wheel-running activity. Co-administration of obestatin inhibited ghrelin-induced increases in food intake but did not inhibit ghrelin-induced suppression of voluntary exercise in rats. Growth hormone secretagogue receptor (GHSR) in the hypothalamus and hippocampus of SPORTS rats was not difference that in control rats. We created an arcuate nucleus destruction model by administering monosodium glutamate (MSG) to neonatal SPORTS rats. Injection of ghrelin into MSG-treated rats decreased voluntary exercise but did not increase food intake, suggesting that wheel-running activity is not controlled by the arcuate nucleus neurons that regulate feeding. These results provide new insights into the mechanism by which ghrelin regulates voluntary activity independent of arcuate nucleus neurons.

  6. VOLUNTARY WHEEL RUNNING ENHANCES CONTEXTUAL BUT NOT TRACE FEAR CONDITIONING

    PubMed Central

    Kohman, Rachel A.; Clark, Peter J.; DeYoung, Erin K.; Bhattacharya, Tushar K.; Venghaus, Christine E.; Rhodes, Justin S.

    2011-01-01

    Exercise improves performance on a number of hippocampus involved cognitive tasks including contextual fear conditioning, but whether exercise enhances contextual fear when the retention interval is longer than 1 day is not known. Also unknown is whether exercise improves trace conditioning, a task that requires the hippocampus to bridge the time interval between stimuli. Hence, 4-month-old male C57BL/6J mice were housed with or without running wheels. To assess whether hippocampal neurogenesis was associated with behavioral outcomes, during the initial ten days, mice received Bromodeoxyuridine to label dividing cells. After 30 days, one group of mice was trained in a contextual fear conditioning task. Freezing to context was assessed 1, 7, or 21 days post-training. A separate group was trained on a trace procedure, in which a tone and footshock were separated by a 15, 30, or 45 sec interval. Freezing to the tone was measured 24 hrs later in a novel environment, and freezing to training context was measured 48 hrs later. Running enhanced freezing to context when the retention interval was 1, but not 7 or 21 days. Running had no effect on trace conditioning even though runners displayed enhanced freezing to the training context 48 hrs later. Wheel running increased survival of new neurons in the hippocampus. Collectively, findings indicate that wheel running enhances cognitive performance on some tasks but not others and that enhanced neurogenesis is not always associated with improved performance on hippocampus tasks, one example of which is trace conditioning. PMID:21896289

  7. Reduced metabolic disease risk profile by voluntary wheel running accompanying juvenile Western diet in rats bred for high and low voluntary exercise.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Braselton, Joshua F; Roberts, Christian K; Booth, Frank W

    2015-12-01

    Metabolic disease risk is influenced by genetics and modifiable factors, such as physical activity and diet. Beginning at 6 weeks of age, rats selectively bred for high (HVR) versus low voluntary running distance (LVR) behaviors were housed in a complex design with or without voluntary running wheels being fed either a standard or Western (WD, 42% kcal from fat and added sucrose) diet for 8 weeks. Upon intervention completion, percent body fat, leptin, insulin, and mediobasal hypothalamic mRNAs related to appetite control were assessed. Wheel access led to differences in body weight, food intake, and serum leptin and insulin. Intriguingly, percent body fat, leptin, and insulin did not differ between HVR and LVR lines in response to the two levels of voluntary running, regardless of diet, after the 8 wk. experiment despite HVR eating more calories than LVR regardless of diet and voluntarily running 5-7 times further in wheels than LVR. In response to WD, we observed increases in Cart and Lepr mediobasal hypothalamic mRNA in HVR, but no differences in LVR. Npy mRNA was intrinsically greater in LVR than HVR, while wheel access led to greater Pomc and Cart mRNA in LVR versus HVR. These data suggest that despite greater consumption of WD, HVR animals respond similarly to WD as LVR as a result, in part, of their increased wheel running behavior. Furthermore, high physical activity in HVR may offset the deleterious effects of a WD on adiposity despite greater energy intake in this group.

  8. Effects of access to voluntary wheel running on the development of stereotypy.

    PubMed

    Pawlowicz, Artur; Demner, Adam; Lewis, Mark H

    2010-03-01

    Stereotyped motor behaviors are a common consequence of environmental restriction in a wide variety of species. Although environmental enrichment has been shown to substantially reduce stereotypy levels, the various components of enrichment have not been evaluated independently to determine which is responsible for this effect. Exercise, particularly voluntary wheel running, is a promising candidate based on several lines of behavioral and neurobiological evidence. To test the hypothesis that access to wheel running will reduce stereotyped motor behavior, we reared deer mice from weaning with continuous access to either a functional running wheel or a locked wheel. We assessed running behavior throughout this time period and stereotypy levels in a test context at 30 and 45 days post-weaning. We found that exercise did not significantly affect stereotypy level nor was there an association between wheel running and stereotypy. Thus, exercise alone, unlike environmental enrichment, does not prevent the development of stereotypy. These results have important implications for animal welfare.

  9. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake.

    PubMed

    Liang, Nu-Chu; Bello, Nicholas T; Moran, Timothy H

    2015-05-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) μ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. Published by Elsevier B.V.

  10. Wheel running reduces high-fat diet intake, preference and mu-opioid agonist stimulated intake

    PubMed Central

    Liang, Nu-Chu; Bello, Nicholas T.; Moran, Timothy H.

    2015-01-01

    The ranges of mechanisms by which exercise affects energy balance remain unclear. One potential mechanism may be that exercise reduces intake and preference for highly palatable, energy dense fatty foods. The current study used a rodent wheel running model to determine whether and how physical activity affects HF diet intake/preference and reward signaling. Experiment 1 examined whether wheel running affected the ability of intracerebroventricular (ICV) µ opioid receptor agonist D-Ala2, NMe-Phe4, Glyol5-enkephalin (DAMGO) to increase HF diet intake. Experiment 2 examined the effects of wheel running on the intake of and preference for a previously preferred HF diet. We also assessed the effects of wheel running and diet choice on mesolimbic dopaminergic and opioidergic gene expression. Experiment 1 revealed that wheel running decreased the ability of ICV DAMGO administration to stimulate HF diet intake. Experiment 2 showed that wheel running suppressed weight gain and reduced intake and preference for a previously preferred HF diet. Furthermore, the mesolimbic gene expression profile of wheel running rats was different from that of their sedentary paired-fed controls but similar to that of sedentary rats with large HF diet consumption. These data suggest that alterations in preference for palatable, energy dense foods play a role in the effects of exercise on energy homeostasis. The gene expression results also suggest that the hedonic effects of exercise may substitute for food reward to limit food intake and suppress weight gain. PMID:25668514

  11. Behavioral assessment of intermittent wheel running and individual housing in mice in the laboratory.

    PubMed

    Pham, Therese M; Brené, Stefan; Baumans, Vera

    2005-01-01

    Physical cage enrichment--exercise devices for rodents in the laboratory--often includes running wheels. This study compared responses of mice in enriched physical and social conditions and in standard social conditions to wheel running, individual housing, and open-field test. The study divided into 6 groups, 48 female BALB/c mice group housed in enriched and standard conditions. On alternate days, the study exposed 2 groups to individual running wheel cages. It intermittently separated from their cage mates and housed individually 2 groups with no running wheels; 2 control groups remained in enriched or standard condition cages. There were no significant differences between enriched and standard group housed mice in alternate days' wheel running. Over time, enriched, group housed mice ran less. Both groups responded similarly to individual housing. In open-field test, mice exposed to individual housing without running wheel moved more and faster than wheel running and home cage control mice. They have lower body weights than group housed and wheel running mice. Intermittent withdrawal of individual housing affects the animals more than other commodities. Wheel running normalizes some effects of intermittent separation from the enriched, social home cage.

  12. Wheel running, food intake, and body weight in male rats.

    PubMed

    Looy, H; Eikelboom, R

    1989-02-01

    The acquisition of wheel running, its effects on food intake and body weight, and the effects of wheel deprivation, were examined in male rats. Running increased during the first 15 days of access, then plateaued. When wheels were unlocked after 10 days of deprivation, running was reduced, but quickly recovered to original levels. Animals first given wheel access 49 days into the study ran little, with no increase over days. Food intake dropped each time with wheel access, but recovered to control levels over 10-14 days. Wheel deprivation resulted in a temporary hyperphagia. With wheel access, weight initially dropped and was then maintained at a reduced percentage of homecage-housed animals. In male rats wheel access appears to have temporary effects on food intake, and long term effects on weight. Marked differences in the activity of same-age rats suggest that wheel running is in part a function of housing history.

  13. Using wheel availability to shape running behavior of the rat towards improved behavioral and neurobiological outcomes.

    PubMed

    Basso, Julia C; Morrell, Joan I

    2017-10-01

    Though voluntary wheel running (VWR) has been used extensively to induce changes in both behavior and biology, little attention has been given to the way in which different variables influence VWR. This lack of understanding has led to an inability to utilize this behavior to its full potential, possibly blunting its effects on the endpoints of interest. We tested how running experience, sex, gonadal hormones, and wheel apparatus influence VWR in a range of wheel access "doses". VWR increases over several weeks, with females eventually running 1.5 times farther and faster than males. Limiting wheel access can be used as a tool to motivate subjects to run but restricts maximal running speeds attained by the rodents. Additionally, circulating gonadal hormones regulate wheel running behavior, but are not the sole basis of sex differences in running. Limitations from previous studies include the predominate use of males, emphasis on distance run, variable amounts of wheel availability, variable light-dark cycles, and possible food and/or water deprivation. We designed a comprehensive set of experiments to address these inconsistencies, providing data regarding the "microfeatures" of running, including distance run, time spent running, running rate, bouting behavior, and daily running patterns. By systematically altering wheel access, VWR behavior can be finely tuned - a feature that we hypothesize is due to its positive incentive salience. We demonstrate how to maximize VWR, which will allow investigators to optimize exercise-induced changes in their behavioral and/or biological endpoints of interest. Published by Elsevier B.V.

  14. Voluntary wheel running enhances contextual but not trace fear conditioning.

    PubMed

    Kohman, Rachel A; Clark, Peter J; Deyoung, Erin K; Bhattacharya, Tushar K; Venghaus, Christine E; Rhodes, Justin S

    2012-01-01

    Exercise improves performance on a number of hippocampus involved cognitive tasks including contextual fear conditioning, but whether exercise enhances contextual fear when the retention interval is longer than 1 day is not known. Also unknown is whether exercise improves trace conditioning, a task that requires the hippocampus to bridge the time interval between stimuli. Hence, 4-month-old male C57BL/6J mice were housed with or without running wheels. To assess whether hippocampal neurogenesis was associated with behavioral outcomes, during the initial 10 days, mice received Bromodeoxyuridine to label dividing cells. After 30 days, one group of mice was trained in a contextual fear conditioning task. Freezing to context was assessed 1, 7, or 21 days post-training. A separate group was trained on a trace procedure, in which a tone and footshock were separated by a 15, 30, or 45s interval. Freezing to the tone was measured 24h later in a novel environment, and freezing to the training context was measured 48h later. Running enhanced freezing to context when the retention interval was 1, but not 7 or 21 days. Running had no effect on trace conditioning even though runners displayed enhanced freezing to the training context 48h later. Wheel running increased survival of new neurons in the hippocampus. Collectively, findings indicate that wheel running enhances cognitive performance on some tasks but not others and that enhanced neurogenesis is not always associated with improved performance on hippocampus tasks, one example of which is trace conditioning. Published by Elsevier B.V.

  15. Effects of a High Fat Diet and Voluntary Wheel Running Exercise on Cidea and Cidec Expression in Liver and Adipose Tissue of Mice.

    PubMed

    Reynolds, Thomas H; Banerjee, Sayani; Sharma, Vishva Mitra; Donohue, Jacob; Couldwell, Sandrine; Sosinsky, Alexandra; Frulla, Ashton; Robinson, Allegra; Puri, Vishwajeet

    2015-01-01

    Cidea and Cidec play an important role in regulating triglyceride storage in liver and adipose tissue. It is not known if the Cidea and Cidec genes respond to a high fat diet (HFD) or exercise training, two interventions that alter lipid storage. The purpose of the present study was to determine the effect of a HFD and voluntary wheel running (WR) on Cidea and Cidec mRNA and protein expression in adipose tissue and liver of mice. A HFD promoted a significant increase in Cidea and Cidec mRNA levels in adipose tissue and liver. The increase in Cidea and Cidec mRNAs in adipose tissue and liver in response to a HFD was prevented by WR. Similar to the changes in Cidea mRNA, Cidea protein levels in adipose tissue significantly increased in response to a HFD, a process that was, again, prevented by WR. However, in adipose tissue the changes in Cidec mRNA did not correspond to the changes in Cidec protein levels, as a HFD decreased Cidec protein abundance. Interestingly, in adipose tissue Cidea protein expression was significantly related to body weight (R=.725), epididymal adipose tissue (EWAT) mass (R=.475) and insulin resistance (R=.706), whereas Cidec protein expression was inversely related to body weight (R=-.787), EWAT mass (R=-.706), and insulin resistance (R=-.679). Similar to adipose tissue, Cidea protein expression in liver was significantly related to body weight (R=.660), EWAT mass (R=.468), and insulin resistance (R=.599); however, unlike adipose tissue, Cidec protein levels in liver were not related to body weight or EWAT mass and only moderately associated with insulin resistance (R=-.422, P=0.051). Overall, our findings indicate that Cidea is highly associated with adiposity and insulin resistance, whereas Cidec is related to insulin sensitivity. The present study suggests that Cide proteins might play an important functional role in the development of obesity, hepatic steatosis, as well as the pathogenesis of type 2 diabetes.

  16. The effects of chronic treadmill and wheel running on behavior in rats.

    PubMed

    Burghardt, Paul R; Fulk, Laura J; Hand, Gregory A; Wilson, Marlene A

    2004-09-03

    In order to better understand the behavioral adaptations induced by physical activity, this set of experiments assessed the effects of two modes of running exercise on a battery of behavioral tests. The effects of 8 weeks of forced treadmill running and voluntary wheel running on behavior measures in the elevated plus maze, open field, social interaction and conditioned freezing paradigms were investigated. Eight weeks of treadmill running did not alter behavior in any test paradigm. Rats given unrestricted access to running wheels (WR) had a lower percent open arm time (6.0+/-2.3%) compared to locked wheel controls (LC) (20.7+/-5.7%) in the elevated plus maze. WR also showed decreased entries into center (0.2+/-0.2) and crossed fewer lines (61.0+/-14.9) in the open field compared to control groups. Both WR and LC groups showed increased social interaction; however, these differences are attributed to housing conditions. The effects of 4 weeks of wheel running on elevated plus maze and open field behavior were also investigated to address the possibility of a temporal effect of exercise on behavior. Four weeks of wheel running produced behavioral changes in the open field similar to those found at 8 weeks, but not in the elevated plus maze suggesting a temporal effect of wheel running on plus maze behavior. The behavioral adaptations found after 4 and 8 weeks of wheel running were not due solely to enriched environment and appear to be indicative of enhanced defensive behavior.

  17. 76. Credit FM. Detail showing belts running from water wheel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. Credit FM. Detail showing belts running from water wheel to governor and from water wheel to tachometer (foreground). - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  18. Long term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway

    PubMed Central

    Greenwood, Benjamin N.; Foley, Teresa E.; Le, Tony V.; Strong, Paul V.; Loughridge, Alice B.; Day, Heidi E.W.; Fleshner, Monika

    2011-01-01

    The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress. PMID:21070820

  19. Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway.

    PubMed

    Greenwood, Benjamin N; Foley, Teresa E; Le, Tony V; Strong, Paul V; Loughridge, Alice B; Day, Heidi E W; Fleshner, Monika

    2011-03-01

    The mesolimbic reward pathway is implicated in stress-related psychiatric disorders and is a potential target of plasticity underlying the stress resistance produced by repeated voluntary exercise. It is unknown, however, whether rats find long-term access to running wheels rewarding, or if repeated voluntary exercise reward produces plastic changes in mesolimbic reward neurocircuitry. In the current studies, young adult, male Fischer 344 rats allowed voluntary access to running wheels for 6 weeks, but not 2 weeks, found wheel running rewarding, as measured by conditioned place preference (CPP). Consistent with prior reports and the behavioral data, 6 weeks of wheel running increased ΔFosB/FosB immunoreactivity in the nucleus accumbens (Acb). In addition, semi quantitative in situ hybridization revealed that 6 weeks of wheel running, compared to sedentary housing, increased tyrosine hydroxylase (TH) mRNA levels in the ventral tegmental area (VTA), increased delta opioid receptor (DOR) mRNA levels in the Acb shell, and reduced levels of dopamine receptor (DR)-D2 mRNA in the Acb core. Results indicate that repeated voluntary exercise is rewarding and alters gene transcription in mesolimbic reward neurocircuitry. The duration-dependent effects of wheel running on CPP suggest that as the weeks of wheel running progress, the rewarding effects of a night of voluntary wheel running might linger longer into the inactive cycle thus providing stronger support for CPP. The observed plasticity could contribute to the mechanisms by which exercise reduces the incidence and severity of substance abuse disorders, changes the rewarding properties of drugs of abuse, and facilitates successful coping with stress.

  20. Social dominance rank influences wheel running behavior in mice.

    PubMed

    Vargas-Pérez, Héctor; Sellings, Laurie; Grieder, Taryn; Díaz, José-Luis

    2009-07-03

    Dominance hierarchies within social groups determine resource distribution. Resources, such as food and access to mating partners, can act as reinforcers. The present study examined the effect of social rank on access to wheel running-a reinforcing behavior performed by laboratory animals. Mice were identified as dominant or subordinate and given access to a running wheel access under solitary or social conditions. In the solitary condition, subordinate and dominant mice spent equal amounts of time on the running wheel. In the social condition, when one wheel was present, subordinate mice spent less time on the wheel than did dominant mice. Conversely, when two wheels were present, subordinates spent more time on the wheel than did dominant mice. When mice were given 24h access to one running wheel in the social condition, dominant mice ran more than subordinates during the dark cycle. Subordinate mice did not compensate for the lack of running wheel access by schedule shifting. These results suggest that social rank influences access to reinforcers by behavioral interference rather than by social inhibition.

  1. IMPACT OF WHEEL RUNNING ON CHRONIC ETHANOL INTAKE IN AGED SYRIAN HAMSTERS

    PubMed Central

    Brager, Allison J.; Hammer, Steven B.

    2012-01-01

    Introduction Alcohol dependence in aging populations is seen as a public health concern, most recently because of the significant proportion of heavy drinking among “Baby Boomers.” Basic animal research on the effects of aging on physiological and behavioral regulation of ethanol (EtOH) intake is sparse, since most of this research is limited to younger models of alcoholism. Here, EtOH drinking and preference were measured in groups of aged Syrian hamsters. Further, because voluntary exercise (wheel-running) is a rewarding substitute for EtOH in young adult hamsters, the potential for such reward substitution was also assessed. Methods Aged (24 month-old) male hamsters were subjected to a three-stage regimen of free-choice EtOH (20% v/v) or water and unlocked or locked running wheels to investigate the modulatory effects of voluntary wheel running on EtOH intake and preference. Levels of fluid intake and activity were recorded daily across 60 days of experimentation. Results Prior to wheel running, levels of EtOH intake were significantly less than levels of water intake, resulting in a low preference for EtOH (30%). Hamsters with access to an unlocked running wheel had decreased EtOH intake and preference compared with hamsters with access to a locked running wheel. These group differences in EtOH intake and preference were sustained for up to 10 days after running wheels were re-locked. Discussion These results extend upon those of our previous work in young adult hamsters, indicating that aging dampens EtOH intake and preference. Voluntary wheel running further limited EtOH intake, suggesting that exercise could offer a practical approach for managing late-life alcoholism. PMID:23022151

  2. Wheel-running in a transgenic mouse model of Alzheimer's disease: protection or symptom?

    PubMed

    Richter, Helene; Ambrée, Oliver; Lewejohann, Lars; Herring, Arne; Keyvani, Kathy; Paulus, Werner; Palme, Rupert; Touma, Chadi; Schäbitz, Wolf-Rüdiger; Sachser, Norbert

    2008-06-26

    Several studies on both humans and animals reveal benefits of physical exercise on brain function and health. A previous study on TgCRND8 mice, a transgenic model of Alzheimer's disease, reported beneficial effects of premorbid onset of long-term access to a running wheel on spatial learning and plaque deposition. Our study investigated the effects of access to a running wheel after the onset of Abeta pathology on behavioural, endocrinological, and neuropathological parameters. From day 80 of age, the time when Abeta deposition becomes apparent, TgCRND8 and wildtype mice were kept with or without running wheel. Home cage behaviour was analysed and cognitive abilities regarding object recognition memory and spatial learning in the Barnes maze were assessed. Our results show that, in comparison to Wt mice, Tg mice were characterised by impaired object recognition memory and spatial learning, increased glucocorticoid levels, hyperactivity in the home cage and high levels of stereotypic behaviour. Access to a running wheel had no effects on cognitive or neuropathological parameters, but reduced the amount of stereotypic behaviour in transgenics significantly. Furthermore, wheel-running was inversely correlated with stereotypic behaviour, suggesting that wheel-running may have stereotypic qualities. In addition, wheel-running positively correlated with plaque burden. Thus, in a phase when plaques are already present in the brain, it may be symptomatic of brain pathology, rather than protective. Whether or not access to a running wheel has beneficial effects on Alzheimer-like pathology and symptoms may therefore strongly depend on the exact time when the wheel is provided during development of the disease.

  3. Sex-related differences in the wheel-running activity of mice decline with increasing age.

    PubMed

    Bartling, Babett; Al-Robaiy, Samiya; Lehnich, Holger; Binder, Leonore; Hiebl, Bernhard; Simm, Andreas

    2017-01-01

    Laboratory mice of both sexes having free access to running wheels are commonly used to study mechanisms underlying the beneficial effects of physical exercise on health and aging in human. However, comparative wheel-running activity profiles of male and female mice for a long period of time in which increasing age plays an additional role are unknown. Therefore, we permanently recorded the wheel-running activity (i.e., total distance, median velocity, time of breaks) of female and male mice until 9months of age. Our records indicated higher wheel-running distances for females than males which were highest in 2-month-old mice. This was mainly reached by higher running velocities of the females and not by longer running times. However, the sex-related differences declined in parallel to the age-associated reduction in wheel-running activities. Female mice also showed more variances between the weekly running distances than males, which were recorded most often for females being 4-6months old but not older. Additional records of 24-month-old mice of both sexes indicated highly reduced wheel-running activities at old age. Surprisingly, this reduction at old age resulted mainly from lower running velocities and not from shorter running times. Old mice also differed in their course of night activity which peaked later compared to younger mice. In summary, we demonstrated the influence of sex on the age-dependent activity profile of mice which is somewhat contrasting to humans, and this has to be considered when transferring exercise-mediated mechanism from mouse to human. Copyright © 2016. Published by Elsevier Inc.

  4. Voluntary wheel running improves recovery from a moderate spinal cord injury.

    PubMed

    Engesser-Cesar, Christie; Anderson, Aileen J; Basso, D Michele; Edgerton, V R; Cotman, Carl W

    2005-01-01

    Recently, locomotor training has been shown to improve overground locomotion in patients with spinal cord injury (SCI). This has triggered renewed interest in the role of exercise in rehabilitation after SCI. However, there are no mouse models for voluntary exercise and recovery of function following SCI. Here, we report voluntary wheel running improves recovery from a SCI in mice. C57Bl/10 female mice received a 60-kdyne T9 contusion injury with an IH impactor after 3 weeks of voluntary wheel running or 3 weeks of standard single housing conditions. Following a 7-day recovery period, running mice were returned to their running wheels. Weekly open-field behavior measured locomotor recovery using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale and the Basso Mouse Scale (BMS) locomotor rating scale, a scale recently developed specifically for mice. Initial experiments using standard rung wheels show that wheel running impaired recovery, but subsequent experiments using a modified flat-surface wheel show improved recovery with exercise. By 14 days post SCI, the modified flat-surface running group had significantly higher BBB and BMS scores than the sedentary group. A repeated measures ANOVA shows locomotor recovery of modified flat-surface running mice was significantly improved compared to sedentary animals (p < 0.05). Locomotor assessment using a ladder beam task also shows a significant improvement in the modified flat-surface runners (p < 0.05). Finally, fibronectin staining shows no significant difference in lesion size between the two groups. These data represent the first mouse model showing voluntary exercise improves recovery after SCI.

  5. Stereotypic wheel running decreases cortical activity in mice

    PubMed Central

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.

    2016-01-01

    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  6. Reduced alcohol consumption in mice with access to a running wheel.

    PubMed

    Ehringer, Marissa A; Hoft, Nicole R; Zunhammer, Matthias

    2009-09-01

    Studies of the behavioral effects of alcohol in humans and rodent models have implicated a number of neurological pathways and genes. Separate studies have shown that certain regions of the brain are involved in behavioral responses to exercise. The aim of this study was to determine whether mice which normally voluntarily consume high amounts of alcohol (C57BL/6 strain) would exhibit reduced alcohol consumption when given access to a running wheel under two different models of voluntary consumption: unlimited access two-bottle choice and limited access drinking in the dark (DID). Under the two-bottle choice model, the animals voluntarily consumed less alcohol when a wheel was present in their cage. However, sex-specific differences emerged because female mice voluntarily consumed less alcohol when they have the opportunity to exercise on a running wheel, whereas male mice consumed less alcohol even if the running wheel was locked. There were no significant differences observed in alcohol metabolism or food consumption. Under the DID protocol, no differences in alcohol consumption were observed in the presence of a running wheel. These results suggest that exercise may be a useful approach to consider for treatment for some types of chronic human alcohol problem behaviors, but may be less applicable to human binge drinking.

  7. Voluntary wheel running: a review and novel interpretation.

    PubMed

    Sherwin

    1998-07-01

    Voluntary wheel running by animals is an activity that has been observed and recorded in great detail for almost a century. This review shows that it is performed, often with startling intensity and coordination, by a wide variety of wild, laboratory and domestic species with diverse evolutionary histories. However, despite the plethora of published studies on wheel running, there is considerable disagreement between many findings, thus leading to a lack of consensus on explanations of the causality and function. In the initial part of this review, I discuss the internal and external factors that may be involved in the causality of this behaviour, with an emphasis on disparities in both the factual and theoretical development of the subject. I then address the various proposed functions of wheel running, again highlighting evidence to the contrary. This leads to the conclusion that any single theory on the basis of wheel running is likely to be simplistic with little generality. I then present a novel, behaviour-based interpretation in which it is argued that wheel running has no directly analogous naturally occurring behaviour, it is (sometimes) performed for its own sake per se rather than as a redirected or substitute activity, and studies on motivation show that wheel running is self-reinforcing and perceived by animals as 'important'. This review proposes that wheel running may be an artefact of captive environments or of the running-wheel itself, possibly resulting from feedback dysfunction. I also discuss the ubiquity and intensity of its performance, along with its great plasticity and maladaptiveness, all indicating that if it is an artefact, it is nevertheless one of great interest to behavioural science. Copyright 1998 The Association for the Study of Animal Behaviour.

  8. The medial prefrontal cortex and nucleus accumbens mediate the motivation for voluntary wheel running in the rat.

    PubMed

    Basso, Julia C; Morrell, Joan I

    2015-08-01

    Voluntary wheel running in rats provides a preclinical model of exercise motivation in humans. We hypothesized that rats run because this activity has positive incentive salience in both the acquisition and habitual stages of wheel running and that gender differences might be present. Additionally, we sought to determine which forebrain regions are essential for the motivational processes underlying wheel running in rats. The motivation for voluntary wheel running in male and female Sprague-Dawley rats was investigated during the acquisition (Days 1-7) and habitual phases (after Day 21) of running using conditioned place preference (CPP) and the reinstatement (rebound) response after forced abstinence, respectively. Both genders displayed a strong CPP for the acquisition phase and a strong rebound response to wheel deprivation during the habitual phase, suggesting that both phases of wheel running are rewarding for both sexes. Female rats showed a 1.5 times greater rebound response than males to wheel deprivation in the habitual phase of running, while during the acquisition phase, no gender differences in CPP were found. We transiently inactivated the medial prefrontal cortex (mPFC) or the nucleus accumbens (NA), hypothesizing that because these regions are involved in the acquisition and reinstatement of self-administration of both natural and pharmacological stimuli, they might also serve a role in the motivation to wheel run. Inactivation of either structure decreased the rebound response in the habitual phase of running, demonstrating that these structures are involved in the motivation for this behavior. (c) 2015 APA, all rights reserved).

  9. Wheel running decreases palatable diet preference in Sprague-Dawley rats.

    PubMed

    Moody, Laura; Liang, Joy; Choi, Pique P; Moran, Timothy H; Liang, Nu-Chu

    2015-10-15

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague-Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. Published by Elsevier Inc.

  10. Wheel running decreases palatable diet preference in Sprague-Dawley rats

    PubMed Central

    Moody, Laura; Liang, Joy; Choi, Pique P.; Moran, Timothy H.; Liang, Nu-Chu

    2015-01-01

    Physical activity has beneficial effects on not only improving some disease conditions but also by preventing the development of multiple disorders. Experiments in this study examined the effects of wheel running on intakes of chow and palatable diet e.g. high fat (HF) or high sucrose (HS) diet in male and female Sprague Dawley rats. Experiment 1 demonstrated that acute wheel running results in robust HF or HS diet avoidance in male rats. Although female rats with running wheel access initially showed complete avoidance of the two palatable diets, the avoidance of the HS diet was transient. Experiment 2 demonstrated that male rats developed decreased HF diet preferences regardless of the order of diet and wheel running access presentation. Running associated changes in HF diet preference in females, on the other hand, depended on the testing schedule. In female rats, simultaneous presentation of the HF diet and running access resulted in transient complete HF diet avoidance whereas running experience prior to HF diet access did not affect the high preference for the HF diet. Ovariectomy in females resulted in HF diet preference patterns that were similar to those in male rats during simultaneous exposure of HF and wheel running access but similar to intact females when running occurred before HF exposure. Overall, the results demonstrated wheel running associated changes in palatable diet preferences that were in part sex dependent. Furthermore, ovarian hormones play a role in some of the sex differences. These data reveal complexity in the mechanisms underlying exercise associated changes in palatable diet preference. PMID:25791204

  11. The use of a running wheel to measure activity in rodents: Relationship to energy balance, general activity, and reward

    PubMed Central

    Levine, James A.

    2015-01-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems—including those related to the stress response, mood, and reward, and those responsive to growth factors—that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. PMID:22230703

  12. The use of a running wheel to measure activity in rodents: relationship to energy balance, general activity, and reward.

    PubMed

    Novak, Colleen M; Burghardt, Paul R; Levine, James A

    2012-03-01

    Running wheels are commonly employed to measure rodent physical activity in a variety of contexts, including studies of energy balance and obesity. There is no consensus on the nature of wheel-running activity or its underlying causes, however. Here, we will begin by systematically reviewing how running wheel availability affects physical activity and other aspects of energy balance in laboratory rodents. While wheel running and physical activity in the absence of a wheel commonly correlate in a general sense, in many specific aspects the two do not correspond. In fact, the presence of running wheels alters several aspects of energy balance, including body weight and composition, food intake, and energy expenditure of activity. We contend that wheel-running activity should be considered a behavior in and of itself, reflecting several underlying behavioral processes in addition to a rodent's general, spontaneous activity. These behavioral processes include defensive behavior, predatory aggression, and depression- and anxiety-like behaviors. As it relates to energy balance, wheel running engages several brain systems-including those related to the stress response, mood, and reward, and those responsive to growth factors-that influence energy balance indirectly. We contend that wheel-running behavior represents factors in addition to rodents' tendency to be physically active, engaging additional neural and physiological mechanisms which can then independently alter energy balance and behavior. Given the impact of wheel-running behavior on numerous overlapping systems that influence behavior and physiology, this review outlines the need for careful design and interpretation of studies that utilize running wheels as a means for exercise or as a measurement of general physical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance.

    PubMed

    Chen, Chi-Chun; Yang, Chin-Lung; Chang, Ching-Ping

    2016-09-19

    This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.

  14. Chronic Sciatic Neuropathy in Rat Reduces Voluntary Wheel-Running Activity With Concurrent Chronic Mechanical Allodynia.

    PubMed

    Whitehead, Ryan A; Lam, Nicholas L; Sun, Melody S; Sanchez, Joshua; Noor, Shahani; Vanderwall, Arden G; Petersen, Timothy R; Martin, Hugh B; Milligan, Erin D

    2017-01-01

    the (1) inactive (n = 8/group) or (2) active (n = 8/group) phase of the diurnal cycle. An additional group of CCI-treated rats (n = 8/group) was exposed to a locked running wheel to control for the potential effects of wheel-running exercise on allodynia. The 1-hour running wheel trial period was further examined at discrete 20-minute intervals to identify possible pattern differences in activity during the first, middle, and last portions of the 1-hour trial. The effect of neuropathy on activity levels was assessed by measuring the change from their respective BLs to distance traveled in the running wheels. Although wheel-running distances between groups were not different at BL from rats examined during either the inactive phase of the diurnal cycle or active phase of the diurnal cycle, sciatic nerve CCI reduced running wheel activity levels compared with sham-operated controls during the inactive phase. In addition, compared with sham controls, bilateral low-threshold mechanical allodynia was observed at all time points after surgical induction of neuropathy in rats with free-wheel and locked-wheel access. Allodynia in CCI compared with shams was replicated in rats whose running wheel activity was examined during the active phase of the diurnal cycle. Conversely, no significant reduction in wheel-running activity was observed in CCI-treated rats compared with sham controls at any time point when activity levels were examined during the active diurnal phase. Finally, running wheel activity patterns within the 1-hour trial period during the inactive phase of the diurnal cycle were relatively consistent throughout each 20-minute phase. Compared with nonneuropathic sham controls, a profound and stable reduction of running wheel activity was observed in CCI rats during the inactive phase of the diurnal cycle. A concurrent robust allodynia persisted in all rats regardless of when wheel-running activity was examined or whether they ran on wheels, suggesting that acute

  15. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice

    PubMed Central

    Waters, R.Parrish; Pringle, R.B.; Forster, G.L.; Renner, K.J.; Malisch, J.L.; Garland, T.; Swallow, J.G.

    2013-01-01

    Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders. PMID:23352668

  16. Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice.

    PubMed

    Waters, R Parrish; Pringle, R B; Forster, G L; Renner, K J; Malisch, J L; Garland, T; Swallow, J G

    2013-05-01

    Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders. Published by Elsevier B.V.

  17. Voluntary wheel running differentially affects disease outcomes in male and female mice with experimental autoimmune encephalomyelitis.

    PubMed

    Mifflin, Katherine A; Frieser, Emma; Benson, Curtis; Baker, Glen; Kerr, Bradley J

    2017-04-15

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system. The primary symptoms of MS include the loss of sensory and motor function. Exercise has been shown to modulate disease parameters in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by reducing immune cell infiltration and oxidative stress. However, these initial studies were carried out exclusively in female mice. The present study compared the effects of daily voluntary wheel running on several disease parameters in male and female mice with EAE. Male and female mice were given access to a running wheel for 1h a day for 30 consecutive days. Daily wheel running significantly improved clinical scores in males with EAE but had little effect on clinical signs in females with the disease. Direct comparison of inflammation, axonal injury, and oxidative stress in male and female mice with EAE revealed significant differences in the amount of T-cell infiltration, microglia reactivity, demyelination and axon integrity. Male mice with EAE given daily access to running wheels also had significantly less ongoing oxidative stress compared to all other groups. Taken together, our results indicate that the inflammatory response generated in EAE is distinct between the sexes and its modulation by daily exercise can have sex-specific effects on disease-related outcomes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Wheel running affects seasonal acclimatization of physiological and morphological traits in the Djungarian hamster (Phodopus sungorus).

    PubMed

    Scherbarth, Frank; Rozman, Jan; Klingenspor, Martin; Brabant, Georg; Steinlechner, Stephan

    2007-09-01

    Wheel running was previously shown to influence body mass and torpor in short-day-acclimatized Djungarian hamsters (Phodopus sungorus). To determine whether the exercise-induced effect on body mass depends on the annual phase, hamsters were exposed to the natural change in photoperiod and given access to a running wheel (RW), either before, in the middle of, or at the end of the descending body mass trajectory during seasonal acclimatization. Due to wheel running, the seasonal weight cycle was prevented or aborted by abruptly rising body mass, resulting in a weight appropriate for summer, despite exposure to short days. Torpor was inhibited, and testicular recrudescence was advanced, compared with controls. In contrast, the change into winter fur remained unaltered. Analysis of body composition and plasma leptin revealed a low body fat mass in RW hamsters, not only in winter but also in summer, suggesting a lack of seasonal adiposity. Chronic leptin infusion in winter only decreased body mass in RW individuals, although their relative body fat mass probably was even lower than in sedentary hamsters. A constantly low body fat mass is conceivably reflecting an exercise-dependent change in metabolism, consistent with increased bone mineral content and density in RW hamsters. Additionally, bone area was increased, again supported by elongated vertebral columns. Together, the results show a striking effect of wheel running on body composition and the seasonal pattern of body mass, and they suggest that the photoperiodic regulation of body mass is regulated differently than the reproductive and pelage responses.

  19. Habituation Training Improves Locomotor Performance in a Forced Running Wheel System in Rats

    PubMed Central

    Toval, Angel; Baños, Raúl; De la Cruz, Ernesto; Morales-Delgado, Nicanor; Pallarés, Jesús G.; Ayad, Abdelmalik; Tseng, Kuei Y.; Ferran, Jose L.

    2017-01-01

    Increasing evidence supports that physical activity promotes mental health; and regular exercise may confer positive effects in neurological disorders. There is growing number of reports that requires the analysis of the impact of physical activity in animal models. Exercise in rodents can be performed under voluntary or forced conditions. The former presents the disadvantage that the volume and intensity of exercise varies from subject to subject. On the other hand, a major challenge of the forced training protocol is the low level of performance typically achieved within a given session. Thus, the aim of the present study was to evaluate the effectiveness of gradual increasing of the volume and intensity (training habituation protocol) to improve the locomotor performance in a forced running-wheel system in rats. Sprague-Dawley rats were randomly assigned to either a group that received an exercise training habituation protocol, or a control group. The locomotor performance during forced running was assessed by an incremental exercise test. The experimental results reveal that the total running time and the distance covered by habituated rats was significantly higher than in control ones. We conclude that the exercise habituation protocol improves the locomotor performance in forced running wheels. PMID:28337132

  20. Voluntary wheel running and pacing-induced dysfunction in hypertension.

    PubMed

    Kolwicz, Stephen C; MacDonnell, Scott M; Kendrick, Zebulon V; Houser, Steven R; Libonati, Joseph R

    2008-10-01

    We examined how voluntary wheel running in the female, spontaneously hypertensive rat (SHR) impacts myocardial tolerance to pacing stress and determined whether direct adenylyl cyclase agonism via forskolin infusion improved myocardial performance during pacing. Twenty-five 16-week-old female Wistar Kyoto (WKY, n = 8) and SHR (n = 17) were utilized. Animals within the SHR group were randomly assigned to a sedentary (SHR-SED, n = 8) or a voluntary wheel running (SHR-WHL, n = 9) group. The SHR-WHL had free access to a running wheel 24 h/day. Resting heart rates and blood pressures were collected immediately prior to sacrifice utilizing a tail cuff apparatus. Left ventricular (LV) function was measured in a Langendorff, isovolumic preparation during pacing stress (8.5 Hz) and during pacing stress + forskolin (5 micromol/L). SHR-WHL showed cardiac enlargement without alterations in heart rate, systolic blood pressure, or rate-pressure product. Pacing stress impaired inotropic and lusitropic performance to a similar extent in all groups (p < 0.05), while forskolin infusion improved LV function to a similar extent in all groups (p < 0.05). These data suggest that voluntary wheel running in SHR does not protect from pacing-induced myocardial dysfunction, and adenylyl cyclase agonism during pacing stress can functionally protect the heart. These data reiterate the importance of a competent myocardial beta-adrenergic signaling cascade.

  1. Reinforcement value and substitutability of sucrose and wheel running: implications for activity anorexia.

    PubMed

    Belke, Terry W; Pierce, W David; Duncan, Ian D

    2006-09-01

    Choice between sucrose and wheel-running reinforcement was assessed in two experiments. In the first experiment, ten male Wistar rats were exposed to concurrent VI 30 s VI 30 s schedules of wheel-running and sucrose reinforcement. Sucrose concentration varied across concentrations of 2.5, 7.5, and 12.5%. As concentration increased, more behavior was allocated to sucrose and more reinforcements were obtained from that alternative. Allocation of behavior to wheel running decreased, but obtained wheel-running reinforcement did not change. Overall, the results suggested that food-deprived rats were sensitive to qualitative changes in food supply (sucrose concentration) while continuing to defend a level of physical activity (wheel running). In the second study, 15 female Long Evans rats were exposed to concurrent variable ratio schedules of sucrose and wheel-running, wheel-running and wheel-running, and sucrose and sucrose reinforcement. For each pair of reinforcers, substitutability was assessed by the effect of income-compensated price changes on consumption of the two reinforcers. Results showed that, as expected, sucrose substituted for sucrose and wheel running substituted for wheel running. Wheel running, however, did not substitute for sucrose; but sucrose partially substituted for wheel running. We address the implications of the interrelationships of sucrose and wheel running for an understanding of activity anorexia.

  2. Voluntary wheel running delays disease onset and reduces pain hypersensitivity in early experimental autoimmune encephalomyelitis (EAE).

    PubMed

    Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J

    2015-09-01

    Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Erythropoietin elevates VO2,max but not voluntary wheel running in mice.

    PubMed

    Kolb, E M; Kelly, S A; Middleton, K M; Sermsakdi, L S; Chappell, M A; Garland, T

    2010-02-01

    Voluntary activity is a complex trait, comprising both behavioral (motivation, reward) and anatomical/physiological (ability) elements. In the present study, oxygen transport was investigated as a possible limitation to further increases in running by four replicate lines of mice that have been selectively bred for high voluntary wheel running and have reached an apparent selection limit. To increase oxygen transport capacity, erythrocyte density was elevated by the administration of an erythropoietin (EPO) analogue. Mice were given two EPO injections, two days apart, at one of two dose levels (100 or 300 microg kg(-1)). Hemoglobin concentration ([Hb]), maximal aerobic capacity during forced treadmill exercise (VO2,max) and voluntary wheel running were measured. [Hb] did not differ between high runner (HR) and non-selected control (C) lines without EPO treatment. Both doses of EPO significantly (P<0.0001) increased [Hb] as compared with sham-injected animals, with no difference in [Hb] between the 100 microg kg(-1) and 300 microg kg(-1) dose levels (overall mean of 4.5 g dl(-1) increase). EPO treatment significantly increased VO2,max by approximately 5% in both the HR and C lines, with no dosexline type interaction. However, wheel running (revolutions per day) did not increase with EPO treatment in either the HR or C lines, and in fact significantly decreased at the higher dose in both line types. These results suggest that neither [Hb] per se nor VO2,max is limiting voluntary wheel running in the HR lines. Moreover, we hypothesize that the decrease in wheel running at the higher dose of EPO may reflect direct action on the reward pathway of the brain.

  4. Wheel running can accelerate or delay extinction of conditioned place preference for cocaine in male C57BL/6J mice depending on timing of wheel access

    PubMed Central

    Mustroph, Martina L.; Stobaugh, Derrick J.; Miller, Daniel S.; DeYoung, Erin K.; Rhodes, Justin S.

    2011-01-01

    Aerobic exercise may represent a useful intervention for drug abuse in predisposed individuals. Exercise increases plasticity in the brain that could be used to reverse learned drug associations. Previous studies report that exposing mice to a complex environment including running wheels after drug conditioning abolishes conditioned place preference (CPP) for cocaine, whereas running can enhance CPP when administered before conditioning. The purpose of the present study was to test the hypothesis that timing of exercise relative to conditioning has opposing effects on cocaine CPP. Male C57BL/6J mice experienced 30 days of running or Sedentary treatments either before or after cocaine conditioning. Control animals always received saline and never cocaine but otherwise underwent the same conditioning and exercise treatments. Animals were administered BrdU injections at the onset of conditioning or exercise and euthanized at the end of the study to quantify survival of new neurons in the hippocampus as a marker of plasticity. Wheel running accelerated extinction of CPP when running occurred entirely after drug conditioning, whereas running delayed extinction when administered before conditioning. A single conditioning day after running was sufficient to abolish the accelerated extinction observed when all conditioning preceded running. Running approximately doubled adult hippocampal neurogenesis, whereas cocaine had no effect. Results suggest exercise-induced plasticity can facilitate learning that context is no longer associated with drug. However, if drug exposure occurs after exercise, running-induced plasticity may strengthen drug associations. Results provide insight into the interaction between exercise and drug conditioning that could have implications for drug abuse treatments. PMID:21864322

  5. Voluntary wheel running reverses age-induced changes in hippocampal gene expression.

    PubMed

    Kohman, Rachel A; Rodriguez-Zas, Sandra L; Southey, Bruce R; Kelley, Keith W; Dantzer, Robert; Rhodes, Justin S

    2011-01-01

    Normal aging alters expression of numerous genes within the brain. Some of these transcription changes likely contribute to age-associated cognitive decline, reduced neural plasticity, and the higher incidence of neuropathology. Identifying factors that modulate brain aging is crucial for improving quality of life. One promising intervention to counteract negative effects of aging is aerobic exercise. Aged subjects that exercise show enhanced cognitive performance and increased hippocampal neurogenesis and synaptic plasticity. Currently, the mechanisms behind the anti-aging effects of exercise are not understood. The present study conducted a microarray on whole hippocampal samples from adult (3.5-month-old) and aged (18-month-old) male BALB/c mice that were individually housed with or without running wheels for 8 weeks. Results showed that aging altered genes related to chromatin remodeling, cell growth, immune activity, and synapse organization compared to adult mice. Exercise was found to modulate many of the genes altered by aging, but in the opposite direction. For example, wheel running increased expression of genes related to cell growth and attenuated expression of genes involved in immune function and chromatin remodeling. Collectively, findings show that even late-onset exercise may attenuate age-related changes in gene expression and identifies possible pathways through which exercise may exert its beneficial effects.

  6. Voluntary wheel running attenuates ethanol withdrawal-induced increases in seizure susceptibility in male and female rats.

    PubMed

    Devaud, Leslie L; Walls, Shawn A; McCulley, Walter D; Rosenwasser, Alan M

    2012-11-01

    We recently found that voluntary wheel running attenuated ethanol withdrawal-induced increased susceptibility to chemoconvulsant-induced seizures in male rats. Since female rats recover from ethanol withdrawal (EW) more quickly than male rats across several behavioral measures, this study was designed to determine whether the effects of exercise on EW seizures also exhibited sex differences. Animals were maintained under no-wheel, locked-wheel or free-wheel conditions and ethanol was administered by liquid diet for 14 days with control animals pair-fed an isocaloric diet, after which seizure thresholds were determined at 1 day or 3 days of EW. Consistent with previous reports, females ran significantly more than males, regardless of diet condition. Introduction of the ethanol-containing liquid diet dramatically increased running for females during the day (rest) phase, with little impact on night phase activity. Consistent with previous reports, EW increased seizure susceptibility at 1 day in non-exercising males and females and at 3 days in males. These effects were attenuated by access to running wheels in both sexes. We also assessed the effects of sex, ethanol diet and exercise on ethanol clearance following an acute ethanol administration at 1 day EW in a separate set of animals. Blood ethanol concentrations at 30 min post-injection were lower in males, ethanol-exposed animals, and runners, but no interactions among these factors were detected. Interestingly, females displayed more rapid ethanol clearance than males and there were no effects of either diet or wheel access on clearance rates. Taken together, these data suggest that voluntary wheel running during ethanol administration provides protective effects against EW seizures in both males and females. This effect may be mediated, in part, in male, but not in female rat, by effects of exercise on early pharmacokinetic contributions. This supports the idea that encouraging alcoholics to exercise may

  7. Emotional consequences of wheel running in mice: which is the appropriate control?

    PubMed

    Dubreucq, Sarah; Marsicano, Giovanni; Chaouloff, Francis

    2011-03-01

    An overview of the literature on the emotional impacts of wheel running reveals contradictory findings. Among the hypotheses underlying such a discrepancy, that related to the different housing conditions of the controls, i.e., standard housing without any object or housing with blocked running wheels, merits attention. We addressed this point in C57Bl/6N mice by examining the consequences of chronic wheel running on anxiety, context fear recall, and behavioral despair compared either to standard control housing or to housing with blocked wheels. Compared to standard housing, wheel running proved anxiolytic while facilitating fear memory. On the other hand, wheel running increased behavioral despair but influenced neither anxiety nor fear memory when compared to housing with blocked wheels. This study suggests that investigations aimed at measuring the emotional consequences of wheel running should take into consideration the housing conditions of the controls to which are compared the runners.

  8. Daily exposure to a running wheel entrains circadian rhythms in mice in parallel with development of an increase in spontaneous movement prior to running-wheel access.

    PubMed

    Yamanaka, Yujiro; Honma, Sato; Honma, Ken-ichi

    2013-12-01

    Entrainment of circadian behavior rhythms by daily exposure to a running wheel was examined in mice under constant darkness. Spontaneous movement was individually monitored for more than 6 mo by a thermal sensor. After establishment of steady-state free running, mice were placed in a different cage equipped with a running-wheel for 3 h once per day at 6 AM. The daily exchange was continued for 80 days. The number of wheel revolutions during exposure to the running wheel was also measured simultaneously with spontaneous movement. In 13 out of 17 mice, circadian behavior rhythm was entrained by daily wheel exposure, showing a period indistinguishable from 24 h. The entrainment occurred in parallel with an increase in spontaneous movement immediately prior to the daily wheel exposure. A similar preexposure increase was observed in only one of four nonentrained mice. The preexposure increase appeared in 19.5 days on average after the start of daily wheel exposure and persisted for 36 days on average after the termination of the exposure schedule. The preexposure increase was detected only when daily wheel exposure came into the activity phase of the circadian behavior rhythm, which was accompanied by an increase in the number of wheel revolutions. These findings indicate that a novel oscillation with a circadian period is induced in mice by daily exposure to a running wheel at a fixed time of day and suggest that the oscillation is involved in the nonphotic entrainment of circadian rhythms in spontaneous movement.

  9. Effects of prolonged voluntary wheel-running on muscle structure and function in rat skeletal muscle.

    PubMed

    Kariya, Fumihiko; Yamauchi, Hideki; Kobayashi, Keizo; Narusawa, Mistuo; Nakahara, Yoshibumi

    2004-06-01

    We examined the effects of prolonged voluntary wheel-running on skeletal muscle functional and/or structural characteristics in rats. Male Sprague-Dawley rats (5 weeks old) were divided into five groups: (1) 15W-SC, sedentary controls housed in normal plastic cages until age 15 weeks; (2) 15W-VE, housed in a voluntary-exercise (running-wheel) device equipped with housing space until age 15 weeks; (3) 35W-SC, housed in normal plastic cages until age 35 weeks; (4) 35W-VE, housed in the voluntary-exercise device until age 35 weeks, and (5) 35W-MVE, housed in normal plastic cages until age 15 weeks, then in the voluntary-exercise device from age 16 weeks to 35 weeks ("middle age"). At the end of each rat's experimental period, the plantaris muscle was dissected from each hindlimb for analysis of the muscle's functional and/or structural characteristics. Total running distance was similar in 15W-VE and 35W-VE, both being significantly greater than in 35-MVE. The percentage of type IIb myosin heavy chain isoform was significantly lower in each VE group than in the corresponding SC group. This shift from type IIb was significantly greater for 35W-VE than for the other VE groups, which were similar to each other. The cross-sectional area of type IIx fibers was significantly greater in 35W-VE than in 35W-SC, but this was not true for 15W-VE versus 15W-SC or for 35W-MVE versus 35W-SC. No significant difference in citrate synthase activity was detected between any VE group and the corresponding SC group. These results suggest that a prolongation of voluntary wheel-running leads to some advantageous enhancements of functional and/or structural characteristics in rat plantaris.

  10. Effect of wheel-running during abstinence on subsequent nicotine-seeking in rats.

    PubMed

    Sanchez, Victoria; Moore, Catherine F; Brunzell, Darlene H; Lynch, Wendy J

    2013-06-01

    Exercise appears to be a promising non-pharmacological treatment for nicotine addiction that may be useful for the vulnerable adolescent population. The aim of this study is to determine if wheel-running, an animal model of aerobic exercise, during an abstinence period would decrease subsequent nicotine-seeking in rats that had extended access to nicotine self-administration during adolescence. Male adolescent rats (n = 55) were trained to self-administer saline or nicotine infusions (5 or 10 μg/kg) under a fixed ratio 1 schedule with a maximum of 20 infusions/day beginning on postnatal day 30. After 5 days, access was extended to 23 h/day with unlimited infusions for a total of 10 days. After the last self-administration session, rats were moved to polycarbonate cages for a 10-day abstinence period where they either had access to a locked or unlocked running wheel for 2 h/day. Nicotine-seeking was examined following the 10th day of abstinence under a within-session extinction/cue-induced reinstatement paradigm. Intake was higher at the 10 μg/kg dose as compared to the 5 μg/kg dose; however, intake did not differ within doses prior to wheel assignment. Compared to saline controls, rats that self-administered nicotine at either dose showed a significant increase in drug-seeking during extinction, and consistent with our hypothesis, exercise during abstinence attenuated this effect. Nicotine led to modest but significant levels of cue-induced reinstatement; however, in this adolescent-onset model, levels were variable and not affected by exercise. Exercise may effectively reduce relapse vulnerability for adolescent-onset nicotine addiction.

  11. Voluntary wheel running reduces voluntary consumption of ethanol in mice: identification of candidate genes through striatal gene expression profiling.

    PubMed

    Darlington, T M; McCarthy, R D; Cox, R J; Miyamoto-Ditmon, J; Gallego, X; Ehringer, M A

    2016-06-01

    Hedonic substitution, where wheel running reduces voluntary ethanol consumption, has been observed in prior studies. Here, we replicate and expand on previous work showing that mice decrease voluntary ethanol consumption and preference when given access to a running wheel. While earlier work has been limited mainly to behavioral studies, here we assess the underlying molecular mechanisms that may account for this interaction. From four groups of female C57BL/6J mice (control, access to two-bottle choice ethanol, access to a running wheel, and access to both two-bottle choice ethanol and a running wheel), mRNA-sequencing of the striatum identified differential gene expression. Many genes in ethanol preference quantitative trait loci were differentially expressed due to running. Furthermore, we conducted Weighted Gene Co-expression Network Analysis and identified gene networks corresponding to each effect behavioral group. Candidate genes for mediating the behavioral interaction between ethanol consumption and wheel running include multiple potassium channel genes, Oprm1, Prkcg, Stxbp1, Crhr1, Gabra3, Slc6a13, Stx1b, Pomc, Rassf5 and Camta2. After observing an overlap of many genes and functional groups previously identified in studies of initial sensitivity to ethanol, we hypothesized that wheel running may induce a change in sensitivity, thereby affecting ethanol consumption. A behavioral study examining Loss of Righting Reflex to ethanol following exercise trended toward supporting this hypothesis. These data provide a rich resource for future studies that may better characterize the observed transcriptional changes in gene networks in response to ethanol consumption and wheel running.

  12. Motivational wheel running reverses cueing behavioural inflexibility in rodents.

    PubMed

    Chomiak, Taylor; Brown, Andrew R; Teskey, G Campbell; Hu, Bin

    2017-09-18

    Behavioural inflexibility and associated atypical learning behaviours are common clinical manifestations of the autism spectrum disorder (ASD) phenotype. Despite advances in our understanding of ASD, little research has been devoted to experimental interventions that might help to circumvent behavioural inflexibility in ASD. The current paper suggests that motivational locomotion in the form of wheel running can reduce behavioural inflexibility and learning impairments in an ASD rat model, and discusses how the strategy of reward-coupled locomotor activity may lead to clinical interventions for children with ASD.

  13. Pairings of a distinctive chamber with the aftereffect of wheel running produce conditioned place preference.

    PubMed

    Lett, B T; Grant, V L; Byrne, M J; Koh, M T

    2000-02-01

    Wheel running reinforces behavior that precedes it. Also, wheel running can produce activity anorexia, a marked suppression of feeding in food-restricted rats. Some authors propose that the activity anorexia effect is produced by activation of the same reward system that mediates the reinforcing effect. One hypothesis is that such activation persists after wheel running stops and results in a rewarding aftereffect that suppresses feeding. Alternatively, such activation may give rise to an opponent process, an aversive aftereffect that suppresses feeding. The method of place conditioning was used to test whether the aftereffect of wheel running is rewarding or aversive. Food-deprived rats received pairings of a distinctive chamber with the aftereffect of wheel running. In Experiment 1, 2 h in a running wheel followed by 30 min in a distinctive chamber produced conditioned place preference. In Experiment 2, 22-22.5 h in a running wheel was followed by 30 min in the chamber and then a 60-min feeding test. Wheel running suppressed feeding and produced conditioned place preference. The conditioned place preference indicates that the aftereffect of wheel running is reinforcing rather than aversive. This finding supports the idea that the activation of the reward system persists after wheel running stops, thereby suppressing food intake.

  14. What Goes Around Can Come Around: An Unexpected Deleterious Effect of Using Mouse Running Wheels for Environmental Enrichment.

    PubMed

    Leduc, Renee Y M; Rauw, Gail; Baker, Glen B; McDermid, Heather E

    2017-03-01

    Environmental enrichment items such as running wheels can promote the wellbeing of laboratory mice. Growing evidence suggests that wheel running simulates exercise effects in many mouse models of human conditions, but this activity also might change other aspects of mouse behavior. In this case study, we show that the presence of running wheels leads to pronounced and permanent circling behavior with route-tracing in a proportion of the male mice of a genetically distinct cohort. The genetic background of this cohort includes a mutation in Arhgap19, but genetic crosses showed that an unknown second-site mutation likely caused the induced circling behavior. Behavioral tests for inner-ear function indicated a normal sense of gravity in the circling mice. However, the levels of dopamine, serotonin, and some dopamine metabolites were lower in the brains of circling male mice than in mice of the same genetic background that were weaned without wheels. Circling was seen in both singly and socially housed male mice. The additional stress of fighting may have exacerbated the predisposition to circling in the socially housed animals. Singly and socially housed male mice without wheels did not circle. Our current findings highlight the importance and possibly confounding nature of the environmental and genetic background in mouse behavioral studies, given that the circling behavior and alterations in dopamine and serotonin levels in this mouse cohort occurred only when the male mice were housed with running wheels.

  15. Comparative adaptations in oxidative and glycolytic muscle fibers in a low voluntary wheel running rat model performing three levels of physical activity

    PubMed Central

    Hyatt, Hayden W; Toedebusch, Ryan G; Ruegsegger, Greg; Mobley, C Brooks; Fox, Carlton D; McGinnis, Graham R; Quindry, John C; Booth, Frank W; Roberts, Michael D; Kavazis, Andreas N

    2015-01-01

    A unique polygenic model of rat physical activity has been recently developed where rats were selected for the trait of low voluntary wheel running. We utilized this model to identify differences in soleus and plantaris muscles of sedentary low voluntary wheel running rats and physically active low voluntary wheel running rats exposed to moderate amounts of treadmill training. Three groups of 28-day-old male Wistar rats were used: (1) rats without a running wheel (SEDENTARY, n = 7), (2) rats housed with a running wheel (WHEEL, n = 7), and (3) rats housed with a running wheel and exercised on the treadmill (5 days/week for 20 min/day at 15.0 m/min) (WHEEL + TREADMILL, n = 7). Animals were euthanized 5 weeks after the start of the experiment and the soleus and plantaris muscles were excised and used for analyses. Increases in skeletal muscle gene expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha and fibronectin type III domain-containing protein 5 in WHEEL + TREADMILL group were observed. Also, WHEEL + TREADMILL had higher protein levels of superoxide dismutase 2 and decreased levels of oxidative damage. Our data demonstrate that the addition of treadmill training induces beneficial muscular adaptations compared to animals with wheel access alone. Furthermore, our data expand our understanding of differential muscular adaptations in response to exercise in mitochondrial, antioxidant, and metabolic markers. PMID:26603455

  16. Comparative adaptations in oxidative and glycolytic muscle fibers in a low voluntary wheel running rat model performing three levels of physical activity.

    PubMed

    Hyatt, Hayden W; Toedebusch, Ryan G; Ruegsegger, Greg; Mobley, C Brooks; Fox, Carlton D; McGinnis, Graham R; Quindry, John C; Booth, Frank W; Roberts, Michael D; Kavazis, Andreas N

    2015-11-01

    A unique polygenic model of rat physical activity has been recently developed where rats were selected for the trait of low voluntary wheel running. We utilized this model to identify differences in soleus and plantaris muscles of sedentary low voluntary wheel running rats and physically active low voluntary wheel running rats exposed to moderate amounts of treadmill training. Three groups of 28-day-old male Wistar rats were used: (1) rats without a running wheel (SEDENTARY, n = 7), (2) rats housed with a running wheel (WHEEL, n = 7), and (3) rats housed with a running wheel and exercised on the treadmill (5 days/week for 20 min/day at 15.0 m/min) (WHEEL + TREADMILL, n = 7). Animals were euthanized 5 weeks after the start of the experiment and the soleus and plantaris muscles were excised and used for analyses. Increases in skeletal muscle gene expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha and fibronectin type III domain-containing protein 5 in WHEEL + TREADMILL group were observed. Also, WHEEL + TREADMILL had higher protein levels of superoxide dismutase 2 and decreased levels of oxidative damage. Our data demonstrate that the addition of treadmill training induces beneficial muscular adaptations compared to animals with wheel access alone. Furthermore, our data expand our understanding of differential muscular adaptations in response to exercise in mitochondrial, antioxidant, and metabolic markers.

  17. The effects of acute voluntary wheel running on recovery of function following medial frontal cortical contusions in rats.

    PubMed

    Crane, Andrew T; Fink, Kyle D; Smith, Jeffrey S

    2012-01-01

    Traumatic brain injury (TBI) produces significant deficits in executive function, sensory-motor function, and on spatial learning tasks. We wish to study if recovery from TBI can be benefited by voluntary exercise. A variation of the stop-signal reaction time (SSRT) task was employed to measure rats ability to obtain maximum reinforcers in a complex behavioral task. A 2 × 2 (lesion × treatment) experimental design was constructed with 31 weight restricted male Long-Evans rats which received either bilateral cortical contusions to the medial frontal cortex or sham preparations following the acquisition of the SSRT task (matched based on pre-surgical performance). Following surgery, rats were randomly assigned to either an environment with free access to running wheels or traditional single housing without running wheels. Rats receiving a bilateral TBI performed significantly worse than sham operated rats on a complex task. Contrary to our original hypothesis, acute exercise following injury exacerbated the deficits in the complex task that did not return to levels of the injured rats without access to running wheels until post-TBI day 13. We found a significant interaction between severe bilateral TBI and the introduction of voluntary exercise immediately post-injury. In this paradigm, voluntary wheel running exacerbated the TBI-induced deficit, rather than reducing it.

  18. Chronic wheel running affects cocaine-induced c-Fos expression in brain reward areas in rats.

    PubMed

    Zlebnik, Natalie E; Hedges, Valerie L; Carroll, Marilyn E; Meisel, Robert L

    2014-03-15

    Emerging evidence from human and animal studies suggests that exercise is a highly effective treatment for drug addiction. However, most work has been done in behavioral models, and the effects of exercise on the neurobiological substrates of addiction have not been identified. Specifically, it is unknown whether prior exercise exposure alters neuronal activation of brain reward circuitry in response to drugs of abuse. To investigate this hypothesis, rats were given 21 days of daily access to voluntary wheel running in a locked or unlocked running wheel. Subsequently, they were challenged with a saline or cocaine (15 mg/kg, i.p.) injection and sacrificed for c-Fos immunohistochemistry. The c-Fos transcription factor is a measure of cellular activity and was used to quantify cocaine-induced activation of reward-processing areas of the brain: nucleus accumbens (NAc), caudate putamen (CPu), medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC). The mean fold change in cocaine-induced c-Fos cell counts relative to saline-induced c-Fos cell counts was significantly higher in exercising compared to control rats in the NAc core, dorsomedial and dorsolateral CPu, the prelimbic area, and the OFC, indicating differential cocaine-specific cellular activation of brain reward circuitry between exercising and control animals. These results suggest neurobiological mechanisms by which voluntary wheel running attenuates cocaine-motivated behaviors and provide support for exercise as a novel treatment for drug addiction. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Why Animals Run on Legs, Not on Wheels.

    ERIC Educational Resources Information Center

    Diamond, Jared

    1983-01-01

    Speculates why animals have not developed wheels in place of inefficient legs. One study cited suggests three reasons why animals are better off without wheels: wheels are efficient only on hard surfaces, limitation of wheeled motion due to vertical obstructions, and the problem of turning in spaces cluttered with obstacles. (JN)

  20. Why Animals Run on Legs, Not on Wheels.

    ERIC Educational Resources Information Center

    Diamond, Jared

    1983-01-01

    Speculates why animals have not developed wheels in place of inefficient legs. One study cited suggests three reasons why animals are better off without wheels: wheels are efficient only on hard surfaces, limitation of wheeled motion due to vertical obstructions, and the problem of turning in spaces cluttered with obstacles. (JN)

  1. Wheel-running activity increases with social stress in male DBA mice.

    PubMed

    Uchiumi, Kaori; Aoki, Mami; Kikusui, Takefumi; Takeuchi, Yukari; Mori, Yuji

    2008-01-28

    Social affiliation-avoidance behaviors are essential indices of sociality. We examined changes in social affiliation-avoidance behaviors in an open-field apparatus while simultaneously measuring wheel-running activity. Recent studies suggest that mice increase wheel-running activity in stressful situations; thus, we hypothesized that wheel-running activity would reflect a state of social stress and avoidance. Mean duration of wheel-running increased significantly when mice were confronted with unfamiliar mice compared to cage mates. There were negative correlations between the amount of wheel-running and social affiliation indices. We also examined the effect of social defeat on wheel-running activity. Mice that had experienced social defeat significantly increased their wheel-running when an aggressor mouse was present. This social defeat-induced wheel-running activity was ameliorated by the administration of diazepam. Our results indicate that wheel-running activity is relevant to social affiliation-avoidance behaviors and may be a reliable index of anxiety induced by social stress.

  2. Neurotrophin levels and behaviour in BALB/c mice: impact of intermittent exposure to individual housing and wheel running.

    PubMed

    Zhu, Shun-Wei; Pham, Therese M; Aberg, Elin; Brené, Stefan; Winblad, Bengt; Mohammed, Abdul H; Baumans, Vera

    2006-02-15

    This study assessed the effects of intermittent individual housing on behaviour and brain neurotrophins, and whether physical exercise could influence alternate individual-housing-induced effects. Five-week-old BALB/c mice were either housed in enhanced social (E) or standard social (S) housing conditions for 2 weeks. Thereafter they were divided into six groups and for 6 weeks remained in the following experimental conditions: Control groups remained in their respective housing conditions (E-control, S-control); enhanced individual (E-individual) and standard individual (S-individual) groups were exposed every other day to individual cages without running-wheels; enhanced running-wheel (E-wheel) and standard running-wheel (S-wheel) groups were put on alternate days in individual running-wheel cages. Animals were assessed for activity in an automated individual cage system (LABORAS) and brain neurotrophins analysed. Intermittent individual housing increased behavioural activity and reduced nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) levels in frontal cortex; while it increased BDNF level in the amygdala and BDNF protein and mRNA in hippocampus. Besides normalizing motor activity and regulating BDNF and NGF levels in hippocampus, amygdala and cerebellum, physical exercise did not attenuate reduction of cortical NGF and BDNF induced by intermittent individual housing. This study demonstrates that alternate individual housing has significant impact on behaviour and brain neurotrophin levels in mice, which can be partially altered by voluntary physical exercise. Our results also suggest that some changes in neurotrophin levels induced by intermittent individual housing are not similar to those caused by continuous individual housing.

  3. Body weight manipulation, reinforcement value and choice between sucrose and wheel running: a behavioral economic analysis.

    PubMed

    Belke, Terry W; Pierce, W David

    2009-02-01

    Twelve female Long-Evans rats were exposed to concurrent variable (VR) ratio schedules of sucrose and wheel-running reinforcement (Sucrose VR 10 Wheel VR 10; Sucrose VR 5 Wheel VR 20; Sucrose VR 20 Wheel VR 5) with predetermined budgets (number of responses). The allocation of lever pressing to the sucrose and wheel-running alternatives was assessed at high and low body weights. Results showed that wheel-running rate and lever-pressing rates for sucrose and wheel running increased, but the choice of wheel running decreased at the low body weight. A regression analysis of relative consumption as a function of relative price showed that consumption shifted toward sucrose and interacted with price differences in a manner consistent with increased substitutability. Demand curves showed that demand for sucrose became less elastic while demand for wheel running became more elastic at the low body weight. These findings reflect an increase in the difference in relative value of sucrose and wheel running as body weight decreased. Discussion focuses on the limitations of response rates as measures of reinforcement value. In addition, we address the commonalities between matching and demand curve equations for the analysis of changes in relative reinforcement value.

  4. Running-wheel activity and body composition in golden hamsters (Mesocricetus auratus).

    PubMed

    Gattermann, Rolf; Weinandy, René; Fritzsche, Peter

    2004-09-15

    Running wheels are frequently used in behavioural and physiological experiments. The function of wheel-running activity in laboratory animals is controversial. In the present long-term study, the influence of this activity was evaluated in male golden hamsters over a period of 52 weeks. Four months after the start of the experiment, hamsters with access to running wheels were significantly heavier than those without these wheels. In addition, food consumption nearly doubled. The absolute values of fat-free mass (FFM), total body water (TBW) and crude fat mass (CFM) increased. However, in contrast to these absolute differences, the relative values were never different and general body composition was therefore unaffected by running-wheel activity. Different organ masses were established for absolute values of kidneys, testes and epididymis; possible effects on reproduction are discussed. The present data indicating improved physical condition leads to the assumption that a running wheel is a useful enrichment, enhancing animal welfare in the golden hamster.

  5. Caffeine stimulates voluntary wheel running in mice without increasing aerobic capacity.

    PubMed

    Claghorn, Gerald C; Thompson, Zoe; Wi, Kristianna; Van, Lindsay; Garland, Theodore

    2017-03-01

    The "energy drink" Red Bull and the "sports drink" Gatorade are often marketed to athletes, with claims that they cause performance gains. However, both are high in sugars, and also consumed by non-athletes. Few studies have addressed the effects of these drinks or their biologically active components in rodent exercise models. We used three experiments to test effects on both voluntary exercise behavior and maximal aerobic capacity in lines of mice known to differ in "athletic" traits. Mice from four replicate High Runner (HR) lines have been selectively bred for voluntary running on wheels, and run approximately three times as many revolutions per day as do mice from four non-selected Control (C) lines. HR mice also have higher endurance and maximal oxygen consumption (VO2max) during forced treadmill exercise. In Experiment 1, we tested the hypothesis that Gatorade or Red Bull might cause or allow mice to increase their voluntary wheel running. On days 5 and 6 of 6days of wheel access, as is used to select breeders, HR mice ran 3.3-fold more than C, and females ran 1.2-fold more than males, with no linetype by sex interaction. On day 7, mice were administered Gatorade, Red Bull or tap water. During the subsequent 19-hour period, Gatorade had no statistical effect on running, but Red Bull significantly increased distance run by both sexes and in both HR and C lines. The increase in distance run caused by Red Bull was attributable to time spent running, not an increase in mean (or maximum) speed. As previous studies have found that sucrose alone does not generally increase wheel running, we tested two other active ingredients in Red Bull, caffeine and taurine, in Experiment 2. With a similar testing protocol, caffeine alone and caffeine+taurine increased running by about half the magnitude of Red Bull. In Experiment 3, we tested the hypothesis that Red Bull or caffeine alone can increase physiological performance ability during aerobic exercise, measured as VO2max

  6. Cardiac and skeletal muscle adaptations to voluntary wheel running in the mouse.

    PubMed

    Allen, D L; Harrison, B C; Maass, A; Bell, M L; Byrnes, W C; Leinwand, L A

    2001-05-01

    In this paper, we describe the effects of voluntary cage wheel exercise on mouse cardiac and skeletal muscle. Inbred male C57/Bl6 mice (age 6-8 wk; n = 12) [corrected] ran an average of 4.3 h/24 h, for an average distance of 6.8 km/24 h, and at an average speed of 26.4 m/min. A significant increase in the ratio of heart mass to body mass (mg/g) was evident after 2 wk of voluntary exercise, and cardiac atrial natriuretic factor and brain natriuretic peptide mRNA levels were significantly increased in the ventricles after 4 wk of voluntary exercise. A significant increase in the percentage of fibers expressing myosin heavy chain (MHC) IIa was observed in both the gastrocnemius and the tibialis anterior (TA) by 2 wk, and a significant decrease in the percentage of fibers expressing IIb MHC was evident in both muscles after 4 wk of voluntary exercise. The TA muscle showed a greater increase in the percentage of IIa MHC-expressing fibers than did the gastrocnemius muscle (40 and 20%, respectively, compared with 10% for nonexercised). Finally, the number of oxidative fibers as revealed by NADH-tetrazolium reductase histochemical staining was increased in the TA but not the gastrocnemius after 4 wk of voluntary exercise. All results are relative to age-matched mice housed without access to running wheels. Together these data demonstrate that voluntary exercise in mice results in cardiac and skeletal muscle adaptations consistent with endurance exercise.

  7. Long-term wheel running compromises diaphragm function but improves cardiac and plantarflexor function in the mdx mouse.

    PubMed

    Selsby, Joshua T; Acosta, Pedro; Sleeper, Meg M; Barton, Elisabeth R; Sweeney, H Lee

    2013-09-01

    Dystrophin-deficient muscles suffer from free radical injury, mitochondrial dysfunction, apoptosis, and inflammation, among other pathologies that contribute to muscle fiber injury and loss, leading to wheelchair confinement and death in the patient. For some time, it has been appreciated that endurance training has the potential to counter many of these contributing factors. Correspondingly, numerous investigations have shown improvements in limb muscle function following endurance training in mdx mice. However, the effect of long-term volitional wheel running on diaphragm and cardiac function is largely unknown. Our purpose was to determine the extent to which long-term endurance exercise affected dystrophic limb, diaphragm, and cardiac function. Diaphragm specific tension was reduced by 60% (P < 0.05) in mice that performed 1 yr of volitional wheel running compared with sedentary mdx mice. Dorsiflexor mass (extensor digitorum longus and tibialis anterior) and function (extensor digitorum longus) were not altered by endurance training. In mice that performed 1 yr of volitional wheel running, plantarflexor mass (soleus and gastrocnemius) was increased and soleus tetanic force was increased 36%, while specific tension was similar in wheel-running and sedentary groups. Cardiac mass was increased 15%, left ventricle chamber size was increased 20% (diastole) and 18% (systole), and stroke volume was increased twofold in wheel-running compared with sedentary mdx mice. These data suggest that the dystrophic heart may undergo positive exercise-induced remodeling and that limb muscle function is largely unaffected. Most importantly, however, as the diaphragm most closely recapitulates the human disease, these data raise the possibility of exercise-mediated injury in dystrophic skeletal muscle.

  8. The Influences of the Wheel Profiles on the Wheel Wear and Vibrational Characteristics of the Passenger Cars Running on the Seoul-Pusan Conventional Line

    NASA Astrophysics Data System (ADS)

    Kang, Bu-Byoung; Lee, Chan-Woo

    Wheels of the railway vehicle play the important role for driving train through wheel-rail interaction. Especially wheel profile is one of the most important design factors to rule the running stability and safety of train. Accordingly maintenance of wheel like wheel profile control is also very important for securing safety and stability of train operation. This study presents the wheel wear measurement results of Saemaeul running on the conventional line. The train set included three different cars which have different shape of wheel profile including KNR profile currently used in Saemaeul. Train set was operated on Seoul-Pusan line with fixed train set formation for commercial service. Wheel wear measurements were performed periodically. We can find the influence of wheel profile on the wheel wear of the train running on the conventional line through the measurement results.

  9. Reinforcement Value and Substitutability of Sucrose and Wheel Running: Implications for Activity Anorexia

    ERIC Educational Resources Information Center

    Belke, Terry W.; Duncan, Ian D.; Pierce, W. David

    2006-01-01

    Choice between sucrose and wheel-running reinforcement was assessed in two experiments. In the first experiment, ten male Wistar rats were exposed to concurrent VI 30 s VI 30 s schedules of wheel-running and sucrose reinforcement. Sucrose concentration varied across concentrations of 2.5, 7.5, and 12.5%. As concentration increased, more behavior…

  10. Reinforcement Value and Substitutability of Sucrose and Wheel Running: Implications for Activity Anorexia

    ERIC Educational Resources Information Center

    Belke, Terry W.; Duncan, Ian D.; Pierce, W. David

    2006-01-01

    Choice between sucrose and wheel-running reinforcement was assessed in two experiments. In the first experiment, ten male Wistar rats were exposed to concurrent VI 30 s VI 30 s schedules of wheel-running and sucrose reinforcement. Sucrose concentration varied across concentrations of 2.5, 7.5, and 12.5%. As concentration increased, more behavior…

  11. Chronic voluntary wheel running facilitates corticosterone response habituation to repeated audiogenic stress exposure in male rats.

    PubMed

    Sasse, Sarah K; Greenwood, Benjamin N; Masini, Cher V; Nyhuis, Tara J; Fleshner, Monika; Day, Heidi E W; Campeau, Serge

    2008-11-01

    Voluntary exercise is associated with the prevention and treatment of numerous physical and psychological illnesses, yet the mechanisms by which it confers this protection remain unclear. In contrast, stress, particularly under conditions of prolonged or repeated exposure when glucocorticoid levels are consistently elevated, can have a devastating impact on health. It has been suggested that the benefits of physical exercise may lie in an ability to reduce some of the more deleterious health effects of stress and stress hormones. The present series of experiments provides evidence that voluntary exercise facilitates habituation of corticosterone but not adrenocorticotropin hormone responses to repeated stress presentations. After 6 weeks of running wheel access or sedentary housing conditions, rats were exposed to 11 consecutive daily 30 min presentations of 98 dB noise stress. Similar corticosterone responses in exercised rats and sedentary controls were observed following the first, acute stress presentation. While both groups demonstrated habituation of corticosterone secretory responses with repeated noise stress exposures, the rate of habituation was significantly facilitated in exercised animals. These results suggest that voluntary exercise may reduce the negative impact of prolonged or repeated stress on health by enhancing habituation of the corticosterone response ultimately reducing the amount of glucocorticoids the body and brain are exposed to.

  12. Chronic voluntary wheel running facilitates corticosterone response habituation to repeated audiogenic stress exposure in male rats

    PubMed Central

    SASSE, SARAH K.; GREENWOOD, BENJAMIN N.; MASINI, CHER V.; NYHUIS, TARA J.; FLESHNER, MONIKA; DAY, HEIDI E. W.; CAMPEAU, SERGE

    2008-01-01

    Voluntary exercise is associated with the prevention and treatment of numerous physical and psychological illnesses, yet the mechanisms by which it confers this protection remain unclear. In contrast, stress, particularly under conditions of prolonged or repeated exposure when glucocorticoid levels are consistently elevated, can have a devastating impact on health. It has been suggested that the benefits of physical exercise may lie in an ability to reduce some of the more deleterious health effects of stress and stress hormones. The present series of experiments provides evidence that voluntary exercise facilitates habituation of corticosterone but not adrenocorticotropin hormone responses to repeated stress presentations. After 6 weeks of running wheel access or sedentary housing conditions, rats were exposed to 11 consecutive daily 30 min presentations of 98 dB noise stress. Similar corticosterone responses in exercised rats and sedentary controls were observed following the first, acute stress presentation. While both groups demonstrated habituation of corticosterone secretory responses with repeated noise stress exposures, the rate of habituation was significantly facilitated in exercised animals. These results suggest that voluntary exercise may reduce the negative impact of prolonged or repeated stress on health by enhancing habituation of hypothalamo-pituitary–adrenocortical axis responses at the level of the adrenal cortex, ultimately reducing the amount of glucocorticoids the body and brain are exposed to. PMID:19065456

  13. Wheel running improves REM sleep and attenuates stress-induced flattening of diurnal rhythms in F344 rats.

    PubMed

    Thompson, Robert S; Roller, Rachel; Greenwood, Benjamin N; Fleshner, Monika

    2016-05-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12 h light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise.

  14. Wheel Running Improves REM Sleep and Attenuates Stress-induced Flattening of Diurnal Rhythms in F344 Rats

    PubMed Central

    Thompson, Robert S.; Roller, Rachel; Greenwood, Benjamin N.; Fleshner, Monika

    2016-01-01

    Regular physical activity produces resistance to the negative health consequences of stressor exposure. One way that exercise may confer stress resistance is by reducing the impact of stress on diurnal rhythms and sleep; disruptions of which contribute to stress-related disease including mood disorders. Given the link between diurnal rhythm disruptions and stress-related disorders and that exercise both promotes stress resistance and is a powerful non-photic biological entrainment cue, we tested if wheel running could reduce stress-induced disruptions of sleep/wake behavior and diurnal rhythms. Adult, male F344 rats with or without access to running wheels were instrumented for biotelemetric recording of diurnal rhythms of locomotor activity, heart rate, core body temperature (CBT), and sleep (i.e. REM, NREM, and WAKE) in the presence of a 12hr light/dark cycle. Following 6 weeks of sedentary or exercise conditions, rats were exposed to an acute stressor known to disrupt diurnal rhythms and produce behaviors associated with mood disorders. Prior to stressor exposure, exercise rats had higher CBT, more locomotor activity during the dark cycle, and greater %REM during the light cycle relative to sedentary rats. NREM and REM sleep were consolidated immediately following peak running to a greater extent in exercise, compared to sedentary rats. In response to stressor exposure, exercise rats expressed higher stress-induced hyperthermia than sedentary rats. Stressor exposure disrupted diurnal rhythms in sedentary rats; and wheel running reduced these effects. Improvements in sleep and reduced diurnal rhythm disruptions following stress could contribute to the health promoting and stress protective effects of exercise. PMID:27124542

  15. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons.

    PubMed

    Sobieraj, Jeffery C; Kim, Airee; Fannon, McKenzie J; Mandyam, Chitra D

    2016-01-01

    Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug-cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6 h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for 3 weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings also

  16. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons

    PubMed Central

    Sobieraj, Jeffery C.; Kim, Airee; Fannon, McKenzie J.; Mandyam, Chitra D.

    2015-01-01

    Exercise (physical activity) has been proposed as a treatment for drug addiction. In rodents, voluntary wheel running reduces cocaine and nicotine seeking during extinction, and reinstatement of cocaine seeking triggered by drug cues. The purpose of this study was to examine the effects of chronic wheel running during withdrawal and protracted abstinence on extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats, and to determine a potential neurobiological correlate underlying the effects. Rats were given extended access to methamphetamine (0.05 mg/kg, 6h/day) for 22 sessions. Rats were withdrawn and were given access to running wheels (wheel runners) or no wheels (sedentary) for three weeks after which they experienced extinction and reinstatement of methamphetamine seeking. Extended access to methamphetamine self-administration produced escalation in methamphetamine intake. Methamphetamine experience reduced running output, and conversely, access to wheel running during withdrawal reduced responding during extinction and, context- and cue-induced reinstatement of methamphetamine seeking. Immunohistochemical analysis of brain tissue demonstrated that wheel running during withdrawal did not regulate markers of methamphetamine neurotoxicity (neurogenesis, neuronal nitric oxide synthase, vesicular monoamine transporter-2) and cellular activation (c-Fos) in brain regions involved in relapse to drug seeking. However, reduced methamphetamine seeking was associated with running-induced reduction (and normalization) of the number of tyrosine hydroxylase (TH) immunoreactive neurons in the periaqueductal gray (PAG). The present study provides evidence that dopamine neurons of the PAG region show adaptive biochemical changes during methamphetamine seeking in methamphetamine dependent rats and wheel running abolishes these effects. Given that the PAG dopamine neurons project onto the structures of the extended amygdala, the present findings

  17. Wheel-running mitigates psychomotor sensitization initiation but not post-sensitization conditioned activity and conditioned place preference induced by cocaine in mice.

    PubMed

    Geuzaine, Annabelle; Tirelli, Ezio

    2014-04-01

    Previous literature suggests that physical exercise allowed by an unlimited access to a running wheel for several weeks can mitigate chronic neurobehavioral responsiveness to several addictive drugs in rodents. Here, the potential preventive effects of unlimited wheel-running on the initiation of psychomotor sensitization and the acquisition and extinction of conditioned place preference (CPP) induced by 10 mg/kg cocaine in C56BL/6J mice were assessed in two independent experiments. To this end, half of the mice were singly housed with a running wheel at 28 days of age for 10 weeks prior to psychopharmacological tests, during which housing conditions did not change, and the other half of mice were housed without running wheel. In Experiment 1, prior to initiating sensitization, psychomotor activity on the two first drug-free once-daily sessions was not affected by wheel-running. This was also found for the acute psychomotor-activating effect of cocaine on the first sensitization session. Psychomotor sensitization readily developed over the 9 following once-daily sessions in mice housed without wheel, whereas it was inhibited in mice housed with a wheel. However, that difference did not transfer to post-sensitization conditioned activity. In contrast with the sensitization results, mice housed with a wheel still expressed a clear-cut CPP which did not extinguish differently from that of the other group, a result in disaccord with previous studies reporting either an attenuating or an increasing effect of wheel-running on cocaine-induced conditioned reward. The available results together indicate that interactions between wheel-running and cocaine effects are far from being satisfactorily characterized.

  18. Wheel-running reinforcement in free-feeding and food-deprived rats.

    PubMed

    Belke, Terry W; Pierce, W David

    2016-03-01

    Rats experiencing sessions of 30min free access to wheel running were assigned to ad-lib and food-deprived groups, and given additional sessions of free wheel activity. Subsequently, both ad-lib and deprived rats lever pressed for 60s of wheel running on fixed ratio (FR) 1, variable ratio (VR) 3, VR 5, and VR 10 schedules, and on a response-initiated variable interval (VI) 30s schedule. Finally, the ad-lib rats were switched to food deprivation and the food-deprived rats were switched to free food, as rats continued responding on the response-initiated VI 30-s schedule. Wheel running functioned as reinforcement for both ad-lib and food-deprived rats. Food-deprived rats, however, ran faster and had higher overall lever-pressing rates than free-feeding rats. On the VR schedules, wheel-running rates positively correlated with local and overall lever pressing rates for deprived, but not ad-lib rats. On the response-initiated VI 30s schedule, wheel-running rates and lever-pressing rates changed for ad-lib rats switched to food deprivation, but not for food-deprived rats switched to free-feeding. The overall pattern of results suggested different sources of control for wheel running: intrinsic motivation, contingencies of automatic reinforcement, and food-restricted wheel running. An implication is that generalizations about operant responding for wheel running in food-deprived rats may not extend to wheel running and operant responding of free-feeding animals.

  19. Effect of sucrose availability and pre-running on the intrinsic value of wheel running as an operant and a reinforcing consequence.

    PubMed

    Belke, Terry W; Pierce, W David

    2014-03-01

    The current study investigated the effect of motivational manipulations on operant wheel running for sucrose reinforcement and on wheel running as a behavioral consequence for lever pressing, within the same experimental context. Specifically, rats responded on a two-component multiple schedule of reinforcement in which lever pressing produced the opportunity to run in a wheel in one component of the schedule (reinforcer component) and wheel running produced the opportunity to consume sucrose solution in the other component (operant component). Motivational manipulations involved removal of sucrose contingent on wheel running and providing 1h of pre-session wheel running. Results showed that, in opposition to a response strengthening view, sucrose did not maintain operant wheel running. The motivational operations of withdrawing sucrose or providing pre-session wheel running, however, resulted in different wheel-running rates in the operant and reinforcer components of the multiple schedule; this rate discrepancy revealed the extrinsic reinforcing effects of sucrose on operant wheel running, but also indicated the intrinsic reinforcement value of wheel running across components. Differences in wheel-running rates between components were discussed in terms of arousal, undermining of intrinsic motivation, and behavioral contrast.

  20. A novel mouse running wheel that senses individual limb forces: biomechanical validation and in vivo testing.

    PubMed

    Roach, Grahm C; Edke, Mangesh; Griffin, Timothy M

    2012-08-15

    Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion.

  1. CB1 receptor deficiency decreases wheel-running activity: consequences on emotional behaviours and hippocampal neurogenesis.

    PubMed

    Dubreucq, Sarah; Koehl, Muriel; Abrous, Djoher N; Marsicano, Giovanni; Chaouloff, Francis

    2010-07-01

    Chronic voluntary wheel-running activity has been reported to hypersensitise central CB1 receptors in mice. On the other hand, pharmacological findings suggest that the CB1 receptor could be involved in wheel-running behaviour and in running-induced neurogenesis in the hippocampus. We analysed wheel-running behaviour for 6 weeks and measured its consequences on hippocampal neurogenesis in CB1 knockout (CB1(-/-)) animals, compared to wild-type (CB1(+/+)) littermates. Because wheel running has been shown to affect locomotor reactivity in novel environments, memory for aversive events and depression-like behaviours, we also assessed these behaviours in control and running CB1(+/+) and CB1(-/-) mice. When compared with running CB1(+/+) mice, the distance covered weekly by CB1(-/-) mice was decreased by 30-40%, an observation accounted for by decreased time spent and maximal velocity on the wheels. Analyses of running distances with respect to the light/dark cycle revealed that mutant covered less distance throughout both the inactive and the active phases of that cycle. Locomotion in an activity cage, exploration in an open field, and immobility time in the forced swim test proved insensitive to chronic wheel running in either genotype. Wheel running, per se, did not influence the expression and extinction of cued fear memory but counteracted in a time-dependent manner the deficiency of extinction measured in CB1(-/-) mice. Hippocampal neurogenesis, assessed by doublecortin labelling of immature neurons in the dentate gyrus, was lowered by 40% in control CB1(-/-) mice, compared to control CB1(+/+) mice. Although CB1(-/-) mice ran less than their wild-type littermates, the 6-week running protocol increased neurogenesis to similar extents (37-39%) in both genotypes. This study suggests that mouse CB1 receptors control wheel running but not its neurogenic consequences in the hippocampus. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Differential expression of stress proteins in rat myocardium after free wheel or treadmill run training.

    PubMed

    Noble, E G; Moraska, A; Mazzeo, R S; Roth, D A; Olsson, M C; Moore, R L; Fleshner, M

    1999-05-01

    High-intensity treadmill exercise increases the expression of a cardioprotective, inducible 72-kDa stress protein (SP72) in cardiac muscle. This investigation examined whether voluntary free wheel exercise training would be sufficient to confer a similar response. Male Sprague-Dawley rats were randomly assigned to either treadmill (TM-Tr) or free wheel (FW-Tr) training groups. By the end of the 8-wk training period, TM-Tr animals ran 1 h/day, 5 days/wk up a 10% grade, covering a distance of 8,282 m/wk. FW-Tr rats ran, on average, 5,300 m/wk, with one-third of the animals covering distances similar to those for the TM-Tr group. At the time of death, hearts of trained and caged sedentary control (Sed) animals were divided into left (LV) and right (RV) ventricles. Citrate synthase activity and the relative immunoblot contents of SP72, SP73 (the constitutive isoform of the SP70 family), and a 75-kDa mitochondrial chaperone (SP75) were subsequently determined. LV and RV did not differ on any measure, and SP73, SP75, and citrate synthase were not affected by training. Cardiac SP72 levels were elevated over fourfold in both ventricles of TM-Tr compared with RV of FW-Sed rats. Despite the animals having run a similar total distance, cardiac SP72 content in FW-Tr rats was not different from that in Sed animals. These data indicate that voluntary exercise training is insufficient to elicit an elevation of SP72 in rat heart and suggest that exercise intensity may be a critical factor in evoking the cardioprotective SP72 response.

  3. Identification of mouse gaits using a novel force-sensing exercise wheel

    PubMed Central

    Cullingford, Lottie; Usherwood, James R.

    2015-01-01

    The gaits that animals use can provide information on neurological and musculoskeletal disorders, as well as the biomechanics of locomotion. Mice are a common research model in many fields; however, there is no consensus in the literature on how (and if) mouse gaits vary with speed. One of the challenges in studying mouse gaits is that mice tend to run intermittently on treadmills or overground; this paper attempts to overcome this issue with a novel exercise wheel that measures vertical ground reaction forces. Unlike previous instrumented wheels, this wheel is able to measure forces continuously and can therefore record data from consecutive strides. By concatenating the maximum limb force at each time point, a force trace can be constructed to quantify and identify gaits. The wheel was three dimensionally printed, allowing the design to be shared with other researchers. The kinematic parameters measured by the wheel were evaluated using high-speed video. Gaits were classified using a metric called “3S” (stride signal symmetry), which quantifies the half wave symmetry of the force trace peaks. Although mice are capable of using both symmetric and asymmetric gaits throughout their speed range, the continuum of gaits can be divided into regions based on the frequency of symmetric and asymmetric gaits; these divisions are further supported by the fact that mice run less frequently at speeds near the boundaries between regions. The boundary speeds correspond to gait transition speeds predicted by the hypothesis that mice move in a dynamically similar fashion to other legged animals. PMID:26139220

  4. Exercise economy in skiing and running.

    PubMed

    Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein

    2014-01-01

    Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg(-1)·min(-1)) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00-0.23), cycle rate (r = 0.03-0.46), body mass (r = -0.09-0.46) and body height (r = 0.11-0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects.

  5. Exercise economy in skiing and running

    PubMed Central

    Losnegard, Thomas; Schäfer, Daniela; Hallén, Jostein

    2014-01-01

    Substantial inter-individual variations in exercise economy exist even in highly trained endurance athletes. The variation is believed to be determined partly by intrinsic factors. Therefore, in the present study, we compared exercise economy in V2-skating, double poling, and uphill running. Ten highly trained male cross-country skiers (23 ± 3 years, 180 ± 6 cm, 75 ± 8 kg, VO2peak running: 76.3 ± 5.6 mL·kg−1·min−1) participated in the study. Exercise economy and VO2peak during treadmill running, ski skating (V2 technique) and double poling were compared based on correlation analysis. There was a very large correlation in exercise economy between V2-skating and double poling (r = 0.81) and large correlations between V2-skating and running (r = 0.53) and double poling and running (r = 0.58). There were trivial to moderate correlations between exercise economy and the intrinsic factors VO2peak (r = 0.00–0.23), cycle rate (r = 0.03–0.46), body mass (r = −0.09–0.46) and body height (r = 0.11–0.36). In conclusion, the inter-individual variation in exercise economy could be explained only moderately by differences in VO2peak, body mass and body height. Apparently other intrinsic factors contribute to the variation in exercise economy between highly trained subjects. PMID:24478718

  6. [Differences of behavioral rhythms observed by flat cage and running-wheel cage in female rat].

    PubMed

    Shinoda, M; Miura, T; Tadokoro, S

    1988-10-01

    The ambulatory, wheel-running, and drinking activities were measured in Wistar-Imamichi strain female rats under 12 L:12 D condition (6:00-18:00), using Gundai type ambulo-drinkometer (for simultaneous measurements of ambulation and drinking) and wheel-drinkometer (for simultaneous measurements of wheel-running and drinking) to compare the rhythmicities of each behavioral activity. These apparatuses are able to measure the behavioral activities over a long period, successively and automatically. The circadian patterns of ambulatory activity had two large peaks at 21 or 24:00 and at 6:00 (acrophase). Contrary to the above results, the wheel-running activity exhibited clear mono-peak at 21:00 (acrophase). Thus, apparent differences of the pattern were observed between the two activities. However, ambulatory and wheel-running activities fluctuated showing 4-days rhythmicity, and both activities increased in estrus and proestrus stages, respectively. The circadian rhythms of drinking activities measured by both apparatuses showed almost same patterns with acrophases at 6:00, and 4-days rhythmicities were also observed and were characterized by remarkable decrease of activity in every proestrus stages. From these results, it is concluded that circadian pattern of ambulatory activity is different from that of wheel-running activity, but circadian patterns of drinking activities are stable regardless of different methods of the measurement. The ambulatory, wheel-running and drinking activities reflect the behavioral changes in sexual cycles.

  7. Neither environmental enrichment nor voluntary wheel running enhances recovery from incomplete spinal cord injury in rats.

    PubMed

    Erschbamer, M K; Pham, T M; Zwart, M C; Baumans, V; Olson, L

    2006-09-01

    Environmental enrichment and exercise may be neuroprotective or promote recovery after different forms of CNS injury. Here, we tested the possible effects of moderate environmental enrichment and voluntary exercise on the outcome of incomplete spinal cord injury in rats. We provided rats in standard cages with basic environmental enrichment (carton house, nesting material, tube, gnawing sticks). We also analyzed the effect of increased activity by housing spinal-cord-injured rats in cages with or without access to running wheels. In a third experiment, we looked at the possible effect of pre-injury training. In all experiments, a battery of behavior tests were used. Enriched environment provided before, after or both before and after injury did not alter the outcome on any of these tests. Similarly, despite excessive running after injury, no differences in terms of recovery and behavior were found in the running experiment. Similarly, running prior to injury did not significantly decrease the degree of functional deficit caused by the injury. Since there were no effects of further enrichment, above the possible effects of being socially housed, and since exercise did not improve the outcome, we conclude that these forms of increased activity do not render the animals significantly less sensitive to spinal cord injury and do not cause robust improvement when initiated after injury. While these results pose a limit to how helpful environmental and physical training programs may be in rodent impact injury models, they do not contradict the fact that voluntary and guided training can be effective tools in human spinal cord rehabilitation.

  8. Effects of Post-Session Wheel Running on Within-Session Changes in Operant Responding

    ERIC Educational Resources Information Center

    Aoyama, Kenjiro

    2007-01-01

    This study tested the effects of post-session wheel running on within-session changes in operant responding. Lever-pressing by six rats was reinforced by a food pellet under a continuous reinforcement (CRF) schedule in 30-min sessions. Two different flavored food pellets were used as reinforcers. In the wheel conditions, 30-min operant-sessions…

  9. Effects of Post-Session Wheel Running on Within-Session Changes in Operant Responding

    ERIC Educational Resources Information Center

    Aoyama, Kenjiro

    2007-01-01

    This study tested the effects of post-session wheel running on within-session changes in operant responding. Lever-pressing by six rats was reinforced by a food pellet under a continuous reinforcement (CRF) schedule in 30-min sessions. Two different flavored food pellets were used as reinforcers. In the wheel conditions, 30-min operant-sessions…

  10. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice.

    PubMed

    Kitsukawa, Takashi; Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo

    2011-07-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.

  11. A novel instrumented multipeg running wheel system, Step-Wheel, for monitoring and controlling complex sequential stepping in mice

    PubMed Central

    Nagata, Masatoshi; Yanagihara, Dai; Tomioka, Ryohei; Utsumi, Hideko; Kubota, Yasuo; Yagi, Takeshi; Graybiel, Ann M.; Yamamori, Tetsuo

    2011-01-01

    Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice. PMID:21525375

  12. Serotonin-mediated central fatigue underlies increased endurance capacity in mice from lines selectively bred for high voluntary wheel running.

    PubMed

    Claghorn, Gerald C; Fonseca, Ivana A T; Thompson, Zoe; Barber, Curtis; Garland, Theodore

    2016-07-01

    Serotonin (5-hydroxytryptamine; 5-HT) is implicated in central fatigue, and 5-HT1A pharmaceuticals are known to influence locomotor endurance in both rodents and humans. We studied the effects of a 5-HT1A agonist and antagonist on both forced and voluntary exercise in the same set of mice. This cohort of mice was taken from 4 replicate lines of mice that have been selectively bred for high levels of voluntary wheel running (HR) as compared with 4 non-selected control (C) lines. HR mice run voluntarily on wheels about 3× as many revolutions per day as compared with C, and have greater endurance during forced treadmill exercise. We hypothesized that drugs targeting serotonin receptors would have differential effects on locomotor behavior of HR and C mice. Subcutaneous injections of a 5-HT1A antagonist (WAY-100,635), a combination of 5-HT1A agonist and a 5-HT1A/1B partial agonist (8-OH-DPAT+pindolol), or physiological saline were given to separate groups of male mice before the start of each of three treadmill trials. The same manipulations were used later during voluntary wheel running on three separate nights. WAY-100,635 decreased treadmill endurance in HR but not C mice (dose by linetype interaction, P=0.0014). 8-OH-DPAT+pindolol affected treadmill endurance (P<0.0001) in a dose-dependent manner, with no dose by linetype interaction. Wheel running was reduced in HR but not C mice at the highest dose of 8-OH-DPAT+pindolol (dose by linetype, P=0.0221), but was not affected by WAY-100,635 treatment. These results provide further evidence that serotonin signaling is an important determinant of performance during both forced and voluntary exercise. Although the elevated wheel running of HR mice does not appear related to alterations in serotonin signaling, their enhanced endurance capacity does. More generally, our results indicate that both forced and voluntary exercise can be affected by an intervention that acts (primarily) centrally.

  13. Voluntary Wheel Running Does not Affect Lipopolysaccharide-Induced Depressive-Like Behavior in Young Adult and Aged Mice

    PubMed Central

    Martin, Stephen A.; Dantzer, Robert; Kelley, Keith W.; Woods, Jeffrey A.

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4-month-old and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (Voluntary Wheel Running, VWR) or no wheel (Standard) for 30 days (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective Standard control groups. VWR had no effect on LPS-induced anorexia, weight-loss, increased immobility in the tail suspension test, and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and twenty-four (aged mice) hours after injection of LPS transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. These results indicate that prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences. PMID:24281669

  14. Effect of Light/Dark Cycle on Wheel Running and Responding Reinforced by the Opportunity to Run Depends on Postsession Feeding Time

    ERIC Educational Resources Information Center

    Belke, T. W.; Mondona, A. R.; Conrad, K. M.; Poirier, K. F.; Pickering, K. L.

    2008-01-01

    Do rats run and respond at a higher rate to run during the dark phase when they are typically more active? To answer this question, Long Evans rats were exposed to a response-initiated variable interval 30-s schedule of wheel-running reinforcement during light and dark cycles. Wheel-running and local lever-pressing rates increased modestly during…

  15. Corticosterone and dopamine D2/D3 receptors mediate the motivation for voluntary wheel running in C57BL/6J mice.

    PubMed

    Ebada, Mohamed Elsaed; Kendall, David A; Pardon, Marie-Christine

    2016-09-15

    Physical exercise can improve cognition but whether this is related to motivation levels is unknown. Voluntary wheel running is a rewarding activity proposed as a model of motivation to exercise. To question the potential effects of exercise motivation on subsequent behaviour, we used a pharmacological approach targeting some reward mechanisms. The stress hormone corticosterone has rewarding effects mediated by activation of low affinity glucocorticoid receptors (GR). To investigate whether corticosterone synthesis motivates exercise via activation of GRs and subsequently, impacts on behaviour, we treated C57BL/6J mice acutely with the inhibitor of corticosterone synthesis metyrapone (35mg/kg) or repeatedly with the GR antagonist mifepristone (30mg/kg) prior to 1-h running wheel sessions. To investigate whether reducing motivation to exercise impacts on behaviour, we antagonised running-induced dopamine D2/D3 receptors activation with sulpiride (25 or 50mg/kg) and assessed locomotor, anxiety-related and memory performance after 20 running sessions over 4 weeks. We found that corticosterone synthesis contributes to running levels, but the maintenance of running behaviour was not mediated by activation of GRs. Intermittent exercise was not associated with changes in behavioural or cognitive performance. The persistent reduction in exercise levels triggered by sulpiride also had limited impact on behavioural performance, although the level of performance for some behaviours was related to the level of exercise. Altogether, these findings indicate that corticosterone and dopamine D2/D3 receptor activation contribute to the motivation for wheel running, but suggest that motivation for exercise is not a sufficient factor to alter behaviour in healthy mice.

  16. High-fat diet offsets the long-lasting effects of running-wheel access on food intake and body weight in OLETF rats

    PubMed Central

    Chao, Pei-Ting; Terrillion, Chantelle E.; Moran, Timothy H.

    2011-01-01

    We have previously demonstrated that running-wheel access normalizes the food intake and body weight of Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Following 6 wk of running-wheel access beginning at 8 wk of age, the body weight of OLETF rats remains reduced, demonstrating a lasting effect on their phenotype. In contrast, access to a high-fat diet exacerbates the hyperphagia and obesity of OLETF rats. To determine whether diet modulates the long-term effects of exercise, we examined the effects of high-fat diet on food intake and body weight in OLETF rats that had prior access to running wheels for 4 wk. We found that 4 wk of running exercise significantly decreased food intake and body weight of OLETF rats. Consistent with prior results, 4 wk of exercise also produced long-lasting effects on food intake and body weight in OLETF rats fed a regular chow. When running wheels were relocked, OLETF rats stabilized at lower levels of body weight than sedentary OLETF rats. However, access to a high-fat diet offset these effects. When OLETF rats were switched to a high-fat diet following wheel relocking, they significantly increased food intake and body weight, so that they reached levels similar to those of sedentary OLETF rats fed a high-fat diet. Gene expression determination of hypothalamic neuropeptides revealed changes that appeared to be appropriate responses to the effects of diet and running exercise. Together, these results demonstrate that high-fat diet modulates the long-lasting effects of exercise on food intake and body weight in OLETF rats. PMID:21368270

  17. High-fat diet offsets the long-lasting effects of running-wheel access on food intake and body weight in OLETF rats.

    PubMed

    Chao, Pei-Ting; Terrillion, Chantelle E; Moran, Timothy H; Bi, Sheng

    2011-06-01

    We have previously demonstrated that running-wheel access normalizes the food intake and body weight of Otsuka Long-Evens Tokushima Fatty (OLETF) rats. Following 6 wk of running-wheel access beginning at 8 wk of age, the body weight of OLETF rats remains reduced, demonstrating a lasting effect on their phenotype. In contrast, access to a high-fat diet exacerbates the hyperphagia and obesity of OLETF rats. To determine whether diet modulates the long-term effects of exercise, we examined the effects of high-fat diet on food intake and body weight in OLETF rats that had prior access to running wheels for 4 wk. We found that 4 wk of running exercise significantly decreased food intake and body weight of OLETF rats. Consistent with prior results, 4 wk of exercise also produced long-lasting effects on food intake and body weight in OLETF rats fed a regular chow. When running wheels were relocked, OLETF rats stabilized at lower levels of body weight than sedentary OLETF rats. However, access to a high-fat diet offset these effects. When OLETF rats were switched to a high-fat diet following wheel relocking, they significantly increased food intake and body weight, so that they reached levels similar to those of sedentary OLETF rats fed a high-fat diet. Gene expression determination of hypothalamic neuropeptides revealed changes that appeared to be appropriate responses to the effects of diet and running exercise. Together, these results demonstrate that high-fat diet modulates the long-lasting effects of exercise on food intake and body weight in OLETF rats.

  18. Effect of cage enrichment on the daily use of running wheels by Syrian hamsters.

    PubMed

    Reebs, Stéphan G; Maillet, Dominique

    2003-01-01

    Institutional animal care committees may one day require for the welfare of captive hamsters more floor space and the introduction of tunnels and toys. As hamsters are popular animal subjects in chronobiological research, and as clock phase is usually measured through running wheel activity, it is important to determine what effect cage enrichment might have on daily wheel use. Here the daily number of wheel revolutions, the daily duration of the running activity phase, the phase relationship between lights-off and onset of running activity, and the free-running period of circadian activity rhythms were measured in Syrian hamsters, Mesocricetus auratus, housed in single cages or in multiple cages linked by tunnels and supplied with commercial wooden toys. Free-running periodicity was not affected by cage enrichment. In multiple-cage systems, there were fewer daily revolutions, shorter wheel-running activity phases, and delayed running activity onsets. These effects, however, were small as compared to interindividual and week-to-week variation. They were statistically significant only under a light:dark cycle, not in constant darkness, and only when interindividual variation was eliminated through a paired design or when the number of cages was increased to five (the maximum tested). Daily wheel use is thus affected by cage enrichment, but only slightly.

  19. Increased adult hippocampal neurogenesis is not necessary for wheel running to abolish conditioned place preference for cocaine in mice.

    PubMed

    Mustroph, M L; Merritt, J R; Holloway, A L; Pinardo, H; Miller, D S; Kilby, C N; Bucko, P; Wyer, A; Rhodes, J S

    2015-01-01

    Recent evidence suggests that wheel running can abolish conditioned place preference (CPP) for cocaine in mice. Running significantly increases the number of new neurons in the hippocampus, and new neurons have been hypothesised to enhance plasticity and behavioral flexibility. Therefore, we tested the hypothesis that increased neurogenesis was necessary for exercise to abolish cocaine CPP. Male nestin-thymidine kinase transgenic mice were conditioned with cocaine, and then housed with or without running wheels for 32 days. Half of the mice were fed chow containing valganciclovir to induce apoptosis in newly divided neurons, and the other half were fed standard chow. For the first 10 days, mice received daily injections of bromodeoxyuridine (BrdU) to label dividing cells. On the last 4 days, mice were tested for CPP, and then euthanized for measurement of adult hippocampal neurogenesis by counting the number of BrdU-positive neurons in the dentate gyrus. Levels of running were similar in mice fed valganciclovir-containing chow and normal chow. Valganciclovir significantly reduced the numbers of neurons (BrdU-positive/NeuN-positive) in the dentate gyrus of both sedentary mice and runner mice. Valganciclovir-fed runner mice showed similar levels of neurogenesis as sedentary, normal-fed controls. However, valganciclovir-fed runner mice showed the same abolishment of CPP as runner mice with intact neurogenesis. The results demonstrate that elevated adult hippocampal neurogenesis resulting from running is not necessary for running to abolish cocaine CPP in mice.

  20. Voluntary wheel running modulates glutamate receptor subunit gene expression and stress hormone release in Lewis rats.

    PubMed

    Makatsori, A; Duncko, R; Schwendt, M; Moncek, F; Johansson, B B; Jezova, D

    2003-07-01

    Lewis rats that are known to be addiction-prone, develop compulsive running if they have access to running wheels. The present experiments were aimed 1) to evaluate the activation of stress systems following chronic and acute voluntary wheel running in Lewis rats by measurement of hormone release and gene expression of neuropeptides related to hypothalamic-pituitary-adrenocortical (HPA) axis activity and 2) to test the hypothesis that wheel running as a combined model of addictive behavior and stress exposure is associated with modulation of ionotropic glutamate receptor subunits in the ventral tegmental area. Voluntary running for three weeks but not for one night resulted in a rise in plasma corticosterone and adrenocorticotropic hormone (ACTH) levels (p<0.05) compared to those in control rats. Principal component analysis revealed the relation between POMC gene expression in the intermediate pituitary and running rate. Acute exposure of animals to voluntary wheel running induced a significant decrease in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor GluR1 subunit mRNA levels (p<0.01), while repeated voluntary physical activity increased levels of GluR1 mRNA in the ventral tegmentum (p<0.05). Neither acute nor chronic wheel running influenced N-methyl-D-aspartate (NMDA) receptor subunit NR1 mRNA levels in the ventral tegmental area. Thus, the present study revealed changes in AMPA receptor subunit gene expression in a reward-related brain structure as well as an activation of HPA axis in response to compulsive wheel running in Lewis rats. It may be suggested that hormones of HPA axis and glutamate receptors belong to the factors that substantiate higher vulnerability to addictive behavior.

  1. A Brief Opportunity to Run Does Not Function as a Reinforcer for Mice Selected for High Daily Wheel-Running Rates

    ERIC Educational Resources Information Center

    Belke, Terry W.; Garland, Theodore, Jr.

    2007-01-01

    Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption…

  2. A Brief Opportunity to Run Does Not Function as a Reinforcer for Mice Selected for High Daily Wheel-Running Rates

    ERIC Educational Resources Information Center

    Belke, Terry W.; Garland, Theodore, Jr.

    2007-01-01

    Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption…

  3. Chronic activity wheel running reduces the severity of kainic acid-induced seizures in the rat: possible role of galanin.

    PubMed

    Reiss, J I; Dishman, R K; Boyd, H E; Robinson, J K; Holmes, P V

    2009-04-17

    Studies in both humans and rodents suggest that exercise can be neuroprotective, but the mechanisms by which this occurs are still poorly understood. Three weeks of voluntary, physical activity in rats upregulates prepro-galanin messenger RNA levels in the locus coeruleus. Galanin is a neuropeptide extensively coexisting with norepinephrine that decreases neuronal hyperexcitability both in vivo and in vitro. Thus, exercise may diminish neural hyperexcitability through a galaninergic mechanism. The current experiments tested whether voluntary activity wheel running would protect against kainic acid-evoked seizures and whether galaninergic signaling is a necessary factor in this protection. In experiment 1, rats were given access to running wheels or remained sedentary for three weeks. After this period, rats received an intraperitoneal (i.p.) injection of 0, 7, 10 or 14 mg/kg kainic acid. Exercise decreased the severity of or eliminated seizure behaviors and hippocampal c-fos expression induced by kainic acid. In experiment 2, exercising or sedentary rats were injected intracerebroventricularly (i.c.v.) with 0.2 or 0.4 microg of kainic acid following either an injection of M-40 (a galanin receptor antagonist) or saline. Exercise decreased kainic acid-induced seizures at the 0.2 microg dose, and M-40 (6 nmol) decreased this effect. In contrast, there were no detectable differences between exercising and sedentary rats in behavior at the 0.4 microg dose. The results suggest that the protective effects of exercise against seizures are at least partially mediated by regulation of neural excitability through a process involving galanin.

  4. Sustained rise in triacylglycerol synthesis and increased epididymal fat mass when rats cease voluntary wheel running

    PubMed Central

    Kump, David S; Booth, Frank W

    2005-01-01

    Four-week-old, Fischer–Brown Norway F1-generation male rats were given access to voluntary running wheels for 21 days, and then the wheels were locked for 5 (WL5), 10 (WL10), 29 (WL29), or 53 (WL53) hours. Two other groups (SED5 and SED10) had no access to voluntary running wheels and were killed at the same time as WL5 and WL10, respectively. Absolute and relative epididymal fat mass, mean cell volume, and amount of lipid per cell increased in WL53 relative to all other groups, with no change in cell number. C/EBPα protein levels in epididymal fat were 30% greater in SED5 than in WL5. The rate of triacylglycerol synthesis in epididymal fat was 4.2-fold greater in SED5 than in WL5, increased 14-fold between WLS and WL10, and was 79% lower in SED10 than in WL10. Triacylglycerol synthesis remained at this elevated level (at least 3.5-fold greater than SED5) through WL53. Thus, the rapid increase in epididymal fat mass with the cessation of voluntary wheel running is associated with a prolonged overshoot in epididymal fat triacylglycerol synthesis. Moreover, rats without running wheels had a 9.4% lower body mass after 21 days than those with running wheels. The individual mass of seven different muscles from the hindlimb, upper forelimb, and back were each lower in animals without running wheels, suggesting that physical activity in rapidly growing rats may be requisite for optimal muscle development. PMID:15774517

  5. The effects of amphetamine and scopolamine on adjunctive drinking and wheel-running in rats.

    PubMed

    Williams, J L; White, J M

    1984-01-01

    Two groups of rats were exposed to a fixed-interval 90 s schedule of food reinforcement. One group had access to a drinking tube containing water and the second had access to a running wheel. Amphetamine (0.3-10.0 mg/kg) and scopolamine (0.1-3.0 mg/kg) were assessed for their effects on lever-pressing, adjunctive drinking and adjunctive wheel-running. Low to moderate doses of amphetamine increased overall rates of lever-pressing, whereas the highest dose decreased them. Scopolamine decreased overall lever-pressing rates in a dose-dependent manner. Both drugs changed the within-interval pattern of lever-pressing from one of increasing probability through the interval to almost constant probability throughout. Overall rates of adjunctive drinking and adjunctive wheel-running were decreased by amphetamine and scopolamine. Amphetamine failed to alter the within-interval patterns of either drinking or wheel-running in any substantial manner. The effect of scopolamine was to make the probabilities of each adjunctive behaviour more even through the interval. Although the two drugs had different actions, there was little difference in the way drinking and wheel-running were affected by each.

  6. Opioid-mediated pain sensitivity in mice bred for high voluntary wheel running.

    PubMed

    Li, Guo; Rhodes, Justin S; Girard, Isabelle; Gammie, Stephen C; Garland, Theodore

    2004-12-15

    We tested the hypothesis that thermal tail-flick latency, a common measure of pain sensitivity in rodents, would be altered in lines of mice that had been selectively bred for high voluntary wheel-running behavior. Specifically, we predicted that the selected (High-Runner) lines would show decreased pain sensitivity relative to their control (C; randombred) lines, and would respond differently to drugs that block opioid receptors. We first compared tail-flick latency between High-Runner and C female mice during the day (no wheel access) and at night (with wheel access). Second, we compared effects of the opioid antagonist naloxone (10 mg/kg, i.p.) on tail-flick latency during the day (no wheel access). Third, we compared effects of naloxone (5 and 10 mg/kg, i.p.) and naltrexone, a longer-lasting opioid antagonist (0.1, 1, 5, 10, 50, and 100 mg/kg, i.p.), on voluntary wheel running. Tail-flick latencies were longer at night (when mice were active on wheels), but mice from High-Runner and C lines did not differ during the day or night. Administration of naloxone (10 mg/kg, i.p.) decreased tail-flick latency measured during the day, equally in High-Runner and C mice. Naloxone (5 and 10 mg/kg, i.p.) and high doses of naltrexone (50 and 100 mg/kg, i.p.) decreased wheel running equally in High-Runner and C mice. Further studies will be required to determine whether other types of pain sensitivity have also failed to evolve in association with increased voluntary wheel running.

  7. Locking and unlocking of running wheel affects circadian period stability differently in three inbred strains of rats.

    PubMed

    Kohler, M; Wollnik, F

    1998-08-01

    Running-wheel access has been shown to shorten the circadian period length (tau) of various mammalian species. Due to the close correlation between tau and the level of activity, running wheel-induced changes of the activity level are thought to be responsible for the observed changes in tau. In the present study, the influence of the running wheel on tau and the activity level was examined in three inbred strains of rats (ACI, BH, LEW). Four animals of each strain had free access to their running wheels, while the wheels of the other 4 animals of each strain were mechanically locked. These conditions were changed twice, so that each animal encountered both kinds of changes, that is, from a locked to an unlocked running wheel and vice versa. During the whole study, overall activity was measured by infrared detectors. Running-wheel access resulted in a significant increase of overall activity in strains LEW and ACI. However, significant changes of tau were observed only in LEW rats. These rats showed a significant shortening of tau after the second change of the housing conditions regardless of whether the wheel was locked or unlocked. Consequently, no causal relationship was found between changes of tau and running wheel-induced changes of overall activity. Instead, the results suggest that subtle environmental influences like locking or unlocking the running wheel affect tau in a strain-dependent manner, whereas changes in the activity level are neither necessary nor sufficient to induce changes of tau.

  8. Long-duration freewheel running and submandibular lymphocyte response to forced exercise in older mice.

    PubMed

    Boudreau, J; Hoffman-Goetz, L

    2006-05-01

    Submandibular lymph nodes (SLN) are crucial for immune surveillance of the anterior ocular chamber and upper respiratory tract; little is known about how training and exercise affect SLN lymphocytes. The intent of this study was to describe the impact of long term freewheel running followed by acute strenuous exercise on SLN lymphocytes in mice. Female C57BL/6 mice were assigned to running wheels or remained sedentary for 8 months, and further randomized to treadmill exercise and sacrifice immediately, treadmill exercise and sacrifice 24 h after exercise cessation, or no treadmill exposure. SLN lymphocytes were isolated and analyzed for CD3, CD4, CD8, and CD19 cell surface markers, phosphatidylserine externalization as a marker of apoptosis, and intracellular glutathione as a marker of oxidative stress. Compared with running wheel mice, older sedentary mice had a lower percent of T cells and higher percent of B cells (p < 0.05). Although intracellular glutathione did not differ between groups, running mice had a lower percent of Annexin V(+) SLN lymphocytes 24 h after treadmill exercise. Further research will be needed to determine if voluntary exercise translates into improved anterior ocular and upper respiratory tract health.

  9. Identification of mouse gaits using a novel force-sensing exercise wheel.

    PubMed

    Smith, Benjamin J H; Cullingford, Lottie; Usherwood, James R

    2015-09-15

    The gaits that animals use can provide information on neurological and musculoskeletal disorders, as well as the biomechanics of locomotion. Mice are a common research model in many fields; however, there is no consensus in the literature on how (and if) mouse gaits vary with speed. One of the challenges in studying mouse gaits is that mice tend to run intermittently on treadmills or overground; this paper attempts to overcome this issue with a novel exercise wheel that measures vertical ground reaction forces. Unlike previous instrumented wheels, this wheel is able to measure forces continuously and can therefore record data from consecutive strides. By concatenating the maximum limb force at each time point, a force trace can be constructed to quantify and identify gaits. The wheel was three dimensionally printed, allowing the design to be shared with other researchers. The kinematic parameters measured by the wheel were evaluated using high-speed video. Gaits were classified using a metric called "3S" (stride signal symmetry), which quantifies the half wave symmetry of the force trace peaks. Although mice are capable of using both symmetric and asymmetric gaits throughout their speed range, the continuum of gaits can be divided into regions based on the frequency of symmetric and asymmetric gaits; these divisions are further supported by the fact that mice run less frequently at speeds near the boundaries between regions. The boundary speeds correspond to gait transition speeds predicted by the hypothesis that mice move in a dynamically similar fashion to other legged animals. Copyright © 2015 the American Physiological Society.

  10. Intensive voluntary wheel running may restore circadian activity rhythms and improves the impaired cognitive performance of arrhythmic Djungarian hamsters.

    PubMed

    Weinert, Dietmar; Schöttner, Konrad; Müller, Lisa; Wienke, Andreas

    2016-01-01

    Circadian rhythms are highly important not only for the synchronization of animals and humans with their periodic environment but also for their fitness. Accordingly, the disruption of the circadian system may have adverse consequences. A certain number of animals in our breeding stock of Djungarian hamsters are episodically active throughout the day. Also body temperature and melatonin lack 24-h rhythms. Obviously in these animals, the suprachiasmatic nuclei (SCN) as the central pacemaker do not generate a circadian signal. Moreover, these so-called arrhythmic (AR) hamsters have cognitive deficits. Since motor activity is believed to stabilize circadian rhythms, we investigated the effect of voluntary wheel running. Hamsters were bred and kept under standardized housing conditions with food and water ad libitum and a 14 L/10 D lighting regimen. AR animals were selected according to their activity pattern obtained by means of passive infrared motion detectors. In a first step, the daily activity behavior was investigated for 3 weeks each without and with running wheels. To estimate putative photic masking effects, hamsters were exposed to light (LPs) and DPs and also released into constant darkness for a minimum of 3 weeks. A novel object recognition (NOR) test was performed to evaluate cognitive abilities both before and after 3 weeks of wheel availability. The activity patterns of hamsters with low wheel activity were still AR. With more intense running, daily patterns with higher values in the dark time were obtained. Obviously, this was due to masking as LPs did suppress and DPs induced motor activity. When transferred to constant darkness, in some animals the daily rhythm disappeared. In other hamsters, namely those which used the wheels most actively, the rhythm was preserved and free-ran, what can be taken as indication of a reconstitution of circadian rhythmicity. Also, animals showing a 24-h activity pattern after 3 weeks of extensive wheel running were

  11. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats

    PubMed Central

    Staples, Miranda C.; Somkuwar, Sucharita S.; Mandyam, Chitra D.

    2015-01-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the n-Methyl-d-Aspartate glutamate receptor subunits (GluNs) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and sixteen-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for four weeks. Wheel access was terminated and tissue from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus, and an opposing effect in the ventral hippocampus compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the dorsal hippocampus, without producing alterations in the ventral hippocampus compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects. PMID:26220171

  12. Developmental effects of wheel running on hippocampal glutamate receptor expression in young and mature adult rats.

    PubMed

    Staples, M C; Somkuwar, S S; Mandyam, C D

    2015-10-01

    Recent evidence suggests that the behavioral benefits associated with voluntary wheel running in rodents may be due to modulation of glutamatergic transmission in the hippocampus, a brain region implicated in learning and memory. However, the expression of the glutamatergic ionotropic N-methyl-d-aspartate receptor (GluN) in the hippocampus in response to chronic sustained voluntary wheel running has not yet been investigated. Further, the developmental effects during young and mature adulthood on wheel running output and GluN expression in hippocampal subregions has not been determined, and therefore is the main focus of this investigation. Eight-week-old and 16-week-old male Wistar rats were housed in home cages with free access to running wheels and running output was monitored for 4weeks. Wheel access was terminated and tissues from the dorsal and ventral hippocampi were processed for Western blot analysis of GluN subunit expression. Young adult runners demonstrated an escalation in running output but this behavior was not evident in mature adult runners. In parallel, young adult runners demonstrated a significant increase in total GluN (1 and 2A) subunit expression in the dorsal hippocampus (DH), and an opposing effect in the ventral hippocampus (VH) compared to age-matched sedentary controls; these changes in total protein expression were not associated with significant alterations in the phosphorylation of the GluN subunits. In contrast, mature adult runners demonstrated a reduction in total GluN2A expression in the DH, without producing alterations in the VH compared to age-matched sedentary controls. In conclusion, differential running activity-mediated modulation of GluN subunit expression in the hippocampal subregions was revealed to be associated with developmental effects on running activity, which may contribute to altered hippocampal synaptic activity and behavioral outcomes in young and mature adult subjects.

  13. Voluntary wheel running does not affect lipopolysaccharide-induced depressive-like behavior in young adult and aged mice.

    PubMed

    Martin, Stephen A; Dantzer, Robert; Kelley, Keith W; Woods, Jeffrey A

    2014-01-01

    Peripheral stimulation of the innate immune system with lipopolysaccharide (LPS) causes prolonged depressive-like behavior in aged mice that is dependent on indoleamine 2,3 dioxygenase (IDO) activation. Regular moderate-intensity exercise training has been shown to exert neuroprotective effects that might reduce depressive-like behavior in aged mice. The purpose of this study was to test the hypothesis that voluntary wheel running (VWR) would attenuate LPS-induced depressive-like behavior and brain IDO gene expression in 4- and 22-month-old C57BL/6J mice. Mice were housed with a running wheel (VWR) or no wheel (standard) for 30 (young adult mice) or 70 days (aged mice), after which they were intraperitoneally injected with LPS (young adult mice: 0.83 mg/kg; aged mice: 0.33 mg/kg). Young adult VWR mice ran on average 6.9 km/day, while aged VWR mice ran on average 3.4 km/day. Both young adult and aged VWR mice increased their forced exercise tolerance compared to their respective standard control groups. VWR had no effect on LPS-induced anorexia, weight loss, increased immobility in the tail suspension test and decreased sucrose preference in either young adult or aged mice. Four (young adult mice) and 24 h (aged mice) after injection of LPS, mRNA transcripts for TNF-α, IL-1β, IL-6, and IDO were upregulated in the whole brain independently of VWR. Prolonged physical exercise has no effect on the neuroinflammatory response to LPS and its behavioral consequences in young adult and aged mice. © 2013 S. Karger AG, Basel.

  14. Changes in mRNA levels for brain-derived neurotrophic factor after wheel running in rats selectively bred for high- and low-aerobic capacity

    PubMed Central

    Groves-Chapman, Jessica L.; Murray, Patrick S.; Stevens, Kristin L.; Monroe, Derek; Koch, Lauren G.; Britton, Steven L.; Holmes, Philip V.

    2012-01-01

    We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for three weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/d) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance. PMID:22024546

  15. Changes in mRNA levels for brain-derived neurotrophic factor after wheel running in rats selectively bred for high- and low-aerobic capacity.

    PubMed

    Groves-Chapman, Jessica L; Murray, Patrick S; Stevens, Kristin L; Monroe, Derek C; Koch, Lauren G; Britton, Steven L; Holmes, Philip V; Dishman, Rod K

    2011-11-24

    We evaluated levels of exercise-induced brain-derived neurotrophic factor (BDNF) messenger RNA (mRNA) within the hippocampal formation in rats selectively bred for 1) high intrinsic (i.e., untrained) aerobic capacity (High Capacity Runners, HCR), 2) low intrinsic aerobic capacity (Low Capacity Runners, LCR), and 3) unselected Sprague-Dawley (SD) rats with or without free access to running wheels for 3 weeks. The specific aim of the study was to determine whether a dose-response relationship exists between cumulative running distance and levels of BDNF mRNA. No additional treatments or behavioral manipulations were used. HCR, LCR, and SD rats were grouped by strain and randomly assigned to sedentary or activity (voluntary access to activity wheel) conditions. Animals were killed after 21 days of exposure to the assigned conditions. Daily running distances (mean ± standard deviation meters/day) during week three were: HCR (4726 ± 3220), SD (2293 ± 3461), LCR (672 ± 323). Regardless of strain, levels of BDNF mRNA in CA1 were elevated in wheel runners compared to sedentary rats and this difference persisted after adjustment for age (p=0.040). BDNF mRNA was not affected by intrinsic aerobic capacity and was not related to total running distance. The results support that BDNF mRNA expression is increased by unlimited access to activity wheel running for 3 weeks but is not dependent upon accumulated running distance.

  16. Dopamine D3 receptor status modulates sexual dimorphism in voluntary wheel running behavior in mice.

    PubMed

    Klinker, Florian; Ko Hnemann, Kathrin; Paulus, Walter; Liebetanz, David

    2017-08-30

    Sexual dimorphism has been described in various aspects of physiological and pathophysiological processes involving dopaminergic signaling. This might account for the different disease characteristics in men and women in e.g. Parkinson's disease or ADHD. A better understanding might contribute to the future individualization of therapy. We examined spontaneous wheel running activity of male and female mice, homo- and heterozygote for dopamine D3 receptor deficiency (D3R -/- and D3R+/-), and compared them to wild type controls. We found higher wheel running activity in female mice than in their male littermates. D3-/- mice, irrespective of sex, were also hyperactive compared to both D3+/- and wild type animals. Hyperactivity of D3-/- female mice was pronounced during the first days of wheel running but then decreased while their male counterparts continued to be hyperactive. Physical activity was menstrual cycle-dependent. Activity fluctuations were also seen in D3 receptor knockout mice and are therefore presumably independent of D3 receptor activation. Our data underscore the complex interaction of dopaminergic signaling and gonadal hormones that leads to specific running behavior. Furthermore, we detected sex- and D3 receptor status-specific reactions during novel exposure to the running wheel. These findings suggest the need for adapting dopaminergic therapies to individual factors such as sex or even menstrual cycle to optimize therapeutic success. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Will, Matthew J; Booth, Frank W

    2015-10-01

    The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 μg/side), or its antagonist, naltrexone (5, 10, 20 μg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 μg DAMGO, or with 10 μg and 20 μg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling.

  18. Wheel running of kangaroo rats, Dipodomys merriami, as related to food deprivation and body composition.

    PubMed

    Dill, D B; Soholt, L F; Morris, J D

    1978-01-01

    Kangaroo rats deprived of food ran themselves to death in 48 h in wheel cages. Despite the loss of 14.5% of body weight the ratio of water to protein was the same after the run as it was in control rats. Metabolic measurements at rest and in the running wheel and weight loss in the 48-h run were used to estimate fuels used and water expended. Two-thirds of the initial amount of fat and 9% of the protein were metabolized. The terminal mean percentage of body fat was about twice that observed in rats trapped in the spring of 1967, when seed production was low: death in the 48-h run could not have been due to depletion of body fat alone. The powerful activity drive seen in hungary kangaroo rats presumably is intensified in dry years when food is scarce and may deplete their reserves enough to result in death from starvation.

  19. Simultaneous Introduction of a Novel High Fat Diet and Wheel Running Induces Anorexia

    PubMed Central

    Scarpace, E. T.; Matheny, M.; Strehler, K. Y. E.; Shapiro, A.; Cheng, K. Y.; Tümer, N.; Scarpace, P. J.

    2011-01-01

    Voluntary wheel running (WR) is a form of physical activity in rodents that influences ingestive behavior. The present report describes an anorexic behavior triggered by the simultaneous introduction of a novel diet and WR. This study examined the sequential, compared with the simultaneous, introduction of a novel high-fat (HF) diet and voluntary WR in rats of three different ages and revealed a surprising finding; the simultaneous introduction of HF food and voluntary WR induced a behavior in which the animals chose not to eat although food was available at all times. This phenomenon was apparently not due to an aversion to the novel HF diet because introduction of the running wheels plus the HF diet, while continuing the availability of the normal chow diet did not prevent the anorexia. Moreover, the anorexia was prevented with prior exposure to the HF diet. In addition, the anorexia was not related to extent of WR but dependent on the act of WR. The introduction a HF diet and locked running wheels did not induce the anorexia. This voluntary anorexia was accompanied by substantial weight loss, and the anorexia was rapidly reversed by removal of the running wheels. Moreover, the HF/WR-induced anorexia is preserved across the age span despite the intrinsic decrease in WR activity and increased consumption of HF food with advancing age. The described phenomenon provides a new model to investigate anorexia behavior in rodents. PMID:22115947

  20. Simultaneous introduction of a novel high fat diet and wheel running induces anorexia.

    PubMed

    Scarpace, E T; Matheny, M; Strehler, K Y E; Shapiro, A; Cheng, K Y; Tümer, N; Scarpace, P J

    2012-02-28

    Voluntary wheel running (WR) is a form of physical activity in rodents that influences ingestive behavior. The present report describes an anorexic behavior triggered by the simultaneous introduction of a novel diet and WR. This study examined the sequential, compared with the simultaneous, introduction of a novel high-fat (HF) diet and voluntary WR in rats of three different ages and revealed a surprising finding; the simultaneous introduction of HF food and voluntary WR induced a behavior in which the animals chose not to eat although food was available at all times. This phenomenon was apparently not due to an aversion to the novel HF diet because introduction of the running wheels plus the HF diet, while continuing the availability of the normal chow diet did not prevent the anorexia. Moreover, the anorexia was prevented with prior exposure to the HF diet. In addition, the anorexia was not related to extent of WR but dependent on the act of WR. The introduction a HF diet and locked running wheels did not induce the anorexia. This voluntary anorexia was accompanied by substantial weight loss, and the anorexia was rapidly reversed by removal of the running wheels. Moreover, the HF/WR-induced anorexia is preserved across the age span despite the intrinsic decrease in WR activity and increased consumption of HF food with advancing age. The described phenomenon provides a new model to investigate anorexia behavior in rodents. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Depression of home cage wheel running: a reliable and clinically relevant method to assess migraine pain in rats.

    PubMed

    Kandasamy, Ram; Lee, Andrea T; Morgan, Michael M

    2017-12-01

    The development of new anti-migraine treatments is limited by the difficulty inassessing migraine pain in laboratory animals. Depression of activity is one of the few diagnostic criteria formigraine that can be mimicked in rats. The goal of the present study was to test the hypothesis thatdepression of home cage wheel running is a reliable and clinically relevant method to assess migraine painin rats. Adult female rats were implanted with a cannula to inject allyl isothiocyanate (AITC) onto the dura to induce migraine pain, as has been shown before. Rats recovered from implantation surgery for 8 days in cages containing a running wheel. Home cage wheel running was recorded 23 h a day. AITC and the migraine medication sumatriptan were administered in the hour prior to onset of the dark phase. Administration of AITC caused a concentration-dependent decrease in wheel running that lasted 3 h. The duration and magnitude of AITC-induced depression of wheel running was consistent following three repeated injections spaced 48 h apart. Administration of sumatriptan attenuated AITC-induced depressionof wheel running when a large dose (1 mg/kg) was administered immediately following AITC administration. Wheel running patterns did not change when sumatriptan was given to naïve rats. These data indicate that home cage wheel running is a sensitive, reliable, and clinically relevant method to assess migraine pain in the rat.

  2. Delayed effects of ethanol, caffeine and nicotine assessed by wheel-running and drinking in mice.

    PubMed

    Kuribara, H; Shinoda, M; Uchihashi, Y

    1995-11-01

    Effects of ethanol, caffeine and nicotine, pleasurable substances, on wheel-running and drinking in mice that were housed under a 12 : 12-hr light-dark schedule (lighting period ; 6 : 00-18 : 00) were investigated. All drug administrations were carried out at 11: 00, a mid-light period. Although ethanol (0.8-2.4 g/kg p.o.) scarcely changed both the wheel-running and drinking during the light period, it was followed by a strong suppression of both behaviors during the coming dark period (18 : 00-6 : 00). The same treatment with caffeine (1-10 mg/kg s.c.) produced significant increase in the drinking during the light period, but suppression of the wheel-running during the dark period. Nicotine (0.1-1 mg/kg s.c.) significantly suppressed the wheel-running, but not drinking, during the dark period. The coadministration of nicotine (0.1-1 mg/kg) with ethanol (2.4 g/kg) reduced the behavioral suppression during the dark period. Whereas nicotine (0.1-1 mg/kg) reduced the increased drinking during light period by caffeine (10 mg/kg), but enhanced the caffeine-induced behavioral suppression during the dark period. These results indicate that the administration of pleasurable substances in the mid-light period results in a delayed effect which is characterized by a suppression of either and/or both wheel-running and drinking during the coming dark period starting 7 hr after the administration, and that nicotine acts to antagonize the effect of ethanol, but contrally to enhance the effect of caffeine.

  3. Recording and Analysis of Circadian Rhythms in Running-wheel Activity in Rodents

    PubMed Central

    Verwey, Michael; Robinson, Barry; Amir, Shimon

    2013-01-01

    When rodents have free access to a running wheel in their home cage, voluntary use of this wheel will depend on the time of day1-5. Nocturnal rodents, including rats, hamsters, and mice, are active during the night and relatively inactive during the day. Many other behavioral and physiological measures also exhibit daily rhythms, but in rodents, running-wheel activity serves as a particularly reliable and convenient measure of the output of the master circadian clock, the suprachiasmatic nucleus (SCN) of the hypothalamus. In general, through a process called entrainment, the daily pattern of running-wheel activity will naturally align with the environmental light-dark cycle (LD cycle; e.g. 12 hr-light:12 hr-dark). However circadian rhythms are endogenously generated patterns in behavior that exhibit a ~24 hr period, and persist in constant darkness. Thus, in the absence of an LD cycle, the recording and analysis of running-wheel activity can be used to determine the subjective time-of-day. Because these rhythms are directed by the circadian clock the subjective time-of-day is referred to as the circadian time (CT). In contrast, when an LD cycle is present, the time-of-day that is determined by the environmental LD cycle is called the zeitgeber time (ZT). Although circadian rhythms in running-wheel activity are typically linked to the SCN clock6-8, circadian oscillators in many other regions of the brain and body9-14 could also be involved in the regulation of daily activity rhythms. For instance, daily rhythms in food-anticipatory activity do not require the SCN15,16 and instead, are correlated with changes in the activity of extra-SCN oscillators17-20. Thus, running-wheel activity recordings can provide important behavioral information not only about the output of the master SCN clock, but also on the activity of extra-SCN oscillators. Below we describe the equipment and methods used to record, analyze and display circadian locomotor activity rhythms in laboratory

  4. Recording and analysis of circadian rhythms in running-wheel activity in rodents.

    PubMed

    Verwey, Michael; Robinson, Barry; Amir, Shimon

    2013-01-24

    When rodents have free access to a running wheel in their home cage, voluntary use of this wheel will depend on the time of day. Nocturnal rodents, including rats, hamsters, and mice, are active during the night and relatively inactive during the day. Many other behavioral and physiological measures also exhibit daily rhythms, but in rodents, running-wheel activity serves as a particularly reliable and convenient measure of the output of the master circadian clock, the suprachiasmatic nucleus (SCN) of the hypothalamus. In general, through a process called entrainment, the daily pattern of running-wheel activity will naturally align with the environmental light-dark cycle (LD cycle; e.g. 12 hr-light:12 hr-dark). However circadian rhythms are endogenously generated patterns in behavior that exhibit a ~24 hr period, and persist in constant darkness. Thus, in the absence of an LD cycle, the recording and analysis of running-wheel activity can be used to determine the subjective time-of-day. Because these rhythms are directed by the circadian clock the subjective time-of-day is referred to as the circadian time (CT). In contrast, when an LD cycle is present, the time-of-day that is determined by the environmental LD cycle is called the zeitgeber time (ZT). Although circadian rhythms in running-wheel activity are typically linked to the SCN clock, circadian oscillators in many other regions of the brain and body could also be involved in the regulation of daily activity rhythms. For instance, daily rhythms in food-anticipatory activity do not require the SCN and instead, are correlated with changes in the activity of extra-SCN oscillators. Thus, running-wheel activity recordings can provide important behavioral information not only about the output of the master SCN clock, but also on the activity of extra-SCN oscillators. Below we describe the equipment and methods used to record, analyze and display circadian locomotor activity rhythms in laboratory rodents.

  5. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze.

    PubMed

    Merritt, Jennifer R; Rhodes, Justin S

    2015-03-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2- to 5-fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6 J, 129S1/SvImJ, B6129SF1/J, DBA/2 J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2 J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running.

  6. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  7. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement

    PubMed Central

    Vellers, Heather L.; Letsinger, Ayland C.; Walker, Nicholas R.; Granados, Jorge Z.; Lightfoot, J. Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9–11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001) and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001). The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones. PMID:28890701

  8. High Fat High Sugar Diet Reduces Voluntary Wheel Running in Mice Independent of Sex Hormone Involvement.

    PubMed

    Vellers, Heather L; Letsinger, Ayland C; Walker, Nicholas R; Granados, Jorge Z; Lightfoot, J Timothy

    2017-01-01

    Introduction: Indirect results in humans suggest that chronic overfeeding decreases physical activity with few suggestions regarding what mechanism(s) may link overfeeding and decreased activity. The primary sex hormones are known regulators of activity and there are reports that chronic overfeeding alters sex hormone levels. Thepurpose of this study was to determine if chronic overfeeding altered wheel running through altered sex hormone levels. Materials and Methods: C57BL/6J mice were bred and the pups were weaned at 3-weeks of age and randomly assigned to either a control (CFD) or high fat/high sugar (HFHS) diet for 9-11 weeks depending on activity analysis. Nutritional intake, body composition, sex hormone levels, and 3-day and 2-week wheel-running activity were measured. Additionally, groups of HFHS animals were supplemented with testosterone (males) and 17β-estradiol (females) to determine if sex hormone augmentation altered diet-induced changes in activity. Results: 117 mice (56♂, 61♀) were analyzed. The HFHS mice consumed significantly more calories per day than CFD mice (male: p < 0.0001; female: p < 0.0001) and had significantly higher body fat (male: p < 0.0001; female: p < 0.0001). The HFHS diet did not reduce sex hormone levels, but did significantly reduce acute running-wheel distance in male (p = 0.05, 70 ± 28%) and female mice (p = 0.02, 57 ± 26%). In animals that received hormone supplementation, there was no significant effect on activity levels. Two-weeks of wheel access was not sufficient to alter HFHS-induced reductions in activity or increases in body fat. Conclusion: Chronic overfeeding reduces wheel running, but is independent of the primary sex hormones.

  9. Activity wheel running reduces escape latency and alters brain monoamine levels after footshock.

    PubMed

    Dishman, R K; Renner, K J; Youngstedt, S D; Reigle, T G; Bunnell, B N; Burke, K A; Yoo, H S; Mougey, E H; Meyerhoff, J L

    1997-01-01

    We examined the effects of chronic activity wheel running on brain monoamines and latency to escape foot shock after prior exposure to uncontrollable, inescapable foot shock. Individually housed young (approximately 50 day) female Sprague-Dawley rats were randomly assigned to standard cages (sedentary) or cages with activity wheels. After 9-12 weeks, animals were matched in pairs on body mass. Activity wheel animals were also matched on running distance. An animal from each matched pair was randomly assigned to controllable or uncontrollable inescapable foot shock followed the next day by a foot shock escape test in a shuttle box. Brain concentrations of norepinephrine (NE), dopamine (DA), dihydroxyphenylacetic acid (DOPAC), 5-hydroxytryptamine (5-HT), and 5-hydroxyindole acetic acid (5-HIAA) were assayed in the locus coeruleus (LC), dorsal raphe (DR), central amygdala (AC), hippocampus (CA1), arcuate nucleus, paraventricular nucleus (PVN), and midbrain central gray. After prior exposure to uncontrollable foot shock, escape latency was reduced by 34% for wheel runners compared with sedentary controls. The shortened escape latency for wheel runners was associated with 61% higher NE concentrations in LC and 44% higher NE concentrations in DR compared with sedentary controls. Sedentary controls, compared with wheel runners, had 31% higher 5-HIAA concentrations in CA1 and 30% higher 5-HIAA concentrations in AC after uncontrollable foot shock and had 28% higher 5-HT and 33% higher 5-HIAA concentrations in AC averaged across both foot shock conditions. There were no group differences in monoamines in the central gray or in plasma prolactin or ACTH concentrations, despite 52% higher DA concentrations in the arcuate nucleus after uncontrollable foot shock and 50% higher DOPAC/DA and 17% higher 5-HIAA/5-HT concentrations in the PVN averaged across both foot shock conditions for sedentary compared with activity wheel animals. The present results extend understanding of the

  10. Responding for sucrose and wheel-running reinforcement: effect of D-amphetamine.

    PubMed

    Belke, T W; Oldford, A C; Forgie, M Y; Beye, J A

    2005-07-01

    The present study assessed the effect of D-amphetamine on responding maintained by wheel-running and sucrose reinforcement. Six male albino Wistar rats were placed in running wheels and exposed to a fixed-interval 30-s schedule that produced either a drop of 5% sucrose solution or the opportunity to run for 15 s as reinforcing consequences for lever pressing. Each reinforcer type was signaled by a different stimulus. Doses of 0.25, 0.5, 1.0, 1.5, and 3.0 mg/kg D-amphetamine were administered by i.p. injection 20 min prior to a session. As the dose increased, index of curvature values decreased toward zero and rate-dependency plots revealed increases in lower rates early in the interval and decreases in higher rates toward the end of the interval. Effects were similar in the presence of both stimuli. However, an analysis of post-reinforcement pauses and local response rates broken down by transitions revealed a differential effect. As the dose increased, local response rates following a wheel-running reinforcer were affected more than those following a sucrose reinforcer.

  11. Circadian wheel-running activity during withdrawal from chronic intermittent ethanol exposure in mice

    PubMed Central

    Logan, Ryan W.; Seggio, Joseph A.; Robinson, Stacy L.; Richard, Gregory R.; Rosenwasser, Alan M.

    2010-01-01

    Alcohol withdrawal is associated with affective-behavioral disturbances in both human alcoholics and in animal models. In general, these phenomena are potentiated by increased alcohol exposure duration and by prior withdrawal episodes. Previous studies have also reported locomotor hypoactivity during ethanol withdrawal in rats and mice, but only in novel test environments, not in the home-cage. In the present study, we examined the effects of withdrawal from chronic intermittent ethanol (CIE) vapor exposure on the level and circadian periodicity of wheel-running activity in C57BL/6J mice. CIE treatment resulted in reductions in wheel-running activity relative to plain-air controls that persisted for about one week after withdrawal. Analysis of circadian waveforms indicated that reduced activity occurred throughout the night phase, but that daily activity patterns were otherwise unaltered. CIE failed to alter free-running circadian period or phase in animals maintained under constant darkness. These results show that ethanol withdrawal can result in locomotor hypoactivity even in the habitual, home-cage environment, and suggest that withdrawal-related reductions in wheel-running activity may reflect the specific motivational significance of this behavior. PMID:20682191

  12. Automated home cage observations as a tool to measure the effects of wheel running on cage floor locomotion.

    PubMed

    de Visser, Leonie; van den Bos, Ruud; Spruijt, Berry M

    2005-05-28

    This paper introduces automated observations in a modular home cage system as a tool to measure the effects of wheel running on the time distribution and daily organization of cage floor locomotor activity in female C57BL/6 mice. Mice (n = 16) were placed in the home cage system for 6 consecutive days. Fifty percent of the subjects had free access to a running wheel that was integrated in the home cage. Overall activity levels in terms of duration of movement were increased by wheel running, while time spent inside a sheltering box was decreased. Wheel running affected the hourly pattern of movement during the animals' active period of the day. Mice without a running wheel, in contrast to mice with a running wheel, showed a clear differentiation between novelty-induced and baseline levels of locomotion as reflected by a decrease after the first day of introduction to the home cage. The results are discussed in the light of the use of running wheels as a tool to measure general activity and as an object for environmental enrichment. Furthermore, the possibilities of using automated home cage observations for e.g. behavioural phenotyping are discussed.

  13. Variation in within-bone stiffness measured by nanoindentation in mice bred for high levels of voluntary wheel running.

    PubMed

    Middleton, Kevin M; Goldstein, Beth D; Guduru, Pradeep R; Waters, Julie F; Kelly, Scott A; Swartz, Sharon M; Garland, T

    2010-01-01

    The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high levels of voluntary wheel running (HR). Mice (n = 48 total), half from HR lines and half from non-selected control (C) lines, were divided into two experimental groups, one with 13-14 weeks of access to a running wheel and one housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomography (microCT)-based morphometric traits were measured, and reduced elastic modulus (E(r)) was estimated separately for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-model analysis of covariance (ancova) showed that body mass was a highly significant predictor of all morphometric traits and that structural change is more apparent at the microCT level than in conventional morphometrics of whole bones. Both line type (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian recessive allele and characterized by a approximately 50% reduction in mass of the gastrocnemius muscle complex) were significant predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoindentation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences. Although we found no significant effects of line type (HR vs. C) or physical activity (wheel vs. no wheel) on mean stiffness, anterior and posterior quadrants were significantly stiffer (P < 0

  14. Variation in within-bone stiffness measured by nanoindentation in mice bred for high levels of voluntary wheel running

    PubMed Central

    Middleton, Kevin M; Goldstein, Beth D; Guduru, Pradeep R; Waters, Julie F; Kelly, Scott A; Swartz, Sharon M; Garland Jr, T

    2010-01-01

    The hierarchical structure of bone, involving micro-scale organization and interaction of material components, is a critical determinant of macro-scale mechanics. Changes in whole-bone morphology in response to the actions of individual genes, physiological loading during life, or evolutionary processes, may be accompanied by alterations in underlying mineralization or architecture. Here, we used nanoindentation to precisely measure compressive stiffness in the femoral mid-diaphysis of mice that had experienced 37 generations of selective breeding for high levels of voluntary wheel running (HR). Mice (n= 48 total), half from HR lines and half from non-selected control (C) lines, were divided into two experimental groups, one with 13–14 weeks of access to a running wheel and one housed without wheels (n = 12 in each group). At the end of the experiment, gross and micro-computed tomography (μCT)-based morphometric traits were measured, and reduced elastic modulus (Er) was estimated separately for four anatomical quadrants of the femoral cortex: anterior, posterior, lateral, and medial. Two-way, mixed-model analysis of covariance (ancova) showed that body mass was a highly significant predictor of all morphometric traits and that structural change is more apparent at the μCT level than in conventional morphometrics of whole bones. Both linetype (HR vs. C) and presence of the mini-muscle phenotype (caused by a Mendelian recessive allele and characterized by a ∼50% reduction in mass of the gastrocnemius muscle complex) were significant predictors of femoral cortical cross-sectional anatomy. Measurement of reduced modulus obtained by nanoindentation was repeatable within a single quadrant and sensitive enough to detect inter-individual differences. Although we found no significant effects of linetype (HR vs. C) or physical activity (wheel vs. no wheel) on mean stiffness, anterior and posterior quadrants were significantly stiffer (P< 0.0001) than medial and lateral

  15. DNA microarray‐based analysis of voluntary resistance wheel running reveals novel transcriptome leading robust hippocampal plasticity

    PubMed Central

    Lee, Min Chul; Rakwal, Randeep; Shibato, Junko; Inoue, Koshiro; Chang, Hyukki; Soya, Hideaki

    2014-01-01

    Abstract In two separate experiments, voluntary resistance wheel running with 30% of body weight (RWR), rather than wheel running (WR), led to greater enhancements, including adult hippocampal neurogenesis and cognitive functions, in conjunction with hippocampal brain‐derived neurotrophic factor (BDNF) signaling (Lee et al., J Appl Physiol, 2012; Neurosci Lett., 2013). Here we aimed to unravel novel molecular factors and gain insight into underlying molecular mechanisms for RWR‐enhanced hippocampal functions; a high‐throughput whole‐genome DNA microarray approach was applied to rats performing voluntary running for 4 weeks. RWR rats showed a significant decrease in average running distances although average work levels increased immensely, by about 11‐fold compared to WR, resulting in muscular adaptation for the fast‐twitch plantaris muscle. Global transcriptome profiling analysis identified 128 (sedentary × WR) and 169 (sedentary × RWR) up‐regulated (>1.5‐fold change), and 97 (sedentary × WR) and 468 (sedentary × RWR) down‐regulated (<0.75‐fold change) genes. Functional categorization using both pathway‐ or specific‐disease‐state‐focused gene classifications and Ingenuity Pathway Analysis (IPA) revealed expression pattern changes in the major categories of disease and disorders, molecular functions, and physiological system development and function. Genes specifically regulated with RWR include the newly identified factors of NFATc1, AVPR1A, and FGFR4, as well as previously known factors, BDNF and CREB mRNA. Interestingly, RWR down‐regulated multiple inflammatory cytokines (IL1B, IL2RA, and TNF) and chemokines (CXCL1, CXCL10, CCL2, and CCR4) with the SYCP3, PRL genes, which are potentially involved in regulating hippocampal neuroplastic changes. These results provide understanding of the voluntary‐RWR‐related hippocampal transcriptome, which will open a window to the underlying mechanisms of the positive effects of exercise

  16. A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions

    PubMed Central

    Jud, Corinne; Schmutz, Isabelle; Hampp, Gabriele; Oster, Henrik

    2005-01-01

    Most behavioral experiments within circadian research are based on the analysis of locomotor activity. This paper introduces scientists to chronobiology by explaining the basic terminology used within the field. Furthermore, it aims to assist in designing, carrying out, and evaluating wheel-running experiments with rodents, particularly mice. Since light is an easily applicable stimulus that provokes strong effects on clock phase, the paper focuses on the application of different lighting conditions. PMID:16136228

  17. Alterations in fear conditioning and amygdalar activation following chronic wheel running in rats.

    PubMed

    Burghardt, Paul R; Pasumarthi, Ravi K; Wilson, Marlene A; Fadel, Jim

    2006-06-01

    Several convergent lines of evidence point to the amygdala as a key site of plasticity underlying most forms of fear conditioning. Studies have shown that chronic physical activity, such as wheel running, can alter learning in a variety of contexts, including aversive conditioning. The ability of chronic wheel running (WR) to alter both behavioral correlates of fear conditioning and indices of amygdalar activation, however, has not been simultaneously assessed. Here, rats were given constant access to either free-turning or--as a control--locked (LC) running wheels in their home cages. After 8 weeks of housing under these conditions, animals were exposed to a series of shocks in a separate testing chamber. Twenty-four hours later, the animals were returned to the shock chamber and freezing behavior was measured as an indicator of contextual fear conditioning. The animals were then sacrificed and their brains processed for immunohistochemical detection of Fos to assess patterns of putative neuronal activation. WR rats spent significantly more time freezing than their LC counterparts upon return to the shock-paired context. The enhanced conditioned freezing response was most pronounced in animals showing high levels of nightly wheel running activity. WR animals also had significantly higher levels of neuronal activation, as indicated by Fos expression in the central nucleus of the amygdala, but less activation in the basolateral nucleus, compared to sedentary controls. These data demonstrate the ability of chronic physical activity to alter contextual fear conditioning and implicate the amygdala as a potential site of plasticity underlying this phenomenon.

  18. Locomotor trade-offs in mice selectively bred for high voluntary wheel running.

    PubMed

    Dlugosz, Elizabeth M; Chappell, Mark A; McGillivray, David G; Syme, Douglas A; Garland, Theodore

    2009-08-01

    We investigated sprint performance and running economy of a unique ;mini-muscle' phenotype that evolved in response to selection for high voluntary wheel running in laboratory mice (Mus domesticus). Mice from four replicate selected (S) lines run nearly three times as far per day as four control lines. The mini-muscle phenotype, resulting from an initially rare autosomal recessive allele, has been favoured by the selection protocol, becoming fixed in one of the two S lines in which it occurred. In homozygotes, hindlimb muscle mass is halved, mass-specific muscle oxidative capacity is doubled, and the medial gastrocnemius exhibits about half the mass-specific isotonic power, less than half the mass-specific cyclic work and power, but doubled fatigue resistance. We hypothesized that mini-muscle mice would have a lower whole-animal energy cost of transport (COT), resulting from lower costs of cycling their lighter limbs, and reduced sprint speed, from reduced maximal force production. We measured sprint speed on a racetrack and slopes (incremental COT, or iCOT) and intercepts of the metabolic rate versus speed relationship during voluntary wheel running in 10 mini-muscle and 20 normal S-line females. Mini-muscle mice ran faster and farther on wheels, but for less time per day. Mini-muscle mice had significantly lower sprint speeds, indicating a functional trade-off. However, contrary to predictions, mini-muscle mice had higher COT, mainly because of higher zero-speed intercepts and postural costs (intercept-resting metabolic rate). Thus, mice with altered limb morphology after intense selection for running long distances do not necessarily run more economically.

  19. Free Access to a Running-Wheel Advances the Phase of Behavioral and Physiological Circadian Rhythms and Peripheral Molecular Clocks in Mice

    PubMed Central

    Yasumoto, Yuki; Nakao, Reiko; Oishi, Katsutaka

    2015-01-01

    Behavioral and physiological circadian rhythms are controlled by endogenous oscillators in animals. Voluntary wheel-running in rodents is thought to be an appropriate model of aerobic exercise in humans. We evaluated the effects of chronic voluntary exercise on the circadian system by analyzing temporal profiles of feeding, core body temperature, plasma hormone concentrations and peripheral expression of clock and clock-controlled genes in mice housed under sedentary (SED) conditions or given free access to a running-wheel (RW) for four weeks. Voluntary wheel-running activity advanced the circadian phases of increases in body temperature, food intake and corticosterone secretion in the mice. The circadian expression of clock and clock-controlled genes was tissue- and gene-specifically affected in the RW mice. The temporal expression of E-box-dependent circadian clock genes such as Per1, Per2, Nr1d1 and Dbp were slightly, but significantly phase-advanced in the liver and white adipose tissue, but not in brown adipose tissue and skeletal muscle. Peak levels of Per1, Per2 and Nr1d1 expression were significantly increased in the skeletal muscle of RW mice. The circadian phase and levels of hepatic mRNA expression of the clock-controlled genes that are involved in cholesterol and fatty acid metabolism significantly differed between SED and RW mice. These findings indicated that endogenous clock-governed voluntary wheel-running activity provides feedback to the central circadian clock that systemically governs behavioral and physiological rhythms. PMID:25615603

  20. Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels?

    PubMed

    Kehler, Alyse L; Hajkova, Eliska; Holmberg, Hans-Christer; Kram, Rodger

    2014-11-01

    Mechanical energy can be conserved during terrestrial locomotion in two ways: the inverted pendulum mechanism for walking and the spring-mass mechanism for running. Here, we investigated whether diagonal stride cross-country roller skiing (DIA) utilizes similar mechanisms. Based on previous studies, we hypothesized that running and DIA would share similar phase relationships and magnitudes of kinetic energy (KE), and gravitational potential energy (GPE) fluctuations, indicating elastic energy storage and return, as if roller skiing is like 'running on wheels'. Experienced skiers (N=9) walked and ran at 1.25 and 3 m s(-1), respectively, and roller skied with DIA at both speeds on a level dual-belt treadmill that recorded perpendicular and parallel forces. We calculated the KE and GPE of the center of mass from the force recordings. As expected, the KE and GPE fluctuated with an out-of-phase pattern during walking and an in-phase pattern during running. Unlike walking, during DIA, the KE and GPE fluctuations were in phase, as they are in running. However, during the glide phase, KE was dissipated as frictional heat and could not be stored elastically in the tendons, as in running. Elastic energy storage and return epitomize running and thus we reject our hypothesis. Diagonal stride cross-country skiing is a biomechanically unique movement that only superficially resembles walking or running.

  1. Identification of a physiological role for leptin in the regulation of ambulatory activity and wheel running in mice.

    PubMed

    Morton, Gregory J; Kaiyala, Karl J; Fisher, Jonathan D; Ogimoto, Kayoko; Schwartz, Michael W; Wisse, Brent E

    2011-02-01

    Mechanisms regulating spontaneous physical activity remain poorly characterized despite evidence of influential genetic and acquired factors. We evaluated ambulatory activity and wheel running in leptin-deficient ob/ob mice and in wild-type mice rendered hypoleptinemic by fasting in both the presence and absence of subcutaneous leptin administration. In ob/ob mice, leptin treatment to plasma levels characteristic of wild-type mice acutely increased both ambulatory activity (by 4,000 ± 200 beam breaks/dark cycle, P < 0.05) and total energy expenditure (TEE; by 0.11 ± 0.01 kcal/h during the dark cycle, P < 0.05) in a dose-dependent manner and acutely increased wheel running (+350%, P < 0.05). Fasting potently increased ambulatory activity and wheel running in wild-type mice (AA: +25%, P < 0.05; wheel running: +80%, P < 0.05), and the effect of fasting was more pronounced in ob/ob mice (AA: +400%, P < 0.05; wheel running: +1,600%, P < 0.05). However, unlike what occurred in ad libitum-fed ob/ob mice, physiological leptin replacement attenuated or prevented fasting-induced increases of ambulatory activity and wheel running in both wild-type and ob/ob mice. Thus, plasma leptin is a physiological regulator of spontaneous physical activity, but the nature of leptin's effect on activity is dependent on food availability.

  2. Evidence for positive, but not negative, behavioral contrast with wheel-running reinforcement on multiple variable-ratio schedules.

    PubMed

    Belke, Terry W; Pierce, W David

    2016-12-01

    Rats responded on a multiple variable-ratio (VR) 10 VR 10 schedule of reinforcement in which lever pressing was reinforced by the opportunity to run in a wheel for 30s in both the changed (manipulated) and unchanged components. To generate positive contrast, the schedule of reinforcement in the changed component was shifted to extinction; to generate negative contrast, the schedule was shifted to VR 3. With the shift to extinction in the changed component, wheel-running and local lever-pressing rates increased in the unchanged component, a result supporting positive contrast; however, the shift to a VR 3 schedule in the changed component showed no evidence of negative contrast in the unaltered setting, only wheel running decreased in the unchanged component. Changes in wheel-running rates across components were consistent in showing a compensation effect, depending on whether the schedule manipulation increased or decreased opportunities for wheel running in the changed component. These findings are the first to demonstrate positive behavioral contrast on a multiple schedule with wheel running as reinforcement in both components.

  3. Techniques for establishing schedules with wheel running as reinforcement in rats.

    PubMed Central

    Iversen, I H

    1993-01-01

    In three experiments, access to wheel running was contingent on lever pressing. In each experiment, the duration of access to running was reduced gradually to 4, 5, or 6 s, and the schedule parameters were expanded gradually. The sessions lasted 2 hr. In Experiment 1, a fixed-ratio 20 schedule controlled a typical break-and-run pattern of lever pressing that was maintained throughout the session for 3 rats. In Experiment 2, a fixed-interval schedule of 6 min maintained lever pressing throughout the session for 3 rats, and for 1 rat, the rate of lever pressing was positively accelerated between reinforcements. In Experiment 3, a variable-ratio schedule of 20 or 35 was in effect and maintained lever pressing at a very stable pace throughout the session for 2 of 3 rats; for 1 rat, lever pressing was maintained at an irregular rate. When the session duration was extended to successive 24-hr periods, with food and water accessible in Experiment 3, lever pressing settled into a periodic pattern occurring at a high rate at approximately the same time each day. In each experiment, the rats that developed the highest local rates of running during wheel access also maintained the most stable and highest rates of lever pressing. PMID:8354968

  4. Simple and conditional visual discrimination with wheel running as reinforcement in rats.

    PubMed Central

    Iversen, I H

    1998-01-01

    Three experiments explored whether access to wheel running is sufficient as reinforcement to establish and maintain simple and conditional visual discriminations in nondeprived rats. In Experiment 1, 2 rats learned to press a lit key to produce access to running; responding was virtually absent when the key was dark, but latencies to respond were longer than for customary food and water reinforcers. Increases in the intertrial interval did not improve the discrimination performance. In Experiment 2, 3 rats acquired a go-left/go-right discrimination with a trial-initiating response and reached an accuracy that exceeded 80%; when two keys showed a steady light, pressing the left key produced access to running whereas pressing the right key produced access to running when both keys showed blinking light. Latencies to respond to the lights shortened when the trial-initiation response was introduced and became much shorter than in Experiment 1. In Experiment 3, 1 rat acquired a conditional discrimination task (matching to sample) with steady versus blinking lights at an accuracy exceeding 80%. A trial-initiation response allowed self-paced trials as in Experiment 2. When the rat was exposed to the task for 19 successive 24-hr periods with access to food and water, the discrimination performance settled in a typical circadian pattern and peak accuracy exceeded 90%. When the trial-initiation response was under extinction, without access to running, the circadian activity pattern determined the time of spontaneous recovery. The experiments demonstrate that wheel-running reinforcement can be used to establish and maintain simple and conditional visual discriminations in nondeprived rats. PMID:9841250

  5. Simple and conditional visual discrimination with wheel running as reinforcement in rats.

    PubMed

    Iversen, I H

    1998-09-01

    Three experiments explored whether access to wheel running is sufficient as reinforcement to establish and maintain simple and conditional visual discriminations in nondeprived rats. In Experiment 1, 2 rats learned to press a lit key to produce access to running; responding was virtually absent when the key was dark, but latencies to respond were longer than for customary food and water reinforcers. Increases in the intertrial interval did not improve the discrimination performance. In Experiment 2, 3 rats acquired a go-left/go-right discrimination with a trial-initiating response and reached an accuracy that exceeded 80%; when two keys showed a steady light, pressing the left key produced access to running whereas pressing the right key produced access to running when both keys showed blinking light. Latencies to respond to the lights shortened when the trial-initiation response was introduced and became much shorter than in Experiment 1. In Experiment 3, 1 rat acquired a conditional discrimination task (matching to sample) with steady versus blinking lights at an accuracy exceeding 80%. A trial-initiation response allowed self-paced trials as in Experiment 2. When the rat was exposed to the task for 19 successive 24-hr periods with access to food and water, the discrimination performance settled in a typical circadian pattern and peak accuracy exceeded 90%. When the trial-initiation response was under extinction, without access to running, the circadian activity pattern determined the time of spontaneous recovery. The experiments demonstrate that wheel-running reinforcement can be used to establish and maintain simple and conditional visual discriminations in nondeprived rats.

  6. Investigation of pre-pubertal sex differences in wheel running and social behavior in three mouse strains

    PubMed Central

    Gordon, Elizabeth A.; Corbitt, Cynthia

    2015-01-01

    Sex differences in social behaviors exist in mammals during adulthood, and further evidence suggests that sex differences in behavior are present before sexual maturity. In order to model behavioral disorders in animals, it is important to assess baseline sex-related behavioral differences, especially when studying disorders for which sex-related behavioral effects are expected. We investigated the effect of sex on behavior in 3 strains of pre-pubertal mice (C57BL/6, CFW, and CF1) using a wheel-running assay. We found no significant sex differences in latency to run on the wheel or total duration of wheel running within each strain. During the social interaction test, there were no differences between sexes in latency or total duration of contact or following between a subject and novel mouse. We also evaluated behavioral patterns of wheel running and stereotypical behaviors, such as burrowing and grooming. Both sexes showed characteristic wheel running behavior, spending the majority of each trial interacting with the wheel when it was free and more time performing other activities (e.g., stereotypical behaviors, general locomotion) when it was jammed. These results provide evidence that, among various strains of pre-pubertal mice, baseline sex-related behavioral differences are not strong enough to influence the measured behaviors. PMID:26316671

  7. Chronic running wheel activity attenuates the antinociceptive actions of morphine and morphine-6-glucouronide administration into the periaqueductal gray in rats.

    PubMed

    Mathes, Wendy Foulds; Kanarek, Robin B

    2006-04-01

    Chronic exercise in a running wheel increases baseline pain sensitivity while attenuating the antinociceptive effects of peripherally administered opiate agonists in laboratory rodents. To determine if these effects are due to exercise-induced changes in the central nervous system (CNS) or an artifact of exercise-induced alterations in peripheral physiology, the present study evaluated the antinociceptive actions of centrally administered opiate agonists in active and inactive female rats. Rats were implanted with cannula into the right periaqueductal gray (PAG) area of the midbrain. After the completion of the surgery, the animals were allowed ad libitum access to running wheels or housed in standard cages for three weeks. Pain sensitivity was measured on the tail flick test before and immediately following microinjections of either morphine (0, 2.5, 5.0, 10.0, 20.0 microg/rat) or the more potent morphine metabolite, morphine-6-glucuronide (M6G) (0, 0.03, 0.1, 0.3, 1.0 microg/rat). Baseline tail flick latencies were significantly shorter in active than in inactive rats. Additionally, active animals were less sensitive to the antinociceptive effects of morphine and M6G than inactive rats. These findings provide evidence for the involvement of the CNS in exercise-mediated alterations in pain sensitivity and opiate drug actions.

  8. The effects of changes in housing on feeding and wheel running.

    PubMed

    O'Connor, R; Eikelboom, R

    2000-01-01

    The experiments explored the effects on feeding when rats were moved between individual and paired housing. In Experiment 1, rats moved to paired housing showed a 3-day suppression in feeding (initially 23%) compared to chronically individual- or pair-housed rats. In Experiment 2, half of the rats from the two control groups of Experiment 1 were moved between individual and paired housing on alternate days. Only the rats moved to paired housing showed a feeding suppression (initially 40%), but the nature of the suppression differed from Experiment 1: it appeared that only one rat of each pair showed a feeding suppression. Experiment 3 examined simultaneous introduction of running wheels and moves to paired housing. The feeding suppression induced by the move to paired housing was more immediate and shorter lived than the wheel-induced suppression. Unlike wheel access, paired housing produced only a temporary suppression of body weight. These experiments suggest that the relatively simple manipulation of moving rats from individual to paired housing results in a temporary stress-induced decrease in feeding.

  9. Home cage wheel running is an objective and clinically relevant method to assess inflammatory pain in male and female rats

    PubMed Central

    Kandasamy, Ram; Calsbeek, Jonas J.; Morgan, Michael M.

    2016-01-01

    Background The assessment of nociception in preclinical studies is undergoing a transformation from pain-evoked to pain-depressed tests to more closely mimic the effects of clinical pain. Many inflammatory pain-depressed behaviors (reward seeking, locomotion) have been examined, but these tests are limited because of confounds such as stress and difficulties in quantifying behavior. New Method The present study evaluates home cage wheel running as an objective method to assess the magnitude and duration of inflammatory pain in male and female rats. Results Injection of Complete Freund’s Adjuvant (CFA) into the right hindpaw to induce inflammatory pain almost completely inhibited wheel running for 2 days in males and females. Wheel running gradually returned to baseline levels within 12 days despite persistent mechanical hypersensitivity (von Frey test). Comparison with Existing Methods Continuously monitoring home cage wheel running improves on previous studies examining inflammatory pain-depressed wheel running because it is more sensitive to noxious stimuli, avoids the stress of removing the rat from its cage for testing, and provides a complete analysis of the time course for changes in nociception. Conclusions The present data indicate that home cage wheel running is a clinically relevant method to assess inflammatory pain in the rat. The decrease in activity caused by inflammatory pain and subsequent gradual recovery mimics the changes in activity caused by pain in humans. The tendency for pain-depressed wheel running to be greater in female than male rats is consistent with the tendency for women to be at greater risk of chronic pain than men. PMID:26891874

  10. One day access to a running wheel reduces self-administration of D-methamphetamine, MDMA and methylone.

    PubMed

    Aarde, Shawn M; Miller, Michelle L; Creehan, Kevin M; Vandewater, Sophia A; Taffe, Michael A

    2015-06-01

    Exercise influences drug craving and consumption in humans and drug self-administration in laboratory animals, but the effects can be variable. Improved understanding of how exercise affects drug intake or craving would enhance applications of exercise programs to human drug users attempting cessation. Rats were trained in the intravenous self-administration (IVSA) of D-methamphetamine (METH; 0.05 mg/kg/inf), 3,4-methylenedioxymethamphetamine (MDMA; 0.5 mg/kg/inf) or methylone (0.5 mg/kg/inf). Once IVSA was established, the effect of ∼ 22 h of wheel access in the home cage on subsequent drug taking was assessed in a two cohort crossover design. Provision of home cage wheel access during the day prior to IVSA sessions significantly decreased the self-administration of METH, MDMA and methylone. At the individual level, there was no correlation between the amount a rat used the wheel and the size of the individual's decrease in drug intake. Wheel access can reduce self-administration of a variety of psychomotor stimulants. It does so immediately, i.e., without a need for weeks of exercise prior to drug access. This study therefore indicates that future mechanistic investigations should focus on acute effects of exercise. In sum, the results predict that exercise programs can be used to decrease stimulant drug use in individuals even with no exercise history and an established drug taking pattern. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Inflammation-induced decrease in voluntary wheel running in mice: a nonreflexive test for evaluating inflammatory pain and analgesia.

    PubMed

    Cobos, Enrique J; Ghasemlou, Nader; Araldi, Dionéia; Segal, David; Duong, Kelly; Woolf, Clifford J

    2012-04-01

    Inflammatory pain impacts adversely on the quality of life of patients, often resulting in motor disabilities. Therefore, we studied the effect of peripheral inflammation induced by intraplantar administration of complete Freund's adjuvant (CFA) in mice on a particular form of voluntary locomotion, wheel running, as an index of mobility impairment produced by pain. The distance traveled over 1 hour of free access to activity wheels decreased significantly in response to hind paw inflammation, peaking 24 hours after CFA administration. Recovery of voluntary wheel running by day 3 correlated with the ability to support weight on the inflamed limb. Inflammation-induced mechanical hypersensitivity, measured with von Frey hairs, lasted considerably longer than the impaired voluntary wheel running and is not driving; therefore, the change in voluntary behavior. The CFA-induced decrease in voluntary wheel running was dose-dependently reversed by subcutaneous administration of antiinflammatory and analgesic drugs, including naproxen (10-80 mg/kg), ibuprofen (2.5-20mg/kg), diclofenac (1.25-10mg/kg), celecoxib (2.5-20mg/kg), prednisolone (0.62-5mg/kg), and morphine (0.06-0.5mg/kg), all at much lower doses than reported in most rodent models. Furthermore, the doses that induced recovery in voluntary wheel running did not reduce CFA-induced mechanical allodynia, indicating a greater sensitivity of the former as a surrogate measure of inflammatory pain. We conclude that monitoring changes in voluntary wheel running in mice during peripheral inflammation is a simple, observer-independent objective measure of functional changes produced by inflammation, likely more aligned to the global level of pain than reflexive measures, and much more sensitive to analgesic drug effects. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  12. Wheel-running behavior is altered following withdrawal from repeated cocaine in adult rats.

    PubMed

    Santucci, Anthony C; Hernandez, Lizandra; Caba, Julissa

    2008-04-01

    The residual effects on open-field habituation and self-generated wheel running following withdrawal from repeated cocaine (COC; 30 mg/kg for 7 days) were examined in adult male rats. Control subjects received equivolumetric injections of saline (SAL) and were either allowed to feed ad libitum or pair-fed matched (PF SAL) to COC subjects to control for the drug's potential anorexic effect. Following 10 days of withdrawal, all subjects were examined twice on each of the two assessment instruments. Results indicated that COC subjects over the two test sessions failed to increase their wheel-running rates and did not show the expected habituation in the open field. However, because both COC and PF SAL groups yielded similar effects in the open field, conclusions about cocaine's consequences on habituation could not be established independent of the drug's anorexic effect. These data provide evidence for the view that repeated cocaine impairs motivational processes responsible for engaging in self-generated naturally rewarding behaviors. Speculation concerning the neurobiobehavioral substrates for this effect is presented.

  13. Exercise-Induced Muscle Damage and Running Economy in Humans

    PubMed Central

    Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2013-01-01

    Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15–30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO2max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO2max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. PMID:23431253

  14. Effects of diet-induced obesity and voluntary wheel running on the microstructure of the murine distal femur

    PubMed Central

    2011-01-01

    Background Obesity and osteoporosis, two possibly related conditions, are rapidly expanding health concerns in modern society. Both of them are associated with sedentary life style and nutrition. To investigate the effects of diet-induced obesity and voluntary physical activity we used high resolution micro-computed tomography (μCT) together with peripheral quantitative computed tomography (pQCT) to examine the microstructure of the distal femoral metaphysis in mice. Methods Forty 7-week-old male C57BL/6J mice were assigned to 4 groups: control (C), control + running (CR), high-fat diet (HF), and high-fat diet + running (HFR). After a 21-week intervention, all the mice were sacrificed and the left femur dissected for pQCT and μCT measurements. Results The mice fed the high-fat diet showed a significant weight gain (over 70% for HF and 60% for HFR), with increased epididymal fat pad mass and impaired insulin sensitivity. These obese mice had significantly higher trabecular connectivity density, volume, number, thickness, area and mass, and smaller trabecular separation. At the whole bone level, they had larger bone circumference and cross-sectional area and higher density-weighted maximal, minimal, and polar moments of inertia. Voluntary wheel running decreased all the cortical bone parameters, but increased the trabecular mineral density, and decreased the pattern factor and structure model index towards a more plate-like structure. Conclusions The results suggest that in mice the femur adapts to obesity by improving bone strength both at the whole bone and micro-structural level. Adaptation to running exercise manifests itself in increased trabecular density and improved 3D structure, but in a limited overall bone growth PMID:21241467

  15. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats

    PubMed Central

    MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE

    2015-01-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772

  16. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats.

    PubMed

    Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2011-05-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.

  17. Voluntary wheel-running attenuates insulin and weight gain and affects anxiety-like behaviors in C57BL6/J mice exposed to a high-fat diet.

    PubMed

    Hicks, Jasmin A; Hatzidis, Aikaterini; Arruda, Nicole L; Gelineau, Rachel R; De Pina, Isabella Monteiro; Adams, Kenneth W; Seggio, Joseph A

    2016-09-01

    It is widely accepted that lifestyle plays a crucial role on the quality of life in individuals, particularly in western societies where poor diet is correlated to alterations in behavior and the increased possibility of developing type-2 diabetes. While exercising is known to produce improvements to overall health, there is conflicting evidence on how much of an effect exercise has staving off the development of type-2 diabetes or counteracting the effects of diet on anxiety. Thus, this study investigated the effects of voluntary wheel-running access on the progression of diabetes-like symptoms and open field and light-dark box behaviors in C57BL/6J mice fed a high-fat diet. C57BL/6J mice were placed into either running-wheel cages or cages without a running-wheel, given either regular chow or a high-fat diet, and their body mass, food consumption, glucose tolerance, insulin and c-peptide levels were measured. Mice were also exposed to the open field and light-dark box tests for anxiety-like behaviors. Access to a running-wheel partially attenuated the obesity and hyperinsulinemia associated with high-fat diet consumption in these mice, but did not affect glucose tolerance or c-peptide levels. Wheel-running strongly increased anxiety-like and decreased explorative-like behaviors in the open field and light-dark box, while high-fat diet consumption produced smaller increases in anxiety. These results suggest that voluntary wheel-running can assuage some, but not all, of the physiological problems associated with high-fat diet consumption, and can modify anxiety-like behaviors regardless of diet consumed.

  18. Central gene expression changes associated with enhanced neuroendocrine and autonomic response habituation to repeated noise stress after voluntary wheel running in rats

    PubMed Central

    Sasse, Sarah K.; Nyhuis, Tara J.; Masini, Cher V.; Day, Heidi E. W.; Campeau, Serge

    2013-01-01

    Accumulating evidence indicates that regular physical exercise benefits health in part by counteracting some of the negative physiological impacts of stress. While some studies identified reductions in some measures of acute stress responses with prior exercise, limited data were available concerning effects on cardiovascular function, and reported effects on hypothalamic-pituitary-adrenocortical (HPA) axis responses were largely inconsistent. Given that exposure to repeated or prolonged stress is strongly implicated in the precipitation and exacerbation of illness, we proposed the novel hypothesis that physical exercise might facilitate adaptation to repeated stress, and subsequently demonstrated significant enhancement of both HPA axis (glucocorticoid) and cardiovascular (tachycardia) response habituation to repeated noise stress in rats with long-term access to running wheels compared to sedentary controls. Stress habituation has been attributed to modifications of brain circuits, but the specific sites of adaptation and the molecular changes driving its expression remain unclear. Here, in situ hybridization histochemistry was used to examine regulation of select stress-associated signaling systems in brain regions representing likely candidates to underlie exercise-enhanced stress habituation. Analyzed brains were collected from active (6 weeks of wheel running) and sedentary rats following control, acute, or repeated noise exposures that induced a significantly faster rate of glucocorticoid response habituation in active animals but preserved acute noise responsiveness. Nearly identical experimental manipulations also induce a faster rate of cardiovascular response habituation in exercised, repeatedly stressed rats. The observed regulation of the corticotropin-releasing factor and brain-derived neurotrophic factor systems across several brain regions suggests widespread effects of voluntary exercise on central functions and related adaptations to stress across

  19. Effects of 8 wk of voluntary unloaded wheel running on K+ tolerance and excitability of soleus muscles in rat.

    PubMed

    Broch-Lips, Martin; de Paoli, Frank; Pedersen, Thomas Holm; Overgaard, Kristian; Nielsen, Ole Bækgaard

    2011-07-01

    During intense exercise, efflux of K(+) from working muscles increases extracellular K(+) ([K(+)](o)) to levels that can compromise muscle excitability and hence cause fatigue. In this context, the reduction in the exercise-induced elevation of [K(+)](o) observed after training in humans is suggested to contribute to the increased performance after training. Although a similar effect could be obtained by an increase in the tolerance of muscle to elevated [K(+)](o), this possibility has not been investigated. To examine this, isolated soleus muscles from sedentary (sedentary) rats and from rats that had voluntarily covered 13.1 ± 0.7 km/day in an unloaded running wheel for 8 wk (active) were compared. In muscles from active rats, the loss of force induced by exposure to an elevated [K(+)](o) of 9 mM was 42% lower than in muscles from sedentary rats (P < 0.001). This apparent increase in K(+) tolerance in active rats was associated with an increased excitability as evident from a 33% reduction in the electrical current needed to excite individual muscle fibers (P < 0.0009). Moreover, muscles from active rats had lower Cl(-) conductance, higher maximal rate of rise of single-fiber action potentials (AP), and higher Na(+)/K(+) pump content. When stimulated intermittently at 6.5 mM K(+), muscles from active rats displayed better endurance than muscles from sedentary rats, whereas no difference was found when the muscles were stimulated continuously at 30 or 120 Hz. We conclude that voluntary running increases muscle excitability, leading to improved tolerance to elevated [K(+)](o).

  20. Conditioned ethanol aversion in rats induced by voluntary wheel running, forced swimming, and electric shock: an implication for aversion therapy of alcoholism.

    PubMed

    Nakajima, Sadahiko

    2004-01-01

    This study was planned to demonstrate rats' acquisition of aversion to ethanol solution consumed before voluntary running, forced swimming, or electric shock delivery. Wistar rats under water deprivation were allotted to four groups of eight rats each, and all rats were allowed to drink 5% ethanol solution for 15 min. Immediately after the ethanol drinking, rats of Group Run were put into the individual running wheels for 15 min, those of Group Swim were put into the individual swimming pools for 15 min, those of Group Shock received electric shocks for 15 min (15 0.45-mA shocks of 0.7s with the intershock interval of 1 min) in the individual small chambers, and those of Group Control were directly returned back to the home cages. This procedure was repeated for six days, followed by a two-day choice test of ethanol aversion where a bottle containing 5% ethanol solution and a bottle of tap water were simultaneously presented for 15 min. In the test, Groups Run, Swim, and Shock drank ethanol solution significantly less than tapwater, while Group Control drank both fluids equally. The effects of running, swimming, and shock were equivalent. The successful demonstration of acquired ethanol aversion induced by exercise (running and swimming) or shock in rats suggests an avenue for clinical application of exercise and shock treatments for human alcoholics, though there are many issues to be resolved before the practical use.

  1. Is the WII fit free run activity a feasible mode of exercise for regular exercisers: a comparison with treadmill running.

    PubMed

    Roopchand-Martin, Sharmella; Nelson, Gail A

    2016-10-01

    This study compared the metabolic responses between treadmill running and the Free Run on the Nintendo Wii when maintaining a constant pace with an aim to see whether this would be a feasible option for exercise in persons who already exercise. Twenty eight university students, mean age 20.7±1.38 years, participated in a repeated measures study. Subjects completed 10 minutes running on the treadmill at a self selected pace followed by 10 minutes of Free Run on the Nintendo Wii Fit disc. A metronome regulated the running pace during the Free Run activity to match the running pace on the treadmill. Oxygen consumption, caloric expenditure and heart rate were measured with a Cardio Coach Metabolic Cart. Paired t-tests compared the percentage of age predicted maximal oxygen consumption (% VO2max), metabolic equivalents (METs), caloric expenditure and percentage of estimated maximal heart rate (% HRmax) between the two running situations. For all variables of interest the mean values for treadmill running was found to be significantly higher than those for the Wii Free Run (P<0.001). The mean %HRmax and METs categorized both activities as vigorous intensity, however, the Free Run was at the lower end of the ranges whilst treadmill running was at the upper. The mean %VO2max classified treadmill running as vigorous intensity and Wii Free Run as moderate. The Wii Free Run activity can be used as an additional form of exercise for persons who are already engaged in physical activity but should not be considered a replacement for treadmill running by those who run.

  2. Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay.

    PubMed

    Karvat, Golan; Kimchi, Tali

    2012-08-01

    Three core symptoms of autistic spectrum disorders are stereotypic movements, resistance to change in routines and deficits in social interaction. In order to understand their neuronal mechanisms, there is a dire need for behavioral paradigms to assess those symptoms in rodents. Here we present a novel method which is based on positive reward in a customized wheel-running apparatus to assess these symptoms. As a proof of concept, 4 mouse strains were tested in the new behavioral paradigm; 2 control lines (C57BL/6 and ICR) and 2 mouse-models of autism (BTBR T+ tf/J and Nlgn3(tm1Sud)). We found that the C57BL/6, ICR and Nlgn3(tm1Sud) mice showed a significant reduction in stereotypical behavior in the presence of the running wheel, ability to forfeit the running habit when the running-wheel was jammed, and preference of interacting with a social stimulus over the jammed running-wheel. No difference was found between genotypes of the Nlgn3(tm1Sud) mice. On the other hand, the BTBR mice exhibited persistent, elevated levels of stereotypical behavior. In addition, they presented a deficit in their ability to adjust to a changing environment, as manifested in persistence to interact with the wheel even when it was jammed. Lastly, the BTBR mice exhibited no significant preference to interact with the stranger mouse over the jammed running-wheel. These results were validated by a set of commonly used behavioral tests. Overall, our novel behavioral paradigm detects multiple components of autistic-like phenotypes, including cognitive rigidity, stereotypic behavior and social deficiency.

  3. Studies with the USF/NASA toxicity screening test method - Exercise wheels and oxygen replenishment

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Continuing efforts to improve the University of San Francisco/NASA toxicity screening test method have included the addition of exercise wheels to provide a different measure of incapacitation, and oxygen replenishment to offset any effect of oxygen depletion by the test animals. The addition of exercise wheels limited the number of animals in each test and doubled the required number of tests without any significant improvement in reproducibility. Oxygen replenishment appears to have an effect on survival in the last 5 minutes of the 30-minute test, but the effect is expected to be similar for most materials.

  4. Studies with the USF/NASA toxicity screening test method - Exercise wheels and oxygen replenishment

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Cumming, H. J.

    1977-01-01

    Continuing efforts to improve the University of San Francisco/NASA toxicity screening test method have included the addition of exercise wheels to provide a different measure of incapacitation, and oxygen replenishment to offset any effect of oxygen depletion by the test animals. The addition of exercise wheels limited the number of animals in each test and doubled the required number of tests without any significant improvement in reproducibility. Oxygen replenishment appears to have an effect on survival in the last 5 minutes of the 30-minute test, but the effect is expected to be similar for most materials.

  5. Voluntary wheel running in mice increases the rate of neurogenesis without affecting anxiety-related behaviour in single tests

    PubMed Central

    2012-01-01

    Background The role played by adult neurogenesis in anxiety is not clear. A recent study revealed a surprising positive correlation between increased anxiety and elevated neurogenesis following chronic voluntary wheel running and multiple behavioural testing in mice, suggesting that adult hippocampal neurogenesis is involved in the genesis of anxiety. To exclude the possible confounding effect of multiple testing that may have occurred in the aforementioned study, we assessed (1) the effects of mouse voluntary wheel running (14 vs. 28 days) on anxiety in just one behavioural test; the open field, and (2), using different markers, proliferation, differentiation, survival and maturation of newly born neurons in the dentate gyrus immediately afterwards. Effects of wheel running on anxiety-related behaviour were confirmed in a separate batch of animals tested in another test of anxiety, the light/dark box test. Results Running altered measures of locomotion and exploration, but not anxiety-related behaviour in either test. 14 days running significantly increased proliferation, and differentiation and survival were increased after both running durations. 28 day running mice also exhibited an increased rate of maturation. Furthermore, there was a significant positive correlation between the amount of proliferation, but not maturation, and anxiety measures in the open field of the 28 day running mice. Conclusions Overall, this evidence suggests that without repeated testing, newly born mature neurons may not be involved in the genesis of anxiety per se. PMID:22682077

  6. Effects of early-life exposure to Western diet and wheel access on metabolic syndrome profiles in mice bred for high voluntary exercise.

    PubMed

    Meek, T H; Eisenmann, J C; Keeney, B K; Hannon, R M; Dlugosz, E M; Garland, T

    2014-03-01

    Experimental studies manipulating diet and exercise have shown varying effects on metabolic syndrome components in both humans and rodents. To examine the potential interactive effects of diet, exercise and genetic background, we studied mice from four replicate lines bred (52 generations) for high voluntary wheel running (HR lines) and four unselected control lines (C). At weaning, animals were housed for 60 days with or without wheels and fed either a standard chow or Western diet (WD, 42% kcal from fat). Four serial (three juvenile and one adult) blood samples were taken to measure fasting total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides and glucose. Western diet was obesogenic for all mice, even after accounting for the amount of wheel running and kilojoules consumed. Western diet significantly raised glucose as well as TC and HDL-C concentrations. At the level of individual variation (repeatability), there was a modest correlation (r = 0.3-0.5) of blood lipids over time, which was reduced with wheel access and/or WD. Neither genetic selection history nor wheel access had a statistically significant effect on blood lipids. However, HR and C mice had divergent ontogenetic trajectories for body mass and caloric intake. HR mice also had lower adiposity, an effect that was dependent on wheel access. The environmental factors of diet and wheel access had pronounced effects on body mass, food consumption and fasting glucose concentrations, interacting with each other and/or with genetic strain. These data underscore the importance (and often unpredictable nature) of genotype-by-environment and environment-by-environment interactions when studying body weight regulation.

  7. Effects of repeated blood samplings on locomotor activity, evasion and wheel-running activity in mice.

    PubMed

    Pfeil, R

    1988-01-01

    The effects of serial blood sampling on nocturnal locomotor activity, evasion, wheel-running activity and body mass were studied in male NMRI mice aged 7-8 weeks. The erythrocyte count, haematocrit and haemoglobin concentration at the beginning and end of the study showed no difference in group 1 (two samples per week, 0.08 ml each) while there was a significant decrease in the group 2 values (three samples per week, 0.08 ml each). The total amount of nocturnal locomotor activity decreased in the animals bled repeatedly while the periods with locomotor activity increased. These alterations appeared particularly after bleeding. In the test-group animals evasion showed a decrease compared with the untreated control animals, but there was no evidence of a relation to the timing of the bleedings.

  8. Increased mitochondrial glycerol-3-phosphate acyltransferase protein and enzyme activity in rat epididymal fat upon cessation of wheel running.

    PubMed

    Kump, David S; Laye, Matthew J; Booth, Frank W

    2006-03-01

    Triacylglycerol synthesis in rat epididymal fat overshoots sedentary levels at 10, 29, and 53 h of physical inactivity after 21 days of wheel running. The purposes of the present study were to determine 1) whether this effect is also observed after an acute bout of physical activity and 2) what enzymatic changes might contribute to this effect. We show that more than one bout of physical activity, such as that which occurs with 21 days of wheel running, is necessary for palmitic acid incorporation into triacylglyceride (triglyceride synthesis) to overshoot sedentary values, which suggests that pretranslational mechanisms may be responsible for this overshoot effect. Ten hours after 21 days of wheel running, activity of the mitochondrial glycerol-3-phosphate acyltransferase-1 (mtGPAT1) isoform, a key regulator of triacylglycerol synthesis, overshot sedentary values by 48% and remained higher than sedentary values at 29 and 53 h of reduced physical activity. The overshoot in mtGPAT1 activity was accompanied by an increase in mtGPAT protein level. Cyclic AMP response element-binding protein-binding protein level was higher in sedentary 29 h after 21 days of wheel running. AMP kinase-alpha Thr(172) phosphorylation was increased immediately after treadmill running, but decreased to sedentary values by 5 h after activity. Casein kinase-2alpha protein level and activity were unchanged. We conclude that an increase in mtGPAT protein might contribute to the overshoot in triacylglycerol synthesis.

  9. Non-peptide oxytocin receptor ligands and hamster circadian wheel running rhythms.

    PubMed

    Gannon, Robert L

    2014-10-17

    The synchronization of circadian rhythms in sleep, endocrine and metabolic functions with the environmental light cycle is essential for health, and dysfunction of this synchrony is thought to play a part in the development of many neurological disorders. There is a demonstrable need to develop new therapeutics for the treatment of neurological disorders such as depression and schizophrenia, and oxytocin is currently being investigated for this purpose. There are no published reports describing activity of oxytocin receptor ligands on mammalian circadian rhythms and that, then, is the purpose of this study. Non-peptide oxytocin receptor ligands that cross the blood brain barrier were systemically injected in hamsters to determine their ability to modulate light-induced phase advances and delays of circadian wheel running rhythms. The oxytocin receptor agonist WAY267464 (10 mg/kg) inhibited light induced phase advances of wheel running rhythms by 55%, but had no effect on light-induced phase delays. In contrast, the oxytocin receptor antagonist WAY162720 (10 mg/kg) inhibited light-induced phase delays by nearly 75%, but had no effect on light-induced phase advances. Additionally, WAY162720 was able to antagonize the inhibitory effects of WAY267464 on light-induced phase advances. These results are consistent for a role of oxytocin in the phase-delaying effects of light on circadian activity rhythms early in the night. Therefore, oxytocin may prove to be useful in developing therapeutics for the treatment of mood disorders with a concomitant dysfunction in circadian rhythms. Investigators should also be cognizant that oxytocin ligands may negatively affect circadian rhythms during clinical trials for other conditions.

  10. Pre-exercise stretching does not impact upon running economy.

    PubMed

    Hayes, Philip R; Walker, Adrian

    2007-11-01

    Pre-exercise stretching has been widely reported to reduce performance in tasks requiring maximal or near-maximal force or torque. The purpose of this study was to compare the effects of 3 different pre-exercise stretching routines on running economy. Seven competitive male middle and long-distance runners (mean +/- SD) age: 32.5 +/- 7.7 years; height: 175.0 +/- 8.8 cm; mass: 67.8 +/- 8.6 kg; V(.-)O2max: 66.8 +/- 7.0 ml x kg(-1) x min(-1)) volunteered to participate in this study. Each participant completed 4 different pre-exercise conditions: (a) a control condition, (b) static stretching, (c) progressive static stretching, and (d) dynamic stretching. Each stretching routine consisted of 2 x 30-second stretches for each of 5 exercises. Dependent variables measured were sit and reach test before and after each pre-exercise routine, running economy (ml x kg(-1) x km(-1)), and steady-state oxygen uptake (ml x kg(-1) x min(-1)), which were measured during the final 3 minutes of a 10-minute run below lactate threshold. All 3 stretching routines resulted in an increase in the range of movement (p = 0.008). There was no change in either running economy (p = 0.915) or steady-state V(.-)O2 (p = 0.943). The lack of change in running economy was most likely because it was assessed after a period of submaximal running, which may have masked any effects from the stretching protocols. Previously reported reductions in performance have been attributed to reduced motor unit activation, presumably IIX. In this study, these motor units were likely not to have been recruited; this may explain the unimpaired performance. This study suggests that pre-exercise stretching has no impact upon running economy or submaximal exercise oxygen cost.

  11. Increased wheel-running activity in the genetically skeletal muscle fast-twitch fiber-dominant rats.

    PubMed

    Suwa, Masataka; Nakano, Hiroshi; Higaki, Yasuki; Nakamura, Tomohiro; Katsuta, Shigeru; Kumagai, Shuzo

    2003-01-01

    The purpose of the present study was to investigate whether genetic differences in muscle histochemical characteristics were related to the voluntary wheel-running activity level by using genetically fast-twitch fiber-dominant rats (FFDR) and control rats (CR). The rats were divided into four groups; sedentary CR (Sed-CR), wheel-running CR (WR-CR), sedentary FFDR (Sed-FFDR), and wheel-running FFDR (WR-FFDR). Wheel access was started at age 9 wk and lasted for 7 days. The FFDR showed a lower percentage of type I fibers of the deep portion of gastrocnemius and soleus muscles and a higher percentage of both type IIX fibers of the gastrocnemius muscle and type IIA fibers of the soleus muscle compared with CR. A higher capillary density and smaller fiber cross-sectional area were also observed in FFDR. The daily running distance in WR-FFDR was higher than in WR-CR for each 7 days. The total running distance for 7 days in WR-FFDR was 3.2-fold higher than in WR-CR. On day 7 of the 7-day test, the total number of active 1-min intervals for 24 h, the average rpm when they were active, and the maximum rpm for any single 1-min period in the WR-FFDR were significantly higher than in the WR-CR (1.5-, 2.9-, and 2.0-fold, respectively). These results suggest that mechanical or physiological muscle characteristics may thus affect the wheel-running activity level.

  12. Grip force, EDL contractile properties, and voluntary wheel running after postdevelopmental myostatin depletion in mice.

    PubMed

    Personius, Kirkwood E; Jayaram, Aditi; Krull, David; Brown, Roger; Xu, Tianshun; Han, Bajin; Burgess, Kerri; Storey, Christopher; Shah, Bharati; Tawil, Rabi; Welle, Stephen

    2010-09-01

    There is no consensus about whether making muscles abnormally large by reducing myostatin activity affects force-generating capacity or the ability to perform activities requiring muscular endurance. We therefore examined grip force, contractile properties of extensor digitorum longus (EDL) muscles, and voluntary wheel running in mice in which myostatin was depleted after normal muscle development. Cre recombinase activity was induced to knock out exon 3 of the myostatin gene in 4-mo-old mice in which this exon was flanked by loxP sequences (Mstn[f/f]). Control mice with normal myostatin genes (Mstn[w/w]) received the same Cre-activating treatment. Myostatin depletion increased the mass of all muscles that were examined (gastrocnemius, quadriceps, tibialis anterior, EDL, soleus, triceps) by approximately 20-40%. Grip force, measured multiple times 2-22 wk after myostatin knockout, was not consistently greater in the myostatin-deficient mice. EDL contractile properties were determined 7-13 mo after myostatin knockout. Twitch force tended to be greater in myostatin-deficient muscles (+24%; P=0.09), whereas tetanic force was not consistently elevated (mean +11%; P=0.36), even though EDL mass was greater than normal in all myostatin-deficient mice (mean +36%; P<0.001). The force deficit induced by eccentric contractions was approximately twofold greater in myostatin-deficient than in normal EDL muscles (31% vs. 16% after five eccentric contractions; P=0.02). Myostatin-deficient mice ran 19% less distance (P<0.01) than control mice during the 12 wk following myostatin depletion, primarily because of fewer running bouts per night rather than diminished running speed or bout duration. Reduced specific tension (ratio of force to mass) and reduced running have been observed after muscle hypertrophy was induced by other means, suggesting that they are characteristics generally associated with abnormally large muscles rather than unique effects of myostatin deficiency.

  13. Exclusive Preference Develops Less Readily on Concurrent Ratio Schedules with Wheel-Running than with Sucrose Reinforcement

    ERIC Educational Resources Information Center

    Belke, Terry W.

    2010-01-01

    Previous research suggested that allocation of responses on concurrent schedules of wheel-running reinforcement was less sensitive to schedule differences than typically observed with more conventional reinforcers. To assess this possibility, 16 female Long Evans rats were exposed to concurrent FR FR schedules of reinforcement and the schedule…

  14. Effect of voluntary wheel-running on insulin sensitivity and responsiveness in high-fat-fed rats.

    PubMed

    Han, Y; Oshida, Y; Li, L; Koshinaka, K; Fuku, N; Yamanouchi, K; Sato, Y

    2001-10-01

    The effect of voluntary wheel-running on insulin resistance was studied in high-fat-fed rats. A sequential hyperinsulinemic euglycemic clamp procedure was employed (insulin infusion rates: 3 and 30 mU/kg BW/min) in 14 high-fat-fed rats and 7 chow-fed rats under the awake condition. The high-fat-fed rats were further divided into a sedentary (n=7) and a voluntary wheel-running (n=7) groups. Blood glucose was clamped at the fasting level in each rat. Plasma insulin levels during the 3- and 30-mU/kg BW/min insulin infusions were 40-50 and 450-550 microU/ml, respectively. At both 3 and 30 mU/kg BW/min insulin infusions, high-fat-feeding showed a significant decrease in glucose infusion rate (GIR), compared with the chow-fed rats. However, decreased GIRs were restored by the 4-wk wheel-running and reached similar levels as the chow-fed rats. Therefore, it could be concluded that voluntary wheel-running prevents insulin resistance induced by high-fat feeding.

  15. Effects of a Chinese traditional formula Kai Xin San (KXS) on chronic fatigue syndrome mice induced by forced wheel running.

    PubMed

    Cao, Yin; Hu, Yuan; Liu, Ping; Zhao, Hai-Xia; Zhou, Xiao-Jiang; Wei, Ying-Mei

    2012-01-06

    In traditional medicine, Kai Xin San (KXS), composed of ginseng (Panax ginseng), hoelen (Wolfiporia cocos), polygala (Polygala tenuifolia) and Acorus gramineus, is famous for the treatment of emotion-thought disease, such as settling fright, quieting the spirit and nourishing the heart. The present study investigated the effect of KXS on chronic fatigue syndrome (CFS) mice induced by forced wheel running. Seventy two healthy adult male Kunming mice were randomly divided into six groups: home cage control group, CFS group, CFS group with Modafinil treatment at 13 mg/kg/d doge, KXS treatment at 175 mg/kg/d, 350 mg/kg/d and 700 mg/kg/d doge. CFS mice were induced by forced wheel running with higher speed for 4 weeks and then taken an exhausted exercise. The biochemical parameters including serum lactate dehydrogenase (LDH), serum urea nitrogen (SUN), serum testosterone (T), liver glycogen (LG), muscle glycogen (MG) and muscle lactic acid (MLA) were determined by using commercially available kits. The splenocytes proliferation from mice was examined by MTT method. The levels of interleukin-2 (IL-2) and interleukin-4 (IL-4) secreted by splenocytes were determined by ELISA. CFS mice with KXS administration exhibited less electric shock time when compared with CFS group without drug treatment. The effect of KXS has after demonstrated reduction in SUN, LDH and MLA levels and an increase in T, LG and MG levels. CFS mice with KXS could improve the proliferation of splenocytes compared with CFS group without drug treatment. The cultured splenocytes from CFS mice without KXS supplementation produced more interleukin-2 (IL-2) but less interleukin-4 (IL-4) when compared with home cage control mice. The cultured splenocytes of CFS mice with KXS supplementation produced more interleukin-2 (IL-2) but less interleukin-4 (IL-4) when compared with CFS group without drug treatment. The results of this preliminary study provide evidence that KXS could ameliorate CFS by affecting the

  16. Time course of neuromuscular alterations during a prolonged running exercise.

    PubMed

    Place, Nicolas; Lepers, Romuald; Deley, Gaëlle; Millet, Guillaume Y

    2004-08-01

    This study investigated the time course of contractile and neural alterations of knee extensor (KE) muscles during a long-duration running exercise. Nine well-trained triathletes and endurance runners sustained 55% of their maximal aerobic velocity (MAV) on a motorized treadmill for a period of 5 h. Maximal voluntary contraction (MVC), maximal voluntary activation level (%VA), and electrically evoked contractions (single and tetanic stimulations) of KE muscles were evaluated before, after each hour of exercise during short (10 min) interruptions, and at the end of the 5-h period. Oxygen uptake was also measured at regular intervals during the exercise. Reductions of MVC and %VA were significant after the 4th hour of exercise and reached -28% (P < 0.001) and -16% (P < 0.01) respectively at the end of the exercise. The reduction in MVC was highly correlated with the decline of %VA (r = 0.98, P < 0.001). M-wave was also altered after the fourth hour of exercise (P < 0.05) in both vastus lateralis and rectus femoris muscles. Peak twitch was potentiated at the end of the exercise (+18%, P = 0.01); 20- and 80-Hz maximal tetanic forces were not altered by the exercise. Oxygen uptake increased linearly during the running period (+18% at 5 h, P < 0.001). These findings suggest that KE maximal voluntary force generating capability is depressed in the final stages of a 5-h running exercise. Central activation failure and alterations in muscle action potential transmission were important mechanisms contributing to the impairment of the neuromuscular function during prolonged running.

  17. A single administration of methamphetamine to mice early in the light period decreases running wheel activity observed during the dark period.

    PubMed

    Kitanaka, Nobue; Kitanaka, Junichi; Hall, F Scott; Uhl, George R; Watabe, Kaname; Kubo, Hitoshi; Takahashi, Hitoshi; Tatsuta, Tomohiro; Morita, Yoshio; Takemura, Motohiko

    2012-01-06

    Repeated intermittent administration of amphetamines acutely increases appetitive and consummatory aspects of motivated behaviors as well as general activity and exploratory behavior, including voluntary running wheel activity. Subsequently, if the drug is withdrawn, the frequency of these behaviors decreases, which is thought to be indicative of dysphoric symptoms associated with amphetamine withdrawal. Such decreases may be observed after chronic treatment or even after single drug administrations. In the present study, the effect of acute methamphetamine (METH) on running wheel activity, horizontal locomotion, appetitive behavior (food access), and consummatory behavior (food and water intake) was investigated in mice. A multi-configuration behavior apparatus designed to monitor the five behaviors was developed, where combined measures were recorded simultaneously. In the first experiment, naïve male ICR mice showed gradually increasing running wheel activity over three consecutive days after exposure to a running wheel, while mice without a running wheel showed gradually decreasing horizontal locomotion, consistent with running wheel activity being a positively motivated form of natural motor activity. In experiment 2, increased horizontal locomotion and food access, and decreased food intake, were observed for the initial 3h after acute METH challenge. Subsequently, during the dark phase period decreased running wheel activity and horizontal locomotion were observed. The reductions in running wheel activity and horizontal locomotion may be indicative of reduced dopaminergic function, although it remains to be seen if these changes may be more pronounced after more prolonged METH treatments. Copyright © 2011. Published by Elsevier B.V.

  18. Beneficial effects of fluoxetine, reboxetine, venlafaxine, and voluntary running exercise in stressed male rats with anxiety- and depression-like behaviors.

    PubMed

    Lapmanee, Sarawut; Charoenphandhu, Jantarima; Charoenphandhu, Narattaphol

    2013-08-01

    Rodents exposed to mild but repetitive stress may develop anxiety- and depression-like behaviors. Whether this stress response could be alleviated by pharmacological treatments or exercise interventions, such as wheel running, was unknown. Herein, we determined anxiety- and depression-like behaviors in restraint stressed rats (2h/day, 5 days/week for 4 weeks) subjected to acute diazepam treatment (30min prior to behavioral test), chronic treatment with fluoxetine, reboxetine or venlafaxine (10mg/kg/day for 4 weeks), and/or 4-week voluntary wheel running. In elevated plus-maze (EPM) and forced swimming tests (FST), stressed rats spent less time in the open arms and had less swimming duration than the control rats, respectively, indicating the presence of anxiety- and depression-like behaviors. Stressed rats also developed learned fear as evaluated by elevated T-maze test (ETM). Although wheel running could reduce anxiety-like behaviors in both EPM and ETM, only diazepam was effective in the EPM, while fluoxetine, reboxetine, and venlafaxine were effective in the ETM. Fluoxetine, reboxetine, and wheel running, but not diazepam and venlafaxine, also reduced depression-like behavior in FST. Combined pharmacological treatment and exercise did not further reduce anxiety-like behavior in stressed rats. However, stressed rats treated with wheel running plus reboxetine or venlafaxine showed an increase in climbing duration in FST. In conclusion, regular exercise (voluntary wheel running) and pharmacological treatments, especially fluoxetine and reboxetine, could alleviate anxiety- and depression-like behaviors in stressed male rats.

  19. Molecular and metabolomic effects of voluntary running wheel activity on skeletal muscle in late middle-aged rats.

    PubMed

    Garvey, Sean M; Russ, David W; Skelding, Mary B; Dugle, Janis E; Edens, Neile K

    2015-02-01

    We examined the molecular and metabolomic effects of voluntary running wheel activity in late middle-aged male Sprague Dawley rats (16-17 months). Rats were assigned either continuous voluntary running wheel access for 8 weeks (RW+) or cage-matched without running wheel access (RW-). The 9 RW+ rats averaged 83 m/day (range: 8-163 m), yet exhibited both 84% reduced individual body weight gain (4.3 g vs. 26.3 g, P = 0.02) and 6.5% reduced individual average daily food intake (20.6 g vs. 22.0 g, P = 0.09) over the 8 weeks. Hindlimb muscles were harvested following an overnight fast. Muscle weights and myofiber cross-sectional area showed no difference between groups. Western blots of gastrocnemius muscle lysates with a panel of antibodies suggest that running wheel activity improved oxidative metabolism (53% increase in PGC1α, P = 0.03), increased autophagy (36% increase in LC3B-II/-I ratio, P = 0.03), and modulated growth signaling (26% increase in myostatin, P = 0.04). RW+ muscle also showed 43% increased glycogen phosphorylase expression (P = 0.04) and 45% increased glycogen content (P = 0.04). Metabolomic profiling of plantaris and soleus muscles indicated that even low-volume voluntary running wheel activity is associated with decreases in many long-chain fatty acids (e.g., palmitoleate, myristoleate, and eicosatrienoate) relative to RW- rats. Relative increases in acylcarnitines and acyl glycerophospholipids were also observed in RW+ plantaris. These data establish that even modest amounts of physical activity during late middle-age promote extensive metabolic remodeling of skeletal muscle.

  20. Molecular and metabolomic effects of voluntary running wheel activity on skeletal muscle in late middle-aged rats

    PubMed Central

    Garvey, Sean M; Russ, David W; Skelding, Mary B; Dugle, Janis E; Edens, Neile K

    2015-01-01

    We examined the molecular and metabolomic effects of voluntary running wheel activity in late middle-aged male Sprague Dawley rats (16–17 months). Rats were assigned either continuous voluntary running wheel access for 8 weeks (RW+) or cage-matched without running wheel access (RW−). The 9 RW+ rats averaged 83 m/day (range: 8–163 m), yet exhibited both 84% reduced individual body weight gain (4.3 g vs. 26.3 g, P = 0.02) and 6.5% reduced individual average daily food intake (20.6 g vs. 22.0 g, P = 0.09) over the 8 weeks. Hindlimb muscles were harvested following an overnight fast. Muscle weights and myofiber cross-sectional area showed no difference between groups. Western blots of gastrocnemius muscle lysates with a panel of antibodies suggest that running wheel activity improved oxidative metabolism (53% increase in PGC1α, P = 0.03), increased autophagy (36% increase in LC3B-II/-I ratio, P = 0.03), and modulated growth signaling (26% increase in myostatin, P = 0.04). RW+ muscle also showed 43% increased glycogen phosphorylase expression (P = 0.04) and 45% increased glycogen content (P = 0.04). Metabolomic profiling of plantaris and soleus muscles indicated that even low-volume voluntary running wheel activity is associated with decreases in many long-chain fatty acids (e.g., palmitoleate, myristoleate, and eicosatrienoate) relative to RW− rats. Relative increases in acylcarnitines and acyl glycerophospholipids were also observed in RW+ plantaris. These data establish that even modest amounts of physical activity during late middle-age promote extensive metabolic remodeling of skeletal muscle. PMID:25716928

  1. A Brief Opportunity to Run Does Not Function as a Reinforcer for Mice Selected for High Daily Wheel-running Rates

    PubMed Central

    Belke, Terry W; GarlandJr, Theodore

    2007-01-01

    Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption within an operant paradigm, mice must be trained to make a response to produce the opportunity to run as a consequence. In the present study an autoshaping procedure was used to compare the acquisition of lever pressing reinforced by the opportunity to run for a brief opportunity (i.e., 90 s) between selected and control mice and then, using an operant procedure, the effect of the duration of the opportunity to run on lever pressing was assessed by varying reinforcer duration over values of 90 s, 30 min, and 90 s. The reinforcement schedule was a ratio schedule (FR 1 or VR 3). Results from the autoshaping phase showed that more control mice met a criterion of responses on 50% of trials. During the operant phase, when reinforcer duration was 90 s, almost all control, but few selected mice completed a session of 20 reinforcers; however, when reinforcer duration was increased to 30 min almost all selected and control mice completed a session of 20 reinforcers. Taken together, these results suggest that selective breeding based on wheel-running rates over 24 hr may have altered the motivational system in a way that reduces the reinforcing value of shorter running durations. The implications of this finding for these mice as a model for attention deficit hyperactivity disorder (ADHD) are discussed. It also is proposed that there may be an inherent trade-off in the motivational system for activities of short versus long duration. PMID:17970415

  2. Evolutionary aspects of human exercise--born to run purposefully.

    PubMed

    Mattson, Mark P

    2012-07-01

    This article is intended to raise awareness of the adaptive value of endurance exercise (particularly running) in the evolutionary history of humans, and the implications of the genetic disposition to exercise for the aging populations of modern technology-driven societies. The genome of Homo sapiens has evolved to support the svelte phenotype of an endurance runner, setting him/her apart from all other primates. The cellular and molecular mechanisms underlying the competitive advantages conferred by exercise capacity in youth can also provide a survival benefit beyond the reproductive period. These mechanisms include up-regulation of genes encoding proteins involved in protecting cells against oxidative stress, disposing of damaged proteins and organelles, and enhancing bioenergetics. Particularly fascinating are the signaling mechanisms by which endurance running changes the structure and functional capabilities of the brain and, conversely, the mechanisms by which the brain integrates metabolic, cardiovascular and behavioral responses to exercise. As an emerging example, I highlight the roles of brain-derived neurotrophic factor (BDNF) as a mediator of the effects of exercise on the brain, and BDNF's critical role in regulating metabolic and cardiovascular responses to endurance running. A better understanding of such 'healthspan-extending' actions of endurance exercise may lead to new approaches for improving quality of life as we advance in the coming decades and centuries.

  3. Evolutionary Aspects of Human Exercise – Born to Run Purposefully

    PubMed Central

    Mattson, Mark P.

    2012-01-01

    This article is intended to raise awareness of the adaptive value of endurance exercise (particularly running) in the evolutionary history of humans, and the implications of the genetic disposition to exercise for the aging populations of modern technology-driven societies. The genome of Homo sapiens has evolved to support the svelte phenotype of an endurance runner, setting him/her apart from all other primates. The cellular and molecular mechanisms underlying the competitive advantages conferred by exercise capacity in youth can also provide a survival benefit beyond the reproductive period. These mechanisms include up-regulation of genes encoding proteins involved in protecting cells against oxidative stress, disposing of damaged proteins and organelles, and enhancing bioenergetics. Particularly fascinating are the signaling mechanisms by which endurance running changes the structure and functional capabilities of the brain and, conversely, the mechanisms by which the brain integrates metabolic, cardiovascular and behavioral responses to exercise. As an emerging example, I highlight the roles of brain-derived neurotrophic factor (BDNF) as a mediator of the effects of exercise on the brain, and BDNF s critical role in regulating metabolic and cardiovascular responses to endurance running. A better understanding of such healthspan-extending actions of endurance exercise may lead to new approaches for improving quality of life as we advance in the coming decades and centuries. PMID:22394472

  4. [Active and safe with wheeled walkers : Pilot study on feasibility of mobility exercises for wheeled walker users].

    PubMed

    Pflaum, Marina; Lang, Frieder R; Freiberger, Ellen

    2016-07-01

    The number of older people with mobility impairments using wheeled walkers is increasing; however, the handling of these walking aids is often ineffective. Moreover, age-associated functional loss, environmental demands and fear of falling may additionally challenge mobility. The new training program "Active and safe with wheeled walkers" aims to enhance skills and to improve mobility. The present pilot study was carried out to assess the feasibility of the training as well as to identify training effects and methodological insights for further research. The study was carried out with 28 wheeled walker users (age 68-91 years) in assisted living facilities using a pre-post design. Of the participants 13 persons were trained for 10 weeks (90 min, twice a week) and 15 persons served as a control group. Data were collected on functional mobility, hand strength, leg strength, balance, walker handling and fear of falling. The drop-out rate for the training was 38 % due to health concerns (n = 2), lack of time (n = 1) and changes in health status independent of training (n = 3). Medium to large effects were detected. Data regarding the recruitment strategy and the acceptance of individual exercises are available. The results indicate a good feasibility and effectiveness of the training. The simple accessibility of the training was conducive for the regular participation. The everyday relevance of the results and the lack of comparable interventions suggest that further research efforts be carried out. Recruitment strategies, training requirements and data collection methods need to be optimized.

  5. Hypothalamic Npy mRNA is correlated with increased wheel running and decreased body fat in calorie-restricted rats.

    PubMed

    Ruegsegger, Gregory N; Speichinger, Katherine R; Manier, Jacob B; Younger, Kyle M; Childs, Thomas E; Booth, Frank W

    2016-04-08

    The neuro-molecular mechanisms that regulate the relationship between physical activity level, energy homeostasis regulation, and body fat are unclear. Thus, we aimed to investigate the relationship between mRNAs in the hypothalamic arcuate nucleus (ARC) related to energy homeostasis, wheel running distance, and body fat in ad lib (AL) and calorie-restricted (CR) growing rats. We hypothesized that changes in select mRNAs (Pomc, Cart, Agrp, Npy, Lepr, Insr, Mc4r, Ampk, Sirt1, Sirt3) in CR would be associated with decreases in body fat percentage and increased wheel running behavior. Male Wistar rats were given access to voluntary running wheels at 4 weeks of age and randomized into AL (n=8) and CR (70% of AL; n=7) groups at 5 weeks of age until study termination at 12 weeks of age. Body composition, serum leptin, insulin, and adiponectin, and ARC mRNA expression in AL and CR rats were assessed and correlated with week-12 running distance to examine potential relationships that may exist. By 12 weeks of age, wheel running was increased ∼3.3-fold (p=0.03) while body fat percentage was ∼2-fold lower in CR compared to AL (p=0.001). Compared to AL, ARC Npy mRNA expression was ∼2-fold greater in CR (p=0.02), while Lepr, Insr, Ampk, and Sirt1 mRNA were additionally increased in CR (p<0.05). Significant correlations existed between ARC Npy mRNA levels versus week-12 wheel running distance (r=0.81, p=0.03), body fat (r=-0.93, p<0.01), and between body fat and wheel running (r=-0.83, p=0.02) in CR, but not in AL. These results reveal possible mechanisms by which fat-brain crosstalk may influence physical activity during energy deficit. These data suggest that below a 'threshold' fat content, body fat may drive activity levels, potentially through hypothalamic Npy action. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Effect of sucrose availability on wheel-running as an operant and as a reinforcing consequence on a multiple schedule: Additive effects of extrinsic and automatic reinforcement.

    PubMed

    Belke, Terry W; Pierce, W David

    2015-07-01

    As a follow up to Belke and Pierce's (2014) study, we assessed the effects of repeated presentation and removal of sucrose solution on the behavior of rats responding on a two-component multiple schedule. Rats completed 15 wheel turns (FR 15) for either 15% or 0% sucrose solution in the manipulated component and lever pressed 10 times on average (VR 10) for an opportunity to complete 15 wheel turns (FR 15) in the other component. In contrast to our earlier study, the components advanced based on time (every 8min) rather than completed responses. Results showed that in the manipulated component wheel-running rates were higher and the latency to initiate running longer when sucrose was present (15%) compared to absent (0% or water); the number of obtained outcomes (sucrose/water), however, did not differ with the presentation and withdrawal of sucrose. For the wheel-running as reinforcement component, rates of wheel turns, overall lever-pressing rates, and obtained wheel-running reinforcements were higher, and postreinforcement pauses shorter, when sucrose was present (15%) than absent (0%) in manipulated component. Overall, our findings suggest that wheel-running rate regardless of its function (operant or reinforcement) is maintained by automatically generated consequences (automatic reinforcement) and is increased as an operant by adding experimentally arranged sucrose reinforcement (extrinsic reinforcement). This additive effect on operant wheel-running generalizes through induction or arousal to the wheel-running as reinforcement component, increasing the rate of responding for opportunities to run and the rate of wheel-running per opportunity.

  7. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    EPA Science Inventory

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  8. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    EPA Science Inventory

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  9. Rates and Risks for Running and Exercise Injuries: Studies in Three Populations.

    ERIC Educational Resources Information Center

    Blair, Steven N.; And Others

    1987-01-01

    Reports on the results of three epidemiologic studies of orthopedic running and exercise injuries in exercisers present information regarding relationships between type of injury and participant age, gender, exercise level, exercise surface, and physical fitness. (Author/CB)

  10. Behavioral Traits are Affected by Selective Breeding for Increased Wheel-Running Behavior in Mice

    PubMed Central

    Jónás, I.; Schubert, K. A.; Reijne, A. C.; Scholte, J.; Garland, T.; Gerkema, M. P.; Scheurink, A. J. W.; Nyakas, C.

    2010-01-01

    Voluntary physical activity may be related to personality traits. Here, we investigated these relations in two mouse lines selectively bred for high voluntary wheel-running behavior and in one non-selected control line. Selection lines were more explorative and “information gathering” in the open-field test, either with increased upright positions or horizontal locomotion toward the middle ring. Furthermore, one of the selection lines had an increased risk-taking behavior relative to the control line in approaching a novel object placed in the center of the open field. However, anxiety behavior was increased in selection lines during the plus-maze test. Maze learning was not statistically different among lines, but routine behavior was increased in both selection lines when the maze exit after 2 days of testing was displaced. Specifically, in the displaced maze, selected mice traveled more frequently to the old, habituated exit, bypassing the new exit attached to their home cage. Although the generality of the results would need to be confirmed in future studies including all eight lines in the selection experiment, the increased routine and exploratory behavior (at least in the lines used in the present study) may be adaptive to sustain high activity levels. PMID:20369280

  11. An exercise trial for wheelchair users: Project Workout on Wheels

    PubMed Central

    Froehlich-Grobe, Katherine; Aaronson, Lauren S.; Washburn, Richard A.; Little, Todd D.; Lee, Jaehoon; Nary, Dorothy E.; VanSciver, Angela; Nesbitt, Jill; Norman, Sarah E.

    2011-01-01

    There is growing interest in promoting health for people with disabilities, yet evidence regarding community-based interventions is sparse. This paper describes the design details of a randomized controlled trial (RCT) that will test the effectiveness of a multi-component behaviorally-based, intervention to promote exercise adoption (over 6 months) and maintenance (up to one year) among wheelchair users and includes descriptive data on participant characteristics at baseline. Participants were randomly assigned to either a staff-supported intervention group or a self-guided comparison group. The primary study aim is to assess the effectiveness of the multi-component behaviorally-based intervention for promoting physical activity adoption and maintenance. The RCT will also assess the physical and psychosocial effects of the intervention and the complex interplay of factors that influence the effectiveness of the intervention. Therefore, the primary outcome derives from participant reports of weekly exercise (type, frequency, duration) over 52 weeks. Secondary outcomes collected on four occasions (baseline, 3 months, 6 months, 12 months) included physiological outcomes (VO2 peak, strength), disability-related outcomes (pain, fatigue, participation), and psychosocial outcomes (exercise self-efficacy, exercise barriers, quality of life, depression, mood). This study will provide evidence regarding the effectiveness of a multi-component behaviorally-based intervention for promoting exercise adoption among people with mobility impairments that necessitate wheelchair use. PMID:22101206

  12. An exercise trial for wheelchair users: project workout on wheels.

    PubMed

    Froehlich-Grobe, Katherine; Aaronson, Lauren S; Washburn, Richard A; Little, Todd D; Lee, Jaehoon; Nary, Dorothy E; Vansciver, Angela; Nesbitt, Jill; Norman, Sarah E

    2012-03-01

    There is growing interest in promoting health for people with disabilities, yet evidence regarding community-based interventions is sparse. This paper describes the design details of a randomized controlled trial (RCT) that will test the effectiveness of a multi-component behaviorally based, intervention to promote exercise adoption (over 6 months) and maintenance (up to one year) among wheelchair users and includes descriptive data on participant characteristics at baseline. Participants were randomly assigned to either a staff-supported intervention group or a self-guided comparison group. The primary study aim is to assess the effectiveness of the multi-component behaviorally based intervention for promoting physical activity adoption and maintenance. The RCT will also assess the physical and psychosocial effects of the intervention and the complex interplay of factors that influence the effectiveness of the intervention. Therefore, the primary outcome derives from participant reports of weekly exercise (type, frequency, duration) over 52 weeks. Secondary outcomes collected on four occasions (baseline, 3 months, 6 months, 12 months) included physiological outcomes (VO(2) peak, strength), disability-related outcomes (pain, fatigue, participation), and psychosocial outcomes (exercise self-efficacy, exercise barriers, quality of life, depression, mood). This study will provide evidence regarding the effectiveness of a multi-component behaviorally based intervention for promoting exercise adoption among people with mobility impairments that necessitate wheelchair use.

  13. Voluntary wheel running augments aortic l-arginine transport and endothelial function in rats with chronic kidney disease

    PubMed Central

    Martens, Christopher R.; Kuczmarski, James M.; Kim, Jahyun; Guers, John J.; Brennan Harris, M.; Lennon-Edwards, Shannon

    2014-01-01

    Reduced nitric oxide (NO) synthesis contributes to risk for cardiovascular disease in chronic kidney disease (CKD). Vascular uptake of the NO precursor l-arginine (ARG) is attenuated in rodents with CKD, resulting in reduced substrate availability for NO synthesis and impaired vascular function. We tested the effect of 4 wk of voluntary wheel running (RUN) and/or ARG supplementation on endothelium-dependent relaxation (EDR) in rats with CKD. Twelve-week-old male Sprague-Dawley rats underwent ⅚ ablation infarction surgery to induce CKD, or SHAM surgery as a control. Beginning 4 wk following surgery, CKD animals either remained sedentary (SED) or received one of the following interventions: supplemental ARG, RUN, or combined RUN+ARG. Animals were euthanized 8 wk after surgery, and EDR was assessed. EDR was significantly impaired in SED vs. SHAM animals after 8 wk, in response to ACh (10−9-10−5 M) as indicated by a reduced area under the curve (AUC; 44.56 ± 9.01 vs 100 ± 4.58, P < 0.05) and reduced maximal response (Emax; 59.9 ± 9.67 vs. 94.31 ± 1.27%, P < 0.05). AUC was not improved by ARG treatment but was significantly improved above SED animals in both RUN and RUN+ARG-treated animals. Maximal relaxation was elevated above SED in RUN+ARG animals only. l-[3H]arginine uptake was impaired in both SED and ARG animals and was improved in RUN and RUN+ARG animals. The results suggest that voluntary wheel running is an effective therapy to improve vascular function in CKD and may be more beneficial when combined with l-arginine. PMID:24966085

  14. Voluntary wheel running augments aortic l-arginine transport and endothelial function in rats with chronic kidney disease.

    PubMed

    Martens, Christopher R; Kuczmarski, James M; Kim, Jahyun; Guers, John J; Harris, M Brennan; Lennon-Edwards, Shannon; Edwards, David G

    2014-08-15

    Reduced nitric oxide (NO) synthesis contributes to risk for cardiovascular disease in chronic kidney disease (CKD). Vascular uptake of the NO precursor l-arginine (ARG) is attenuated in rodents with CKD, resulting in reduced substrate availability for NO synthesis and impaired vascular function. We tested the effect of 4 wk of voluntary wheel running (RUN) and/or ARG supplementation on endothelium-dependent relaxation (EDR) in rats with CKD. Twelve-week-old male Sprague-Dawley rats underwent ⅚ ablation infarction surgery to induce CKD, or SHAM surgery as a control. Beginning 4 wk following surgery, CKD animals either remained sedentary (SED) or received one of the following interventions: supplemental ARG, RUN, or combined RUN+ARG. Animals were euthanized 8 wk after surgery, and EDR was assessed. EDR was significantly impaired in SED vs. SHAM animals after 8 wk, in response to ACh (10(-9)-10(-5) M) as indicated by a reduced area under the curve (AUC; 44.56 ± 9.01 vs 100 ± 4.58, P < 0.05) and reduced maximal response (Emax; 59.9 ± 9.67 vs. 94.31 ± 1.27%, P < 0.05). AUC was not improved by ARG treatment but was significantly improved above SED animals in both RUN and RUN+ARG-treated animals. Maximal relaxation was elevated above SED in RUN+ARG animals only. l-[(3)H]arginine uptake was impaired in both SED and ARG animals and was improved in RUN and RUN+ARG animals. The results suggest that voluntary wheel running is an effective therapy to improve vascular function in CKD and may be more beneficial when combined with l-arginine.

  15. Spontaneous running wheel improves cognitive functions of mouse associated with miRNA expressional alteration in hippocampus following traumatic brain injury.

    PubMed

    Bao, Tian-hao; Miao, Wei; Han, Jian-hong; Yin, Mei; Yan, Yong; Wang, Wei-wei; Zhu, Yu-hong

    2014-12-01

    Traumatic brain injury (TBI) is an insult to the brain that results in impairments of cognitive and physical functioning. Both of human research and animal studies demonstrate that spontaneous exercise can facilitate neuronal plasticity and improve cognitive function in normal or TBI rodent models. However, the possible mechanisms underlying are still not well known. We postulated that spontaneous running wheel (RW) altered microRNA (miRNA) expressions in hippocampus of mice following TBI, which might be associated with the improvement in cognitive functions. In the present study, acquisition of spatial learning and memory retention was assessed by using the Morris water maze (MWM) test on days 15 post RW exercise. Then, microarray analyses in miRNA files were employed, and the expressional changes of miRNAs in the hippocampus of mice were detected. The results showed that spontaneous RW exercise (i) recovered the hippocampus-related cognitive deficits induced by TBI, (ii) altered hippocampal expressions of miRNAs in both of sham and TBI mice, and (iii) miR-21 or miR-34a was associated with the recovery process. The present results indicated that an epigenetic mechanism might be involved in voluntary exercise-induced cognitive improvement of mice that suffered from TBI.

  16. Acute effects of wheel running on adult hippocampal precursor cells in mice are not caused by changes in cell cycle length or S phase length

    PubMed Central

    Fischer, Tim J.; Walker, Tara L.; Overall, Rupert W.; Brandt, Moritz D.; Kempermann, Gerd

    2014-01-01

    Exercise stimulates cellular brain plasticity by extending the pool of proliferating neural precursor cells in the adult hippocampus. This effect has been investigated extensively, but the most immediate cellular effect induced by exercise that results in this acute increase in the number of cycling cells remained unclear. In the developing brain as well as adult pathological models, cell cycle alterations have a major influence on the balance between proliferative and neurogenic divisions. In this study we investigated whether this might also apply to the acute physiological pro-neurogenic stimulus of physical exercise in adulthood. Do changes in cell cycle precede the measurable increase in proliferation? After 5 days of voluntary wheel running, however, we measured only a very small, statistically not significant acceleration in cell cycle, which could not quantitatively explain the observed increase in proliferating cells after exercise. Thus, at this acute stage, changes at the level of cell cycle control is not the primary causal mechanism for the expansion of the precursor cell population, although with time after the stimulus changes in cell cycle of the entire population of labeled cells might be the result of the expanded pool of cells that have progressed to the advanced neurogenic stages with shorter cell cycle length. PMID:25339861

  17. Contingency discriminability and the generalized matching law describe choice on concurrent ratio schedules of wheel-running reinforcement.

    PubMed

    Belke, Terry W

    2012-07-01

    Belke (2010) showed that on concurrent ratio schedules, the difference in ratio requirements required to produce near exclusive preference for the lower ratio alternative was substantively greater when the reinforcer was wheel running than when it was sucrose. The current study replicated this finding and showed that this choice behavior can be described by the matching law and the contingency discriminability model. Eight female Long Evans rats were exposed to concurrent VR schedules of wheel-running reinforcement (30s) and the schedule value of the initially preferred alternative was systematically increased. Two rats rapidly developed exclusive preference for the lower ratio alternative, but the majority did not - even when ratios differed by 20:1. Analysis showed that estimates of slopes from the matching law and the proportion of reinforcers misattributed from the contingency discriminability model were related to the ratios at which near exclusive preference developed. The fit of these models would be consistent with misattribution of reinforcers or poor discrimination between alternatives due to the long duration of wheel running.

  18. Validity of a wheelchair perceived exertion scale (wheel scale) for arm ergometry exercise in people with spina bifida.

    PubMed

    Crytzer, T M; Dicianno, B E; Robertson, R J; Cheng, Yu-Ting

    2015-02-01

    This study assessed the concurrent and construct validity of the Borg 6-20 Scale and WHEEL Scale during arm ergometry exercise stress testing in (n = 24) adolescents and adults with spina bifida. Significant, moderate, positive correlations were observed between power output and relative heart rate and power output to relative VO2peak. Further, a moderate, significant correlation between physiologic criterion variables and the rating of perceived exertion derived from the Borg Scale and the WHEEL Scale was found. Concurrent validity was supported by the following findings: (1) relative heart rate was significantly correlated with the Borg (Kendall's τ = .41) and WHEEL Scales (τ = .44), and relative VO2 was significantly correlated with the Borg (τ = .46) and WHEEL Scales (τ = .47); (2) content validity was supported by the finding that the Borg and WHEEL Scales shared significant variance (τ = .70), demonstrating internal consistency. The WHEEL Scale shows strong potential for use in this cohort subsequent to further testing and validation.

  19. The effects of food deprivation, nutritive and non-nutritive feeding and wheel running on gastric stress ulcers in rats.

    PubMed

    Yi, I; Stephan, F K

    1998-01-01

    Feeding and housing conditions that induce gastric lesions were investigated. Rats were housed in activity wheels or in hanging cages and exposed to food deprivation, ad lib cellulose or 6 g of cellulose per day for 5 days. Food-deprived rats in both housing conditions had ulcers in the rumen but many rats also had mucosal ulcers. Cellulose prevented rumenal ulcers but produced a tendency toward more severe mucosal ulcers. Ulcers in wheel-housed rats were somewhat larger but the difference was not significant. In a second experiment, rats were fed 6 g/day laboratory chow or 6 g/day chow + ad lib cellulose until b.wt. reached a preset criterion. On the average, about 10 days on the feeding regimen were required to induce ulcers in these groups. None of the rats had rumenal ulcers. Mucosal ulcers were reliably larger in rats that received cellulose in addition to 6 g of chow. There was no difference in ulcer area between wheel-housed and cage-housed rats. The results indicate that solid bulk, regardless of its caloric value or amount, protects the nonglandular stomach whereas noncaloric bulk tends to aggravate ulcers in the glandular stomach. A small amount of chow delays the rate of b.wt. loss and consequently ulcer formation. Furthermore, wheel running is not necessary to produce mucosal ulcers when food intake is insufficient to maintain b.wt. and b.wt. at sacrifice seems to be a good predictor of ulcer formation.

  20. Running economy assessment within cardiopulmonary exercise testing for recreational runners.

    PubMed

    Engeroff, Tobias; Bernardi, Andreas; Vogt, Lutz; Banzer, Winfried

    2016-03-01

    The aim of this study was to evaluate the influence of running economy (RE) on running performance within recreational runners of different maximal aerobic capacity, and the feasibility of RE assessment within routine cardiopulmonary exercise testing (CPET). Sixty-eight recreational runners (m: 49, f: 19; age: 21-54) completed a graded exercise test (GXT) until exhaustion. Maximal oxygen uptake and respiratory compensation point were obtained via CPET. RE was calculated as relative oxygen uptake per covered distance (mL/kg/km) one step below respiratory compensation point (RCP). Subjects were grouped for RE via median split and categorized into one of six fitness levels (Very Poor, Poor, Fair, Good, Excellent, Superior) (ACSM 2010). Irrespective of fitness levels, recreational runners with a more energy efficient movement (RE<215.28 mL/kg/km) reached a significant (P<0.05) higher velocity at RCP (12.2 vs. 10.8 km/h). The measured VO2max values ranged between 35.2 and 66.0 ml/min/kg. Running velocity at RCP of runners within VO2max categories Good and Superior differed significantly (P<0.05) between RE groups. This study provides evidence that RE influences submaximal running performance in recreational distance runners within a broad range of maximal aerobic capacity. Complementing routine CPET with RE assessment at physiological threshold intensities and ACSM based categorization seems feasible to delineate the impact of movement efficiency and aerobic fitness on performance in recreational runners.

  1. The TreadWheel: A Novel Apparatus to Measure Genetic Variation in Response to Gently Induced Exercise for Drosophila

    PubMed Central

    Mendez, Sean; Watanabe, Louis; Hill, Rachel; Owens, Meredith; Moraczewski, Jason; Rowe, Glenn C.; Riddle, Nicole C.

    2016-01-01

    Obesity is one of the dramatic health issues affecting developed and developing nations, and exercise is a well-established intervention strategy. While exercise-by-genotype interactions have been shown in humans, overall little is known. Using the natural negative geotaxis of Drosophila melanogaster, an important model organism for the study of genetic interactions, a novel exercise machine, the TreadWheel, can be used to shed light on this interaction. The mechanism for inducing exercise with the TreadWheel is inherently gentle, thus minimizing possible confounding effects of other stressors. Using this machine, we were able to assess large cohorts of adult flies from eight genetic lines for their response to exercise after one week of training. We measured their triglyceride, glycerol, protein, glycogen, glucose content, and body weight, as well as their climbing ability and feeding behavior in response to exercise. Exercised flies showed decreased stored triglycerides, glycogen, and body weight, and increased stored protein and climbing ability. In addition to demonstrating an overall effect of TreadWheel exercise on flies, we found significant interactions of exercise with genotype, sex, or genotype-by-sex effects for most of the measured phenotypes. We also observed interaction effects between exercise, genotype, and tissue (abdomen or thorax) for metabolite profiles, and those differences can be partially linked to innate differences in the flies' persistence in maintaining activity during exercise bouts. In addition, we assessed gene expression levels for a panel of 13 genes known to be associated with respiratory fitness and found that many responded to exercise. With this study, we have established the TreadWheel as a useful tool to study the effect of exercise in flies, shown significant genotype-specific and sex-specific impacts of exercise, and have laid the ground work for more extensive studies of how genetics, sex, environment, and aging interact

  2. The TreadWheel: A Novel Apparatus to Measure Genetic Variation in Response to Gently Induced Exercise for Drosophila.

    PubMed

    Mendez, Sean; Watanabe, Louis; Hill, Rachel; Owens, Meredith; Moraczewski, Jason; Rowe, Glenn C; Riddle, Nicole C; Reed, Laura K

    2016-01-01

    Obesity is one of the dramatic health issues affecting developed and developing nations, and exercise is a well-established intervention strategy. While exercise-by-genotype interactions have been shown in humans, overall little is known. Using the natural negative geotaxis of Drosophila melanogaster, an important model organism for the study of genetic interactions, a novel exercise machine, the TreadWheel, can be used to shed light on this interaction. The mechanism for inducing exercise with the TreadWheel is inherently gentle, thus minimizing possible confounding effects of other stressors. Using this machine, we were able to assess large cohorts of adult flies from eight genetic lines for their response to exercise after one week of training. We measured their triglyceride, glycerol, protein, glycogen, glucose content, and body weight, as well as their climbing ability and feeding behavior in response to exercise. Exercised flies showed decreased stored triglycerides, glycogen, and body weight, and increased stored protein and climbing ability. In addition to demonstrating an overall effect of TreadWheel exercise on flies, we found significant interactions of exercise with genotype, sex, or genotype-by-sex effects for most of the measured phenotypes. We also observed interaction effects between exercise, genotype, and tissue (abdomen or thorax) for metabolite profiles, and those differences can be partially linked to innate differences in the flies' persistence in maintaining activity during exercise bouts. In addition, we assessed gene expression levels for a panel of 13 genes known to be associated with respiratory fitness and found that many responded to exercise. With this study, we have established the TreadWheel as a useful tool to study the effect of exercise in flies, shown significant genotype-specific and sex-specific impacts of exercise, and have laid the ground work for more extensive studies of how genetics, sex, environment, and aging interact

  3. Running exercise increases tumor necrosis factor-alpha secreting from mesenteric fat in insulin-resistant rats.

    PubMed

    Nara, M; Kanda, T; Tsukui, S; Inukai, T; Shimomura, Y; Inoue, S; Kobayashi, I

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is an important mediator of insulin resistance in obese subjects, through its overexpression in fat tissue. However, how exercise can modify the expression of TNF-alpha is controversial. We examined TNF-alpha in adipose tissue using an animal model of insulin resistance that was produced by feeding rats a diet high in sucrose. The rats were allocated to one of three groups: those receiving a starch-based diet (control group): those fed a high-sucrose diet (sucrose-fed group): and those fed a high-sucrose diet and given wheel exercise (exercised group). The animals were allowed to eat and drink ad lib for 4 or 12 weeks (4 wk: control n=7, sucrose-fed n=7, exercised n=10; 12 wk: control n=5, sucrose-fed n=5, exercised n=9). The voluntary wheel exercise was initiated with the feeding of the high-sucrose diet. The rats in the exercise groups ran 15 +/- 3 km/week. We showed that 12-week voluntary running exercise significantly (P<0.05) increased both TNF-alpha protein (5-fold) and mRNA (1.4 fold) in the mesenteric fat of insulin-resistant rats compared to non-exercised sucrose-fed mice. Accordingly, in exercised group, plasma glucose (124 +/- 9 mEq/L vs 141 +/- 11 mEq/L). and free fatty acid (0.98 +/- 0.07 mEq/L vs 1.4 +/- 0.05 mEq/L) concentrating in portal vein blood were reduced compared to sucrose-fed group. The amounts of fatty tissue both in mesenteric and subcutaneous tissues were significantly (P<0.05) decreased through running exercise. We consider that up-regulation of TNF-alpha in mesenteric fat may be a compensatory mechanism for the reduction of fatty acid in adipose tissues and this change could control metabolic homeostasis during exercise to modulate a hyperinsulinemic state.

  4. Effects of loaded voluntary wheel exercise on performance and muscle hypertrophy in young and old male C57Bl/6J mice.

    PubMed

    Soffe, Z; Radley-Crabb, H G; McMahon, C; Grounds, M D; Shavlakadze, T

    2016-02-01

    This study compared the capacity of young and old male C57Bl/6J mice to exercise with increasing resistance over 10 weeks, and its impact on muscle mass. Young mice (aged 15-25 weeks) were subjected to low (LR) and high (HR) resistance exercise, whereas only LR was used for old mice (107-117 weeks). Weekly patterns of voluntary wheel activity, food consumption and body weights were measured. Running patterns changed over time and with age, with two peaks of activity detected for young, but only one for old mice: speed and distance run was also less for old mice. The mass for six limb muscles was measured at the end of the experiment. The most pronounced increase in mass in response to exercise was for the soleus in young and old mice, and also quadriceps and gastrocnemius in young mice. Soleus and quadriceps muscles were analyzed histologically for myofiber number and size. A striking feature was the many small myofibers in response to exercise in young (but not old) soleus, whereas these were not present after exercise in young or old quadriceps. Overall, there was a striking difference in response to exercise between muscles and this was influenced by age. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Chronic wheel running reduces maladaptive patterns of methamphetamine intake: regulation by attenuation of methamphetamine-induced neuronal nitric oxide synthase.

    PubMed

    Engelmann, Alexander J; Aparicio, Mark B; Kim, Airee; Sobieraj, Jeffery C; Yuan, Clara J; Grant, Yanabel; Mandyam, Chitra D

    2014-03-01

    We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2'-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake.

  6. Chronic wheel running reduces maladaptive patterns of methamphetamine intake: regulation by attenuation of methamphetamine-induced neuronal nitric oxide synthase

    PubMed Central

    Engelmann, Alexander J.; Aparicio, Mark B.; Kim, Airee; Sobieraj, Jeffery C.; Yuan, Clara J.; Grant, Yanabel

    2013-01-01

    We investigated whether prior exposure to chronic wheel running (WR) alters maladaptive patterns of excessive and escalating methamphetamine intake under extended access conditions, and intravenous methamphetamine self-administration-induced neurotoxicity. Adult rats were given access to WR or no wheel (sedentary) in their home cage for 6 weeks. A set of WR rats were injected with 5-bromo-2′-deoxyuridine (BrdU) to determine WR-induced changes in proliferation (2-h old) and survival (28-day old) of hippocampal progenitors. Another set of WR rats were withdrawn (WRw) or continued (WRc) to have access to running wheels in their home cages during self-administration days. Following self-administration [6 h/day], rats were tested on the progressive ratio (PR) schedule. Following PR, BrdU was injected to determine levels of proliferating progenitors (2-h old). WRc rats self-administered significantly less methamphetamine than sedentary rats during acquisition and escalation sessions, and demonstrated reduced motivation for methamphetamine seeking. Methamphetamine reduced daily running activity of WRc rats compared with that of pre-methamphetamine days. WRw rats self-administered significantly more methamphetamine than sedentary rats during acquisition, an effect that was not observed during escalation and PR sessions. WR-induced beneficial effects on methamphetamine self-administration were not attributable to neuroplasticity effects in the hippocampus and medial prefrontal cortex, but were attributable to WR-induced inhibition of methamphetamine-induced increases in the number of neuronal nitric oxide synthase expressing neurons and apoptosis in the nucleus accumbens shell. Our results demonstrate that WR prevents methamphetamine-induced damage to forebrain neurons to provide a beneficial effect on drug-taking behavior. Importantly, WR-induced neuroprotective effects are transient and continued WR activity is necessary to prevent compulsive methamphetamine intake

  7. Effects of the combination of wheel running and atomoxetine on cue- and cocaine-primed reinstatement in rats selected for high or low impulsivity

    PubMed Central

    Zlebnik, Natalie E.; Carroll, Marilyn E.

    2014-01-01

    BACKGROUND Aerobic exercise and the attention-deficit/hyperactivity disorder medication, atomoxetine (ATO), are two monotherapies that have been shown to suppress reinstatement of cocaine seeking in an animal model of relapse. The present study investigated the effects of combining wheel running and ATO vs. each treatment alone on cocaine seeking precipitated by cocaine and cocaine-paired cues in rats with differing susceptibility to drug abuse (i.e., high vs. low impulsive). METHODS Rats were screened for high (HiI) or low impulsivity (LoI) based on their performance on a delay-discounting task and then trained to self-administer cocaine (0.4 mg/kg/inf) for 10 days. Following 14 days of extinction, both groups were tested for reinstatement of cocaine seeking precipitated by cocaine or cocaine-paired cues in the presence of concurrent running wheel access (W), pretreatment with ATO, or both (W+ATO). RESULTS HiI rats acquired cocaine self-administration more quickly than LoI rats. While both individual treatments and W+ATO significantly attenuated cue-induced cocaine seeking in HiI and LoI rats, only W+ATO was effective in reducing cocaine-induced reinstatement compared to vehicle treatment. There were dose-dependent and phenotype-specific effects of ATO with HiI rats responsive to the low but not high ATO dose. Floor effects of ATO and W on cue-induced reinstatement prevented the assessment of combined treatment effects. CONCLUSIONS These findings demonstrated greater attenuation of cue- vs. cocaine-induced reinstatement by ATO and W alone and recapitulate impulsivity phenotype differences in both acquisition of cocaine self-administration and receptivity to treatment. PMID:25258161

  8. Selective Breeding and Short-Term Access to a Running Wheel Alter Stride Characteristics in House Mice.

    PubMed

    Claghorn, Gerald C; Thompson, Zoe; Kay, Jarren C; Ordonez, Genesis; Hampton, Thomas G; Garland, Theodore

    Postural and kinematic aspects of running may have evolved to support high runner (HR) mice to run approximately threefold farther than control mice. Mice from four replicate HR lines selectively bred for high levels of voluntary wheel running show many differences in locomotor behavior and morphology as compared with four nonselected control (C) lines. We hypothesized that HR mice would show stride alterations that have coadapted with locomotor behavior, morphology, and physiology. More specifically, we predicted that HR mice would have stride characteristics that differed from those of C mice in ways that parallel some of the adaptations seen in highly cursorial animals. For example, we predicted that limbs of HR mice would swing closer to the parasagittal plane, resulting in a two-dimensional measurement of narrowed stance width. We also expected that some differences between HR and C mice might be amplified by 6 d of wheel access, as is used to select breeders each generation. We used the DigiGait Imaging System (Mouse Specifics) to capture high-speed videos in ventral view as mice ran on a motorized treadmill across a range of speeds and then to automatically calculate several aspects of strides. Young adults of both sexes were tested both before and after 6 d of wheel access. Stride length, stride frequency, stance width, stance time, brake time, propel time, swing time, duty factor, and paw contact area were analyzed using a nested analysis of covariance, with body mass as a covariate. As expected, body mass and treadmill speed affected nearly every analyzed metric. Six days of wheel access also affected nearly every measure, indicating pervasive training effects, in both HR and C mice. As predicted, stance width was significantly narrower in HR than C mice. Paw contact area and duty factor were significantly greater in minimuscle individuals (subset of HR mice with 50%-reduced hind limb muscle mass) than in normal-muscled HR or C mice. We conclude that

  9. Effects of bedding material and running wheel surface on paw wounds in male and female Syrian hamsters.

    PubMed

    Beaulieu, A; Reebs, S G

    2009-01-01

    The present study investigated the effects of bedding material (pine shavings versus beta chip) and running wheel surfaces (standard metal bars versus metal bars covered with a plastic mesh) on the occurrence of wounds on the paws of male and female Syrian (golden) hamsters, Mesocricetus auratus. Four groups of 10 males and 10 females were each assigned to one of the following treatments: pine/no mesh, pine/mesh, chips/no mesh and chips/mesh. Each hamster paw was observed at 1-3-day intervals for 60 days. A total of 1-3 wounds, separate in time, developed on the paws (mostly the hind ones) of almost all animals. Wounds appeared as small pinpricks, cuts or scabs, mostly on the palms. Females ran 15% less than males, yet their front paws were more commonly affected and their wounds tended to last longer. Hamsters with plastic mesh inside their wheels took longer to develop wounds but once they appeared, the wounds were larger and lasted longer. Hamsters on pine shavings developed fewer wounds and had more wound-free days. Hamsters kept running at high levels and many wounds did not heal during the study, suggesting a need for veterinary intervention.

  10. Effect of Muscle-Damaging Eccentric Exercise on Running Kinematics and Economy for Running at Different Intensities.

    PubMed

    Satkunskienė, Danguolė; Stasiulis, Arvydas; Zaičenkovienė, Kristina; Sakalauskaitė, Raminta; Rauktys, Donatas

    2015-09-01

    The objective of this study was to explore the changes in running kinematics and economy during running at different intensities 1 and 24 hours after a muscle-damaging bench-stepping exercise. Healthy, physically active adult women were recruited for this study. The subjects' running kinematics, heart rate, gas exchange, minute ventilation, and perceived exertion were continuously recorded during the increasing-intensity running test on a treadmill for different testing conditions: a control condition and 1 and 24 hours after the bench-stepping exercise test. Two muscle damage markers, muscle soreness and blood creatine kinase (CK) activity, were measured before and 24 hours after the stepping exercise. Muscle soreness and blood CK activity were significantly altered (exact p ≤ 0.05, Monte Carlo test) 24 hours after the bench-stepping exercise. The stride length, stride frequency, and support time at different running intensities did not change. Twenty-four hours after the previous step exercise, ankle dorsiflexion in the support phase was significantly higher during severe-intensity running, the range of knee flexion at the stance phase was significantly lower during moderate-intensity running, and knee flexion at the end of the amortization phase was significantly lower during heavy-intensity running compared with the control values (exact p ≤ 0.05, Monte Carlo test). The running economy at moderate and heavy intensities, maximum ventilation, and maximum heart rate did not change. We conclude that, given moderate soreness in the calf muscles 24 hours after eccentric exercise, the running kinematics are slightly but significantly changed without a detectable effect on running economy.

  11. Voluntary Running-Wheel Activity, Arterial Blood Gases, and Thermal Antinociception in Rats after 3 Buprenorphine Formulations

    PubMed Central

    Johnson, Rebecca A

    2016-01-01

    Buprenorphine HCl (BUP) is a μ-opioid agonist used in laboratory rodents. New formulations of buprenorphine (for example, sustained-released buprenorphine [BUP SR], extended-release buprenorphine [BUP ER]) have been developed to extend the analgesic duration. In a crossover design, 8 adult rats were injected subcutaneously with either BUP, BUP SR, BUP ER, or saline, after which voluntary running-wheel activity, arterial blood gases, and thermal withdrawal latency were assessed. Wheel running was decreased at 24 h compared with baseline in all treatment groups but returned to baseline by 48 h. Arterial pH, HCO3–, and CO2 were not changed between groups or over time. However, arterial oxygen was lower than baseline in the BUP (–8 ± 2 mm Hg), BUP SR (–7 ± 1 mm Hg), and BUP ER (–17 ± 2 mm Hg) groups compared with saline controls (3 ± 2 mm Hg); the BUP ER group showed the greatest decrease when all time points were combined. BUP increased the withdrawal latency at 1 h (15% ± 3%), whereas BUP ER increased latencies at 4, 8, 12, and 48 h (35% ± 11%, 21% ± 7%, 26% ± 7%, and 22% ± 9%, respectively) and BUP SR prolonged latencies at 24, 48, and 72 h (15% ± 6%, 18% ± 5%, and 20% ± 8%, respectively). The duration of thermal analgesia varied between buprenorphine formulations, but all 3 formulations reduced voluntary-running activity at 24 h after injection and might cause hypoxemia in normal adult rats. PMID:27177564

  12. Physiological responses during intermittent running exercise differ between outdoor and treadmill running.

    PubMed

    Panascì, Marco; Lepers, Romuald; La Torre, Antonio; Bonato, Matteo; Assadi, Hervè

    2017-09-01

    The aim of this study was to compare the physiological responses during 15 min of intermittent running consisting of 30 s of high-intensity running exercise at maximal aerobic velocity (MAV) interspersed with 30 s of passive recovery (30-30) performed outdoor versus on a motorized treadmill. Fifteen collegiate physically active males (age, 22 ± 1 years old; body mass, 66 ± 7 kg; stature, 176 ± 06 cm; weekly training volume, 5 ± 2 h·week(-1)), performed the Fitness Intermittent Test 45-15 to determine maximal oxygen uptake (V̇O2max) and MAV and then completed in random order 3 different training sessions consisting of a 30-s run/30-s rest on an outdoor athletic track (30-30 Track) at MAV; a 30-s run/30-s rest on a treadmill (30-30 Treadmill) at MAV; a 30-s run/30-s rest at MAV+15% (30-30 + 15% MAV Treadmill). Oxygen uptake (V̇O2), time above 90%V̇O2max (t90%V̇O2max), and rating of perceived exertion (RPE) were measured during each training session. We observed a statistical significant underestimation of V̇O2 (53.1 ± 5.4 mL·kg(-1)·min(-1) vs 49.8 ± 6.7 mL·kg(-1)·min(-1), -6.3%, P = 0.012), t90%V̇O2max (8.6% ± 11.5% vs 38.7% ± 32.5%, -77.8%, P = 0.008), RPE (11.4 ± 1.4 vs 16.5 ± 1.7, -31%, P < 0.0001) during the 30-30 Treadmill compared with the same training session performed on track. No statistical differences between 30-30 +15 % MAV Treadmill and 30-30 Track were observed. The present study demonstrates that a 15% increase in running velocity during a high-intensity intermittent treadmill training session is the optimal solution to reach the same physiological responses than an outdoor training session.

  13. Voluntary wheel running, but not a diet containing (-)-epigallocatechin-3-gallate and β-alanine, improves learning, memory and hippocampal neurogenesis in aged mice.

    PubMed

    Gibbons, Trisha E; Pence, Brandt D; Petr, Geraldine; Ossyra, Jessica M; Mach, Houston C; Bhattacharya, Tushar K; Perez, Samuel; Martin, Stephen A; McCusker, Robert H; Kelley, Keith W; Rhodes, Justin S; Johnson, Rodney W; Woods, Jeffrey A

    2014-10-01

    Aging is associated with impaired learning and memory accompanied by reductions in adult hippocampal neurogenesis and brain expression of neurotrophic factors among other processes. Epigallocatechin-3-gallate (EGCG, a green tea catechin), β-alanine (β-ala, the precursor of carnosine), and exercise have independently been shown to be neuroprotective and to reduce inflammation and oxidative stress in the central nervous system. We hypothesized that EGCG, β-ala supplementation or exercise alone would improve learning and memory and increase neurogenesis in aged mice, and the combined intervention would be better than either treatment alone. Male Balb/cByJ mice (19 months) were given AIN-93M diet with or without EGCG (182mg/kg/d) and β-ala (417mg/kg/d). Half of the mice were given access to a running wheel (VWR). The first 10 days, animals received 50mg/kg bromodeoxyuridine (BrdU) daily. After 28 days, learning and memory was assessed by Morris water maze (MWM) and contextual fear conditioning (CFC). Brains were collected for immunohistochemical detection of BrdU and quantitative mRNA expression in the hippocampus. VWR increased the number of BrdU cells in the dentate gyrus, increased expression of brain-derived neurotrophic factor, decreased expression of the inflammatory cytokine interleukin-1β, and improved performance in the MWM and CFC tests. The dietary intervention reduced brain oxidative stress as measured by 4-hydroxynonenal in the cerebellum, but had no effect on BrdU labeling or behavioral performance. These results suggest that exercise, but not a diet containing EGCG and β-ala, exhibit pro-cognitive effects in aged mice when given at these doses in this relatively short time frame. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Voluntary wheel running, but not a diet containing (-)-epigallocatechin-3-gallate and β-alanine, improves learning, memory and hippocampal neurogenesis in aged mice

    PubMed Central

    Gibbons, Trisha E.; Pence, Brandt D.; Petr, Geraldine; Ossyra, Jessica M.; Mach, Houston C.; Battacharya, Tushar K.; Perez, Samuel; Martin, Stephen A.; McCusker, Robert H.; Kelley, Keith W.; Rhodes, Justin S.; Johnson, Rodney W.; Woods, Jeffrey A.

    2015-01-01

    Aging is associated with impaired learning and memory accompanied by reductions in adult hippocampal neurogenesis and brain expression of neurotrophic factors among other processes. Epigallocatechin-3-gallate (EGCG, a green tea catechin), β-alanine (β-ala, the precursor of carnosine), and exercise have independently been shown to be neuroprotective and to reduce inflammation and oxidative stress in the central nervous system. We hypothesized that EGCG, β-ala supplementation or exercise alone would improve learning and memory and increase neurogenesis in aged mice, and the combined intervention would be better than either treatment alone. Male Balb/cByJ mice (19 mo) were given AIN-93M diet with or without EGCG (182 mg/kg/d) and β-ala (417 mg/kg/d). Half of the mice were given access to a running wheel (VWR). The first 10 days, animals received 50 mg/kg bromodeoxyuridine (BrdU) daily. After 28 days, learning and memory was assessed by Morris water maze (MWM) and contextual fear conditioning (CFC). Brains were collected for immunohistochemical detection of BrdU and quantitative mRNA expression in the hippocampus. VWR increased the number of BrdU cells in the dentate gyrus, increased expression of brain-derived neurotrophic factor, decreased expression of the inflammatory cytokine interleukin-1β, and improved performance in the MWM and CFC tests. The dietary intervention reduced brain oxidative stress as measured by 4-hydroxynonenal in the cerebellum, but had no effect on BrdU labeling or behavioral performance. These results suggest that exercise, but not a diet containing EGCG and β-ala, exhibit pro-cognitive effects in aged mice when given at these doses in this relatively short time frame. PMID:25004447

  15. Effects of selective breeding for increased wheel-running behavior on circadian timing of substrate oxidation and ingestive behavior.

    PubMed

    Jónás, I; Vaanholt, L M; Doornbos, M; Garland, T; Scheurink, A J W; Nyakas, C; van Dijk, G

    2010-04-19

    Fluctuations in substrate preference and utilization across the circadian cycle may be influenced by the degree of physical activity and nutritional status. In the present study, we assessed these relationships in control mice and in mice from a line selectively bred for high voluntary wheel-running behavior, either when feeding a carbohydrate-rich/low-fat (LF) or a high-fat (HF) diet. Housed without wheels, selected mice, and in particular the females, exhibited higher cage activity than their non-selected controls during the dark phase and at the onset of the light phase, irrespective of diet. This was associated with increases in energy expenditure in both sexes of the selection line. In selected males, carbohydrate oxidation appeared to be increased compared to controls. In contrast, selected females had profound increases in fat oxidation above the levels in control females to cover the increased energy expenditure during the dark phase. This is remarkable in light of the finding that the selected mice, and in particular the females showed higher preference for the LF diet relative to controls. It is likely that hormonal and/or metabolic signals increase carbohydrate preference in the selected females, which may serve optimal maintenance of cellular metabolism in the presence of augmented fat oxidation. (c) 2010 Elsevier Inc. All rights reserved.

  16. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway

    SciTech Connect

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Highlights: •Forced exercise can ameliorate WBI induced cognitive impairment in our rat model. •Mature BDNF plays an important role in the effects of forced exercise. •Exercise may be a possible treatment of the radiation-induced cognitive impairment. -- Abstract: Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague–Dawley rats received a single dose of 20 Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2 months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF–pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF–pCREB signaling in non

  17. Environmental enrichment in the absence of wheel running produces beneficial behavioural and anti-oxidative effects in rats.

    PubMed

    Mármol, F; Sánchez, J; Torres, M N; Chamizo, V D

    2017-09-14

    The effects of early environmental enrichment (EE) when solving a simple spatial task in adult male rats were assessed. After weaning, rats were housed in pairs in enriched or standard cages (EE and control groups) for two and a half months. Then the rats were trained in a triangular-shaped pool to find a hidden platform whose location was defined in terms of two sources of information, a landmark outside the pool and a particular corner of the pool. As expected, enriched rats reached the platform faster than control animals. Enriched rats also performed better on a subsequent test trial without the platform with the geometry cue individually presented (in the absence of the landmark). Most importantly, the beneficial effects of the present protocol were obtained in the absence of wheel running. Additionally, the antioxidative effects in the hippocampus produced by the previous protocol are also shown. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve.

    PubMed

    Reebs, S G; Mrosovsky, N

    1989-01-01

    The goal of this study was to provide an example of nonsocial and nonphotic entrainment in Syrian hamsters, together with a corresponding phase response curve (PRC). Fourteen male hamsters were given 2-hr bouts of induced activity (mostly wheel running) at 23.83-hr intervals in constant darkness (DD). The activity onsets of 10 hamsters entrained to this manipulation, with no anticipatory activity present. After entrainment, the rhythms resumed free-running from a time 0.66-3.91 hr after the onset of the last bout of induced activity. Postentrainment free-running periods were shorter than pre-entrainment values. The PRC for 2-hr pulses of induced activity in DD revealed phase advances induced in some animals between circadian time (CT) 4 and CT 11 (approximately the last half of the hamsters' rest period), and delays between CT 23 and CT 3 and between CT 17 and CT 20. The CTs for phase advances are compatible with the phase angle differences observed between rhythm and zeitgeber at the end of entrainment. Many features of the results (not all animals entraining, PRC characteristics, lack of observable anticipation to the daily stimuli, phase relationship between zeitgeber and activity rhythms) are similar to those from a previous study on social entrainment in this species (Mrosovsky, 1988). These similarities reinforce the idea that induced activity and social zeitgebers act on activity rhythms via a common mechanism.

  19. Rapid development of semistarvation-induced hyperactivity in Dark Agouti rats. Excessive wheel running and effect of 3,4-methylenedioxymethamphetamine (MDMA).

    PubMed

    Vidal, Pedro; Pérez-Padilla, Ángeles; Pellón, Ricardo

    2013-02-01

    Clinical studies have found that patients with anorexia develop high activity levels. These data suggest a possible implication of activity in the aetiology of anorexia and are in line with findings obtained in animals during experimental procedures to model interactions between activity and weight loss. Activity-based anorexia (ABA) and semistarvation-induced hyperactivity (SIH) develop when laboratory rats have food access restricted to a single period in the day and are given free access to an activity wheel. This experiment sought to show the effect on weight loss of the excessive activity normally seen in Dark Agouti rats and of hyperactivity induced by 3,4-methylenedioxymethamphetamine (MDMA). To this end, 32 female rats of the Dark Agouti strain were selected and divided into four groups in accordance with a 2 × 2 factorial design, in which one factor was treatment (saline or MDMA) and the other was access or lack of access to an activity wheel. Animals with wheel running access displayed a marked increase in running combined with accelerated weight loss. Although pharmacological treatment resulted in no observable effect on weight loss, rats treated with 12.5mg/kg MDMA generally registered more wheel running than did those treated with saline. Analysis of data on the temporal distribution of wheel running revealed an alteration in circadian activity patterns as a consequence of MDMA. These results, by showing a general high level of wheel running in Dark Agouti rats, once again emphasise the close relationship between activity and weight loss in the development of SIH and related phenomena such as ABA.

  20. Running wheel training does not change neurogenesis levels or alter working memory tasks in adult rats

    PubMed Central

    Rojas, Manuel J.; Cardenas P., Fernando

    2017-01-01

    Background Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis), causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. Methods An experimental design with two groups was developed: the experimental group (n = 12) was subject to a forced exercise program for five days, whereas the control group (n = 9) stayed in the home cage. Six to eight weeks after training, the rats’ working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. Results No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding), or in the levels of BrdU positive cells. Discussion Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level. PMID:28503368

  1. Analysis of inflammation-induced depression of home cage wheel running in rats reveals the difference between opioid antinociception and restoration of function.

    PubMed

    Kandasamy, Ram; Calsbeek, Jonas J; Morgan, Michael M

    2017-01-15

    Opioids are effective at inhibiting responses to noxious stimuli in rodents, but have limited efficacy and many side effects in chronic pain patients. One reason for this disconnect is that nociception is typically assessed using withdrawal from noxious stimuli in animals, whereas chronic pain patients suffer from abnormal pain that disrupts normal activity. We hypothesized that assessment of home cage wheel running in rats would provide a much more clinically relevant method to assess opioid efficacy to restore normal behavior. Intraplantar injection of Complete Freund's Adjuvant (CFA) into the right hindpaw depressed wheel running and caused mechanical allodynia measured with the von Frey test in both male and female rats. Administration of an ED50 dose of morphine (3.2mg/kg) reversed mechanical allodynia, but did not reverse CFA-induced depression of wheel running. In contrast, administration of a low dose of morphine (1.0mg/kg) restored running for one hour in both sexes, but had no effect on mechanical allodynia. Administration of the atypical opioid buprenorphine had no effect on inflammation-induced depression of wheel running in male or female rats, but attenuated mechanical allodynia in male rats. Administration of buprenorphine and higher doses of morphine depressed wheel running in non-inflamed rats, suggesting that the side effects of opioids interfere with restoration of function. These data indicate that restoration of pain-depressed function requires antinociception in the absence of disruptive side effects. The disruptive side effects of opioids are consistent with the major limitation of opioid use in human pain patients.

  2. Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments.

    PubMed

    Rodríguez, J J; Noristani, H N; Verkhratsky, A

    2015-03-01

    Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology.

  3. Comparison of Effects of Running and Playing Exercises on Differential Leucocyte Count in Young Elite Athletes

    ERIC Educational Resources Information Center

    Cenikli, Abdullah

    2016-01-01

    The aims of the present research are to test the effects of running and playing exercises on leucocyte and differential leucocyte accounts, and to test the possible differences between running and playing exercises in terms of leucocyte accounts. They were thirty two male young soccer players. Participants arrived at the laboratory after a 12-hour…

  4. Effect of Intraperitoneal Radiotelemetry Instrumentation on Voluntary Wheel Running and Surgical Recovery in Mice

    DTIC Science & Technology

    2012-09-01

    the diaphragm (Table 2). The group differences in the degree of diaphragmatic inflammation or fibrosis did not relate to differences in body weight or...x200. The numbers of mice detected with different degrees of diaphragmatic injury are shown in Table 2. ogy revealed inflammation of the diaphragm... failure to recover presurgery levels of activity and voluntary exercise throughout the experimental paradigm. Therefore, as implantable radiotelemetry

  5. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF-mediated pathway.

    PubMed

    Ji, Jian-feng; Ji, Sheng-jun; Sun, Rui; Li, Kun; Zhang, Yuan; Zhang, Li-yuan; Tian, Ye

    2014-01-10

    Cranial radiotherapy induces progressive and debilitating cognitive deficits, particularly in long-term cancer survivors, which may in part be caused by the reduction of hippocampal neurogenesis. Previous studies suggested that voluntary exercise can reduce the cognitive impairment caused by radiation therapy. However, there is no study on the effect of forced wheel exercise and little is known about the molecular mechanisms mediating the effect of exercise. In the present study, we investigated whether the forced running exercise after irradiation had the protective effects of the radiation-induced cognitive impairment. Sixty-four Male Sprague-Dawley rats received a single dose of 20Gy or sham whole-brain irradiation (WBI), behavioral test was evaluated using open field test and Morris water maze at 2months after irradiation. Half of the rats accepted a 3-week forced running exercise before the behavior detection. Immunofluorescence was used to evaluate the changes in hippocampal neurogenesis and Western blotting was used to assess changes in the levels of mature brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine receptor kinase B (TrkB) receptor, protein kinase B (Akt), extracellular signal-regulated kinase (ERK), calcium-calmodulin dependent kinase (CaMKII), cAMP-calcium response element binding protein (CREB) in the BDNF-pCREB signaling. We found forced running exercise significantly prevented radiation-induced cognitive deficits, ameliorated the impairment of hippocampal neurogenesis and attenuated the down-regulation of these proteins. Moreover, exercise also increased behavioral performance, hippocampal neurogenesis and elevated BDNF-pCREB signaling in non-irradiation group. These results suggest that forced running exercise offers a potentially effective treatment for radiation-induced cognitive deficits.

  6. Kallikrein kinin system activation in post-exercise hypotension in water running of hypertensive volunteers.

    PubMed

    Pontes, Francisco L; Bacurau, Reury F P; Moraes, Milton R; Navarro, Francisco; Casarini, Dulce E; Pesquero, Jorge L; Pesquero, João B; Araújo, Ronaldo C; Piçarro, Ivan C

    2008-02-01

    Previous studies demonstrated a reduction in blood pressure level immediately after different types of exercises, like running, cycling and resistance training, a phenomenon called post-exercise hypotension (PEH). Since PEH can persist for hours it could be suggested as a non-pharmacological therapy for hypertensive individuals. Unfortunately, usually running is not recommended due to the high impact caused by its practice. Therefore running in water treadmill should be a better option, since the environment is completely different and causes lower impact. However it is not known whether PEH occurs in this situation. The objective of this work was to evaluate the existence of PEH after water running and to compare PEH promoted by running in two different environments. In addition, changes in plasmatic concentrations of the kallikrein kinin system (KKS) components were also evaluated. Sixteen hypertensive subjects were submitted to two exercise sessions, conventional running and water running, in two different occasions. The pattern of heart rate, blood pressure and plasmatic concentrations of KKS components immediately after and one hour after exercise were investigated. Results showed a maximal reduction in systolic and diastolic blood pressure 30 min after both exercise models (P<0.001), indicating that moderate water running promotes PEH with similar magnitude as compared to conventional running. Plasma kallikrein activity and bradykinin concentration increased immediately after exercise (P<0.05), but these parameters were not different in both exercise models. In conclusion, our findings show that water running, similarly to conventional running, can also provoke PEH and alterations in the KKS components.

  7. Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: a possible role for plasticity in adenosine receptors

    PubMed Central

    Clark, Peter J.; Ghasem, Parsa R.; Mika, Agnieszka; Day, Heidi E.; Herrera, Jonathan J.; Greenwood, Benjamin N.; Fleshner, Monika

    2014-01-01

    Emerging evidence indicates that adenosine is a major regulator of striatum activity, in part, through the antagonistic modulation of dopaminergic function. Exercise can influence adenosine and dopamine activity, which may subsequently promote plasticity in striatum adenosine and dopamine systems. Such changes could alter activity of medium spiny neurons and impact striatum function. The purpose of this study was two-fold. The first was to characterize the effect of long-term wheel running on adenosine 1 (A1R), adenosine 2A (A2AR), dopamine 1 (D1R), and dopamine 2 (D2R) receptor mRNA expression in adult rat dorsal and ventral striatum structures using in situ hybridization. The second was to determine if changes to adenosine and dopamine receptor mRNA from running are associated with altered cfos mRNA induction in dynorphin- (direct pathway) and enkephalin- (indirect pathway) expressing neurons of the dorsal striatum following stress exposure. We report that chronic running, as well as acute uncontrollable stress, reduced A1R and A2AR mRNA levels in the dorsal and ventral striatum. Running also modestly elevated D2R mRNA levels in striatum regions. Finally, stress-induced cfos was potentiated in dynorphin and attenuated in enkephalin expressing neurons of running rats. These data suggest striatum adenosine and dopamine systems are targets for neuroplasticity from exercise, which may contribute to changes in direct and indirect pathway activity. These findings may have implications for striatum mediated motor and cognitive processes, as well as exercise facilitated stress-resistance. PMID:25017571

  8. Gastric emptying during walking and running: effects of varied exercise intensity.

    PubMed

    Neufer, P D; Young, A J; Sawka, M N

    1989-01-01

    Gastric emptying is increased during running (50%-70% maximal aerobic uptake, VO2max) as compared to rest. Whether this increase varies as a function of mode (i.e. walking vs running) and intensity of treadmill exercise is unknown. To examine the gastric emptying characteristics of water during treadmill exercise performed over a wide range of intensities relative to resting conditions, 10 men ingested 400 ml of water prior to each of six 15 min exercise bouts or 15 min of seated rest. Three bouts of walking exercise (1.57 m.s-1) were performed at increasing grades eliciting approximately 28%, 41% or 56% of VO2max. On a separate day, three bouts of running (2.68 ms-1) exercise were performed at grades eliciting approximately 57%, 65% or 75% of VO2max. Gastric emptying was increased during treadmill exercise at all intensities excluding 75% VO2max as compared to rest. Gastric emptying was similar for all intensities during walking and at 57% and 65% VO2max during running. However, running at 74% VO2max decreased the volume of original drink emptied as compared to all lower exercise intensities. Stomach secretions were markedly less during running as compared to walking and rest. These data demonstrate that gastric emptying is similarly increased during both moderate intensity (approximately 28%-65% VO2max) walking or running exercise as compared to resting conditions. However, gastric emptying decreases during high intensity exercise. Increases in gastric emptying during moderate intensity treadmill exercise may be related to increases in intragastric pressure brought about by contractile activity of the abdominal muscles.

  9. Decreased foot inversion force and increased plantar surface after maximal incremental running exercise.

    PubMed

    Vie, Bruno; Brerro-Saby, Christelle; Weber, Jean Paul; Jammes, Yves

    2013-06-01

    Formulating the hypothesis that a maximal running exercise could induce fatigue of some foot muscles, we searched for electromyographic (EMG) signs of fatigue in the tibialis anterior (TA), peroneus longus (PL), and gastrocnemius medialis (GM) muscles. We also searched for post-exercise alterations of the stationary upright standing in normal-arched feet subjects. Healthy subjects performed a maximal running exercise. Surface EMGs of the TA, PL, and GM muscles were analysed during maximal dynamic efforts. Before and after the running bout, we measured the evoked compound muscle potential (M-wave) in TA, the maximal force into inversion (MIF), and the repartition of the plantar and barycentre surfaces with a computerised stationary platform. During maximal running exercise, the median frequency of the EMG spectra declined in TA while it remained stable in the PL and GM muscles. After the exercise, MIF decreased, and both the rearfoot plantar surface and the barycentre surface increased. We concluded that a maximal running bout elicits EMG signs of fatigue, though only in the TA muscle. It also elicits post-exercise changes in the foot position during stationary upright standing which indicates a foot eversion. These data solely concern a maximal running test and they can not be extrapolated to walking or running at a low speed. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. For Kids, Regular Exercise Seems to Put Depression on the Run

    MedlinePlus

    ... html For Kids, Regular Exercise Seems to Put Depression on the Run Finding could be significant because ... advice -- physical activity may lower children's risk of depression. The researchers assessed about 700 children at ages ...

  11. Interrelationship of CB1R and OBR pathways in regulation of metabolic, neuroendocrine, and behavioral responses to food restriction and voluntary wheel running.

    PubMed

    Diane, Abdoulaye; Vine, Donna F; Russell, James C; Heth, C Donald; Pierce, W David; Proctor, Spencer D

    2014-07-15

    We hypothesized the cannabinoid-1 receptor and leptin receptor (ObR) operate synergistically to modulate metabolic, neuroendocrine, and behavioral responses of animals exposed to a survival challenge (food restriction and wheel running). Obese-prone (OP) JCR:LA-cp rats, lacking functional ObR, and lean-prone (LP) JCR:LA-cp rats (intact ObR) were assigned to OP-C and LP-C (control) or CBR1-antagonized (SR141716, 10 mg/kg body wt in food) OP-A and LP-A groups. After 32 days, all rats were exposed to 1.5-h daily meals without the drug and 22.5-h voluntary wheel running, a survival challenge that normally culminates in activity-based anorexia (ABA). Rats were removed from the ABA protocol when body weight reached 75% of entry weight (starvation criterion) or after 14 days (survival criterion). LP-A rats starved faster (6.44 ± 0.24 days) than LP-C animals (8.00 ± 0.29 days); all OP rats survived the ABA challenge. LP-A rats lost weight faster than animals in all other groups (P < 0.001). Consistent with the starvation results, LP-A rats increased the rate of wheel running more rapidly than LP-C rats (P = 0.001), with no difference in hypothalamic and primary neural reward serotonin levels. In contrast, OP-A rats showed suppression of wheel running compared with the OP-C group (days 6-14 of ABA challenge, P < 0.001) and decreased hypothalamic and neural reward serotonin levels (P < 0.01). Thus there is an interrelationship between cannabinoid-1 receptor and ObR pathways in regulation of energy balance and physical activity. Effective clinical measures to prevent and treat a variety of disorders will require understanding of the mechanisms underlying these effects.

  12. Interrelationship of CB1R and OBR pathways in regulation of metabolic, neuroendocrine, and behavioral responses to food restriction and voluntary wheel running

    PubMed Central

    Diane, Abdoulaye; Vine, Donna F.; Russell, James C.; Heth, C. Donald; Proctor, Spencer D.

    2014-01-01

    We hypothesized the cannabinoid-1 receptor and leptin receptor (ObR) operate synergistically to modulate metabolic, neuroendocrine, and behavioral responses of animals exposed to a survival challenge (food restriction and wheel running). Obese-prone (OP) JCR:LA-cp rats, lacking functional ObR, and lean-prone (LP) JCR:LA-cp rats (intact ObR) were assigned to OP-C and LP-C (control) or CBR1-antagonized (SR141716, 10 mg/kg body wt in food) OP-A and LP-A groups. After 32 days, all rats were exposed to 1.5-h daily meals without the drug and 22.5-h voluntary wheel running, a survival challenge that normally culminates in activity-based anorexia (ABA). Rats were removed from the ABA protocol when body weight reached 75% of entry weight (starvation criterion) or after 14 days (survival criterion). LP-A rats starved faster (6.44 ± 0.24 days) than LP-C animals (8.00 ± 0.29 days); all OP rats survived the ABA challenge. LP-A rats lost weight faster than animals in all other groups (P < 0.001). Consistent with the starvation results, LP-A rats increased the rate of wheel running more rapidly than LP-C rats (P = 0.001), with no difference in hypothalamic and primary neural reward serotonin levels. In contrast, OP-A rats showed suppression of wheel running compared with the OP-C group (days 6–14 of ABA challenge, P < 0.001) and decreased hypothalamic and neural reward serotonin levels (P < 0.01). Thus there is an interrelationship between cannabinoid-1 receptor and ObR pathways in regulation of energy balance and physical activity. Effective clinical measures to prevent and treat a variety of disorders will require understanding of the mechanisms underlying these effects. PMID:24903921

  13. Isokinetic eccentric exercise of quadriceps femoris does not affect running economy.

    PubMed

    Vassilis, Paschalis; Vassilios, Baltzopoulos; Vassilis, Mougios; Athanasios, Jamurtas Z; Vassilis, Theoharis; Christina, Karatzaferi; Yiannis, Koutedakis

    2008-07-01

    The purpose of this study was to investigate whether running economy is affected by isokinetic eccentric exercise designed to cause muscle damage. Twenty-four young healthy men performed 120 maximal voluntary eccentric actions at each thigh's quadriceps muscle at an angular velocity of 60 degrees .s. The participants were then randomly divided into 2 equal groups, 1 of which exercised 24 hours later, while the other group rested. Muscle damage indicators (i.e., serum creatine kinase, delayed onset muscle soreness, and eccentric, concentric, and isometric peak torque) and running economy indicators (i.e., oxygen consumption, pulmonary ventilation, respiratory exchange ratio, respiratory rate, and heart rate during treadmill running at 2.2 and 3.3 m.s) were assessed prior to and 48 hours following the eccentric exercise. All muscle damage indicators changed significantly in both groups (p < 0.05) in a way suggestive of considerable muscle damage. Running economy indicators of the exercise group demonstrated only an elevation of respiratory rate at 48 hours (p < 0.05) and a tendency to lower economy compared to the resting group. It can be concluded that isokinetic eccentric exercise applied to the quadriceps femoris muscles did not affect running economy 48 hours later and that resting during this period tended to result in more economical running compared to exercising at 24 hours.

  14. Adult hippocampal neurogenesis and c-Fos induction during escalation of voluntary wheel running in C57BL/6J mice

    PubMed Central

    Clark, Peter J.; Kohman, Rachel A.; Miller, Daniel S.; Bhattacharya, Tushar K.; Haferkamp, Erik H.; Rhodes, Justin S.

    2010-01-01

    Voluntary wheel running activates dentate gyrus granule neurons and increases adult hippocampal neurogenesis. Average daily running distance typically increases over a period of 3 weeks in rodents. Whether neurogenesis and cell activation are greater at the peak of running as compared to the initial escalation period is not known. Therefore, adult C57BL/6J male mice received 5 days of BrdU injections, at the same age, to label dividing cells during the onset of wheel access or after 21 days during peak levels of running or in sedentary conditions. Mice were sampled either 24 hours or 25 days after the last BrdU injection to measure cell proliferation and survival, respectively. Immunohistochemistry was performed on brain sections to identify the numbers of proliferating BrdU labeled cells, and new neurons (BrdU/NeuN co-labeled) in the dentate gyrus. Ki67 was used as an additional mitotic marker. The induction of c-Fos was used to identify neurons activated from running. Mice ran approximately half as far during the first 5 days as compared to after 21 days. Running increased Ki67 cells at the onset but after 21 days levels were similar to sedentary. Numbers of BrdU cells were similar in all groups 24 hours after the final injection. However, after 25 days, running approximately doubled the survival of new neurons born either at the onset or peak of running. These changes co-varied with c-Fos expression. We conclude that sustained running maintains a stable rate of neurogenesis above sedentary via activity-dependent increases in differentiation and survival, not proliferation, of progenitor cells in the C57BL/6J model. PMID:20472002

  15. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice.

    PubMed

    Hiramatsu, Layla; Kay, Jarren C; Thompson, Zoe; Singleton, Jennifer M; Claghorn, Gerald C; Albuquerque, Ralph L; Ho, Brittany; Ho, Brett; Sanchez, Gabriela; Garland, Theodore

    2017-10-01

    Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO2max) was also unaffected by maternal WD, but HR had

  16. Walk or run? Is high-intensity exercise more effective than moderate-intensity exercise at reducing cardiovascular risk?

    PubMed

    Rankin, A J; Rankin, A C; MacIntyre, P; Hillis, W S

    2012-05-01

    The benefits of exercise in the prevention of cardiovascular disease are irrefutable. However, the optimum 'dose' of exercise in order to derive the maximum cardiovascular benefit is not certain. Current national and international guidelines advocate the benefits of moderate-intensity exercise. The relative benefits of vigorous versus moderate-intensity exercise have been studied in large epidemiological studies, addressing coronary heart disease and mortality, as well as smaller randomized clinical trials which assessed effects on cardiovascular risk factors. There is evidence that exercise intensity, rather than duration or frequency, is the most important variable in determining cardioprotection. Applying this evidence into practice must take into account the impact of baseline fitness, compliance and the independent risk associated with a sedentary lifestyle. This review aims to evaluate the role of exercise intensity in the reduction of cardiovascular risk, and answer the question: should you be advising your patients to walk or run?

  17. Methodological framework for heart rate variability analysis during exercise: application to running and cycling stress testing.

    PubMed

    Hernando, David; Hernando, Alberto; Casajús, Jose A; Laguna, Pablo; Garatachea, Nuria; Bailón, Raquel

    2017-09-26

    Standard methodologies of heart rate variability analysis and physiological interpretation as a marker of autonomic nervous system condition have been largely published at rest, but not so much during exercise. A methodological framework for heart rate variability (HRV) analysis during exercise is proposed, which deals with the non-stationary nature of HRV during exercise, includes respiratory information, and identifies and corrects spectral components related to cardiolocomotor coupling (CC). This is applied to 23 male subjects who underwent different tests: maximal and submaximal, running and cycling; where the ECG, respiratory frequency and oxygen consumption were simultaneously recorded. High-frequency (HF) power results largely modified from estimations with the standard fixed band to those obtained with the proposed methodology. For medium and high levels of exercise and recovery, HF power results in a 20 to 40% increase. When cycling, HF power increases around 40% with respect to running, while CC power is around 20% stronger in running.

  18. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity

    PubMed Central

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2015-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals. PMID:25642174

  19. Selective pharmacological blockade of the 5-HT7 receptor attenuates light and 8-OH-DPAT induced phase shifts of mouse circadian wheel running activity.

    PubMed

    Shelton, Jonathan; Yun, Sujin; Losee Olson, Susan; Turek, Fred; Bonaventure, Pascal; Dvorak, Curt; Lovenberg, Timothy; Dugovic, Christine

    2014-01-01

    Recent reports have illustrated a reciprocal relationship between circadian rhythm disruption and mood disorders. The 5-HT7 receptor may provide a crucial link between the two sides of this equation since the receptor plays a critical role in sleep, depression, and circadian rhythm regulation. To further define the role of the 5-HT7 receptor as a potential pharmacotherapy to correct circadian rhythm disruptions, the current study utilized the selective 5-HT7 antagonist JNJ-18038683 (10 mg/kg) in three different circadian paradigms. While JNJ-18038683 was ineffective at phase shifting the onset of wheel running activity in mice when administered at different circadian time (CT) points across the circadian cycle, pretreatment with JNJ-18038683 blocked non-photic phase advance (CT6) induced by the 5-HT1A/7 receptor agonist 8-OH-DPAT (3 mg/kg). Since light induced phase shifts in mammals are partially mediated via the modulation of the serotonergic system, we determined if JNJ-18038683 altered phase shifts induced by a light pulse at times known to phase delay (CT15) or advance (CT22) wheel running activity in free running mice. Light exposure resulted in a robust shift in the onset of activity in vehicle treated animals at both times tested. Administration of JNJ-18038683 significantly attenuated the light induced phase delay and completely blocked the phase advance. The current study demonstrates that pharmacological blockade of the 5-HT7 receptor by JNJ-18038683 blunts both non-photic and photic phase shifts of circadian wheel running activity in mice. These findings highlight the importance of the 5-HT7 receptor in modulating circadian rhythms. Due to the opposite modulating effects of light resetting between diurnal and nocturnal species, pharmacotherapy targeting the 5-HT7 receptor in conjunction with bright light therapy may prove therapeutically beneficial by correcting the desynchronization of internal rhythms observed in depressed individuals.

  20. The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome.

    PubMed

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Kouzaki, Motoki; Gu, Ning; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-03-01

    Skeletal muscles in animals with metabolic syndrome exhibit reduced oxidative capacity. We investigated the effects of running exercise on fiber characteristics, oxidative capacity, and mRNA levels in the soleus muscles of rats with metabolic syndrome [SHR/NDmcr-cp (cp/cp); CP]. We divided 5-week-old CP rats into non-exercise (CP) and exercise (CP-Ex) groups. Wistar-Kyoto rats (WKY) were used as the control group. CP-Ex rats were permitted voluntary exercise on running wheels for 10 weeks. Triglyceride levels were higher and adiponectin levels lower in the CP and CP-Ex groups than in the WKY group. However, triglyceride levels were lower and adiponectin levels higher in the CP-Ex group than in the CP group. The soleus muscles in CP-Ex rats contained only high-oxidative type I fibers, whereas those in WKY and CP rats contained type I, IIA, and IIC fibers. Muscle succinate dehydrogenase (SDH) activity was higher in the CP-Ex group than in the CP group; there was no difference in SDH activity between the WKY and CP-Ex groups. Muscle proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels were higher in the CP-Ex group than in the CP group; there was no difference in PGC-1α mRNA levels between the WKY and CP-Ex groups. In CP-Ex rats, longer running distance was associated with increased muscle SDH activity and PGC-1α mRNA levels. We concluded that running exercise restored decreased muscle oxidative capacity and PGC-1α mRNA levels and improved hypertriglyceridemia in rats with metabolic syndrome.

  1. Treadmill running exercise prevents senile osteoporosis and upregulates the Wnt signaling pathway in SAMP6 mice

    PubMed Central

    Chen, Xi; Li, Lihui; Guo, Jianmin; Zhang, Lingli; Yuan, Yu; Chen, Binglin; Sun, Zhongguang; Xu, Jiake; Zou, Jun

    2016-01-01

    This study examined the effects of different exercise intensities and durations on bone mineral density (BMD) and bone strength in senescence-accelerated mouse prone 6 (SAMP6) and determined the involvement of the Wnt signaling pathway in exercise-induced osteogenesis. Three-month-old male SAMP6 mice were randomly assigned to different speeds of treadmill running exercise representing low, medium and high intensity, with the duration of five and nine weeks, respectively. We showed that medium-intensity exercise had positive effects on skeletal health, including BMD and bone strength, and the efficacy was higher than that of low-intensity exercise. Interestingly, high-intensity exercise can maintain or even increase bone strength, despite its negative effects on bone mass. Nine weeks of exercise was superior to 5 weeks of exercise, particularly for low-intensity exercise. Furthermore, these effects of exercise-induced osteogenesis are accompanied by activation of the Wnt signaling pathway. Taken together, these results suggest that the positive effects of exercise on osteoporosis prevention are intensity and duration-dependent, and may involve the regulation of Wnt signaling pathways. PMID:27661008

  2. Treadmill running exercise prevents senile osteoporosis and upregulates the Wnt signaling pathway in SAMP6 mice.

    PubMed

    Chen, Xi; Li, Lihui; Guo, Jianmin; Zhang, Lingli; Yuan, Yu; Chen, Binglin; Sun, Zhongguang; Xu, Jiake; Zou, Jun

    2016-11-01

    This study examined the effects of different exercise intensities and durations on bone mineral density (BMD) and bone strength in senescence-accelerated mouse prone 6 (SAMP6) and determined the involvement of the Wnt signaling pathway in exercise-induced osteogenesis. Three-month-old male SAMP6 mice were randomly assigned to different speeds of treadmill running exercise representing low, medium and high intensity, with the duration of five and nine weeks, respectively. We showed that medium-intensity exercise had positive effects on skeletal health, including BMD and bone strength, and the efficacy was higher than that of low-intensity exercise. Interestingly, high-intensity exercise can maintain or even increase bone strength, despite its negative effects on bone mass. Nine weeks of exercise was superior to 5 weeks of exercise, particularly for low-intensity exercise. Furthermore, these effects of exercise-induced osteogenesis are accompanied by activation of the Wnt signaling pathway. Taken together, these results suggest that the positive effects of exercise on osteoporosis prevention are intensity and duration-dependent, and may involve the regulation of Wnt signaling pathways.

  3. Running exercise protects the capillaries in white matter in a rat model of depression.

    PubMed

    Chen, Lin-Mu; Zhang, Ai-Pin; Wang, Fei-Fei; Tan, Chuan-Xue; Gao, Yuan; Huang, Chun-Xia; Zhang, Yi; Jiang, Lin; Zhou, Chun-Ni; Chao, Feng-Lei; Zhang, Lei; Tang, Yong

    2016-12-01

    Running has been shown to improve depressive symptoms when used as an adjunct to medication. However, the mechanisms underlying the antidepressant effects of running are not fully understood. Changes of capillaries in white matter have been discovered in clinical patients and depression model rats. Considering the important part of white matter in depression, running may cause capillary structural changes in white matter. Chronic unpredictable stress (CUS) rats were provided with a 4-week running exercise (from the fifth week to the eighth week) for 20 minutes each day for 5 consecutive days each week. Anhedonia was measured by a behavior test. Furthermore, capillary changes were investigated in the control group, the CUS/Standard group, and the CUS/Running group using stereological methods. The 4-week running increased sucrose consumption significantly in the CUS/Running group and had significant effects on the total volume, total length, and total surface area of the capillaries in the white matter of depression rats. These results demonstrated that exercise-induced protection of the capillaries in white matter might be one of the structural bases for the exercise-induced treatment of depression. It might provide important parameters for further study of the vascular mechanisms of depression and a new research direction for the development of clinical antidepressant means. J. Comp. Neurol. 524:3577-3586, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Delayed Onset Vascular Stiffening Induced by Eccentric Resistance Exercise and Downhill Running.

    PubMed

    Lin, Hsin-Fu; Chou, Chun-Chung; Cheng, Hao-Min; Tanaka, Hirofumi

    2017-07-01

    Eccentric exercise induces muscle stiffening and soreness as well as unfavorable changes in macrovascular function. We tested the hypothesis that systemic eccentric exercise could evoke greater arterial stiffening than local eccentric resistance exercise. Twenty healthy young men were randomly assigned into either the downhill running (DR) and the eccentric resistance exercise (RE) group followed by a crossover design with an exercise and sham control trial. Carotid-femoral pulse wave velocity (cfPWV), central hemodynamic measures, and biomarkers were obtained. Muscle soreness and plasma creatine kinase concentrations increased similarly after exercise in both groups. The cfPWV increased significantly at 48 hours post-exercise in both groups and remained elevated at 72 hours in DR. C-reactive protein (CRP) was elevated at 24 and 48 hours in DR, and 48 hours in RE. The increases in cfPWV were associated with the corresponding elevations in CRP in DR (r = 0.70, P < 0.05). There were no changes in arterial wave reflection measures. Both systemic and localized eccentric exercise modes induced delayed onset vascular stiffening with more prolonged changes observed in downhill running. The effect on arterial stiffening was associated, at least in part, with systemic inflammatory responses.

  5. Feeding history and obese-prone genotype increase survival of rats exposed to a challenge of food restriction and wheel running.

    PubMed

    Diane, Abdoulaye; Pierce, W David; Heth, C Donald; Russell, James C; Richard, Denis; Proctor, Spencer D

    2012-09-01

    We hypothesized that obese-prone genotype and history of food restriction confer a survival advantage to genetically obese animals under environmental challenge. Male juvenile JCR:LA-cp rats, obese-prone and lean-prone, were exposed to 1.5 h daily meals and 22.5-h voluntary wheel running, a procedure inducing activity anorexia (AA). One week before the AA challenge, obese-prone rats were freely fed (obese-FF), or pair fed (obese-PF) to lean-prone, free-feeding rats (lean-FF). Animals were removed from protocol at 75% of initial body weight (starvation criterion) or after 14 days (survival criterion). AA challenge induced weight loss in all rats, but percent weight loss was more rapid and sustained in lean-FF rats than in obese-FF or obese-PF animals (P < 0.04). Weight loss was significantly higher in obese-FF rats than obese-PF rats, 62% of which achieved survival criterion and stabilized with zero weight loss. Obese-PF rats survived longer, on average (12.0 ± 1.1 day) than obese-FF (8.2 ± 1.1 day) and lean-FF rats (3.5 ± 0.2 day) (P < 0.02). Wheel running increased linearly in all groups; lean-FF increased more rapidly than obese-FF (P < 0.05); obese-PF increased at an intermediate rate (P < 0.02), and those rats that survived stabilized daily rates of wheel running. Prior food restriction of juvenile obese-prone rats induces a survival benefit beyond genotype, that is related to achievement of homeostasis. This metabolic adaptive process may help explain the development of human obesity in the presence of an unstable food environment which subsequently transitions to an abundant food supply.

  6. Tissue Taurine Depletion Alters Metabolic Response to Exercise and Reduces Running Capacity in Mice

    PubMed Central

    Yoshikawa, Natsumi; Schaffer, Stephen W.

    2014-01-01

    Taurine is a sulfur-containing amino acid found in very high concentration in skeletal muscle. Taurine deficient mice engineered by knocking out the taurine transporter gene exhibit skeletal muscle wasting, structural defects, and exercise intolerance. In the present study, we investigated the mechanism underlying the development of metabolic abnormalities and exercise intolerance in muscle of the TauTKO phenotype. Running speed and endurance time of TauTKO mice were lower than those of control mice. Blood lactate level was elevated by >3-fold during treadmill running in TauTKO mice but remained largely unaltered by exercise in WT mice. Blood glucose was cleared faster during treadmill running in TauTKO mice than WT mice. AMP-activated kinase (AMPK) β-2 subunit was reduced in TauTKO muscle concomitant with a reduction in α1 and α2 subunits of AMPK. The level of PPARα and its targets, Gpx3, Cpt2, and Echs1, were also decreased in TauTKO muscle. Collectively, taurine depletion impairs metabolic adaptation to exercise in skeletal muscle, a phenomenon associated with a downregulation of AMPK and diminished NADH utilization by the mitochondrial respiratory chain. These findings suggest a crucial role of taurine in regulating energy metabolism in skeletal muscle of exercising TauTKO mice, changes that contribute to impaired exercise endurance. PMID:25478210

  7. Tissue taurine depletion alters metabolic response to exercise and reduces running capacity in mice.

    PubMed

    Ito, Takashi; Yoshikawa, Natsumi; Schaffer, Stephen W; Azuma, Junichi

    2014-01-01

    Taurine is a sulfur-containing amino acid found in very high concentration in skeletal muscle. Taurine deficient mice engineered by knocking out the taurine transporter gene exhibit skeletal muscle wasting, structural defects, and exercise intolerance. In the present study, we investigated the mechanism underlying the development of metabolic abnormalities and exercise intolerance in muscle of the TauTKO phenotype. Running speed and endurance time of TauTKO mice were lower than those of control mice. Blood lactate level was elevated by >3-fold during treadmill running in TauTKO mice but remained largely unaltered by exercise in WT mice. Blood glucose was cleared faster during treadmill running in TauTKO mice than WT mice. AMP-activated kinase (AMPK) β-2 subunit was reduced in TauTKO muscle concomitant with a reduction in α1 and α2 subunits of AMPK. The level of PPARα and its targets, Gpx3, Cpt2, and Echs1, were also decreased in TauTKO muscle. Collectively, taurine depletion impairs metabolic adaptation to exercise in skeletal muscle, a phenomenon associated with a downregulation of AMPK and diminished NADH utilization by the mitochondrial respiratory chain. These findings suggest a crucial role of taurine in regulating energy metabolism in skeletal muscle of exercising TauTKO mice, changes that contribute to impaired exercise endurance.

  8. Progressive resistance-loaded voluntary wheel running increases hypertrophy and differentially affects muscle protein synthesis, ribosome biogenesis, and proteolytic markers in rat muscle.

    PubMed

    Mobley, C B; Holland, A M; Kephart, W C; Mumford, P W; Lowery, R P; Kavazis, A N; Wilson, J M; Roberts, M D

    2017-03-15

    We examined if 6 weeks of progressive resistance-loaded voluntary wheel running in rats induced plantaris, soleus, and/or gastrocnemius hypertrophy and/or affected markers of translational efficiency, ribosome biogenesis, and markers of proteolysis. For 6 weeks, 8 male Sprague-Dawley rats (~9-10 weeks of age, ~300-325 g) rats were assigned to the progressive resistance-loaded voluntary wheel running model (EX), and ten rats were not trained (SED). For EX rats, the wheel-loading paradigm was as follows - days 1-7: free-wheel resistance, days 8-15: wheel resistance set to 20%-25% body mass, days 16-24: 40% body mass, days 25-32: 60% body mass, days 33-42: 40% body mass. Following the intervention, muscles were analysed for markers of translational efficiency, ribosome biogenesis, and muscle proteolysis. Raw gastrocnemius mass (+13%, p < .01), relative (body mass-corrected) gastrocnemius mass (+16%, p < .001), raw plantaris mass (+13%, p < .05), and relative plantaris mass (+15%, p < .01) were greater in EX vs. SED rats. In spite of gastrocnemius hypertrophy, EX animals presented a 54% decrease in basal muscle protein synthesis levels (p < .01), a 125% increase in pan 4EBP1 levels (p < .001) and a 31% decrease in pan eIF4E levels (p < .05). However, in relation to SED animals, EX animals presented a 70% increase in gastrocnemius c-Myc protein levels (p < .05). Most markers of translational efficiency and ribosome biogenesis were not altered in the plantaris or soleus muscles of EX vs. SED animals. Gastrocnemius F-box protein 32 and poly-ubiquinated protein levels were approximately 150% and 200% greater in SED vs. EX rats (p < .001). These data suggest that the employed resistance training model increases hind limb muscle hypertrophy, and this may be mainly facilitated through reductions in skeletal muscle proteolysis, rather than alterations in ribosome biogenesis or translational efficiency.

  9. Early motor deficits in mouse disease models are reliably uncovered using an automated home-cage wheel-running system: a cross-laboratory validation.

    PubMed

    Mandillo, Silvia; Heise, Ines; Garbugino, Luciana; Tocchini-Valentini, Glauco P; Giuliani, Alessandro; Wells, Sara; Nolan, Patrick M

    2014-03-01

    Deficits in motor function are debilitating features in disorders affecting neurological, neuromuscular and musculoskeletal systems. Although these disorders can vary greatly with respect to age of onset, symptomatic presentation, rate of progression and severity, the study of these disease models in mice is confined to the use of a small number of tests, most commonly the rotarod test. To expand the repertoire of meaningful motor function tests in mice, we tested, optimised and validated an automated home-cage-based running-wheel system, incorporating a conventional wheel with evenly spaced rungs and a complex wheel with particular rungs absent. The system enables automated assessment of motor function without handler interference, which is desirable in longitudinal studies involving continuous monitoring of motor performance. In baseline studies at two test centres, consistently significant differences in performance on both wheels were detectable among four commonly used inbred strains. As further validation, we studied performance in mutant models of progressive neurodegenerative diseases--Huntington's disease [TgN(HD82Gln)81Dbo; referred to as HD mice] and amyotrophic lateral sclerosis [Tg(SOD1G93A)(dl)1/GurJ; referred to as SOD1 mice]--and in a mutant strain with subtle gait abnormalities, C-Snap25(Bdr)/H (Blind-drunk, Bdr). In both models of progressive disease, as with the third mutant, we could reliably and consistently detect specific motor function deficits at ages far earlier than any previously recorded symptoms in vivo: 7-8 weeks for the HD mice and 12 weeks for the SOD1 mice. We also conducted longitudinal analysis of rotarod and grip strength performance, for which deficits were still not detectable at 12 weeks and 23 weeks, respectively. Several new parameters of motor behaviour were uncovered using principal component analysis, indicating that the wheel-running assay could record features of motor function that are independent of rotarod

  10. Early motor deficits in mouse disease models are reliably uncovered using an automated home-cage wheel-running system: a cross-laboratory validation

    PubMed Central

    Mandillo, Silvia; Heise, Ines; Garbugino, Luciana; Tocchini-Valentini, Glauco P.; Giuliani, Alessandro; Wells, Sara; Nolan, Patrick M.

    2014-01-01

    Deficits in motor function are debilitating features in disorders affecting neurological, neuromuscular and musculoskeletal systems. Although these disorders can vary greatly with respect to age of onset, symptomatic presentation, rate of progression and severity, the study of these disease models in mice is confined to the use of a small number of tests, most commonly the rotarod test. To expand the repertoire of meaningful motor function tests in mice, we tested, optimised and validated an automated home-cage-based running-wheel system, incorporating a conventional wheel with evenly spaced rungs and a complex wheel with particular rungs absent. The system enables automated assessment of motor function without handler interference, which is desirable in longitudinal studies involving continuous monitoring of motor performance. In baseline studies at two test centres, consistently significant differences in performance on both wheels were detectable among four commonly used inbred strains. As further validation, we studied performance in mutant models of progressive neurodegenerative diseases – Huntington’s disease [TgN(HD82Gln)81Dbo; referred to as HD mice] and amyotrophic lateral sclerosis [Tg(SOD1G93A)dl1/GurJ; referred to as SOD1 mice] – and in a mutant strain with subtle gait abnormalities, C-Snap25Bdr/H (Blind-drunk, Bdr). In both models of progressive disease, as with the third mutant, we could reliably and consistently detect specific motor function deficits at ages far earlier than any previously recorded symptoms in vivo: 7–8 weeks for the HD mice and 12 weeks for the SOD1 mice. We also conducted longitudinal analysis of rotarod and grip strength performance, for which deficits were still not detectable at 12 weeks and 23 weeks, respectively. Several new parameters of motor behaviour were uncovered using principal component analysis, indicating that the wheel-running assay could record features of motor function that are independent of rotarod

  11. Running for Exercise Mitigates Age-Related Deterioration of Walking Economy

    PubMed Central

    Ortega, Justus D.; Beck, Owen N.; Roby, Jaclyn M.; Turney, Aria L.; Kram, Rodger

    2014-01-01

    Introduction Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. Purpose To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. Methods 15 older adults (69±3 years) who walk ≥30 min, 3x/week for exercise, “walkers” and 15 older adults (69±5 years) who run ≥30 min, 3x/week, “runners” walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Results Older runners had a 7–10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p = .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p = .461) and ∼26% worse walking economy than young adults (p<.0001). Conclusion Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy. PMID:25411850

  12. Running for exercise mitigates age-related deterioration of walking economy.

    PubMed

    Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger

    2014-01-01

    Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461) and ∼ 26% worse walking economy than young adults (p<.0001). Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  13. Exercise for everyone: a randomized controlled trial of project workout on wheels in promoting exercise among wheelchair users.

    PubMed

    Froehlich-Grobe, Katherine; Lee, Jaehoon; Aaronson, Lauren; Nary, Dorothy E; Washburn, Richard A; Little, Todd D

    2014-01-01

    To compare the effectiveness of 2 home-based behavioral interventions for wheelchair users to promote exercise adoption and maintenance over 12 months. Randomized controlled trial, with participants stratified into groups based on disability type (stable, episodic, progressive) and support partner availability. Exercise occurred in participant-preferred locations (eg, home, recreation center), with physiological data collected at a university-based exercise laboratory. Inactive wheelchair users (N=128; 64 women) with sufficient upper arm mobility for arm-based exercise were enrolled. Participants on average were 45 years of age and lived with their impairment for 22 years, with spinal cord injury (46.1%) most commonly reported as causing mobility impairment. Both groups received home-based exercise interventions. The staff-supported group (n=69) received intensive exercise support, while the self-guided group (n=59) received minimal support. Both received exercise information, resistance bands, instructions to self-monitor exercise, regularly scheduled phone calls, and handwritten cards. The primary outcome derived from weekly self-reported exercise. Secondary outcomes included physical fitness (aerobic/muscular) and predictors of exercise participation. The staff-supported group reported significantly greater exercise (∼17min/wk) than the self-guided group over the year (t=10.6, P=.00), with no significant between-group difference in aerobic capacity (t=.76, P=.45) and strength (t=1.5, P=.14). Although the staff-supported group reported only moderately more exercise, the difference is potentially clinically significant because they also exercised more frequently. The staff-supported approach holds promise for encouraging exercise among wheelchair users, yet additional support may be necessary to achieve more exercise to meet national recommendations. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Physical and Emotional Benefits of Different Exercise Environments Designed for Treadmill Running.

    PubMed

    Yeh, Hsiao-Pu; Stone, Joseph A; Churchill, Sarah M; Brymer, Eric; Davids, Keith

    2017-07-11

    (1) Background: Green physical activity promotes physical health and mental wellbeing and interesting questions concern effects of this information on designing indoor exercise environments. This study examined the physical and emotional effects of different nature-based environments designed for indoor treadmill running; (2) Methods: In a counterbalanced experimental design, 30 participants performed three, twenty-minute treadmill runs at a self-selected pace while viewing either a static nature image, a dynamic nature image or self-selected entertainment. Distance ran, heart rate (HR) and five pre-and post-exercise emotional states were measured; (3) Results: Participants ran farther, and with higher HRs, with self-selected entertainment compared to the two nature-based environment designs. Participants attained lowered anger, dejection, anxiety and increased excitement post exercise in all of the designed environments. Happiness increased during the two nature-based environment designs compared with self-selected entertainment; (4) Conclusions: Self-selected entertainment encouraged greater physical performances whereas running in nature-based exercise environments elicited greater happiness immediately after running.

  15. Changes in cardiac tone regulation with fatigue after supra-maximal running exercise.

    PubMed

    Leprêtre, Pierre-Marie; Lopes, Philippe; Thomas, Claire; Hanon, Christine

    2012-01-01

    To investigate the effects of fatigue and metabolite accumulation on the postexercicse parasympathetic reactivation, 11 long-sprint runners performed on an outdoor track an exhaustive 400 m long sprint event and a 300 m with the same 400 m pacing strategy. Time constant of heart rate recovery (HRRτ), time (RMSSD), and frequency (HF, and LF) varying vagal-related heart rate variability indexes were assessed during the 7 min period immediately following exercise. Biochemical parameters (blood lactate, pH, PO₂, PCO₂, SaO₂, and HCO₃⁻) were measured at 1, 4 and 7 min after exercise. Time to perform 300 m was not significantly different between both running trials. HHRτ measured after the 400 m running exercise was longer compared to 300 m running bouts (183.7 ± 11.6 versus 132.1 ± 9.8 s, P < 0.01). Absolute power density in the LF and HF bands was also lower after 400 m compared to the 300 m trial (P < 0.05). No correlation was found between biochemical and cardiac recovery responses except for the PO₂ values which were significantly correlated with HF levels measured 4 min after both bouts. Thus, it appears that fatigue rather than metabolic stresses occurring during a supramaximal exercise could explain the delayed postexercise parasympathetic reactivation in longer sprint runs.

  16. Physical and Emotional Benefits of Different Exercise Environments Designed for Treadmill Running

    PubMed Central

    Churchill, Sarah M.; Brymer, Eric; Davids, Keith

    2017-01-01

    (1) Background: Green physical activity promotes physical health and mental wellbeing and interesting questions concern effects of this information on designing indoor exercise environments. This study examined the physical and emotional effects of different nature-based environments designed for indoor treadmill running; (2) Methods: In a counterbalanced experimental design, 30 participants performed three, twenty-minute treadmill runs at a self-selected pace while viewing either a static nature image, a dynamic nature image or self-selected entertainment. Distance ran, heart rate (HR) and five pre-and post-exercise emotional states were measured; (3) Results: Participants ran farther, and with higher HRs, with self-selected entertainment compared to the two nature-based environment designs. Participants attained lowered anger, dejection, anxiety and increased excitement post exercise in all of the designed environments. Happiness increased during the two nature-based environment designs compared with self-selected entertainment; (4) Conclusions: Self-selected entertainment encouraged greater physical performances whereas running in nature-based exercise environments elicited greater happiness immediately after running. PMID:28696384

  17. Timing of carbohydrate ingestion did not affect inflammatory response and exercise performance during prolonged intermittent running.

    PubMed

    Mizuno, Sahiro; Kojima, Chihiro; Goto, Kazushige

    2016-01-01

    Carbohydrate ingestion during exercise is known to attenuate exercise-induced elevation of plasma IL-6 concentration. However, the influence of timing of carbohydrate ingestion remains unclear. The present study investigated the influence of different timing of carbohydrate ingestion during a simulated soccer game on exercise performance, metabolic and inflammatory responses. Seven active males performed 3 exercise trials in a randomized order. The exercise consisted of two consecutive bouts of 45 min running (4-16 km/h), separated with 15 min rest period between bouts. The subjects ingested carbohydrate gel (1.0 g/kg) immediately before the first bout of exercise (ONE), immediately before first and second bouts of exercise (0.5 g/kg for each ingestion) (TWO) or placebo immediately before exercise (PLA) Time course changes of maximal jump height, peak power output during 6-s maximal pedaling, perceived fatigue and heart rate (HR) were monitored. Blood samples were also drawn to determine blood glucose, serum insulin, free fatty acid (FFA), myoglobin (Mb), creatine kinase (CK) and plasma IL-6 concentrations. Blood glucose and serum insulin concentrations were significantly higher in the ONE trial after first bout of 45 min exercise compared with PLA trial (P < 0.05), while serum FFA concentration was significantly elevated in PLA compared with ONE and TWO trials after second bout of exercise (P < 0.05). However, changes of jump height, peak power output during 6-s maximal pedaling, perceived fatigue, HR, or indirect muscle damage (Mb, CK) and inflammatory (IL-6) markers were not significantly different among three trials (P > 0.05). The timing of carbohydrate ingestion did not affect exercise performance, exercise-induced muscle damage or inflammatory response during a simulated soccer game.

  18. Early detection of motor dysfunction in the SOD1G93A mouse model of Amyotrophic Lateral Sclerosis (ALS) using home cage running wheels.

    PubMed

    Bennett, Ellen J; Mead, Richard J; Azzouz, Mimoun; Shaw, Pamela J; Grierson, Andrew J

    2014-01-01

    The SOD1G93A mouse has been used since 1994 for preclinical testing in amyotrophic lateral sclerosis (ALS). Despite recent genetic advances in our understanding of ALS, transgenic mice expressing mutant SOD1 remain the best available, and most widely used, vertebrate model of the disease. We previously described an optimised and rapid approach for preclinical studies in the SOD1G93A mouse. Here we describe improvements to this approach using home cage running wheels to obtain daily measurements of motor function, with minimal intervention. We show that home cage running wheels detect reductions in motor function at a similar time to the rotarod test, and that the data obtained are less variable allowing the use of smaller groups of animals to obtain satisfactory results. This approach refines use of the SOD1G93A model, and reduces the number of animals undergoing procedures of substantial severity, two central principles of the 3Rs (replacement, reduction and refinement of animal use in research). The small group sizes and rapid timescales enable affordable large-scale therapeutic pre-screening in the SOD1G93A mouse, as well as rapid validation of published positive effects in a second laboratory, one of the major stumbling blocks in ALS preclinical therapy development.

  19. "The Writing Wheel." A Writing Skills Program for ABE Students. Exercises.

    ERIC Educational Resources Information Center

    Tuscarora Intermediate Unit #11, McVeytown, PA.

    This publication contains exercises recommended for use with adult basic education students in a writing skills program. Journal exercises are suggested as an ice-breaking activity for the beginning writer. Topics are listed for directed journal entries that bridge the gap from free writing to a structured approach. "Power verbs" exercises are…

  20. Effects of repeated bouts of squatting exercise on sub-maximal endurance running performance.

    PubMed

    Burt, Dean; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2013-02-01

    It is well established that exercise-induced muscle damage (EIMD) has a detrimental effect on endurance exercise performed in the days that follow. However, it is unknown whether such effects remain after a repeated bout of EIMD. Therefore, the purpose of this study was to examine the effects of repeated bouts of muscle-damaging exercise on sub-maximal running exercise. Nine male participants completed baseline measurements associated with a sub-maximal running bout at lactate turn point. These measurements were repeated 24-48 h after EIMD, comprising 100 squats (10 sets of 10 at 80 % body mass). Two weeks later, when symptoms from the first bout of EIMD had dissipated, all procedures performed at baseline were repeated. Results revealed significant increases in muscle soreness and creatine kinase activity and decreases in peak knee extensor torque and vertical jump performance at 24-48 h after the initial bout of EIMD. However, after the repeated bout, symptoms of EIMD were reduced from baseline at 24-48 h. Significant increases in oxygen uptake (.VO2), minute ventilation (.VE), blood lactate ([BLa]), rating of perceived exertion (RPE), stride frequency and decreases in stride length were observed during sub-maximal running at 24-48 h following the initial bout of EIMD. However, following the repeated bout of EIMD, .VO2, .VE, [BLa], RPE and stride pattern responses during sub-maximal running remained unchanged from baseline at all time points. These findings confirm that a single resistance session protects skeletal muscle against the detrimental effects of EIMD on sub-maximal running endurance exercise.

  1. The effects of pre-exercise glycemic index food on running capacity.

    PubMed

    Karamanolis, I A; Laparidis, K S; Volaklis, K A; Douda, H T; Tokmakidis, S P

    2011-09-01

    This study examined the effects of pre-exercise food on different glycemic indexes (GI) on exercise metabolism and endurance running capacity. 9 subjects performed 3 exercise trials on different days 15 min after ingesting: lentils, (LGI), potatoes, (HGI), and placebo. Each subject ingested an equal amount of each food (1 g/kg body mass) and ran on a level treadmill for 5 min at 60%, 45 min at 70% and then at 80% of VO (2max) until exhaustion. Serum glucose concentrations were higher ( P<0.01) 15 min after the HGI trial compared to the LGI and placebo trials. In addition, serum glucose levels were higher ( P<0.05) during the LGI trial at the time of exhaustion compared to the HGI and placebo trials. Plasma insulin levels, 15 min after ingestion, were higher ( P<0.001) in the HGI trial as compared to the LGI and placebo trials. Exercise time was longer during the LGI trial ( P<0.05) compared to the placebo, but the time to exhaustion in the HGI condition did not differ from the placebo (LGI: 90.0 ± 7.9; HGI: 81.8 ± 5; placebo: 73.0 ± 6.4 min). These results suggest that lentils, the LGI food, ingested 15 min before prolonged exercise maintained euglycemia during exercise and enhanced endurance running capacity.

  2. The effects of eccentric exercise-induced muscle damage on running kinematics at different speeds.

    PubMed

    Tsatalas, Themistoklis; Giakas, Giannis; Spyropoulos, Giannis; Sideris, Vasileios; Lazaridis, Savvas; Kotzamanidis, Christos; Koutedakis, Yiannis

    2013-01-01

    This study investigated the effects of knee localised muscle damage on running kinematics at varying speeds. Nineteen young women (23.2 ± 2.8 years; 164 ± 8 cm; 53.6 ± 5.4 kg), performed a maximal eccentric muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60 rad · s(-1). Lower body kinematics was assessed during level running on a treadmill at three speeds pre- and 48 h after. Evaluated muscle damage indices included isometric torque, muscle soreness and serum creatine kinase activity. The results revealed that all indices changed significantly after exercise, indicating muscle injury. Step length decreased and stride frequency significantly increased 48 h post-exercise only at the fastest running speed (3 m · s(-1)). Support time and knee flexion at toe-off increased only at the preferred transition speed and 2.5 m · s(-1). Knee flexion at foot contact, pelvic tilt and obliquity significantly increased, whereas hip extension during stance-phase, knee flexion during swing-phase, as well as knee and ankle joints range of motion significantly decreased 48 h post-exercise at all speeds. In conclusion, the effects of eccentric exercise of both knee extensors and flexors on particular tempo-spatial parameters and knee kinematics of running are speed-dependent. However, several pelvic and lower joint kinematics present similar behaviour at the three running speeds examined. These findings provide new insights into how running kinematics at different speeds are adapted to compensate for the impaired function of the knee musculature following muscle damage.

  3. Influence of running stride frequency in heart rate variability analysis during treadmill exercise testing.

    PubMed

    Bailón, Raquel; Garatachea, Nuria; de la Iglesia, Ignacio; Casajús, Jose Antonio; Laguna, Pablo

    2013-07-01

    The analysis and interpretation of heart rate variability (HRV) during exercise is challenging not only because of the nonstationary nature of exercise, the time-varying mean heart rate, and the fact that respiratory frequency exceeds 0.4 Hz, but there are also other factors, such as the component centered at the pedaling frequency observed in maximal cycling tests, which may confuse the interpretation of HRV analysis. The objectives of this study are to test the hypothesis that a component centered at the running stride frequency (SF) appears in the HRV of subjects during maximal treadmill exercise testing, and to study its influence in the interpretation of the low-frequency (LF) and high-frequency (HF) components of HRV during exercise. The HRV of 23 subjects during maximal treadmill exercise testing is analyzed. The instantaneous power of different HRV components is computed from the smoothed pseudo-Wigner-Ville distribution of the modulating signal assumed to carry information from the autonomic nervous system, which is estimated based on the time-varying integral pulse frequency modulation model. Besides the LF and HF components, the appearance is revealed of a component centered at the running SF as well as its aliases. The power associated with the SF component and its aliases represents 22±7% (median±median absolute deviation) of the total HRV power in all the subjects. Normalized LF power decreases as the exercise intensity increases, while normalized HF power increases. The power associated with the SF does not change significantly with exercise intensity. Consideration of the running SF component and its aliases is very important in HRV analysis since stride frequency aliases may overlap with LF and HF components.

  4. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training.

    PubMed

    Høydal, Morten A; Wisløff, Ulrik; Kemi, Ole J; Ellingsen, Oyvind

    2007-12-01

    Valid and reliable experimental models are essential to gain insight into the cellular and molecular mechanisms underlying the beneficial effects of exercise in prevention, treatment, and rehabilitation of lifestyle-related diseases. Studies with large changes, low variation, and reproducible training outcome require individualized training intensity, controlled by direct measurements of maximal oxygen uptake or heart rate. As this approach is expensive and time consuming, we discuss whether maximal treadmill running speed in a gradually increasing ramp protocol might be sufficient to control intensity without losing accuracy. Combined data from six studies of rats and mice from our lab demonstrated a close correlation between running speed and oxygen uptake. This relationship changed towards a steeper linear slope after endurance training, indicating improved work economy, that is, less oxygen was consumed at fixed submaximal running speeds. Maximal oxygen uptake increased 40-70% after high-intensity aerobic interval training in mice and rats. The speed at which oxygen uptake reached a plateau, increased in parallel with the change in maximal oxygen uptake during the training period. Although this suggests that running speed can be used to assess training intensity throughout a training program, the problem is to determine the exact relative intensity related to maximal oxygen uptake from running speed alone. We therefore suggest that directly measured oxygen uptake should be used to assess exercise intensity and optimize endurance training in rats and mice. Running speed may serve as a supplement to ensure this intensity.

  5. Involuntary wheel running improves but does not fully reverse the deterioration of bone structure of obese rats despite decreasing adiposity

    USDA-ARS?s Scientific Manuscript database

    Excessive adiposity induced by a high-fat diet is detrimental to bone structure and strength in various animal models. This study investigated whether exercise or anti-oxidant supplementation with vitamin C and E during exercise counteracts bone structure deterioration at different skeletal sites an...

  6. Influence of Post-Exercise Carbohydrate-Protein Ingestion on Muscle Glycogen Metabolism in Recovery and Subsequent Running Exercise.

    PubMed

    Alghannam, Abdullah F; Jedrzejewski, Dawid; Bilzon, James; Thompson, Dylan; Tsintzas, Kostas; Betts, James A

    2016-12-01

    We examined whether carbohydrate-protein ingestion influences muscle glycogen metabolism during short-term recovery from exhaustive treadmill running and subsequent exercise. Six endurance-trained individuals underwent two trials in a randomized double-blind design, each involving an initial run-to-exhaustion at 70% VO2max (Run-1) followed by 4-h recovery (REC) and subsequent run-to-exhaustion at 70% VO2max (Run-2). Carbohydrate-protein (CHO-P; 0.8 g carbohydrate·kg body mass [BM(-1)]·h(-1) plus 0.4 g protein·kg BM(-1)·h(-1)) or isocaloric carbohydrate (CHO; 1.2 g carbohydrate·kg BM(-1)·h(-1)) beverages were ingested at 30-min intervals during recovery. Muscle biopsies were taken upon cessation of Run-1, postrecovery and fatigue in Run-2. Time-to-exhaustion in Run-1 was similar with CHO and CHO-P (81 ± 17 and 84 ± 19 min, respectively). Muscle glycogen concentrations were similar between treatments after Run-1 (99 ± 3 mmol·kg dry mass [dm(-1)]). During REC, muscle glycogen concentrations increased to 252 ± 45 mmol·kg dm(-1) in CHO and 266 ± 30 mmol·kg dm(-1) in CHO-P (p = .44). Muscle glycogen degradation during Run-2 was similar between trials (3.3 ± 1.4 versus 3.5 ± 1.9 mmol·kg dm(-1)·min(-1) in CHO and CHO-P, respectively) and no differences were observed at the respective points of exhaustion (93 ± 21 versus 100 ± 11 mmol·kg dm(-1); CHO and CHO-P, respectively). Similarly, time-to-exhaustion was not different between treatments in Run-2 (51 ± 13 and 49 ± 15 min in CHO and CHO-P, respectively). Carbohydrate-protein ingestion equally accelerates muscle glycogen resynthesis during short-term recovery from exhaustive running as when 1.2 g carbohydrate·kg BM(-1)·h(-1) are ingested. The addition of protein did not alter muscle glycogen utilization or time to fatigue during repeated exhaustive running.

  7. Alterations of neuromuscular function after prolonged running, cycling and skiing exercises.

    PubMed

    Millet, Guillaume Y; Lepers, Romuald

    2004-01-01

    It is well known that impairment of performance resulting from muscle fatigue differs according to the types of contraction involved, the muscular groups tested and the exercise duration/intensity. Depending on these variables, strength loss with fatigue can originate from several sites from the motor cortex through to contractile elements. This has been termed 'task dependency of muscle fatigue'. Only recently have studies focused on the origin of muscle fatigue after prolonged exercise lasting 30 minutes to several hours. Central fatigue has been shown to contribute to muscle fatigue during long-distance running by using different methods such as the twitch interpolation technique, the ratio of the electromyogram (EMG) signal during maximal voluntary contraction normalised to the M-wave amplitude or the comparison of the forces achieved with voluntary- and electrically-evoked contractions. Some central activation deficit has also been observed for knee extensor muscles in cycling but central fatigue after activities inducing low muscular damage was attenuated compared with running. While supraspinal fatigue cannot be ruled out, it can be suggested that spinal adaptation, such as inhibition from type III and IV group afferents or disfacilitation from muscle spindles, contributes to the reduced neural drive after prolonged exercise. It has been shown that after a 30 km run, individuals with the greatest knee extensor muscle strength loss experienced a significant activation deficit. However, central fatigue alone cannot explain the entire strength loss after prolonged exercise. Alterations of neuromuscular propagation, excitation-contraction coupling failure and modifications of the intrinsic capability of force production may also be involved. Electrically-evoked contractions and associated EMG can help to characterise peripheral fatigue. The purpose of this review is to further examine the central and peripheral mechanisms contributing to strength loss after

  8. Effect of post-exercise hydrotherapy water temperature on subsequent exhaustive running performance in normothermic conditions.

    PubMed

    Dunne, Alan; Crampton, David; Egaña, Mikel

    2013-09-01

    Despite the widespread use of cold water immersion (CWI) in normothermic conditions, little data is available on its effect on subsequent endurance performance. This study examined the effect of CWI as a recovery strategy on subsequent running performance in normothermic ambient conditions (∼22°C). Nine endurance-trained men completed two submaximal exhaustive running bouts on three separate occasions. The running bouts (Ex1 and Ex2) were separated by 15min of un-immersed seated rest (CON), hip-level CWI at 8°C (CWI-8) or hip-level CWI at 15°C (CWI-15). Intestinal temperature, blood lactate and heart rate were recorded throughout and V˙O2, running economy and exercise times were recorded during the running sessions. Running time to failure (min) during Ex2 was significantly (p<0.05, ES=0.7) longer following CWI-8 (27.7±6.3) than CON (23.3±5) but not different between CWI-15 (26.3±3.4) and CON (p=0.06, ES=0.7) or CWI-8 and CWI-15 (p=0.4, ES=0.2). Qualitative analyses showed a 95% and 89% likely beneficial effect of CWI-8 and CWI-15 during Ex2 compared with CON, respectively. Time to failure during Ex2 was significantly shorter than Ex1 only during the CON condition. Intestinal temperature and HR were significantly lower for most of Ex2 during CWI-8 and CWI-15 compared with CON but they were similar at failure for the three conditions. Blood lactate, running economy and V˙O2 were not altered by CWI. These data indicate that a 15min period of cold water immersion applied between repeated exhaustive exercise bouts significantly reduces intestinal temperature and enhances post-immersion running performance in normothermic conditions. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Effect of continuous and intermittent bouts of isocaloric cycling and running exercise on excess postexercise oxygen consumption.

    PubMed

    Cunha, Felipe A; Midgley, Adrian W; McNaughton, Lars R; Farinatti, Paulo T V

    2016-02-01

    The purpose of this study was to investigate excess postexercise oxygen consumption (EPOC) induced by isocaloric bouts of continuous and intermittent running and cycling exercise. This was a counterbalanced randomized cross-over study. Ten healthy men, aged 23-34yr, performed six bouts of exercise: (a) two maximal cardiopulmonary exercise tests for running and cycling to determine exercise modality-specific peak oxygen uptake (VO2peak); and (b) four isocaloric exercise bouts (two continuous bouts expending 400kcal and two intermittent bouts split into 2×200kcal) performed at 75% of the running and cycling oxygen uptake reserve. Exercise bouts were separated by 72h and performed in a randomized, counter-balanced order. The VO2 was monitored for 60-min postexercise and for 60-min during a control non-exercise day. The VO2 was significantly greater in all exercise conditions compared to the control session (P<0.001). The combined magnitude of the EPOC from the two intermittent bouts was significantly greater than that of the continuous cycling (mean difference=3.5L, P=0.001) and running (mean difference=6.4L, P<0.001). The exercise modality had a significant effect on net EPOC, where running elicited a higher net EPOC than cycling (mean difference=2.2L, P<0.001). Intermittent exercise increased the EPOC compared to a continuous exercise bout of equivalent energy expenditure. Furthermore, the magnitude of EPOC was influenced by exercise modality, with the greatest EPOC occurring with isocaloric exercise involving larger muscle mass (i.e., treadmill running vs. cycling). Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Involuntary wheel running improves but does not fully reverse the deterioration of bone structure of obese rats despite decreasing adiposity.

    PubMed

    Cao, Jay J; Picklo, Matthew J

    2015-08-01

    This study investigated whether exercise or antioxidant supplementation with vitamin C and E during exercise affects bone structure and markers of bone metabolism in obese rat. Sprague-Dawley rats, 6-week old, were fed a normal-fat diet (NF, 10 % kcal as fat) and a high-fat diet (HF, 45 % with extra fat from lard) ad libitum for 14 weeks. Then, rats on the high-fat diet were assigned randomly to three treatment groups for additional 12 weeks with forced exercise: HF; HF + exercise (HF + Ex); and HF with vitamin C (0.5 g ascorbate/kg diet) and vitamin E (0.4 g α-tocopherol acetate/kg diet) supplementation + exercise (HF + Ex + VCE). At the end of the study, body weight and fat (%) were similar among NF, HF + Ex, and HF + Ex + VCE, whereas HF had greater body weight and fat (%) than other groups. Compared to NF, HF had elevated serum leptin, tartrate-resistant acid phosphatase (TRAP), and IGF-1; increased trabecular separation and structural model index; and lowered bone mineral density, trabecular connectivity density, and trabecular number in distal femur, while HF + Ex and HF + Ex + VCE had elevated serum TRAP and decreased bone volume/total volume and trabecular number of distal femurs. Compared to HF, HF + Ex and HF + Ex + VCE had decreased serum TRAP and osteocalcin and improved bone structural properties of the distal femur. These findings suggest that exercise, while decreasing body fat, does not fully protect against the negative skeletal effects of existing obesity induced by a high-fat diet. Furthermore, vitamin C and E supplementation has no additional benefits on bone structural properties during exercise.

  11. Skin blister formation together with patterned intradermal hematoma: a special type of tire mark injury in victims run over by a wheel.

    PubMed

    Pircher, R; Epting, T; Schmidt, U; Geisenberger, D; Pollak, S; Kramer, L

    2015-04-01

    A traffic accident victim run over by a vehicle may show a patterned skin hematoma reflecting the grooves of the tire's profile. Apart from this well-known type of imprint mark, the affected skin can also be blistered provided that the wheel exerts high pressure on the body for a prolonged period of time. The macro- and micromorphological findings as well as the protein composition of the blister fluid were investigated on the basis of a relevant autopsy case. Analogous to blisters associated with hanging marks, the transudation of serous fluid with consecutive detachment of the epidermis is interpreted as a pressure-related effect which cannot be regarded as a sign of vitality.

  12. Changes in Cardiac Tone Regulation with Fatigue after Supra-Maximal Running Exercise

    PubMed Central

    Leprêtre, Pierre-Marie; Lopes, Philippe; Thomas, Claire; Hanon, Christine

    2012-01-01

    To investigate the effects of fatigue and metabolite accumulation on the postexercicse parasympathetic reactivation, 11 long-sprint runners performed on an outdoor track an exhaustive 400 m long sprint event and a 300 m with the same 400 m pacing strategy. Time constant of heart rate recovery (HRRτ), time (RMSSD), and frequency (HF, and LF) varying vagal-related heart rate variability indexes were assessed during the 7 min period immediately following exercise. Biochemical parameters (blood lactate, pH, PO2, PCO2, SaO2, and HCO3−) were measured at 1, 4 and 7 min after exercise. Time to perform 300 m was not significantly different between both running trials. HHRτ measured after the 400 m running exercise was longer compared to 300 m running bouts (183.7 ± 11.6 versus 132.1 ± 9.8 s, P < 0.01). Absolute power density in the LF and HF bands was also lower after 400 m compared to the 300 m trial (P < 0.05). No correlation was found between biochemical and cardiac recovery responses except for the PO2 values which were significantly correlated with HF levels measured 4 min after both bouts. Thus, it appears that fatigue rather than metabolic stresses occurring during a supramaximal exercise could explain the delayed postexercise parasympathetic reactivation in longer sprint runs. PMID:22666098

  13. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    ERIC Educational Resources Information Center

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-01-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…

  14. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    ERIC Educational Resources Information Center

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-01-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work…

  15. Normobaric Hypoxia and Submaximal Exercise Effects on Running Memory and Mood State in Women.

    PubMed

    Seo, Yongsuk; Gerhart, Hayden D; Stavres, Jon; Fennell, Curtis; Draper, Shane; Glickman, Ellen L

    2017-07-01

    An acute bout of exercise can improve cognitive function in normoxic and hypoxic conditions. However, limited research supports the improvement of cognitive function and mood state in women. The purpose of this study was to examine the effects of hypoxia and exercise on working memory and mood state in women. There were 15 healthy women (age = 22 ± 2 yr) who completed the Automated Neuropsychological Assessment Metrics-4th Edition (ANAM), including the Running Memory Continuous Performance Task (RMCPT) and Total Mood Disturbance (TMD) in normoxia (21% O2), at rest in normoxia and hypoxia (12.5% O2), and during cycling exercise at 60% and 40% Vo2max in hypoxia. RMCPT was not significantly impaired at 30 (100.3 ± 17.2) and 60 (96.6 ± 17.3) min rest in hypoxia compared to baseline in normoxia (97.0 ± 17.0). However, RMCPT was significantly improved during exercise (106.7 ± 20.8) at 60% Vo2max compared to 60 min rest in hypoxia. Following 30 (-89.4 ± 48.3) and 60 min of exposure to hypoxia (-79.8 ± 55.9) at rest, TMD was impaired compared with baseline (-107.1 ± 46.2). TMD was significantly improved during exercise (-108.5 ± 42.7) at 40% Vo2max compared with 30 min rest in hypoxia. Also, RMCPT was significantly improved during exercise (104.0 ± 19.1) at 60% Vo2max compared to 60 min rest in hypoxia (96.6 ± 17.3). Hypoxia and an acute bout of exercise partially influence RMCPT and TMD. Furthermore, a moderate-intensity bout of exercise (60%) may be a more potent stimulant for improving cognitive function than low-intensity (40%) exercise. The present data should be considered by aeromedical personnel performing cognitive tasks in hypoxia.Seo Y, Gerhart HD, Stavres J, Fennell C, Draper S, Glickman EL. Normobaric hypoxia and submaximal exercise effects on running memory and mood state in women. Aerosp Med Hum Perform. 2017; 88(7):627-632.

  16. A low glycemic index meal before exercise improves endurance running capacity in men.

    PubMed

    Wu, Ching-Lin; Williams, Clyde

    2006-10-01

    This study investigated the effects of ingesting a low (LGI) or high (HGI) glycemic index carbohydrate (CHO) meal 3 h prior to exercise on endurance running capacity. Eight male recreational runners undertook two trials (LGI or HGI) which were randomized and separated by 7 d. After an overnight fast (12 h) the subjects ingested either a LGI or HGI meal 3 h prior to running at 70% VO2max until exhaustion. The meals contained 2 g/kg body mass CHO and were isocaloric and iso-macronutrient with calculated GI values 77 and 37 for the HGI and LGI respectively. The run times for the LGI and HGI trials were 108.8 +/- 4.1 min and 101.4 +/- 5.2 min respectively (P = 0.038). Fat oxidation rates were higher during exercise after the LGI meal than after the HGI meal (P < 0.05). In summary, ingestion of a LGI meal 3 h before exercise resulted in a greater endurance capacity than after the ingestion of a HGI meal.

  17. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence.

    PubMed

    Bartlett, Jonathan D; Close, Graeme L; MacLaren, Don P M; Gregson, Warren; Drust, Barry; Morton, James P

    2011-03-01

    The aim of this study was to objectively quantify ratings of perceived enjoyment using the Physical Activity Enjoyment Scale following high-intensity interval running versus moderate-intensity continuous running. Eight recreationally active men performed two running protocols consisting of high-intensity interval running (6 × 3 min at 90% VO(2max) interspersed with 6 × 3 min active recovery at 50% VO(2max) with a 7-min warm-up and cool down at 70% VO(2max)) or 50 min moderate-intensity continuous running at 70% VO(2max). Ratings of perceived enjoyment after exercise were higher (P < 0.05) following interval running compared with continuous running (88 ± 6 vs. 61 ± 12) despite higher (P < 0.05) ratings of perceived exertion (14 ± 1 vs. 13 ± 1). There was no difference (P < 0.05) in average heart rate (88 ± 3 vs. 87 ± 3% maximum heart rate), average VO(2) (71 ± 6 vs. 73 ± 4%VO(2max)), total VO(2) (162 ± 16 vs. 166 ± 27 L) or energy expenditure (811 ± 83 vs. 832 ± 136 kcal) between protocols. The greater enjoyment associated with high-intensity interval running may be relevant for improving exercise adherence, since running is a low-cost exercise intervention requiring no exercise equipment and similar relative exercise intensities have previously induced health benefits in patient populations.

  18. Resveratrol attenuates exercise-induced adaptive responses in rats selectively bred for low running performance.

    PubMed

    Hart, Nikolett; Sarga, Linda; Csende, Zsolt; Koch, Lauren G; Britton, Steven L; Davies, Kelvin J A; Radak, Zsolt

    2014-01-01

    Low capacity runner (LCR) rats have been developed by divergent artificial selection for treadmill endurance capacity to explore an aerobic biology-disease connection. The beneficial effects of resveratrol supplementation have been demonstrated in endurance running. In this study it was examined whether 12 weeks of treadmill exercise training and/or resveratrol can retrieve the low running performance of the LCR and impact mitochondrial biogenesis and quality control. Resveratrol regressed running performance in trained LCR (p<0.05). Surprisingly, exercise and resveratrol treatments significantly decreased pAMPK/AMPK, SIRT1, SIRT4, forkhead transcription factor 1 (FOXO1) and mitochondrial transcription factor A (TFAM) levels in these animals (p<0.05). Mitochondrial fusion protein, HSP78 and polynucleotide phosphorylase were significantly induced in LCR-trained, LCR-resveratrol treated, LCR-trained and resveratol treated groups compared to LCR-controls. The data indicate that the AMPK-SIRT1-NAMPT-FOXO1 axis could be important to the limited aerobic endurance capacity of low running capacity rats. Resveratrol supplementation was not beneficial in terms of aerobic endurance performance, mitochondrial biogenesis, or quality control.

  19. Diet-induced obesity resistance of adult female mice selectively bred for increased wheel-running behavior is reversed by single perinatal exposure to a high-energy diet.

    PubMed

    Guidotti, Stefano; Meyer, Neele; Przybyt, Ewa; Scheurink, Anton J W; Harmsen, Martin C; Garland, Theodore; van Dijk, Gertjan

    2016-04-01

    Female mice from independently bred lines previously selected over 50 generations for increased voluntary wheel-running behavior (S1, S2) resist high energy (HE) diet-induced obesity (DIO) at adulthood, even without actual access to running wheels, as opposed to randomly bred controls (CON). We investigated whether adult S mice without wheels remain DIO-resistant when exposed - via the mother - to the HE diet during their perinatal stage (from 2 weeks prior to conception until weaning on post-natal day 21). While S1 and S2 females subjected to HE diet either perinatally or from weaning onwards (post-weaning) resisted increased adiposity at adulthood (as opposed to CON females), they lost this resistance when challenged with HE diet during these periods combined over one single cycle of breeding. When allowed one-week access to wheels (at week 6-8 and at 10 months), however, tendency for increased wheel-running behavior of S mice was unaltered. Thus, the trait for increased wheel-running behavior remained intact following combined perinatal and post-weaning HE exposure, but apparently this did not block HE-induced weight gain. At weaning, perinatal HE diet increased adiposity in all lines, but this was only associated with hyperleptinemia in S lines irrespective of gender. Because leptin has multiple developmental effects at adolescence, we argue that a trait for increased physical activity may advance maturation in times of plenty. This would be adaptive in nature where episodes of increased nutrient availability should be exploited maximally. Associated disturbances in glucose homeostasis and related co-morbidities at adulthood are probably pleiotropic side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. A protocol of intermittent exercise (shuttle runs) to train young basketball players.

    PubMed

    Zadro, Ivan; Sepulcri, Luigino; Lazzer, Stefano; Fregolent, Rudy; Zamparo, Paola

    2011-06-01

    The purpose of this study was to set up a protocol of intermittent exercise to train young basketball players. Twenty-one players were asked to complete (a) an incremental test to determine maximal oxygen uptake (VO2max), the speed at the ventilatory threshold (vthr) and the energy cost of "linear" running (Cr) and (b) an intermittent test composed of 10 shuttle runs of 10-second duration and 30-seconds of recovery (total duration: about 6 minutes). The exercise intensity (the running speed, vi) was set at 130% of vthr. During the intermittent tests, oxygen uptake (VO2) and blood lactate concentration (Lab) were measured. The average pretraining VO2 calculated for a single bout (131 ± 9 ml · min(-1) kg(-1)) was about 2.4 times greater than the subjects' measured VO2max (54.7 ± 4.6 ml · min(-1) · kg(-1)). The net energy cost of running (9.2 ± 0.9 J · m(-1) · kg(-1)) was about 2.4 times higher than that measured at constant "linear" speed (3.9 ± 0.3 J · m(-1) · kg(-1)). The intermittent test was repeated after 7 weeks of training: 9 subjects (control group [CG]) maintained their traditional training schedule, whereas for 12 subjects (experimental group [EG]) part of the training was replaced by intermittent exercise (the same shuttle test as described above). After training, the VO2 measured during the intermittent test was significantly reduced (p < 0.05) in both groups (-10.9% in EG and - 4.6 in CG %), whereas Lab decreased significantly only for EG (-31.5%). These data suggest that this training protocol is effective in reducing lactate accumulation in young basketball players.

  1. Six weeks of voluntary wheel running modulates inflammatory protein (MCP-1, IL-6, and IL-10) and DAMP (Hsp72) responses to acute stress in white adipose tissue of lean rats.

    PubMed

    Speaker, Kristin J; Cox, Stewart S; Paton, Madeline M; Serebrakian, Arman; Maslanik, Thomas; Greenwood, Benjamin N; Fleshner, Monika

    2014-07-01

    To prime local tissues for dealing with potential infection or injury, exposure to an acute, intense stressor evokes increases in circulating and local tissue inflammatory proteins. Regular physical activity facilitates stress-evoked innate reactivity and modulates the expression of inflammatory proteins in immuno-metabolic tissues such as white adipose tissue (WAT). The impact of regular physical activity on stress-evoked inflammatory protein expression in WAT, however, remains unclear. To investigate this question, lean male F344 rats (150-175g) were allowed voluntary access to a running wheel for 6weeks followed by exposure to an acute stressor (100, 1.5mA-5s inescapable tail shocks). Using ELISAs, corticosterone, heat shock protein 72 (Hsp72), macrophage chemoattractant protein (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-10 concentrations were measured in plasma and subcutaneous, intraperitoneal (epididymal and retroperitoneal WAT depots) and visceral (omental and mesenteric WAT depots) WAT compartments. Acute stress increased plasma concentrations of all proteins except TNF-α and, depending upon the compartment examined, WAT concentrations of MCP-1, IL-1β, IL-6, and IL-10. Exercise ubiquitously increased IL-1β within WAT, potentiated stress-evoked Hsp72 in plasma and WAT, and differentially increased stress-evoked MCP-1, IL-6, and IL-10 within WAT. These data suggest: (a) inflammatory proteins in non-obese WAT may serve compartment-specific immune and metabolic roles important to the acute stress response and; (b) voluntary habitual exercise may optimize stress-induced augmentation of innate immune function through increases in stress-evoked Hsp72, MCP-1, IL-6, and IL-10 and decreases in IL-1β/IL10 and TNF-α/IL10 ratios within white adipose tissue.

  2. Resveratrol enhances exercise training responses in rats selectively bred for high running performance

    PubMed Central

    Hart, Nikolett; Sarga, Linda; Csende, Zsolt; Koltai, Erika; Koch, Lauren G.; Britton, Steven L.; Davies, Kelvin J.A.; Kouretas, Dimitris; Wessner, Barbara; Radak, Zsolt

    2013-01-01

    High capacity runner (HCR) rats have been developed by divergent artificial selection for treadmill endurance running capacity to explore an aerobic biology-disease connection. The beneficial effects of resveratrol supplementation have been demonstrated in endurance running and the antioxidant capacity of resveratrol is also demonstrated. In this study we examine whether 12 weeks of treadmill exercise training and/or resveratrol can enhance performance in HCR. Indeed, resveratrol increased aerobic performance and strength of upper limbs of these rats. Moreover, we have found that resveratrol activated the AMP-activated protein kinase, SIRT1, and mitochondrial transcription factor A (p<0.05). The changes in mitochondrial fission/fusion and Lon protease/HSP78 levels suggest that exercise training does not significantly induce damage of proteins. Moreover, neither exercise training nor resveratrol supplementation altered the content of protein carbonyls. Changes in the levels of forkhead transcription factor 1 and SIRT4 could suggest increased fat utilization and improved insulin sensitivity. These data indicate, that resveratrol supplementation enhances aerobic performance due to the activation of the AMPK-SIRT1-PGC-1α pathway. PMID:23422033

  3. Resveratrol enhances exercise training responses in rats selectively bred for high running performance.

    PubMed

    Hart, Nikolett; Sarga, Linda; Csende, Zsolt; Koltai, Erika; Koch, Lauren G; Britton, Steven L; Davies, Kelvin J A; Kouretas, Dimitris; Wessner, Barbara; Radak, Zsolt

    2013-11-01

    High Capacity Runner (HCR) rats have been developed by divergent artificial selection for treadmill endurance running capacity to explore an aerobic biology-disease connection. The beneficial effects of resveratrol supplementation have been demonstrated in endurance running and the antioxidant capacity of resveratrol is also demonstrated. In this study we examine whether 12 weeks of treadmill exercise training and/or resveratrol can enhance performance in HCR. Indeed, resveratrol increased aerobic performance and strength of upper limbs of these rats. Moreover, we have found that resveratrol activated the AMP-activated protein kinase, SIRT1, and mitochondrial transcription factor A (p<0.05). The changes in mitochondrial fission/fusion and Lon protease/HSP78 levels suggest that exercise training does not significantly induce damage of proteins. Moreover, neither exercise training nor resveratrol supplementation altered the content of protein carbonyls. Changes in the levels of forkhead transcription factor 1 and SIRT4 could suggest increased fat utilization and improved insulin sensitivity. These data indicate, that resveratrol supplementation enhances aerobic performance due to the activation of the AMPK-SIRT1-PGC-1α pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. [High versus moderate intense running exercise - effects on cardiometabolic risk-factors in untrained males].

    PubMed

    Kemmler, Wolfgang; Lell, M; Scharf, M; Fraunberger, L; von Stengel, S

    2015-01-01

    Introduction | The philosophy on how to improve cardiometabolic risk factors most efficiently by endurance exercise is still controversial. To determine the effect of high-intensity (interval) training (HI[I]T) vs. moderate-intensity continuous exercise (MICE) training on cardiometabolic risk factors we conducted a 16-week crossover randomized controlled trial. Methods | 81 healthy untrained middle aged men were randomly assigned to a HI(I)T-group and a control-group that started the MICE running program after their control status. HI(I)T consisted of running exercise around or above the individual anaerobic threshold (≈ 80- 100 % HRmax); MICE focused on continuous running exercise at ≈ 65-77.5 % HRmax. Both protocols were comparable with respect to energy consumption. Study endpoints were cardiorespiratory fitness (VO2max), left ventricular mass index (LVMI), metabolic syndrome Z-score (MetS-Z-score), intima-media-thickness (IMT) and body composition. Results | VO2max-changes in this overweighed male cohort significantly (p=0.002) differ between HIIT (14.7 ± 9.3 %, p=0.001) and MICE (7.9 ± 7.4 %,p=0.001). LVMI, as determined via magnetic resonance imaging, significantly increased in both exercise groups (HIIT: 8.5 ± 5.4 %, p=0.001 vs. MICE: 5.3 ± 4.0 %, p=0.001), however the change was significantly more pronounced (p=0.005) in the HIIT-group. MetS-Z-score (HIIT: -2.06 ± 1.31, p=0.001 vs. MICE: -1.60 ± 1.77, p=0.001) and IMT (4.6 ± 5.9 % p=0.011 vs. 4.4 ± 8.1 %, p=0.019) did not show significant group-differences. Reductions of fat mass (-4.9 ± 9.0 %, p=0.010 vs. -9.5 ± 9.4, p=0.001) were significantly higher among the MICE-participants (p=0.034), however, the same was true (p=0.008) for lean body mass (0.5 ± 2.3 %, p=0.381 vs. -1.3 ± 2.0 %, p=0.003). Conclusion | In summary high-intensity interval training tends to impact cardiometabolic health more favorable compared with a moderate-intensity continuous endurance exercise protocol.

  5. The fly wheel exercise device (FWED): A countermeasure against bone loss and muscle atrophy

    NASA Astrophysics Data System (ADS)

    Hueser, Detlev; Wolff, Christian; Berg, Hans E.; Tesch, Per A.; Cork, Michael

    2008-01-01

    The flywheel exercise device (FWED) is planned for use as an in-flight exercise system, to demonstrate its efficacy as a countermeasure device to prevent muscle atrophy, bone loss and impairment of muscle function in human beings in response to long duration spaceflight. It is intended to be used on the International Space Station (ISS) and will be launched by the European cargo carrier, the automated transfer vehicle (ATV) in late 2005. The FWED is a non-gravity-dependent mechanical device based on the Yo-Yo principle, which provides resistance during coupled concentric and eccentric muscle actions, through the inertia of a spinning flywheel. Currently, the development of a FWED Flight and Ground Model is in progress and is due to be completed in May 2004. An earlier developed prototype is available that has been used for various ground studies. Our FWED design provides a maximum of built-in safety and support to the operation by one astronaut. This is achieved in particular by innovative mechanical design features and an easy, safe to use man-machine interface. The modular design is optimized for efficient set-up and maintenance operations to be performed in orbit by the crew. The mechanical subsystem of the FWED includes a μg disturbance suspension, which minimizes the mechanical disturbances of the exercising subject at the mechanical interface to the ISS. During the FWED operation the astronaut is guided through the exercises by the data management subsystem, which acquires sensor data from the FWED, calculates and displays real-time feedback to the subject, and stores all data on hard disk and personalized storage media for later scientific analysis.

  6. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats

    PubMed Central

    Zhang, Jianying; Yuan, Ting; Wang, James H-C.

    2016-01-01

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754

  7. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.

    PubMed

    Zhang, Jianying; Yuan, Ting; Wang, James H-C

    2016-02-23

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.

  8. Why Is It Harder to Run on an Inclined Exercise Treadmill?

    NASA Astrophysics Data System (ADS)

    Nave, Carla M. A. P. F.; Amoreira, Luis J. M.

    2014-04-01

    It is a known fact that it takes a greater effort to run on an exercise treadmill when it is inclined with positive slope than when it is in a horizontal position. The reason seems simple: walking on an inclined treadmill is somehow equivalent to walking up a hill with the same inclination; when we walk up a hill, our own weight does negative work (or, in other words, we gain potential energy as we ascend) and therefore we have to do more work to compensate for it (or, in other words, we must supply the potential energy increase).

  9. Soreness-related changes in three-dimensional running biomechanics following eccentric knee extensor exercise.

    PubMed

    Paquette, Max R; Peel, Shelby A; Schilling, Brian K; Melcher, Dan A; Bloomer, Richard J

    2017-06-01

    Runners often experience delayed onset muscle soreness (DOMS), especially of the knee extensors, following prolonged running. Sagittal knee joint biomechanics are altered in the presence of knee extensor DOMS but it is unclear how muscle soreness affects lower limb biomechanics in other planes of motion. The purpose of this study was to assess the effects of knee extensor DOMS on three-dimensional (3D) lower limb biomechanics during running. Thirty-three healthy men (25.8 ± 6.8 years; 84.1 ± 9.2 kg; 1.77 ± 0.07 m) completed an isolated eccentric knee extensor damaging protocol to elicit DOMS. Biomechanics of over-ground running at a set speed of 3.35 m s(-1)±5% were measured before eccentric exercise (baseline) and, 24 h and 48 h following exercise in the presence of knee extensor DOMS. Knee flexion ROM was reduced at 48 h (P = 0.01; d = 0.26), and peak knee extensor moment was reduced at 24 h (P = 0.001; d = 0.49) and 48 h (P < 0.001; d = 0.68) compared to baseline. Frontal and transverse plane biomechanics were unaffected by the presence of DOMS (P > 0.05). Peak positive ankle and knee joint powers and, peak negative knee joint power were all reduced from baseline to 24 h and 48 h (P < 0.05). These findings suggest that knee extensor DOMS greatly influences sagittal knee joint angular kinetics and, reduces sagittal power production at the ankle joint. However, knee extensor DOMS does not affect frontal and transverse plane lower limb joint biomechanics during running.

  10. Obesity-related changes in bone structural and material properties in hyperphagic OLETF rats and protection by voluntary wheel running.

    PubMed

    Hinton, Pamela S; Shankar, Kartik; Eaton, Lynn M; Rector, R Scott

    2015-08-01

    To examine how the development of obesity and the associated insulin resistance affect bone structural and material properties, and bone formation and resorption markers in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat model. This was a 36-week study of sedentary, hyperphagic, male OLETF rats (OLETF-SED), exercise-treated OLETF rats (OLETF-EX) and sedentary non-hyperphagic controls (LETO-SED) with data collection at 13, 20, and 40 weeks of age (n = 5-8 animals per group per timepoint). Body mass and fat (%) were significantly greater in OLETF-SED versus controls. OLETF-SED were insulin resistant at 13 and 20 weeks, with overt diabetes by 40 weeks. At 13weeks, OLETF-SED had lower total body BMC and BMD and serum P1NP compared with LETO-SED. Differences in total body BMC and BMD between OLETF-SED and LETO-SED persisted at 20 weeks, with reductions in total and cortical BMD of the tibia. OLETF-SED also had lesser femur diameter, cross-sectional area, polar moment of area, and torque at fracture than LETO-SED. By 40 weeks, OLETF-SED had elevated bone resorption and reduced intrinsic bone strength. OLETF-EX did not show the excessive weight gain, obesity, insulin resistance or diabetes observed in OLETF-SED. OLETF-EX had greater BMD than OLETF-SED, and structural and material properties of the femur were significantly increased in OLETF-EX relative to OLETF-SED and LETO-SED. The negative skeletal effects of excessive adiposity and insulin resistance were evident early in the progressive obesity with lasting negative impacts on intrinsic and extrinsic bone strength. Exercise protected against obesity-associated skeletal changes with marked benefits on the biomechanical properties of bone. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties.

    PubMed

    Kletzien, Heidi; Russell, John A; Leverson, Glen E; Connor, Nadine P

    2013-02-15

    Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.

  12. Differential effects of targeted tongue exercise and treadmill running on aging tongue muscle structure and contractile properties

    PubMed Central

    Kletzien, Heidi; Russell, John A.; Leverson, Glen E.

    2013-01-01

    Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies. PMID:23264540

  13. Running Exercise Reduces Myelinated Fiber Loss in the Dentate Gyrus of the Hippocampus in APP/PS1 Transgenic Mice.

    PubMed

    Chao, Fenglei; Zhang, Lei; Luo, Yanmin; Xiao, Qian; Lv, Fulin; He, Qi; Zhou, Chunni; Zhang, Yi; Jiang, Lin; Jiang, Rong; Gu, Hengwei; Tang, Yong

    2015-01-01

    To investigate the effect of running exercise on myelinated fibers in the dentate gyrus (DG) of the hippocampus during Alzheimer's disease (AD), 6-month-old male APP/PS1 transgenic mice were randomly assigned to control or running groups. The running group mice were subjected to a running protocol for four months. The behaviors of the mice from both group mice were then assessed using the Morris water maze, and the total volume of the DG and the related quantitative parameters with characteristics of the myelinated nerve fiber and the myelin sheath in the DG were investigated using unbiased stereological techniques and electron microscopy. Learning and spatial memory performances were both significantly increased in the running group compared with the control group. There was no significant difference in the gratio of the myelinated axons between the two groups. However, the DG volume, the myelinated fiber length and volume in the DG, and the myelin sheath volume and thickness in the DG were all significantly increased in the running group mice compared with the control group mice. These results indicated that running exercise was able to prevent DG atrophy and delay the progression of the myelinated fiber loss and the demyelination of the myelin sheaths in the DG in an AD mouse model, which may underlie the running-induced improvement in learning and spatial memory. Taken together, these results demonstrated that running exercise could delay the progression of AD.

  14. Hyperlocomotor activity and stress vulnerability during adulthood induced by social isolation after early weaning are prevented by voluntary running exercise before normal weaning period.

    PubMed

    Ishikawa, Junko; Ogawa, Yuko; Owada, Yuji; Ishikawa, Akinori

    2014-05-01

    In rodents, the disruption of social-rearing conditions before normal weaning induces emotional behavioral abnormalities, such as anxiety, motor activity dysregulation, and stress vulnerability. The beneficial effects of exercise after normal weaning on emotional regulation have been well documented. However, effects of exercise before normal weaning on emotion have not been reported. We examined whether voluntary wheel running (R) during social isolation after early weaning (early weaning/isolation; EI) from postnatal day (PD) 14-30 could prevent EI-induced emotional behavioral abnormalities in Sprague-Dawley rats. Compared with control rats reared with their dam and siblings until PD30, rats performed R during EI (EI+R) and EI rats demonstrated greater locomotion and lower grooming activity in the open-field test (OFT) during the juvenile period. Juvenile EI ± R rats showed greater learned helplessness (LH) after exposure to inescapable stress (IS; electric foot shock) than IS-exposed control and EI rats. In contrast, EI rats showed increased locomotion in the OFT and LH after exposure to IS compared with control rats during adulthood; this was not observed in EI ± R rats. Both EI and EI ± R rats exhibited greater rearing activity in the OFT than controls during adulthood. EI did not increase anxiety in the OFT and elevated plus-maze. These results suggested that R during EI until normal weaning prevented some of the EI-induced behavioral abnormalities, including hyperlocomotor activity and greater LH, during adulthood but not in the juvenile period.

  15. Effects of high-intensity intermittent running exercise in overweight children.

    PubMed

    Lau, Patrick W C; Wong, Del P; Ngo, Jake K; Liang, Y; Kim, C G; Kim, H S

    2015-01-01

    This study examined the effects of a 6-week intermittent exercise training, at different intensities, on body composition, functional walking and aerobic endurance in overweight children. Forty-eight overweight children (age: 10.4 ± 0.9 years) were randomly assigned to either intervention or control group. Lower and higher intensity intermittent exercise groups (LIIE and HIIE) performed intermittent running three times a week. LIIE performed more intervals at a lower intensity [16 intervals at 100% of individual maximal aerobic speed (MAS), 8 minutes in total], and HIIE performed fewer intervals at a higher intensity (12 intervals at 120% of MAS, 6 minutes in total). Each interval consisted of a 15-second run at the required speed, followed by a 15-second passive recovery. After 6 weeks, HIIE had a significantly (p < 0.05) higher percentage reduction in sum of skinfolds (i.e. calf and triceps), and significantly (p < 0.05) fewer steps during the functional obstacle performance, as compared with LIIE and control group. Significant improvement (p < 0.05) was found in intermittent aerobic endurance for HIIE as compared to the control group. Higher intensity intermittent training is an effective and time-efficient intervention for improving body composition, functional walking and aerobic endurance in overweight children.

  16. A preliminary study of a running speed based heart rate prediction during an incremental treadmill exercise.

    PubMed

    Dae-Geun Jang; Byung-Hoon Ko; Sub Sunoo; Sang-Seok Nam; Hun-Young Park; Sang-Kon Bae

    2016-08-01

    This preliminary study investigates feasibility of a running speed based heart rate (HR) prediction. It is basically motivated from the assumption that there is a significant relationship between HR and the running speed. In order to verify the assumption, HR and running speed data from 217 subjects of varying aerobic capabilities were simultaneously collected during an incremental treadmill exercise. A running speed was defined as a treadmill speed and its corresponding heart rate was calculated by averaging the last one minute HR values of each session. The feasibility was investigated by assessing a correlation between the heart rate and the running speed using inter-subject (between-subject) and intra-subject (within-subject) datasets with regression orders of 1, 2, 3, and 4, respectively. Furthermore, HR differences between actual and predicted HRs were also employed to investigate the feasibility of the running speed in predicting heart rate. In the inter-subject analysis, a strong positive correlation and a reasonable HR difference (r = 0.866, 16.55±11.24 bpm @ 1st order; r = 0.871, 15.93±11.49 bpm @ 2nd order; r = 0.897, 13.98±10.80 bpm @ 3rd order; and r = 0.899, 13.93±10.64 bpm @ 4th order) were obtained, and a very high positive correlation and a very low HR difference (r = 0.978, 6.46±3.89 bpm @ 1st order; r = 0.987, 5.14±2.87 bpm @ 2nd order; r = 0.996, 2.61±2.03 bpm @ 3rd order; and r = 0.997, 2.04±1.73 bpm @ 4th order) were obtained in the intra-subject analysis. It can therefore be concluded that 1) heart rate is highly correlated with a running speed; 2) heart rate can be approximately estimated by a running speed with a proper statistical model (e.g., 3rd-order regression); and 3) an individual HR-speed calibration process may improve the prediction accuracy.

  17. Tolerance to high-intensity intermittent running exercise: do oxygen uptake kinetics really matter?

    PubMed Central

    Buchheit, Martin; Hader, Karim; Mendez-Villanueva, Alberto

    2012-01-01

    We examined the respective associations between aerobic fitness (V˙O2max), metabolic control (V˙O2 kinetics) and locomotor function, and various physiological responses to high-intensity intermittent (HIT) running exercise in team sport players. Eleven players (30.5 ± 3.6 year) performed a series of tests to determine their V˙O2max and the associated velocity (vV˙O2max), maximal sprinting speed (MSS) and V˙O2 kinetics at exercise onset in the moderate and severe intensity domains, and during recovery (V˙O2τoff SEV). Cardiorespiratory variables, oxygenation and electromyography of lower limbs muscles and blood lactate ([La]) concentration were collected during a standardized HIT protocol consisting in 8 sets of 10, 4-s runs. During HIT, four players could not complete more than two sets; the others finished at least five sets. Metabolic responses to the two first sets of HIT were negatively correlated with V˙O2max, vV˙O2max, and V˙O2τoff SEV (r = −0.6 to −0.8), while there was no clear relationship with the other variables. V˙O2, oxygenation and [La] responses to the first two sets of HIT were the only variables that differed between the players which could complete at least five sets or those who could not complete more than two sets. Players that managed to run at least five sets presented, in comparison with the others, greater vV˙O2max [ES = +1.5(0.4; 2.7), MSS(ES = +1.0(0.1; 1.9)] and training load [ES = +3.8 (2.8; 4.9)]. There was no clear between-group difference in any of the V˙O2 kinetics measures [e.g., ES = −0.1(−1.4; 1.2) for V˙O2τon SEV]. While V˙O2max and vV˙O2max are likely determinant for HIT tolerance, the importance of V˙O2 kinetics as assessed in this study appears limited in the present population. Knowing the main factors influencing tolerance to HIT running exercise may assist practitioners in personalizing training interventions. PMID:23097642

  18. High-saturated fat-sucrose feeding affects lactation energetics in control mice and mice selectively bred for high wheel-running behavior.

    PubMed

    Guidotti, Stefano; Jónás, Izabella; Schubert, Kristin A; Garland, Theodore; Meijer, Harro A J; Scheurink, Anton J W; van Dijk, Gertjan

    2013-12-15

    Feeding a diet high in fat and sucrose (HFS) during pregnancy and lactation is known to increase susceptibility to develop metabolic derangements later in life. A trait for increased behavioral activity may oppose these effects, since this would drain energy from milk produced to be made available to the offspring. To investigate these interactions, we assessed several components of behavioral energetics during lactation in control mice (C) and in mice of two lines selectively bred for high wheel-running activity (S1, S2) subjected to a HFS diet or a low-fat (LF) diet. Energy intake, litter growth, and milk energy output at peak lactation (MEO; assessed by subtracting maternal metabolic rate from energy intake) were elevated in HFS-feeding dams across all lines compared with the LF condition, an effect that was particularly evident in the S dams. This effect was not preceded by improved lactation behaviors assessed between postnatal days 1 and 7 (PND 1-7). In fact, S1 dams had less high-quality nursing, and S2 dams showed poorer pup retrieval than C dams during PND 1-7, and S dams had generally higher levels of physical activity at peak lactation. These data demonstrate that HFS feeding increases MEO underlying increased litter and pup growth, particularly in mice with a trait for increased behavioral physical activity.

  19. Environmental enrichment and working memory tasks decrease hippocampal cell proliferation after wheel running--A role for the prefrontal cortex in hippocampal plasticity?

    PubMed

    Schaefers, Andrea T U

    2015-10-22

    Despite an increasing amount of evidence about the regulation of adult hippocampal neurogenesis on the local level, less attention has been paid to its systemic embedding in wider brain circuits. The aim of the present study was to obtain evidence for a potential role of the prefrontal cortex in the regulation of adult hippocampal neurogenesis. We hypothesised that activation of the prefrontal cortex by environmental enrichment or a working-memory task would decrease previously enhanced cell proliferation rates. Wheel running was applied as a common stimulator of cell proliferation in CD1 mice reared under deprivation of natural environmental stimulation. Next, the animals were assigned to four groups for different treatments in the following three days: housing under continued deprivation, environmental enrichment, a spatial-delayed alternation task in an automated T-maze that activates the prefrontal cortex by working-memory requirements or a control task in the automated T-maze differing only in the single parameter working-memory-associated delay. Both the environmental enrichment and spatial-delayed alternation tasks decreased cell proliferation rates in the dentate gyrus compared to deprived housing and the control task in the T-maze. As the control animals underwent the same procedures and stressors and differed only in the single parameter working-memory-associated delay, the working-memory requirement seems to be the crucial factor for decreasing cell proliferation rates. Taken together, these results suggest that the prefrontal cortex may play a role in the regulation of hippocampal cell proliferation.

  20. Exercise-induced changes in triceps surae tendon stiffness and muscle strength affect running economy in humans.

    PubMed

    Albracht, Kirsten; Arampatzis, Adamantios

    2013-06-01

    The purpose of the present study was to investigate whether increased tendon-aponeurosis stiffness and contractile strength of the triceps surae (TS) muscle-tendon units induced by resistance training would affect running economy. Therefore, an exercise group (EG, n = 13) performed a 14-week exercise program, while the control group (CG, n = 13) did not change their training. Maximum isometric voluntary contractile strength and TS tendon-aponeurosis stiffness, running kinematics and fascicle length of the gastrocnemius medialis (GM) muscle during running were analyzed. Furthermore, running economy was determined by measuring the rate of oxygen consumption at two running velocities (3.0, 3.5 ms(-1)). The intervention resulted in a ∼7 % increase in maximum plantarflexion muscle strength and a ∼16 % increase in TS tendon-aponeurosis stiffness. The EG showed a significant ∼4 % reduction in the rate of oxygen consumption and energy cost, indicating a significant increase in running economy, while the CG showed no changes. Neither kinematics nor fascicle length and elongation of the series-elastic element (SEE) during running were affected by the intervention. The unaffected SEE elongation of the GM during the stance phase of running, in spite of a higher tendon-aponeurosis stiffness, is indicative of greater energy storage and return and a redistribution of muscular output within the lower extremities while running after the intervention, which might explain the improved running economy.

  1. Locomotion Mode Affects the Physiological Strain during Exercise at Walk-Run Transition Speed inElderly Men.

    PubMed

    Freire, Raul; Farinatti, Paulo; Cunha, Felipe; Silva, Brenno; Monteiro, Walace

    2017-07-01

    This study investigated cardiorespiratory responses and rating of perceived exertion (RPE) during prolonged walking and running exercise performed at the walk-run transition speed (WRTS) in untrained healthy elderly men. 20 volunteers (mean±SE, age: 68.4±1.2 yrs; height: 170.0±0.02 cm; body mass: 74.7±2.3 kg) performed the following bouts of exercise: a) maximal cardiopulmonary exercise test (CPET); b) specific protocol to detect WRTS; and c) two 30-min walking and running bouts at WRTS. Expired gases were collected during exercise bouts via the Ultima CardiO2 metabolic analyzer. Compared to walking, running at the WRTS resulted in higher oxygen uptake (>0.27 L·min(-1)), pulmonary ventilation (>7.7 L·min(-1)), carbon dioxide output (>0.23 L·min(-1)), heart rate (>15 beats·min(-1)), oxygen pulse (>0.88 15 mL·beats(-1)), energy expenditure (>27 kcal) and cost of oxygen transport (>43 mL·kg(-1)·km(-1)·bout(-1)). The increase of overall and local RPEs with exercise duration was similar across locomotion modes (P<0.001). In all participants, %HRR and %VO2R throughout walking and running bouts were around or above the gas exchange threshold. In conclusion, elderly men exhibited higher cardiorespiratory responses during 30-min bouts of running than walking at WRTS. Nevertheless, walking corresponded to relative metabolic intensities compatible with preservation or improvement of cardiorespiratory fitness and should be preferable over running at WRTS in the untrained elderly characterized by poor fitness and reduced exercise tolerance. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    PubMed

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.

  3. Neurochemical and behavioral indices of exercise reward are independent of exercise controllability

    PubMed Central

    Herrera, Jonathan J; Fedynska, Sofiya; Ghasem, Parsa R; Wieman, Tyler; Clark, Peter J; Gray, Nathan; Loetz, Esteban; Campeau, Serge; Fleshner, Monika; Greenwood, Benjamin N

    2016-01-01

    Brain reward circuits are implicated in stress-related psychiatric disorders. Exercise reduces the incidence of stress-related disorders, but the contribution of exercise reward to stress resistance is unknown. Exercise-induced stress resistance is independent of exercise controllability; both voluntary and forced wheel running protect rats against anxiety- and depression-like behavioral consequences of stress. Voluntary exercise is a natural reward, but whether rats find forced wheel running rewarding is unknown. Moreover, the contribution of dopamine (DA) and striatal reward circuits to exercise reward is not well characterized. Adult, male rats were assigned to locked wheels, voluntary running (VR), or forced running (FR) groups. FR rats were forced to run in a pattern resembling rats' natural wheel running behavior. Both VR and FR increased the reward-related plasticity marker ΔFosB in the dorsal striatum (DS) and nucleus accumbens (NAc), and increased activity of DA neurons in the lateral ventral tegmental area (VTA), as revealed by immunohistochemistry for tyrosine hydroxylase (TH) and pCREB. Both VR and FR rats developed conditioned place preference (CPP) to the side of a CPP chamber paired with exercise. Re-exposure to the exercise-paired side of the CPP chamber elicited conditioned increases in cfos mRNA in direct pathway (dynorphin-positive) neurons in the DS and NAc in both VR and FR rats, and in TH-positive neurons in the lateral VTA of VR rats only. Results suggest that the rewarding effects of exercise are independent of exercise controllability and provide insight into the DA and striatal circuitries involved in exercise reward and exercise-induced stress resistance. PMID:26833814

  4. Effects of prolonged strenuous endurance exercise on plasma myosin heavy chain fragments and other muscular proteins. Cycling vs running.

    PubMed

    Koller, A; Mair, J; Schobersberger, W; Wohlfarter, T; Haid, C; Mayr, M; Villiger, B; Frey, W; Puschendorf, B

    1998-03-01

    This study evaluates creatine kinase, myosin heavy chain, and cardiac troponin blood levels following three types of exercise: 1) short-distance uphill or downhill running; 2) alpine ultramarathon; and 3) alpine long-distance cycling. Comparative field study; follow-up up to 10 days. Department of Sports Medicine. All biochemical markers were analysed at the Department of Medical Chemistry and Biochemistry. Subjects included healthy, trained males (N = 53). All subjects were nonsmokers and free from medication prior to and during the study. Each volunteer was an experienced runner or cyclist, who had at least once successfully finished the Swiss Alpine Marathon of Davos or the Otztal-Radmarathon before. Running or cycling. Plasma concentrations of creatine kinase, myosin heavy chain fragments and cardiac troponins were measured to diagnose skeletal and cardiac muscle damage, respectively. Skeletal muscle protein release is markedly different between uphill and downhill running, with very little evidence for muscle damage in the uphill runners. There is considerable muscle protein leakage in the ultramarathoners (67 km distance; 30 km downhill running). In contrast, only modest amounts of skeletal muscle damage are found after alpine long-distance cycling (230 km distance). This study proves that there is slow-twitch skeletal muscle fiber damage after prolonged strenuous endurance exercise and short-distance downhill running. Exhaustive endurance exercise involving downhill running and short-distance downhill running lead to more pronounced injury than strenuous endurance exercise involving concentric actions. From our results there is no reason for suggesting that prolonged intense exercise may induce myocardial injury in symptom-less athletes without cardiac deseases.

  5. Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal.

    PubMed

    Hosken, Ihaia T; Sutton, Steven W; Smith, Craig M; Gundlach, Andrew L

    2015-02-01

    Anatomical and pharmacological evidence suggests the neuropeptide, relaxin-3, is the preferred endogenous ligand for the relaxin family peptide-3 receptor (RXFP3) and suggests a number of putative stress- and arousal-related roles for RXFP3 signalling. However, in vitro and in vivo evidence demonstrates exogenous relaxin-3 can activate other relaxin peptide family receptors, and the role of relaxin-3/RXFP3 signalling in specific brain circuits and associated behaviours in mice is not well described. In this study, we characterised the behaviour of cohorts of male and female Rxfp3 gene knockout (KO) mice (C57/B6J(RXFP3TM1/DGen)), relative to wild-type (WT) littermates to determine if this receptor KO strain has a similar phenotype to its ligand KO equivalent. Rxfp3 KO mice displayed similar performance to WT littermates in several acute behavioural paradigms designed to gauge motor coordination (rotarod test), spatial memory (Y-maze), depressive-like behaviour (repeat forced-swim test) and sensorimotor gating (prepulse inhibition of acoustic startle). Notably however, male and female Rxfp3 KO mice displayed robust and consistent (dark phase) hypoactivity on voluntary home-cage running wheels (∼20-60% less activity/h), and a small but significant decrease in anxiety-like behavioural traits in the elevated plus maze and light/dark box paradigms. Importantly, this phenotype is near identical to that observed in two independent lines of relaxin-3 KO mice, suggesting these phenotypes are due to the elimination of ligand or receptor and RXFP3-linked signalling. Furthermore, this behavioural characterisation of Rxfp3 KO mice identifies them as a useful experimental model for studying RXFP3-linked signalling and assessing the selectivity and/or potential off-target actions of RXFP3 agonists and antagonists, which could lead to an improved understanding of dysfunctional arousal in mental health disorders, including depression, anxiety, insomnia and neurodegenerative

  6. Changes in skeletal muscle mitochondria in response to the development of type 2 diabetes or prevention by daily wheel running in hyperphagic OLETF rats.

    PubMed

    Rector, R Scott; Uptergrove, Grace M; Borengasser, Sarah J; Mikus, Catherine R; Morris, E Matthew; Naples, Scott P; Laye, Matthew J; Laughlin, M Harold; Booth, Frank W; Ibdah, Jamal A; Thyfault, John P

    2010-06-01

    The temporal changes in skeletal muscle mitochondrial content and lipid metabolism that precede type 2 diabetes are largely unknown. Here we examined skeletal muscle mitochondrial fatty acid oxidation (MitoFAOX) and markers of mitochondrial gene expression and protein content in sedentary 20- and 40-wk-old hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF-SED) rats. Changes in OLETF-SED rats were compared with two groups of rats who maintained insulin sensitivity: age-matched OLETF rats given access to voluntary running wheels (OLETF-EX) and sedentary, nonobese Long-Evans Tokushima Otsuka (LETO-SED) rats. As expected, glucose tolerance tests revealed insulin resistance at 20 wk that progressed to type 2 diabetes at 40 wk in the OLETF-SED, whereas both the OLETF-EX and LETO-SED maintained whole body insulin sensitivity. At 40 wk, complete MitoFAOX (to CO(2)), beta-hydroxyacyl-CoA dehydrogenase activity, and citrate synthase activity did not differ between OLETF-SED and LETO-SED but were significantly (P < 0.05) higher in OLETF-EX compared with OLETF-SED rats. Genes controlling skeletal muscle MitoFAOX (PGC-1alpha, PPARdelta, mtTFA, cytochrome c) were not different between OLETF-SED and LETO-SED at any age. Compared with the OLETF-SED, the OLETF-EX rats had significantly (P < 0.05) higher skeletal muscle PGC-1alpha, cytochrome c, and mtTFA mRNA levels at 20 and 40 wk and PPARdelta at 40 wk; however, protein content for each of these markers did not differ between groups at 40 wk. Limited changes in skeletal muscle mitochondria were observed during the transition from insulin resistance to type 2 diabetes in the hyperphagic OLETF rat. However, diabetes prevention through increased physical activity appears to be mediated in part through maintenance of skeletal muscle mitochondrial function.

  7. Changes in skeletal muscle mitochondria in response to the development of type 2 diabetes or prevention by daily wheel running in hyperphagic OLETF rats

    PubMed Central

    Rector, R. Scott; Uptergrove, Grace M.; Borengasser, Sarah J.; Mikus, Catherine R.; Morris, E. Matthew; Naples, Scott P.; Laye, Matthew J.; Laughlin, M. Harold; Booth, Frank W.; Ibdah, Jamal A.

    2010-01-01

    The temporal changes in skeletal muscle mitochondrial content and lipid metabolism that precede type 2 diabetes are largely unknown. Here we examined skeletal muscle mitochondrial fatty acid oxidation (MitoFAOX) and markers of mitochondrial gene expression and protein content in sedentary 20- and 40-wk-old hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF-SED) rats. Changes in OLETF-SED rats were compared with two groups of rats who maintained insulin sensitivity: age-matched OLETF rats given access to voluntary running wheels (OLETF-EX) and sedentary, nonobese Long-Evans Tokushima Otsuka (LETO-SED) rats. As expected, glucose tolerance tests revealed insulin resistance at 20 wk that progressed to type 2 diabetes at 40 wk in the OLETF-SED, whereas both the OLETF-EX and LETO-SED maintained whole body insulin sensitivity. At 40 wk, complete MitoFAOX (to CO2), β-hydroxyacyl-CoA dehydrogenase activity, and citrate synthase activity did not differ between OLETF-SED and LETO-SED but were significantly (P < 0.05) higher in OLETF-EX compared with OLETF-SED rats. Genes controlling skeletal muscle MitoFAOX (PGC-1α, PPARδ, mtTFA, cytochrome c) were not different between OLETF-SED and LETO-SED at any age. Compared with the OLETF-SED, the OLETF-EX rats had significantly (P < 0.05) higher skeletal muscle PGC-1α, cytochrome c, and mtTFA mRNA levels at 20 and 40 wk and PPARδ at 40 wk; however, protein content for each of these markers did not differ between groups at 40 wk. Limited changes in skeletal muscle mitochondria were observed during the transition from insulin resistance to type 2 diabetes in the hyperphagic OLETF rat. However, diabetes prevention through increased physical activity appears to be mediated in part through maintenance of skeletal muscle mitochondrial function. PMID:20233940

  8. Effect of stride length on symptoms of exercise-induced muscle damage during a repeated bout of downhill running.

    PubMed

    Eston, R G; Lemmey, A B; McHugh, P; Byrne, C; Walsh, S E

    2000-08-01

    The purpose of this study was to assess the effects of changes in stride length on the symptoms of exercise-induced muscle damage (EIMD) during a repeated bout of downhill running in a group of 18 men and women. Muscle tenderness, plasma creatine kinase activity (CK) and maximal voluntary isometric force were measured before and after two downhill runs, with each run separated by 5 weeks. The first downhill run was at the preferred stride frequency (PSF). Participants were then randomly allocated to one of three sex-balanced groups with equal numbers of men and women: overstride (-8% PSF), understride (+8% PSF) and normal stride frequency for the second downhill run. Stride length had no effect (P>0.05) on muscle tenderness, CK or isometric peak force. Increases in muscle tenderness (P<0.001) and CK were lower (P<0.05) following the second downhill run, although there was no difference in the pattern and extent of the strength decrement between the two runs. There were also no differences (P>0.05) in muscle tenderness, CK or the relative strength loss between the men and the women. Results suggest that the symptoms of EIMD are unaffected by gender and small alterations to the normal stride pattern during constant velocity downhill running. The observation that muscle tenderness and CK were reduced following a repeated bout of similar eccentric exercise is consistent with the phenomenon known as the 'repeated bout effect' of muscle damage.

  9. The influence of wearing compression stockings on performance indicators and physiological responses following a prolonged trail running exercise.

    PubMed

    Vercruyssen, Fabrice; Easthope, Christopher; Bernard, Thierry; Hausswirth, Christophe; Bieuzen, Francois; Gruet, Mathieu; Brisswalter, Jeanick

    2014-01-01

    The objective of this study was to investigate the effects of wearing compression socks (CS) on performance indicators and physiological responses during prolonged trail running. Eleven trained runners completed a 15.6 km trail run at a competition intensity whilst wearing or not wearing CS. Counter movement jump, maximal voluntary contraction and the oxygenation profile of vastus lateralis muscle using near-infrared spectroscopy (NIRS) method were measured before and following exercise. Run time, heart rate (HR), blood lactate concentration and ratings of perceived exertion were evaluated during the CS and non-CS sessions. No significant difference in any dependent variables was observed during the run sessions. Run times were 5681.1 ± 503.5 and 5696.7 ± 530.7 s for the non-CS and CS conditions, respectively. The relative intensity during CS and non-CS runs corresponded to a range of 90.5-91.5% HRmax. Although NIRS measurements such as muscle oxygen uptake and muscle blood flow significantly increased following exercise (+57.7% and + 42.6%,+59.2% and + 32.4%, respectively for the CS and non-CS sessions, P<0.05), there was no difference between the run conditions. The findings suggest that competitive runners do not gain any practical or physiological benefits from wearing CS during prolonged off-road running.

  10. Effects of early-onset voluntary exercise on adult physical activity and associated phenotypes in mice.

    PubMed

    Acosta, Wendy; Meek, Thomas H; Schutz, Heidi; Dlugosz, Elizabeth M; Vu, Kim T; Garland, Theodore

    2015-10-01

    The purpose of this study was to evaluate the effects of early-life exercise on adult physical activity (wheel running, home-cage activity), body mass, food consumption, and circulating leptin levels in males from four replicate lines of mice selectively bred for high voluntary wheel running (High Runner or HR) and their four non-selected control (C) lines. Half of the mice were given wheel access shortly after weaning for three consecutive weeks. Wheel access was then removed for 52 days, followed by two weeks of adult wheel access for all mice. A blood sample taken prior to adult wheel testing was analyzed for circulating leptin concentration. Early-life wheel access significantly increased adult voluntary exercise on wheels during the first week of the second period of wheel access, for both HR and C mice, and HR ran more than C mice. During this same time period, activity in the home cages was not affected by early-age wheel access, and did not differ statistically between HR and C mice. Throughout the study, all mice with early wheel access had lower body masses than their sedentary counterparts, and HR mice had lower body masses than C mice. With wheel access, HR mice also ate significantly more than C mice. Early-life wheel access increased plasma leptin levels (adjusted statistically for fat-pad mass as a covariate) in C mice, but decreased them in HR mice. At sacrifice, early-life exercise had no statistically significant effects on visceral fat pad, heart (ventricle), liver or spleen masses (all adjusted statistically for variation in body mass). Results support the hypothesis that early-age exercise in mice can have at least transitory positive effects on adult levels of voluntary exercise, in addition to reducing body mass, and may be relevant for the public policy debates concerning the importance of physical education for children.

  11. Influence of music on maximal self-paced running performance and passive post-exercise recovery rate.

    PubMed

    Lee, Sam; Kimmerly, Derek S

    2016-01-01

    The purpose of this study was to examine the influence of fast tempo music (FM) on self-paced running performance (heart rate, running speed, ratings of perceived exertion), and slow tempo music (SM) on post-exercise heart rate and blood lactate recovery rates. Twelve participants (5 women) completed three randomly assigned conditions: static noise (control), FM and SM. Each condition consisted of self-paced treadmill running, and supine postexercise recovery periods (20 min each). Average running speed, heart rate (HR) and ratings of perceived exertion (RPE) were measured during the treadmill running period, while HR and blood lactate were measured during the recovery period. Listening to FM during exercise resulted in a faster self-selected running speed (10.8±1.7 vs. 9.9±1.4 km•hour-1, P<0.001) and higher peak HR (184±12 vs. 177±17 beats•min-1, P<0.01) without a corresponding difference in peak RPE (FM, 16.8±1.8 vs. SM 15.7±1.9, P=0.10). Listening to SM during the post-exercise period resulted in faster HR recovery throughout (main effect P<0.001) and blood lactate at the end of recovery (2.8±0.4 vs. 4.7±0.8 mmol•L-1, P<0.05). Listening to FM during exercise can increase self-paced intensity without altering perceived exertion levels while listening to SM after exercise can accelerate the recovery rate back to resting levels.

  12. Taste aversion in rats induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments.

    PubMed

    Masaki, Takahisa; Nakajima, Sadahiko

    2006-07-30

    The present experiment compared the strengths of taste aversion learning in rats induced by forced swimming in a water pool (5, 15, 30, or 60 min), voluntary running in an activity wheel (15, 30, 60, or 120 min), forced running in a motorized wheel (60 min at the speed of 8 m/min), optional running in the apparatus consisting of an activity wheel and a side room (120 min), and a lithium chloride (LiCl, 0.15 M LiCl at 2% of body weight) injection. The rats were given an access to saccharin solution immediately followed by one of the above treatments or simply returned back to the home cages for the control group. On the next 2 days, aversion to the saccharin solution was assessed by two-bottle choice testing between it and tap water. The following results were obtained. (1) The saccharin aversion was a positive function of exercise durations in the forced swimming and voluntary running rats, and the exercise of more than 30 min induced statistically significant saccharin aversion, compared with the control rats. (2) The forced running caused relatively strong saccharin aversion. The group of forced running rats acquired the numerically strongest saccharin aversion on average among all exercised rats. (3) The optional running treatment had little effect. (4) The LiCl injection resulted in the strongest aversion among the all treatments explored here.

  13. Wheel Installation

    NASA Image and Video Library

    2010-07-07

    In this picture, the Curiosity rover sports a set of six new wheels. The wheels were installed on June 28 and 29 in the Spacecraft Assembly Facility at NASA Jet Propulsion Laboratory, Pasadena, Calif.

  14. Cart Wheels

    ERIC Educational Resources Information Center

    Peck, Edson R.

    1978-01-01

    This paper draws attention to cart wheels, two wheels rotating freely about a common axle and rolling on an inclined plane, both as a demonstration and as a satisfying application of dynamical analysis. (BB)

  15. Cart Wheels

    ERIC Educational Resources Information Center

    Peck, Edson R.

    1978-01-01

    This paper draws attention to cart wheels, two wheels rotating freely about a common axle and rolling on an inclined plane, both as a demonstration and as a satisfying application of dynamical analysis. (BB)

  16. Delayed exercise-induced functional and neurochemical partial restoration following MPTP.

    PubMed

    Archer, Trevor; Fredriksson, Anders

    2012-02-01

    In two experiments, MPTP was administered to C57/BL6 mice according to a single-dose weekly regime (MPTP: 1 × 30 mg/kg on the fifth day of the week, Friday, over 4 weeks) with vehicle group (Vehicle: 1 × 5 ml/kg) treated concurrently. Exercise schedules (delayed) were introduced either at the beginning of the week after the second MPTP injection (MPTP + Exercise(2) group), or at the beginning of the week after the fourth MPTP injection (MPTP + Exercise(4) group). Wheel-running was provided on the first 4 days of each week (Monday-Thursday) more than 30-min periods. In Experiment I, wheel-running exercise was introduced either after 2 or 4 weeks after MPTP/Vehicle. MPTP and Vehicle groups not provided access to the running wheels were placed in single cages within the wheel-running room over 30-min concomitantly with the wheel-running groups. In Experiment II, wheel-running exercise was introduced 2 weeks after MPTP/Vehicle but a no-exercise control group with non-revolving wheel included (MPTP-Wheel). In both experiments, spontaneous motor activity tests during 60-min intervals were performed at the end (Fridays) of weeks 1, 2, 3, 4, 6, 8, and 10, where the week on which the first injection of MPTP was the first week; in the case of weeks 1-4, this was immediately before MPTP/Vehicle injections. It was observed that the introduction of the exercise schedule after the second MPTP injection, but not after the fourth injection, restored motor activity that had been markedly elevated by the end of the tenth week. Subthreshold administration of L-dopa tests was performed after the spontaneous motor activity tests 6, 8 and 10; these indicated significant effects of exercise, MPTP + Exercise(2) group, on Tests 6 and 8, but not Test 10. The physical exercise schedule in that group also showed markedly attenuated loss of dopamine (DA). Restoration of MPTP-induced motor activity deficits and DA loss was a function of the point at which exercise was introduced, in the

  17. The Free-Running Asthma Screening Test: An Approach to Screening for Exercise-Induced Asthma in Rural Alabama.

    ERIC Educational Resources Information Center

    Heaman, Doris J.; Estes, Jenny

    1997-01-01

    This study documented the prevalence of exercise-induced asthma (EIA) in rural elementary schools, examining the use of a free-running asthma screening test and peak expiratory flow-rate measurement for school screening. Results indicated that 5.7% of the students had EIA. Absenteeism and poverty were related to EIA. (SM)

  18. Lactate minimum test during incremental running after a submaximal cycling exercise: a novel test with training applications for triathletes.

    PubMed

    Vicente-Campous, D; Barbado, C; Nuñez, M J; Chicharro, J L

    2014-12-01

    The purpose of the present study was to determine whether running speed determined in a lactate minimum test (lactate minimum intensity, LMI) during a treadmill incremental exercise performed just after submaximal cycling corresponds to the speed of a respiratory exchange ratio of 1.00 (RER-1) and, by extension, to the maximal lactate steady state (MLSS) previously obtained in a standard incremental exercise test. Eighteen moderately trained triathletes (15 men, 3 women) underwent two exercise sessions 72 h apart in random order: 1) a standard incremental treadmill test to identify the speed corresponding to RER-1, and 2) a submaximal exercise test on a bicycle-ergometer to obtain the LT (lactate threshold) followed by the incremental portion of the lactate minimum test on the treadmill. No significant differences were detected between running speed and heart rate at RER-1 and LMI (14.44±1.24 vs. 14.11±1.36 km·h-1 and 166.38±9.30 vs. 169.55±8.97 beats·min-1, respectively). Moreover, 95% of the differences between the results of the two incremental tests for running speed and heart rate were within the limits of agreement. These findings suggest the possibility of obtaining a valid physiological profile of a triathlete using a single test to assess the level of training in both cycling and running.

  19. The Free-Running Asthma Screening Test: An Approach to Screening for Exercise-Induced Asthma in Rural Alabama.

    ERIC Educational Resources Information Center

    Heaman, Doris J.; Estes, Jenny

    1997-01-01

    This study documented the prevalence of exercise-induced asthma (EIA) in rural elementary schools, examining the use of a free-running asthma screening test and peak expiratory flow-rate measurement for school screening. Results indicated that 5.7% of the students had EIA. Absenteeism and poverty were related to EIA. (SM)

  20. The impact of voluntary exercise on mental health in rodents: a neuroplasticity perspective.

    PubMed

    Pietropaolo, Susanna; Sun, Yan; Li, Ruixi; Brana, Corinne; Feldon, Joram; Yee, Benjamin K

    2008-09-01

    There is growing interest in the effects of voluntary wheel running activity on brain and behaviour in laboratory rodents and their implications to humans. Here, the major findings to date on the impact of exercise on mental health and diseases as well as the possible underlying neurobiological mechanisms are summarised. Several critical modulating factors on the neurobehavioural effects of wheel running exercise are emphasized and discussed--including the amount of wheel running, sex and strain/species differences. We also reported the outcome of an empirical investigation of the impact of wheel running exercise on the expression of both cognitive and non-cognitive phenotypes in a triple (3 x Tg-AD) transgenic mouse model for Alzheimer's disease (AD). Clear sex- and paradigm-specific effects of exercise on the genetically determined phenotypes are illustrated, including the efficacy of wheel running activity in attenuating the sex-specific cognitive deficits. It is concluded that the wheel running paradigm represents a unique environmental manipulation for the investigation of neurobehavioural plasticity in terms of gene-environment interactions relevant to the pathogenesis and therapies of certain neuropsychiatric conditions.

  1. The influence of vigorous running and cycling exercise on hunger perceptions and plasma acylated ghrelin concentrations in lean young men.

    PubMed

    Wasse, Lucy K; Sunderland, Caroline; King, James A; Miyashita, Masashi; Stensel, David J

    2013-01-01

    Vigorous running suppresses plasma acylated ghrelin concentrations but the limited literature on cycling suggests that acylated ghrelin is unchanged, perhaps because body mass is supported during cycling. It is important from a research and applied perspective to determine whether acylated ghrelin and hunger responses are exercise-mode specific. This study sought to examine this. Eleven recreationally active males fasted overnight and completed three 4-h trials: control, running, and cycling, in a random order. Participants rested throughout the control trial and ran or cycled at 70% of mode-specific maximal oxygen uptake for the first hour during exercise trials, resting thereafter. Hunger was measured every 0.5 h using visual analogue scales. Eight venous blood samples were collected to determine acylated ghrelin concentrations and a standardised meal was consumed at 3 h. Compared with the control trial, acylated ghrelin concentrations were suppressed to a similar extent at 0.5 and 1 h during the running (p < 0.005) and cycling (p < 0.001) trials. Area under the curve values for ghrelin concentration over time were lower during exercise trials versus control (Control: 606 ± 379; Running: 455 ± 356; Cycling: 448 ± 315 pg·mL(-1)·4 h(-1); mean ± SD, p < 0.05). Hunger values did not differ significantly between trials but an interaction effect (p < 0.05) indicated a tendency for hunger to be suppressed during exercise. Thus, at similar relative exercise intensities, plasma acylated ghrelin concentrations are suppressed to a similar extent during running and cycling.

  2. 5000 Meter Run Performance is not Enhanced 24 Hrs After an Intense Exercise Bout and Cold Water Immersion.

    PubMed

    Stenson, Mary C; Stenson, Matthew R; Matthews, Tracey D; Paolone, Vincent J

    2017-06-01

    Cold water immersion (CWI) is used by endurance athletes to speed recovery between exercise bouts, but little evidence is available on the effects of CWI on subsequent endurance performance. The purpose of this study was to investigate the effects of CWI following an acute bout of interval training on 5000 m run performance 24 hrs after interval training, perceived muscle soreness (PMS), range of motion (ROM), thigh circumference (TC), and perceived exertion (RPE). Nine endurance-trained males completed 2 trials, each consisting of an interval training session of 8 repetitions of 1200 m at a running pace equal to 75% of VO2peak, either a control or CWI treatment, and a timed 5000 m run 24 hrs post interval training session. CWI was performed for 12 min at 12 degrees Celsius on the legs. Recovery treatments were performed in a counterbalanced design. Run time for 5000 m was not different between the CWI and control trials (CWI = 1317.33 ± 128.33 sec, control = 1303.44 ± 105.53 sec; p = 0.48). PMS increased significantly from baseline to immediately post exercise (BL = 1.17 ± 0.22, POST = 2.81 ± 0.52; p = 0.02) and remained elevated from baseline to 24 hrs post exercise (POST24 = 2.19 ± 0.32; p = 0.02), but no difference was observed between the treatments. No differences were observed for the interaction between time and treatment for TC (λ = 0.73, p = 0.15) and ROM (λ = 0.49; p = 0.10). CWI performed immediately following an interval training exercise bout did not enhance subsequent 5000 m run performance or reduce PMS. CWI may not provide a recovery or performance advantage when athletes are accustomed to the demands of the prior exercise bout.

  3. The effect of a pre-exercise carbohydrate meal on immune responses to an endurance performance run.

    PubMed

    Chen, Ya-jun; Wong, Stephen Heung-sang; Wong, Chun-kwok; Lam, Ching-Wan; Huang, Ya-jun; Siu, Parco Ming-fai

    2008-12-01

    This study examined the effect of a pre-exercise meal with different glycaemic index (GI) and glycaemic load (GL) on immune responses to an endurance performance run. Eight men completed a preloaded 1 h run at 70 % VO2max on a level treadmill followed by a 10 km performance run on three occasions. In each trial, one of the three prescribed isoenergetic meals, i.e. high GI and high GL (H-H), high GI and low GL (H-L), or low GI and low GL (L-L) was consumed by the subjects 2 h before exercise. Carbohydrate intake (% of energy intake), GI, and GL were 65 %, 79.5, and 82.4 for H-H; 36 %, 78.5, and 44.1 for H-L; 65 %, 40.2, and 42.1 for L-L, respectively. The running time for the three trials was approximately 112 min at 70 % VO2max for the first hour and 76 % VO2max for the last 52 min. Consumption of pre-exercise high-carbohydrate meals (H-H and L-L) resulted in less perturbation of the circulating numbers of leucocytes, neutrophils and T lymphocyte subsets, and in decreased elevation of the plasma IL-6 concentrations immediately after exercise and during the 2 h recovery period compared with the H-L trial. These responses were accompanied by an attenuated increase in plasma IL-10 concentrations at the the end of the 2 h recovery period. The amount of carbohydrate consumed in the pre-exercise meal may be the most important influencing factor rather than the type of carbohydrate in modifying the immunoendocrine response to prolonged exercise.

  4. Influence of shoes increasing dorsiflexion and decreasing metatarsus flexion on lower limb muscular activity during fitness exercises, walking, and running.

    PubMed

    Bourgit, David; Millet, Guillaume Y; Fuchslocher, Jörg

    2008-05-01

    The aim of the present study was to compare electromyographic activity during fitness exercises, walking, and running among 3 different dorsiflexion shoes (+2 degrees , +4 degrees , and +10 degrees ) and standard shoes (-4 degrees ). The 3 different dorsiflexion shoes tested in this study have a curvature placed in the middle of the sole. This design was specially projected to decrease the metatarsus flexion. Electromyographic activity of 9 lower limb muscles was measured on 12 healthy female subjects during 5 fitness exercises (unload squat, side and front step, submaximal ballistic plantar flexion, and lunge exercise), and during running (10 km x h(-1)) and walking (4.5 km x h(-1)) on a treadmill. EMG signal was analyzed with the root mean square (RMS) and integrated EMG. All RMS data measured during these exercises were expressed as percentages of maximum voluntary isometric contraction. The results show that dorsiflexion affects muscle recruitment and reorganizes the motor pattern. The general tendency was that the tibialis anterior activity increased with dorsiflexion. However, an optimal dorsiflexion existed for various exercises. It is concluded that shoes with moderate dorsiflexion can activate lower limb muscles differently compared with both standard shoes and shoes with large dorsiflexion during submaximal exercises and locomotion.

  5. Adelphi on Wheels

    ERIC Educational Resources Information Center

    Levy, Lawrence C.

    1976-01-01

    Adelphi University has awarded 76 Masters in Business Administration degrees to people in the New York City area who attended its Classroom on Wheels, one specially equipped car on each of four commuter train lines. The program, reaching over 1000 people since 1971 is run and promoted solely on tuition. (JT)

  6. Limited effect of fly-wheel and spinal mobilization exercise countermeasures on lumbar spine deconditioning during 90 d bed-rest in the Toulouse LTBR study

    NASA Astrophysics Data System (ADS)

    Belavý, Daniel L.; Ohshima, Hiroshi; Bareille, Marie-Pierre; Rittweger, Jörn; Felsenberg, Dieter

    2011-09-01

    We examined the effect of high-load fly-wheel (targeting the lower-limb musculature and concurrent loading of the spine via shoulder restraints) and spinal movement countermeasures against lumbar spine muscle atrophy, disc and spinal morphology changes and trunk isokinetic torque loss during prolonged bed-rest. Twenty-four male subjects underwent 90 d head-down tilt bed-rest and performed either fly-wheel (FW) exercises every three days, spinal movement exercises in lying five times daily (SpMob), or no exercise (Ctrl). There was no significant impact of countermeasures on losses of isokinetic trunk flexion/extension ( p≥0.65). Muscle volume change by day-89 of bed-rest in the psoas, iliacus, lumbar erector spinae, lumbar multifidus and quadratus lumborum, as measured via magnetic resonance imaging (MRI), was statistically similar in all three groups ( p≥0.33). No significant effect on MRI-measures of lumbar intervertebral disc volume, spinal length and lordosis ( p≥0.09) were seen either, but there was some impact ( p≤0.048) on axial plane disc dimensions (greater reduction than in Ctrl) and disc height (greater increases than in Ctrl). MRI-data from subjects measured 13 and 90-days after bed-rest showed partial recovery of the spinal extensor musculature by day-13 after bed-rest with this process complete by day-90. Some changes in lumbar spine and disc morphology parameters were still persistent 90-days after bed-rest. The present results indicate that the countermeasures tested were not optimal to maintain integrity of the spine and trunk musculature during bed rest.

  7. Effects of withdrawal from chronic intermittent ethanol vapor on the level and circadian periodicity of running-wheel activity in C57BL/6J and C3H/HeJ mice.

    PubMed

    Logan, Ryan W; McCulley, Walter D; Seggio, Joseph A; Rosenwasser, Alan M

    2012-03-01

    Alcohol withdrawal is associated with behavioral and chronobiological disturbances that may persist during protracted abstinence. We previously reported that C57BL/6J (B6) mice show marked but temporary reductions in running-wheel activity, and normal free-running circadian rhythms, following a 4-day chronic intermittent ethanol (CIE) vapor exposure (16 hours of ethanol vapor exposure alternating with 8 hours of withdrawal). In the present experiments, we extend these observations in 2 ways: (i) by examining post-CIE locomotor activity in C3H/HeJ (C3H) mice, an inbred strain characterized by high sensitivity to ethanol withdrawal, and (ii) by directly comparing the responses of B6 and C3H mice to a longer-duration CIE protocol. In Experiment 1, C3H mice were exposed to the same 4-day CIE protocol used in our previous study with B6 mice (referred to here as the 1-cycle CIE protocol). In Experiment 2, C3H and B6 mice were exposed to 3 successive 4-day CIE cycles, each separated by 2 days of withdrawal (the 3-cycle CIE protocol). Running-wheel activity was monitored prior to and following CIE, and post-CIE activity was recorded in constant darkness to allow assessment of free-running circadian period and phase. C3H mice displayed pronounced reductions in running-wheel activity that persisted for the duration of the recording period (up to 30 days) following both 1-cycle (Experiment 1) and 3-cycle (Experiment 2) CIE protocols. In contrast, B6 mice showed reductions in locomotor activity that persisted for about 1 week following the 3-cycle CIE protocol, similar to the results of our previous study using a 1-cycle protocol in this strain. Additionally, C3H mice showed significant shortening of free-running period following the 3-cycle, but not the 1-cycle, CIE protocol, while B6 mice showed normal free-running rhythms. These results reveal genetic differences in the persistence of ethanol withdrawal-induced hypo-locomotion. In addition, chronobiological alterations

  8. Effects of Withdrawal from Chronic Intermittent Ethanol Vapor on the Level and Circadian Periodicity of Running-Wheel Activity in C57BL/6J and C3H/HeJ Mice

    PubMed Central

    Logan, Ryan W.; McCulley, Walter D.; Seggio, Joseph A.; Rosenwasser, Alan M.

    2011-01-01

    Background Alcohol withdrawal is associated with behavioral and chronobiological disturbances that may persist during protracted abstinence. We previously reported that C57BL/6J (B6) mice show marked but temporary reductions in running-wheel activity, and normal free-running circadian rhythms, following a 4-day chronic intermittent ethanol vapor (CIE) exposure (16 hours of ethanol vapor exposure alternating with 8 hours of withdrawal). In the present experiments, we extend these observations in two ways: (1) by examining post-CIE locomotor activity in C3H/HeJ (C3H) mice, an inbred strain characterized by high sensitivity to ethanol withdrawal, and (2) by directly comparing the responses of B6 and C3H mice to a longer-duration CIE protocol. Methods In Experiment 1, C3H mice were exposed to the same 4-day CIE protocol used in our previous study with B6 mice (referred to here as the 1-cycle CIE protocol). In Experiment 2, C3H and B6 mice were exposed to three successive 4-day CIE cycles, each separated by 2 days of withdrawal (the 3-cycle CIE protocol). Running-wheel activity was monitored prior to and following CIE, and post-CIE activity was recorded in constant darkness to allow assessment of free-running circadian period and phase. Results C3H mice displayed pronounced reductions in running-wheel activity that persisted for the duration of the recording period (up to 30 days) following both 1-cycle (Experiment 1) and 3-cycle (Experiment 2) CIE protocols. In contrast, B6 mice showed reductions in locomotor activity that persisted for about one week following the 3-cycle CIE protocol, similar to the results of our previous study using a 1-cycle protocol in this strain. Additionally, C3H mice showed significant shortening of free-running period following the 3-cycle, but not the 1-cycle, CIE protocol, while B6 mice showed normal free-running rhythms. Conclusions These results reveal genetic differences in the persistence of ethanol withdrawal-induced hypo

  9. Portrait of an Aging Wheel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This plot maps the increasing amounts of energy needed to spin Spirit's right front wheel drive, which has been showing signs of age. The wheel has now traveled six times farther than its design life. Since Spirit's 126th day on Mars, this wheel has required additional electric current to run at normal speeds, as indicated with blue diamonds on this graph. Efforts to improve the situation by redistributing the lubricant in the wheel with heat and rest were only mildly successful (pink squares). To cope with the condition, rover planners have come up with a creative solution: they will drive the rover backwards using five of six wheels. The sixth wheel will be activated only when the terrain demands it.

  10. Portrait of an Aging Wheel

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This plot maps the increasing amounts of energy needed to spin Spirit's right front wheel drive, which has been showing signs of age. The wheel has now traveled six times farther than its design life. Since Spirit's 126th day on Mars, this wheel has required additional electric current to run at normal speeds, as indicated with blue diamonds on this graph. Efforts to improve the situation by redistributing the lubricant in the wheel with heat and rest were only mildly successful (pink squares). To cope with the condition, rover planners have come up with a creative solution: they will drive the rover backwards using five of six wheels. The sixth wheel will be activated only when the terrain demands it.

  11. Effects of voluntary exercise on spontaneous physical activity and food consumption in mice: Results from an artificial selection experiment.

    PubMed

    Copes, Lynn E; Schutz, Heidi; Dlugosz, Elizabeth M; Acosta, Wendy; Chappell, Mark A; Garland, Theodore

    2015-10-01

    We evaluated the effect of voluntary exercise on spontaneous physical activity (SPA) and food consumption in mice from 4 replicate lines bred for 57 generations for high voluntary wheel running (HR) and from 4 non-selected control (C) lines. Beginning at ~24 days of age, mice were housed in standard cages or in cages with attached wheels. Wheel activity and SPA were monitored in 1-min intervals. Data from the 8th week of the experiment were analyzed because mice were sexually mature and had plateaued in body mass, weekly wheel running distance, SPA, and food consumption. Body mass, length, and masses of the retroperitoneal fat pad, liver, and heart were recorded after the 13th week. SPA of both HR and C mice decreased with wheel access, due to reductions in both duration and average intensity of SPA. However, total activity duration (SPA+wheel running; min/day) was ~1/3 greater when mice were housed with wheels, and food consumption was significantly increased. Overall, food consumption in both HR and C mice was more strongly affected by wheel running than by SPA. Duration of wheel running had a stronger effect than average speed, but the opposite was true for SPA. With body mass as a covariate, chronic wheel access significantly reduced fat pad mass and increased heart mass in both HR and C mice. Given that both HR and C mice housed with wheels had increased food consumption, the energetic cost of wheel running was not fully compensated by concomitant reductions in SPA. The experiment demonstrates that both duration and intensity of both wheel running and SPA were significant predictors of food consumption. This sort of detailed analysis of the effects of different aspects of physical activity on food consumption has not previously been reported for a non-human animal, and it sets the stage for longitudinal examination of energy balance and its components in rodent models.

  12. Exercise Intensity-Dependent Effects on Cognitive Control Function during and after Acute Treadmill Running in Young Healthy Adults

    PubMed Central

    Wohlwend, Martin; Olsen, Alexander; Håberg, Asta K.; Palmer, Helen S.

    2017-01-01

    The idea that physical activity differentially impacts upon performance of various cognitive tasks has recently gained increased interest. However, our current knowledge about how cognition is altered by acute physical activity is incomplete. To measure how different intensity levels of physical activity affect cognition during and after 1 bout of physical activity, 30 healthy, young participants were randomized to perform a not-X continuous performance test (CPT) during low (LI)- and moderate intensity (MI) running. The same participants were subsequently randomized to perform the not-X CPT post LI, MI, and high intensity (HI) running. In addition, exercise related mood changes were assessed through a self-report measure pre and post running at LI, MI, and HI. Results showed worsening of performance accuracy on the not-X CPT during one bout of moderate compared to low intensity running. Post running, there was a linear decrease in reaction time with increasing running intensity and no change in accuracy or mood. The decreased reaction times post HI running recovered back to baseline within 20 min. We conclude that accuracy is acutely deteriorated during the most straining physical activity while a transient intensity-dependent enhancement of cognitive control function is present following physical activity. PMID:28377735

  13. Cardiorespiratory responses during running and sport-specific exercises in handball players.

    PubMed

    Buchheit, M; Lepretre, P M; Behaegel, A L; Millet, G P; Cuvelier, G; Ahmaidi, S

    2009-05-01

    To determine whether a 4-a-side handball (HB) game is an appropriate aerobic stimulus to reach and potentially enhance maximal oxygen uptake (V O(2)max), and whether heart rate (HR) is a valid index of V O(2) during a handball game. Nine skilled players (21.0+/-2.9 yr) underwent a graded maximal aerobic test (GT) where V O(2)max and HR-V O(2) relationship were determined. V O(2), HR and blood lactate ([La](b)) were recorded during a 2 x 225 s (interspersed with 30s rest) 4-a-side handball game and were compared to those measured during an 480-s running intermittent exercise (IE). Mean V O(2) tended to be higher in handball compared to IE (93.9+/-8.5 vs. 87.6+/-7.4% O(2)max, p=0.06), whereas HR was similar (92.3+/-4.9 vs. 93.9+/-3.9% of the peak of HR, p=0.10). [La](b) was lower for handball than for IE (8.9+/-3.5 vs. 11.6+/-2.1 mmol l(-1), p=0.04). Time spent over 90% of V O(2)max was higher for handball than for IE (336.1+/-139.6s vs. 216.1+/-124.7s; p=0.03). The HR-V O(2) relationship during GT was high (r(2)=0.96, p<0.001) but estimated V O(2) from HR was lower to that measured (p=0.03) in handball, whereas there was no difference in IE. 4-a-side handball game can be used as a specific alternative to IE for enhancing aerobic fitness in handball players. Nevertheless, the accuracy of HR measures for estimating V O(2) during handball is poor.

  14. Epidemlology of exercise-related transient abdominal pain at the Sydney City to Surf community run.

    PubMed

    Morton, D P; Richards, D; Callister, R

    2005-06-01

    A questionnaire was administered to 848 participants (76% runners, 24% walkers) at the conclusion of the 14 km City to Surf community run in order to investigate their experience of exercise-related transient abdominal pain (ETAP). Twenty-seven percent of respondents reported experiencing ETAP during the event, with the condition reported more frequently (p< 0.01) by runners (30%) than walkers (16%). ETAP was mostly described as well-localised (88%) and of an aching (25%), sharp (22%) or cramping (22%) sensation. The most commonly-reported sites of the pain were the right (46%) and left lumbar (23%) regions of the abdomen. Forty-two percent of the respondents who experienced ETAP reported that the pain was detrimental to their performance. Reports of ETAP decreased with age (r= -0.23, p< 0.01) but were unrelated to gender, body mass index or the time taken to complete the event. Among respondents who ran, those who consumed a large mass of food relative to body weight in the time interval 1-2 hr before the event were more likely to develop symptoms of ETAP (p < 0.05). The nutritional content of the pre-event meal did not influence the experience of ETAP. Sufferers of ETAP were more likely to experience nausea (r = 0.12, p< 0.01) and report shoulder tip pain (r= 0.14, p< 0.01). The results indicate that ETAP is a commonly experienced problem and provide insights into the cause of the complaint.

  15. Omnidirectional wheel

    NASA Technical Reports Server (NTRS)

    Blumrich, J. F. (Inventor)

    1974-01-01

    The apparatus consists of a wheel having a hub with radially disposed spokes which are provided with a plurality of circumferential rim segments. These rim segments carry, between the spokes, rim elements which are rigid relative to their outer support surfaces, and defined in their outer contour to form a part of the circle forming the wheel diameter. The rim segments have provided for each of the rim elements an independent drive means selectively operable when the element is in ground contact to rotatably drive the rim element in a direction of movement perpendicularly lateral to the normal plane of rotation and movement of the wheel. This affords the wheel omnidirectional movement.

  16. Carbohydrate-protein ingestion improves subsequent running capacity towards the end of a football-specific intermittent exercise.

    PubMed

    Alghannam, Abdullah F

    2011-10-01

    The majority of football players succumb to fatigue towards the end of the game. This study was designed to examine the influence of protein coingestion with carbohydrate (CHO) vs. an isocaloric CHO supplement on subsequent running capacity towards the end of a simulated football match. Six male amateur football players participated in 3 trials applied in a randomized cross-over experimental design. A laboratory-based, football-specific intermittent exercise was allocated for 75 min interspersed with a 15-min recovery, immediately followed by run time to fatigue (RTF) at 80% peak oxygen consumption. In each trial, prior to exercise and during half-time, participants randomly ingested a placebo (PLC), 6.9% CHO, or 4.8% CHO plus 2.1% protein (CHO-P) supplements matched for color and taste. CHO-P resulted in longer RTF (23.02 ± 5.27 min) than did CHO (16.49 ± 3.25 min) and PLC (11.00 ± 2.80 min) (p < 0.05). Blood glucose was higher in CHO-P at the point of fatigue (4.68 ± 0.64) compared with CHO and PLC (3.92 ± 0.29 and 3.66 ± 0.36, respectively; p < 0.05). Ratings of perceived exertion were lower in the CHO-P subjects at the onset of exercise and towards the end of intermittent exercise when compared with the PLC and CHO subjects (p < 0.05). When protein was added to a CHO supplement, subsequent running capacity following limited recovery from intermittent exercise was enhanced. This improvement suggests that protein coingestion may exert an ergogenic benefit upon endurance capacity during intermittent activity.

  17. High versus Moderate Intensity Running Exercise to Impact Cardiometabolic Risk Factors: The Randomized Controlled RUSH-Study

    PubMed Central

    Kemmler, Wolfgang; Scharf, Michael; Lell, Michael; Petrasek, Carina; von Stengel, Simon

    2014-01-01

    Aerobic exercise positively impacts cardiometabolic risk factors and diseases; however, the most effective exercise training strategies have yet to be identified. To determine the effect of high intensity (interval) training (HI(I)T) versus moderate intensity continuous exercise (MICE) training on cardiometabolic risk factors and cardiorespiratory fitness we conducted a 16-week crossover RCT with partial blinding. Eighty-one healthy untrained middle-aged males were randomly assigned to two study arms: (1) a HI(I)T-group and (2) a sedentary control/MICE-group that started their MICE protocol after their control status. HI(I)T focused on interval training (90 sec to 12 min >85–97.5% HRmax) intermitted by active recovery (1–3 min at 65–70% HRmax), while MICE consisted of continuous running at 65–75% HRmax. Both exercise groups progressively performed 2–4 running sessions/week of 35 to 90 min/session; however, protocols were adjusted to attain similar total work (i.e., isocaloric conditions). With respect to cardiometabolic risk factors and cardiorespiratory fitness both exercise groups demonstrated similar significant positive effects on MetS-Z-Score (HI(I)T: −2.06 ± 1.31, P = .001 versus MICE: −1.60 ± 1.77, P = .001) and (relative) VO2max (HI(I)T: 15.6 ± 9.3%, P = .001 versus MICE: 10.6 ± 9.6%, P = .001) compared with the sedentary control group. In conclusion, both exercise programs were comparably effective for improving cardiometabolic indices and cardiorespiratory fitness in untrained middle-aged males. PMID:24738073

  18. Fast-start strategy increases the time spent above 95 %VO2max during severe-intensity intermittent running exercise.

    PubMed

    de Aguiar, Rafael Alves; Turnes, Tiago; de Oliveira Cruz, Rogério Santos; Caputo, Fabrizio

    2013-04-01

    This study aimed to use the intermittent critical velocity (ICV) model to individualize intermittent exercise and analyze whether a fast-start strategy could increase the time spent at or above 95 %VO(2max) (t95VO(2max)) during intermittent exercise. After an incremental test, seven active male subjects performed three intermittent exercise tests until exhaustion at 100, 110, and 120 % of the maximal aerobic velocity to determine ICV. On three occasions, the subjects performed an intermittent exercise test until exhaustion at 105 % (IE105) and 125 % (IE125) of ICV, and at a speed that was initially set at 125 %ICV but which then decreased to 105 %ICV (IE125-105). The intermittent exercise consisted of repeated 30-s runs alternated with 15-s passive rest intervals. There was no difference between the predicted and actual Tlim for IE125 (300 ± 72 s and 284 ± 76 s) and IE105 (1,438 ± 423 s and 1,439 ± 518 s), but for IE125-105 the predicted Tlim underestimated the actual Tlim (888 ± 211 s and 1,051 ± 153 s, respectively). The t95VO(2max) during IE125-105 (289 ± 150 s) was significantly higher than IE125 (113 ± 40 s) and IE105 (106 ± 71 s), but no significant differences were found between IE125 and IE105. It can be concluded that predicting Tlim from the ICV model was affected by the fast-start protocol during intermittent exercise. Furthermore, fast-start protocol was able to increase the time spent at or above 95 %VO2max during intermittent exercise above ICV despite a longer total exercise time at IE105.

  19. Bicycle Wheel

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An aerodynamic bicycle wheel developed by two DuPont engineers and a California company incorporates research into NASA airfoils. Computer modeling was accomplished with MSC/NASTRAN. Each of the three spokes in the wheel is, in effect, an airfoil, maximizing aerodynamic efficiency for racing.

  20. Voluntary exercise at the expense of reproductive success in Djungarian hamsters (Phodopus sungorus).

    PubMed

    Petri, Ines; Scherbarth, Frank; Steinlechner, Stephan

    2010-09-01

    Energy demands of gestation and lactation represent a severe challenge for small mammals. Therefore, additional energetic burdens may compromise successful breeding. In small rodents, food restriction, cold exposure (also in combination) and wheel running to obtain food have been shown to diminish reproductive outcome. Although exhibited responses such as lower incidence of pregnancy, extended lactation periods and maternal infanticide were species dependent, their common function is to adjust energetic costs to the metabolic state reflecting the trade-off between maternal investment and self-maintenance. In the present study, we sought to examine whether voluntary exercise affects reproduction in Djungarian hamsters (Phodopus sungorus), which are known for their high motivation to run in a wheel. Voluntary exercise resulted in two different effects on reproduction; in addition to increased infanticide and cannibalism, which was evident across all experiments, the results of one experiment provided evidence that free access to a running wheel may prevent successful pregnancy. It seems likely that the impact of voluntary wheel running on reproduction was associated with a reduction of internal energy resources evoked by extensive exercise. Since the hamsters were neither food-restricted nor forced to run in the present study, an energetic deficit as reason for infanticide in exercising dams would emphasise the particularly high motivation to run in a wheel.

  1. Voluntary exercise at the expense of reproductive success in Djungarian hamsters ( Phodopus sungorus)

    NASA Astrophysics Data System (ADS)

    Petri, Ines; Scherbarth, Frank; Steinlechner, Stephan

    2010-09-01

    Energy demands of gestation and lactation represent a severe challenge for small mammals. Therefore, additional energetic burdens may compromise successful breeding. In small rodents, food restriction, cold exposure (also in combination) and wheel running to obtain food have been shown to diminish reproductive outcome. Although exhibited responses such as lower incidence of pregnancy, extended lactation periods and maternal infanticide were species dependent, their common function is to adjust energetic costs to the metabolic state reflecting the trade-off between maternal investment and self-maintenance. In the present study, we sought to examine whether voluntary exercise affects reproduction in Djungarian hamsters ( Phodopus sungorus), which are known for their high motivation to run in a wheel. Voluntary exercise resulted in two different effects on reproduction; in addition to increased infanticide and cannibalism, which was evident across all experiments, the results of one experiment provided evidence that free access to a running wheel may prevent successful pregnancy. It seems likely that the impact of voluntary wheel running on reproduction was associated with a reduction of internal energy resources evoked by extensive exercise. Since the hamsters were neither food-restricted nor forced to run in the present study, an energetic deficit as reason for infanticide in exercising dams would emphasise the particularly high motivation to run in a wheel.

  2. The effect of exercise intensity on cognitive performance during short duration treadmill running

    PubMed Central

    Tallis, Jason; Miller, Amanda; Clarke, Neil D.; Guimarães-Ferreira, Lucas; Duncan, Michael J.

    2016-01-01

    Abstract This study examined the effect of short duration, moderate and high-intensity exercise on a Go/NoGo task. Fifteen, habitually active (9 females and 6 males aged 28 ± 5 years) agreed to participate in the study and cognitive performance was measured in three sessions lasting 10 min each, performed at three different exercise intensities: rest, moderate and high. Results indicated significant exercise intensity main effects for reaction time (RT) (p = 0.01), the omission error rate (p = 0.027) and the decision error rate (p = 0.011), with significantly longer RTs during high intensity exercise compared to moderate intensity exercise (p = 0.039) and rest (p = 0.023). Mean ± SE of RT (ms) was 395.8 ± 9.1, 396.3 ± 9.1 and 433.5 ± 16.1 for rest, moderate and high intensity exercise, respectively. This pattern was replicated for the error rate with a significantly higher omission error and decision error rate during high intensity exercise compared to moderate intensity exercise (p = 0.003) and rest (p = 0.001). Mean ± SE of omission errors (%) was 0.88 ± 0.23, 0.8 ± 0.23 and 1.8 ± 0.46% for rest, moderate and high intensity exercise, respectively. Likewise, mean ± SE of decision errors (%) was 0.73 ± 0.24, 0.73 ± 0.21 and 1.8 ± 0.31 for rest, moderate and high intensity exercise, respectively. The present study’s results suggest that 10 min workout at high intensity impairs RT performances in habitually active adults compared to rest or moderate intensity exercise. PMID:28149365

  3. Prior stress interferes with the anxiolytic effect of exercise in C57BL/6J mice.

    PubMed

    Hare, Brendan D; D'Onfro, Katherine C; Hammack, Sayamwong E; Falls, William A

    2012-12-01

    Recent reports demonstrate that the beneficial effects of voluntary exercise may be sensitive to stress prior to and during the wheel access period. Here, a variate stress procedure is used with socially isolated mice for 7 days prior to the introduction of running wheels to assess the impact of prior and concurrent stress on the anxiolytic effect of exercise. Following stress exposure, functioning or nonfunctioning running wheels were introduced into stressed and unstressed group-housed control cages. Following 3 weeks of wheel access, the anxiolytic effect of exercise was assessed using acoustic startle, stress-induced hyperthermia, and a challenge with the anxiogenic drug metachlorophenylpiperazine (mCPP). Variate stress was demonstrated to interfere with normal weight gain. Further, exercise was not anxiolytic in stressed mice. Consistent with previous reports unstressed exercising mice demonstrated reduced acoustic startle, attenuated stress induced hyperthermia, and a blunted increase in startle following mCPP administration when compared with unstressed sedentary controls. Stressed exercising mice were indistinguishable from stressed sedentary and unstressed sedentary controls on each anxiety measure. Although running distance varied between individual mice, the distance run did not predict the level of anxiety on any measure. These findings suggest that prior and ongoing stress delays or prevents the anxiolytic effect of exercise without affecting exercise itself.

  4. The free running athletic screening test as a screening test for exercise-induced asthma in high school.

    PubMed

    Randolph, C; Fraser, B; Matasavage, C

    1997-01-01

    As part of a multicenter study envisioned by the American College of Allergy Sports Committee to screen for exercise-induced asthma, 303 high school students, freshman and sophomore gym classes, completed a questionnaire concerning exercise-related asthma, chronic asthma, and atopy. The study group included 124 females (41%) and 179 males (59%) with an average and median age of 15 years and a range of 13-17 years, and included 99% Caucasian and 1% nonCaucasian students, all attending the same parochial high school. After obtaining informed consent, 112 (37%) agreed to a free running test with initial challenge on an outdoor cinder track during April-June 1995. All challenges were conducted between 8:00 A.M. and noon with relative-humidity 59% and average temperature 15 degrees C. The challenge consisted of 7 minutes of continuous running on the cinder track with a doubling of pulse rate to 160/min during the run. Peak expiratory flows were taken at baseline, 0, 5, and 10 minutes postexercise. Twenty nine of 112 (26%) of the students were initially assessed as positive challenges, defined as a 15% decline in peak flow following exercise on the first challenge. However, four students self-recovered; thus 25 of 112 (22%) were qualified as true positives. Of these 25, 20 (80%) agreed to be reexercised. Fourteen of 20 (70%) were positive, yielding a prevalence rate of 14/112 (12.5%). Sixteen of these 20 (80%) were then exercised a third time using spirometry pre- and postexercise. Eight were positive, yielding a prevalence rate of 8/112 (7%). The questionnaire correlated significantly with the challenge, particularly when read by section (p = 0.000001) rather than globally positive or negative (p = 0.00008), with a specificity of 64%, sensitivity of 94%, positive predictive value of 44%, and negative predictive value of 97%. In summary, inexpensive and familiar free-running tests can be a useful screening test to confirm the questionnaire which is sensitive (94%) in

  5. Voluntary exercise produces antidepressant and anxiolytic behavioral effects in mice.

    PubMed

    Duman, Catharine H; Schlesinger, Lee; Russell, David S; Duman, Ronald S

    2008-03-14

    Reports of beneficial effects of exercise on psychological health in humans are increasingly supported by basic research studies. Exercise is hypothesized to regulate antidepressant-related mechanisms and we therefore characterized the effects of chronic exercise in mouse behavioral paradigms relevant to antidepressant actions. Mice given free access to running wheels showed antidepressant-like behavior in learned helplessness, forced-swim (FST) and tail suspension paradigms. These responses were similar to responses of antidepressant drug-treated animals. When tested under conditions where locomotor activity was not altered, exercising mice also showed reduced anxiety compared to sedentary control mice. In situ hybridization analysis showed that BDNF mRNA was increased in specific subfields of hippocampus after wheel running. We chose one paradigm, the FST, in which to investigate a functional role for brain-derived neurotrophic factor (BDNF) in the behavioral response to exercise. We tested mice heterozygous for a deletion of the BDNF gene in the FST after wheel-running. Exercising wild-type mice showed the expected antidepressant-like behavioral response in the FST but exercise was ineffective in improving FST performance in heterozygous BDNF knockout mice. A possible functional contribution of a BDNF signaling pathway to FST performance in exercising mice was investigated using the specific MEK inhibitor PD184161 to block the MAPK signaling pathway. Subchronic administration of PD184161 to exercising mice blocked the antidepressant-like behavioral response seen in vehicle-treated exercising mice in the FST. In summary, chronic wheel-running exercise in mice results in antidepressant-like behavioral changes that may involve a BDNF related mechanism similar to that hypothesized for antidepressant drug treatment.

  6. Effects of treadmill running and resistance exercises on lowering blood pressure during the daily work of hypertensive subjects.

    PubMed

    Mota, Márcio R; Pardono, Emerson; Lima, Laila C J; Arsa, Gisela; Bottaro, Martim; Campbell, Carmen S G; Simões, Herbert G

    2009-11-01

    The purposes of this study were to compare the hypotensive effects of treadmill running (TR) and resistance exercise (RE) performed by hypertensive subjects and to verify if the hypotensive effects of these exercises are maintained during a regular white-collar workday. Fifteen white-collar workers (42.9 +/- 1.6 years), treated with antihypertensive medication, accomplished three different sessions: 20 minutes of TR (approximately 70-80% of heart rate reserve), 20 minutes of circuit training RE (20 repetitions at 40% of 1 repetition maximum), and a control session without exercise (CON). The systolic blood pressure (BP), diastolic BP, heart rate, and blood lactate were measured at resting (Rest) and after sessions at 15th (R15), 30th (R30), 45th (R45), and 60th (R60) min, as well as after lunch (AL), four (R4h) and seven (R7h) hours of recovery at the participants' workplace. In relation to rest, a higher decrease of systolic BP after TR (-11.1 +/- 7.6 mm Hg) and RE (-12.6 +/- 7.3 mm Hg) was observed respectively at the R30 and R45. For diastolic BP, the highest decreases after TR (-4.0 +/- 6.4 mm Hg) and RE (-9.0 +/- 7.0 mm Hg) were observed respectively at the R45 and R30. The systolic BP and mean BP after TR and RE differed significantly from CON session (p < 0.05), and lower post-exercise values could be observed over the workday. In conclusion, both 20 minutes of TR and RE resulted in postexercise hypotension, and were able to reduce BP throughout 7 hours after exercise, even throughout the subject's regular occupational activities. Also, the RE promoted higher cardiac protection and can be a useful model of physical exercise prescription for hypertension individuals.

  7. Wheels Spinning

    NASA Image and Video Library

    2010-07-13

    This image was taken in the cleanroom where NASA Curiosity rover is being assembled. It shows the rover, which is about the size of an SUV, hoisted on a white lift, with its black wheels suspended in the air.

  8. Running performance in the heat is improved by similar magnitude with pre-exercise cold-water immersion and mid-exercise facial water spray.

    PubMed

    Stevens, Christopher J; Kittel, Aden; Sculley, Dean V; Callister, Robin; Taylor, Lee; Dascombe, Ben J

    2017-04-01

    This investigation compared the effects of external pre-cooling and mid-exercise cooling methods on running time trial performance and associated physiological responses. Nine trained male runners completed familiarisation and three randomised 5 km running time trials on a non-motorised treadmill in the heat (33°C). The trials included pre-cooling by cold-water immersion (CWI), mid-exercise cooling by intermittent facial water spray (SPRAY), and a control of no cooling (CON). Temperature, cardiorespiratory, muscular activation, and perceptual responses were measured as well as blood concentrations of lactate and prolactin. Performance time was significantly faster with CWI (24.5 ± 2.8 min; P = 0.01) and SPRAY (24.6 ± 3.3 min; P = 0.01) compared to CON (25.2 ± 3.2 min). Both cooling strategies significantly (P < 0.05) reduced forehead temperatures and thermal sensation, and increased muscle activation. Only pre-cooling significantly lowered rectal temperature both pre-exercise (by 0.5 ± 0.3°C; P < 0.01) and throughout exercise, and reduced sweat rate (P < 0.05). Both cooling strategies improved performance by a similar magnitude, and are ergogenic for athletes. The observed physiological changes suggest some involvement of central and psychophysiological mechanisms of performance improvement.

  9. Aerobic energy cost and sensation responses during submaximal running exercise--positive effects of wearing compression tights.

    PubMed

    Bringard, A; Perrey, S; Belluye, N

    2006-05-01

    This study aimed to examine the effects of wearing compression compared to classic elastic tights and conventional shorts (control trial) on oxygen cost and sensation responses during submaximal running exercise. In part I, aerobic energy cost was evaluated in six trained runners at 10, 12, 14, and 16 km x h(-1). In part II, the increase in energy cost over time (i. e., slow component expressed as difference in VO2 values between min 2 and end-exercise) was determined in six trained runners at a constant running pace corresponding to 80% of maximal VO2 for 15 min duration. All tests were performed on a 200-m indoor track with equivalent thermal stress conditions. VO2 was determined with a portable metabolic system (Cosmed K4b2, Rome, Italy) during all testing sessions. Runners were asked their ratings of perceived exertion (RPE) and perceptions for clothing sweating, comfort, and whole thermal sensations following each trial. Results showed in part I a significant lower energy cost only at 12 km x h(-1) by wearing compression and elastic tights compared to conventional shorts. During part II, wearing compression tights decreased significantly VO2 slow component by 26 and 36% compared to elastic tights and conventional shorts, respectively. There were no differences in sweating and comfort sensations, RPE, and for whole thermal sensation between clothing conditions in parts I and II. Wearing compression tights during running exercise may enhance overall circulation and decrease muscle oscillation to promote a lower energy expenditure at a given prolonged submaximal speed.

  10. Changes in ambient temperature at the onset of thermoregulatory responses in exercise-trained rats

    NASA Astrophysics Data System (ADS)

    Sugimoto, N.; Sakurada, S.; Shido, O.

    Spontaneous running in a wheel has emerged as a useful method of exercise in rodents. We investigated how exercise training with a running wheel affects ambient temperatures (Ta) at the onset of thermoregulatory responses in rats. Female rats were allowed to run freely in the wheel for 6 months. Sedentary control rats did not exercise during the same period. After the exercise training period, they were loosely restrained and Ta values at the onset of tail skin vasodilation and cold- induced thermogenesis were determined by raising or lowering Ta. Resting levels of core temperature and heat production of the exercise-trained rats were significantly higher than those of the controls. Ta values at the onset of tail skin vasodilation and cold-induced thermogenesis of the exercise-trained rats were higher than those of the controls. The results suggest that, in rats, exercise training with a running wheel elevates ambient temperatures for heat loss and heat production, which may then contribute to maintaining the core temperature at a high level.

  11. Effects of long-term voluntary exercise on learning and memory processes: dependency of the task and level of exercise.

    PubMed

    García-Capdevila, Sílvia; Portell-Cortés, Isabel; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David

    2009-09-14

    The effect of long-term voluntary exercise (running wheel) on anxiety-like behaviour (plus maze and open field) and learning and memory processes (object recognition and two-way active avoidance) was examined on Wistar rats. Because major individual differences in running wheel behaviour were observed, the data were analysed considering the exercising animals both as a whole and grouped according to the time spent in the running wheel (low, high, and very-high running). Although some variables related to anxiety-like behaviour seem to reflect an anxiogenic compatible effect, the view of the complete set of variables could be interpreted as an enhancement of defensive and risk assessment behaviours in exercised animals, without major differences depending on the exercise level. Effects on learning and memory processes were dependent on task and level of exercise. Two-way avoidance was not affected either in the acquisition or in the retention session, while the retention of object recognition task was affected. In this latter task, an enhancement in low running subjects and impairment in high and very-high running animals were observed.

  12. Dehydration in soldiers during walking/running exercise in the heat and the effects of fluid ingestion during and after exercise.

    PubMed

    Mudambo, K S; Leese, G P; Rennie, M J

    1997-01-01

    The aim of this study was to examine whether ingesting water alone, or dextrose (7.5 g x 100 ml(-1)) with electrolytes, or fructose/corn solids (7.5 g x 100 ml(-1)) (400 ml every 20 min) would reduce the perceived exertion associated with 16 km (3 h) walking/running in the heat compared with that perceived during exercise with no fluid intake. Perceived exertion was assessed at 1-h intervals during exercise. Blood samples, required for analysis of blood glucose, plasma sodium, plasma osmolality and plasma volume, were obtained prior to exercise and at 1-h intervals during the exercise; further samples were obtained 1-h intervals for 3 h following the exercise. Drinking fluids at regular intervals reduced the level of perceived exertion. In the test during which no fluid was ingested, body mass decreased by 4.9 (0.4) kg [mean (SEM)], but decreased less with ingestion of either the dextrose/electrolytes or fructose/corn solids solutions, or water alone [1.3 (0.2) kg, 1.6 (0.3) kg and 2.0 (0.1) kg, respectively]. Plasma volume fell by 17% when taking no fluid, but fell less when ingesting fluids. Blood glucose fell significantly (P < 0.01) when taking no fluid and rose to 8.4 (1.3) mmol x l(-1) (P < 0.001) and 6.8 (1.1) mmol x l(-1) (P < 0.01) with ingestion of the dextrose/electrolytes or fructose/corn solids solutions, respectively. Urine output was greater with ingestion of water than with any of the other drinks. Six subjects experienced fatigue during exercise with no fluid and failed to complete the exercise. These results suggest that fatigue was caused by several interacting factors: a fall in blood glucose and plasma volume, dehydration, and neuroglycopenia. Taking fluids during exercise reduced the strain and the rating of perceived exertion; this was better achieved by ingesting a dextrose/electrolytes solution.

  13. The repeated bout effect of traditional resistance exercises on running performance across 3 bouts.

    PubMed

    Doma, Kenji; Schumann, Moritz; Leicht, Anthony Scott; Heilbronn, Brian Edward; Damas, Felipe; Burt, Dean

    2017-09-01

    This study investigated the repeated bout effect of 3 typical lower body resistance-training sessions on maximal and submaximal effort running performance. Twelve resistance-untrained men (age, 24 ± 4 years; height, 1.81 ± 0.10 m; body mass, 79.3 ± 10.9 kg; peak oxygen uptake, 48.2 ± 6.5 mL·kg(-1)·min(-1); 6-repetition maximum squat, 71.7 ± 12.2 kg) undertook 3 bouts of resistance-training sessions at 6-repetitions maximum. Countermovement jump (CMJ), lower-body range of motion (ROM), muscle soreness, and creatine kinase (CK) were examined prior to and immediately, 24 h (T24), and 48 h (T48) after each resistance-training bout. Submaximal (i.e., below anaerobic threshold (AT)) and maximal (i.e., above AT) running performances were also conducted at T24 and T48. Most indirect muscle damage markers (i.e., CMJ, ROM, and muscle soreness) and submaximal running performance were significantly improved (P < 0.05; 1.9%) following the third resistance-training bout compared with the second bout. Whilst maximal running performance was also improved following the third bout (P < 0.05; 9.8%) compared with other bouts, the measures were still reduced by 12%-20% versus baseline. However, the increase in CK was attenuated following the second bout (P < 0.05) with no further protection following the third bout (P > 0.05). In conclusion, the initial bout induced the greatest change in CK; however, at least 2 bouts were required to produce protective effects on other indirect muscle damage markers and submaximal running performance measures. This suggests that submaximal running sessions should be avoided for at least 48 h after resistance training until the third bout, although a greater recovery period may be required for maximal running sessions.

  14. Is there really an eccentric action of the hamstrings during the swing phase of high-speed running? Part II: Implications for exercise.

    PubMed

    Van Hooren, Bas; Bosch, Frans

    2017-12-01

    We have previously argued that there may actually be no significant eccentric, but rather predominantly an isometric action of the hamstring muscle fibres during the swing phase of high-speed running when the attachment points of the hamstrings are moving apart. Based on this we suggested that isometric rather than eccentric exercises are a more specific way of conditioning the hamstrings for high-speed running. In this review we argue that some of the presumed beneficial adaptations following eccentric training may actually not be related to the eccentric muscle fibre action, but to other factors such as exercise intensity. Furthermore, we discuss several disadvantages associated with commonly used eccentric hamstring exercises. Subsequently, we argue that high-intensity isometric exercises in which the series elastic element stretches and recoils may be equally or even more effective at conditioning the hamstrings for high-speed running, since they also avoid some of the negative side effects associated with eccentric training. We provide several criteria that exercises should fulfil to effectively condition the hamstrings for high-speed running. Adherence to these criteria will guarantee specificity with regards to hamstrings functioning during running. Practical examples of isometric exercises that likely meet several criteria are provided.

  15. The Interaction of Voluntary Running Exercise and Food Restriction Induces Low Bone Strength and Low Bone Mineral Density in Young Female Rats.

    PubMed

    Aikawa, Yuki; Agata, Umon; Kakutani, Yuya; Higano, Michito; Hattori, Satoshi; Ogata, Hitomi; Ezawa, Ikuko; Omi, Naomi

    2015-07-01

    There is a concern that the combination of exercise with food intake reduction has a risk of reducing bone strength and bone mass in young female athletes. We examined the influence of the interaction of voluntary running exercise and food restriction on bone in young female rats. Seven-week-old female Sprague-Dawley rats were divided into four groups: the sedentary and ad libitum feeding group (SED), voluntary running exercise and ad libitum feeding group (EX), sedentary and 30 % food restriction group (SED-FR), and voluntary running exercise and 30 % food restriction group (EX-FR). The experiment lasted 12 weeks. Statistical analysis was carried out by two-way analysis of variance with exercise and restriction as the between-subjects factors. As a result, there were significant interactions of running and restriction on energy availability, breaking force, breaking energy, and bone mineral density (BMD). Breaking force and energy in the EX group were significantly higher than in the SED group; breaking force and energy were significantly lower in the EX-FR group than in the EX group, and breaking force in the EX-FR group was significantly lower than that in the SED-FR group. BMD in the EX-FR group was significantly lower than in the EX and SED-FR groups. These results suggest that food restriction induced low bone strength in young female rats engaging in voluntary running exercise. Also, through the interaction of exercise and food restriction, voluntary running exercise combined food restriction, unlike ad libitum feeding conditions, induced low bone strength, and low BMD in young female rats.

  16. The effect of rear wheel camber in manual wheelchair propulsion.

    PubMed

    Veeger, D; van der Woude, L H; Rozendal, R H

    1989-01-01

    Eight nonimpaired subjects participated in a wheelchair exercise test using a motor-driven treadmill in order to study the effect of rear wheel camber on wheelchair ambulation. The test consisted of four runs with rear wheels in 0, 3, 6, and 9 degrees camber at four speed steps of 2, 3, 4, and 5 km/hr. There were no significant effects upon oxygen cost, heart rate, and mechanical efficiency. The kinematic parameters of push time, push angle, and abduction showed differences between 3 and 6 degrees camber. The relationship between the findings, using surface EMG results for six shoulder muscles, is discussed. For one subject, data were extended to study the angular velocities of shoulder and elbow.

  17. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice.

    PubMed

    Lin, Tzu-Wei; Shih, Yao-Hsiang; Chen, Shean-Jen; Lien, Chi-Hsiang; Chang, Chia-Yuan; Huang, Tung-Yi; Chen, Shun-Hua; Jen, Chauying J; Kuo, Yu-Min

    2015-02-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Post-mortem examination and brain imaging studies indicate that neurodegeneration is evident in the hippocampus and amygdala of very early stage AD patients. Exercise training is known to enhance hippocampus- and amygdala-associated neuronal function. Here, we investigated the effects of exercise (running) on the neuronal structure and function of the hippocampus and amygdala in APP/PS1 transgenic (Tg) mice. At 4-months-old, an age before amyloid deposition, the amygdala-associated, but not the hippocampus-associated, long-term memory was impaired in the Tg mice. The dendritic complexities of the amygdalar basolateral neurons, but not those in the hippocampal CA1 and CA3 neurons, were reduced. Furthermore, the levels of BDNF/TrkB signaling molecules (i.e. p-TrkB, p-Akt and p-PKC) were reduced in the amygdala, but not in the hippocampus of the 4-month-old Tg mice. The concentrations of Aβ40 and Aβ42 in the amygdala were higher than those in the hippocampus. Ten weeks of treadmill training (from 1.5- to 4-month-old) increased the hippocampus-associated memory and dendritic arbor of the CA1 and CA3 neurons, and also restored the amygdala-associated memory and the dendritic arbor of amygdalar basolateral neurons in the Tg mice. Similarly, exercise training also increased the levels of p-TrkB, p-AKT and p-PKC in the hippocampus and amygdala. Furthermore, exercise training reduced the levels of soluble Aβ in the amygdala and hippocampus. Exercise training did not change the levels of APP or RAGE, but significantly increased the levels of LRP-1 in both brain regions of the Tg mice. In conclusion, our results suggest that tests of amygdala function should be incorporated into subject selection for early prevention trials. Long-term exercise protects neurons in the amygdala and hippocampus against AD-related degeneration, probably via enhancements of BDNF signaling pathways and Aβ clearance. Physical

  18. Effect of the coefficient of friction of a running surface on sprint time in a sled-towing exercise.

    PubMed

    Linthorne, Nicholas P; Cooper, James E

    2013-06-01

    This study investigated the effect of the coefficient of friction of a running surface on an athlete's sprint time in a sled-towing exercise. The coefficients of friction of four common sports surfaces (a synthetic athletics track, a natural grass rugby pitch, a 3G football pitch, and an artificial grass hockey pitch) were determined from the force required to tow a weighted sled across the surface. Timing gates were then used to measure the 30-m sprint time for six rugby players when towing a sled of varied weight across the surfaces. There were substantial differences between the coefficients of friction for the four surfaces (micro = 0.21-0.58), and in the sled-towing exercise the athlete's 30-m sprint time increased linearly with increasing sled weight. The hockey pitch (which had the lowest coefficient of friction) produced a substantially lower rate of increase in 30-m sprint time, but there were no significant differences between the other surfaces. The results indicate that although an athlete's sprint time in a sled-towing exercise is affected by the coefficient offriction of the surface, the relationship relationship between the athlete's rate of increase in 30-m sprint time and the coefficient of friction is more complex than expected.

  19. Relationships between V̇O2 and blood lactate responses after all-out running exercise.

    PubMed

    de Aguiar, Rafael Alves; Cruz, Rogério Santos de Oliveira; Turnes, Tiago; Pereira, Kayo Leonardo; Caputo, Fabrizio

    2015-03-01

    To verify the effects of training status and blood lactate concentration (BLC) responses on the early excess postexercise oxygen consumption (EPOC), 8 sprinters, 7 endurance runners, and 7 untrained subjects performed an incremental test to determine maximal oxygen uptake and a 1-min all-out test to determine BLC and oxygen uptake recovery curves. BLC kinetics was evaluated to assess the quantity of lactate accumulated during exercise (QlaA), lactate removal ability (k2), and quantity of lactate removed from 0 to 10 min postexercise (QlaR). Oxygen uptake off-kinetics was evaluated to assess the decay time constants (τ1 and τ2); moreover, EPOC was measured during the first 10 min after exercise. While sprinters had 98%-100% and 94%-100% likelihood of having the highest EPOC and decay time constants, endurance runners had 98%-100% and 95%-100% likelihood of having the lowest EPOC and decay time constants. EPOC was correlated with QlaA (r = 0.74) and QlaR (r = 0.61). τ1 and τ2 were correlated with maximal oxygen uptake (r > -0.57), k2 (r > -0.48), and QlaR relative to QlaA (r > -0.60). Our findings indicate that oxygen uptake recovery is associated with fast lactate removal and aerobic training. Furthermore, the metabolites derived from anaerobic energy production seem to induce a greater EPOC after all-out exercise.

  20. A Reduction in Maximal Incremental Exercise Test Duration 48 h Post Downhill Run Is Associated with Muscle Damage Derived Exercise Induced Pain

    PubMed Central

    Chrismas, Bryna C. R.; Taylor, Lee; Siegler, Jason C.; Midgley, Adrian W.

    2017-01-01

    Purpose: To examine whether exercise induced muscle damage (EIMD) and muscle soreness reduce treadmill maximal incremental exercise (MIE) test duration, and true maximal physiological performance as a consequence of exercise induced pain (EIP) and perceived effort. Methods: Fifty (14 female), apparently healthy participants randomly allocated into a control group (CON, n = 10), or experimental group (EXP, n = 40) visited the laboratory a total of six times: visit 1 (familiarization), visit 2 (pre 1), visit 3 (pre 2), visit 4 (intervention), visit 5 (24 h post) and visit 6 (48 h post). Both groups performed identical testing during all visits, except during visit 4, where only EXP performed a 30 min downhill run and CON performed no exercise. During visits 2, 3, and 6 all participants performed MIE, and the following measurements were obtained: time to exhaustion (TTE), EIP, maximal oxygen consumption (V·O2max), rate of perceived exertion (RPE), maximum heart rate (HRmax), maximum blood lactate (BLamax), and the contribution of pain to terminating the MIE (assessed using a questionnaire). Additionally during visits 1, 2, 3, 5, and 6 the following markers of EIMD were obtained: muscle soreness, maximum voluntary contraction (MVC), voluntary activation (VA), creatine kinase (CK). Results: There were no significant differences (p ≥ 0.32) between any trials for any of the measures obtained during MIE for CON. In EXP, TTE decreased by 34 s (3%), from pre 2 to 48 h post (p < 0.001). There was a significant association between group (EXP, CON) and termination of the MIE due to “pain” during 48 h post (χ2 = 14.7, p = 0.002). Conclusion: EIMD resulted in premature termination of a MIE test (decreased TTE), which was associated with EIP, MVC, and VA. The exact mechanisms responsible for this require further investigation. PMID:28337151

  1. Voluntary and involuntary running in the rat show different patterns of theta rhythm, physical activity, and heart rate.

    PubMed

    Li, Jia-Yi; Kuo, Terry B J; Yen, Jiin-Cherng; Tsai, Shih-Chih; Yang, Cheryl C H

    2014-05-01

    Involuntarily exercising rats undergo more physical and mental stress than voluntarily exercising rats; however, these findings still lack electrophysiological evidence. Many studies have reported that theta rhythm appears when there is mental stress and that it is affected by emotional status. Thus we hypothesized that the differences between voluntary and involuntary movement should also exist in the hippocampal theta rhythm. Using the wheel and treadmill exercise models as voluntary and involuntary exercise models, respectively, this study wirelessly recorded the hippocampal electroencephalogram, electrocardiogram, and three-dimensional accelerations of young male rats. Treadmill and wheel exercise produced different theta patterns in the rats before and during running. Even though the waking baselines for the two exercise types were recorded in different environments, there did not exist any significant difference after distinguishing the rats' sleep/wake status. When the same movement-related parameters are considered, the treadmill running group showed more changes in their theta frequency (4-12 Hz), in their theta power between 9.5-12 Hz, and in their heart rate than the wheel running group. A positive correlation between the changes in high-frequency (9.5-12 Hz) theta power and heart rate was identified. Our results reveal various voluntary and involuntary changes in hippocampal theta rhythm as well as divergences in heart rate and high-frequency theta activity that may represent the effects of an additional emotional state or the sensory interaction during involuntary running by rats.

  2. Effects of strengthening and stretching exercise programmes on kinematics and kinetics of running in older adults: a randomised controlled trial.

    PubMed

    Fukuchi, Reginaldo K; Stefanyshyn, Darren J; Stirling, Lisa; Ferber, Reed

    2016-09-01

    The aim of this study was to investigate the effects of strengthening and stretching exercises on running kinematics and kinetics in older runners. One hundred and five runners (55-75 years) were randomly assigned to either a strengthening (n = 36), flexibility (n = 34) or control (n = 35) group. Running kinematics and kinetics were obtained using an eight-camera system and an instrumented treadmill before and after the eight-week exercise protocol. Measures of strength and flexibility were also obtained using a dynamometer and inclinometer/goniometer. A time effect was observed for the excursion angles of the ankle sagittal (P = 0.004, d = 0.17) and thorax/pelvis transverse (P < 0.001, d = 0.20) plane. Similarly, a time effect was observed for knee transverse plane impulse (P = 0.013, d = 0.26) and ground reaction force propulsion (P = 0.042, d = -0.15). A time effect for hip adduction (P = 0.006, d = 0.69), ankle dorsiflexion (P = 0.002, d = 0.47) and hip internal rotation (P = 0.048, d = 0.30) flexibility, and hip extensor (P = 0.001, d = -0.48) and ankle plantar flexor (P = 0.01, d = 0.39) strength were also observed. However, these changes were irrespective of exercise group. The results of the present study indicate that an eight-week stretching or strengthening protocol, compared to controls, was not effective in altering age-related running biomechanics despite changes in ankle and trunk kinematics, knee kinetics and ground reaction forces along with alterations in muscle strength and flexibility were observed over time.

  3. Gastric Emptying during Walking and Running: Effects of Varied Exercise Intensity.

    DTIC Science & Technology

    1988-03-01

    PERSONAL AUTHOR(S) P. Darrell Neufer , Andrew J. Young, and Michael N. Sawka 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day...INDIVIDUAL 22b. TELEPHONE (ftitde Area Code) 22c. .g0.FEtEMI P. Darrell Neufer 1617-651-483~ SUUk g1k DO Form 1473, JUN 86 Previous edtions are obsolete...effects of varied exercise intensityb P. Darrell Neufer , Andrew J. Young, and Michael N. Sawka U.S. Army Research Institute of Einvironmental Medicine

  4. Lipid Emulsion Added to a Liquid High-Carbohydrate Diet and Voluntary Running Exercise Reduce Lipogenesis and Ameliorate Early-Stage Hepatic Steatosis in Mice.

    PubMed

    Huang, Kuan-Hsun; Hao, Lei; Smith, Philip B; Rogers, Connie J; Patterson, Andrew D; Ross, A Catharine

    2017-05-01

    Background: The use of parenteral nutrition formulas is often associated with the development of hepatic steatosis. We have shown previously that the addition of a lipid emulsion (LE) rich in n-6 (ω-6) fatty acids (FAs) ameliorated triglyceride (TG) accumulation in the livers of nonobese mice fed a high-carbohydrate diet (HCD) for 5 wk. However, it remains unclear how rapidly this condition develops and whether it can be prevented by LE with or without a running wheel for voluntary exercise (Exe).Objective: We investigated in an 8-d study whether mice develop steatosis and whether the administration of LE with or without Exe reduces the concentration of total FAs and prevents an increase in the expression of genes in the liver associated with lipogenesis.Methods: Male C57BL/6 mice aged 5 wk were randomized into 5 groups: standard feed pellet (SFP); a liquid HCD (77% of total energy from carbohydrates and 0.5% from fat); HCD + Exe; HCD + 13.5% LE (67% carbohydrates and 13.5% fat); or HCD + 13.5% LE + Exe. Hepatic TG concentration, lipogenic genes, and total FAs were measured on day 8.Results: Oil Red O staining and TG quantification showed hepatic TG accumulation on day 8; the addition of 13.5% LE either with or without Exe suppressed the TG accumulation compared with HCD (P < 0.005). With the use of quantitative reverse transcriptase-polymerase chain reaction analysis, the expression concentrations of lipogenic genes [ATP-citrate lyase, acetyl coenzyme A carboxylase 1, FA synthase (Fasn), and stearoyl coenzyme A desaturase 1 (Scd1)] in the HCD + 13.5% LE group were 26-60% of HCD (P < 0.01) and 11-38% of HCD in the HCD + 13.5% LE + Exe group (P < 0.001), with interactions for Fasn and Scd1 (P < 0.05). With the use of gas chromatography-mass spectrometry analysis, the HCD + 13.5% LE group had lower monounsaturated fatty acids (38.7% of HCD) but higher polyunsaturated fatty acids (164% of HCD) (P < 0.001).Conclusions: In short-term studies designed to resemble the

  5. [Attenuation of chronic stress-induced hippocampal damages following physical exercise].

    PubMed

    Ma, Qiang; Wang, Jing; Liu, Hong-Tao; Chao, Fu-Huan

    2002-10-25

    The long-term potentiation (LTP) in the hippocampal dentate gyrus and the plasma glucocorticoids level were observed in rats to study the effects of physical exercise on chronic stress-induced hippocampal damages. Eight-week spontaneous wheel running exercise could attenuate the suppression of LTP induced by 21-day restraint stress, and maintain the normal plasma glucocorticoids levels. It is suggested that long-term physical exercise may protect the hippocampus from stress-induced damages.

  6. Running Exercise and Angiotensin II Type I Receptor Blocker Telmisartan Are Equally Effective in Preventing Angiotensin II-Mediated Vulnerable Atherosclerotic Lesions.

    PubMed

    Pellegrin, Maxime; Szostak, Justyna; Bouzourène, Karima; Aubert, Jean-François; Berthelot, Alain; Nussberger, Jürg; Laurant, Pascal; Mazzolai, Lucia

    2016-05-30

    The present study was conducted to directly compare the efficacy of running exercise and telmisartan treatment on angiotensin (Ang) II-mediated atherosclerosis and plaque vulnerability. Apolipoprotein E-deficient (ApoE(-/-)) mice with Ang II-mediated atherosclerosis (2-kidney, 1-clip [2K1C] renovascular hypertension model) were randomized into 3 groups: treadmill running exercise (RUN), telmisartan treatment (TEL), and sedentary untreated controls (SED) for 5 weeks. Atherosclerosis was assessed using histological and immunohistochemical analyses. Gene expression was determined by real-time reverse transcription polymerase chain reaction. TEL but not RUN mice significantly decreased (50%) atherosclerotic lesion size compared to SED. RUN and TEL promoted plaque stabilization to a similar degree in ApoE(-/-) 2K1C mice. However, plaque composition and vascular inflammatory markers were differently affected: RUN decreased plaque macrophage infiltration (35%), whereas TEL reduced lipid core size (88%); RUN significantly increased aortic peroxisome proliferator-activated receptor (PPAR)-α, -δ, and -γ expression, whereas TEL significantly modulated T-helper 1/T-helper 2 (Th1/Th2) aortic response toward an anti-inflammatory state (decreased aortic interleukin [IL] 2 to IL-10 and IL-2 to IL-13 expression ratios). Plaque smooth muscle cell content was similarly increased (128% and 141%, respectively). Aortic AT1 and AT2 receptor expression as well as aortic CD11c/CD206 and IL-1β/IL-1ra expression ratios were not significantly modulated by either RUN or TEL. Running exercise and telmisartan treatment are equally effective in preventing Ang II-mediated plaque vulnerability but through distinct cellular and molecular mechanisms. Our findings further support the use of exercise training and selective AT1 receptor blocker therapies for atherosclerotic cardiovascular disease prevention. © The Author(s) 2016.

  7. Slight Movement by Spirit Right-Front Wheel, Sol 2113

    NASA Image and Video Library

    2009-12-15

    Diagnostic tests were run on the right-rear wheel and right-front wheel on NASA Spirit. The right-rear wheel continued to show no motion in the latest tests and exhibited very high resistance in the motor winding.

  8. Nox4 Is Dispensable for Exercise Induced Muscle Fibre Switch

    PubMed Central

    Vogel, Juri; Figueiredo de Rezende, Flávia; Rohrbach, Susanne; Zhang, Min; Schröder, Katrin

    2015-01-01

    Introduction By producing H2O2, the NADPH oxidase Nox4 is involved in differentiation of mesenchymal cells. Exercise alters the composition of slow and fast twitch fibres in skeletal. Here we hypothesized that Nox4 contributes to exercise-induced adaptation such as changes in muscle metabolism or muscle fibre specification and studied this in wildtype and Nox4-/- mice. Results Exercise, as induced by voluntary running in a running wheel or forced running on a treadmill induced a switch from fast twitch to intermediate fibres. However the induced muscle fibre switch was similar between Nox4-/- and wildtype mice. The same held true for exercise-induced expression of PGC1α or AMPK activation. Both are increased in response to exercise, but with no difference was observed between wildtype and Nox4-/- mice. Conclusion Thus, exercise-induced muscle fibre switch is Nox4-independent. PMID:26083642

  9. Physical exercises on a bicycle-ergometer and running track to prevent hypodynamia in workers of intellectual labor

    NASA Technical Reports Server (NTRS)

    Vasilyeva, V. V.; Korableva, Y. N.; Trunin, V. V.

    1980-01-01

    A program of exercises was developed and tested, consisting of a 12 minute session on a variable load bicycle ergometer and a 10-11 min. run with brief stretching and resting sessions between. Physical performance capacity was measured before, during, and after the period of the experiment and physical exams conducted. After a 4 month test period involving 30 men, aged 25-35, the program was found to be successful in increasing physical performance capacity. The PWC170 increased an average of 22 percent and maximum oxygen consumption 14 percent. Arterial pressure dropped (120/75 to 114/68), vital capacity of lungs increased by 6 percent, strength of respiratory muscles by 8.8 percent, duration of respiratory delay by 18 percent. Duration of cardiac cycles increased, stress index decreased. Cardiac contraction rate 2 minutes after work on the ergometer decreased from 118 to 102 bt/min.

  10. Downhill running and exercise in hot environments increase leukocyte Hsp72 (HSPA1A) and Hsp90α (HSPC1) gene transcripts.

    PubMed

    Tuttle, James A; Castle, Paul C; Metcalfe, Alan J; Midgley, Adrian W; Taylor, Lee; Lewis, Mark P

    2015-04-15

    Stressors within humans and other species activate Hsp72 and Hsp90α mRNA transcription, although it is unclear which environmental temperature or treadmill gradient induces the largest increase. To determine the optimal stressor for priming the Hsp system, physically active but not heat-acclimated participants (19.8 ± 1.9 and 20.9 ± 3.6 yr) exercised at lactate threshold in either temperate (20°C, 50% relative humidity; RH) or hot (30°C, 50% RH) environmental conditions. Within each condition, participants completed a flat running (temperate flat or hot flat) and a downhill running (temperate downhill or hot downhill) experimental trial in a randomized counterbalanced order separated by at least 7 days. Venous blood samples were taken immediately before (basal), immediately after exercise, and 3 and 24 h postexercise. RNA was extracted from leukocytes and RT-quantitative PCR conducted to determine Hsp72 and Hsp90α mRNA relative expression. Leukocyte Hsp72 mRNA was increased immediately after exercise following downhill running (1.9 ± 0.9-fold) compared with flat running (1.3 ± 0.4-fold; P = 0.001) and in hot (1.9 ± 0.6-fold) compared with temperate conditions (1.1 ± 0.5-fold; P = 0.003). Leukocyte Hsp90α mRNA increased immediately after exercise following downhill running (1.4 ± 0.8-fold) compared with flat running (0.9 ± 0.6-fold; P = 0.002) and in hot (1.6 ± 1.0-fold) compared with temperate conditions (0.9 ± 0.6-fold; P = 0.003). Downhill running and exercise in hot conditions induced the largest stimuli for leukocyte Hsp72 and Hsp90α mRNA increases.

  11. Core temperature responses and match running performance during intermittent-sprint exercise competition in warm conditions.

    PubMed

    Duffield, Rob; Coutts, Aaron J; Quinn, John

    2009-07-01

    This study investigated the thermoregulatory responses and match running performance of elite team sport competitors (Australian Rules football) during preseason games in a warm environment. During 2 games in dry bulb temperatures above 29 degrees C (>27 degrees C wet bulb globe temperature), 10 players were monitored for core temperature (Tcore) via a telemetric capsule, in-game motion patterns, blood lactate ([La]), body mass changes, urine specific gravity, and pre- and postgame vertical jump performance. The results showed that peak Tcore was achieved during the final quarter at 39.3 +/- 0.7 degrees C and that several players reached values near 40.0 degrees C. Further, the largest proportion of the total rise in Tcore (2.1 +/- 0.7 degrees C) occurred during the first quarter of the match, with only small increases during the remainder of the game. The game distance covered was 9.4 +/- 1.5 km, of which 2.7 +/- 0.9 km was at high-intensity speeds (>14.4 km x h(-1)). The rise in Tcore was correlated with first-quarter high-intensity running velocity (r = 0.72) and moderate-intensity velocity (r = 0.68), second-quarter Tcore and low-intensity activity velocity (r = -0.90), second-quarter Tcore and moderate-intensity velocity (r = 0.88), fourth-quarter rise in Tcore and very-high-intensity running distance (r = 0.70), and fourth-quarter Tcore and moderate-intensity velocity (r = 0.73). Additional results included mean game [La-] values of 8.7 +/- 0.1 mmol x L(-1), change in body mass of 2.1 +/- 0.8 kg, and no change (p > 0.05) in pre- to postgame vertical jump. These findings indicate that the plateau in Tcore may be regulated by the reduction in low-intensity activity and that pacing strategies may be employed during competitive team sports in the heat to ensure control of the internal heat load.

  12. Effects of prolonged head-down bed rest with and without fly-wheel exercise on heart rate variability

    NASA Astrophysics Data System (ADS)

    Pavy-Le Traon, Anne; Curnier, Daniel; Bernard, Jacques; Beroud, Stephane; Costes-Salon, Marie-Claude; Bareille, Marie-Pierre; Pathak, Atul; Galinier, Michel

    2005-08-01

    The aim of this study was to investigate the effects of prolonged Head down bed rest (HDBR) (90 days) on heart rate variability (HRV) in 25 healthy male volunteers (mean age: 33 y). Nine subjects performed flywheel resistance muscular training. 24h-ECG recordings were performed in pre- HDBR (D-12, D-3), HDBR (D 15, D 32, D 62, D 85) and recovery (D+4). The mean HR, SDNN and coefficient of variation (SDNN normalized by HR) reflecting overall HRV were calculated as well as the power in Low (LF) and High (HF) frequencies (24h- period). HDBR induced a significant decrease in HRV favoured by inactivity. LF and LF/HF mainly under sympathetic influence decreased significantly on D15 and then tended to stabilise around baseline values. HF reflecting parasympathetic modulation decreased with HDBR but some changes occurred in pre-HDBR, in relation with the experiment conditions, and raised the issue of reference values. No exercise effect was observed.

  13. Voluntary exercise and tail shock have differential effects on amphetamine-induced dopaminergic toxicity in adult BALB/c mice.

    PubMed

    Carlson, Kirsten M; Wagner, George C

    2006-09-01

    Exercise exerts neuroprotective effects and facilitates neural recovery in animal models of Parkinson's disease. In the present studies, effects of exercise on amphetamine-induced dopaminergic toxicity were assessed in mice housed individually either with or without access to run wheels. Mice in run wheel cages ran approximately 20 000 revolutions/day (over 10 km/day). Some mice received amphetamine (18.5 mg/kg x 4 injections) whereas controls received saline. Amphetamine caused a 90% dopamine depletion in mice housed either with or without run wheels. A precipitous drop was seen in run wheel activity following amphetamine, lasting at least 7 days. A significant decrease in food intake, water intake and body weight also occurred. The opportunity to exercise did not facilitate behavioral or neurochemical recovery at 1, 2 or 3 days, or 2 weeks after injections. Therefore, shock stress, a component of some forced exercise studies, was evaluated to determine whether stress without exercise provided neuroprotection against amphetamine. Results indicate that shock stress exerted neuroprotective effects, reducing the amphetamine-induced dopamine depletion. It is concluded that voluntary running does not afford either behavioral or neuroprotection nor facilitate recovery from amphetamine-induced dopaminergic toxicity; rather, elevated glucocorticoid levels following shock stress were associated with a reduction in the dopamine depletion.

  14. Dietary nitrate markedly improves voluntary running in mice.

    PubMed

    Ivarsson, Niklas; Schiffer, Tomas A; Hernández, Andrés; Lanner, Johanna T; Weitzberg, Eddie; Lundberg, Jon O; Westerblad, Håkan

    2017-01-01

    Nitrate supplementation is shown to increase submaximal force in human and mouse skeletal muscles. In this study, we test the hypothesis that the increased submaximal force induced by nitrate supplementation reduces the effort of submaximal voluntary running, resulting in increased running speed and distance. C57Bl/6N male mice were fed nitrate in the drinking water and housed with or without access to an in-cage running wheel. Nitrate supplementation in sedentary mice had no effect on endurance in a treadmill test, nor did it enhance mitochondrial function. However, after three weeks with in-cage running wheel, mice fed nitrate ran on average 20% faster and 30% further than controls (p<0.01). Compared to running controls, this resulted in ~13% improved endurance on a subsequent treadmill test (p<0.05) and increased mitochondrial oxidative capacity, as judged from a mean increase in citrate synthase activity of 14% (p<0.05). After six weeks with nitrate, the mice were running 58% longer distances per night. When nitrate supplementation was removed from the diet, the running distance and speed decreased to the control level, despite the improved endurance achieved during nitrate supplementation. In conclusion, low-frequency force improvement due to nitrate supplementation facilitates submaximal exercise such as voluntary running. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Perinatal exercise improves glucose homeostasis in adult offspring

    PubMed Central

    Carter, Lindsay G.; Lewis, Kaitlyn N.; Wilkerson, Donald C.; Tobia, Christine M.; Ngo Tenlep, Sara Y.; Shridas, Preetha; Garcia-Cazarin, Mary L.; Wolff, Gretchen; Andrade, Francisco H.; Charnigo, Richard J.; Esser, Karyn A.; Egan, Josephine M.; de Cabo, Rafael

    2012-01-01

    Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring. PMID:22932781

  16. Perinatal exercise improves glucose homeostasis in adult offspring.

    PubMed

    Carter, Lindsay G; Lewis, Kaitlyn N; Wilkerson, Donald C; Tobia, Christine M; Ngo Tenlep, Sara Y; Shridas, Preetha; Garcia-Cazarin, Mary L; Wolff, Gretchen; Andrade, Francisco H; Charnigo, Richard J; Esser, Karyn A; Egan, Josephine M; de Cabo, Rafael; Pearson, Kevin J

    2012-10-15

    Emerging research has shown that subtle factors during pregnancy and gestation can influence long-term health in offspring. In an attempt to be proactive, we set out to explore whether a nonpharmacological intervention, perinatal exercise, might improve offspring health. Female mice were separated into sedentary or exercise cohorts, with the exercise cohort having voluntary access to a running wheel prior to mating and during pregnancy and nursing. Offspring were weaned, and analyses were performed on the mature offspring that did not have access to running wheels during any portion of their lives. Perinatal exercise caused improved glucose disposal following an oral glucose challenge in both female and male adult offspring (P < 0.05 for both). Blood glucose concentrations were reduced to lower values in response to an intraperitoneal insulin tolerance test for both female and male adult offspring of parents with access to running wheels (P < 0.05 and P < 0.01, respectively). Male offspring from exercised dams showed increased percent lean mass and decreased fat mass percent compared with male offspring from sedentary dams (P < 0.01 for both), but these parameters were unchanged in female offspring. These data suggest that short-term maternal voluntary exercise prior to and during healthy pregnancy and nursing can enhance long-term glucose homeostasis in offspring.

  17. Physical exercise leads to rapid adaptations in hippocampal vasculature: temporal dynamics and relationship to cell proliferation and neurogenesis.

    PubMed

    Van der Borght, Karin; Kóbor-Nyakas, Dóra E; Klauke, Karin; Eggen, Bart J L; Nyakas, Csaba; Van der Zee, Eddy A; Meerlo, Peter

    2009-10-01

    Increased levels of angiogenesis and neurogenesis possibly mediate the beneficial effects of physical activity on hippocampal plasticity. This study was designed to investigate the temporal dynamics of exercise-induced changes in hippocampal angiogenesis and cell proliferation. Mice were housed with a running wheel for 1, 3, or 10 days. Analysis of glucose transporter Glut1-positive vessel density showed a significant increase after 3 days of wheel running. Cell proliferation in the dentate gyrus showed a trend towards an increase after 3 days of running and was significantly elevated after 10 days of physical exercise. Ten days of wheel running resulted in a near-significant increase in the number of immature neurons, as determined by a doublecortin (DCX) staining. In the second part of the study, the persistence of the exercise-induced changes in angiogenesis and cell proliferation was determined. The running wheel was removed from the cage after 10 days of physical activity. Glut-1 positive vessel density and hippocampal cell proliferation were determined 1 and 6 days after removal of the wheel. Both parameters had returned to baseline 24 h after cessation of physical activity. The near-significant increase in the number of DCX-positive immature neurons persisted for at least 6 days, indicating that new neurons formed during the period of increased physical activity had survived. Together these experiments show that the hippocampus displays a remarkable angiogenic and neurogenic plasticity and rapidly responds to changes in physical activity.

  18. Match running performance and exercise intensity in elite female Rugby Sevens.

    PubMed

    Suarez-Arrones, Luis; Nuñez, Francisco J; Portillo, Javier; Mendez-Villanueva, Alberto

    2012-07-01

    The purpose of this study was to describe the match-play demands of professional female rugby players competing in Rugby Sevens (Rugby 7's) matches. Time-motion analyses (global position system) were performed on 12 elite female rugby players during 5 competitive matches in a 2-day international tournament. Data revealed that players covered an average distance of 1,556.2 ± 189.3 m per game (14 minutes). Over this distance, 29.7% (462.6 ± 94.6 m) was spent standing and walking, 33.2% (515.9 ± 88.6 m) jogging, 11.6% (181.0 ± 61.4 m) cruising, 16.4% (255.7 ± 88.3 m) striding, 3.7% (57.1 ± 40.8 m) high-intensity running, and 5.4% (84.0 ± 64.8 m) sprinting. The average maximal distance of sprints, number of sprints, minimum distance of sprint, and mean sprint distance over the game were as follows: 25.8 ± 16.1 m, 5.3 ± 3.2 sprints, 6.5 ± 2.0 m, and 17.2 ± 8.8 m, respectively. The players' work-to-rest ratio was 1:0.4. For over 75% of the game, the players were exposed to heart rates (HRs) >80% of their maximal HR. There were no statistical differences between the first and second halves in any of the variables analyzed. This study suggests that the physical demands of Rugby 7's are quite different from those reported in other rugby codes. For players and teams to remain competitive in female Rugby Sevens, coaching, conditioning, and physical fitness testing should reflect these current demands.

  19. Distinct stages of adult hippocampal neurogenesis are regulated by running and the running environment.

    PubMed

    Bednarczyk, Matthew R; Hacker, Lindsay C; Fortin-Nunez, Stéphanie; Aumont, Anne; Bergeron, Raynald; Fernandes, Karl J L

    2011-12-01

    Hippocampal neurogenesis continues into adulthood in mammalian vertebrates, and in experimental rodent models it is powerfully stimulated by exposure to a voluntary running wheel. In this study, we demonstrate that exposure to a running wheel environment, in the absence of running, is sufficient to regulate specific aspects of hippocampal neurogenesis. Adult mice were provided with standard housing, housing enriched with a running wheel or housing enriched with a locked wheel (i.e., an environment comparable to that of running animals, without the possibility of engaging in running). We found that mice in the running wheel and locked wheel groups exhibited equivalent increases in proliferation within the neurogenic niche of the dentate gyrus; this included comparable increases in the proliferation of radial glia-like stem cells and the number of proliferating neuroblasts. However, only running animals displayed increased numbers of postmitotic neuroblasts and mature neurons. These results demonstrate that the running wheel environment itself is sufficient for promoting proliferation of early lineage hippocampal precursors, while running per se enables newly generated neuroblasts to survive and mature into functional hippocampal neurons. Thus, both running-independent and running-dependent stimuli are integral to running wheel-induced hippocampal neurogenesis.

  20. Fifth wheel

    NASA Technical Reports Server (NTRS)

    Albrecht, W. P.; Sparks, R. H. (Inventor)

    1976-01-01

    An improved fifth wheel for a tractor trailer rig, characterized by a first subassembly including a wear plate was developed and modified to be mounted on a downwardly facing surface of a trailer. A king pin projected normally therefrom, and a second subassembly is adapted to be pivotally mounted on an upwardly facing surface of a tractor. The king pin is brought into contiguous relation with the first sub assembly. A receiver for capturing the king pin is included along with a safety means responsive to a failure of the king pin or its latching mechanism for joining the first subassembly with the second subassembly.

  1. Autonomic Responses to an Acute Bout of High-Intensity Body Weight Resistance Exercise vs. Treadmill Running.

    PubMed

    Kliszczewicz, Brian M; Esco, Michael R; Quindry, John C; Blessing, Daniel L; Oliver, Gretchen D; Taylor, Kyle J; Price, Brandi M

    2016-04-01

    The aim of this study was to compare postexercise autonomic nervous system (ANS) recovery between a high-intensity training protocol (HITP) and high-intensity treadmill running (TM) in 10 physically fit males. For each trial, ANS activity was measured through the heart rate variability markers of log-transformed square root of the successive R-R differences (lnRMSSD) and high frequency power (lnHF). These markers were analyzed in 5-minute segments at 5-10 minutes of the pre-exercise period (PRE) and during the postexercise period at 15-20 minutes (POST15-20min), 20-25 minutes (POST20-25min), 25-30 minutes (POST25-30min), and 1 hour (POST60min). Plasma epinephrine (E) and norepinephrine (NE) were also examined at PRE, immediately post exercise (IPE), 1-hour post (1HP), and 2-hour post (2HP). The results of this study demonstrate a significant overall time-dependent decreases in lnRMSSD and lnHF (p = 0.003 and 0.001, respectively) in both trials. Trial-dependent differences were also observed in postexercise lnRMSSD and lnHF measures, HITP being significantly lower than TM (p = 0.002 and 0.000, respectively). lnRMSSD at POST60min-HITP remained significantly lower compared to PRE (p ≤ 0.05). lnHF returned to baseline in HIPT and TM (p = 0.081 and 0.065, respectively). A time-dependent increase in E and NE was observed in both trials at time point IPE when compared to PRE (p ≤ 0.05). E at 1HP and 2HP returned to near resting levels (p = 0.62, p = 0.26), whereas NE remained slightly elevated in both groups (p = 0.003, p = 0.021). A trial-dependent increase was observed with the HITP eliciting a greater E response (p = 0.025) and NE response (p = 0.03). The HITP causes a greater disruption of the ANS than intensity-matched TM exercise.

  2. Circadian Periods of Sensitivity for Ramelteon on the onset of Running-wheel Activity and the Peak of Suprachiasmatic Nucleus Neuronal Firing Rhythms in C3H/HeN Mice

    PubMed Central

    Rawashdeh, Oliver; Hudson, Randall L.; Stepien, Iwona; Dubocovich, Margarita L.

    2016-01-01

    Ramelteon, an MT1/MT2 melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/ HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90 μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/ HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8–CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6 ± 0.29 h, n = 3) and at CT2 phase delays (−3.2 ± 0.12 h, n = 6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7 ± 0.15 h, n = 4, p < .05; CT2: −1.13 ± 0.08 h, n = 6, p < .001, respectively). The phase shifts induced by both melatonin and ramelteon in the SCN brain slice at either CT10 or CT2 corresponded with the period of sensitivity observed in vivo. In conclusion, melatonin and ramelteon showed identical periods of circadian sensitivity at CT10 (advance) and CT2 (delay) to shift the onset of circadian activity rhythms in vivo and the peak of SCN neuronal firing rhythms in vitro

  3. A combined insulin reduction and carbohydrate feeding strategy 30 min before running best preserves blood glucose concentration after exercise through improved fuel oxidation in type 1 diabetes mellitus.

    PubMed

    West, Daniel J; Stephens, Jeffrey W; Bain, Stephen C; Kilduff, Liam P; Luzio, Stephen; Still, Rachel; Bracken, Richard M

    2011-02-01

    In this study, we examined the glycaemic and fuel oxidation responses to alterations in the timing of a low glycaemic index carbohydrate and 75% reduced insulin dose, prior to running, in type 1 diabetes individuals. After carbohydrate (75 g isomaltulose) and insulin administration, the seven participants rested for 30 min, 60 min, 90 min or 120 min (conditions 30MIN, 60MIN, 90MIN, and 120MIN, respectively) before completing 45 min of running at 70% peak oxygen uptake. Carbohydrate and lipid oxidation rates were monitored during exercise and blood glucose and insulin were measured before and for 3 h after exercise. Data were analysed using repeated-measures analysis of variance. Pre-exercise blood glucose concentrations were lower for 30MIN compared with 120MIN (P < 0.05), but insulin concentrations were similar. Exercising carbohydrate and lipid oxidation rates were lower and greater, respectively, for 30MIN compared with 120MIN (P < 0.05). The drop in blood glucose during exercise was less for 30MIN (3.7 mmol · l(-1), s(x) = 0.4) compared with 120MIN (6.4 mmol · l(-1), s(x) = 0.3) (P = 0.02). For 60 min post-exercise, blood glucose concentrations were higher for 30MIN compared with 120MIN (P < 0.05). There were no cases of hypoglycaemia in the 30MIN condition, one case in the 60MIN condition, two in the 90MIN condition, and five in the 120MIN condition. In conclusion, a low glycaemic index carbohydrate and reduced insulin dose administered 30 min before running improves pre- and post-exercise blood glucose responses in type 1 diabetes.

  4. Duration- and environment-dependent effects of repeated voluntary exercise on anxiety and cued fear in mice.

    PubMed

    Dubreucq, Sarah; Marsicano, Giovanni; Chaouloff, Francis

    2015-04-01

    Several studies have indicated that animal models of exercise, such as voluntary wheel running, might be endowed with anxiolytic properties. Using the light/dark test of unconditioned anxiety, we have reported that one confounding factor in the estimation of wheel running impacts on anxiety might be the housing condition of the sedentary controls. The present mouse study analyzed whether the aforementioned observation in the light/dark test (i) could be repeated in the elevated plus-maze and social interaction tests of unconditioned anxiety, (ii) extended to conditioned anxiety, as assessed during cued fear recall tests, and (iii) required unlimited daily access to the running wheel. Housing with a locked wheel or with a free wheel that allowed limited or unlimited running activity triggered anxiolysis in the light/dark test, but not in the elevated plus-maze test, compared to standard housing. In the social interaction test, the duration, but not the number, of social contacts was increased in mice provided unlimited (but not limited) access to a wheel, compared to standard housing or housing with a locked wheel. Lastly, freezing responses to a cue during fear recall tests indicated that the reduction in freezing observed in mice provided limited or unlimited access to the wheels was fully accounted for by housing with a wheel. Besides confirming that the housing condition of the sedentary controls might bias the estimation of the effects of wheel running on anxiety, this study further shows that this estimation is dependent on the test used to assess anxiety.

  5. Maternal exercise during pregnancy promotes physical activity in adult offspring.

    PubMed

    Eclarinal, Jesse D; Zhu, Shaoyu; Baker, Maria S; Piyarathna, Danthasinghe B; Coarfa, Cristian; Fiorotto, Marta L; Waterland, Robert A

    2016-07-01

    Previous rodent studies have shown that maternal voluntary exercise during pregnancy leads to metabolic changes in adult offspring. We set out to test whether maternal voluntary exercise during pregnancy also induces persistent changes in voluntary physical activity in the offspring. Adult C57BL/6J female mice were randomly assigned to be caged with an unlocked (U) or locked (L) running wheel before and during pregnancy. Maternal running behavior was monitored during pregnancy, and body weight, body composition, food intake, energy expenditure, total cage activity, and running wheel activity were measured in the offspring at various ages. U offspring were slightly heavier at birth, but no group differences in body weight or composition were observed at later ages (when mice were caged without access to running wheels). Consistent with our hypothesis, U offspring were more physically active as adults. This effect was observed earlier in female offspring (at sexual maturation). Remarkably, at 300 d of age, U females achieved greater fat loss in response to a 3-wk voluntary exercise program. Our findings show for the first time that maternal physical activity during pregnancy affects the offspring's lifelong propensity for physical activity and may have important implications for combating the worldwide epidemic of physical inactivity and obesity.-Eclarinal, J. D., Zhu, S., Baker, M. S., Piyarathna, D. B., Coarfa, C., Fiorotto, M. L., Waterland, R. A. Maternal exercise during pregnancy promotes physical activity in adult offspring. © FASEB.

  6. Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Praag, Henriette van; Shubert, Tiffany; Zhao, Chunmei; Gage, Fred H.

    2005-01-01

    Aging causes changes in the hippocampus that may lead to cognitive decline in older adults. In young animals, exercise increases hippocampal neurogenesis and improves learning. We investigated whether voluntary wheel running would benefit mice that were sedentary until 19 months of age. Specifically, young and aged mice were housed with or without a running wheel and injected with bromodeoxyuridine or retrovirus to label newborn cells. After 1 month, learning was tested in the Morris water maze. Aged runners showed faster acquisition and better retention of the maze than age-matched controls. The decline in neurogenesis in aged mice was reversed to 50% of young control levels by running. Moreover, fine morphology of new neurons did not differ between young and aged runners, indicating that the initial maturation of newborn neurons was not affected by aging. Thus, voluntary exercise ameliorates some of the deleterious morphological and behavioral consequences of aging. PMID:16177036

  7. Voluntary exercise facilitates pair-bonding in male prairie voles.

    PubMed

    Kenkel, William M; Carter, C Sue

    2016-01-01

    The neuropeptides oxytocin and vasopressin have been implicated in exercise, as well as monogamy and parental behavior. In this study, we compared behavioral and neuroendocrine effects of access to an exercise wheel vs. the sedentary state typical in lab animal housing. Male prairie voles (Microtus ochrogaster) were studied because of their extensive repertoire of social behaviors including pair bond formation and biparental care, which are influenced by oxytocin and vasopressin. Subjects in one group had access to a running wheel in their cage (wheel), and voluntarily ran approximately 1.5 km/day for six weeks; these animals were compared to males in standard housing conditions (n=10/group). Males allowed to exercise formed partner preferences significantly faster than controls and exhibited fewer oxytocin neurons, as measured by immunohistochemistry in the bed nucleus of the stria terminalis. We observed no differences in terms of anxiety-related behavior, or alloparental responsiveness. Males with a running wheel equipped cage gained more total body weight, and by the end of the six weeks were found to have less subcutaneous fat and larger testes as a percentage of bodyweight. The changes to gonadal regulation and pair-bonding behavior associated with voluntary exercise are discussed in terms of their possible relevance to the natural history of this species.

  8. Voluntary Exercise Facilitates Pair-Bonding in Male Prairie Voles

    PubMed Central

    Kenkel, William M; Carter, C. Sue

    2015-01-01

    The neuropeptides oxytocin and vasopressin have been implicated in exercise, as well as monogamy and parental behavior. In this study, we compared behavioral and neuroendocrine effects of access to an exercise wheel versus the sedentary state typical in lab animal housing. Male prairie voles (Microtus ochrogaster) were studied because of their extensive repertoire of social behaviors including pair bond formation and biparental care, which are influenced by oxytocin and vasopressin. Subjects in one group had access to a running wheel in their cage (Wheel), and voluntarily ran approximately 1.5 km/day for six weeks; these animals were compared to males in standard housing conditions (n = 10 / group). Males allowed to exercise formed partner preferences significantly faster than controls and exhibited fewer oxytocin neurons, as measured by immunohistochemistry in the bed nucleus of the stria terminalis. We observed no differences in terms of anxiety-related behavior, or alloparental responsiveness. Males with a running wheel equipped cage gained more total body weight, and by the end of the six weeks were found to have less subcutaneous fat and larger testes as a percentage of bodyweight. The changes to gonadal regulation and pair-bonding behavior associated with voluntary exercise are discussed in terms of their possible relevance to the natural history of this species. PMID:26409174

  9. Pre-Exercise Hyperhydration-Induced Bodyweight Gain Does Not Alter Prolonged Treadmill Running Time-Trial Performance in Warm Ambient Conditions

    PubMed Central

    Gigou, Pierre-Yves; Dion, Tommy; Asselin, Audrey; Berrigan, Felix; Goulet, Eric D. B.

    2012-01-01

    This study compared the effect of pre-exercise hyperhydration (PEH) and pre-exercise euhydration (PEE) upon treadmill running time-trial (TT) performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%–30% RH) on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW) of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA). PEH increased BW by 1.00 ± 0.34 kg (P < 0.01) and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH) to 1.4% ± 0.4% (HYP) (P < 0.01) during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82). Heart rate (5 ± 1 beats/min) and rectal (0.3 ± 0.1 °C) and body (0.2 ± 0.1 °C) temperatures of PEE were higher than those of PEH (P < 0.05). There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80–90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise. PMID:23016126

  10. The Occurrence of Core Muscle Fatigue During High-Intensity Running Exercise and its Limitation to Performance: The Role of Respiratory Work

    PubMed Central

    Tong, Tomas K.; Wu, Shing; Nie, Jinlei; Baker, Julien S.; Lin, Hua

    2014-01-01

    This study investigated the occurrence of core muscle fatigue during high-intensity running exercise and its limitation to exercise performance. A secondary aim was to investigate whether respiratory muscle work performed during intense running periods, would contribute to core muscle fatigue. Nine male recreational runners were recruited for two reasons; (1) to perform a continuous treadmill run at 85% VO2max with and without core muscle fatigue in the CR_F and CR trials, respectively; and (2) to mimic the treadmill run-induced respiratory response recorded in the CR trial while subjects were free of whole-body exercise (Mimic trial). The changes in global core muscle function with fatigue in this study were evaluated by performing a sport-specific endurance plank test (SEPT), and the associated influence on running performance was examined by comparing the time to exhaustion during the treadmill run between the CR and CR_F trials. Subsequent to the treadmill run in the CR trial, SEPT (255.7 ± 85.3 vs 177.3 ± 80.6 s) was reduced from baseline in all runners. The reduction correlated (r = 0.67) with the concomitant decline in inspiratory muscle function revealed by maximal inspiratory mouth pressure (PImax: 151.3 ± 18.2 vs 133.3 ± 17.2 cmH2O, p < 0.05). In the Mimic trial, similar results in SEPT (212.3 ± 90.2 s), PImax (129.0 ± 26.7 cmH2O), and correlation (r = 0.77, p < 0.05) were observed following voluntary hyperpneic activity. With the preceded fatigued core muscle workout in the CR_F trial, the running capacity was impaired significantly (10.7 ± 4.5 vs 6.5 ± 2.0 min, p < 0.05). The impairment was correlated (r=0.72) to the SEPT reduction resulting from the workout. The results suggest that a high-intensity maximum run may induce core muscle fatigue in runners. The core muscle fatigue, which may be partly attributed to the corresponding respiratory work, may limit their running endurance. Inspiratory muscle function appears to be essential for core

  11. A comparison of the physiological exercise intensity differences between shod and barefoot submaximal deep-water running at the same cadence.

    PubMed

    Killgore, Garry L; Coste, Sarah C; O' Meara, Susan E; Konnecke, Cristina J

    2010-12-01

    The purpose of this investigation was to identify whether physiological exercise intensity differed with the use of aquatic training shoes (ATS) during deep-water running (DWR) compared to using a barefoot condition. Eight male intercollegiate (National Collegiate Athletic Association Division III [NCAA III]) varsity distance runners were videotaped from the right sagittal view while running on a treadmill (TR) and while barefoot in deep water at 60-70% of their TR VO2max for 30 minutes. Based on the stride rate of the barefoot DWR trial, a subsequent 30-minute session was completed while wearing ATS. Variables of interest were energy expenditure, oxygen consumption (VO2), heart rate, respiratory exchange ratio (RER), and rating of perceived exertion (RPE). Multivariate omnibus tests revealed statistically significant differences for energy expenditure (p < 0.011), VO2 (p < 0.001), RPE (p < 0.001), and RER (p < 0.002). The post hoc pairwise comparisons revealed significant differences between barefoot and shod DWR conditions for energy expenditure (p < 0.005) and VO2 (p < 0.002), representing a 9 and 7.6% increase in exercise intensity demand while running