Sample records for russian science based

  1. Superconductivity in iron-based compounds (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 29 January 2014)

    NASA Astrophysics Data System (ADS)

    2014-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'Superconductivity in iron-based compounds', was held on 29 January 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda of the session, announced on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Eremin I M (Institut für Theoretische Physik III, Ruhr-Universität Bochum, Bochum, Deutschland; Kazan (Volga region) Federal University, Kazan, Russian Federation) "Antiferromagnetism in iron-based superconductors: interaction of the magnetic, orbital, and lattice degrees of freedom"; (2) Korshunov M M (Kirenskii Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk) "Superconducting state in iron-based materials and spin-fluctuation pairing theory"; (3) Kuzmicheva T E (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Lomonosov Moscow State University) "Andreev spectroscopy of iron-based superconductors: temperature dependence of the order parameters and scaling of Δ_L, S with T_C"; (4) Eltsev Yu F (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Synthesis and study of the magnetic and transport properties of iron-based superconductors of the 122 family". Papers written on the basis of oral presentations 1-4 are published below. • Antiferromagnetism in iron-based superconductors: magnetic order in the model of delocalized electrons, I M Eremin Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 807-813 • Superconducting state in iron-based materials and spin-fluctuation pairing theory, M M Korshunov Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 813-819 • Andreev spectroscopy of iron-based superconductors: temperature dependence of the order parameters and scaling of Δ_L, S with T_C, T E Kuzmicheva, S A Kuzmichev, M G Mikheev, Ya G Ponomarev, S N Tchesnokov, V M Pudalov, E P Khlybov, N D Zhigadlo Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 819-827 • Magnetic and transport properties of single crystals of Fe-based superconductors of the 122 family, Yu F Eltsev, K S Pervakov, V A Vlasenko, S Yu Gavrilkin, E P Khlybov, V M Pudalov Physics-Uspekhi, 2014, Volume 57, Number 8, Pages 827-832

  2. Ultracold atoms and their applications (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 28 October 2015)

    NASA Astrophysics Data System (ADS)

    2016-02-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Ultracold atoms and their applications", was held in the conference hall of the Lebedev Physical Institute, RAS, on 28 October 2015.The papers collected in this issue were written based on talks given at the session:(1) Vishnyakova G A, Golovizin A A, Kalganova E S, Tregubov D O, Khabarova K Yu (Lebedev Physical Institute, Russian Academy of Sciences, Moscow; Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow region), Sorokin V N, Sukachev D D, Kolachevsky N N (Lebedev Physical Institute, Russian Academy of Sciences, Moscow) "Ultracold lanthanides: from optical clock to a quantum simulator"; (2) Barmashova T V, Martiyanov K A, Makhalov V B (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod), Turlapov A V (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod; Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod) "Fermi liquid to Bose condensate crossover in a two-dimensional ultracold gas experiment"; (3) Taichenachev A V, Yudin V I, Bagayev S N (Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects"; (4) Ryabtsev I I, Beterov I I, Tretyakov D B, Entin V M, Yakshina E A (Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk; Novosibirsk State University, Novosibirsk) "Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information". • Ultracold lanthanides: from optical clock to a quantum simulator, G A Vishnyakova, A A Golovizin, E S Kalganova, V N Sorokin, D D Sukachev, D O Tregubov, K Yu Khabarova, N N Kolachevsky Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 168-173 • Fermi liquid-to-Bose condensate crossover in a two-dimensional ultracold gas experiment, T V Barmashova, K A Mart'yanov, V B Makhalov, A V Turlapov Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 174-183 • Ultraprecise optical frequency standards based on ultracold atoms: state of the art and prospects, A V Taichenachev, V I Yudin, S N Bagayev Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 184-195 • Spectroscopy of cold rubidium Rydberg atoms for applications in quantum information, I I Ryabtsev, I I Beterov, D B Tret'yakov, V M Èntin, E A Yakshina Physics-Uspekhi, 2016, Volume 59, Number 2, Pages 196-208

  3. PREFACE: Rusnanotech 2010 International Forum on Nanotechnology

    NASA Astrophysics Data System (ADS)

    Kazaryan, Konstantin

    2011-03-01

    The Rusnanotech 2010 International Forum on Nanotechnology was held from November 1-3, 2010, in Moscow, Russia. It was the third forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into eight sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Catalysis and Chemical Industry Nanobiotechnology Nanodiagnostics Nanoelectronics Nanomaterials Nanophotonics Nanotechnolgy In The Energy Industry Nanotechnology in Medicine The scientific program of the forum included 115 oral presentations by leading scientists from 15 countries. Among them in the "Nanomaterials" section was the lecture by Dr Konstantin Novoselov, winner of the Nobel Prize in Physics 2010. The poster session consisted of over 500 presentations, 300 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of the Journal of Physics: Conference Series includes a selection of 57 submissions. The scientific program committee: Prof Zhores Alferov, AcademicianVice-president of Russian Academy of Sciences, Nobel Prize winner, Russia, Chairman of the Program CommitteeProf Sergey Deev, Corresponding Member of Russian Academy of SciencesHead of the Laboratory of Molecular Immunology, M M Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Russia, Deputy Chairman of the Program CommitteeProf Alexander Aseev, AcademicianVice-president of Russian Academy of Sciences Director, A V Rzhanov-Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Sergey Bagaev, AcademicianDirector, Institute of Laser Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Alexander Gintsburg, Ademician, Russian Academy of Medical SciencesDirector Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, RussiaProf Anatoly Grigoryev, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesVice-president, Russian Academy of Medical Sciences, RussiaProf Michael Kovalchuk, RAS Corresponding MemberDirector, Kurchatov Institute Russian Scientific Center, RussiaProf Valery Lunin, AcademicianDean, Department of Chemistry, Lomonosov Moscow State University, RussiaProf Valentin Parmon, Academician, DirectorBoreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Rem Petrov, AcademicianAdvisor, Russian Academy of Sciences, RussiaProf Konstantin Skryabin, AcademicianDirector, Bioinzheneriya Center, Russian Academy of Sciences, RussiaProf Vsevolod Tkachuk, Academician, Russian Academy of Sciences, Russian Academy of Medical SciencesDean, Faculty of Fundamental Medicine, Lomonosov Moscow State University, RussiaProf Vladimir Fortov, AcademicianDirector, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Alexey Khokhlov, AcademicianVice Principal, Head of Innovation, Information and International Scientific Affairs Department, Lomonosov Moscow State University, RussiaProf Valery Bukhtiyarov, RAS Corresponding MemberDirector, Physicochemical Research Methods Dept., Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, RussiaProf Anatoly Dvurechensky, RAS Corresponding MemberDeputy Director, Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, RussiaProf Vladimir Kvardakov, Corresponding Member of Russian Academy of SciencesExecutive Director, Kurchatov Center of Synchrotron Radiation and Nanotechnology, RussiaProf Edward Son, Corresponding member of Russian Academy of SciencesScientific Deputy Director, Joint Institute for High Temperatures, Russian Academy of Sciences, RussiaProf Andrey GudkovSenior Vice President, Basic Science Chairman, Department of Cell Stress Biology, Roswell Park Cancer Institute, USAProf Robert NemanichChair, Department of Physics, Arizona State University, USAProf Kandlikar SatishProfessor, Rochester Institute of Technology, USAProf Xiang ZhangUC Berkeley, Director of NSF Nano-scale Science and Engineering Center (NSEC), USAProf Andrei ZvyaginProfessor, Macquarie University, AustraliaProf Sergey KalyuzhnyDirector of the Scientific and Technological Expertise Department, RUSNANO, RussiaKonstantin Kazaryan, PhDExpert of the Scientific and Technological Expertise Department, RUSNANO, Russia, Program Committee SecretarySimeon ZhavoronkovHead of Nanotechnology Programs Development Office, Rusnanotech Forum Fund for the Nanotechnology Development, Russia Editors of the proceedings: Section "Nanoelectronics" - Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS).Section "Nanophotonics" - Professor Vasily Klimov (Institute of Physics, RAS).Section "Nanodiagnostics" - Professor P Kashkarov (Russian Scientific Center, Kurchatov Institute).Section "Nanotechnology for power engineering" - Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS).Section "Catalysis and chemical industry" - Member of Russian Academy of Sciences, Professor Valentin Parmon (Institute of Catalysis SB RAS).Section "Nanomaterials" - E Obraztsova, PhD (Institute of Physics, RAS), Marat Gallamov PhD (Moscow State University).Section "Nanotechnology in medicine" - Denis Logunov, PhD (Gamaleya Research Institute of Epidemiology and Microbiology, RAMS).Section "Nanobiotechnology" - Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).

  4. No Uncertain Terms Terminology Guide for Translators Volume 8, Number 1, 1993.

    DTIC Science & Technology

    1993-02-01

    EURASIA RUSSIAN LEGAL TERMS RUSSIAN SOCIAL SCIENCE TERMS PROBLEM RUSSIAN TERMS CENTRAL ASIAN MUSLIM NAMES JPRS-NNT-93-036 JAN-FEB1993 2 4 7...several Russian word lists, two contributed by readers ("Russian Social Science Terms," and "Problem Russian Terms"). "Russian Legal Terms...Edition, 1990). FBIS Staff Russian Social Science Terms Kurt McFye sent the following letter responding to a recent glossary published by FBIS. Our

  5. Project for the Space Science in Moscow State University of Geodesy and Cartography (MIIGAiK)

    NASA Astrophysics Data System (ADS)

    Semenov, M.; Oberst, J.; Malinnikov, V.; Shingareva, K.; Grechishchev, A.; Karachevtseva, I.; Konopikhin, A.

    2012-04-01

    Introduction: Based on the proposal call of the Government of Russian Federation 40 of international scientists came to Russia for developing and support-ing research capabilities of national educational institutions. Moscow State University of Geodesy and Cartography (MIIGAiK) and invited scientist Prof. Dr. Jurgen Oberst were awarded a grant to establish a capable research facility concerned with Planetary Geodesy, Cartography and Space Exploration. Objectives: The goals of the project are to build laboratory infrastructure, and suitable capability for MIIGAiK to participate in the planning, execution and analyses of data from future Russian planetary mis-sions and also to integrate into the international science community. Other important tasks are to develop an attractive work place and job opportunities for planetary geodesy and cartography students. For this purposes new MIIGAiK Extraterrestrial Laboratory (MExLab) was organized. We involved professors, researchers, PhD students in to the projects of Moon and planets exploration at the new level of Russian Space Science development. Main results: MExLab team prepare data for upcom-ing Russian space missions, such as LUNA-GLOB and LUNA-RESOURSE. We established cooperation with Russian and international partners (IKI, ESA, DLR, and foreign Universities) and actively participated in international conferences and workshops. Future works: For the future science development we investigated the old Soviet Archives and received the access to the telemetry data of the Moon rovers Lunokhod-1 and Lunokhod-2. That data will be used in education purposes and could be the perfect base for the analysis, development and support in new Russian and international missions and especially Moon exploration projects. MExLab is open to cooperate and make the consortiums for science projects for the Moon and planets exploration. Acknowledgement: Works are funded by the Rus-sian Government (Project name: "Geodesy, cartography and the study of planets and satellites", contract No. 11.G34.31.0021 dd. 30.11.10)

  6. Ukrainian Program for Material Science in Microgravity

    NASA Astrophysics Data System (ADS)

    Fedorov, Oleg

    Ukrainian Program for Material Sciences in Microgravity O.P. Fedorov, Space Research Insti-tute of NASU -NSAU, Kyiv, The aim of the report is to present previous and current approach of Ukrainian research society to the prospect of material sciences in microgravity. This approach is based on analysis of Ukrainian program of research in microgravity, preparation of Russian -Ukrainian experiments on Russian segment of ISS and development of new Ukrainian strategy of space activity for the years 2010-2030. Two parts of issues are discussed: (i) the evolution of our views on the priorities in microgravity research (ii) current experiments under preparation and important ground-based results. item1 The concept of "space industrialization" and relevant efforts in Soviet and post -Soviet Ukrainian research institutions are reviewed. The main topics are: melt supercooling, crystal growing, testing of materials, electric welding and study of near-Earth environment. The anticipated and current results are compared. item 2. The main experiments in the framework of Ukrainian-Russian Research Program for Russian Segment of ISS are reviewed. Flight installations under development and ground-based results of the experiments on directional solidification, heat pipes, tribological testing, biocorrosion study is presented. Ground-based experiments and theoretical study of directional solidification of transparent alloys are reviewed as well as preparation of MORPHOS installation for study of succinonitrile -acetone in microgravity.

  7. Black holes: theory and observations (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 December 2015)

    NASA Astrophysics Data System (ADS)

    2016-07-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "Black holes: theory and observations," was held in the conference hall of the Lebedev Physical Institute, RAS, on 23 December 2015. The papers collected in this issue were written based on talks given at the session: (1) I D Novikov (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow; The Niels Bohr International Academy, The Niels Bohr Institute, Copenhagen; National Research Center 'Kurchatov Institute', Moscow) "Black holes, wormholes, and time machines"; (2) A M Cherepashchuk (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "Observing stellar-mass and supermassive black holes"; (3) N S Kardashev (Lebedev Physical Institute, Russian Academy of Sciences, Astro Space Center, Moscow) "Millimetron space project: a tool for researching black holes and wormholes." Papers written on the basis of oral presentations 1, 2 are published below. • Observing stellar mass and supermassive black holes, A M Cherepashchuk Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 702-712 • Black holes, wormholes, and time machines, I D Novikov Physics-Uspekhi, 2016, Volume 59, Number 7, Pages 713-715

  8. Iosif Samuilovich Shklovskii

    NASA Astrophysics Data System (ADS)

    Kurt, V. G.

    2017-04-01

    July 1, 2016 was the 100th anniversary of the birthday of the eminent Russian astrophysicist Iosif Samuilovich Shklovskii (1916-1985), who was a corresponding member of the USSR Academy of Sciences, a recipient of the Lenin Prize, and a member of the National Academy of Sciences of the USA, the Royal Astronomical Society, and many other academies. Iosif Samuilovich made important and fundamental contributions in many areas of modern astrophysics, and is the author of nine books and more than 300 scientific publications. The Russian Academy of Science, Astro Space Center of the Lebedev Physical Institute, Space Research Institute of the Russian Academy of Sciences, the Sternberg Astronomical Institute of Moscow State University, and the Astronomical Society held the international conference "All-Wave Astronomy. Shklovskii-100" to commemorate this anniversary. This issue of Astronomy Reports presents papers based on selected talks at this conference.

  9. ALL RUSSIAN INSTITUTE FOR SCIENTIFIC AND TECHNICAL INFORMATION (VINITI) OF THE RUSSIAN ACADEMY OF SCIENCES

    PubMed Central

    Markusova, Valentina

    2012-01-01

    The aim of the paper is to overview the leading information processing domain in Russia and Eastern Europe, namely All Russian Institute for Scientific and Technical Information (VINITI ) of the Russian Academy of Sciences. Russian science structure is different from that in the Western Europe and the US. The main aim of VINITI is to collect, process and disseminate scientific information on various fields of science and technology, published in 70 countries in 40 languages, selected from books, journals, conference proceedings, and patents. A special attention is given to the journal selection and depositing manuscripts (a kind of grey literature), an important source for Russian research. VINITI has created the largest database containing about 30 million records dating back to 1980. About 80,000-100,000 new records are added monthly. VINITI publishes the Journal Abstract (JA) on 19 fields of science, including medicine, containing about a million publications annually. Two thirds of these records are foreign and 36.7% – Russian sources. PMID:23322964

  10. All Russian institute for scientific and technical information (viniti) of the Russian academy of sciences.

    PubMed

    Markusova, Valentina

    2012-06-01

    The aim of the paper is to overview the leading information processing domain in Russia and Eastern Europe, namely All Russian Institute for Scientific and Technical Information (VINITI ) of the Russian Academy of Sciences. Russian science structure is different from that in the Western Europe and the US. The main aim of VINITI is to collect, process and disseminate scientific information on various fields of science and technology, published in 70 countries in 40 languages, selected from books, journals, conference proceedings, and patents. A special attention is given to the journal selection and depositing manuscripts (a kind of grey literature), an important source for Russian research. VINITI has created the largest database containing about 30 million records dating back to 1980. About 80,000-100,000 new records are added monthly. VINITI publishes the Journal Abstract (JA) on 19 fields of science, including medicine, containing about a million publications annually. Two thirds of these records are foreign and 36.7% - Russian sources.

  11. PREFACE: IV Nanotechnology International Forum (RUSNANOTECH 2011)

    NASA Astrophysics Data System (ADS)

    Dvurechenskii, Anatoly; Alfimov, Mikhail; Suzdalev, Igor; Osiko, Vyacheslav; Khokhlov, Aleksey; Son, Eduard; Skryabin, Konstantin; Petrov, Rem; Deev, Sergey

    2012-02-01

    Logo The RUSNANOTECH 2011 International Forum on Nanotechnology was held from 26-28 October 2011, in Moscow, Russia. It was the fourth forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into four sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Nanoelectronics and Nanophotonics Nanomaterials Nanotechnology and Green Energy Nanotechnology in Healthcare and Pharma (United business and science & technology section on 'RUSNANOTECH 2011') The scientific program of the forum included more than 50 oral presentations by leading scientists from 15 countries. Among them were world-known specialists such as Professor S Bader (Argonne National Laboratory, USA), Professor O Farokzhad (Harvard Medical School, USA), Professor K Chien (Massachusetts General Hospital, USA), Professor L Liz-Marzan (University of Vigo), A Luque (Polytechnic University of Madrid) and many others. The poster session consisted of over 120 presentations, 90 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of Journal of Physics: Conference Series includes a selection of 47 submissions. Section editors of the proceedings: Nanoelectronics and nanophotonics Corresponding Member of Russian Academy of Sciences, Professor Anatoly Dvurechenskii (Institute of Semiconductor Physics, RAS). Nanomaterials Member of Russian Academy of Sciences, Professor Mikhail Alfimov (Photochemistry Center, RAS), Professor Igor Suzdalev (Semenov Institute of Chemical Physics, RAS), Member of Russian Academy of Science, Professor Vyacheslav Osiko (Prokhorov General Physics Institute, RAS), Member of Russian Academy of Science, Professor Aleksey Khokhlov (Physical department of Moscow State University). Nanotechnology and green energy Corresponding Member of Russian Academy of Sciences, Professor Eduard Son (Joint Institute for High Temperatures, RAS). Nanotechnology in Healthcare and Pharma Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).

  12. Hunger strike for science

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Lamenting the degenerating working conditions for scientists in Russia, geophysicist Vladimir Strakhov and physicist Igor Naumenko-Bondarenko of the United Institute of Physics of the Earth (UIPE) at the Russian Academy of Sciences (RAS) have begun a hunger strike. Strakhov is General Director of UIPE, and Naumenko-Bondarenko is chairman of the Trade Union Committee of UIPE.In a press statement released on September 30 in Moscow, the geophysicists stated that they are striking to “protest the policy of the Government of the Russian Federation with regard to Russian science in general and to the Russian Academy of Sciences in particular.” They blame governmental neglect and, specifically, “the non-payment of funds that were in the 1996 budget” for the “virtual collapse of Russian science.”

  13. The consequences of political dictatorship for Russian science.

    PubMed

    Soyfer, V N

    2001-09-01

    The Soviet communist regime had devastating consequences on the state of Russian twentieth century science. Country Communist leaders promoted Trofim Lysenko--an agronomist and keen supporter of the inheritance of acquired characters--and the Soviet government imposed a complete ban on the practice and teaching of genetics, which it condemned as a "bourgeois perversion". Russian science, which had previously flourished, rapidly declined, and many valuable scientific discoveries made by leading Russian geneticists were forgotten.

  14. Future space experiments on cosmic rays and radiation on Russian segments of ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panasyuk, Mikhail; Galper, Arkady; Stozhov, Yurii

    1999-01-22

    The report presents a survey of the Russian space program in the field of radiation and cosmic ray studies. The experimental projects were developed by scientists of different Russian Institutes and are intended for implementation on the future ISS. All the projects mentioned in this report have undergone various expertise stages in the Space Council of the Russian Science Academy ('Cosmic Ray Physics' section); the International Science-Technology Center of the Rocket-Space Corporation 'Energia' ('Astrophysics and radiation Measurements' section); Committee on Science-Technical Co-operation of the Russian Space Agency.

  15. Nanoscience and nanotechnology in the Siberian Branch of the Russian Academy of Sciences: bibliometric analysis and evaluation

    NASA Astrophysics Data System (ADS)

    Lavrik, Olga L.; Busygina, Tatyana V.; Shaburova, Natalya N.; Zibareva, Inna V.

    2015-02-01

    The multidimensional bibliometric analysis of publications on nanoscience and nanotechnology (NS&NT) produced by the researchers of the Siberian Branch of the Russian Academy of Sciences (SB RAS) in 2007-2012 has shown their growing publication activity and international visibility in the field and the main objects of research such as nanoparticles, nanostructures (nanostructured materials), nanotubes (especially carbon ones), nanocomposites, nanocrystals, nanotechnology, and nanoelectronics and identified the most productive authors and institutes, as well as the most cited publications. It was made using the data from multidisciplinary (Web of Science, Scopus, and Russian Index of Scientific Citation) and specialized (Chemical Abstracts Plus and Inspec) information resources, that is from international (WoS, Scopus, CAPlus, and Inspec) and national (RISC) data bases. The analysis has shown that most of the SB RAS research works on NS&NT are concentrated in Novosibirsk Scientific Centre.

  16. Russian expats seek research reforms

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2009-11-01

    Over 170 Russian researchers working abroad have signed a letter addressed to the Russian president, Dmitry Medvedev, and prime minister Vladimir Putin raising concerns about "the catastrophic state of basic science" in the country. The letter, which appeared last month in the Moscow business paper Vedomosti, warns Russian leaders that unless urgent measures are implemented by the government, then science in the country may collapse.

  17. Is the Exodus of Cadres out of Russian Science a Gain or a Loss?

    ERIC Educational Resources Information Center

    Naumova, T. V.

    2010-01-01

    Russian scientists lag behind others in both remuneration and working conditions, and this has led many of them to leave science for other occupations or to leave Russia. While the country may benefit when a scientist chooses to enter business or politics, both society and Russian science are negatively affected when scientists emigrate. In order…

  18. Attracting Girls to Physics: Analysis of the Significance of Science as a Basis for Education in Biophysics at the Siberian Federal University (abstract)

    NASA Astrophysics Data System (ADS)

    Kratasyk, Valentina; Sviderskaya, Irina; Sukovatskaya, Irina

    2009-04-01

    At the Siberian Federal University (SFU) a fusion of science and education is used to attract girls to physics. Historically, research and education activities are separated at most Russian universities. The universities and Ministry of Education of the Russian Federation are responsible for education. Due to the economic policy from 1995 to 2005, separation between research and education became stronger. It is not possible for a professor who delivers approximately 400 lectures and seminars a year to conduct scientific research. Lack of financial support has resulted in decreased research in Russia. To save Russian scientific potential and pass scientific research methodology to new generations, it is vital to combine all research and education bodies into a unified system. To improve universities, reform is actively being discussed and the creation of a "Federal University" is being promoted. SFU connects research and education, based on experience from Research Educational Centers organized and supported by grants from Russian and foreign foundations.

  19. Saltcedar and Russian Olive Control Demonstration Act Science Assessment

    USGS Publications Warehouse

    Shafroth, Patrick B.; Brown, Curtis A.; Merritt, David M.

    2010-01-01

    The primary intent of this document is to provide the science assessment called for under The Saltcedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320; the Act). A secondary purpose is to provide a common background for applicants for prospective demonstration projects, should funds be appropriated for this second phase of the Act. This document synthesizes the state-of-the-science on the following topics: the distribution and abundance (extent) of saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) in the Western United States, potential for water savings associated with controlling saltcedar and Russian olive and the associated restoration of occupied sites, considerations related to wildlife use of saltcedar and Russian olive habitat or restored habitats, methods to control saltcedar and Russian olive, possible utilization of dead biomass following removal of saltcedar and Russian olive, and approaches and challenges associated with revegetation or restoration following control efforts. A concluding chapter discusses possible long-term management strategies, needs for additional study, potentially useful field demonstration projects, and a planning process for on-the-ground projects involving removal of saltcedar and Russian olive.

  20. A little something from physics for medicine (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 23 April 2014)

    NASA Astrophysics Data System (ADS)

    2014-12-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled "A little something from physics for medicine", was held on 23 April 2014 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Rumyantsev S A (D Rogachev Federal Research and Clinical Center of Pediatric Hematology, Oncology, and Immunology, Moscow) "Translational medicine as a basis of progress in hematology/oncology"; (2) Akulinichev S V (Institute for Nuclear Research, RAS, Moscow) "Promising nuclear medicine research at the INR, RAS"; (3) Nikitin P P (Prokhorov General Physics Institute, RAS, Moscow) "Biosensorics: new possibilities provided by marker-free optical methods and magnetic nanoparticles for medical diagnostics"; (4) Alimpiev S S, Nikiforov S M, Grechnikov A A (Prokhorov General Physics Institute, RAS, Moscow) "New approaches in laser mass-spectrometry of organic objects". The publication of the article based on the oral report No. 2 is presented below. • Promising nuclear medicine research in the Institute for Nuclear Research, Russian Academy of Sciences, V V Akulinichev Physics-Uspekhi, 2014, Volume 57, Number 12, Pages 1239-1243

  1. Russian Bilingual Science Learning: Perspectives from Secondary Students.

    ERIC Educational Resources Information Center

    Lemberger, Nancy; Vinogradova, Olga

    2002-01-01

    Describes one secondary Russian/English bilingual science teacher's practice and her literate students' experiences as they learn science and adapt to a new school. Discusses the notion of whether literacy skills in the native language are transferable to a second language. (Author/VWL)

  2. U.S.-Russian Cooperation in Science and Technology: A Case Study of the TOPAZ Space-Based Nuclear Reactor International Program

    NASA Astrophysics Data System (ADS)

    Dabrowski, Richard S.

    2014-08-01

    The TOPAZ International Program (TIP) was the final name given to a series of projects to purchase and test the TOPAZ-II, a space-based nuclear reactor of a type that had been further developed in the Soviet Union than in the United States. In the changing political situation associated with the break-up of the Soviet Union it became possible for the United States to not just purchase the system, but also to employ Russian scientists, engineers and testing facilities to verify its reliability. The lessons learned from the TIP illuminate some of the institutional and cultural challenges to U.S. - Russian cooperation in technology research which remain true today.

  3. Problems of information support in scientific research

    NASA Astrophysics Data System (ADS)

    Shamaev, V. G.; Gorshkov, A. B.

    2015-11-01

    This paper reports on the creation of the open access Akustika portal (AKDATA.RU) designed to provide Russian-language easy-to-read and search information on acoustics and related topics. The absence of a Russian-language publication in foreign databases means that it is effectively lost for much of the scientific community. The portal has three interrelated sections: the Akustika information search system (ISS) (Acoustics), full-text archive of the Akusticheskii Zhurnal (Acoustic Journal), and 'Signal'naya informatsiya' ('Signaling information') on acoustics. The paper presents a description of the Akustika ISS, including its structure, content, interface, and information search capabilities for basic and applied research in diverse areas of science, engineering, biology, medicine, etc. The intended users of the portal are physicists, engineers, and engineering technologists interested in expanding their research activities and seeking to increase their knowledge base. Those studying current trends in the Russian-language contribution to international science may also find the portal useful.

  4. Radioastron flight operations

    NASA Technical Reports Server (NTRS)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  5. [Zero citation of Russian institute publications on the psychiatry and addiction].

    PubMed

    Nemtsov, A V; Kuznetsova-Moreva, E A

    To evaluate the zero-citation sizes. Based on the data of the Russian Science Citation Index the publication activity of four leading institutes in the field of Psychiatry and Addiction is analyzed. The same indices in the field of Neurology were used as a control. Number and percentage of publications with ≥1 citations and zero-citation were analyzed. It has been shown that in psychiatric science zero citation rate is quite high (from 32.8% to 47.2%, an average of 42.9%). It is higher compared to the control. Zero-citation indicator is essential to evaluate the effectiveness of scientific institutions.

  6. Political and economic turmoil shake foundations of Russian science

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    The first of two parts“A lag of five or six years in high quality scientific work is essentially equivalent to complete death in science. After a lag of five or six years, nearly all work is irrelevant to the world scientific community. Russian science is already lagging behind by nearly five years.”

  7. Russian Science and Education: Problems and Prospects

    ERIC Educational Resources Information Center

    Lebedev, S. A.

    2014-01-01

    Higher education in Russia is not able to provide the science personnel and research that the country needs for its future economic well-being. Urgent changes are needed to improve the situation, not least among them being significant increases in the salaries of scientists, bringing Russian science into line with world standards of scientific…

  8. The Principles of Science Education in Today's Schools. A Roundtable

    ERIC Educational Resources Information Center

    Russian Education and Society, 2006

    2006-01-01

    This article presents the dialogue from a roundtable discussion on the principles of science education in today's school held by "Pedagogika" in March 2004. Participants were as follows: from the Russian Academy of Education: V.P. Borisenkov, doctor of pedagogical sciences, professor, vice president of the Russian Academy of Education,…

  9. The Great War as a Crucial Point in the History of Russian Science and Technology.

    PubMed

    Saprykin, Dmitry L

    2016-01-01

    The paper is devoted to one of the most important and, at the same time, relatively unexplored phases in the history of Russian science and technology. The Great War coincided with the beginning of a heyday in science, engineering education, and technology in Russia. It was precisely the time in which Russia's era of "Big Science" was emer- ging. Many Russian and Soviet technical projects and scientific schools were rooted in the time of the Great War. The "engineerization" of science and a "physical-technical" way of thinking had already begun before the war. But it was precisely the war which encouraged a large proportion of the Russian academic community to take part in industrial projects. Academics also played a significant role in developing concepts and implementing strategic plans during the Great War. This article also discusses how the organization of science and the academic community was transformed during, and after, the Great War. And it looks at the impact that war had on Russia's participation in the international scientific community.

  10. Department of Defense Spacelift in a Fiscally Constrained Environment

    DTIC Science & Technology

    2011-12-16

    or space operations. Space weather may impact spacecraft and ground-based systems. Space weather is influenced by phenomena such as solar flare...shareholders included Rocket and Science Corporation Energia (Russian- based company), a Norwegian shipbuilder, and two Ukrainian rocket firms (Hennigan...Hennigan 2011b). In October 2010, Sea Launch AG emerged from Chapter 11 bankruptcy protection as a result of Rocket and Science Corporation Energia

  11. Russian BAR/EXPERT experiment

    NASA Image and Video Library

    2009-08-28

    ISS020-E-035016 (27 Aug. 2009) --- Russian cosmonaut Gennady Padalka, Expedition 20 commander, uses the Russian BAR/EXPERT science payload to take various environmental measurements in the Zvezda Service Module of the International Space Station.

  12. Russian BAR/EXPERT experiment

    NASA Image and Video Library

    2009-08-28

    ISS020-E-035022 (27 Aug. 2009) --- Russian cosmonaut Roman Romanenko, Expedition 20 flight engineer, uses the Russian BAR/EXPERT science payload to take various environmental measurements in the Zvezda Service Module of the International Space Station.

  13. Russian BAR/EXPERT experiment

    NASA Image and Video Library

    2009-08-28

    ISS020-E-035017 (27 Aug. 2009) --- Russian cosmonaut Gennady Padalka, Expedition 20 commander, uses the Russian BAR/EXPERT science payload to take various environmental measurements in the Zvezda Service Module of the International Space Station.

  14. Mathematical Modeling and Optimization of Gaseous Fuel Processing as a Basic Technology for Long-distance Energy Transportation: The Use of Methanol and Dimethyl Ether as Energy Carriers.

    NASA Astrophysics Data System (ADS)

    Tyurina, E. A.; Mednikov, A. S.

    2017-11-01

    The paper presents the results of studies on the perspective technologies of natural gas conversion to synthetic liquid fuel (SLF) at energy-technology installations for combined production of SLF and electricity based on their detailed mathematical models. The technologies of the long-distance transport of energy of natural gas from large fields to final consumers are compared in terms of their efficiency. This work was carried out at Melentiev Energy Systems Institute of Siberian Branch of the Russian Academy of Sciences and supported by Russian Science Foundation via grant No 16-19-10174

  15. From Crisis to Transition: The State of Russian Science Based on Focus Groups with Nuclear Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, T P; Ball, D Y

    The collapse of the Soviet system led to a sharp contraction of state funding for science. Formerly privileged scientists suddenly confronted miserly salaries (often paid late), plummeting social prestige, deteriorating research facilities and equipment, and few prospects for improvement. Many departed the field of science for more lucrative opportunities, both within Russia and abroad. The number of inventions, patent applications, and publications by Russian scientists declined. Reports of desperate nuclear physicists seeking work as tram operators and conducting hunger strikes dramatized the rapid collapse of one of the contemporary world's most successful scientific establishments. Even more alarming was the 1996more » suicide of Vladimir Nechai, director of the second largest nuclear research center in Russia (Chelyabinsk-70, now known as Snezhinsk). Nechai, a respected theoretical physicist who spent almost 40 years working on Soviet and Russian nuclear programs, killed himself because he could no longer endure his inability to rectify a situation in which his employees had not been paid for more than 5 months and were ''close to starvation.'' The travails of Russia's scientists sparked interest in the West primarily because of the security threat posed by their situation. The seemingly relentless crisis in science raised fears that disgruntled scientists might sell their nuclear weapons expertise to countries or organizations that harbor hostile intentions toward the United States. Such concerns are particularly pressing in the wake of the September 2001 terrorist attacks in the US. At the same time, we should not overlook other critical implications that the state of Russian science has for Russia's long-term economic and political development. It is in the West's interest to see Russia develop a thriving market economy and stable democracy. A successful scientific community can help on both counts. Science and technology can attract foreign investment and fuel renewed economic progress in Russia. Russian scientists could also be an important source of support for democratic norms: sociologists of science have long argued that scientists tend to support democracy because it provides them with the freedom in which their research can flourish. At the same time, a more recent study suggests that funding shortages may override the researcher's need for freedom and drive scientists to align themselves with the economic policies espoused by Nationalists and Communists in order to survive. Therefore, much turns on the question: ''What is the state of science in Russia today?'' The good news is that focus group interviews with Russian nuclear physicists conducted in October 2001 suggest that the ''science in crisis'' image is one-sided and misleading. Though scientists still complained about low salaries, lack of respect in society, and other similar issues, the participants in the focus groups also expressed positive sentiments about recent changes in the field of science. To be sure, the financing of science remains at a considerably lower level than during the heyday of Soviet times. Yet, it is now possible to earn a decent living as a scientist because of the greater availability of foreign and domestic grants and contracts. In addition, state funding has stabilized over the past few years. Thus, it is more accurate to say that Russian science is in a state of transition rather than in a state of crisis.« less

  16. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-10-25

    POROSHKOVAYA METALLURGIYA No 4, Apr 88] 17 Influence of Sintering Conditions on Structure and Mechanical Properties of Aluminum-Based Powder Alloys [A.B... Mechanics Institute, UkSSR Academy of Sci- ences] [Abstract] An experimental study of the ZhS3DK cast heat-resistant Ni alloy was made concerning the two...References 2: both Russian. 2415/12232 Influence of Sintering Conditions on Structure and Mechanical Properties of Aluminum-Based Powder Alloys

  17. Dynamic Properties of the International Space Station throughout the Assembly Process

    DTIC Science & Technology

    1998-06-29

    with the launch of the Russian-built FGB, or Functional Cargo Block (most fitting translation) atop a Russian Proton rocket in June of 1998. Phase Two...experiments were conducted in areas of plant growth, life sciences, and microgravity science. But more importantly, Mir-Shuttle operations presented...Configuration Rationale/Comments 30Jun 1998 1 A/R Russian Proton • Functional Cargo Block (FGB) • FGB is a self-supporting active vehicle. • It provides

  18. Bibliometric Indicators of Russian Journals by JCR-Science Edition, 1995-2010.

    PubMed

    Libkind, A N; Markusova, V A; Mindeli, L E

    2013-07-01

    A representative empirical bibliometric analysis of Russian journals included in the Journal Citation Reports-Science Edition (JCR-SE) for the time period 1995-2010 was conducted at the macro level (excluding the subject categories). It was found that the growth in the number of articles covered by JCR (a 1.8-fold increase compared to 1995) is ahead of the growth rates of Russian publications (1.2-fold increase). Hence, the share of Russian articles covered by JCR-SE was down from 2.5% in 1995 to 1.7% in 2010. It was determined that the number of articles published in an average Russian journal reduced by 20% as compared to the number of articles in an average journal of the full data set. These facts could partly shed light on the question why Russian research performance is staggering (approximately 30,000 articles per year), although the coverage of Russian journals has expanded to 150 titles. Over the past 15 years, a twofold increase in the impact factor of the Russian journals has been observed, which is higher than that for the full data set of journals (a 1.4-fold increase). Measures to improve the quality of Russian journals are proposed.

  19. USSR Space Life Sciences Digest, issue 2

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    The second issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 39 Soviet periodical articles in 16 areas of aerospace medicine and space biology and published in Russian during the first half of 1985. Selected articles are illustrated with figures from the original. Translated introductions and tables of contents for 14 Russian books on 11 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biospheric, body fluids, botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, gastrointestinal system, group dynamics, habitability and environmental effects, health and medical treatment, hematology, immunology, life support systems, metabolism, musculoskeletal system, neurophysiology, psychology, radiobiology, and space biology. Two book reviews translated from Russian are included and lists of additional relevant titles available either in English or in Russian only are appended.

  20. Application of Russian Thermo-Electric Devices (TEDS) for the US Microgravity Program Protein Crystal Growth (PCG) Project

    NASA Technical Reports Server (NTRS)

    Aksamentov, Valery

    1996-01-01

    Changes in the former Soviet Union have opened the gate for the exchange of new technology. Interest in this work has been particularly related to Thermal Electric Cooling Devices (TED's) which have an application for the Thermal Enclosure System (TES) developed by NASA. Preliminary information received by NASA/MSFC indicates that Russian TED's have higher efficiency. Based on that assumption NASA/MSFC awarded a contract to the University of Alabama in Huntsville (UAH) in order to study the Russian TED's technology. In order to fulfill this a few steps should be made: (1) potential specifications and configurations should be defined for use of TED's in Protein Crystal Growing (PCG) thermal control hardware; and (2) work closely with the identified Russian source to define and identify potential Russian TED's to exceed the performance of available domestic TED's. Based on the data from Russia, it is possible to make plans for further steps such as buying and testing high performance TED's. To accomplish this goal two subcontracts have been released. One subcontract to Automated Sciences Group (ASG) located in Huntsville, AL and one to the International Center for Advanced Studies 'Cosmos' located in Moscow, Russia.

  1. CONFERENCES AND SYMPOSIA: Commemoration of the centenary of the birth of Academician L A Artsimovich(Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 18 February 2009; Joint session of the Research Council of the Russian Research Centre 'Kurchatov Institute', the Presidium of the Russian Academy of Sciences, and the Rosatom State Corporation, 18 March 2009)

    NASA Astrophysics Data System (ADS)

    Khalatnikov, Isaak M.; Fortov, Vladimir E.; Makarov, Aleksandr A.; Fridman, Aleksei M.; Martynenko, Yurii V.

    2009-12-01

    The scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) devoted to the centenary of the birth of Academician L A Artsimovich was held on 18 February 2009 in the conference hall of the P N Lebedev Physical Institute, RAS. The following reports were presented at the session: (1) Khalatnikov I M (L D Landau Institute of Theoretical Physics, RAS, Chernogolovka, Moscow region) "Nonaccidental coincidences (Lev Andreevich Artsimovich)"; (2) Pashinin P P (A M Prokhorov Institute of General Physics, RAS, Moscow) "L A Artsimovich and inertial thermonuclear fusion"; (3) Fortov V E (Institute of Thermophysics of Extreme States of the Joint Institute for High Temperatures, RAS, Moscow) "High-power shock waves and extreme states of plasma"; (4) Fridman A M (Institute of Astronomy, RAS, Moscow) "Prediction and discovery of ultrastrong hydrodynamic instabilities caused by a velocity jump: theory and experiment"; (5) Smirnov V P (Russian Research Centre 'Kurchatov Institute', Moscow) "Retracing Artsimovich's path to the thermonuclear source of energy". On 18 March 2009, a joint session of the Learned Council of the Russian Research Centre 'Kurchatov Institute' (RNTsKI in Russ. abbr.), the Presidium of the Russian Academy of Sciences, and the Rosatom State Corporation took place at RNTsKI; the session was devoted to the 100th anniversary of the birth of Academician L A Artsimovich. The following talks were presented at the session: (1) Velikhov E P (Russian Research Centre 'Kurchatov Institute', Moscow) "Academician L A Artsimovich—the founder of our field of science and industry"; (2) Smirnov V P (Russian Research Centre 'Kurchatov Institute', Moscow) "Retracing Artsimovich's path to the thermonuclear source of energy"; (3) Boyarchuk A A (Division of General Physics and Astronomy, RAS, Moscow) "L A Artsimovich and astronomy"; (4) Martynenko Yu V (Institute of Nuclear Fusion, Russian Research Centre 'Kurchatov Institute', Moscow) "Electromagnetic isotope separation method and its heritage"; (5) Strelkov V S (Institute of Nuclear Fusion, Russian Research Centre 'Kurchatov Institute', Moscow) "Our teacher: Lev Andreevich Artsimovich"; (6) Mirnov S V (Institute of Nuclear Fusion, Russian Research Centre 'Kurchatov Institute', Moscow) "L A Artsimovich through the eyes of a former postgraduate student". • Nonaccidental coincidences (Lev Andreevich Artsimovich), I M Khalatnikov Physics-Uspekhi, 2009, Volume 52, Number 12, Pages 1248-1249 • Avenues for the innovative development of energetics in the world and in Russia, V E Fortov, A A Makarov Physics-Uspekhi, 2009, Volume 52, Number 12, Pages 1249-1265 • Lev Andreevich Artsimovich and extremely strong hydrodynamic instabilities, A M Fridman Physics-Uspekhi, 2009, Volume 52, Number 12, Pages 1265-1266 • Electromagnetic isotope separation method and its heritage, Yu V Martynenko Physics-Uspekhi, 2009, Volume 52, Number 12, Pages 1266-1272

  2. Education in cardiopulmonary resuscitation in Russia: A systematic review of the available evidence

    PubMed Central

    Birkun, Alexei; Glotov, Maksim

    2017-01-01

    BACKGROUND: To summarise and appraise cumulative published scientific evidence relevant to cardiopulmonary resuscitation (CPR) education in Russia. DATA RESOURCES: We searched Medline, Scopus, Science Direct and Russian Science Citation Index databases from December 1991 to December 2016 to identify studies pertaining to the field of CPR education that were carried out by Russian researchers and/or investigated the topic of interest for Russia/Russian population. Reference lists of eligible publications, contents pages of relevant Russian journals and Google Scholar were also searched. There was no limitation based on publication language or study design. RESULTS: Of 7 964 unique citations identified, 22 studies were included. All studies were published from 2009 to 2016, mainly in Russian. Only three studies were reported to be randomized controlled. Non-medical individuals constituted 17% of studied populations. Most of the studies aimed to assess effects of CPR educational interventions, generally suggesting positive influence of the training conducted. The studies were highly heterogeneous as for methodological approaches, structure and duration of educational interventions, evaluation methods and criteria being used. Methodological quality was generally poor, with >40% publications not passing quality screening and only 2 studies meeting the criteria of moderate high quality. CONCLUSION: The results suggest paucity, low population coverage, high thematic and methodological heterogeneity and low quality of the studies addressing CPR education, which were carried out in the Russian Federation. There is a critical need in conducting methodologically consistent, large-scale, randomized, controlled studies evaluating and comparing efficiency of educational interventions for teaching CPR in different population categories of Russia. PMID:29123601

  3. Demonstrating appropriate silviculture for sustainable forestry in central Siberia: a Russian - American partnership

    Treesearch

    J. C. Brissette; S. T. Eubanks; A. J. R. Gillespie; R. J. Lasko; A. V. Rykoff

    1997-01-01

    A joint Northeastern Forest Experiment Station - Eastern Region team is working with Russian counterparts on a Forests for the Future Initiative in the Krasnoyarsk region of central Siberia. Russian team members include scientists from the Sukachev Institute of the Russian Academy of Sciences, managers from a number of units of the Federal Forest Service of Russia, and...

  4. Bibliometric Indicators of Russian Journals by JCR-Science Edition, 1995-2010

    PubMed Central

    Libkind, A.N.; Markusova, V.A.; Mindeli, L.E.

    2013-01-01

    A representative empirical bibliometric analysis of Russian journals included in the Journal Citation Reports-Science Edition (JCR-SE) for the time period 1995–2010 was conducted at the macro level (excluding the subject categories). It was found that the growth in the number of articles covered by JCR (a 1.8-fold increase compared to 1995) is ahead of the growth rates of Russian publications (1.2-fold increase). Hence, the share of Russian articles covered by JCR-SE was down from 2.5% in 1995 to 1.7% in 2010. It was determined that the number of articles published in an average Russian journal reduced by 20% as compared to the number of articles in an average journal of the full data set. These facts could partly shed light on the question why Russian research performance is staggering (approximately 30,000 articles per year), although the coverage of Russian journals has expanded to 150 titles. Over the past 15 years, a twofold increase in the impact factor of the Russian journals has been observed, which is higher than that for the full data set of journals (a 1.4-fold increase). Measures to improve the quality of Russian journals are proposed. PMID:24303198

  5. Russian-American Experience in Science Education and Volcanological Research

    NASA Astrophysics Data System (ADS)

    Eichelberger, J. C.; Gordeev, E. I.; Vesna, E. B.

    2007-12-01

    After five years experience in bringing American students to meet and learn with Russian students in Kamchatka and bringing Russian students to meet and learn with American students in Alaska, it is possible to make some generalizations about the problems and benefits this growing program. Some 200 students, including many from other countries besides the United States and Russian Federation, have now had this experience. The context of their collaboration is the International Volcanological Field School, sponsored by the University of Alaska Fairbanks, Kamchatka State University, and the Institute of Volcanology and Seismology, and also a comparison of Mount St Helens, Bezymianny, and Shiveluch volcanoes under the National Science Foundation's Partnerships in International Research in Education, with important support from the Russian Academy of Sciences, Far East Division. Elements of these two projects are adaptation to unfamiliar, harsh, and remote environments; intensive courses in Russian language, history, geography, and culture; and sharing of research and education experiences among students. The challenges faced by the program are: · Slow and complex visa processes. · Demise of a direct airline connection, necessitating round-the-world travel to go 3000 km. · Adequately communicating to students beforehand the need for physical fitness, mental fortitude in uncomfortable conditions, and patience when bad weather limits mobility. Benefits of the projects have been: · Experiences that students report to be career- and life-changing. · Much more positive perceptions of Russia and Russian people by American students and of America and Americans by Russian students. · Introduction to the "expedition style" volcanology necessary in challenging environments. · Development of long-lasting collaborations and friendships in the context of international science. Students often comment that hearing about what their peers have done or are doing in research at their home institutions was a high point of the experience. We believe that these kinds of experiences for students are essential if high-latitude volcanology is to continue, and that they also contribute to good will and understanding between our respective countries.

  6. The Academic Degree as a Distorting Mirror of Russian Science

    ERIC Educational Resources Information Center

    Porus, V. N.

    2014-01-01

    The process of obtaining academic degrees in Russia has gone through serious distortions, and this has damaged Russian science. Existing administrative measures taken to correct the situation have been ineffective, and a radical transformation of the entire system of the training of scientific and scientific pedagogical cadres is required. [This…

  7. [Thirty years of the electron microscope investigation in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences].

    PubMed

    Shatrov, A B

    2003-01-01

    The history of the electron microscope investigations in zoology and parasitology in the Zoological Institute of the Russian Academy of Sciences and progress in scanning and transmission electron microscope investigations in this field of biology to the moment are briefly accounted.

  8. Ukrainean crisis: History, demography, economics, science, personal impressions

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    An overview of the Economic and Demographic situation in Ukraine has been given. Some historical-scientific aspects of the actual crisis has been revealed. Between them: The soveitization of the Science, when scientists of Ukrainean origin work outside its borders, while the most influent and proliferous scientists inside the Country are of Russian origin. The percentage of astronomers of Russian origin is as great as ~40% while the percentage of the Russian population in Ukraine is about 20%. Another problem consist in low knowledge of the Ukrainean language by scientists working inside the Country.

  9. Main results and experience obtained on Mir space station and experiment program for Russian segment of ISS.

    PubMed

    Utkin, V F; Lukjashchenko, V I; Borisov, V V; Suvorov, V V; Tsymbalyuk, M M

    2003-07-01

    This article presents main scientific and practical results obtained in course of scientific and applied research and experiments on Mir space station. Based on Mir experience, processes of research program formation for the Russian Segment of the ISS are briefly described. The major trends of activities planned in the frames of these programs as well as preliminary results of increment research programs implementation in the ISS' first missions are also presented. c2003 Elsevier Science Ltd. All rights reserved.

  10. Russian EVA no. 39.

    NASA Image and Video Library

    2014-08-18

    ISS040E099355 (08/18/2014) --- Russian cosmonaut Alexander Skvortsov (red stripes), Expedition 40 flight engineer, attired in a Russian Orlan spacesuit outside the International Space Station, participates in a session of extravehicular activity (EVA) number 39 in support of science and maintenance. The Solar array is visible in the background.

  11. Saltcedar and Russian olive control demonstration act science assessment

    Treesearch

    Patrick B. Shafroth; Curtis A. Brown; David M. Merritt

    2010-01-01

    The primary intent of this document is to provide the science assessment called for under The Saltcedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320; the Act). A secondary purpose is to provide a common background for applicants for prospective demonstration projects, should funds be appropriated for this second phase of the Act. This...

  12. Women physicists in Russia in a period of new reforms in fundamental science and higher education

    NASA Astrophysics Data System (ADS)

    Didenko, N.; Domashevskaya, E.; Ermolaeva, E.; Kunitsyna, E.; Vitman, R.

    2015-12-01

    New holistic reforms in the system of higher education and the State Academy of Sciences have been carried out in Russia recently. New types of universities were founded, and funding of science is shifting to a grants model. The Russian Ministry of Higher Education and Science is also working to attract well-known foreign scientists, especially expatriate Russians, through megagrants of 3-5 million to establish modern laboratories. Women are participating to an adequate degree in all parts of the ongoing reforms.

  13. Erratum: Erratum to: "New Data on the Age and Nature of the Khan-Bogd Alkaline Granites, Mongolia"

    NASA Astrophysics Data System (ADS)

    Gerdes, A.; Kogarko, L. N.; Vladykin, N. V.

    2018-01-01

    The list of authors and their affiliations should read as follows: A. Gerdes a , Academician L. N. Kogarko b,*, and N. V. Vladykin c a Institute of Earth Sciences, Goethe University, Frankfurt, Germany b Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, 119991 Russia c Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, Irkutsk, 664033 Russia * e-mail: kogarko@geochi.ru

  14. The Sociocultural Factors of Russian Stagnation and Modernization

    ERIC Educational Resources Information Center

    Lapin, N. I.

    2012-01-01

    An analysis of the results of six Russian Longitudinal Monitoring Surveys, "The Values and Interests of the Population of Russia" (1990, 1994, 1998, 2002, 2006, and 2010), conducted by the Center for the Study of Sociocultural Changes at the Institute of Philosophy, Russian Academy of Sciences, provides evidence that two stages in the…

  15. The "Politicizing" of Russian History Education in the Russian Media

    ERIC Educational Resources Information Center

    Zajda, Joseph

    2014-01-01

    This article examines the current debate on the politics of history education reforms and the new history textbooks for secondary schools in the Russian Federation. Recent reforms in history education, standards and prescribed history textbooks by the Ministry of Education and Science demonstrate a pronounced ideological shift in the national…

  16. Assessing Russian Reactions to U.S. Missile Defense

    DTIC Science & Technology

    2001-09-01

    International Studies, 2001)18, 27. 108 See ibid., 14; and Alexander Savelyev , “Russian Strategic Forces: Their Future and the Issue of BMD,” A...International Peace; Monterey, CA: Monterey Institute of International Studies, 2001) 24, 26, 28. 110 Alexander Savelyev , “Russian Strategic Forces: Their...example, Alexander Savelyev of the Russian Academy of Sciences has made the point that “by all the standards of ‘strategic stability’ the deployment of

  17. JPRS report: Science and technology. Central Eurasia: Space

    NASA Astrophysics Data System (ADS)

    1994-12-01

    Translated articles cover the following topics: plasma instabilities and space vehicles, need discussed for protection against space catastrophes, Russians offer new energy concept for space stations, Russian space projects: Martian research, multi-impulse rendezvous trajectory for two spacecraft in circular orbit, placement of spacecraft into orbit around Mars with aerobraking, model of the shielding for the inhabited compartments of the base module of the Mir station, and measurement of the background electrostatic and variable electric fields on the outer surface of the Kvant module of the Mir orbital station. There are 25 translated articles in this 28 December 1994 edition.

  18. KSC-97PC863

    NASA Image and Video Library

    1997-05-25

    KENNEDY SPACE CENTER, FLA. - Members of the STS-84 crew pause at Patrick Air force Base just prior to their departure for Johnson Space Center in Houston, Texas. They are (from left) Mission Specialist Jean-Francois Clervoy; returning astronaut and Mir 23 crew member Jerry M. Linenger; Mission Commander Charles J. Precourt; Mission Specialist Edward Tsang Lu; and Mission Specialist Elena V. Kondakova. The seven-member crew returned aboard the Space Shuttle Orbiter Atlantis May 24 on KSC's Runway 33 after the completion of a successful nine-day mission. STS-84 was the sixth docking of the Space Shuttle with the Russian Space Station MIr. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced Linenger, who had been on the Russian space station since Jan. 15. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale's stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences.

  19. New generation of space capabilities resulting from US/RF cooperative efforts

    NASA Astrophysics Data System (ADS)

    Humpherys, Thomas; Misnik, Victor; Sinelshchikov, Valery; Stair, A. T., Jr.; Khatulev, Valery; Carpenter, Jack; Watson, John; Chvanov, Dmitry; Privalsky, Victor

    2006-09-01

    Previous successful international cooperative efforts offer a wealth of experience in dealing with highly sensitive issues, but cooperative remote sensing for monitoring and understanding the global environmental is in the national interest of all countries. Cooperation between international partners is paramount, particularly with the Russian Federation, due to its technological maturity and strategic political and geographical position in the world. Based on experience gained over a decade of collaborative space research efforts, continued cooperation provides an achievable goal as well as understanding the fabric of our coexistence. Past cooperative space research efforts demonstrate the ability of the US and Russian Federation to develop a framework for cooperation, working together on a complex, state-of-the-art joint satellite program. These efforts consisted of teams of scientists and engineers who overcame numerous cultural, linguistic, engineering approaches and different political environments. Among these major achievements are: (1) field measurement activities with US satellites MSTI and MSX and the Russian RESURS-1 satellite, as well as the joint experimental use of the US FISTA aircraft; (2) successful joint Science, Conceptual and Preliminary Design Reviews; (3) joint publications of scientific research technical papers, (4) Russian investment in development, demonstration and operation of the Monitor-E spacecraft (Yacht satellite bus), (5) successful demonstration of the conversion of the SS-19 into a satellite launch system, and (6) negotiation of contractual and technical assistant agreements. This paper discusses a new generation of science and space capabilities available to the Remote Sensing community. Specific topics include: joint requirements definition process and work allocation for hardware and responsibility for software development; the function, description and status of Russian contributions in providing space component prototypes and test articles; summary of planned experimental measurements and simulations; results of the ROKOT launch system; performance of the Monitor-E spacecraft; prototype joint mission operations control center; and a Handbook for Success in satellite collaborative efforts based upon a decade of lessons learned.

  20. Mineral-deposit models for northeast Asia, Chapter 3 in Metallogenesis and tectonics of northeast Asia

    USGS Publications Warehouse

    Obolenskiy, Alexander A.; Rodionov, Sergei M.; Ariunbileg, Sodov; Dejidmaa, Gunchin; Distanov, Elimir G.; Dorjgotov, Dangindorjiin; Gerel, Ochir; Hwang, Duk-Hwan; Sun, Fengyue; Gotovsuren, Ayurzana; Letunov, Sergei N.; Li, Xujun; Nokleberg, Warren J.; Ogasawara, Masatsugu; Seminsky, Zhan V.; Smelov, Akexander P.; Sotnikov, Vitaly I.; Spiridonov, Alexander A.; Zorina, Lydia V.; Yan, Hongquan

    2010-01-01

    The major purposes of this chapter are to provide (1) an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia for readers who are unfamiliar with the region, (2) a general scientific introduction to the succeeding chapters of this volume, and (3) an overview of the methodology of metallogenic and tectonic analysis used in this study. We also describe how a high-quality metallogenic and tectonic analysis, including construction of an associated metallogenic-tectonic model will greatly benefit other mineral resource studies, including synthesis of mineral-deposit models; improve prediction of undiscovered mineral deposit as part of a quantitative mineral-resource-assessment studies; assist land-use and mineral-exploration planning; improve interpretations of the origins of host rocks, mineral deposits, and metallogenic belts, and suggest new research. Research on the metallogenesis and tectonics of such major regions as Northeast Asia (eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (the Russian Far East, Alaska, and the Canadian Cordillera) requires a complex methodology including (1) definitions of key terms, (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions, (3) compilation of a mineral-deposit database that enables a determination of mineral-deposit models and clarification of the relations of deposits to host rocks and tectonic origins, (4) synthesis of a series of mineral-deposit models that characterize the known mineral deposits and inferred undiscovered deposits in the region, (5) compilation of a series of metallogenic-belt belts constructed on the regional geologic base map, and (6) construction of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis presented here is based on publications of the major international collaborative studies of the metallogenesis and tectonics of Northeast Asia that have been led by the U.S. Geological Survey (USGS). These studies have produced two broad types of publications (1) a series of regional geologic, mineral-deposit, and metallogenic-belt maps, with companion descriptions of the region, and (2) a suite of metallogenic and tectonic analyses of the same region. The study area consists of eastern Russia (most of eastern Siberia and the Russian Far East), Mongolia, northern China, South Korea, Japan, and adjacent offshore areas. The major cooperative agencies are the Russian Academy of Sciences; the Academy of Sciences of the Sakha Republic (Yakutia); VNIIOkeangeologia and Ministry of Natural Resources of the Russian Federation; the Mongolian Academy of Sciences; the Mongolian University of Science and Technology; the Mongolian National University; Jilin University, Changchun, People?s Republic of China, the China Geological Survey; the Korea Institute of Geosciences and Mineral Resources; the Geological Survey of Japan/AIST; the University of Texas, Arlington, and the U.S. Geological Survey (USGS). This study builds on and extends the data and interpretations from a previous project on the Major Mineral Deposits, Metallogenesis, and Tectonics of the Russian Far East, Alaska, and the Canadian Cordillera conducted by the USGS, the Russian Academy of Sciences, the Alaska Division of Geological and Geophysical Surveys, and the Geological Survey of Canada. The major products of this project were summarized by Naumova and others (2006) and are described in appendix A.

  1. Introduction to Regional Geology, Tectonics, and Metallogenesis of Northeast Asia

    USGS Publications Warehouse

    Parfenov, Leonid M.; Badarch, Gombosuren; Berzin, Nikolai A.; Hwang, Duk-Hwan; Khanchuk, Alexander I.; Kuzmin, Mikhail I.; Nokleberg, Warren J.; Obolenskiy, Alexander O.; Ogasawara, Masatsugu; Prokopiev, Andrei V.; Rodionov, Sergey M.; Smelov, Alexander P.; Yan, Hongquan

    2007-01-01

    This introduction presents an overview of the regional geology, tectonics, and metallogenesis of Northeast Asia. The major purposes are to provide a relatively short summary of these features for readers who are unfamiliar with Northeast Asia; a general scientific introduction for the succeeding chapters of this volume; and an overview of the methodology of metallogenic and tectonic analysis employed for Northeast Asia. The introduction also describes how a high-quality metallogenic and tectonic analysis, including synthesis of an associated metallogenic-tectonic model will greatly benefit refinement of mineral deposit models and deposit genesis; improvement of assessments of undiscovered mineral resources as part of quantitative mineral resource assessment studies; land-use and mineral exploration planning; improvement of interpretations of the origins of host rocks, mineral deposits, and metallogenic belts; and suggestions for new research. The compilation, synthesis, description, and interpretation of metallogenesis and tectonics of major regions, such as Northeast Asia (Eastern Russia, Mongolia, northern China, South Korea, and Japan) and the Circum-North Pacific (Russian Far East, Alaska, and Canadian Cordillera) requires a complex methodology. The methodology includes: (1) definitions of key terms; (2) compilation of a regional geologic base map that can be interpreted according to modern tectonic concepts and definitions; (3) compilation of a mineral deposit database that enables the determination of mineral deposit models, and relations of deposits to host rocks and tectonic origins; (4) synthesis of a series of mineral deposit models that characterize the known mineral deposits and inferred undiscovered deposits of the region; (5) compilation of a series of maps of metallogenic belts constructed on the regional geologic base map; and (6) formulation of a unified metallogenic and tectonic model. The summary of regional geology and metallogenesis in this introduction is based on publications of the major international collaborative studies of the metallogenesis and tectonics of Northeast Asia that were led by the U.S. Geological Survey. These studies have produced two broad types of publications. One type is a series of regional geologic, mineral deposit, and metallogenic belt maps and companion descriptions for the regions. Examples of major publications of this type are Obolenskiy and others (2003a, b, 2004), Parfenov and others (2003, 2004a, b), Nokleberg and others (2004), Rodionov and others (2004), and Naumova and others (2006). The other type is a suite of metallogenic and tectonic analyses of these same regions. Examples of major publications of this type are Rodionov and others (2004), Nokleberg and others (2000, 2004, 2005), and Naumova and others (2006). The Northeast Asia project area consists of eastern Russia (most of Siberia and most of the Russian Far East), Mongolia, Northern China, South Korea, Japan, and adjacent offshore areas. This area is approximately bounded by 30 to 82? N. latitude and 75 to 144? E. longitude. The major participating agencies are the Russian Academy of Sciences, Academy of Sciences of the Sakha Republic (Yakutia), VNIIOkeangeologia and Ministry of Natural Resources of the Russian Federation, Mongolian Academy of Sciences, Mongolian University of Science and Technology, Mongolian National University, Jilin University, Changchun, China, the China Geological Survey, the Korea Institute of Geosciences and Mineral Resources, the Geological Survey of Japan/AIST, University of Texas Arlington, and the U.S. Geological Survey. The Northeast Asia project extends and build on data and interpretations from a previous project on the Major Mineral Deposits, Metallogenesis, and Tectonics of the Russian Far East, Alaska, and the Canadian Cordillera that was conducted by the USGS, the Russian Academy of Sciences, the Alaska Division of Geological and Geophysical Surveys,

  2. Astrophysics and astronomy (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 January 2011)

    NASA Astrophysics Data System (ADS)

    2011-10-01

    An Astrophysics and Astronomy scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the Conference Hall of the P N Lebedev Physical Institute, RAS, on 26 January 2011. The following reports were put on the session's agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Cherepashchuk A M (Sternberg Astronomical Institute, Moscow State University, Moscow) "Investigation of X-ray sources"; (2) Shustov B M (Institute of Astronomy, Russian Academy of Sciences, Moscow) "Asteroid and comet hazards: physical and other aspects"; (3) Sazhin M V (Sternberg Astronomical Institute, Moscow State University, Moscow) "Search for cosmic strings"; (4) Zakharov A F (Russian Federation State Scientific Center 'A I Alikhanov Institute for Theoretical and Experimental Physics', Moscow) "Exoplanet search using gravitational microlensing". Papers written on the basis of the reports are published below. • Optical investigations of X-ray binary systems, A M Cherepashchuk Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1061-1067 • Asteroid and comet hazards: the role of physical sciences in solving the problem, B M Shustov Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1068-1071 • Search for cosmic strings using optical and radio astronomy methods, O S Sazhina, M V Sazhin, M Capaccioli, G Longo Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1072-1077 • Search for exoplanets using gravitational microlensing, A F Zakharov Physics-Uspekhi, 2011, Volume 54, Number 10, Pages 1077-1084

  3. Parliamentary Hearings "On the Conception of Reforming the System of Education of the Russian Federation" (20 January 1998).

    ERIC Educational Resources Information Center

    Russian Education and Society, 1998

    1998-01-01

    Provides the discussion from the parliamentary hearings of the Russian Committee of the State Duma for Education and Science, held at Moscow State University, that focused on the draft of a plan to change some of the basic elements of Russian education. Offers recommendations of the parliamentary hearings and three letters. (CMK)

  4. USSR Space Life Sciences Digest, issue 3

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Rowe, J. E. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the third issue of NASA's USSR Space Life Sciences Digest. Abstracts are included for 46 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the second third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for seven Russian books on six topics related to NASA's life science concerns are presented. Areas covered are adaptation, biospherics, body fluids, botany, cardiovascular and respiratory systems, endocrinology, exobiology, gravitational biology, habitability and environmental effects, health and medical treatment, immunology, life support systems, metabolism, microbiology, musculoskeletal system; neurophysiology, nutrition, perception, personnel selection, psychology, radiobiology, and space physiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  5. USSR Space Life Sciences Digest, issue 4

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Radtke, M. (Editor); Garshnek, V. (Editor); Teeter, R. (Editor); Rowe, J. E. (Editor)

    1986-01-01

    The fourth issue of NASA's USSR Space Life Science Digest includes abstracts for 42 Soviet periodical articles in 20 areas of aerospace medicine and space biology and published in Russian during the last third of 1985. Selected articles are illustrated with figures and tables from the original. In addition, translated introductions and tables of contents for 17 Russian books on 12 topics related to NASA's life science concerns are presented. Areas covered are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cytology, developmental biology, endocrinology, exobiology, habitability and environmental effects, health and medical treatment, hematology, histology, human performance, immunology, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, perception, personnel selection, psychology, and radiobiology. Two book reviews translated from the Russian are included and lists of additional relevant titles available in English with pertinent ordering information are given.

  6. Medicinal plants of the Russian Pharmacopoeia; their history and applications.

    PubMed

    Shikov, Alexander N; Pozharitskaya, Olga N; Makarov, Valery G; Wagner, Hildebert; Verpoorte, Rob; Heinrich, Michael

    2014-07-03

    Due to the location of Russia between West and East, Russian phytotherapy has accumulated and adopted approaches that originated in European and Asian traditional medicine. Phytotherapy is an official and separate branch of medicine in Russia; thus, herbal medicinal preparations are considered official medicaments. The aim of the present review is to summarize and critically appraise data concerning plants used in Russian medicine. This review describes the history of herbal medicine in Russia, the current situation and the pharmacological effects of specific plants in the Russian Pharmacopoeia that are not included in the European Pharmacopoeia. Based on the State Pharmacopoeia of the USSR (11(th) edition), we selected plant species that have not yet been adopted in Western and Central Europe (e.g., selected for inclusion in the European Pharmacopoeia) and systematically searched the scientific literature for data using library catalogs, the online service E-library.ru, and databases such as Medline/Pubmed, Scopus, and the Web of Science regarding species, effectiveness, pharmacological effects, and safety. The Russian Federation follows the State Pharmacopoeia of the USSR (11(th) edition), which contains 83 individual plant monographs. Fifty-one of these plants are also found in the European Pharmacopoeia and have been well studied, but 32 plants are found only in the Pharmacopoeia of the USSR. Many articles about these medicinal plants were never translated in English, and much of the information collected by Russian scientists has never been made available to the international community. Such knowledge can be applied in future studies aimed at a safe, evidence-based use of traditional Russian medicinal plants in European and global phytopharmacotherapy as well as for the discovery of novel leads for drug development. The review highlights the therapeutic potential of these Russian phytopharmaceuticals but also highlights cases where concern has been raised about product safety and tolerability, which would aid in supporting their safe use. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Bring back the Prestige of the Teacher's Profession. An Interview with Ivan Ivanovich Mel'nikov.

    ERIC Educational Resources Information Center

    Vishnikina, Sveltlana

    1997-01-01

    Offers an interview with Ivan Ivanovich Mel'nikov, who is the chair of the newly created Russian legal base called the State Duma's Committee for Science and Education. Explains that this legal base will assist in the further development of general and higher education institutions and will help improve the teaching conditions in Russia. (CMK)

  8. The Research Needs of Historians in Russian and Slavic History; A Citation Analysis of "The Russian Review," 1991-1994.

    ERIC Educational Resources Information Center

    Mahowald, Teresa Tickle

    In an era of tight library budgets, librarians must carefully consider materials selection. The interdisciplinary nature of the social science and humanities fields makes determining what a researcher needs a difficult task. This study seeks to determine what materials are being used by scholars in the field of Russian and Slavic studies analyzing…

  9. Determination of the distance to SWIFT J0243.6+6124

    NASA Astrophysics Data System (ADS)

    Bikmaev, I.; Shimansky, V.; Irtuganov, E.; Glushkov, M.; Sakhibullin, N.; Khamitov, I.; Burenin, R.; Lutovinov, A.; Zaznobin, I.; Pavlinsky, M.; Sunyaev, R.; Dodonov, S.; Afanasiev, V.; Kotov, S.; Doroshenko, V.; Tsygankov, S.

    2017-11-01

    We have performed an optical photometry and spectroscopy of the Be counterpart of a newly discovered transient X-Ray pulsar SWIFT J0243.6+6124 (Kennea et al, 2017, ATel #10809) using facilities of the 1.5-meter Russian-Turkish telescope (RTT-150, TUBITAK National Observatory, Antalya, Turkey) and the 6-meter Russian telescope (BTA, Special Astrophysical Observatory of the Russian Academy of Sciences).

  10. Proceedings of the 5. joint Russian-American computational mathematics conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    These proceedings contain a record of the talks presented and papers submitted by participants. The conference participants represented three institutions from the United States, Sandia National Laboratories (SNL), Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and two from Russia, Russian Federal Nuclear Center--All Russian Research Institute of Experimental Physics (RFNC-VNIIEF/Arzamas-16), and Russian Federal Nuclear Center--All Russian Research Institute of Technical Physics (RFNC-VNIITF/Chelyabinsk-70). The presentations and papers cover a wide range of applications from radiation transport to materials. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  11. The fruit flies (Diptera: Tephritidae) described by Theodor Becker from Iran and Western China revisited in the collections of the Zoological Institute, Saint-Petersburg and Museum für Naturkunde, Berlin.

    PubMed

    Korneyev, Severyn V; Korneyev, Valery A

    2017-01-31

    The type specimens of fruit flies described by Dr. Theodor Becker based on material collected in China (Xinjiang and Xizang) and Iran by Russian expeditions directed by Petr Kozlov and Mykola Zarudny are listed and figured. They are deposited in the collection of the Zoological Institute of Russian Academy of Sciences, Saint Petersburg with some duplicates in the Museum für Naturkunde, Berlin. Current concepts of the species, their morphological characters (illustrated by photographs of type specimens), current condition, and nomenclature are discussed.

  12. [Publishing activities and citation of publications of researchers of Russian institutes in the field of psychiatry and addiction].

    PubMed

    Nemtsov, A V; Kuznetsova-Moreva, Ye A

    To compare publishing activities of six research institutes in the field of psychiatry and addiction for 2006-2014. An analysis of publishing activities was based on the data of the Russian Science Citation Index (RSCI) of 2006-2014. The institutes have published 9662 papers that have been cited 39 263 times (4.1 per publication). The main indicators of publication activity between institutes differ by 4.4-6.4 times. In total, 14 089 scientific publications have been registered by the RSCI, 50.2% of them have been never cited. The self-citing rate was relatively high (32.2%).

  13. Russian scientists decry savage job cuts

    NASA Astrophysics Data System (ADS)

    Stafford, Ned

    2016-09-01

    More than 100 scientists in Russia have signed an open letter to the country's president, Vladimir Putin, protesting over a lack of funding for research and reforms that they say have left Russian science mired in a chronic state of crisis.

  14. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 47

    DTIC Science & Technology

    1977-09-27

    temperature intervals may vary and depends on the composition and previous heat treatment history of the alloy. Figures 2; references 13: 1 Russian, 12... HISTORY OF AMg6 ALLOY INTERMEDIATE WORKPIECES ON THE TIGHTNESS AND MECHANICAL PROPERTIES OF WELDS Kiev AVTOMATICHESKAYA SVARKA In Russian No 5(290), May...of Sciences Ukrainian SSR [Abstract] The effect of flux composition during argon-arc welding of titani - um with a nonconsumable electrode on melting

  15. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021284 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  16. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021296 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  17. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021028 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  18. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020884 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  19. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020610 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  20. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021024 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  1. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021058 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  2. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021085 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  3. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020576 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020594 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  5. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021081 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  6. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020856 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  7. Russian EVA-31

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020683 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  8. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021037 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  9. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020581 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  10. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021293 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  11. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020892 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  12. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021054 (20 Aug. 2012) --- Russian cosmonaut Yuri Malenchenko, Expedition 32 flight engineer, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Malenchenko and Russian cosmonaut Gennady Padalka (out of frame), commander, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  13. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021080 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, participates in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  14. Russian Planetary Program: Phobos and the Moon

    NASA Astrophysics Data System (ADS)

    Galimov, E. M.; Marov, M. Ya.; Politshuk, G. M.; Zeleniy, L. M.

    2006-08-01

    Planetary exploration is a cornerstone of space science and technology development. Russia has a great legacy of the world recognized former space missions to the Moon and planets. Strategy of the Russian Federal Space Agency and the Russian Academy of Sciences planetary program for the coming decade is focused on space vehicle of new generation. The basic concept of this spacecraft development is the modern technology utilization, significant cost reduction and meeting objectives of the important science return. The bottom line is the use of middle class Soyuz-type launcher, which places the principal constraint on mass of the vehicle and mission profile. Flexibility in the design of space vehicle, including a possibility of SEP technology utilization, facilitates its adaptability for extended program of the solar system exploration. As the first step, the project is optimized around sample return mission from satellite of Mars Phobos ("Phobos-Grunt" or PSR) which is in the list of the Russian Federal Space Program for 2006 to 2015. It is to be launched in 2009 and completed in 2012. The experience gained from the former Russian "Phobos 88" serves as a clue to provide an important basis for the mission concept enabling solution of many problems of the project design and its implementation. There is a challenge to return relic matter from such small body like Phobos for the ground labs comprehensive study. The payload is also targeted for in-flight and extended remote sensing and in situ measurements using the capable instrument packages. The project is addressed as a milestone in the Russian program of the solar system study, with a potential for future ambitious missions to asteroids and comets pooling international efforts. Also endorsed by the Russian Federal Space Program is "Luna-Glob" mission to the Moon tentatively scheduled for 2011. The goal is to advance lunar science with the well instrumented orbiter, lander, and the network of penetrators. Return back to the Moon with the new modern technology utilization is a great challenge in the current phase of the solar system exploration.

  15. [Regulatory science: modern trends in science and education for pharmaceutical products].

    PubMed

    Beregovykh, V V; Piatigorskaia, N V; Aladysheva, Zh I

    2012-01-01

    This article reviews modern trends in development of new instruments, standards and approaches to drugs safety, efficacy and quality assessment in USA and EU that can be called by unique term--"regulatory science" which is a new concept for Russian Federation. New education programs (curricula) developed by USA and EU universities within last 3 years are reviewed. These programs were designed in order to build workforce capable to utilize science approach for drug regulation. The principal mechanisms for financing research in regulatory science used by Food and Drug Administration are analyzed. There are no such science and relevant researches in Russian Federation despite the high demand as well as needs for the system for higher education and life-long learning education of specialists for regulatory affairs (or compliance).

  16. JPRS Report, Science & Technology, USSR: Chemistry

    DTIC Science & Technology

    1990-11-08

    desorption cycle. The photochemical activity of the oxides was determined by irradiating them with UV light at 353 K during the oxidation reactions of...No 1, Jan 90] 8 Acid-Base Properties Photochemically Active Titanium Oxide Surfaces [N D. Konovalova, V. I. Stepanenko, etal; UKRAINSKIY...Figures 4; references 13: 10 Russian, 3 Western. UDC 541.183 Acid-Base Properties Photochemically Active Titanium Oxide Surfaces 907M0149B Kiev

  17. [Physiology in the mirror of systematic catalogue of Russian Academy of Sciences Library].

    PubMed

    Orlov, I V; Lazurkina, V B

    2011-07-01

    Representation of general human and animal physiology publications in the systematic catalogue of the Library of the Russian Academy of Sciences is considered. The organization of the catalogue as applied to the problems of physiology, built on the basis of library-bibliographic classification used in the Russian universal scientific libraries is described. The card files of the systematic catalogue of the Library contain about 8 million cards. Topics that reflect the problems of general physiology contain 39 headings. For the full range of sciences including physiology the tables of general types of divisions were developed. They have been marked by indexes using lower-case letters of the Russian alphabet. For further detalizations of these indexes decimal symbols are used. The indexes are attached directly to the field of knowledge index. With the current relatively easy availability of network resources value and relevance of any catalogue are reduced. However it concerns much more journal articles, rather than reference books, proceedings of various conferences, bibliographies, personalities, and especially the monographs contained in the systematic catalogue. The card systematic catalogue of the Library remains an important source of information on general physiology issues, as well as its magistral narrower sections.

  18. Language Immersion in the Self-Study Mode E-Course

    ERIC Educational Resources Information Center

    Sobolev, Olga

    2016-01-01

    This paper assesses the efficiency of the "Language Immersion e-Course" developed at the London School of Economics and Political Science (LSE) Language Centre. The new self-study revision e-course, promoting students' proficiency in spoken and aural Russian through autonomous learning, is based on the Michel Thomas method, and is…

  19. Special data base of Informational - Computational System 'INM RAS - Black Sea' for solving inverse and data assimilation problems

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia; Piskovatsky, Nicolay; Gusev, Anatoly

    2014-05-01

    Development of Informational-Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The above problems are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for personal computers. In this work the results on the Special data base development for ICS "INM RAS - Black Sea" are presented. In the presentation the input information for ICS is discussed, some special data processing procedures are described. In this work the results of forecast using ICS "INM RAS - Black Sea" with operational observation data assimilation are presented. This study was supported by the Russian Foundation for Basic Research (project No 13-01-00753) and by Presidium Program of Russian Academy of Sciences (project P-23 "Black sea as an imitational ocean model"). References 1. V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 5-31. 2. E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 69-94. 3. V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 95-111. 4. Agoshkov V.I.,Assovsky M.B., Giniatulin S. V., Zakharova N.B., Kuimov G.V., Parmuzin E.I., Fomin V.V. Informational Computational system of variational assimilation of observation data "INM RAS - Black sea"// Ecological safety of coastal and shelf zones and complex use of shelf resources: Collection of scientific works. Issue 26, Volume 2. - National Academy of Sciences of Ukraine, Marine Hydrophysical Institute, Sebastopol, 2012. Pages 352-360. (In russian)

  20. Digest of Russian Space Life Sciences, issue 33

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1993-01-01

    This is the thirty-third issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 55 papers published in Russian journals. The abstracts in this issue have been identified as relevant to the following areas of space biology and medicine: biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, equipment and instrumentation, gastrointestinal system, genetics, hematology, human performance, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, psychology, radiobiology, and reproductive system.

  1. Budget estimates, fiscal year 1995. Volume 1: Agency summary, human space flight, and science, aeronautics and technology

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA budget request has been restructured in FY 1995 into four appropriations: human space flight; science, aeronautics, and technology; mission support; and inspector general. The human space flight appropriations provides funding for NASA's human space flight activities. This includes the on-orbit infrastructure (space station and Spacelab), transportation capability (space shuttle program, including operations, program support, and performance and safety upgrades), and the Russian cooperation program, which includes the flight activities associated with the cooperative research flights to the Russian Mir space station. These activities are funded in the following budget line items: space station, Russian cooperation, space shuttle, and payload utilization and operations. The science, aeronautics, and technology appropriations provides funding for the research and development activities of NASA. This includes funds to extend our knowledge of the earth, its space environment, and the universe and to invest in new technologies, particularly in aeronautics, to ensure the future competitiveness of the nation. These objectives are achieved through the following elements: space science, life and microgravity sciences and applications, mission to planet earth, aeronautical research and technology, advanced concepts and technology, launch services, mission communication services, and academic programs.

  2. Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia.

    PubMed

    Shikov, Alexander N; Tsitsilin, Andrey N; Pozharitskaya, Olga N; Makarov, Valery G; Heinrich, Michael

    2017-01-01

    Historically Russia can be regarded as a "herbophilious" society. For centuries the multinational population of Russia has used plants in daily diet and for self-medication. The specificity of dietary uptake of medicinal plants (especially those in the unique and highly developed Russian herbal medical tradition) has remained mostly unknown in other regions. Based on 11th edition of the State Pharmacopoeia of the USSR, we selected 70 wild plant species which have been used in food by local Russian populations. Empirical searches were conducted via the Russian-wide applied online database E-library.ru, library catalogs of public libraries in St-Petersburg, the databases Scopus, Web of Science, PubMed, and search engine Google Scholar. The large majority of species included in Russian Pharmacopoeia are used as food by local population, however, aerial parts are more widely used for food. In this review, we summarize data on medicinal species published in Russia and other countries that are included in the Russian Pharmacopoeia and have being used in food for a long time. Consequently, the Russian Pharmacopoeia is an important source of information on plant species used traditionally at the interface of food and medicine. At the same time, there are the so-called "functional foods", which denotes foods that not only serves to provide nutrition but also can be a source for prevention and cure of various diseases. This review highlights the potential of wild species of Russia monographed in its pharmacopeia for further developing new functional foods and-through the lens of their incorporation into the pharmacopeia-showcases the species' importance in Russia.

  3. Renita Fincke at Russian Mission Control Center

    NASA Image and Video Library

    2004-04-20

    Renita Fincke, wife of Expedition 9 Flight Engineer and NASA International Space Station Science Officer Michael Fincke, smiles with their two-year old son Chandra at the Russian Mission Control Center outside Moscow, Wednesday, April 21, 2004, following the successful docking of the Russian Soyuz capsule carrying Fincke, Expedition 9 Commander Gennady Padalka and European Space Agency astronaut Andre Kuipers of the Netherlands to the International Space Station. Photo Credit: (NASA/Bill Ingalls)

  4. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020596 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  5. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021078 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  6. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020619 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  7. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-020601 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, deploys a small ball-shaped science satellite during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, also moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module.

  8. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021072 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  9. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021067 (20 Aug. 2012) --- Russian cosmonaut Gennady Padalka, Expedition 32 commander, uses a still camera during a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Russian cosmonaut Yuri Malenchenko (out of frame), flight engineer, moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  10. A social History of Soviet Science

    NASA Astrophysics Data System (ADS)

    Idlis, G. M.; Tomilin, Konstantin

    The archive includes a great number of archive materials, recollections, interviews, letters, diaries, bibliography, internet sources concerning history of bolshevik and stalinist purges against scientists in the USSR since 1917 till 1968. The archive is categorized by few divisions: scientists, university teachers, associate professors, professors, members of the Academy of Science of the USSR, Corresponding-Members of the Academy of Sciences of the USSR. A great number of research articles and recollections by purged are included. The articles are written not only by historians of science but by scientists also. A great role by P.L. Kapitza in the saving of Soviet science from purges is underlined. The project was realized under the support by SOROS foundation (2000), Russian Foundation for fundamental Research (2002-2004) and Russian State National Foundation (2007).

  11. Physically absorbable reagents-collectors in elementary flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.A. Kondrat'ev; I.G. Bochkarev

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  12. Mars Together 2001: Joint US-Russian Team

    NASA Technical Reports Server (NTRS)

    Ulrich, P.; Kremnev, R.; Boyce, J.; Eremenko, A.; Bourke, R.; Linkin, V.; Campbell, J.; Martynov, B.; Haynes, N.; Mitrofanov, I.; hide

    1996-01-01

    While the US and USSR have collaborated in human space flight and Earth application missions, this is the first time in the cultural relations between our two countries that American and Russian specialists have been authorized to work together on a joint space science mission. A study was commissioned to investigate the possibility of a combined US/Russian mission in the 2001 opportunity. A basic option for a proposed mission (abbreviated as MT 2001) was adopted. This option is described.

  13. The Future Russian Navy: Interests of the Military

    DTIC Science & Technology

    1993-05-01

    plasma, pulse, membrane, biochemistry , and radiology.’𔃿 Soviet science had to discover and apply "as yet unknown properties of matter, natural laws...agree that large armored forces have become " dinosaurs " in modern warfare.1 Second, all parties agree that the Russian armed forces must be smaller

  14. Traditional and Current Food Use of Wild Plants Listed in the Russian Pharmacopoeia

    PubMed Central

    Shikov, Alexander N.; Tsitsilin, Andrey N.; Pozharitskaya, Olga N.; Makarov, Valery G.; Heinrich, Michael

    2017-01-01

    Historically Russia can be regarded as a “herbophilious” society. For centuries the multinational population of Russia has used plants in daily diet and for self-medication. The specificity of dietary uptake of medicinal plants (especially those in the unique and highly developed Russian herbal medical tradition) has remained mostly unknown in other regions. Based on 11th edition of the State Pharmacopoeia of the USSR, we selected 70 wild plant species which have been used in food by local Russian populations. Empirical searches were conducted via the Russian-wide applied online database E-library.ru, library catalogs of public libraries in St-Petersburg, the databases Scopus, Web of Science, PubMed, and search engine Google Scholar. The large majority of species included in Russian Pharmacopoeia are used as food by local population, however, aerial parts are more widely used for food. In this review, we summarize data on medicinal species published in Russia and other countries that are included in the Russian Pharmacopoeia and have being used in food for a long time. Consequently, the Russian Pharmacopoeia is an important source of information on plant species used traditionally at the interface of food and medicine. At the same time, there are the so-called “functional foods”, which denotes foods that not only serves to provide nutrition but also can be a source for prevention and cure of various diseases. This review highlights the potential of wild species of Russia monographed in its pharmacopeia for further developing new functional foods and—through the lens of their incorporation into the pharmacopeia—showcases the species' importance in Russia. PMID:29209213

  15. Lineger and Tsibliev during EVA outside Mir Space Station

    NASA Image and Video Library

    1997-04-29

    NM23-48-009 (29 April 1997) --- United States astronaut Jerry M. Linenger, cosmonaut guest researcher, works outside the Russian Mir Space Station during a joint United States-Russian space walk on April 29, 1997. He was joined by Mir-23 commander Vasili V. Tsibliyev (out of frame) for the five-hour Extravehicular Activity (EVA) designed to deploy scientific instruments and retrieve other science hardware. At the top of the frame is a Russian Progress re-supply capsule docked to the Mir’s Kvant-1 module.

  16. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011479 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  17. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011459 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  18. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011481 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  19. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011441 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  20. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011747 (24 June 2013) --- Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  1. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011642 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  2. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011440 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  3. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011480 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  4. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011745 (24 June 2013) --- Russian cosmonaut Alexander Misurkin (bottom center), Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  5. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011598 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  6. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011477 (24 June 2013) --- Russian cosmonaut Fyodor Yurchikhin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Yurchikhin and Russian cosmonaut Alexander Misurkin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  7. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011439 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  8. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011640 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  9. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011608 (24 June 2013) --- Russian cosmonaut Alexander Misurkin, Expedition 36 flight engineer, participates in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Russian cosmonaut Fyodor Yurchikhin (out of frame), Expedition 36 flight engineer, replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  10. From the history of physics (Scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences, 17 December 2012)

    NASA Astrophysics Data System (ADS)

    2013-05-01

    A scientific session of the General Meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 17 December 2012.The following reports were put on the session's agenda posted on the website http://www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Dianov E M (Fiber Optics Research Center, RAS, Moscow) "On the threshold of a peta era"; (2) Zabrodskii A G (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Scientists' contribution to the great victory in WWII using the example of the Leningrad (now A F Ioffe) Physical Technical Institute"; (3) Ilkaev R I (Russian Federal Nuclear Center --- All-Russian Research Institute of Experimental Physics, Sarov) "Major stages of the Soviet Atomic Project"; (4) Cherepashchuk A M (Sternberg State Astronomical Institute of Lomonosov Moscow State University, Moscow) "History of the Astronomy history ". Papers written on the basis of the reports are published below. • On the Threshold of Peta-era, E M Dianov Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 486-492 • Scientists' contribution to the Great Victory in WWII on the example of the Leningrad (now A F Ioffe) Physical Technical Institute, A G Zabrodskii Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 493-502 • Major stages of the Atomic Project, R I Ilkaev Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 502-509 • History of the Universe History, A M Cherepashchuk Physics-Uspekhi, 2013, Volume 56, Number 5, Pages 509-530

  11. Recruitment and Recommendation of College Students: North Korea.

    DTIC Science & Technology

    1960-09-14

    Journalism, Chinese Literat- ure, Library Science , Russian Language and Literature, Geology, Geodesic Chart Science (Ch’ukchi Chldohak), Planning...History, Philosophy, Library Science , Politi- cal Economy, and Meteorological ^um.unhak/. (f) The Preparatory School for Honor Soldiers. 2. Kim

  12. USSR Space Life Sciences Digest, issue 1

    NASA Technical Reports Server (NTRS)

    Hooke, L. R.; Radtke, M.; Rowe, J. E.

    1985-01-01

    The first issue of the bimonthly digest of USSR Space Life Sciences is presented. Abstracts are included for 49 Soviet periodical articles in 19 areas of aerospace medicine and space biology, published in Russian during the first quarter of 1985. Translated introductions and table of contents for nine Russian books on topics related to NASA's life science concerns are presented. Areas covered include: botany, cardiovascular and respiratory systems, cybernetics and biomedical data processing, endocrinology, gastrointestinal system, genetics, group dynamics, habitability and environmental effects, health and medicine, hematology, immunology, life support systems, man machine systems, metabolism, musculoskeletal system, neurophysiology, perception, personnel selection, psychology, radiobiology, reproductive system, and space biology. This issue concentrates on aerospace medicine and space biology.

  13. Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.

    1995-04-01

    The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 tomore » 65 kt and depths of burial from 160 to 1500 m.« less

  14. 76 FR 39967 - Bureau of Educational and Cultural Affairs (ECA) Request for Grant Proposals: Global Connections...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-07

    ... between American and Russian secondary school students. Bi-national teams will work together in a joint... legislation. Purpose: The U.S.-Russia Virtual Science Challenge for Youth will link teams of secondary school...: (1) An online, interactive project between Russian and American high school students that includes...

  15. The Culture Course in the Undergraduate Russian Program.

    ERIC Educational Resources Information Center

    Holliday, Gilbert

    1983-01-01

    The design and content of a required, fourth-year course in Soviet culture are proposed. The course has three distinguishing characteristics: basis in a broader, social sciences definition of culture; the Soviet Union as a frame of reference; and instruction in Russian. Its objectives are both cultural knowledge and language proficiency. (MSE)

  16. Review of russian literature on biological action of DC and low-frequency AC magnetic fields.

    PubMed

    Zhadin, M N

    2001-01-01

    This review considers the Russian scientific literature on the influence of weak static and of low-frequency alternating magnetic fields on biological systems. The review covers the most interesting works and the main lines of investigation during the period 1900 to the present. Shown here are the historical roots, beginning with the ideas of V. Vernadsky and A. Chizhevsky, which led in the field of Russian biology to an increasing interest in magnetic fields, based on an intimate connection between solar activity and life on the Earth, and which determined the peculiar development of Russian magnetobiology. The variety of studies on the effects of magnetic storms and extremely low-frequency, periodic variations of the geomagnetic field on human beings and animals as well as on social phenomena are described. The diverse experiments involving artificial laboratory magnetic fields acting on different biological entities under different conditions are also considered. A series of theoretical advances are reviewed that have paved the way for a step-by-step understanding of the mechanisms of magnetic field effects on biological systems. The predominantly unfavorable influence of magnetic fields on living beings is shown, but the cases of favorable influence of magnetic fields on human beings and lower animals are demonstrated as well. The majority of Russian investigations in this area of science has been unknown among the non-Russian speaking audience for many reasons, primarily because of a language barrier. Therefore, it is hoped that this review may be of interest to the international scientific community. Copyright 2001 Wiley-Liss, Inc.

  17. R & D on carbon nanostructures in Russia: scientometric analysis, 1990-2011

    NASA Astrophysics Data System (ADS)

    Terekhov, Alexander I.

    2015-02-01

    The analysis, based on scientific publications and patents, was conducted to form an understanding of the overall scientific and technology landscape in the field of carbon nanostructures and determine Russia's place on it. The scientific publications came from the Science Citation Index Expanded database (DB SCIE); the patent information was extracted from databases of the United States Patent and Trade Office (USPTO), the World Intellectual Property Organization (WIPO), and Russian Federal Service for Intellectual Property (Rospatent). We used also data about research projects, obtained via information systems of the U.S. National Science Foundation (NSF) and the Russian Foundation for Basic Research (RFBR). Bibliometric methods are used to rank countries, institutions, and scientists, contributing to the carbon nanostructures research. We analyze the current state and trends of the research in Russia as compared to other countries, and the contribution and impact of its institutions, especially research of the "highest quality." Considerable focus is on research collaboration and its relationship with citation impact. Patent datasets are used to determine the composition of participants of innovative processes and international patent activity of Russian inventors in the field, and to identify the most active representatives of small and medium business and some technological developments ripe for commercialization. The article contains a critical analysis of the findings, including a policy discussion of the country's scientific authorities.

  18. State participation in the creation of fuel-cell-based power plants to meet civilian demand in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pekhota, F.N.

    1996-04-01

    At present, up to 70% of Russian territory is not covered by central electrical distribution systems. In the field of fuel cell power plants, Russia is at parity with the leading foreign countries with respect to both technical and economic performance and the level of research being conducted. Civilian use of these generating systems on a broad scale, however, demands that a number of problems be solved, particularly those relating to the need for longer plant service life, lower unit cost of electricity, etc. The Ministry of Science and technical Policy of the Russian Federation issued a decree creating amore » new are of concentration, `Fuel Cell Based Power Plants for Civilian Needs,` in the GNTPR `Environmentally Clean Power Industry,` which will form the basis for financial support in this area out of the federal budget.« less

  19. [The representation of scientific publications of RAMS in WEB of science: evaluation of current indicators and prospects of their increasing].

    PubMed

    Starodubtsev, V I; Kuznetsov, S L; Kurakova, N G; Tsvetkova, L A

    2012-01-01

    The contribution scientific publications of Russian Academy of Medical Sciences (RAMS) in the national publication stream, indexed by Web of Science over the past thirty years, was estimated. The indicators of publication activity that are necessary for the institutions of RAMS to achieve in short-term period the conformity with bibliometric indicators, established by Presidential Decree of May 7, 2012 (to increase the share of Russian publications in Web of Science to 2.44% in 2015) were calculated. It is shown that the current structure of global science, where publications in medicine make up for approximately one third of scientific publications in the world, set for RAMS scientists particularly difficult task: to double in three years the number of publications in Web of Sci. In the article are proposed the priorities and the necessary steps to fulfill this task.

  20. ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS)

    NASA Astrophysics Data System (ADS)

    Metcalfe, L.; Aberasturi, M.; Alonso, E.; Álvarez, R.; Ashman, M.; Barbarisi, I.; Brumfitt, J.; Cardesín, A.; Coia, D.; Costa, M.; Fernández, R.; Frew, D.; Gallegos, J.; García Beteta, J. J.; Geiger, B.; Heather, D.; Lim, T.; Martin, P.; Muñoz Crego, C.; Muñoz Fernandez, M.; Villacorta, A.; Svedhem, H.

    2018-06-01

    The ExoMars Trace Gas Orbiter (TGO) Science Ground Segment (SGS), comprised of payload Instrument Team, ESA and Russian operational centres, is responsible for planning the science operations of the TGO mission and for the generation and archiving of the scientific data products to levels meeting the scientific aims and criteria specified by the ESA Project Scientist as advised by the Science Working Team (SWT). The ExoMars SGS builds extensively upon tools and experience acquired through earlier ESA planetary missions like Mars and Venus Express, and Rosetta, but also is breaking ground in various respects toward the science operations of future missions like BepiColombo or JUICE. A productive interaction with the Russian partners in the mission facilitates broad and effective collaboration. This paper describes the global organisation and operation of the SGS, with reference to its principal systems, interfaces and operational processes.

  1. Plasmonics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 21 February 2012)

    NASA Astrophysics Data System (ADS)

    2012-10-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), entitled 'Plasmonics', was held in the Conference Hall of the Lebedev Physical Institute, RAS on 21 February 2012. The following reports were put on the session agenda posted on the website www.gpad.ac.ru of the RAS Physical Sciences Division: (1) Kukushkin I V, Murav'ev V M (Institute of Solid State Physics, RAS, Chernogolovka, Moscow region) "Terahertz plasmonics"; (2) Lozovik Yu E (Institute of Spectroscopy, RAS, Troitsk, Moscow region) "Plasmonics and magnetoplasmonics based on graphene and a topological insulator"; (3) Protsenko I E (P N Lebedev Physical Institute, RAS, Moscow) "Dipole nanolaser"; (4) Vinogradov A P, Andrianov E S, Pukhov A A, Dorofeenko A V (Institute for Theoretical and Applied Electrodynamics, RAS, Moscow), Lisyansky A A (Queens College of the City University of New York, USA) "Quantum plasmonics of metamaterials: loss compensation using spasers"; (5) Klimov V V (Lebedev Physical Institute, RAS, Moscow) "Quantum theory of radiation of optically active molecules in the vicinity of chiral nano-meta-particles". The papers written on the basis of oral reports 2-5 are published below. • Plasmonics and magnetoplasmonics based on graphene and a topological insulator, Yu E Lozovik Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1035-1039 • Theory of the dipole nanolaser, I E Protsenko Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1040-1046 • Quantum plasmonics of metamaterials: loss compensation using spasers, A P Vinogradov, E S Andrianov, A A Pukhov, A V Dorofeenko, A A Lisyansky Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1046-1053 • Using chiral nano-meta-particles to control chiral molecule radiation, V V Klimov, D V Guzatov Physics-Uspekhi, 2012, Volume 55, Number 10, Pages 1054-1058

  2. PREFACE: III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing (SibTest 2015)

    NASA Astrophysics Data System (ADS)

    2016-01-01

    This issue of the journal is devoted to the research and studies presented at the III All-Russian Scientific and Practical Conference on Innovations in Non-Destructive Testing SibTest. The conference was held in Altai, Russia, on 27-31 July 2015. The conference brought together experts from different countries and organizations who had a great opportunity to share knowledge during oral and poster presentations and to initiate discussions on topics that are of interest to the conference attendees. The conference aimed to discuss innovative methods and the application of advanced technologies in non-destructive testing. The conference also attempted to bring together university, academic and industrial science, to expand the co-operation of scientists from different countries in research and development and the commercialization of innovative technologies in non-destructive testing. The key themes of the conference were: ultrasonic and acoustic testing; electromagnetic and thermal testing; various types of radiation non-destructive testing; passive and active testing techniques. The conference organizers are the Institute of Non-Destructive Testing, Tomsk Polytechnic University, with the assistance of the Russian Society for Non-Destructive Testing and Technical Diagnostics, Institute of Strength Physics and Materials Science, Siberian Branch of the Russian Academy of Sciences, National Research Tomsk State University, Moscow State Institute of Radio Engineering, Electronics and Automation.

  3. History of NAMES Conferences

    NASA Astrophysics Data System (ADS)

    Filippov, Lev

    2013-03-01

    Franco-Russian NAMES Seminars are held for the purpose of reviewing and discussing actual developments in the field of materials science by researchers from Russia and from the Lorraine Region of France. In more precise terms, as set down by the organizers of the seminar (the Moscow Institute of Steel and Alloys and the Institut National Polytechnique de Lorraine), the mission of the seminars is as follows: the development of scientific and academic contacts, giving a new impulse to joint fundamental research and technology transfer the development and consolidation of scientific, technical and business collaboration between the regions of Russia and Lorraine through direct contact between the universities, institutes and companies involved The first Seminar took place on 27-29 October 2004, at the Institut National Polytechnique de Lorraine (on the premises of the Ecole Européenne d'Ingénieurs en Génie des Matériaux, Nancy, France). The number, variety and quality of the oral presentations given and posters exhibited at the first Seminar were of high international standard. 30 oral presentations were given and 72 posters were presented by 19 participants from five universities and three institutes of the Russian Academy of Sciences participants from 11 laboratories of three universities from the Lorraine region three industrial companies, including the European Aeronautic Defence and Space Company—EADS, and ANVAR (Agence Nationale de Valorisation de la Recherche) From 2005 onwards, it was decided to organize the Seminar every other year. The second Seminar convened on the occasion of the 75th Anniversary of the Moscow Institute of Steel and Alloys on 10-12 November 2005 in Moscow, Russia. The seminar demonstrated the efficiency of the scientific partnership founded between the research groups of Russia and France during the first Seminar. High productivity of the Franco-Russian scientific cooperation on the basis of the Research-Educational Franco-Russian International Centre was demonstrated. By the high standards of the reports presented, as well as by its overall organization, the second Seminar met the standards of an international conference. Reviews of state-of-the-art developments in materials science were given by leading scientists from Moscow and from the Lorraine region. The three days of the seminar were structured into four main themes: Functional Materials Coatings, Films and Surface Engineering Nanomaterials and Nanotechnologies The Environment and three Round Table discussions: Defining practical means of carrying out Franco-Russian collaborations in technology transfer and innovation Materials science ARCUS: Lorraine-Russian collaboration in materials science and the environment 32 oral and 25 poster presentations within four sections were given by a total of 110 participants. NAMES 2007, the 3rd Franco-Russian Seminar on New Achievements in Materials and Environmental Sciences, took place in Metz, France on 7-9 November 2007. The conference highlights fundamentals and development of the five main themes connected to the Lorraine-Russia ARCUS project with possible extension to other topics. The five main subjects included in the ARCUS project are: Bulk-surface-interface material sciences Nanomaterials and nanotechnologies Environment and natural resources Plasma physics—ITER project Vibrational dynamics The first, second and third NAMES conferences were financially supported by the following organizations: Ambassade de France à Moscou Communauté Urbaine du Grand Nancy Région Lorraine Conseil Général de Meurthe et Moselle Institut National Polytechnique de Lorraine Université de Metz Université Henry Poincaré CNRS ANVAR Federal Agency on Science and Innovations of the Ministry of Education and Science of the Russian Federation Moscow Committee on Science and Technologies Moscow Institute of Steel and Alloys (Technological University) The 4th conference is supported by the Ministry of Foreign Affairs of France and the Lorraine Region Council. The conferences have indicated directions for future research and stimulated the possibilities of cooperation between scientists from Lorraine and Russian universities and academic institutions. The participants of the conferences reviewed the remarkable worldwide progress with numerous breakthroughs in areas of fundamental research and industrial applications, specifically in the fields of nanomaterials and nanotechnologies, surface engineering, biomaterials and multifunctional coatings, functionally graded materials, new materials for microelectronics and optics, nanostructured thin films and nanodispersion strengthening coatings, combustion synthesis, new micro- and nanosystems and devices, natural resources, environmental sciences, clean technology, and recently, natural fibrous materials, etc. The participants consider that new fundamental knowledge, new materials, and industrial production methods generated as a result of international cooperation between both countries will be of interest to the industrial sector in Lorraine and Moscow, France and Russia. Professor Lev O Filippov Coordinator of NAMES conferences The PDF also contains details of the conference sponsors and organizing committees.

  4. CONFERENCES AND SYMPOSIA: Seventy years of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation (IZMIRAN) (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 25 November 2009)

    NASA Astrophysics Data System (ADS)

    2010-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 70th anniversary of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN) (Troitsk, Moscow region) was held in the conference hall of IZMIRAN on 25 November 2009. The following reports were put on the session agenda posted on the web site www.gpad.ac.ru of the Physical Sciences Division, RAS: (1) Gurevich A V (Lebedev Physical Institute RAS, Moscow) "The role of cosmic rays and runaway electron breakdown in atmospheric lightning discharges"; (2) Aleksandrov E B (Ioffe Physical Technical Institute, RAS, St. Petersburg) "Advances in quantum magnetometry for geomagnetic research"; (3) Dorman L I (IZMIRAN, Troitsk, Moscow region, CR & SWC, Israel) "Cosmic ray variations and space weather"; (4) Mareev E A (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Global electric circuit research: achievements and prospects"; (5) Tereshchenko E D, Safargaleev V V (Polar Geophysical Institute, Kola Research Center, RAS, Murmansk) "Geophysical research in Spitsbergen Archipelago: status and prospects"; (6) Gulyaev Yu V, Armand N A, Efimov A I, Matyugov S S, Pavelyev A G, Savich N A, Samoznaev L N, Smirnov V V, Yakovlev O I (Kotel'nikov Institute of Radio Engineering and Electronics RAS, Fryazino Branch, Fryazino, Moscow region) "Results of solar wind and planetary ionosphere research using radiophysical methods"; (7) Kunitsyn V E (Lomonosov Moscow State University, Moscow) "Satellite radio probing and the radio tomography of the ionosphere"; (8) Kuznetsov V D (IZMIRAN, Troitsk, Moscow region) "Space Research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences." Papers based on reports 2-8 are published below. The main contents of report 1 are reproduced in A V Gurevich's review, "Nonlinear effects in the ionosphere" [Phys. Usp. 50 1091 (2007)] and in the paper by A V Gurevich et al., "Nonlinear phenomena in the ionospheric plasma. Effects of cosmic rays and runaway breakdown on thunderstorm discharges" [Phys. Usp. 52 735 (2009)]. • Advances in quantum magnetometry for geomagnetic research , E B Aleksandrov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 487-496 • Cosmic ray variations and space weather, L I Dorman Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 496-503 • Global electric circuit research: achievements and prospects, E A Mareev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 504-511 • Geophysical research in Spitsbergen Archipelago: status and prospects, V V Safargaleev, E D Tereshchenko Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 511-517 • Results of solar wind and planetary ionosphere research using radiophysical methods, N A Armand, Yu V Gulyaev, A L Gavrik, A I Efimov, S S Matyugov, A G Pavelyev, N A Savich, L N Samoznaev, V M Smirnov, O I Yakovlev Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 517-523 • Satellite radio probing and radio tomography of the ionosphere, V E Kunitsyn, E D Tereshchenko, E S Andreeva, I A Nesterov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 523-528 • Space research at the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences , V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 5, Pages 528-534

  5. Lineger and Tsibliev during EVA outside Mir Space Station

    NASA Image and Video Library

    1997-04-29

    NM23-48-009 (29 April 1997) --- United States astronaut Jerry M. Linenger, cosmonaut guest researcher, works outside the Russian Mir Space Station during a joint United States-Russian space walk on April 29, 1997. He was joined by Mir-23 commander Vasili V. Tsibliyev (out of frame) for the five-hour Extravehicular Activity (EVA) designed to deploy scientific instruments and retrieve other science hardware. At the top of the frame is a Russian Progress re-supply capsule docked to the Mir’s Kvant-1 module.

  6. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021060 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  7. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021061 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  8. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021044 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  9. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021046 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  10. Russian EVA-31 spacewalk

    NASA Image and Video Library

    2012-08-20

    ISS032-E-021286 (20 Aug. 2012) --- Russian cosmonauts Gennady Padalka (top), Expedition 32 commander; and Yuri Malenchenko, flight engineer, participate in a session of extravehicular activity (EVA) to continue outfitting the International Space Station. During the five-hour, 51-minute spacewalk, Padalka and Malenchenko moved the Strela-2 cargo boom from the Pirs docking compartment to the Zarya module to prepare Pirs for its eventual replacement with a new Russian multipurpose laboratory module. The two spacewalking cosmonauts also installed micrometeoroid debris shields on the exterior of the Zvezda service module and deployed a small science satellite.

  11. Semantic Meaning of Money in the Perception of Modern Russian Youth

    ERIC Educational Resources Information Center

    Knyazeva, Tatiana N.; Semenova, Lidiya E.; Chevachina, Anna V.; Batuta, Marina B.; Sidorina, Elena V.

    2016-01-01

    In connection with socio-economic transformations taking place in our country, which caused changes in the system of values and, as a consequence, in moral-economic relationships and human behavior, the subject of money becomes one of the most significant topics in modern Russian researches in various fields of science. The main method to study…

  12. Methodological Problems of the Present-Day Sociology of Education: A Roundtable

    ERIC Educational Resources Information Center

    Russian Education and Society, 2011

    2011-01-01

    An all-Russian conference on "Education and Society" was held on 22 October 2009 at the Academy of Labor and Social Relations, in the course of which roundtables were conducted with leading representatives of Russian sociological science. The conference was timed to coincide with the twentieth anniversary of the founding of the Russian…

  13. JPRS Report, Science & Technology, USSR: Chemistry.

    DTIC Science & Technology

    1988-07-06

    During Hydrodynamic Cavitation [A. V. Yefimov, G.A. Vorobyev; ZHURNAL FIZICHESKOY KHIMII No 1, Jan 88] 7 COMBUSTION AND EXPLOSIVES Suppression of...RSR", 1988 12770 Microhits and Luminescent Flashes During Hydrodynamic Cavitation 18410249b Moscow ZHURNAL FIZICHESKOY KHIMII in Russian Vol 62, No...monitor the occurrence of hydrodynamic cavitation and make an online estimate of its erosion activity by using devices based on photomultiplier tubes

  14. Russian Earth Science Research Program on ISS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armand, N. A.; Tishchenko, Yu. G.

    1999-01-22

    Version of the Russian Earth Science Research Program on the Russian segment of ISS is proposed. The favorite tasks are selected, which may be solved with the use of space remote sensing methods and tools and which are worthwhile for realization. For solving these tasks the specialized device sets (submodules), corresponding to the specific of solved tasks, are working out. They would be specialized modules, transported to the ISS. Earth remote sensing research and ecological monitoring (high rates and large bodies transmitted from spaceborne information, comparatively stringent requirements to the period of its processing, etc.) cause rather high requirements tomore » the ground segment of receiving, processing, storing, and distribution of space information in the interests of the Earth natural resources investigation. Creation of the ground segment has required the development of the interdepartmental data receiving and processing center. Main directions of works within the framework of the ISS program are determined.« less

  15. The German/Russian MIR 1997 Mission: An Overview

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP4 includes short reports concerning: (1) Life Science Experiments During the German-Russian Mir '97 Mission; (2) Orthostatic Intolerance Following Microgravity: A Role for Autonomic Dysfunction; (3) Heart Rate Variability and Skin Blood Flow in Man During Orthostatic Stress in Weightlessness; (4) Effects of Microgravity and Lower Body Negative Pressure on Circulatory Drives from Excercising Calf Muscles; (5) The Mir Station in Its Second Decade: Crew Science Operation During Mir '97; (6) Metabolic WARD (Water, Sodium, Calcium, and Bone Metabolism) and Endocrinological Experiments During the Mir '97 Mission; (7) Long-term Monitoring of the Spine-geometry During the Mir '97 Mission: Introduction of a New Method; and (8) Effects of 20 days of Microgravity (German/Russian Mir '97 Mission) on the Mechanical and Electromyographic Characteristics of Explosive Efforts of the Lower Limbs and of Cycloergometric Exercises of Mild to Sprint-Like Intensity.

  16. KSC-97PC853

    NASA Image and Video Library

    1997-05-24

    STS-84 crew members give a "thumbs up" to press representatives and other onlookers on KSC’s Runway 33 after landing of the successful nine-day mission. From left, are Mission Specialist Jean-Francois Clervoy of the European Space Agency, Pilot Eileen Marie Collins, Commander Charles J. Precourt, Mission Specialist Elene V. Kondakova of the Russian Space Agency, and Mission Specialist Carlos I. Noriega. Not shown are Mission Specialist Edward Tsang Lu and returning astronaut and Mir 23 crew member Jerry M. Linenger. STS-84 was the sixth docking of the Space Shuttle with the Russian Space Station Mir. The Space Shuttle orbiter Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced Linenger, who has been on the Russian space station since Jan. 15. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  17. Near-Earth space hazards and their detection (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 27 March 2013)

    NASA Astrophysics Data System (ADS)

    2013-08-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), titled "Near-Earth space hazards and their detection", was held on 27 March 2013 at the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the Physical Sciences Division, RAS, http://www.gpad.ac.ru, included the following reports: (1) Emel'yanenko V V, Shustov B M (Institute of Astronomy, RAS, Moscow) "The Chelyabinsk event and the asteroid-comet hazard"; (2) Chugai N N (Institute of Astronomy, RAS, Moscow) "A physical model of the Chelyabinsk event"; (3) Lipunov V M (Lomonosov Moscow State University, Sternberg Astronomical Institute, Moscow) "MASTER global network of optical monitoring"; (4) Beskin G M (Special Astrophysical Observatory, RAS, Arkhyz, Karachai-Cirkassian Republic) "Wide-field optical monitoring systems with subsecond time resolution for the detection and study of cosmic threats". The expanded papers written on the base of oral reports 1 and 4 are given below. • The Chelyabinsk event and the asteroid-comet hazard, V V Emel'yanenko, B M Shustov Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 833-836 • Wide-field subsecond temporal resolution optical monitoring systems for the detection and study of cosmic hazards, G M Beskin, S V Karpov, V L Plokhotnichenko, S F Bondar, A V Perkov, E A Ivanov, E V Katkova, V V Sasyuk, A Shearer Physics-Uspekhi, 2013, Volume 56, Number 8, Pages 836-842

  18. Manufacturing and certification of a diffraction corrector for controlling the surface shape of the six-meter main mirror of the Big Azimuthal Telescope of the Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Nasyrov, R. K.; Poleshchuk, A. G.

    2017-09-01

    This paper describes the development and manufacture of diffraction corrector and imitator for the interferometric control of the surface shape of the 6-m main mirror of the Big Azimuthal Telescope of the Russian Academy of Sciences. The effect of errors in manufacture and adjustment on the quality of the measurement wavefront is studied. The corrector is controlled with the use of an off-axis diffraction imitator operating in a reflection mode. The measured error is smaller than 0.0138λ (RMS).

  19. MIR Solar Array Return Experiment: Power Performance Measurements and Molecular Contamination Analysis Results

    NASA Technical Reports Server (NTRS)

    Visentine, James; Kinard, William; Brinker, David; Scheiman, David; Banks, Bruce; Albyn, Keith; Hornung, Steve; See, Thomas

    2001-01-01

    A solar array segment was recently removed from the Mir core module and returned for ground-based analysis. The segment, which is similar to the ones the Russians have provided for the FGB and Service Modules, was microscopically examined and disassembled by US and Russian science teams. Laboratory analyses have shown the segment to he heavily contaminated by an organic silicone coating, which was converted to an organic silicate film by reactions with atomic oxygen within the. orbital flight environment. The source of the contaminant was a silicone polymer used by the Russians as an adhesive and bonding agent during segment construction. During its life cycle, the array experienced a reduction in power performance from approx. 12%, when it was new and first deployed, to approx. 5%, when it was taken out of service. However, current-voltage measurements of three contaminated cells and three pristine, Russian standard cells have shown that very little degradation in solar array performance was due to the silicate contaminants on the solar cell surfaces. The primary sources of performance degradation is attributed to "thermal hot-spotting" or electrical arcing; orbital debris and micrometeoroid impacts; and possibly to the degradation of the solar cells and interconnects caused by radiation damage from high energy protons and electrons.

  20. XXV IUPAP Conference on Computational Physics (CCP2013): Preface

    NASA Astrophysics Data System (ADS)

    2014-05-01

    XXV IUPAP Conference on Computational Physics (CCP2013) was held from 20-24 August 2013 at the Russian Academy of Sciences in Moscow, Russia. The annual Conferences on Computational Physics (CCP) present an overview of the most recent developments and opportunities in computational physics across a broad range of topical areas. The CCP series aims to draw computational scientists from around the world and to stimulate interdisciplinary discussion and collaboration by putting together researchers interested in various fields of computational science. It is organized under the auspices of the International Union of Pure and Applied Physics and has been in existence since 1989. The CCP series alternates between Europe, America and Asia-Pacific. The conferences are traditionally supported by European Physical Society and American Physical Society. This year the Conference host was Landau Institute for Theoretical Physics. The Conference contained 142 presentations, and, in particular, 11 plenary talks with comprehensive reviews from airbursts to many-electron systems. We would like to take this opportunity to thank our sponsors: International Union of Pure and Applied Physics (IUPAP), European Physical Society (EPS), Division of Computational Physics of American Physical Society (DCOMP/APS), Russian Foundation for Basic Research, Department of Physical Sciences of Russian Academy of Sciences, RSC Group company. Further conference information and images from the conference are available in the pdf.

  1. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011590 (24 June 2013) --- Russian cosmonauts Alexander Misurkin (left) and Fyodor Yurchikhin, both Expedition 36 flight engineers, participate in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Yurchikhin replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed a new one.

  2. Russian EVA 33

    NASA Image and Video Library

    2013-06-24

    ISS036-E-011593 (24 June 2013) --- Russian cosmonauts Alexander Misurkin (left) and Fyodor Yurchikhin, both Expedition 36 flight engineers, participate in a session of extravehicular activity (EVA) as work continues on the International Space Station. During the six-hour, 34-minute spacewalk, Misurkin and Yurchikhin replaced an aging fluid flow control panel on the station's Zarya module as preventative maintenance on the cooling system for the Russian segment of the station. They also installed clamps for future power cables as an early step toward swapping the Pirs airlock with a new multipurpose laboratory module. The Russian Federal Space Agency plans to launch a combination research facility, airlock and docking port late this year on a Proton rocket. Yurchikhin and Misurkin also retrieved two science experiments and installed one new one.

  3. Proceedings -- US Russian workshop on fuel cell technologies (in English;Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, B.; Sylwester, A.

    1996-04-01

    On September 26--28, 1995, Sandia National Laboratories sponsored the first Joint US/Russian Workshop on Fuel Cell Technology at the Marriott Hotel in Albuquerque, New Mexico. This workshop brought together the US and Russian fuel cell communities as represented by users, producers, R and D establishments and government agencies. Customer needs and potential markets in both countries were discussed to establish a customer focus for the workshop. Parallel technical sessions defined research needs and opportunities for collaboration to advance fuel cell technology. A desired outcome of the workshop was the formation of a Russian/American Fuel Cell Consortium to advance fuel cellmore » technology for application in emerging markets in both countries. This consortium is envisioned to involve industry and national labs in both countries. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  4. Impact of climatic factors on energy consumption during the heating season

    NASA Astrophysics Data System (ADS)

    Ginzburg, A. S.; Reshetar, O. A.; Belova, I. N.

    2016-09-01

    Global and regional climate changes produce a significant effect on energy production and consumption, especially on heating and air conditioning in residential, industrial, commercial, and office rooms. In Russia, with its contracting climate conditions, energy consumption varies a lot in different regions. Thus, we have to review the dynamics of energy consumption during the cold season individually for each region of the country. We analyzed the dynamics of duration and temperature of the heating season in Moscow region and completed a comparative study of heat energy consumption, actual and calculated based on the 'degreedays' concept, in the municipal economy of Moscow during the last decade. Based on the actual data analysis, we proved that conservation of energy resources in a large city relies not so much on a shortening of the heating period as on the growth of atmospheric air temperature in winter. The projected climate warming in the Moscow region in the nearest decades, along with measures of energy conservation, will promote a significant reduction in energy consumption of the municipal economy in winter. The results shown in this article were obtained in the process of preparing and implementing project no. 16-17-00114 by the Russian Science Foundation "Analysis of an impact of the regional climate change on the residential and commercial energy consumption of Russian megacities," within the main area of focus of the Russian Science Foundation, which is "Fundamental Research and Exploration in Main Topical Areas of Focus." The project was implemented within the framework of the scientific area of focus, which is "Reduction of the Risk and Mitigation of Consequences of Natural and Man-made Disasters" ("Studying Economical, Political, and Social Consequences of Global Climate Changes" problem).

  5. From 'beastly philosophy' to medical genetics: eugenics in Russia and the Soviet Union.

    PubMed

    Krementsov, Nikolai

    2011-01-01

    This essay offers an overview of the three distinct periods in the development of Russian eugenics: Imperial (1900-1917), Bolshevik (1917-1929), and Stalinist (1930-1939). Began during the Imperial era as a particular discourse on the issues of human heredity, diversity, and evolution, in the early years of the Bolshevik rule eugenics was quickly institutionalized as a scientific discipline--complete with societies, research establishments, and periodicals--that aspired an extensive grassroots following, generated lively public debates, and exerted considerable influence on a range of medical, public health, and social policies. In the late 1920s, in the wake of Joseph Stalin's 'Great Break', eugenics came under intense critique as a 'bourgeois' science and its proponents quickly reconstituted their enterprise as 'medical genetics'. Yet, after a brief period of rapid growth during the early 1930s, medical genetics was dismantled as a 'fascist science' towards the end of the decade. Based on published and original research, this essay examines the factors that account for such an unusual--as compared to the development of eugenics in other locales during the same period--historical trajectory of Russian eugenics.

  6. Scientists in a Changed Institutional Environment: Subjective Adaptation and Social Responsibility Norms in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, T P; Ball, D Y

    How do scientists react when the institutional setting in which they conduct their work changes radically? How do long-standing norms regarding the social responsibility of scientists fare? What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose science system experienced a sustained crisis and sweeping changes in science institutions following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures ofmore » two norms regarding scientists social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common among Russian scientists, but far from universal. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. As for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially-oriented norms.« less

  7. [To the 80-anniversary of cholinesterase. The cholinesterase club in Sechenov Institute of Evolutionary Physiology and Biochemistry].

    PubMed

    Rozengart, E V; Basova, N E; Moralev, S N

    2012-01-01

    For the second half of the XX century, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences was the center of the Russian cholinesterase investigations ("the Russian cholinesterase club"). The close cooperation with chemists-syntheticians of different scientific schools provided success and fruitfulness of this scientific search. All these years, there was preserved dualism of this investigation: a study of the mechanism of functioning and kinetics of cholinesterase catalysis as well as the comparative-enzymological character of studies of cholinesterases of the animals being at different levels of evolutionary development.

  8. The Heidelberg circle: German inflections on the professionalization of Russian chemistry in the 1860s.

    PubMed

    Gordin, Michael D

    2008-01-01

    The success of the "second importation" of science to Russia during the Great Reforms of the 1860s is illustrated by examining the extended postdoctoral study of chemists in Heidelberg. While there, they adapted the Russian intelligentsia institution of the "circle," or kruzhok, to cope with their alienation from the German culture they were confronting. Upon their return to Russia, they felt the lack of the communicative network they had established while abroad and reimported the kruzhok to serve as a central model for the formation of the Russian Chemical Society in 1868.

  9. Problems of the Financing of Russian Science

    ERIC Educational Resources Information Center

    Mindeli, L.; Chernykh, S.

    2010-01-01

    One of the most important factors that determine the state of science potential and, in the long run, the successful results of scientific and technical activity, is its financing. All developed countries conduct an incentive policy to encourage their national science, including systematic support from state budgets for scientific research and…

  10. Final Science Reports of the US Experiments Flown on the Russian Biosatellite Cosmos 2229

    NASA Technical Reports Server (NTRS)

    Connolly, James P. (Editor); Skidmore, Michael G. (Editor); Helwig, Denice A. (Editor)

    1997-01-01

    Cosmos 2229 was launched on December 29, 1992, containing a biological payload including two young male rhesus monkeys, insects, amphibians, and cell cultures. The biosatellite was launched from the Plesetsk Cosmodrome in Russia for a mission duration of 11.5 days. The major research objectives were: (1) Study of adaptive response mechanisms of mammals during flight; and (2) Study of physiological mechanisms underlying vestibular, motor system and brain function in primates during early and later adaptation phases. American scientists and their Russian collaborators conducted 11 experiments on this mission which included extensive preflight and postflight studies with rhesus monkeys. Biosamples and data were subsequently transferred to the United States. The U.S. responsibilities for this flight included the development of experiment protocols, the fabrication of some flight instrumentation and experiment-specific ground-based hardware, the conducting of preflight and postflight testing and the analysis of biospecimens and data for the U.S. experiments. A description of the Cosmos 2229 mission is presented in this report including preflight, on-orbit and postflight activities. The flight and ground-based bioinstrumentation which was developed by the U.S. and Russia is also described, along with the associated preflight testing ot the U.S. hardware. Final Science Reports for the experiments are also included.

  11. Russian Scientists Visitors

    NASA Image and Video Library

    1959-11-29

    Russian Scientists from the Commission of Interplanetary Travel of the Soviet Academy of Science November 21,1959 Left to right: Front row: Yury S. Galkin, Anatoly A. Blagonravov, and Prof. Leonid I. Sedov (Chair of the Commission for Interplanetary Travel)-Soviet Academy of Science, Leninski Gory, Moscow, Russia Dr. H.J. E. Reid and Floyd L. Thompson Langley Research Center. Second row: Boris Kit Translator, Library of Congress, Washington, D.C. Eugene C. Draley and Laurence K. Loftin, Jr. -Langley Research Center Arnold W. Frutkin and Harold R. Lawrence NASA Headquarters. Back row: T.Melvin Butler-Langley Research Center John W. Townsend Goddard Space Flight Center, NASA, Washington D.C., and George M. Low NASA Headquarters.

  12. Expedition 11 and Expedition 12 on-orbit crew portrait

    NASA Image and Video Library

    2005-10-08

    ISS011-E-14191 (8 October 2005) --- The crewmembers onboard the International Space Station pose for a group photo in the Destiny laboratory following the ceremony of Changing-of-Command from Expedition 11 to Expedition 12. From the left (front row) are Russian Federal Space Agency cosmonaut Sergei K. Krikalev, Expedition 11 commander; and astronaut William S. McArthur Jr., Expedition 12 commander and NASA science officer. From the left (back row) are astronaut John L. Phillips, Expedition 11 NASA science officer and flight engineer; U.S. Spaceflight Participant Gregory Olsen; and Russian Federal Space Agency cosmonaut Valery I. Tokarev, Expedition 12 flight engineer.

  13. KSC-97PC840

    NASA Image and Video Library

    1997-05-24

    The Space Shuttle orbiter Atlantis glides in for a landing on Runway 33 at KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. It will be the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  14. Lexically restricted utterances in Russian, german, and english child-directed speech.

    PubMed

    Stoll, Sabine; Abbot-Smith, Kirsten; Lieven, Elena

    2009-01-01

    This study investigates the child-directed speech (CDS) of four Russian-, six German, and six English-speaking mothers to their 2-year-old children. Typologically Russian has considerably less restricted word order than either German or English, with German showing more word-order variants than English. This could lead to the prediction that the lexical restrictiveness previously found in the initial strings of English CDS by Cameron-Faulkner, Lieven, and Tomasello (2003) would not be found in Russian or German CDS. However, despite differences between the three corpora that clearly derive from typological differences between the languages, the most significant finding of this study is a high degree of lexical restrictiveness at the beginnings of CDS utterances in all three languages. Copyright © 2009 Cognitive Science Society, Inc.

  15. Researchers fear 'Putin's Academy of Sciences'

    NASA Astrophysics Data System (ADS)

    Moskvitch, Katia

    2013-11-01

    Scientists have voiced concerns about the future of the Russian Academy of Sciences (RAS) after the country's president, Vladimir Putin, signed a law that will make the 289-year-old body come under the direct control of a new government agency.

  16. Science under duress

    NASA Astrophysics Data System (ADS)

    2016-11-01

    In the first half of the 20th century, devotion to Marx's "one science" contributed to the deaths of millions of ordinary Russians. How this happened is the subject of Stalin and the Scientists: a History of Triumph and Tragedy by Simon Ings.

  17. V. M. BEKHTEREV IN RUSSIAN CHILD SCIENCE, 1900S-1920S: "OBJECTIVE PSYCHOLOGY"/"REFLEXOLOGY" AS A SCIENTIFIC MOVEMENT.

    PubMed

    Byford, Andy

    2016-01-01

    In the early 20(th) century the child population became a major focus of scientific, professional and public interest. This led to the crystallization of a dynamic field of child science, encompassing developmental and educational psychology, child psychiatry and special education, school hygiene and mental testing, juvenile criminology and the anthropology of childhood. This article discusses the role played in child science by the eminent Russian neurologist and psychiatrist Vladimir Mikhailovich Bekhterev. The latter's name is associated with a distinctive program for transforming the human sciences in general and psychology in particular that he in the 1900s labelled "objective psychology" and from the 1910s renamed "reflexology." The article examines the equivocal place that Bekhterev's "objective psychology" and "reflexology" occupied in Russian/Soviet child science in the first three decades of the 20(th) century. While Bekhterev's prominence in this field is beyond doubt, analysis shows that "objective psychology" and "reflexology" had much less success in mobilizing support within it than certain other movements in this arena (for example, "experimental pedagogy" in the pre-revolutionary era); it also found it difficult to compete with the variety of rival programs that arose within Soviet "pedology" during the 1920s. However, this article also demonstrates that the study of child development played a pivotal role in Bekhterev's program for the transformation of the human sciences: it was especially important to his efforts to ground in empirical phenomena and in concrete research practices a new ontology of the psychological, which, the article argues, underpinned "objective psychology"/"reflexology" as a transformative scientific movement. © 2016 The Authors. Journal of the History of the Behavioral Sciences Published by Wiley Periodicals, Inc.

  18. Measurement Science of the Intermittent Atmospheric Boundary Layer

    DTIC Science & Technology

    2014-01-01

    Infrasound from the Russian meteor of 15 February 2013 observed in Colorado, Geophysical Research Letters (03 2013) Shiril Tichkule, Andreas...barometers have been arranged in the form of a triangle of 40 m spacing, and the barometer array has effectively detected atmospheric infrasound (including...ocean- generated “microbaroms” and the infrasound boom from the 15 February 2013 Russian me- teor) and gravity waves • During intensive-observation

  19. Saltcedar (Tamarix spp.) and Russian Olive (Elaeagnus angustifolia) in the Western United States-A Report on the State of the Science

    USGS Publications Warehouse

    Shafroth, Patrick

    2010-01-01

    The Salt Cedar and Russian Olive Control Demonstration Act of 2006 (Public Law 109-320) directs the Department of the Interior to submit a report to Congress that includes an assessment of several issues surrounding these two nonnative trees, now dominant components of the vegetation along many rivers in the Western United States. This report was published in 2010 as a U.S. Geological Survey Scientific Investigations Report (available online at http://pubs.usgs.gov/sir/2009/5247). The report was produced through a collaborative effort led by the Bureau of Reclamation and U.S. Geological Survey, with critical contributions from the U.S. Department of Agriculture and from university researchers. The document synthesizes the state of the science and key research needs on the following topics related to management of saltcedar (Tamarix spp.) and Russian olive (Elaeagnus angustifolia) in the Western United States: their distribution and abundance (extent); the potential for water savings associated with controlling these species; considerations related to wildlife use of saltcedar and Russian olive habitat and restored habitats; methods of control and removal; possible utilization of dead biomass following control and removal; and approaches and challenges associated with site revegetation or restoration. A concluding chapter discusses possible long-term management strategies, potentially useful field-demonstration projects, and a planning process for on-the-ground projects involving removal of saltcedar and Russian olive.

  20. Cadres Decide Everything: The Pay and Pension Security of Workers in Science

    ERIC Educational Resources Information Center

    Rimashevskaia, N. M.; Zubova, L. T.; Antropova, O. A.

    2011-01-01

    Russian science is experiencing processes of personnel aging and stagnation, which are disrupting the continuity of the generations and are limiting prospective workers' opportunities for professional and career growth. The decline in the prestige of science work, the exodus of specialists into other, more attractive segments of economic activity…

  1. History of technical protection. 60 years in science: to the jubilee of Prof. V.F. Minin

    NASA Astrophysics Data System (ADS)

    Shipilov, S. E.; Yakubov, V. P.

    2018-05-01

    The article briefly describes the scientific achievements of the full Professor, Doctor of Technical Sciences, the founder of the Institute of Applied Physics, the academician of the Russian Academy of Technological Sciences, the winner of the State Prize of the USSR Vladilen F. Minin.

  2. Russian eruption warning systems for aviation

    USGS Publications Warehouse

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  3. JPRS Report Science & Technology USSR: Chemistry

    DTIC Science & Technology

    1991-09-26

    IZVESTIYA AKADEMIINAUK BSSR: SERIYA KHIMICHESKIKH NAUK, No 2 , Mar-Apr 91] 16 The Effect of the Self- Oxidation of Peat During Storage on Makeup and... 2 Russian, 3 Western. Identification of the Superconductive Properties of the Ceramic High-Temperature Superconductor YBa2Cu3065+/_x 917M0158E...superconduc- tive properties of ceramic HTSC based on voltammetric curves obtained against the background of 0.5 M KC1 (pH, 2 ) at ambient temperatuer in

  4. Mustafa Kemal at Gallipoli: A Leadership Analysis and Terrain Walk

    DTIC Science & Technology

    2016-03-01

    1 AU/ACSC/PICCIRILLI, S/AY16 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY Mustafa Kemal at Gallipoli: A Leadership Analysis and...Requirements for the Degree of MASTER OF OPERATIONAL ARTS AND SCIENCES Advisor: Mr. Patrick D. Ellis Maxwell Air Force Base, Alabama March 2016...bloody stalemate on the Western Front, knock the Ottoman Empire out of the war, and open a sea line of communication to the Russian Empire. The

  5. Environmental tolerance of an invasive riparian tree and its potential for continued spread in the southwestern US

    USGS Publications Warehouse

    Reynolds, L.V.; Cooper, D.J.

    2010-01-01

    Questions: Exotic plant invasion may be aided by facilitation and broad tolerance of environmental conditions, yet these processes are poorly understood in species-rich ecosystems such as riparian zones. In the southwestern United States (US) two plant species have invaded riparian zones: tamarisk (Tamarix ramosissima, T. chinensis, and their hybrids) and Russian olive (Elaeagnus angustifolia). We addressed the following questions: (1) is Russian olive able to tolerate drier and shadier conditions than cottonwood and tamarisk? (2) Can tamarisk and cottonwood facilitate Russian olive invasion? Location: Arid riparian zones, southwestern US. Methods: We analyzed riparian tree seedling requirements in a controlled experiment, performed empirical field studies, and analyzed stable oxygen isotopes to determine the water sources used by Russian olive. Results: Russian olive survival was significantly higher in dense shade and low moisture conditions than tamarisk and cottonwood. Field observations indicated Russian olive established where flooding cannot occur, and under dense canopies of tamarisk, cottonwood, and Russian olive. Tamarisk and native riparian plant species seedlings cannot establish in these dry, shaded habitats. Russian olive can rely on upper soil water until 15 years of age, before utilizing groundwater. Conclusions: We demonstrate that even though there is little evidence of facilitation by cottonwood and tamarisk, Russian olive is able to tolerate dense shade and low moisture conditions better than tamarisk and cottonwood. There is great potential for continued spread of Russian olive throughout the southwestern US because large areas of suitable habitat exist that are not yet inhabited by this species. ?? 2010 International Association for Vegetation Science.

  6. Multilateral Biomedical Data Sharing in the One-year Joint US-Russian Mission on the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Haven, C.; Johnson-Throop, K.; Van Baalen, M.; McFather, J.

    2014-01-01

    The One Year Mission (1YM) by two astronauts on the International Space Station (ISS), starting in March 2015, offers a unique opportunity to expand multilateral collaboration by sharing data and resources among the partner agencies in preparation for planned space exploration missions beyond low Earth orbit. Agreements and protocols will be established for the collection, distribution, analysis and reporting of both research and clinical data. Data will be shared between the agencies sponsoring the investigators, and between the research and clinical medicine communities where common interests are identified. The assignment of only two astronauts, one Russian and the other American, to the 1YM necessitated creativity in bilateral efforts to maximize the biomedical return from the opportunity. Addition of Canadian, European and Japanese investigations make the effort even more integrative. There will be three types of investigations: joint, cross-participation and data-exchange. The joint investigations have US and Russian coprincipal investigators, and the data acquired will be their common responsibility. The other two types must develop data sharing agreements and processes specific to their needs. A multilateral panel of ISS partner space agencies will develop policies for international exchange of scientific information to meet their science objectives and priorities. They will promote archiving of space flight data and will inform each other and the scientific community at large about the results obtained from space life sciences studies. Integration tasks for the 1YM are based on current experience from the ISS and previous efforts on the Russian space station Mir. Closer coordination between international partners requires more common approaches to remove barriers to multilateral resource utilization on the ISS. Greater integration in implementation should increase utilization efficiency to benefit all participants in spaceflight human research. This presentation will describe the overarching principles for multilateral data collection, analysis and sharing and for data security for medical and research data shared between ISS partners prior to release in public forums.

  7. Biosecurity policies at international life science journals.

    PubMed

    van Aken, Jan; Hunger, Iris

    2009-03-01

    The prospect of bioterrorism has raised concerns about the potential abuse of scientific information for malign purposes and the pressure on scientific publishers to prevent the publication of "recipes" for weapons of mass destruction. Here we present the results of a survey of 28 major life science journals--20 English-language international journals and 3 Chinese and 5 Russian journals--with regard to their biosecurity policies and procedures. The survey addressed the extent to which life science journals have implemented biosecurity procedures in recent years, how authors and reviewers are advised about these procedures and the underlying concerns, and what the practical experiences have been. Few of the English-language publishers and none of the Russian and Chinese publishers surveyed implement formal biosecurity policies or inform their authors and reviewers about potentially sensitive issues in this area.

  8. Preface

    NASA Astrophysics Data System (ADS)

    Pattison, Bryan; Borisov, Alexander

    2017-06-01

    The 19th International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2016), held at the P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow (LPI RAS) from 22 to 28 August 2016, attracted more than 120 participants. The Symposium was carried out under the auspices of the International Union of Pure and Applied Physics (IUPAP) with financial support from the Federal Agency for Scientific Organizations and the Russian Foundation for Basic Research.

  9. U.S. Government Funding for Science and Technology Cooperation with Russia

    DTIC Science & Technology

    2002-01-01

    and Vietnamese scientists to study and understand the origin of cosmic rays , and "* collaboration among U.S., Russian, Ukrainian, and Lithuanian...International Space Station; for solar terrestrial surface radiation over the Arctic basin; and to index and track Russian biomedical articles and...experimentation on an electric propulsion thruster for small, low-power satellites "• calibrating data analysis from the Stellar X- Ray Polarimeter of

  10. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14467 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck Kurs antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  11. Russian Extravehicular Activity (EVA) 17A.

    NASA Image and Video Library

    2007-02-22

    ISS014-E-14469 (22 Feb. 2007) --- Cosmonaut Mikhail Tyurin, Expedition 14 flight engineer representing Russia's Federal Space Agency, wearing a Russian Orlan spacesuit, participates in a session of extravehicular activity (EVA). Among other tasks, Tyurin and astronaut Michael E. Lopez-Alegria (out of frame), commander and NASA space station science officer, were able to retract a stuck antenna on the Progress vehicle docked to the International Space Station's Zvezda Service Module.

  12. Alexander Samokutyaev conducts BTKh-14/Bioemulsiya (Bioemulsion) Experiment

    NASA Image and Video Library

    2011-05-05

    ISS027-E-022454 (5 May 2011) --- Russian cosmonaut Alexander Samokutyaev, Expedition 27 flight engineer, uses a glovebox to service the Russian Bioemulsion science payload in the Poisk Mini-Research Module 2 (MRM2) of the International Space Station. The Bioemulsion experiment is attempting to develop faster technologies for obtaining microorganism biomass and biologically active substance biomass for creating highly efficient environmentally pure bacteria, enzymes, and medicinal/pharmaceutical preparations.

  13. Astronaut Moments: Randy Bresnik

    NASA Image and Video Library

    2017-07-12

    Astronaut Moments with NASA astronaut Randy Bresnik. Bresnik and his crewmates, cosmonaut Sergey Ryazanskiy of the Russian space agency Roscosmos and Paolo Nespoli of ESA (European Space Agency), will launch on the Russian Soyuz MS-05 spacecraft at 11:41 a.m. on July 28. They are scheduled to return to Earth in December. The crew members will continue several hundred experiments in biology, biotechnology, physical science and Earth science currently underway and scheduled to take place aboard humanity's only permanently occupied orbiting lab. HD download link: https://archive.org/details/jsc2017m000414_Astronaut-Moments-Randy-Bresnik _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  14. V. M. BEKHTEREV IN RUSSIAN CHILD SCIENCE, 1900S–1920S: “OBJECTIVE PSYCHOLOGY”/“REFLEXOLOGY” AS A SCIENTIFIC MOVEMENT

    PubMed Central

    2016-01-01

    In the early 20th century the child population became a major focus of scientific, professional and public interest. This led to the crystallization of a dynamic field of child science, encompassing developmental and educational psychology, child psychiatry and special education, school hygiene and mental testing, juvenile criminology and the anthropology of childhood. This article discusses the role played in child science by the eminent Russian neurologist and psychiatrist Vladimir Mikhailovich Bekhterev. The latter's name is associated with a distinctive program for transforming the human sciences in general and psychology in particular that he in the 1900s labelled “objective psychology” and from the 1910s renamed “reflexology.” The article examines the equivocal place that Bekhterev's “objective psychology” and “reflexology” occupied in Russian/Soviet child science in the first three decades of the 20th century. While Bekhterev's prominence in this field is beyond doubt, analysis shows that “objective psychology” and “reflexology” had much less success in mobilizing support within it than certain other movements in this arena (for example, “experimental pedagogy” in the pre‐revolutionary era); it also found it difficult to compete with the variety of rival programs that arose within Soviet “pedology” during the 1920s. However, this article also demonstrates that the study of child development played a pivotal role in Bekhterev's program for the transformation of the human sciences: it was especially important to his efforts to ground in empirical phenomena and in concrete research practices a new ontology of the psychological, which, the article argues, underpinned “objective psychology”/“reflexology” as a transformative scientific movement. PMID:26910603

  15. Space Sciences Education and Outreach Project of Moscow State University

    NASA Astrophysics Data System (ADS)

    Krasotkin, S.

    2006-11-01

    sergekras@mail.ru The space sciences education and outreach project was initiated at Moscow State University in order to incorporate modern space research into the curriculum popularize the basics of space physics, and enhance public interest in space exploration. On 20 January 2005 the first Russian University Satellite “Universitetskiy-Tatyana” was launched into circular polar orbit (inclination 83 deg., altitude 940-980 km). The onboard scientific complex “Tatyana“, as well as the mission control and information receiving centre, was designed and developed at Moscow State University. The scientific programme of the mission includes measurements of space radiation in different energy channels and Earth UV luminosity and lightning. The current education programme consists of basic multimedia lectures “Life of the Earth in the Solar Atmosphere” and computerized practice exercises “Space Practice” (based on the quasi-real-time data obtained from “Universitetskiy-Tatyana” satellite and other Internet resources). A multimedia lectures LIFE OF EARTH IN THE SOLAR ATMOSPHERE containing the basic information and demonstrations of heliophysics (including Sun structure and solar activity, heliosphere and geophysics, solar-terrestrial connections and solar influence on the Earth’s life) was created for upper high-school and junior university students. For the upper-university students there a dozen special computerized hands-on exercises were created based on the experimental quasi-real-time data obtained from our satellites. Students specializing in space physics from a few Russian universities are involved in scientific work. Educational materials focus on upper high school, middle university and special level for space physics students. Moscow State University is now extending its space science education programme by creating multimedia lectures on remote sensing, space factors and materials study, satellite design and development, etc. The space sciences educational activity of Moscow State University is a non-profit project and is open for all interested parties. “Space schools” for university teachers and students were held in the autumn of 2004 and 2005. The main objective of those schools was to attract interest in space research. Tutors and students who took part in these schools had never before been involved in the space sciences. The idea behind these schools was to join forces: Moscow State University scientists gave space science lectures, students from different universities (Ulianovsk, Samara, Kostroma and other Russian universities) performed the work (prepared educational material) and their university teachers managed the students. After participating in these schools, both students and teachers started to study space science related topics emphasizing the success of these schools. It is important for the educational community to understand what skills future space scientists and space industry employees must be equipped with. In the next years, emphasis is to be placed on space science education at all educational levels and better communication should be practiced between universities and industry.

  16. Research on Russian National Character

    ERIC Educational Resources Information Center

    Na, Zhuo

    2008-01-01

    The special geographical location Russia lies in creates the unique character of the Russian nation. Based on the dual nature of the Russian national character, the Russian geographical environment and the analysis of its social structure, this text tries to explore the reasons of the dual nature of Russian national character.

  17. The Soviet Academy of Sciences and Technological Development

    DTIC Science & Technology

    1980-12-01

    Mikulinskiy, Director of the Institute of the History of Science and Technology, 1VAN SSSR, No. 7, 1977, p. 89. 2The Russian word vnedreniye means...of the History of Science and Technology, Moscow, 1970. 2VAN SSSR, No. 9, 1976, p. 20. 3vAN SSSR, No. 2, 1977, p. 8. 19 found it necessary to

  18. KSC-97PC855

    NASA Image and Video Library

    1997-05-24

    This unusual view of the underside of the Space Shuttle orbiter Atlantis shortly before landing was taken by a fish-eye camera lens from KSC’s Shuttle Landing Facility. The Vehicle Assembly Building is in the background at left. The Shuttle Training Aircraft can be seen in the distance, at center. Atlantis is wrapping up its nine-day STS-84 mission, which was the sixth docking of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger is returning to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  19. KSC-97PC839

    NASA Image and Video Library

    1997-05-24

    The Space Shuttle orbiter Atlantis touches down on Runway 33 of the KSC Shuttle Landing Facility, bringing to an end the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  20. KSC-97PC843

    NASA Image and Video Library

    1997-05-24

    The Space Shuttle orbiter Atlantis touches down on Runway 33 of the KSC Shuttle Landing Facility, bringing to an end the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  1. KSC-97PC852

    NASA Image and Video Library

    1997-05-24

    The Space Shuttle orbiter Atlantis touches down on Runway 33 of the KSC Shuttle Landing Facility, bringing to an end the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  2. KSC-97PC838

    NASA Image and Video Library

    1997-05-24

    The Space Shuttle orbiter Atlantis touches down on Runway 33 of the KSC Shuttle Landing Facility, bringing to an end the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  3. 70th anniversary of the E K Zavoisky Kazan Physical-Technical Institute, Kazan Scientific Center of the Russian Academy of Sciences (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 4 February 2016)

    NASA Astrophysics Data System (ADS)

    2016-06-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held on 4 February 2016 at the E K Zavoisky Kazan Physical-Technical Institute, Kazan Scientific Center (KSC), RAS, devoted to the 70th anniversary of the E K Zavoisky Kazan Physical-Technical Institute, KSC RAS. The agenda posted on the website of the Physical Sciences Division RAS http://www.gpad.ac.ru comprised the following reports: (1) Demishev S V (Prokhorov General Physics Institute, RAS, Moscow) "Quantum phase transitions in spiral magnets without an inversion center"; (2) Smirnov A I (Kapitza Institute for Physical Problems, RAS, Moscow) "Magnetic resonance of spinons in quantum magnets"; (3) Ryazanov V V (Institute of Solid State Physics, RAS, Chernogolovka, Moscow region) "Coherent and nonequilibrium phenomena in superconductor- and ferromagnet-based structures"; (4) Mel'nikov A S (Institute for Physics of Microstructures, RAS, Nizhny Novgorod) "Mechanisms of long-range proximity effects in superconducting spintronics"; (5) Fel'dman E B (Institute of Problems of Chemical Physics, RAS, Chernogolovka, Moscow region) "Magnus expansion paradoxes in the study of equilibrium magnetization and entanglement in multi-pulse spin locking"; (6) Fraerman A A (Institute for Physics of Microstructures, RAS, Nizhny Novgorod) "Features of the motion of spin-1/2 particles in a noncoplanar magnetic field"; (7) Salikhov K M (E K Zavoisky Kazan Physical-Technical Institute, KSC, RAS, Kazan) "Electron paramagnetic resonance applications: promising developments at the E K Zavoisky Kazan Physical-Technical Institute of the Russian Academy of Sciences"; (8) Vinogradov E A (Institute for Spectroscopy, RAS, Troitsk, Moscow) "Ultrathin film characterization using far-field surface polariton spectroscopy"; (9) Glyavin M Yu (Institute of Applied Physics, RAS, Nizhny Novgorod) "High-power terahertz sources for spectroscopy and material diagnostics"; (10) Soltamov V A (Ioffe Institute, RAS, Saint Petersburg) "Radio spectroscopy of the optically aligned spin states of color centers in silicon carbide"; (11) Kalachev A A (E K Zavoisky Kazan Physical-Technical Institute, KSC, RAS, Kazan) "Long-range quantum communication. Basic devices and prospects for development"; (12) Kuznetsov D (Bruker Corporation, Moscow) "Recent magnetic resonance hardware advances at the Bruker Corporation". Papers based on talks 1, 2, 4-7, 9, and 10 are presented below. • Quantum phase transitions in spiral magnets without an inversion center, S V Demishev, V V Glushkov, S V Grigoriev, M I Gilmanov, I I Lobanova, A N Samarin, A V Semeno, N E Sluchanko Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 559-563 • Magnetic resonance of spinons in quantum magnets, A I Smirnov Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 564-570 • Long-range ballistic transport mechanisms in superconducting spintronics, A V Samokhvalov, A S Mel'nikov, A I Buzdin Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 571-576 • Magnus expansion paradoxes in the study of equilibrium magnetization and entanglement in multi-pulse spin locking, E I Kuznetsova, E B Fel'dman, D E Feldman Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 577-582 • Features of the motion of spin-1/2 particles in a noncoplanar magnetic field, D A Tatarskiy, A V Petrenko, S N Vdovichev, O G Udalov, Yu V Nikitenko, A A Fraerman Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 583-587 • Electron paramagnetic resonance applications: promising developments at the E K Zavoisky Kazan Physical-Technical Institute of the Russian Academy of Sciences, K M Salikhov Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 588-594 • High power terahertz sources for spectroscopy and material diagnostics, M Yu Glyavin, G G Denisov, V E Zapevalov, M A Koshelev, M Yu Tretyakov, A I Tsvetkov Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 595-604 • Radio spectroscopy of the optically aligned spin states of color centers in silicon carbide, V A Soltamov, P G Baranov Physics-Uspekhi, 2016, Volume 59, Number 6, Pages 605-610

  4. Comparison of some characteristics of comets 1P/Halley and 67P/Churyumov-Gerasimenko from the Vega and Rosetta mission data

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2017-05-01

    On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and -2 approached the nucleus of comet 1P/Halley and flew by at a small distance. A while later, on March 14, 1986, the Giotto spacecraft (European Space Agency (ESA)) followed them. Together with the Japanese spacecraft Suisei (Japan Aerospace Exploration Agency (JAXA)), they obtained spaceborne investigations of cometary nuclei. Direct studies of cometary bodies that bear traces of the Solar System formation were continued in the next missions to comets. Starting from 2014 and up to 2016 September, the Rosetta spacecraft (ESA), being in a low orbit around the nucleus of comet 67P/Churyumov-Gerasimenko, has performed extremely sophisticated investigations of this comet. Here, we compare some results of these missions. The paper is based on the reports presented at the memorial conference dedicated to the 30th anniversary of the Vega mission, which took place at the Space Research Institute of the Russian Academy of Sciences in March, 2016, and does not pretend to comprehensively cover the problems of cometary physics.

  5. USSR Space Life Sciences Digest, Issue 26

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Frey, Mary Ann (Editor); Teeter, Ronald (Editor); Garshnek, Victoria (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-sixth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 35 journal papers or book chapters published in Russian and of 8 Soviet books. In addition, the proceedings of an Intercosmos conference on space biology and medicine are summarized.

  6. New role for space station—Enhanced cooperation with Russia?

    NASA Astrophysics Data System (ADS)

    Leath, Audrey T.

    The Clinton administration's recent discussions with Russia on enhanced space cooperation and a possible joint space station prompted a two-part hearing by the House Science Subcommittee on Space, held on October 6 and 14. Subcommittee members, citing rumors and news stories about a joint station, questioned Presidential Science Advisor Jack Gibbons and NASA Administrator Daniel Goldin on the status of the proposed cooperation and heard from additional witnesses regarding the feasibility of and support for the concept.Gibbons reassured subcommittee members that no decision has yet been made on Russian cooperation, and that Congress would be consulted in the process. He explained that, after the Vancouver Summit, establishment of a Joint Commission headed by Vice President Gore and Russian Prime Minister Chernomyrdin provided an opportunity for enhanced cooperation in space, as well as in such other areas as energy, nuclear safety, the environment, business development, science and technology, and defense diversification. Gibbons testified that the study of a cooperative station program took place concurrently with NASA's work on defining the redesigned U.S. space station, now being referred to as “Alpha.” He affirmed that while Alpha's modular design made it adaptable to a joint effort, it could “be built independent of any Russian participation.”

  7. The Moon in the Russian scientific-educational project: Kazan-GeoNa-2010

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Kitiashvili, I.; Petrova, N.

    Historically thousand-year Kazan city and the two-hundred-year Kazan university Russia carry out a role of the scientific-organizational and cultural-educational center of Volga region For the further successful development of educational and scientific-educational activity of the Russian Federation the Republic Tatarstan Kazan is offered the national project - the International Center of the Science and the Internet of Technologies bf GeoNa bf Geo metry of bf Na ture - bf GeoNa is developed - wisdom enthusiasm pride grandeur which includes a modern complex of conference halls up to 4 thousand places the Center the Internet of Technologies 3D Planetarium - development of the Moon PhysicsLand an active museum of natural sciences an oceanarium training a complex Spheres of Knowledge botanical and landscape oases In center bf GeoNa will be hosted conferences congresses fundamental scientific researches of the Moon scientific-educational actions presentation of the international scientific programs on lunar research modern lunar databases exhibition Hi-tech of the equipment the extensive cultural-educational tourist and cognitive programs Center bf GeoNa will enable scientists and teachers of the Russian universities to join to advanced achievements of a science information technologies to establish scientific communications with foreign colleagues in sphere of the high technology and educational projects with world space centers

  8. Russian roulette

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    Following a recent collision, fire, series of computer and power failures, and other mishaps on the Russian space station, Mir, the U.S. Congress held a hearing on September 18 to question the safety of American astronauts staying aboard the aging spacecraft.“There has been sufficient evidence put before this hearing to raise doubts about the safety of continued American long-term presence on the Mir,” said House Science Committee Chairman Rep. James Sensenbrenner (R-Wisc.) at the hearing.

  9. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 45

    DTIC Science & Technology

    1977-05-11

    constants VQ and q. The values of the critical stress intensity factor produced by the authors by their indirect method are compared with...and TEREKHOV, A. N., Moscow Institute of Steel and Alloys [Russian abstract provided by the source] [Text] The method of high-temperature...their melting point. References 9; all Russian. USSR ’ UDC 539𔃽 IMPROVING THE PRECISION OF THE ACOUSTIC METHOD OF STRESS DETERMINATION Kiev

  10. Review of Excess Weapons Plutonium Disposition LLNL Contract Work in Russia-(English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jardine, L; Borisov, G B

    This third meeting of the recently completed and ongoing Russian plutonium immobilization contract work was held at the State Education Center (SEC) in St. Petersburg on January 14-18, 2002. The meeting agenda is reprinted here as Appendix A and the attendance list as Appendix B. The meeting had 58 Russian participants from 21 Russian organizations, including the industrial sites (Mayak, Krasonayarsk-26, Tomsk), scientific institutes (VNIINM, KRI, VNIPIPT, RIAR), design organizations (VNIPIET and GSPI), universities (Nyzhny Novgorod, Urals Technical), Russian Academy of Sciences (Institute of Physical Chemistry or IPhCh, Institute of Ore-Deposit Geology, Petrography, Mineralogy, and Geochemistry or IGEM), Radon-Moscow, S&TCmore » Podol'osk, Kharkov-Ukraine, GAN-SEC-NRS and SNIIChM, the RF Ministry of Atomic Energy (Minatom) and Gosatomnadzor (GAN). This volume, published by LLNL, documents this third annual meeting. Forty-nine technical papers were presented by the Russian participants, and nearly all of these have been collected in this Proceedings. The two objectives for the meeting were to: (1) Bring together the Russian organizations, experts, and managers performing this contract work into one place for four days to review and discuss their work amongst each other. (2) Publish a meeting summary and proceedings of all the excellent Russian plutonium immobilization and other plutonium disposition contract work in one document so that the wide extent of the Russian immobilization activities are documented, referencable and available for others to use, as were the Proceedings of the two previous meetings. Attendees gave talks describing their LLNL contract work and submitted written papers documenting their contract work (in English and Russian), in both hard copy and on computer disks. Simultaneous translation into Russian and English was used for presentations made at the State Region Educational Center (SEC).« less

  11. Nuclear subs to explore Arctic?

    NASA Astrophysics Data System (ADS)

    The international community of scientists has become interested in the idea of using a nuclear submarine to explore the Arctic and other inaccessible regions of the World Ocean. Several alternative approaches to formulating a concept and the respective plan of action put forward by different expert groups have been amply discussed [Eos, May 12, 1992; Navy News and Undersea Technology, November 9, 1992]. The Russian Academy of Sciences has created a working group, “Science-NSM,” to coordinate efforts in working out the concept of the project and the plan of action, determine the main scientific and applied problems and criteria for selecting the type of nuclear submarine to be rebuilt, appraise the possible solutions of occurring problems, as well as to effect international contacts. Members of the group include E. P. Velikhov (chairman), vice-president of the Russian Academy of Sciences; D. M. Klimov (deputy chairman); and Y. D. Chasheckin (scientific secretary).

  12. USSR Space Life Sciences Digest, issue 11

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor); Radtke, Mike (Editor)

    1987-01-01

    This is the eleventh issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 54 papers recently published in Russian language periodicals and bound collections and of four new Soviet monographs. Selected abstracts are illustrated. Additional features include the translation of a paper presented in Russian to the United Nations, a review of a book on space ecology, and report of a conference on evaluating human functional capacities and predicting health. Current Soviet Life Sciences titles available in English are cited. The materials included in this issue have been identified as relevant to 30 areas of aerospace medicine and space biology. These areas are: adaptation, aviation physiology, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal systems, group dynamics, genetics, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, perception, personnel selection, psychology, and radiobiology.

  13. [Conception of health: space-earth].

    PubMed

    Ushakov, I B; Orlov, O I; Baevskiĭ, R M; Bersen'ev, E Iu; Chernikova, A G

    2013-01-01

    In article the new approach to an estimation of a health state of cosmonauts, sportsmen, pilots, drivers, operators, persons of dangerous trades is considered. It has been created and developed in Institute of biomedical problems of the Russian Academy of Sciences under the direction of academician A.I. Grigoriev. Results of works of last decade, by the Program of Presidium of the Russian Academy of Sciences carried out at support of "Fundamental sciences--are submited to medicine". The new system for an estimation of a functional states of an organism at stressful influences in submitted. The methodology of remote studying of influence of ecological factors on health which has begun a new scientific--practical direction--to telemedical ecology is created. In conclusion of the article it is discussed questions of the further introduction of new concept of health and technologies prenosological diagnostics in practice of public health services.

  14. Space Shuttle Projects

    NASA Image and Video Library

    1995-06-01

    This image of the Space Shuttle Orbiter Atlantis, with cargo bay doors open showing Spacelab Module for the Spacelab Life Science and the docking port, was photographed from the Russian Mir Space Station during STS-71 mission. The STS-71 mission performed the first docking with the Russian Mir Space Station to exchange crews. The Mir 19 crew, cosmonauts Anatoly Solovyev and Nikolai Budarin, replaced the Mir 18 crew, cosmonauts Valdamir Dezhurov and Gernady Strekalov, and astronaut Norman Thagard. Astronaut Thagard was launched aboard a Soyuz spacecraft in March 1995 for a three-month stay on the Mir Space Station as part of the Mir 18 crew. The Orbiter Atlantis was modified to carry a docking system compatible with the Mir Space Station. The Orbiter also carried a Spacelab module for the Spacelab Life Science mission in the payload bay in which various life science experiments and data collection took place throughout the 10-day mission.

  15. Greater self-enhancement in Western than Eastern Ukraine, but failure to replicate the Muhammad Ali effect.

    PubMed

    Kemmelmeier, Markus; Malanchuk, Oksana

    2016-02-01

    Based on the cross-cultural research linking individualism-collectivism and self-enhancement, this research examines regional pattern of self-enhancement in Ukraine. Broadly speaking, the western part of Ukraine is mainly Ukrainian speaking and historically oriented towards Europe, whereas Eastern Ukraine is mainly Russian speaking and historically oriented towards the Russian cultural sphere. We found self-enhancement on a "better than average" task to be higher in a Western Ukrainian sample compared to an Eastern Ukrainian sample, with differences in independent self-construals supporting assumed regional variation in individualism. However, the Muhammad Ali effect, the finding that self-enhancement is greater in the domain of morality than intelligence, was not replicated. The discussion focuses on the specific sources of this regional difference in self-enhancement, and reasons for why the Muhammad Ali effect was not found. © 2015 International Union of Psychological Science.

  16. Participation of V. S. Vladimirov in work on the USSR atomic project: A significant milestone in the development of the foundations of mathematical modeling of the processes of neutron physics

    NASA Astrophysics Data System (ADS)

    Trutnev, Yu. A.; Shagaliev, R. M.; Evdokimov, V. V.; Bochkov, A. I.

    2013-02-01

    This paper is dedicated to the 90th anniversary of the birth of a leading Soviet and Russian scientist and a member of the USSR Academy of Sciences: Academician Vasilii Sergeevich Vladimirov. Vladimirov, one of the strongest contemporary mathematicians, worked from 1951 through 1955 at KB-11 (today, the Russian Federal Nuclear Center — All-Russian Scientific Research Institute for Experimental Physics), the "secret facility" where development of atomic weaponry was conducted. We present the main results of Vladimirov's scientific activity connected with his work on the USSR atomic project.

  17. USSR Report Engineering and Equipment.

    DTIC Science & Technology

    1987-05-04

    Korenev , et al. ; ENERGETICHESKOYE STROITELSTVO, No 7, Jul 86) 33 Improving Fire Protection of Cables in Electric Power Plants (S.Ye. Korshunov...Russian No 7, Jul 86 pp 32-33 {Article by V.D. Likhachev, candidate of technical sciences, K.I. Korenev , candidate of technical sciences, K.I. Chikvaidze

  18. Science and the Citizen

    ERIC Educational Resources Information Center

    Scientific American, 1978

    1978-01-01

    Reports on the following topics: (1) a national science and technology plan for China, (2) operable nuclear power plants in the U.S., (3) the university presidents' report on scientific research, (4) the pluperfect square, (5) test tube potatoes, and (6) Russian research of paranormal phenomena a century ago. (MA)

  19. The Scientific Enlightenment System in Russia in the Early Twentieth Century as a Model for Popularizing Science

    ERIC Educational Resources Information Center

    Balashova, Yuliya B.

    2016-01-01

    This research reconstructs the traditions of scientific enlightenment in Russia. The turn of the nineteenth and twentieth centuries was chosen as the most representative period. The modern age saw the establishment of the optimal model for advancing science in the global context and its crucial segment--Russian science. This period was…

  20. Synchronous international scientific mobility in the space of affiliations: evidence from Russia.

    PubMed

    Markova, Yulia V; Shmatko, Natalia A; Katchanov, Yurij L

    2016-01-01

    The article presents a survey of Russian researchers' synchronous international scientific mobility as an element of the global system of scientific labor market. Synchronous international scientific mobility is a simultaneous holding of scientific positions in institutions located in different countries. The study explores bibliometric data from the Web of Science Core Collection and socio-economic indicators for 56 countries. In order to examine international scientific mobility, we use a method of affiliations. The paper introduces a model of synchronous international scientific mobility. It enables to specify country's involvement in the international division of scientific labor. Synchronous international scientific mobility is a modern form of the international division of labor in science. It encompasses various forms of part-time, temporary and remote employment of scientists. The analysis reveals the distribution of Russian authors in the space of affiliations, and directions of upward/downward international scientific mobility. The bibliometric characteristics of mobile authors are isomorphic to those of receiver country authors. Synchronous international scientific mobility of Russian authors is determined by differences in scientific impacts between receiver and donor countries.

  1. Russian, Soviet, and post-Soviet scientific migration: history and patterns

    NASA Astrophysics Data System (ADS)

    Kojevnikov, Alexei

    2011-03-01

    Immigrant scientists from other European countries (predominantly German) were crucial in establishing the tradition of modern science in the Russian Empire of the 18th and 19th centuries. Since the 1860s, however, outgoing waves of scientific migration started originating in Russia, bringing important innovations to international science. The scale and patterns of migration varied greatly with the turbulent time. The talk will describe several landmark stages of the proceess and their cultural consequences: from opening higher education possibilities for women during the late 19th century, to post-1917 academic refugees and Soviet defectors, to the 1960s brain drain provoked by the launch of Sputnik, and to what can be called the first truly global scientific diaspora of Russophone scientists after 1990.

  2. [Mycology at the Institute of Microbiology, Russian Academy of Sciences: history and prospects for the future].

    PubMed

    Feofilova, E P

    2004-01-01

    This review deals with the historical development of mycology at the Winogradsky Institute of Microbiology (Russian Academy of Sciences). Starting from the works of Academician G.A. Nadson, the review considers from the historical perspective the main achievements of the researchers of the Institute in the field of mycology, including such important subfields as the cytology, genetics, physiology, and biochemistry of mycelial fungi and yeast. The review concerns itself with the major theoretical ideas generated by the team of the Laboratory of Experimental Mycology in the course of their studies of micro- and macromycetes. Special attention is also given to recent developments in biotechnology and medicine, including the development of new drug preparations from biologically active substances of fungi.

  3. A High Resolution Clinical PET with Breast and Whole Body Transfigurations

    DTIC Science & Technology

    2006-08-01

    1999. [6] Inst. Inorganic Chemistry, Siberian Branch, Russian Acad. Sci. 3, Acad. Lavrentyev Prospect, Novosibirsk, Russia. [7] White Reflecting Paint...46, no.6, pp. 491-497, 1999. [6] Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Science 3, Acad.Lavrentyev Prospect, 630090...demanding, higher spatial resolution 8 x 8 array (2.3 x 2.3 x 10 mm BGO) for mouse PET with shallower crystals, the pulse-height ratio was 0.73 with an

  4. [The 40th anniversary of RAMS institute of human morphology].

    PubMed

    Kakturskiĭ, L V; Shakhlamov, V A

    2002-01-01

    Institute of Human Morphology of Russian Academy of Medical Sciences was established in 1961 and united efforts of morphologists of various profile--pathologists, cytologists, embryologists. The role of outstanding Russian morphologists and the first Institute heads is shown. Basic achievements in four research fields are characterized: in geographic pathology; structural basis of immune homeostasis in health and pathology; pathologic anatomy and pathogenesis of basic human diseases; human morpho- and embriogenesis in health and disease.

  5. Econophysics and evolutionary economics (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 November 2010)

    NASA Astrophysics Data System (ADS)

    2011-07-01

    The scientific session "Econophysics and evolutionary economics" of the Division of Physical Sciences of the Russian Academy of Sciences (RAS) took place on 2 November 2010 in the conference hall of the Lebedev Physical Institute, Russian Academy of Sciences. The session agenda announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Maevsky V I (Institute of Economics, RAS, Moscow) "The transition from simple reproduction to economic growth"; (2) Yudanov A Yu (Financial University of the Government of the Russian Federation, Moscow) "Experimental data on the development of fast-growing innovative companies in Russia"; (3) Pospelov I G (Dorodnitsyn Computation Center, RAS, Moscow) "Why is it sometimes possible to successfully model an economy? (4) Chernyavskii D S (Lebedev Physical Institute, RAS, Moscow) "Theoretical economics"; (5) Romanovskii M Yu (Prokhorov Institute of General Physics, RAS, Moscow) "Nonclassical random walks and the phenomenology of fluctuations of the yield of securities in the securities market"; (6) Dubovikov M M, Starchenko N V (INTRAST Management Company, Moscow Engineering Physics Institute, Moscow) "Fractal analysis of financial time series and the prediction problem"; Papers written on the basis of these reports are published below. • The transition from simple reproduction to economic growth, V I Maevsky, S Yu Malkov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 729-733 • High-growth firms in Russia: experimental data and prospects for the econophysical simulation of economic modernization, A Yu Yudanov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 733-737 • Equilibrium models of economics in the period of a global financial crisis, I G Pospelov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 738-742 • On econophysics and its place in modern theoretical economics, D S Chernavskii, N I Starkov, S Yu Malkov, Yu V Kosse, A V Shcherbakov Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 742-749 • Nonclassical random walks and the phenomenology of fluctuations of securities returns in the stock market, P V Vidov, M Yu Romanovsky Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 749-753 • Econophysics and the fractal analysis of financial time series, M M Dubovikov, N V Starchenko Physics-Uspekhi, 2011, Volume 54, Number 7, Pages 754-761

  6. Language and the Ingenuity Gap in Science

    ERIC Educational Resources Information Center

    Tonkin, Humphrey

    2011-01-01

    Over the centuries, first Latin and then French, German, and Russian have receded in perceived importance as languages of science. Other powerful languages with extensive internal scientific discourse, such as Japanese and Chinese, have always been largely excluded. The dominance of English has elevated the reputation of English-language…

  7. Main Science and Technology Indicators, Volume 2012, Issue 2

    ERIC Educational Resources Information Center

    OECD Publishing (NJ3), 2013

    2013-01-01

    This biannual publication provides a set of indicators that reflect the level and structure of the efforts undertaken by OECD member countries and seven non-member economies (Argentina, China, Romania, Russian Federation, Singapore, South Africa, Chinese Taipei) in the field of science and technology. These data include final or provisional…

  8. KSC-97PC841

    NASA Image and Video Library

    1997-05-24

    The orbiter drag chute deploys after Atlantis touches down on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  9. KSC-97PC850

    NASA Image and Video Library

    1997-05-24

    The orbiter drag chute deploys after Atlantis touches down on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  10. KSC-97PC851

    NASA Image and Video Library

    1997-05-24

    The Space Shuttle orbiter Atlantis rolls out on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. The Shuttle Training Aircraft piloted by astronaut Kenneth D. Cockrell, acting deputy chief of the Astronaut Office, is flying above Atlantis. The Vehicle Assembly Building is at left. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  11. KSC-97PC845

    NASA Image and Video Library

    1997-05-24

    The Space Shuttle orbiter Atlantis, with its drag chute deployed, rolls out on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. The Shuttle Training Aircraft piloted by astronaut Kenneth D. Cockrell, acting deputy chief of the Astronaut Office, is flying above Atlantis. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  12. KSC-97PC842

    NASA Image and Video Library

    1997-05-24

    The orbiter drag chute deploys after Atlantis touches down on Runway 33 of KSC’s Shuttle Landing Facility at the conclusion of the nine-day STS-84 mission. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and JeanFrancois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  13. Laser technologies in ophthalmic surgery

    NASA Astrophysics Data System (ADS)

    Atezhev, V. V.; Barchunov, B. V.; Vartapetov, S. K.; Zav'yalov, A. S.; Lapshin, K. E.; Movshev, V. G.; Shcherbakov, I. A.

    2016-08-01

    Excimer and femtosecond lasers are widely used in ophthalmology to correct refraction. Laser systems for vision correction are based on versatile technical solutions and include multiple hard- and software components. Laser characteristics, properties of laser beam delivery system, algorithms for cornea treatment, and methods of pre-surgical diagnostics determine the surgical outcome. Here we describe the scientific and technological basis for laser systems for refractive surgery developed at the Physics Instrumentation Center (PIC) at the Prokhorov General Physics Institute (GPI), Russian Academy of Sciences.

  14. USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 79

    DTIC Science & Technology

    1977-10-13

    1 Western. USSR UDC 577.154.3 DENATURATION OF ALPHA-AMYLASE OF BACILLUS SUBTILIS IN AN ACID MEDIUM Moscow PRIKLADNAYA BIOKHIMIYA I...42,000 units per gram, the protein content is 140 xng/g. KMDM gel is a carboxyl cationite based on methacrylic acid . The denaturation rate constants of...tables 3; refer- ences 10: 9 Russian, 1 English. 13 UDC 577.1.547.965:612.8.015:591.35 USSR CONTENT OF DICARBOXYLIC AMINO ACIDS AND y-AMINOBUTYRIC

  15. Estimating abundance and density of Amur tigers along the Sino-Russian border.

    PubMed

    Xiao, Wenhong; Feng, Limin; Mou, Pu; Miquelle, Dale G; Hebblewhite, Mark; Goldberg, Joshua F; Robinson, Hugh S; Zhao, Xiaodan; Zhou, Bo; Wang, Tianming; Ge, Jianping

    2016-07-01

    As an apex predator the Amur tiger (Panthera tigris altaica) could play a pivotal role in maintaining the integrity of forest ecosystems in Northeast Asia. Due to habitat loss and harvest over the past century, tigers rapidly declined in China and are now restricted to the Russian Far East and bordering habitat in nearby China. To facilitate restoration of the tiger in its historical range, reliable estimates of population size are essential to assess effectiveness of conservation interventions. Here we used camera trap data collected in Hunchun National Nature Reserve from April to June 2013 and 2014 to estimate tiger density and abundance using both maximum likelihood and Bayesian spatially explicit capture-recapture (SECR) methods. A minimum of 8 individuals were detected in both sample periods and the documentation of marking behavior and reproduction suggests the presence of a resident population. Using Bayesian SECR modeling within the 11 400 km(2) state space, density estimates were 0.33 and 0.40 individuals/100 km(2) in 2013 and 2014, respectively, corresponding to an estimated abundance of 38 and 45 animals for this transboundary Sino-Russian population. In a maximum likelihood framework, we estimated densities of 0.30 and 0.24 individuals/100 km(2) corresponding to abundances of 34 and 27, in 2013 and 2014, respectively. These density estimates are comparable to other published estimates for resident Amur tiger populations in the Russian Far East. This study reveals promising signs of tiger recovery in Northeast China, and demonstrates the importance of connectivity between the Russian and Chinese populations for recovering tigers in Northeast China. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  16. Distribution of trace gases and aerosols in the troposphere over West Siberia and Kara Sea

    NASA Astrophysics Data System (ADS)

    Belan, Boris D.; Arshinov, Mikhail Yu.; Paris, Jean-Daniel; Nédélec, Philippe; Ancellet, Gérard; Pelon, Jacques; Berchet, Antoine; Arzoumanian, Emmanuel; Belan, Sergey B.; Penner, Johannes E.; Balin, Yurii S.; Kokhanenko, Grigorii; Davydov, Denis K.; Ivlev, Georgii A.; Kozlov, Artem V.; Kozlov, Alexander S.; Chernov, Dmitrii G.; Fofonov, Alexader V.; Simonenkov, Denis V.; Tolmachev, Gennadii

    2015-04-01

    The Arctic is affected by climate change much stronger than other regions of the globe. Permafrost thawing can lead to additional methane release, which enhances the greenhouse effect and warming, as well as changes of Arctic tundra ecosystems. A great part of Siberian Arctic is still unexplored. Ground-based investigations are difficult to be carried out in this area due to it is an out-of-the-way place. So, in spite of the high cost, aircraft-based in-situ measurements can provide a good opportunity to fill up the gap in data on the atmospheric composition over this region. The ninth YAK-AEROSIB campaign was focused on the airborne survey of Arctic regions of West Siberia. It was performed in October 2014. During the campaign, the high-precision in-situ measurements of CO2, CH4, CO, O3, black carbon and aerososls, including aerosol lidar profiles, have been carried out in the Siberian troposphere from Novosibirsk to Kara Sea. Vertical distributions of the above atmospheric constituents will be presented. This work was supported by LIA YAK-AEROSIB, CNRS (France), the French Ministry of Foreign Affairs, CEA (France), the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).

  17. Social and cultural issues during Shuttle/Mir space missions.

    PubMed

    Kanas, N; Salnitskiy, V; Grund, E M; Gushin, V; Weiss, D S; Kozerenko, O; Sled, A; Marmar, C R

    2000-01-01

    A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions. Published by Elsevier Science Ltd.

  18. Social and cultural issues during Shuttle/Mir space missions

    NASA Technical Reports Server (NTRS)

    Kanas, N.; Salnitskiy, V.; Grund, E. M.; Gushin, V.; Weiss, D. S.; Kozerenko, O.; Sled, A.; Marmar, C. R.

    2000-01-01

    A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions. Published by Elsevier Science Ltd.

  19. KSC-97PC1404

    NASA Image and Video Library

    1997-09-23

    Technicians at the SPACEHAB Payload Processing Facility in Cape Canaveral prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A

  20. Russian-US Partnership to Study the 23-km-diameter El'gygtgyn Impact Crater, Northeast Russia

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Minyuk, Pavel S.; Brigham-Grette, Julie; Glushkova, Olga; Layer, Paul; Raikevich, Mikhail; Stone, David; Smirnov, Valdimir

    2002-01-01

    El'gygytgyn crater, located within Eastern Siberia, is a Pliocene-aged (3.6 Ma), well-preserved impact crater with a rim diameter of roughly 23 km. The target rocks are a coherent assemblage of crystalline rocks ranging from andesite to basalt. At the time of impact the region was forested and the Arctic Ocean was nearly ice-free. A 15-km lake fills the center of the feature and water depths are approximately 175 m. Evidence of shock metamorphism, -- including coesite, fused mineral glasses, and planar deformation features in quartz -- has been reported. This feature is one of the youngest and best preserved complex craters on Earth. Because of its remote Arctic setting, however, El gygytgyn crater remains poorly investigated. The objectives of this three-year project are to establish and maintain a research partnership between scientists from Russia and the United States interested in the El gygytgyn crater. The principal institutions in the U.S. will be the Geophysical Institute, University of Alaska Fairbanks and the University of Massachusetts Amherst. The principal institution in Russia will be the North East Interdisciplinary Scientific Research Institute (NEISRI), which is the Far-East Branch of the Russian Academy of Science. Three science tasks are identified for the exchange program: (1) Evaluate impactite samples collected during previous field excursions for evidence of and level of shock deformation. (2) Build a high-resolution digital elevation model for the crater and its surroundings using interferometric synthetic aperture radar techniques on JERS-1, ERS-1, ERS-2, and/or RadarSat range-doppler data. (3) Gather all existing surface data available from Russian and U.S. institutions (DEM, remote sensing image data, field-based lithological and sample maps, and existing geophysical data) and assemble into a Geographic Information Systems database.

  1. Russian Mission Control Center

    NASA Image and Video Library

    2004-04-20

    Helen Conijn, fiancée of European Space Agency astronaut Andre Kuipers of the Netherlands, far right, joins Renita Fincke, second from right, wife of Expedition 9 Flight Engineer and NASA International Space Station Science Officer Michael Fincke, along with family members at the Russian Mission Control Center outside Moscow, Wednesday, April 21, 2004 to view the docking of the Soyuz capsule to the International Space Station that brought Kuipers, Fincke and Expedition 9 Commander Gennady Padalka to the complex following their launch Monday from Kazakhstan. Photo Credit: (NASA/Bill Ingalls)

  2. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 54

    DTIC Science & Technology

    1978-06-28

    DEFEKTOSKOPIYA in Russian No 2, Feb 78 pp 49-52 manuscript received 28 Feb 77 DEVYATCHENKO, L. D., YESIPOV, I. V. , BATURINA, S. K., KIRILLOVA, G . K...received 10 Apr 77 KARPINOS, D. M., MAKSIMOVICH, G . G ., LYUTYY, YE. M., FILIPOVSKIY, A. V., and KADYROV, V. KH., Physico-Mechanical Institute and the...OBRABOTKI MATERIALOV in Russian No 1, Jan/Feb 78 pp 149-151 manuscript received 20 Jun 77 KARPINOS, D. M. and ZIL’BERBERG, V. G ., Kiev [Abstract] The

  3. USSR Report, Life Sciences, Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1987-02-10

    S. B. Akopov, S. N. Kuzmina , et al.; DOKLADY AKADEMII NAUK SSSR, No 3, Apr 86) 4 Amino Acid Thermal Polycondensation Model in Migratory...AKADEMII NAUK SSSR in Russian Vol 287, No 3, Apr 86 (manuscript received 19 Nov 85) pp 724-728 [Article by S. B. Akopov, S. N. Kuzmina , T. V

  4. Lonchakov holds Space Science P/L Kristallizator Module-1 experiment hardware in the SM during Joint Operations

    NASA Image and Video Library

    2008-10-15

    ISS017-E-018411 (15 Oct. 2008) --- Russian Federal Space Agency cosmonaut Yury Lonchakov, Expedition 18 flight engineer, looks over a procedures checklist while holding Space Science P/L Crystallizer Module-1 experiment hardware in the Zvezda Service Module of the International Space Station.

  5. European Science Notes Information Bulletin Reports on Current European and Middle Eastern Science

    DTIC Science & Technology

    1993-01-01

    perhaps has been contaminated called MARCO . This system combines data from by the Russians by their well-known dumping of sensors on many elements of marine...In 1992, more than 812 East- research. In July 1992, Hubert Curien, former ern European researchers were supported to attend Minister for Research

  6. Commemoration of the 90th anniversary of the birth of Andrei Dmitrievich Sakharov (Scientific session of the Physical Sciences Division, Russian Academy of Sciences, 25 May 2011)

    NASA Astrophysics Data System (ADS)

    2012-02-01

    On 25 May 2011, the scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), devoted to the 90th anniversary of Andrei Dmitrievich Sakharov's birthday, was held at the conference hall of the Lebedev Physical Institute, RAS.The agenda of the session announced on the website www.gpad.ac.ru of the PSD RAS contains the following reports: (1) Mesyats G A (Lebedev Physical Institute, RAS, Moscow) "Introduction. Greetings"; (2) Ritus V I (Lebedev Physical Institute, RAS, Moscow) "A D Sakharov: personality and fate"; (3) Altshuler B L (Lebedev Physical Institute, RAS, Moscow) "Scientific and public legacy of A D Sakharov today"; (4) Ilkaev R I (Russian Federal Nuclear Center 'All-Russian Research Institute of Experimental Physics', Sarov, Nizhny Novgorod region) "The path of a genius: Sakharov at KB-11"; (5) Novikov I D (Astrocosmic Center, Lebedev Physical Institute, RAS, Moscow) "Wormholes and the multielement Universe"; (6) Azizov E A (National Research Centre 'Kurchatov Institute', Moscow) "Tokamaks: 60 years later"; (7) Kardashev N S (Astrocosmic Center, Lebedev Physical Institute, RAS, Moscow) "Cosmic interferometers"; (8) Lukash V I (Lebedev Physical Institute, RAS, Moscow) "From the cosmological model to the Hubble flux formation"; (9) Grishchuk L P (Shternberg State Astronomical Institute, Lomonosov Moscow State University, Moscow; School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom) "Cosmological Sakharov oscillations and quantum mechanics of the early Universe". Articles based on reports 2-4, 6, 8, and 9 are published below. The content of report 5 is close to papers "Multicomponent Universe and astrophysics of wormholes" by I D Novikov, N S Kardashev, A A Shatskii [Phys. Usp. 50 965 (2007)] and "Dynamic model of a wormhole and the Multiuniverse model" by A A Shatskii, I D Novikov, N S Kardashev [Phys. Usp. 51 457 (2008)]. The content of report 7 is close to the paper "Radioastron - a radio telescope much larger than the Earth: scientific program" by N S Kardashev [Phys. Usp. 52 1127 (2009)]. • A D Sakharov: personality and fate, V I Ritus Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 170-175 • Andrei Sakharov today: lasting impact on science and society, B L Altshuler Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 176-182 • Sakharov at KB-11. The path of a genius, R I Ilkaev Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 183-189 • Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks), E A Azizov Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 190-203 • From the Cosmological Model to the generation of the Hubble flow, V N Lukash, E V Mikheeva, V N Strokov Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 204-209 • Cosmological Sakharov oscillations and quantum mechanics of the early Universe, L P Grishchuk Physics-Uspekhi, 2012, Volume 55, Number 2, Pages 210-216

  7. A short history of the soil science discipline

    NASA Astrophysics Data System (ADS)

    Brevik, E. C.; Hartemink, A. E.

    2012-04-01

    Since people have cultivated the land they have generated and created knowledge about its soil. By the 4th century most civilizations around had various levels of soil knowledge and that includes irrigation, the use of terraces to control soil erosion, methods to maintain and improve soil fertility. The early soil knowledge was largely empirical and based on observations. Many famous scientists, for example, Francis Bacon, Robert Boyle, Charles Darwin, and Leonardo da Vinci worked on soil issues. Soil science became a true science in the 19th century with the development of genetic soil science, lead by the Russian Vasilii V. Dokuchaev. In the beginning soil science had strong ties to both geology and agriculture but in the 20th century, soil science is now being applied in residential development, the planning of highways, building foundations, septic systems, wildlife management, environmental management, and many other applications. The discipline is maturing and soil science plays a crucial role in many of the current issues that confront the world like climate change, water scarcity, biodiversity and environmental degradation.

  8. Women physicists in Russia: Problems and solutions at a time of fiscal crisis

    NASA Astrophysics Data System (ADS)

    Didenko, Nelli; Ermolaeva, Elena; Kunitsyna, Ekaterina; Kratasyuk, Valentina; Vitman, Renata

    2013-03-01

    Recently Russia has been affected by the global financial crisis, which has had both positive and negative effects on women physicists. The feminization of science and the stratification that characterize the Russian scientific community in general also affect the field of physics. This paper discusses the proportion of women in leadership and managerial positions in different areas of science and education and highlights the differences between women and men in their careers in physics and defense of their theses. Lomonosov Moscow State University is used to demonstrate the dynamics of gender in different academic positions. The professional activity of young women physicists is illustrated by their participation in all-Russian scientific forums, demonstrating their commitment to remain active in their careers despite the challenges of the current economic conditions.

  9. Overview of holography in Russia and other FSU (former Soviet Union) states

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya

    2005-04-01

    Recently we have had our Class reunion (Physics Department of the renown St. Petersburg University, Russia). Amidst all the warm greetings, embraces, and gasps of surprise at the view of receding hair, bulging waistlines and other signs of relentlessly encroaching middle age we swapped the tales and had come to a rather unsurprising conclusion: if you are still in science, it means you are working abroad, if you are still in Russia, it means you are not in science. Indeed, in the wake of rapid changes that swept over the former Soviet Union following its disintegration in 1991 millions of people who formerly had positions in the vast scientific and technical establishment have found themselves adrift without any conceivable means of support. Many have been forced to abandon science for good and to seek opportunities in the burgeoning private sector and quite a few have achieved spectacular successes in their new business endeavors. Their names are well known and their future appears to be bright. This article though is not about them. It is about those stubborn individuals who despite overwhelming odds have kept their faith and commitment to science, who went on and persevered. It is a tribute to those who remained fully engaged in research and upheld the traditions of Russian school, who have faced and overcome all the innumerable obstacles such as delays in salary payment, aging physical plant, accident-prone electrical, water and heating systems, dearth of funding, etc. It now seems, that thanks to the selfless effort of these remarkable individuals Russian science is finally turning the corner and that things are indeed getting better. This article is homage to all the scientists in the FSU whose inquisitive minds and boundless thirst for knowledge have preserved and strengthened the glorious traditions of Russian science through all these years of troubles.

  10. Summary of Research 1997, Department of Computer Science.

    DTIC Science & Technology

    1999-01-01

    Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704...contains summaries of research projects in the Department of Computer Science . A list of recent publications is also included which consists of conference...parallel programming. Recently, in a joint research project between NPS and the Russian Academy of Sciences Systems Programming Insti- tute in Moscow

  11. The experience to use space data as educational resources for secondary school students

    NASA Astrophysics Data System (ADS)

    Zaitzev, A.; Boyarchuk, K.

    The space science data available free from Internet and include all kind of data: solar images from SOHO and GOES-12 satellites, WIND and ACE interplanetary data, ground-based and satellite aurora images and magnetic field variations in real time, ionospheric data etc. Beside that we have the direct transmissions of meteorological images from NOAA satellites in the APT and HRPT modes. All such sources of data can be used for educational programs for secondary school students. During last 10 years we conduct special classes in local school, where we use such space data. After introduction course each student might choose the topic which he can study in details. Each year the students prepare the original papers and participate in the special conferences, which one is in The Space Day, April 12. As curriculum materials we also use Russian language magazine "Novosti Kosmonavtiki", original data bases with space data available on CD-ROMs and publications in English. Such approach stimulate students to lean English also. After finish the classes K-12 students motivated well to continue education into space science and IZMIRAN will plan to support that students. In past two years we pay attention to use microsatellites for education. Last one is Russian-Australian KOLIBRI-2000 microsatellite, which was launched March 2002. KOLIBRI-2000 conduct simple measurements as magnetic field and particles. The experience in the usage of microsatellites data in classes are analyzed. The prospects and recommendations are discussed.

  12. Behavior Risk Factors Among Russian University Students Majoring in Medicine, Education, and Exercise Science.

    PubMed

    Anischenko, Aleksander; Gurevich, Konstantin; Arhangelskaya, Anna; Klenov, Michael; Burdukova, Ekaterina; Ogarev, Valrii; Ignatov, Nikolay; Osadchenko, Irina

    2016-09-14

    To analyze the prevalence of select behavioral risk factors among Russian university students majoring in medicine, education, and exercise science. A total of 834 students from five Federal universities located in four federal regions of Russia were included in the study. The purposive sample included future doctors, school teachers, and fitness trainers. Students were asked specifically about smoking, level of physical activity, and food preferences. To calculate body mass indices (BMIs), waist, hip, weight, and height were also measured. Smoking rates, level of activity, and nutritional habits were significantly different by age, but BMI was not. Smoking rates and BMI were significantly different by gender, but level of activity and nutritional habits were not. Like the differences found by age, smoking rates, level of activity, and nutritional habits were significantly different by ethnicity, but BMI was not. There were significant difference across all behavioral health risk factors by region. The results show significantly higher levels of physical inactivity, consumption of unhealthy foods, and high BMIs among medical students compared with future teachers and wellness instructors (p < .05). In the same time, the smoking levels are the highest among future teachers. The highest prevalence of smoking was found to be associated with gender (for females living Moscow and for males in rural regions), and Russian ethnic group. Tailored programs to prevent common health behavior risk factors among future medical doctors are urgently needed in the Russian Federation. © The Author(s) 2016.

  13. A Cue-Based Approach to the Acquisition of Grammatical Gender in Russian

    ERIC Educational Resources Information Center

    Rodina, Yulia; Westergaard, Marit

    2012-01-01

    This article discusses the acquisition of gender in Russian, focusing on some exceptional subclasses of nouns that display a mismatch between semantics and morphology. Experimental results from twenty-five Russian-speaking monolinguals (age 2 ; 6-4 ; 0) are presented and, within a cue-based approach to language acquisition, we argue that children…

  14. USSR Space Life Sciences Digest, issue 9

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran; Radtke, Mike; Teeter, Ronald; Rowe, Joseph E.

    1987-01-01

    This is the ninth issue of NASA's USSR Space Lifes Sciences Digest. It contains abstracts of 46 papers recently published in Russian language periodicals and bound collections and of a new Soviet monograph. Selected abstracts are illustrated with figures and tables from the original. Additional features include reviews of a Russian book on biological rhythms and a description of the papers presented at a conference on space biology and medicine. A special feature describes two paradigms frequently cited in Soviet space life sciences literature. Information about English translations of Soviet materials available to readers is provided. The abstracts included in this issue have been identified as relevant to 28 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, body fluids, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, gastrointestinal system, genetics, habitability and environment effects, hematology, human performance, immunology, life support systems, mathematical modeling, metabolism, microbiology, morphology and cytology, musculoskeletal system, nutrition, neurophysiology, operational medicine, perception, personnel selection, psychology, radiobiology, and space biology and medicine.

  15. Pioneering Russian wind tunnels and first experimental investigations, 1871-1915

    NASA Astrophysics Data System (ADS)

    Gorbushin, A. R.

    2017-11-01

    A review of foreign and Russian sources is given mentioning the pioneering wind tunnels built in Russia at the turn of 19th and 20th centuries. The first wind tunnel in Russia was constructed by V.A. Pashkevich at the Mikhailovsky Artillery Academy in St. Petersburg in 1871. In total from 1871 through 1915, 18 wind tunnels were constructed in Russia: 11 in Moscow, 5 in St. Petersburg and 2 in Kaluga. An overview of the pioneering Russian wind tunnels built by V.A. Pashkevich, K.E. Tsiolkovsky, prof. N.E. Zhukovsky, D.P. Ryabushinsky and prof. K.P. Boklevsky is given. Schemes, photographs, formulas, description of the research and test results taken from the original papers published by the wind tunnel designers are given. Photographs from the N.E. Zhukovsky Scientific and Memorial Museum and the Archive of the Russian Academy of Sciences are used in the article. Methods of flow visualization and results of their application are presented. The Russian scientists and researchers' contribution to the development of techniques and methods of aerodynamic experiment is shown, including one of the most important aspects - the wall interference problem.

  16. Bion-11 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Skidmore, M.

    1999-01-01

    The Sensors 2000! Program, in support of the Space Life Sciences Payloads Office at NASA Ames Research Center developed a suite of bioinstrumentation hardware for use on the Joint US/Russian Bion I I Biosatellite Mission (December 24, 1996 - January 7, 1997). This spaceflight included 20 separate experiments that were organized into a complimentary and interrelated whole, and performed by teams of US, Russian, and French investigators. Over 40 separate parameters were recorded in-flight on both analog and digital recording media for later analysis. These parameters included; Electromyogram (7 ch), Electrogastrogram, Electrooculogram (2 ch), ECG/EKG, Electroencephlogram (2 ch), single fiber firing of Neurovestibular afferent nerves (7 ch), Tendon Force, Head Motion Velocity (pitch & yaw), P02 (in vivo & ambient), temperature (deep body, skin, & ambient), and multiple animal and spacecraft performance parameters for a total of 45 channels of recorded data. Building on the close cooperation of previous missions, US and Russian engineers jointly developed, integrated, and tested the physiologic instrumentation and data recording system. For the first time US developed hardware replaced elements of the Russian systems resulting in a US/Russian hybrid instrumentation and data system that functioned flawlessly during the 14 day mission.

  17. USSR Space Life Sciences Digest, issue 12

    NASA Technical Reports Server (NTRS)

    Hooke, Lydia Razran (Editor); Radtke, Mike (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1987-01-01

    This issue contains 42 papers recently published in Russian language periodicals and bound collections of four Soviet monographs. Also included is a review of a recent Soviet congress on space gastroenterology.

  18. Micro-satellites (~ 50 kg) for the fundamental and applied science. Capacity building for Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Zelenyi, Lev; Rodin, V.; Gurevich, A.; Alferov, A.; Getsov, P.

    Design and manufacturing of micro-satellite ( 50 kg) platforms for the fundamental and applied research of the Earth and near-earth outer space is a problem which is complex both scientifically and technically. Main point is to define the scientific task which could be effectively solved by micro-satellite instrumentation. It is necessary also to carry out an integral approach in the course of the spacecraft development: find methods to introduce the contemporary technological-design, use the achievements of advanced physical instrument manufacturing , microelectronics and micromechanics. Technical solutions should provide the required accuracy of spacecraft orientation and stabilization. Space Research and Physical Institutes RAS with participation of Moscow University developed the model composition and technical design of micro satellite "CHIBIS" (small bird LAPWING in Russian) with two options for scientific payload: A. The complex of scientific instruments N1 for the monitoring of Global warming and the electromagnetic environment of the Earth: spectrometer for measurements of the total content of greenhouse gases (CO2 and CH4); optical camera (spatial resolution 300 m); lowfrequency flux-gate magnetometer (DC - 64 Hz); high-frequency search-coil magnetometer (0.1 - 40 kHz); analyzer of the electromagnetic emissions (0.1 - 40 kHz); detector of ionospheric plasma. B. The complex of scientific instruments N2 for investigation of fine scale physics of lightning discharges: X-ray - gamma detector (range of X-ray and gamma emission - 50-500 keV); UV detector (range UV - emission - 300-450 nm); radiofrequency analyzer (20 - 50 MHz); optical camera. Spacecraft manufacturing and scientific experiments are prepared mostly by the institutes of Russian academy of sciences without traditional involvement of large scale space industry. So this activity serves as a substantial driver of Academic capacity building for the independent research of space science problems. Further extension of this program is planned now to be within the framework of collaboration between Russian and Bulgarian Academies of Sciences on "BalkanSat" project. Recently ((3/7 -09-2007) special international workshop on the Use of Micro-Satellite Technologies for Environmental Monitoring and Impact to Human Health was held by United Nations, IKI , RAS and ESA in the small city TARUSA near Moscow. Proceedings are available at http://www.iki.rssi.ru/ This work was partially supported of the RFBR grants 06-02-08076 and 06-02-08244

  19. Molecular differentiation of Russian wild ginseng using mitochondrial nad7 intron 3 region.

    PubMed

    Li, Guisheng; Cui, Yan; Wang, Hongtao; Kwon, Woo-Saeng; Yang, Deok-Chun

    2017-07-01

    Cultivated ginseng is often introduced as a substitute and adulterant of Russian wild ginseng due to its lower cost or misidentification caused by similarity in appearance with wild ginseng. The aim of this study is to develop a simple and reliable method to differentiate Russian wild ginseng from cultivated ginseng. The mitochondrial NADH dehydrogenase subunit 7 ( nad 7) intron 3 regions of Russian wild ginseng and Chinese cultivated ginseng were analyzed. Based on the multiple sequence alignment result, a specific primer for Russian wild ginseng was designed by introducing additional mismatch and allele-specific polymerase chain reaction (PCR) was performed for identification of wild ginseng. Real-time allele-specific PCR with endpoint analysis was used for validation of the developed Russian wild ginseng single nucleotide polymorphism (SNP) marker. An SNP site specific to Russian wild ginseng was exploited by multiple alignments of mitochondrial nad 7 intron 3 regions of different ginseng samples. With the SNP-based specific primer, Russian wild ginseng was successfully discriminated from Chinese and Korean cultivated ginseng samples by allele-specific PCR. The reliability and specificity of the SNP marker was validated by checking 20 individuals of Russian wild ginseng samples with real-time allele-specific PCR assay. An effective DNA method for molecular discrimination of Russian wild ginseng from Chinese and Korean cultivated ginseng was developed. The established real-time allele-specific PCR was simple and reliable, and the present method should be a crucial complement of chemical analysis for authentication of Russian wild ginseng.

  20. Will Russian Scientists Go Rogue? A Survey on the Threat and the Impact of Western Assistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, D Y; Gerber, T P

    2004-12-27

    The collapse of the Soviet Union sparked fears throughout the world that rogue nations and terrorist organizations would gain access to weapons of mass destruction (WMD). One specific concern has been 'WMD brain drain.' Russians with knowledge about nuclear, chemical, and biological weapons could now depart to any country of their choice, including rogue nations seeking to produce WMD. Meanwhile, Russian science fell into a protracted crisis, with plummeting salaries, little funding for research, and few new recruits to science. These developments increased both the incentives and the opportunities for scientists to sell their knowledge to governments and terrorist organizationsmore » with hostile intentions toward the United States. Recognizing the threat of WMD brain drain from Russia, the United States, and other governments implemented a host of programs designed to reduce the risk. Despite, or perhaps partly because of, massive assistance from the West to prevent scientists with WMD knowledge from emigrating, the threat of Russian WMD brain drain has recently faded from view. Yet we have seen no evidence that these programs are effective and little systematic assessment of the current threat of WMD migration. Our data from an unprecedented survey of 602 Russian physicists, biologists, and chemists suggest that the threat of WMD brain drain from Russia should still be at the forefront of our attention. Roughly 20 percent of Russian physicists, biologists, and chemists say they would consider working in rogue nations such as North Korea, Iran, Syria, or Iraq (still considered a rogue state at the time of the survey). At the same time, the data reveal that U.S. and Western nonproliferation assistance programs work. They significantly reduce the likelihood that Russian scientists would consider working in these countries. Moreover, Russian grants do not reduce scientists' propensity to 'go rogue'. These survey findings have clear policy implications: the U.S. and its allies must continue to adequately fund nonproliferation assistance programs rather than hastily declare victory. The U.S. should remain engaged with former Soviet WMD scientists until they are willing and able to find support for their research from competitive, civilian-oriented, privately funded projects. Otherwise, we run a great risk that WMD expertise will migrate from the former Soviet Union to countries or organizations that harbor hostile intentions toward the U.S. Assistance programs work to reduce the threat of WMD brain drain, but their task is not complete. Now is not the time to pull back.« less

  1. Science Teaching as a Dialogue--Bakhtin, Vygotsky and Some Applications in the Classroom

    ERIC Educational Resources Information Center

    Kubli, Fritz

    2005-01-01

    The theory of dialogism, developed by the Russian linguist Mikhail Bakhtin (1895-1975) with regard to literature and everyday communication, can be used to improve the teaching of science. Some of Bakhtin's conceptual instruments are helpful in analysing the teaching process, and it is interesting to compare them with former ideas about teaching…

  2. JPRS Report, Science & Technology, USSR: Life Sciences

    DTIC Science & Technology

    1989-01-05

    Anticholinesterase Activity of Unsaturated Choline Phosphate Analogs [Yu. G. Gololobov, L. F. Kasukhin, et al; DOKLADY AKADEMIINAUK UKRAINSKOY SSR...studied. Figures 3; references 11:11 Russian. JPRS-ULS-89-001 5 January 1989 Biochemistry Anticholinesterase Activity of Unsaturated Choline...acid vinyl esters containing a quaternary atom of nitrogen or phosphorus were studied to deter- mine the anticholinesterase activity of unsaturated

  3. Scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (7 December 2015)

    NASA Astrophysics Data System (ADS)

    2016-05-01

    A scientific session of the General meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held in the conference hall of the Lebedev Physical Institute, RAS on 7 December 2015. The papers collected in this issue were written based on talks given at the session (the program of the session is available on the RAS Physical Sciences Division website http://www.gpad.ac.ru). (1) Loshchenov V B (Prokhorov General Physics Institute, RAS, Moscow) "Pharmacodynamics of a nanophotosensitizer under irradiation by an electromagnetic field: from THz to Cherenkov radiation"; (2) Zhuikov B L (Institute for Nuclear Research, RAS, Moscow) "Successes and problems in the development of medical radioisotope production in Russia"; (3) Tikhonov Yu A (Budker Institute of Nuclear Physics, SB RAS, Novosibirsk) "Applying nuclear physics methods in healthcare"; (4) Turchin I V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Methods of biomedical optical imaging: from subcellular structures to tissues and organs"; (5) Breus T K, Petrukovich A A (Space Research Institute, RAS, Moscow), Binhi V N (Prokhorov General Physics Institute, RAS, Moscow; Lomonosov Moscow State University, Moscow) "Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research"; (6) Makarov D I (Special Astrophysical Observatory, RAS, Nizhnii Arkhyz, Zelenchukskii region, Karachai-Cherkessian Republic) "Studying the Local University". Papers based on oral reports 2, 4, and 5 are presented below. • Successes and problems in the development of medical radioisotope production in Russia, B L Zhuikov Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 481-486 • Methods of biomedical optical imaging: from subcellular structures to tissues and organs, I V Turchin Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 487-501 • Magnetic factor in solar-terrestrial relations and its impact on the human body: physical problems and prospects for research, T K Breus, V N Binhi, A A Petrukovich Physics-Uspekhi, 2016, Volume 59, Number 5, Pages 502-510

  4. Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 46

    DTIC Science & Technology

    1978-09-25

    AND BEHAVIORAL SCIENCES No. 46 CONTENTS PAGE AGROTECHNOLOGY Open Lot Facility for Cattle Fattening (M.G. Karpov, et al.; ZHIVOTNOVODSTVO, No 6...636.22/.28.OQk.522 OPEN LOT FACILITY FOR CATTLE FATTENING Moscow ZHIVOTNOVODSTVO in Russian No 6, 1978 pp 55-59 [Article by Moskalevskiy Sovkhoz...Institute of Livestock Raising; and Moskalevskiy Sovkhoz Chief Zootechnician Z. A. Zhanburshinov: "Experience of Fattening Cattle on Open Lot on

  5. Unique properties of humic substances from sapropel

    NASA Astrophysics Data System (ADS)

    Rumyantsev, V. A.; Mityukov, A. S.; Kryukov, L. N.; Yaroshevich, G. S.

    2017-04-01

    Sapropel from inland Russian water reservoirs is becoming a popular raw material for medicinal purposes, production of sorbents, organomineral fertilizers, and food supplements. A comparative study of the granulometric and biological properties of humic substances obtained from sapropel in a typical way and using ultrasonic treatment of the relevant reaction masses was performed at the Institute of Limnology of the Russian Academy of Sciences. It is shown that the humic substances of sapropel with an increased content of nanoparticles used as veterinary preparations lead to a significant economic effect without using imported preparations.

  6. NASA's Microgravity Science Program

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    Since the late 1980s, the NASA Microgravity Science Program has implemented a systematic effort to expand microgravity research. In 1992, 114 new investigators were selected to enter the program and more US microgravity experiments were conducted in space than in all the years combined since Skylab (1973-74). The use of NASA Research Announcements (NRA's) to solicit research proposals has proven to be highly successful in building a strong base of high-quality peer-reviewed science in both the ground-based and flight experiment elements of the program. The ground-based part of the program provides facilities for low gravity experiments including drop towers and aircraft for making parabolic flights. Program policy is that investigations should not proceed to the flight phase until all ground-based investigative capabilities have been exhausted. In the space experiments program, the greatest increase in flight opportunities has been achieved through dedicated or primary payload Shuttle missions. These missions will continue to be augmented by both mid-deck and GAS-Can accommodated experiments. A US-Russian cooperative flight program envisioned for 1995-97 will provide opportunities for more microgravity research as well as technology demonstration and systems validation efforts important for preparing for experiment operations on the Space Station.

  7. An annotated type catalogue of the anguid, dibamid, scincid and varanid lizards in the Department of Herpetology, Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia (Reptilia: Sauria: Anguidae, Dibamidae, Scincidae and Varanidae).

    PubMed

    Barabanov, Andrei; Milto, Konstantin

    2017-03-17

    A complete catalogue is provided for the type specimens of anguid, dibamid, scincid and varanid lizards in the herpetological collection of the Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia (ZISP), as of January 2017. The collection contains a total of 170 type specimens, representing 50 taxa in the four lizard families under consideration. Thirty-one of these taxa are regarded currently as valid. The types of four taxa (one holotype, one lectotype and two paralectotypes) could not be located in the ZISP collections in January 2017. A majority of the types are skinks (43 taxa, 155 types), many of which were described by the late Ilya Darevsky (1924-2009).

  8. [The list of literature (review) on studying urinary stones by russian researchers (Dated between 1965 and 2015, in 2 parts) Part I].

    PubMed

    Polienko, A K; Boshchenko, V S; Sevost'yanova, O A

    2016-02-01

    Urolithiasis is one of the most common urological diseases. Determination of mineral composition and structure of urinary stones is necessary for urologists to provide targeted therapeutic and preventive measures. Existing global standards for management of kidney stones require analysis of stone composition to be done for each urolithiasis patient. The list of literature representing the scientific work of the Russian scientists on studying the mineral composition and structure of urinary stones, includes articles, abstracts, monographs, dissertations presented as reports and presentations at conferences and seminars (mineralogical and urological). Over half a century (1965-2015) there were 178 articles published in geological and urological journals, 7 published monographs and 8 defended dissertations (2 on Medical Sciences and 6 on Geological and Mineralogical Sciences).

  9. Control of dispersed-phase temperature in plasma flows by the spectral-brightness pyrometry method

    NASA Astrophysics Data System (ADS)

    Dolmatov, A. V.; Gulyaev, I. P.; Gulyaev, P. Yu; Iordan, V. I.

    2016-02-01

    In the present work, we propose a new method for measuring the distribution of temperature in the ensembles of condensed-phase particles in plasma spray flows. Interrelation between the spectral temperature of the particles and the distribution of camera brightness signal is revealed. The established inter-relation enables an in-situ calibration of measuring instruments using the objects under study. The spectral-brightness pyrometry method was approbated on a Plazer plasma-arc wire spraying facility at the Paton Institute of Electrical Welding (Ukrainian Academy of Sciences, Kiev) and on the Thermoplasma 50-1 powder spraying facility at the Institute of Theoretical and Applied Mechanics (Russian Academy of Sciences, Siberian Branch, Novosibirsk). The work was supported by the Russian Foundation for Basic Research (Grants Nos. 14-08-90428 and 15-48-00100).

  10. Portrait of the Mir 23 crew in the Base Block

    NASA Image and Video Library

    1997-02-26

    NM23-48-003 (29 April 1997) --- Cosmonaut Vasili V. Tsibliyev, Mir-23 commander, operates at the end of the Russian Mir Space Station’s STRELA boom during a space walk on April 29, 1997. He was joined by United States astronaut Jerry M. Linenger, cosmonaut guest researcher, in an effort to deploy scientific instruments and retrieve other science hardware. At the lower left of the picture is the Kvant-1 module. Hovering above it is the Sofora tower, which was once used for an experiment in attitude control of the Mir.

  11. Nuclear Photonics

    NASA Astrophysics Data System (ADS)

    Nedorezov, V. G.; Savel'ev-Trofimov, A. B.

    2017-12-01

    A review of works performed at the Institute for Nuclear Research of the Russian Academy of Sciences and at the International Laser Center of the Moscow State University in the context of the new research area called "nuclear photonics" is presented. Nuclear photonics is based on creation of the new-generation gamma-ray sources which make it possible to solve a number of fundamental and applied problems, including research of low-energy photonuclear reactions, namely, investigation of collective excitations of nuclei near the threshold (pygmy resonances); nuclear safety assurance; production of low-energy positron beams; and phase-contrast X-ray imaging.

  12. A Corpus-Based Study of Theme and Thematic Progression in English and Russian Non-Translated Texts and in Russian Translated Texts

    ERIC Educational Resources Information Center

    Alekseyenko, Nataliya V.

    2013-01-01

    The present study is a corpus-based comparative investigation of Theme and thematic progression in English and Russian. While monolingual thematic studies have a long history in Linguistics, comparative studies are relatively few, in particular for the given language pair. In addition to filling the existing gap in the field of Translation…

  13. In Continuation of the Discussion about Ratio Science and Human Knowledge in the Education of Modern Man

    ERIC Educational Resources Information Center

    Kashekova, Irina Emilyevna; Kolosova, Svetlana Nikolaevna

    2016-01-01

    The authors point up the problem of interrelation of natural-science and humanitarian knowledge and the role it plays in the development of culture in the ??I century. At the beginning of the ?? century P. Florensky, a Russian philosopher, defined two types of culture--contemplative-creative and predatory-mechanic, and pointed out the menacing…

  14. Articles on Practical Cybernetics. Computer-Developed Computers; Heuristics and Modern Sciences; Linguistics and Practice; Cybernetics and Moral-Ethical Considerations; and Men and Machines at the Chessboard.

    ERIC Educational Resources Information Center

    Berg, A. I.; And Others

    Five articles which were selected from a Russian language book on cybernetics and then translated are presented here. They deal with the topics of: computer-developed computers, heuristics and modern sciences, linguistics and practice, cybernetics and moral-ethical considerations, and computer chess programs. (Author/JY)

  15. Astronaut Mike Hopkins Visit to Maryland Science Center

    NASA Image and Video Library

    2014-06-09

    NASA Astronaut Mike Hopkins explains what it was like to live on the International Space Station for 6 months to visitors at the Maryland Science Center in Baltimore, MD on Monday, June 9, 2014. Hopkins served on Expeditions 37 and 38 with Russian cosmonauts Oleg Kotov and Sergey Ryazanskiy and returned home in March, 2014. (Photo Credit: NASA/Aubrey Gemignani)

  16. [Publication activity of the Russian medicine in focus of national science policy: estimating the feasibility of policy targets].

    PubMed

    Starodubov, V I; Kuznetsov, S L; Kurakova, N G; Tsvetkova, L A; Aref'ev, P G; Ivanov, A V; Eremchenko, O A

    2013-01-01

    A comprehensive review of National research policy papers issued over the past 6 years was carried out. A set of problems concerning the quality of predicted values of some bibliometric indicators reflecting the level of research performance and publication activity that were declared in governmental documents was discussed. Basic metrics of scientific performance that should be required to achieve the goals declared in the recent governmental policy papers including President's Executive Order No 599 of May 7, 2012 (increasing the share of Russian researchers' publications in the total number of publications in international scientific journals indexed in the Web of Science up to 2.44% in 2015). Taking into account the current structure of modern global science in which papers in biomedical subjects make up for approximately one third of the total world scientific output, it becomes obvious how difficult is the governmental task set up to the researchers--to double the number of journal publications indexed in Web of Science in the short-term period of the nearest three years. The priorities and reasonable goal-oriented efforts to meet the targets are proposed in the paper.

  17. MMPM - Mission implementation of Mars MetNet Precursor

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.

    2009-04-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The key technical aspects and solutions of the mission will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. This development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development.

  18. KSC-97PC844

    NASA Image and Video Library

    1997-05-24

    Framed by the Vehicle Assembly Building in the distance, at left, and the Mate-Demate Device, the Space Shuttle Atlantis with its drag chute deployed touches down on KSC’s Runway 33 at the conclusion of the STS-84 mission. The Shuttle Training Aircraft with astronaut Kenneth D. Cockrell at the controls is flying in front of Atlantis. Cockrell is acting deputy chief of the Astronaut Office. Main gear touchdown was at 9:27:44 EDT on May 24, 1997. The first landing opportunity was waved off because of low cloud cover. It was the 37th landing at KSC since the Shuttle program began in 1981, and the eighth consecutive landing at KSC. STS-84 was the sixth of nine planned dockings of the Space Shuttle with the Russian Space Station Mir. Atlantis was docked with the Mir for five days. STS-84 Mission Specialist C. Michael Foale replaced astronaut and Mir 23 crew member Jerry M. Linenger, who has been on the Russian space station since Jan. 15. Linenger returned to Earth on Atlantis with the rest of the STS-84 crew, Mission Commander Charles J. Precourt, Pilot Eileen Marie Collins, and Mission Specialists Carlos I. Noriega, Edward Tsang Lu, Elena V. Kondakova of the Russian Space Agency and Jean-Francois Clervoy of the European Space Agency. Foale is scheduled to remain on the Mir for approximately four months, until he is replaced by STS-86 crew member Wendy B. Lawrence in September. Besides the docking and crew exchange, STS-84 included the transfer of more than 7,300 pounds of water, logistics and science experiments and hardware to and from the Mir. Scientific experiments conducted during the STS-84 mission, and scheduled for Foale’s stay on the Mir, are in the fields of advanced technology, Earth sciences, fundamental biology, human life sciences, International Space Station risk mitigation, microgravity sciences and space sciences

  19. KSC-97PC1406

    NASA Image and Video Library

    1997-09-23

    Boeing technicians, from right, John Pearce Jr., Mike Vawter and Rob Ferraro prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The preparations are being made at the SPACEHAB Payload Processing Facility in Cape Canaveral. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A

  20. KSC-97PC1405

    NASA Image and Video Library

    1997-09-23

    Boeing technicians John Pearce Jr., at left, and Mike Vawter prepare a Russian replacement computer for stowage aboard the Space Shuttle Atlantis shortly before the scheduled launch of Mission STS-86, slated to be the seventh docking of the Space Shuttle with the Russian Space Station Mir. The preparations are being made at the SPACEHAB Payload Processing Facility in Cape Canaveral. The last-minute cargo addition requested by the Russians will be mounted on the aft bulkhead of the SPACEHAB Double Module, which is being used as a pressurized cargo container for science/logistical equipment and supplies that will be exchanged between Atlantis and the Mir. Using the Module Vertical Access Kit (MVAC), technicians will be lowered inside the module to install the computer for flight. Liftoff of STS-86 is scheduled Sept. 25 at 10:34 p.m. from Launch Pad 39A

  1. NASA astronaut and Mir 24 crew member David Wolf after landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian Space Station Mir since late September 1997, greets his friend, Tammy Kruse, shortly after his return to Earth on Jan. 31. Dr. Wolf returned aboard the orbiter Endeavour with the rest of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Bonnie Dunbar, Ph.D.; and Salizhan Sharipov with the Russian Space Agency. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded Dr. Wolf on Mir and is scheduled to remain on the Russian space station until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts.

  2. CONFERENCES AND SYMPOSIA Commemoration of the 85th birthday of S I Syrovatskii(Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 May 2010)

    NASA Astrophysics Data System (ADS)

    2010-12-01

    A scientific session of the Physical Sciences Division, Russian Academy of Sciences (RAS), was held on 26 May 2010 at the conference hall of the Lebedev Physical Institute, RAS. The session was devoted to the 85th birthday of S I Syrovatskii. The program announced on the web page of the RAS Physical Sciences Division (www.gpad.ac.ru) contained the following reports: (1) Zelenyi L M (Space Research Institute, RAS, Moscow) "Current sheets and reconnection in the geomagnetic tail"; (2) Frank A G (Prokhorov General Physics Institute, RAS, Moscow) "Dynamics of current sheets as the cause of flare events in magnetized plasmas"; (3) Kuznetsov V D (Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, RAS, Troitsk, Moscow region) "Space research on the Sun"; (4) Somov B V (Shternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Strong shock waves and extreme plasma states"; (5) Zybin K P (Lebedev Physical Institute, RAS, Moscow) "Structure functions for developed turbulence"; (6) Ptuskin V S (Pushkov Institute of Terrestrial Magnetism, the Ionosphere, and Radio Wave Propagation, RAS, Troitsk, Moscow region) "The origin of cosmic rays." Papers based on reports 1-4 and 6 are published in what follows. • Metastability of current sheets, L M Zelenyi, A V Artemyev, Kh V Malova, A A Petrukovich, R Nakamura Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 933-941 • Dynamics of current sheets underlying flare-type events in magnetized plasmas, A G Frank Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 941-947 • Space research of the Sun, V D Kuznetsov Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 947-954 • Magnetic reconnection in solar flares, B V Somov Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 954-958 • The origin of cosmic rays, V S Ptuskin Physics-Uspekhi, 2010, Volume 53, Number 9, Pages 958-961

  3. PREFACE: IX International Conference on Modern Techniques of Plasma Diagnostics and their Application

    NASA Astrophysics Data System (ADS)

    Savjolov, A. S.; Dodulad, E. I.

    2016-01-01

    The IX Conference on ''Modern Techniques of Plasma Diagnosis and their Application'' was held on 5 - 7 November, 2014 at National Research Nuclear University MEPhI (NRNU MEPhI). The goal of the conference was an exchange of information on both high-temperature and low-temperature plasma diagnostics as well as deliberation and analysis of various diagnostic techniques and their applicability in science, industry, ecology, medicine and other fields. The Conference also provided young scientists from scientific centres and universities engaged in plasma diagnostics with an opportunity to attend the lectures given by the leading specialists in this field as well as present their own results and findings. The first workshop titled ''Modern problems of plasma diagnostics and their application for control of chemicals and the environment'' took place at Moscow Engineering and Physics Institute (MEPhI) in June 1998 with the support of the Section on Diagnostics of the Council of Russian Academic of Science on Plasma Physics and since then these forums have been held at MEPhI every two years. In 2008 the workshop was assigned a conference status. More than 150 specialists on plasma diagnostics and students took part in the last conference. They represented leading Russian scientific centres (such as Troitsk Institute of Innovative and Thermonuclear Research, National Research Centre ''Kurchatov Institute'', Russian Federal Nuclear Centre - All-Russian Scientific Research Institute of Experimental Physics and others) and universities from Belarus, Ukraine, Germany, USA, Belgium and Sweden. About 30 reports were made by young researchers, students and post-graduate students. All presentations during the conference were broadcasted online over the internet with viewers in Moscow, Prague, St. Petersburgh and other cities. The Conference was held within the framework of the Centre of Plasma, Laser Research and Technology supported by MEPhI Academic Excellence Project (Russian Ministry of Education and Science contract 02.•03.21.0005 of August 27th 2013). Papers selected by the Program Committee for publishing were reviewed under control of invited editors Prof. Andrey Kukushkin, Dr. Sci. Alexander Kukushkin, Dr. Sci. Elena Baronova, Dr. Emil Dodulad. We would like to thank heartily all of the speakers, participants and organizing committee members for their contribution to the conference

  4. I.M. Sechenov (1829 - 1905) and the scientific self-understanding for medical sciences.

    PubMed

    Kofler, Walter

    2007-01-01

    There is no discussion about the historic relevance of I. Sechenov for physiology and neurosciences as the "father of Russian modern physiology". But he is relevant for modern natural science too because of his basic epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" which can be seen as the reason to exclude even the generalizable aspects of individuality, creativity and spontaneity from natural science. He developed techniques for empirical based science to deal with materialistic and idealistic aspects of the comprehensive person the "ignoramus" according to the actual stay of knowledge and the acceptable ontologies. He demonstrated that ontologies ("paradigms") can be used as tools according to the given problem which should be solved. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The stay of the art in physiology and neurosciences changed since the time of Sechenov dramatically. Therefore the philosophical positions of the 19th century should be discussed. Maybe this is indispensable for the needed linkage between materialistic and idealistic aspects of a person. For this the proposals of Sechenov are helpful up to now but nearly unknown. There is no discussion about the historic relevance of I. Sechenov as the "father of Russian physiology." But he is relevant for modern natural science too because of his epistemological and ontological work. He did not accept the up to now basic paradigm of "Ignorabimus" that can be seen as the reason to exclude even the generalizable aspects of individuality, creativity, and spontaneity from natural science. He demonstrated that ontologies ("paradigms") and epistemology can be used as tools according to the given problem. So Sechenov can be seen as a precursor of the so efficient philosophical positions of Einstein and Th. Kuhn. The state of the art changed dramatically. Therefore, the philosophical positions of the nineteenth century should be questioned. Maybe this is indispensable for the needed link between materialistic and idealistic aspects of a person as a whole. In this respect the proposals of Sechenov are helpful for medical science in the twenty-first century too but nearly unknown.

  5. Recognition of English and German Borrowings in the Russian Language (Based on Lexical Borrowings in the Field of Economics)

    ERIC Educational Resources Information Center

    Ashrapova, Alsu; Alendeeva, Svetlana

    2014-01-01

    This article is the result of a study of the influence of English and German on the Russian language during the English learning based on lexical borrowings in the field of economics. This paper discusses the use and recognition of borrowings from the English and German languages by Russian native speakers. The use of lexical borrowings from…

  6. STS-71 astronauts training in Russia

    NASA Image and Video Library

    1994-09-20

    S94-45647 (20 Sept 1994) --- Astronaut's Norman E. Thagard and Bonnie J. Dunbar by the Mir Space Station simulator at the Gagarin Cosmonaut Training Center (Star City), near Moscow, Russia. In March 1995, astronaut Thagard is scheduled to be launched in a Russian Soyuz spacecraft with two cosmonauts to begin a three-month tour of duty on the Russian Mir Space Station. Thagard, along with his back-up, astronaut Dunbar, has been training in Russia since February 1994. During his stay on Mir, he will conduct a variety of life sciences experiments that will provide U.S. investigators with the first long-duration exposure data since Skylab in the late 1970's. Thagard's mission will end in late May or early June when the Space Shuttle Atlantis, carrying the newly installed docking mechanism, docks with Mir Space Station for the first United States - Russian docking operation since Apollo-Soyuz in 1975. The Orbiter will remain attached to Mir for five days of joint scientific operations before returning home with Thagard and his Russian crew mates and leaving behind two cosmonauts on Mir.

  7. STS-71 astronauts training in Russia

    NASA Image and Video Library

    1994-09-20

    S94-45643 (20 Sept 1994) --- Astronaut Norman E. Thagard in a cosmonaut space suit in the Training Simulator Facility at the Gagarin Cosmonaut Training Center (Star City), near Moscow, Russia. In March 1995, astronaut Thagard is scheduled to be launched in a Russian Soyuz spacecraft with two cosmonauts to begin a three-month tour of duty on the Russian Mir Space Station. Thagard, along with his back-up, astronaut Bonnie J. Dunbar, has been training in Russia since February 1994. During his stay on Mir, he will conduct a variety of life sciences experiments that will provide U.S. investigators with the first long-duration exposure data since Skylab in the late 1970's. Thagard's mission will end in July when the Space Shuttle Atlantis, carrying the newly installed docking mechanism, docks with Mir Space Station for the first United States - Russian docking operation since Apollo-Soyuz in 1975. The Orbiter will remain attached to Mir for five days of joint scientific operations before returning home with Thagard and his Russian crew mates and leaving behind two cosmonauts on Mir.

  8. [Linguistic adaptation of the Russian version of the Short-form McGill Pain Questionnaire-2].

    PubMed

    Bakhtadze, M A; Bolotov, D A; Kuzminov, K O; Padun, M P; Zakharova, O B

    Linguistic adaptation of the Russian version of the Short-form McGill Pain Questionnaire-2 (SF-MPQ-2), which is conceptually equivalent to the original questionnaire. The adaptation of the Russian version of SF-MPQ-2 was performed in accordance to established rules in several stages by two independent translators with the development of a consensus Russian version and its back translation by two independent translators and development of a consensus English version. The final Russian SF-MPQ-2 version was then created. The Russian version of the Short-form McGill Pain Questionnaire-2 (SF-MPQ-2-RU) was generated based on the established rules. This version was legally registered by the right holder - Mapi Research Trust and recommended for research in the Russian Federation.

  9. PIMS Data Storage, Access, and Neural Network Processing

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Moskowitz, Milton E.

    1998-01-01

    The Principal Investigator Microgravity Services (PIMS) project at NASA's Lewis Research Center has supported microgravity science Principal Investigator's (PIs) by processing, analyzing, and storing the acceleration environment data recorded on the NASA Space Shuttles and the Russian Mir space station. The acceleration data recorded in support of the microgravity science investigated on these platforms has been generated in discrete blocks totaling approximately 48 gigabytes for the Orbiter missions and 50 gigabytes for the Mir increments. Based on the anticipated volume of acceleration data resulting from continuous or nearly continuous operations, the International Space Station (ISS) presents a unique set of challenges regarding the storage of and access to microgravity acceleration environment data. This paper presents potential microgravity environment data storage, access, and analysis concepts for the ISS era.

  10. [Transgenic cell cultures that synthesize neurotrophic factors and the possibility of therapeutic use of its cells].

    PubMed

    Pavlova, G V; Kanaĭkina, N N; Panteleev, D Iu; Okhotin, V E; Revishchin, A V

    2012-01-01

    Under the leadership of Corresponding Member of the Russian Academy of Sciences L.I. Korochkin, the Laboratory of Neurogenetics and Developmental Genetics (Institute of Gene Biology, Russian Academy of Sciences) for many years has been conducting studies of nervous system development, neural cell differentiation, and application of gene and cell technology to cure neurodegenerative diseases. The results of the study initiated by L.I. Korochkin and continued by his scientific successors support the direction of allocation of transgenic neurotrofic factors and heat-shock proteins as neuroprotectors for cell therapy. Potential for usage of promoter of HSP70 heat-shock gene of Drosophila to create transgenic constructs for therapy has been shown. Further improvement of technology of nonvirus transfer for therapeutic genes, as well as production of multicomponent genetic constructs coding several therapeutic factors with synergy effect, would stimulate creation of efficient cell medicals to cure neurodegenerative diseases.

  11. Space Research Institute (IKI) Exhibition as an Educational Project

    NASA Astrophysics Data System (ADS)

    Sadovski, Andrei; Antonenko, Elena

    2016-07-01

    The Exhibition "Space Science: Part and Future" in Space Research Institute (IKI) was opened in 2007 in commemoration of the 50th anniversary of the first man-made satellite launch. It covers the latest and the most important findings in space research, shows instruments which are used in space exploration, and presents past, current, and future Russian science missions. Prototypes of space instruments developed by Russian specialists and mockups of spacecraft and spaceships flown to space are displayed, together with information posters, describing space missions, their purposes and results. The Exhibition takes a great part in school space education. Its stuff actively works with schoolchildren, undergraduate students and also makes a great contribution in popularization of space researches. Moreover the possibility to learn about scientific space researches first-hand is priceless. We describe the main parts of the Exhibition and forms of it work and also describe the collaboration with other museums and educational organizations.

  12. Microgravity research results and experiences from the NASA/MIR space station program.

    PubMed

    Schlagheck, R A; Trach, B L

    2003-12-01

    The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Published by Elsevier Ltd.

  13. Internet calculations of thermodynamic properties of substances: Some problems and results

    NASA Astrophysics Data System (ADS)

    Ustyuzhanin, E. E.; Ochkov, V. F.; Shishakov, V. V.; Rykov, S. V.

    2016-11-01

    Internet resources (databases, web sites and others) on thermodynamic properties R = (p,T,s,...) of technologically important substances are analyzed. These databases put online by a number of organizations (the Joint Institute for High Temperatures of the Russian Academy of Sciences, Standartinform, the National Institute of Standards and Technology USA, the Institute for Thermal Physics of the Siberian Branch of the Russian Academy of Sciences, etc) are investigated. Software codes are elaborated in the work in forms of “client functions” those have such characteristics: (i) they are placed on a remote server, (ii) they serve as open interactive Internet resources. A client can use them for a calculation of R properties of substances. “Complex client functions” are considered. They are focused on sharing (i) software codes elaborated to design of power plants (PP) and (ii) client functions those can calculate R properties of working fluids for PP.

  14. STS-79 Space Shuttle Mission Report

    NASA Technical Reports Server (NTRS)

    Fricke, Robert W., Jr.

    1996-01-01

    STS-79 was the fourth of nine planned missions to the Russian Mir Space Station. This report summarizes the activities such as rendezvous and docking and spaceborne experiment operations. The report also discusses the Orbiter, External Tank (ET), Solid Rocket Boosters (SRB), Reusable Solid Rocket Motor (RSRM) and the space shuttle main engine (SSME) systems performance during the flight. The primary objectives of this flight were to rendezvous and dock with the Mir Space Station and exchange a Mir Astronaut. A double Spacehab module carried science experiments and hardware, risk mitigation experiments (RME's) and Russian logistics in support of program requirements. Additionally, phase 1 program science experiments were carried in the middeck. Spacehab-05 operations were performed. The secondary objectives of the flight were to perform the operations necessary for the Shuttle Amateur Radio Experiment-2 (SAREX-2). Also, as a payload of opportunity, the requirements of Midcourse Space Experiment (MSX) were completed.

  15. [Effect of organic and inorganic toxic compounds on luminescence of luminous fungi].

    PubMed

    Vydriakova, G A; Gusev, A A; Medvedeva, S E

    2011-01-01

    The possibility of the development of the solid phase bioluminescent biotest using aerial mycelium of the luminous fungi was investigated. Effect of organic and inorganic toxic compounds (TC) at concentrations from 10(-6) to 1 mg/ml on luminescence of aerial mycelia of four species of luminous fungi-Armillaria borealis (Culture Collection of the Institute of Forest, Siberian Branch, Russian Academy of Sciences), A. mellea, A. gallica, and Lampteromyces japonicus (Fungi Collection of the Botanical Institute, Russian Academy of Sciences)--has been studied. Culture of A. mellea was shown to be most sensitive to solutions of the model TC. It was demonstrated that the sensitivity of the luminous fungi is comparable with the sensitivity of the bacteria that are used for environmental monitoring. Use of the aerial mycelium of the luminous fungi on the solid support as a test object is a promising approach in biotesting for the development of continuous biosensors for air monitoring.

  16. Russian perspectives: The past shapes the present

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houck, R.P.

    1994-11-01

    This document contains an outline of a speech given to a group of professionals at Pacific Northwest Laboratory which was intended to give an unbiased view of Soviet perceptions. Topics discussed include: The new mission of US and Soviet labs and institutions to develop products and dedicate research to post cold war threat, historical prospectives of Russia, Russian military roles and missions, ideology of Russian politics, evils of capitalism, Russian civil war, communism, world war II, Russian losses during the war, the cold war, reasons why America should care what happens in Russia, the internal threat against a market-based economy,more » the US should help, and the Russian people and their attitudes.« less

  17. Russian Higher Education in China

    ERIC Educational Resources Information Center

    Khisamutdinov, A. A.

    2016-01-01

    In the first half of the twentieth century, Russian emigrants in China established a network of higher education institutions based on the prerevolutionary Russian educational system. By referring to memoirs and publications in the periodical press, the author traces the history of the most significant educational establishments: Harbin School of…

  18. USSR Report. Life Sciences: Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1987-03-31

    BIOKHIMIYA I MIKROBIOLOGIYA, No 4, Jul-Aug 85) 6 Bioactive Substances of Botrytis Cinerea (Literature Review) (M.V. Filimonova; PRIKLADNAYA...references 6: 5 Russian, 1 Western. 12172/13046 CSO: 1840/192 UDC 577.169;577.17 BIOACTIVE SUBSTANCES OF BOTRYTIS CINEREA (LITERATURE REVIEW) Moscow...with the various bioactive substances produced by the fungus Botrytis cinerea Pers. Among the substances produced by B. cinerea are photoreceptors

  19. Reorganization of the Administration of Education and Science and the Long-Range Tasks of Higher Education

    ERIC Educational Resources Information Center

    Sadovnichii, V.

    2005-01-01

    This article talks about the issues discussed at the meeting of the Russian Union of Rectors. The discussion includes those main issues that are most in need of attention in the sphere of education and the organization of science. The author in this article, mentions few of the historical advantages of their system of higher education which is of…

  20. Astronaut Mike Hopkins Visit to Maryland Science Center

    NASA Image and Video Library

    2014-06-09

    NASA Astronaut Mike Hopkins explains what it was like to live on the International Space Station for 6 months to seventh graders from Clear Spring Middle School at the Maryland Science Center in Baltimore, MD on Monday, June 9, 2014. Hopkins served on Expeditions 37 and 38 with Russian cosmonauts Oleg Kotov and Sergey Ryazanskiy and returned home in March, 2014. (Photo Credit: NASA/Aubrey Gemignani)

  1. Bowersox and Budarin wearing Russian Sokol suit in Soyuz Spacecraft during Expedition Six

    NASA Image and Video Library

    2003-04-14

    ISS006-E-45796 (14 April 2003) --- Attired in their Russian Sokol suits, astronaut Kenneth D. Bowersox (left), Expedition 6 mission commander; cosmonaut Nikolai M. Budarin, flight engineer; along with astronaut Donald R. Pettit (out of frame), NASA ISS science officer, practice for their return flight home scheduled for May 3, 2003. The two astronauts and cosmonaut will leave the International Space Station (ISS) aboard the Soyuz TMA-1 spacecraft at 5:40 p.m. (CDT) Saturday. They are schedule to land in Kazakhstan at 9:03 p.m. (CDT) Saturday. Budarin represents Rosaviakosmos.

  2. Expedition 8 and Expedition 9 Onboard

    NASA Image and Video Library

    2004-04-20

    The Expedition 8 and 9 crews and European Space Agency astronaut Andre Kuipers of the Netherlands are viewed on the front screen of the Flight Control Room at the Russian Mission Control Center outside Moscow, Wednesday, April 21, 2004, in a televised welcoming ceremony following their docking to the International Space Station in a Russian Soyuz spacecraft. Under the televised view of the two crews is the insignia of the Expedition 9 crew, consisting of commander Gennady Padalka and Flight Engineer and NASA International Space Station Science Officer Michael Fincke, who will spend six months on the Station. Photo Credit: (NASA/Bill Ingalls)

  3. Microgravity Research Results and Experiences from the NASA Mir Space Station Program

    NASA Technical Reports Server (NTRS)

    Schagheck, R. A.; Trach, B.

    2000-01-01

    The Microgravity Research Program Office (MRPO) participated aggressively in Phase I of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges to long duration microgravity space research. Payloads with both NASA and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about dealing with long duration on orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program. Microgravity participation in the NASA Mir Program began with the first joint NASA Mir flight to the Mir Space Station. The earliest participation setup acceleration measurement capabilities that were used throughout the Program. Research, conducted by all Microgravity science disciplines, continued on each subsequent increment for the entire three-year duration of the Program. The Phase I Program included the Microgravity participation of over 30 Fluids, Combustion, Materials, and Biotechnology Sciences and numerous commercially sponsored research payloads. In addition to the research gained from Microgravity investigations, long duration operation of facility hardware was tested. Microgravity facilities operated on Mir included the Space Acceleration Measurement System (SAMS), the Microgravity Glovebox (MGBX), the Biotechnology System (BTS) and the Canadian Space Agency sponsored Microgravity Isolation Mount (MIM). The Russian OPTIZONE Furnace was also incorporated into our material science research. All of these efforts yielded significant and useful scientific research data. This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings. Most importantly this paper highlights the various disciplines of microgravity research conducted during the International Space Station, Phase 1 Program onboard the Mir Station. A capsulation of significant research and the applicability of our findings are provided. In addition, a brief discussion of how future microgravity science gathering capabilities, hardware development and payload operations techniques have enhanced our ability to conduct long duration microgravity research.

  4. Russian-Cuban Colocation Station for Radio Astronomical Observation and Monitoring of Near-Earth Space

    NASA Astrophysics Data System (ADS)

    Ivanov, D. V.; Uratsuka, M.-R.; Ipatov, A. V.; Marshalov, D. A.; Shuygina, N. V.; Vasilyev, M. V.; Gayazov, I. S.; Ilyin, G. N.; Bondarenko, Yu. S.; Melnikov, A. E.; Suvorkin, V. V.

    2018-04-01

    The article presents the main possibilities of using the projected Russian-Cuban geodynamic colocation station on the basis of the Institute of Geophysics and Astronomy of the Ministry of Science, Technology and the Environment of the Republic of Cuba to carry out radio observations and monitoring the near-Earth space. Potential capabilities of the station are considered for providing various observational programs: astrophysical observations; observations by space geodesy methods using radio very long baselines interferometers, global navigation satellite systems, laser rangers, and various Doppler systems, as well as monitoring of artificial and natural bodies in the near-Earth and deep space, including the ranging of asteroids approaching the Earth. The results of modeling the observations on the planned station are compared with that obtained on the existing geodynamic stations. The efficiency of the projected Russian-Cuban station for solving astronomical tasks is considered.

  5. [The 175th anniversary of the District Military Clinical Hospital of the Leningrad Military District].

    PubMed

    Liutov, V V

    2010-09-01

    For 175 years a hospital made a great contribution to the development of national health care, gaining a wealth experience in high quality health care for the soldiers. Especially the biggest merit was made by the hospital during the Great Patriotic War of 1941-1945, when 82% of the wounded soldiers ware returned for further service. The hospital was glorified by famous medical scientists of XIX-XX-centuries, such as: V. Bekhterev, R. Wreden, N. Sklifosovsky, P. Kupriyanov, N. Petrov and others. Currently, the hospital takes a worthy place among the best military medical agencies of Russian Armed Forces. The hospital is equipped with modern medical equipment. There work highly qualified personnel: 17 distinguished doctors of the Russian Federation, 2 doctors and 27 candidates of medical sciences. In practice the hospital successfully uses achievements of the leading Russian military medical facilities. The staff treat with care historical traditions of the hospital.

  6. RUSALKA

    NASA Image and Video Library

    2009-10-08

    ISS020-E-049859 (8 Oct. 2009) --- Russian cosmonaut Maxim Suraev, Expedition 21/22 flight engineer, uses science hardware RUSALKA at a window in the Zvezda Service Module of the International Space Station to take methane and carbon dioxide measurements in Earth's atmosphere at sunset.

  7. Social structure and space use of Amur tigers (Panthera tigris altaica) in Southern Russian Far East based on GPS telemetry data.

    PubMed

    Hernandez-Blanco, Jose A; Naidenko, Sergei V; Chistopolova, Maria D; Lukarevskiy, Victor S; Kostyrya, Alexey; Rybin, Alexandr; Sorokin, Pavel A; Litvinov, Mikhail N; Kotlyar, Andrey K; Miquelle, Dale G; Rozhnov, Viatcheslav V

    2015-07-01

    To better understand the spatial structure of Amur tigers (Panthera tigris altaica) at the southern edge of their range we fitted 14 tigers (6♀♀ and 8♂♂) with 15 GPS-Argos collars between 2008 and 2011 in 2 study sites: the Ussuriskii Reserve of southern Sikhote-Alin and the Land of the Leopard National Park in southwest Primorye, Russian Far East. Fixed kernel estimates of male home ranges were larger than those of female home ranges (P < 0.05 [mean 95% fixed kernel(♀) = 401 ± 205 km(2) ; mean 95% fixed kernel(♂) = 778 ± 267 km(2)]). The home range size of females varied greatly, but on average was similar to estimates derived from earlier work further north. Low overlap of adjacent home ranges suggested that females retained exclusive territories. Real core areas of females overlapped only slightly, and remained stable over multiple years. The home ranges of adult males were smaller than those of males to the north, and in contrast to previous studies, high overlap among males indicated the absence of territoriality. Nonetheless, real core areas of males did not overlap, suggesting some spatial separation. In comparison to other tiger populations and other areas of the Russian Far East, the sex ratio in our 2 study areas was highly skewed towards males. We believe this skewed sex ratio resulted in the dissolution of territoriality of males due to an inability to defend individual females, with males resorting to scramble competition for mates. Continued monitoring of these sites to determine whether shifts in the sex ratio might result in a return to male territoriality would provide confirmation of our tentative hypothesis. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  8. Development of Clinical Pharmacology in the Russian Federation.

    PubMed

    Petrov, V I; Kagramanyan, I N; Khokhlov, A L; Frolov, M U; Lileeva, E G

    2016-05-01

    The article aims to provide the history, organization, and approaches to clinical pharmacology in the Russian Federation. This article is based on major international and Russian documents, along with groundbreaking historical facts and scientific articles related to the development of modern clinical pharmacology the Russian Federation. Improving the quality of drug therapy is the main goal of clinical pharmacology in the Russian Federation. Decisions of the World Health Organization, scientific achievements, and the work of well-known scientists among the world community and in the Russian Federation have strongly influenced the development of clinical pharmacology the Russian Federation. Clinical pharmacology in the Russian Federation addresses a wide range of problems; it actively engages in modern scientific research, education; and clinical practice. Clinical pharmacologists participate in studies of new drugs and often have a specific area of expertise. The future development of clinical pharmacology in the Russian Federation will be related to improvements in training, refinement of the framework that regulates clinical pharmacologists, and the creation of clinical pharmacology laboratories with modern equipment. Copyright © 2016 Elsevier HS Journals, Inc. All rights reserved.

  9. PLATO Sitcom Dialogs for Russian.

    ERIC Educational Resources Information Center

    Dawson, Clayton; Provenzano, Nolen

    1981-01-01

    Situation comedy (sitcom) dialogs that are included in PLATO lessons for first year Russian students are described. These comprehension exercises make use of both the touch panel and the audio capabilities of PLATO. The sitcom dialogs were written by a native speaker of Russian and are based on the vocabulary in the textbook plus a small number of…

  10. Impact of European Media Education Strategies on Russian Media Education Development

    ERIC Educational Resources Information Center

    Mikhaleva, Galina V.

    2015-01-01

    The article attempts to examine the impact of European media education theories and approaches on Russian media education evolution basing on a comparative analysis of Russian and European media literacy promotion strategies in the historical context. This influence resulted in the appearance and development of socio-cultural models of media…

  11. JPRS Report, Science & Technology, USSR: Life Sciences

    DTIC Science & Technology

    1987-07-09

    87) 59 Prophylactic Effectiveness of Epsilon- Aminocaproic Acid (EACA) on Influenza in Mice (L.Ye. Puzis, V.P. Lozitskiy, et al.; ACTA VIROLOGICA...EFFECTIVENESS OF EPSILON- AMINOCAPROIC ACID (EACA) ON INFLUENZA IN MICE Bratislava ACTA VIROLOGICA in Russian Vol 30, No 1, Jan 86 (manuscript received 17...MEDITSINSKOY KHIMII, No 4, Jul-Aug 86) 59 Effects of Novel Antineoplastic Blastozole on Nucleic Acid Levels and DNA Synthesis in Cancer Cells (S.N

  12. USSR Report. Life Sciences: Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1987-05-29

    Ioffe, M.G. Bezrukov; BIOTEKHNOLOGIYA, No 5, Sep-Oct 86) • 29 Influence of Hydrodynamic Structure of Flows on Processes in Bubbler Reactor (A.A...Ye.F. Andreyev and M.A. Kazaryan, Ali-Union Scientific Research Biosynthetic Institute, Moscow] [Abstract] Flow -through microbiocalorimeters widely...references 13: 2 Russian, 11 Western. 6508/13046 CSO: 1840/356 UDC 663.033.063.86 INFLUENCE OF HYDRODYNAMIC STRUCTURE OF FLOWS ON PROCESSES IN

  13. JPRS Report, Science & Technology, USSR: Life Sciences.

    DTIC Science & Technology

    1987-09-25

    Ministry of Health, Moscow] iAbstract] Assessment of the specificity of Virognostika diagnosticum (produced by Organum, the Netherlands) in AIDS diagnosis...was determined in studies of school children and in patients with diseases posing different levels of risk of infection by the AIDS virus. Positive...KLINICHESKAYA KHIRURGIYA in Russian No 10 Oct 86 p 67 [Article by V, K, Minachenko, of the Inter-Oblast Brigade for Specialized Aid to Patients

  14. Selected translations of the Russian literature on the electrogeochemical sampling technique called CHIM (chastichnoe izvlechennye metallov)

    USGS Publications Warehouse

    Bloomstein, Edward I.; Bloomstein, Eleana; Hoover, D.B.; Smith, D.B.

    1990-01-01

    As part of our research into new methods for the assessment of mineral deposits, the U.S. Geological Survey has recently begun investigation of the CHIM method. As part of our studies, translation of a Russian manual on the CHIM methodology and eight articles from the Russian literature were transit ted to provide background for our own research. The translations were done by Earth Science Translation Services of Albuquerque, New Mexico, and are presented as received, without editing on our part. Below is a bibliography of the translated articles.For approximately the past 20 years Russian geoscientists have been applying an electrogeochemical sampling technique given the Russian acronym CHIM, derived from Chastichnoe Izvlechennye Metallov which translates as "partial extraction of metals". In this technique a direct current is introduced into the earth through collector electrodes similar to "porous pots" used in electrical geophysical applications. The solution in the cathode is dilute nitric acid, and current is passed through the cathode for times ranging from 6 hours to 48 hours or more. Electrical connections to the nitric acid are made through an inner conductor that is typically spectroscopically pure graphite. At the cathode, mobile cations collect on the graphite or in the nitric acid solution, both of which serve as the geochemical sampling media. These media are then analyzed by appropriate methods for the ions of interest. In most applications of the CHIM method only mobile cations are sampled, although Russian literature does refer to collection of anions as well. More recently the CHIM method has been applied by the Peoples Republic of China and the Indian Geological Survey.The literature indicates that the method has advantages over other geochemical sampling techniques by providing increased sensitivity to the metals being searched for, especially where deposits are covered by substantial overburden. In some cases success has been claimed with overburden in excess of 500 meters. The technique appears to have been applied principally to exploration for base- and precious-metal deposits, but does not appear to be limited to these. References are made in the literature to its application in the search for nickel, cobalt, molybdenum, uranium, tin, REE, tungsten, berylium, and oil and gas.

  15. The Bear’s Den: Russian Anti Access/Area Denial in the Maritime Domain

    DTIC Science & Technology

    2016-05-01

    and its Northern Fleet accounts for two-thirds of the Russian Navy.58 Russia eventually plans to build 50 new bases in the area, and its Northern...Collapse of USSR,” BBC News , 25 Apr 2005, http://news.bbc.co.uk/2/hi/4480745.stm. 44 Senate, Russian Strategy and Military Operations: Statement before the...Top NATO General: Russians starting to build air defense bubble over Syria,” The Washington Post, 29 Sep 2015, https://www.washingtonpost.com/ news

  16. On the first direct detection of gravitational waves (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 2 March 2016)

    NASA Astrophysics Data System (ADS)

    2016-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS), "On the first direct detection of gravitational waves," was held in the conference hall of the Lebedev Physical Institute, RAS on 2 March 2016. The papers collected in this issue were written based on talks given at the session: (1) Pustovoit V I (Scientific and Technological Center of Unique Instrumentation, Moscow) "On the direct detection of gravitational waves"; (2) Braginsky V B, Bilenko I A, Vyatchanin S P, Gorodetsky M L, Mitrofanov V P, Prokhorov L G, Strigin S E, Khalili F Ya (Lomonosov Moscow State University, Moscow) "The road to the discovery of gravitational waves"; (3) Khazanov E A (Institute of Applied Physics, RAS, Nizhny Novgorod) "Thermooptics of magnetoactive media: Faraday isolators for high average power lasers"; (4) Cherepashchuk A M (Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Discovery of gravitational waves: a new chapter in black hole studies"; (5) Lipunov V M (Sternberg Astronomical Institute, Lomonosov Moscow State University, Moscow) "Astrophysical meaning of the discovery of gravitational waves." Papers based on talks 2-5 are published in this issue of the journal. A paper based on talk 1 will be published in a forthcoming issue of Physics-Uspekhi. Additional information on the discovery of gravitational waves, the history of their theoretical prediction, and the advances in possible methods for their investigation can be found on the Physics-Uspekhi site www.ufn.ru, on the page http://ufn.ru/en/events/gravitational_waves_discovery.html dedicated to this outstanding discovery. • The road to the discovery of gravitational waves, V B Braginsky, I A Bilenko, S P Vyatchanin, M L Gorodetskii, V P Mitrofanov, L G Prokhorov, S E Strigin, F Ya Khalili Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 879-885 • Thermooptics of magnetoactive media: Faraday isolators for high average power lasers, E A Khazanov Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 886-909 • Discovery of gravitational waves: a new chapter in black hole studies, A M Cherepashchuk Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 910-917 • Astrophysical meaning of the discovery of gravitational waves, V M Lipunov Physics-Uspekhi, 2016, Volume 59, Number 9, Pages 918-928

  17. [New technologies for evaluation of health status of apparently healthy people].

    PubMed

    Ushakov, I B; Orlov, O I; Baevskiĭ, R M; Bersenev, E Iu; Chernikova, A G

    2013-03-01

    The article considers the questions of development of new technologies for evaluation of health of apparently healthy people based on experience of long-term researches of cosmonauts' performed at Russian Academy of Sciences Institute of Biomedical Problems under the direction of academician A. I. Grigoriev. In 2007 in monograph "Concept of Health and Space Medicine" the principle of health estimation in apparently healthy people working in conditions of chronic stress was described. These approaches were realized the same year to produce a new hard and software "Ecosan-2007". In the following 2008 the device has been tested for inspection of bus drivers and pilots of civil aircraft and since 2009 it has been used in the international project "Mars-500". All these developments and researches were supported by the Fundamental Sciences-to-Medicine Program maintained by the Presidium of the Russian Academy of Sciences under guidance of academician A. I. Grigoriev. In the project 'Mars-500" in the "artificial confinement", simulating the interplanetary ship, 6 members of the international "Martian crew" were medically and psycho physiologically surveyed. Among set of various devices the "Ecosan-2007" was also used. With application of the same device, not less that 125 volunteers were examined, who lived usual life in natural and socially-industrial conditions. The investigation was simultaneously conducted in 12 various regions of the world. These long-term medico-ecological researches allowed to receive important experimental substantiations for preclinical approach to state of health estimation. In the frame of these researches the methodology of remote monitoring of adverse ecological factor effects on health initiated telemedical ecology, a new applied discipline. The article concludes with discussion of the issues of health conception and new preclinical diagnostic technologies adapting by the public health services.

  18. MetNet - Martian Network Mission

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.

    2009-04-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The actual practical mission development work started in January 2009 with participation from various countries and space agencies. The scientific rationale and goals as well as key mission solutions will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. This development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development.

  19. SAMS Acceleration Measurements on Mir from June to November 1995

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Hrovat, Ken; Moskowitz, Milton; McPherson, Kevin

    1996-01-01

    The NASA Microgravity Science and Applications Division (MSAD) sponsors science experiments on a variety of microgravity carriers, including sounding rockets, drop towers, parabolic aircraft, and Orbiter missions. The MSAD sponsors the Space Acceleration Measurement System (SAMS) to support microgravity science experiments with acceleration measurements to characterize the microgravity environment to which the experiments were exposed. The Principal Investigator Microgravity Services project at the NASA Lewis Research Center supports principal investigators of microgravity experiments as they evaluate the effects of varying acceleration levels on their experiments. In 1993, a cooperative effort was started between the United States and Russia involving science utilization of the Russian Mir space station by scientists from the United States and Russia. MSAD is currently sponsoring science experiments participating in the Shuttle-Mir Science Program in cooperation with the Russians on the Mir space station. Included in the complement of MSAD experiments and equipment is a SAMS unit In a manner similar to Orbiter mission support, the SAMS unit supports science experiments from the U.S. and Russia by measuring the microgravity environment during experiment operations. The initial SAMS supported experiment was a Protein Crystal Growth (PCG) experiment from June to November 1995. SAMS data were obtained during the PCG operations on Mir in accordance with the PCG Principal Investigator's requirements. This report presents an overview of the SAMS data recorded to support this PCG experiment. The report contains plots of the SAMS 100 Hz sensor head data as an overview of the microgravity environment, including the STS-74 Shuttle-Mir docking.

  20. Using the SPICE system to help plan and interpret space science observations

    NASA Technical Reports Server (NTRS)

    Acton, Charles H., Jr.

    1993-01-01

    A portable multimission information system named SPICE is used to assemble, archive, and provide easy user access to viewing geometry and other ancillary information needed by space scientists to interpret observations of bodies within our solar system. The modular nature of this system lends it to use in planning such observations as well. With a successful proof of concept on Voyager, the SPICE system has been adapted to the Magellan, Galileo and Mars Observer missions, and to a variety of ground based operations. Adaptation of SPICE for Cassini and the Russian Mars 94/96 projects is underway, and work on Cassini will follow, SPICE has been used to support observation planning for moving targets on the Hubble Space Telescope Project. Applications for SPICE on earth science, space physics and other astrophysics missions are under consideration.

  1. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Mission Specialist Franklin Chang-Diaz, Ph.D., STS-91 Commander Charles Precourt, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Russian Interpreter Olga Belozerova, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  2. The U.S.-Russian radiation health effects research program in the Southern Urals.

    PubMed

    Seligman, P J

    2000-07-01

    The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral U.S.-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Association (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.

  3. Russia’s Demographic Crisis and the Military: Strategic Impact and Security Implications in the 21st Century

    DTIC Science & Technology

    2007-04-13

    Unfortunately, Russian military reform efforts have been relatively unsuccessful to date. The many weaknesses and inefficiencies of today’s Russian military...argue that Russian military reform has restructured the force, focusing too much on reduction in size rather than re-shaping the military based on

  4. Russian Function Catalog and Rolebooks. Methods for Determining Language Objectives and Criteria, Volume XIII.

    ERIC Educational Resources Information Center

    Setzler, Hubert H., Jr.; And Others

    A Russian Function Catalog and Instructor and Advisor Rolebooks for Russian are presented. The catalog and rolebooks are part of the communication/language objectives-based system (C/LOBS), which supports the front-end analysis efforts of the Defense Language Institute Foreign Language Center. The C/LOBS projects, which is described in 13 volumes…

  5. Teaching Reading in Russian, Volume 1. Instructional Materials for the Less Commonly Taught Languages.

    ERIC Educational Resources Information Center

    American Council on the Teaching of Foreign Languages, Yonkers, NY.

    These reading comprehension exercises, based on authentic Russian texts, are aimed at developing reading strategies in lower-level students of Russian. The exercises are designed for students reading at the Novice and Intermediate levels as determined by the American Counsel on Teaching of Foreign Languages (ACTFL) and the Educational Testing…

  6. School Principals as Agents of Reform of the Russian Education System

    ERIC Educational Resources Information Center

    Kasprzhak, A. G.; Filinov, N. B.; Bayburin, R. F.; Isaeva, N. V.; Bysik, N. V.

    2015-01-01

    The paper is based on the results of a study of secondary school principal decision-making styles conducted in eight regions of the Russian Federation (one per federal district) in 2014 using the methodological approach developed by Alan J. Rowe. The study aimed to assess the reformist potential of Russian school principals. We believe that this…

  7. Teaching Listening in Russian. Instructional Materials for the Less Commonly Taught Languages.

    ERIC Educational Resources Information Center

    American Council on the Teaching of Foreign Languages, Yonkers, NY.

    The video-based exercises, designed at the Novice High to Intermediate High skill levels on the American Council on the Teaching of Foreign Languages language proficiency scale, are aimed at developing non-interactive listening comprehension. The tapes used contain authentic broadcast Russian. Nothing is adapted. The trick to using real Russian is…

  8. Ultrastrong light fields (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 29 October 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    On 29 October 2014, the scientific session "Super strong light fields" of the Physical Sciences Division (PSD), Russian Academy of Sciences (RAS), was held at the conference hall of the Lebedev Physical Institute, RAS.The agenda of the session announced on the website http://www.gpad.ac.ru of the PSD RAS contains the reports: (1) Bychenkov V Yu (Lebedev Physical Institute, RAS, Moscow) "Laser acceleration of ions: New results and prospects for applications"; (2) Kostyukov I Yu (Institute of Applied Physics, RAS, Nizhnii Novgorod) "Plasma methods for electron acceleration: the state of the art and outlook"; (3) Zheltikov A M (Lomonosov Moscow State University, Moscow) "Nonlinear optics of mid-IR ultrashort pulses"; (4) Narozhnyi N B, Fedotov A M (Moscow Engineering Physics Institute, Nuclear Research University, Moscow) "Quantum electrodynamics cascades in intense laser fields."Papers written on the basis of oral presentations 1-4 are published below. • Laser acceleration of ions: recent results and prospects for applications, V Yu Bychenkov, A V Brantov, E A Govras, V F Kovalev Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 71-81 • Plasma-based methods for electron acceleration: current status and prospects, I Yu Kostyukov, A M Pukhov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 81-88 • Subterawatt femtosecond pulses in the mid-infrared range: new spatiotemporal dynamics of high-power electromagnetic fields, A V Mitrofanov, D A Sidorov-Biryukov, A A Voronin, A Pugžlys, G Andriukaitis, E A Stepanov, S Ališauskas, T Flöri, A B Fedotov, V Ya Panchenko, A Baltuška, A M Zheltikov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 89-94 • Quantum-electrodynamic cascades in intense laser fields, N B Narozhny, A M Fedotov Physics-Uspekhi, 2015, Volume 58, Number 1, Pages 95-102

  9. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-08

    Expedition 10 Commander and NASA Science Officer Leroy Chiao, right, Flight Engineer and Soyuz Commander Salizhan Sharipov and Russian Space Forces cosmonaut Yuri Shargin, left, toured a museum bearing the name of historic Russian rocket designer Sergei Korolev, Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan in advance of their liftoff to the International Space Station October 14. The traditional visit included the signing of their names in commemorative books and a wall at the museum, and touring the cottages nearby where Korolev and Yuri Gagarin slept on the eve of Gagarin's launch April 12, 1961 to become the first human in space. Photo Credit: (NASA/Bill Ingalls)

  10. Development the Internet - Resources in Solar-Terrestrial Physics for the Science and Education

    NASA Astrophysics Data System (ADS)

    Zaistev, A.; Ishkov, V.; Kozlov, A.; Obridko, V.; Odintsov, V.

    Future development of research in the solar-terrestrial physics (STP) will motivated by needs into fundamental knowledge and the practical demands in the format of space weather. Public community realized that outer space disturbances affects on the operation of high technologies systems integrated into everyday life, so they need into Internet resources of solar-terrestrial physics as the open scientific and public domain. Recent achievements of STP lead to burst of data sources and we have now many different types of information available free in Internet: solar images from SOHO and GOES-12 satellites, WIND and ACE interplanetary data, satellite and ground-based magnetic field variations, aurora images in real time, ionospheric data and many more. In this paper we present some experience to establish in Russian language the open scientific and public domain in Internet which can served for better understanding of STP in wide scientific community and into the general public including different media sources. Now we have more than one hundred sites which present the STP data: Space Research Institute (www.iki.rssi.ru), IZMIRAN (www.izmiran.rssi.ru), Institute of Solar-Terrestrial Physics (www.iszf.irk.ru), Institute of Nuclear Physics in Moscow University (http://alpha.npi.msu.su) Institute of Nuclear Physics in Moscow University ) and many more. Based on our own experience and our colleagues we decide to create information resources in solar-terrestrial physics as the open scientific and public domain. On this way the main directions of our activity as follows: to produce the catalogues of resources in Internet with detailed description of its content in Russian, to publish the list of Russian institutes working in STP, to present the biographical dictionary of Russian scientists in STP, to create the interactive forum for discussion of latest scientific results, to form the team of authors who willing to publish summarized analytical papers on the STP problems, to establish the regular newsletter with open circulation between professionals and people interested in STP, and to provide the scientific coordination between Russian institutes according rules of the road adopted by Solar-Terrestrial Scientific Council. We strongly advocate in favor to construct such Internet resources on native languages as it will served for national level due to its basic funding source. On the other hand our experience might be useful for other nations, as they are have the same aims. Our project have one of the goal to establish a better public understanding of STP through more open and wide public access to the latest scientific results. The realization of this project is supported by Russian Fund of Basic Research (grant N 02-07-90232) for period 2002-2004 and include results also supported by RFBR before.

  11. Domain decomposition method for the Baltic Sea based on theory of adjoint equation and inverse problem.

    NASA Astrophysics Data System (ADS)

    Lezina, Natalya; Agoshkov, Valery

    2017-04-01

    Domain decomposition method (DDM) allows one to present a domain with complex geometry as a set of essentially simpler subdomains. This method is particularly applied for the hydrodynamics of oceans and seas. In each subdomain the system of thermo-hydrodynamic equations in the Boussinesq and hydrostatic approximations is solved. The problem of obtaining solution in the whole domain is that it is necessary to combine solutions in subdomains. For this purposes iterative algorithm is created and numerical experiments are conducted to investigate an effectiveness of developed algorithm using DDM. For symmetric operators in DDM, Poincare-Steklov's operators [1] are used, but for the problems of the hydrodynamics, it is not suitable. In this case for the problem, adjoint equation method [2] and inverse problem theory are used. In addition, it is possible to create algorithms for the parallel calculations using DDM on multiprocessor computer system. DDM for the model of the Baltic Sea dynamics is numerically studied. The results of numerical experiments using DDM are compared with the solution of the system of hydrodynamic equations in the whole domain. The work was supported by the Russian Science Foundation (project 14-11-00609, the formulation of the iterative process and numerical experiments). [1] V.I. Agoshkov, Domain Decompositions Methods in the Mathematical Physics Problem // Numerical processes and systems, No 8, Moscow, 1991 (in Russian). [2] V.I. Agoshkov, Optimal Control Approaches and Adjoint Equations in the Mathematical Physics Problem, Institute of Numerical Mathematics, RAS, Moscow, 2003 (in Russian).

  12. [Membrane technologies in medicine and ecology].

    PubMed

    Makarov, D A; Malyshev, V V; Kononova, S V

    2010-01-01

    The paper considers the state-of-the-art of membrane technologies, as applied to the needs of medicine and ecology, the major benefits of membranes for microfiltration and ultrafiltration, and perspectives for the application of new membranes based on new materials. A number of membranes based on aromatic polyamide imides (PAs) have been investigated using rotavirus models. Due to the good solubility of PAs in amide solvents, their based asymmetric membranes can be formed in one step, by applying a water setting bath. The one-stage procedure developed at the Institute of High Molecular Compounds, Russian Academy of Sciences, for the synthesis of aromatic PAs allows one to prepare polymers with required viscosity and strength characteristics. This gives rise to a membrane as porous films of digitiform morphology and asymmetric porous structure.

  13. Knowledge-Driven Event Extraction in Russian: Corpus-Based Linguistic Resources

    PubMed Central

    Solovyev, Valery; Ivanov, Vladimir

    2016-01-01

    Automatic event extraction form text is an important step in knowledge acquisition and knowledge base population. Manual work in development of extraction system is indispensable either in corpus annotation or in vocabularies and pattern creation for a knowledge-based system. Recent works have been focused on adaptation of existing system (for extraction from English texts) to new domains. Event extraction in other languages was not studied due to the lack of resources and algorithms necessary for natural language processing. In this paper we define a set of linguistic resources that are necessary in development of a knowledge-based event extraction system in Russian: a vocabulary of subordination models, a vocabulary of event triggers, and a vocabulary of Frame Elements that are basic building blocks for semantic patterns. We propose a set of methods for creation of such vocabularies in Russian and other languages using Google Books NGram Corpus. The methods are evaluated in development of event extraction system for Russian. PMID:26955386

  14. Reply to comment received from J. Herget et al. regarding ;Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai; by Gribenski et al. (2016), Quaternary Science Reviews 149, 288-305

    NASA Astrophysics Data System (ADS)

    Gribenski, Natacha; Lukas, Sven; Stroeven, Arjen P.; Jansson, Krister N.; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry A.; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.

    2017-07-01

    We thank Herget et al. (2017) for their keen interest in our study about the paleoglacial history of the Chagan Uzun Valley, in the Russian Altai (Gribenski et al., 2016). In our study, we proposed a detailed chronological and glaciodynamic reconstruction of a succession of glacial events represented by prominent moraine complexes, based on remotely-sensed data and field-geomorphological mapping, sedimentological logging, and cosmogenic 10Be and 26Al surface exposure dating of glacially-transported boulders. Herget et al. (2017) express skepticism about the outermost moraine complex dated in our study (CUMC 1; Gribenski et al., 2016), which slightly predates 19 thousand years (ka), during marine isotope stage (MIS) 2. To quote: "we suspect that their claim of regional climatic significance-that the ∼19 ka Chagan-Uzun moraine they dated can be used to show that the local LGM and regional LGM were the same, and occurred during MIS 2-may be premature" (Herget et al., 2017: p. 1). Their comment appears to relate to an ongoing debate regarding the timing of maximum glaciation in Central Asia during the last glacial cycle, however it is based on misinterpretations of our paper.

  15. Astronomy in the Russian Scientific-Educational Project: "KAZAN-GEONA-2010"

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Kitiashvili, I.

    2006-08-01

    The European Union promotes the Sixth Framework Programme. One of the goals of the EU Programme is opening national research and training programs. A special role in the history of the Kazan University was played by the great mathematician Nikolai Lobachevsky - the founder of non-Euclidean geometry (1826). Historically, the thousand-year old city of Kazan and the two-hundred-year old Kazan University carry out the role of the scientific, organizational, and cultural educational center of the Volga region. For the continued successful development of educational and scientific-educational activity of the Russian Federation, the Republic Tatarstan, Kazan was offered the national project: the International Center of the Sciences and Internet Technologies "GeoNa" (Geometry of Nature - GeoNa - is wisdom, enthusiasm, pride, grandeur). This is a modern complex of conference halls including the Center for Internet Technologies, a 3D Planetarium - development of the Moon, PhysicsLand, an active museum of natural sciences, an oceanarium, and a training complex "Spheres of Knowledge". Center GeoNa promotes the direct and effective channel of cooperation with scientific centers around the world. GeoNa will host conferences, congresses, fundamental scientific research sessions of the Moon and planets, and scientific-educational actions: presentation of the international scientific programs on lunar research and modern lunar databases. A more intense program of exchange between scientific centers and organizations for a better knowledge and planning of their astronomical curricula and the introduction of the teaching of astronomy are proposed. Center GeoNa will enable scientists and teachers of the Russian universities with advanced achievements in science and information technologies to join together to establish scientific communications with foreign colleagues in the sphere of the high technology and educational projects with world scientific centers.

  16. List of Organizing Committees and Sponsors

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Organizers DIRECTORS Maria L CalvoPresident of International Commission for Optics, Spain Aram V PapoyanDirector of Institute for Physical Research of NAS, Armenia HEADS OF PROJECT Tigran Dadalyan YSU, Armenia Artsrun MartirosyanIPR, Armenia COORDINATOR Narine GevorgyanIPR, Armenia / ICTP, Italy MANAGERS Paytsar MantashyanIPR, Armenia Karen VardanyanIPR, Armenia INTERNATIONAL ADVISORY COMMITTEE Marcis AuzinshLatvia Roland AvagyanArmenia Tapash ChakrabortyCanada Yuri ChilingaryanArmenia Eduard KazaryanArmenia Albert KirakosyanArmenia Radik KostanyanArmenia Avinash PandeyIndia Marat SoskinUkraine INTERNATIONAL PROGRAM COMMITTEE David Sarkisyan (Chair)Armenia Roman AlaverdyanArmenia Dan ApostolRomania Levon AslanyanArmenia Aranya BhattacherjeeIndia Gagik BuniatyanArmenia Vigen ChaltykyanArmenia Roldao Da RochaBrazil Miltcho DanailovItaly Vladimir GerdtRussia Samvel GevorgyanArmenia Gayane GrigoryanArmenia Rafik HakobyanArmenia Takayuki MiyaderaJapan Levon MouradianArmenia Atom MuradyanArmenia Simon RochesterUSA Hayk SarkisyanArmenia Aleksandr VardanyanArmenia LOCAL ORGANIZING COMMITTEE Narek AghekyanArmenia Anahit GogyanArmenia Melanya GrigoryanArmenia Armen HovhannisyanArmenia Lilit HovhannisyanArmenia Tatevik KhachatryanArmenia Astghik KuzanyanArmenia Satenik KuzanyanArmenia Vladimir LazarevRussia Lilit MantashyanArmenia Hripsime MkrtchyanArmenia Pavel MuzhikyanArmenia Wahi NarsisianArmenia Sahak OrdukhanyanArmenia Anna ReymersArmenia Narine TorosyanArmenia The Symposium was organized by YSU & NAS SPIE Armenian Student Chapter Institute for Physical Research (IPR) of National Academy of Sciences (NAS) Russian-Armenian (Slavonic) University (RAU) LT-PYRKAL cjsc Yerevan State University (YSU) Official Sponsors of the Symposium LT-PYRKAlRussian ArmenianSPIE LT-PYRKAL cjscRussian-Armenian UniversityYSU & NAS SPIE Student Chapter Further sponsors NFSATICTPSCSADevout Generation National Foundation of Science and Advanced TechnologiesThe Abdus Salam International Centre for Theoretical PhysicsState Committee of Science of ArmeniaDevout Generation

  17. [The systematic review of the social services legislative regulation among elderly citizens and disabled persons in Russian Federation].

    PubMed

    Bashkireva, A S; Shestakov, V P; Svintsov, A A; Raduto, V I; Bogdanov, E A; Chernova, G I; Cherniakina, T S

    2014-01-01

    The systematic review and data analysis of the social services legislative regulation among elderly citizens and disabled persons in Russian Federation was submitted. The structure of the consolidated legislation on social services among citizens of advanced age was defined. The Russian legislative database in all subjects of the Russian Federation was analyzed. Analytical results thus obtained made it possible to designate the subjective rights of elderly citizens in the field of social services, the lists of bases for providing social services, different kinds of these services according to the consolidated legislation in all subjects of the Russian Federation, and various legal organizational forms providing these social services also.

  18. JPRS Report, Science & Technology, USSR: Life Sciences

    DTIC Science & Technology

    1988-04-05

    Order Boundary Conditions [A.N. Zaikin; BIOFIZIKA, Nov-Dec 87] 4 Biotechnology Optimization of Batch Cultivation of Biomass [Ye.G. Kosman, I.P...Vol 297, No 4 , Dec 87 (manuscript received 17 Jul 87) pp 1018-1021 [Article by I.B. Kaplan, S.I. Malyshenko, A.B. Fedina, M.E. Talyanskiy, M.Ya...Crosslinking and Effects on Combination of Retinal With Bacterioopsin 18400193 Moscow BIOLOGICHESKIYE MEMBRANY in Russian Vol 4 , No 11, Nov 87

  19. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    DTIC Science & Technology

    1984-06-04

    in Regulation of Ideomotor Movements U. G. Goryacheva and S. A. Kapustin- PSIKHOLOGICHESKIY ZHURNAL, No 1, Jan-Feb 84) 77 Perception of Binaural ...with considerable individual variability. The heart rate decreased from 116.6-124.1 beats /min, on days 2-4, to 89.9 beats /min, on day 5, for the...292-8586] PERCEPTION OF BINAURAL TEMPORAL SHIFTS Moscow PSIKHOLOGICHESKIY ZHURNAL in Russian Vol 5, No 1, Jan-Feb 84 (manuscript received 15

  20. Leonid Pavlovich Shil'nikov (obituary)

    NASA Astrophysics Data System (ADS)

    Anosov, Dmitry V.; Afraimovich, Valentin S.; Bunimovich, Leonid A.; Gonchenko, Sergei V.; Grines, Vyacheslav Z.; Ilyashenko, Yulij S.; Katok, Anatolii B.; Kashchenko, Sergey A.; Kozlov, Valerii V.; Lerman, Lev M.; Morozov, Albert D.; Neishtadt, Anatolii I.; Pesin, Yakov B.; Samoilenko, Anatoly M.; Sinai, Yakov G.; Treschev, Dmitrii V.; Turaev, Dmitry V.; Sharkovskii, Aleksandr N.; Shil'nikov, Andrei L.

    2012-06-01

    A remarkable mathematician, one of the most prominent specialists in the theory of dynamical systems and bifurcation theory, a laureate of the Lyapunov Prize of the Russian Academy of Sciences and of the Lavren'ev Prize of the National Academy of Sciences of Ukraine, a Humboldt Professor, Head of the Department of Differential Equations of the Research Institute of Applied Mathematics and Cybernetics of Nizhnii Novgorod University, Professor Leonid Pavlovich Shil'nikov passed away on 26 December 2011.

  1. JPRS Report, Science & Technology, USSR: Life Sciences.

    DTIC Science & Technology

    1987-06-23

    Chestukhina, S.A. Tyurin, et al.; BIOKHIMIYA, No 6, Jun 86) 21 Some Properties of Urease Encapsulated in Liposomes CV.I. Zakrevskiy, N.G. Plekhanova...PROPERTIES OF UREASE ENCAPSULATED IN LIPOSOMES Kiev UKRAINSKIY BIOKHIMICHESKIY ZHURNAL in Russian Vol 58, No 4, Jul-Aug 86 (manuscript received 20 Jan 86) pp...plant urease incapsulated in liposomes—on the sub- strate hydrolysis kinetics—was investigated. The enzyme was selected by the ability of its urea

  2. Professor, member of the Academy of (Medical) Sciences, Igor Dmitrievich Kirpatovsky and his scientific heritage

    NASA Astrophysics Data System (ADS)

    Kaitova, Z.; Smirnova, E.; Protasov, A.

    2015-11-01

    Academician Igor Dmitrievich Kirpatovsky created a scientific school at the Department of Operative Surgery at the Russian People's Friendship University. Unique studies have been conducted in various areas of medicine and science: vascular and abdominal surgery; microsurgery; traumatology and orthopedics; clinical anatomy and relief anatomy; nervous and endocrine transplantation; andrology transplantation; experiments in the area of renal transplantation, small intestine and limb transplantation; transplantation immunology.

  3. 8TH International Laser Physics Workshop Lphys󈨧 Budapest, July 2-6, 1999, Program

    DTIC Science & Technology

    1999-07-05

    Gerhard J. MUller (Germany) Rudolf Steiner (Germany) Symposium Status and Future Directions of High-Power Laser Installations Co-Chairs: See Leang...Sciences, Kazan. Russia I.A. Shcherbakov General Physics Institute. Russian Academy of Sciences. Moscow, Russia R. Steiner Institute of Laser Technologies...14.50-15.15 R. Steiner , A. Pohl, A. Bentele, T. Meier (Ulm, Germany) Laser Doppler sensor for laser assisted injection 30 SEMINAR 5 --- LASER METHODS IN

  4. JPRS Report - Science & Technology USSR: Life Sciences.

    DTIC Science & Technology

    1988-08-04

    1, Jan-Fcb88]’ 7 PHARMACOLOGY, TOXICOLOGY Experimental Study of Pharmacokinetics of Bemithyl in Rats [S. S. Boyko, Yu. G. Bobkov, et al...Pharmacokinetics of Bemithyl in Rats 18400181b Moscow FARMAKOLOG1YA I TOKS1KOLOG1YA in Russian Vol 50 No 5, Sep-Oct 87 (manuscript received 25 Jun 85) pp 54...Abstract] Bemithyl (2-ethylmercaptobenzimidazole) is one of a group of drugs conventionally called actopro- tectors, which can increase

  5. Exploring the nature of science through courage and purpose: a case study of Nikolai Vavilov and plant biodiversity.

    PubMed

    Cohen, Joel I; Loskutov, Igor G

    2016-01-01

    Historical biographies facilitate teaching the 'nature of science'. This case study focuses on how Nikolai Vavilov's unrelenting sense of purpose, courage, and charismatic personality was maintained during violent revolutionary change in Russia. The rediscovery of Gregor Mendel's laws of inheritance provided Vavilov with a scientific foundation for crop improvement, this foundation was later bolstered by Vavilov's personal drive to conserve plant biodiversity. As he advanced theories and pragmatic approaches for genetic improvement and conservation of plants, political leaders in Russian came to reject Mendel's principles and eventually Vavilov's work. This rejection occurred because Joseph Stalin was desperate for a quick remedy to the famine and suffering from forced collective agriculture. Vavilov's work continued, modernizing Russian crop research while inspiring other scientists to save seeds stored in the world's first gene bank. Three themes illustrating the nature of science help examine Vavilov's life: explaining natural phenomena, uncompromising human endeavor, and revising scientific knowledge. The case study concludes with four questions to stimulate student inquiry and self-guided research. They also deepen student understanding of Vavilov's personal sacrifices to ensure use and conservation of plant biodiversity.

  6. An English translation of Russian common names of agricultural and forest insects and mites.

    Treesearch

    Alex Yusha; Mauro E. Martignoni; Paul J. Iwai

    1985-01-01

    This translation, based on a list of Russian names of insects and mites by W. Laux and G. Schmidt and published in 1979, is designed to assist English-speaking entomologists and other biologists in identifying insect species from their Russian vernacular names as listed in Soviet Union journals. The translation consists of three lists: (1) species arranged...

  7. DOS/Russian - US program overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pifer, M.L.

    1996-04-01

    This paper describes the organization and describes the objectives for the science and technology agreements between the U.S.A. and Russia. The Gore-Chernomyrdin Commission objectives and the Civilian Research and the Development Foundation for the Independent States of the former Soviet Union (CRDF) are discussed.

  8. The Global Thinking Project.

    ERIC Educational Resources Information Center

    Hassard, Jack; Weisburg, Julie

    1992-01-01

    Describes the Global Thinking Project, a collaborative effort between Georgia State University and the Russian Academy of Pedagogical Sciences to develop strategies, methods, and teaching materials to help students think globally. Students are connected through the AppleLink network. Student and teacher attitudes toward the project are reported.…

  9. USSR Space Life Sciences Digest, issue 8

    NASA Technical Reports Server (NTRS)

    Hooke, L. R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor); Teeter, R. (Editor)

    1985-01-01

    This is the eighth issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 48 papers recently published in Russian language periodicals and bound collections and of 10 new Soviet monographs. Selected abstracts are illustrated with figures and tables. Additional features include reviews of two Russian books on radiobiology and a description of the latest meeting of an international working group on remote sensing of the Earth. Information about English translations of Soviet materials available to readers is provided. The topics covered in this issue have been identified as relevant to 33 areas of aerospace medicine and space biology. These areas are: adaptation, biological rhythms, biospherics, body fluids, botany, cardiovascular and respiratory systems, cosmonaut training, cytology, endocrinology, enzymology, equipment and instrumentation, exobiology, gastrointestinal system, genetics, group dynamics, habitability and environment effects, hematology, human performance, immunology, life support systems, man-machine systems, mathematical modeling, metabolism, microbiology, musculoskeletal system, neurophysiology, nutrition, operational medicine, personnel selection, psychology, reproductive biology, and space biology and medicine.

  10. Coordinated science with the Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT missions

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan; Vourlidas, Angelos; Zimovets, Ivan; Velli, Marco; Zhukov, Andrei; Kuznetsov, Vladimir; Liu, Ying; Bale, Stuart; Ming, Xiong

    The concurrent science operations of the ESA Solar Orbiter (SO), NASA Solar Probe Plus (SPP), Russian Interhelioprobe (IHP) and Chinese SPORT missions will offer a truly unique epoch in heliospheric science. While each mission will achieve its own important science objectives, taken together the four missions will be capable of doing the multi-point measurements required to address many problems in Heliophysics such as the coronal origin of the solar wind plasma and magnetic field or the way the Solar transients drive the heliospheric variability. In this presentation, we discuss the capabilities of the four missions and the Science synergy that will be realized by concurrent operations

  11. HIGHLIGHTS OF THE RUSSIAN HEALTH STUDIES PROGRAM AND UPDATED RESEARCH FINDINGS

    PubMed Central

    Fountos, Barrett N.

    2017-01-01

    Abstract Recognized for conducting cutting-edge science in the field of radiation health effects research, the Department of Energy's (DOE) Russian Health Studies Program has continued to generate excitement and enthusiasm throughout its 23-year mission to assess worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The three goals of the Program are to: (1) clarify the relationship between health effects and chronic, low-to-medium dose radiation exposure; (2) estimate the cancer risks from exposure to gamma, neutron, and alpha radiation; and (3) provide information to the national and international organizations that determine radiation protection standards and practices. Research sponsored by DOE's Russian Health Studies Program is conducted under the authority of the Joint Coordinating Committee for Radiation Effects Research (JCCRER), a bi-national committee representing Federal agencies in the United States and the Russian Federation. Signed in 1994, the JCCRER Agreement established the legal basis for the collaborative research between USA and Russian scientists to determine the risks associated with working at or living near Russian former nuclear weapons production sites. The products of the Program are peer-reviewed publications on cancer risk estimates from worker and community exposure to ionizing radiation following the production of nuclear weapons in Russia. The scientific return on investment has been substantial. Through 31 December 2015, JCCRER researchers have published 299 peer-reviewed publications. To date, the research has focused on the Mayak Production Association (Mayak) in Ozersk, Russia, which is the site of the first Soviet nuclear weapons production facility, and people in surrounding communities along the Techa River. There are five current projects in the Russian Health Studies Program: two radiation epidemiology studies; two historical dose reconstruction studies and a worker biorepository. National and international standard-setting organizations use cancer risk estimates computed from epidemiological and historical dose reconstruction studies to validate or revise radiation protection standards. An overview of the most important research results will be presented. PMID:27885077

  12. [Methodological problems of noninfectious epidemiology and hygiene under chemical pollution of the environment].

    PubMed

    Rusakov, N V

    In modern conditions the base of the assurance of the safety of human being from harmful factors of environment is the hygienic rationing for the latters. The use of this methodological principle led to the considerable decline in the level of chemical pollution of environment objects. However tens of millions of Russians are exposed to the impact of chemicals above admissible hygienic level. There was noted the high prevalence and mortality rate due to noninfectious diseases of the population. The hygienic science needs to develop and introduce methodology of personification prevention on protection of the person against chemical environmental pollution.

  13. Nikolay Ivanovich Pirogov (1810-1881): A pioneering Russian surgeon and medical scientist.

    PubMed

    Hendriks, Inge F; Bovill, James G; van Luijt, Peter A; Hogendoorn, Pancras Cw

    2018-02-01

    Nikolay Pirogov qualified as a physician from Moscow University in 1828 and then studied surgery and anatomy at University of Dorpat. He developed new surgical techniques, including the eponymous osteoplastic foot amputation. His application of scientifically based techniques extended surgery from a craft to a science. During the Crimean War he initiated the deployment of women as nurses and used triage for dealing with mass casualties. His textbook on field surgery became the standard reference on the subject and his principles remained virtually unchanged until the Second World War. Pirogov died on 5 December 1881 at his estate in Vishnya.

  14. Power Consumption Optimization in Tooth Gears Processing

    NASA Astrophysics Data System (ADS)

    Kanatnikov, N.; Harlamov, G.; Kanatnikova, P.; Pashmentova, A.

    2018-01-01

    The paper reviews the issue of optimization of technological process of tooth gears production of the power consumption criteria. The authors dwell on the indices used for cutting process estimation by the consumed energy criteria and their applicability in the analysis of the toothed wheel production process. The inventors proposed a method for optimization of power consumptions based on the spatial modeling of cutting pattern. The article is aimed at solving the problem of effective source management in order to achieve economical and ecological effect during the mechanical processing of toothed gears. The research was supported by Russian Science Foundation (project No. 17-79-10316).

  15. The linguistic validation of Russian version of Dutch four-dimensional symptoms questionnaire (4DSQ) for assessing distress, depression, anxiety and somatization in patients with borderline psychosomatic disorders.

    PubMed

    Arnautov, V S; Reyhart, D V; Smulevich, A B; Yakhno, N N; Terluin, B; Zakharova, E K; Andryushchenko, A V; Parfenov, V A; Zamergrad, M V; Romanov, D V

    2015-12-12

    The four-dimensional symptom questionnaire (4DSQ) is an originally Dutch self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. In order to produce the appropriate translated Russian version the process of linguistic validation has been initiated. This process has been done according to the "Linguistic Validation Manual for Health Outcome Assessments" developed by MAPI institute. To produce the appropriate Russian version of the 4DSQ that is conceptually and linguistically equivalent to the original questionnaire. The original Dutch version of the 4DSQ was translated by one translator into Russian. The validated English version of the 4DSQ was translated by another translator into Russian without mutual consultation. The consensus version was created based on two translated versions. After that the back translation was performed to Dutch, some changes were implemented to the consensus Russian version and the second target version was developed based on these results. The second target version was sent to an appropriate group of reviewers. Based on their comments, the second target version was updated. After wards this version was tested in patients during cognitive interview. The study protocol was approved by the Independent Interdisciplinary Ethics Committee on Ethical Review for Clinical Studies, and in compliance with the Helsinki Declaration and ICH-GCP guidelines and local regulations. Enrolled patients provided written informed consent. After the process of forward and backward translation, consultant and developer's comments, clinicians and cognitive review the final version of Russian 4DSQ was developed for assessment of distress, depression, anxiety and somatization. The Russian 4DSQ as a result of translation procedures and cognitive interviews linguistically corresponds to the original Dutch 4DSQ and could be assessed in psychometric validation for the further using in general practice.

  16. JPRS Report, Science & Technology, USSR: Materials Science

    DTIC Science & Technology

    1988-03-11

    crystallization of the amorphous phase, and subsequent growth of ß-boron grains. References 5: all Russian. 2415/9835 UDC 621.033.67 Erosion of Materials in...Weightlessness and Effect of Magnetic Field on Liquation Processes in InSb Crystals (V. S. Zemskov, M. R. Raukhman; FIZIKA I KHIMIYA OBRABOTKI MATERIALOV, No...No 7, Jul 87) 13 Production of CdP2^CdAs2 Solid-Solution Single Crystals and Measurement of Their Cathodoluminescence Spectra (V, B, Lazarev, S

  17. JPRS Report, Science & Technology, USSR: Life Sciences.

    DTIC Science & Technology

    1987-09-14

    than specific (B. allii) or nonpathogenic (M. Fructigena) fungi. Thin-layer chromatography on silica gel led to the identification of 6 flavonoid com...fragments that account for their antioxidant features. References 8: 6 Russian, 2 Western. 12172/12955 CSO: 1840/854 20 UDC 591.044.5:591.044.6...mode CO2 and copper -vapor lasers has opened up new vistas in surgery on soft tissues well supplied with blood or with a low water content, such as

  18. 100th anniversary of the birth of E M Lifshitz (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 March 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 100th anniversary of the birth of Academician E M Lifshitz was held in the conference hall of the institute of Physical Problems, RAS, on 26 March 2015. The agenda of the session announced on the website www.gpad.ac.ru of the PSD RAS contains the reports: (1) Khalatnikov I M (Landau Institute for Theoretical Physics, RAS, Moscow) "Problem of singularity in cosmology"; (2) Kats E I (Landau Institute for Theoretical Physics, RAS, Moscow) "Van der Waals, Casimir, and Lifshitz forces in soft matter"; (3) Volovik G E (Landau Institute for Theoretical Physics, RAS, Moscow) "Superfluids in rotation: Onsager-Feynman vortices and Landau-Lifshitz vortex sheets." Papers written on the basis of oral presentations 1-3 are published below. • Stochastic cosmology, perturbation theories, and Lifshitz gravity, I M Khalatnikov, A Yu Kamenshchik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 878-891 • Van der Waals, Casimir, and Lifshitz forces in soft matter, E I Kats Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 892-896 • Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices, G E Volovik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 897-905

  19. Russian Extravehicular Activity (EVA) 21A Russian Photo OPS

    NASA Image and Video Library

    2009-03-10

    ISS018-E-039239 (10 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Lonchakov and astronaut Michael Fincke (out of frame), commander, reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.

  20. Russian Extravehicular Activity (EVA) 21A Russian Photo OPS

    NASA Image and Video Library

    2009-03-10

    ISS018-E-039241 (10 March 2009) --- Cosmonaut Yury Lonchakov, Expedition 18 flight engineer, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Lonchakov and astronaut Michael Fincke (out of frame), commander, reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.

  1. SPACEHAB is lowered by crane in the SSPF into the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is lowered into the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  2. The U.S.-Russian radiation health effects research program in the Southern Urals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seligman, P.J.

    2000-07-01

    The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral US-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), the Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Associationmore » (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.« less

  3. A Short Assessment of Select Remediation Issues at the Russian Research Center-Kurchatov Institute, Moscow, Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gephart, Roy E.

    At the invitation of the National Academies, Roy Gephart traveled to Russia with an eight-member U.S. team during June, 2008 to participate in a workshop hosted by the National Academies and the Russian Academy of Sciences on radiation contamination and remediation issues in the former Soviet Union. Cleanup problems were assessed by the American participants for six Russian sites: Kurchatov Institute, Lakes 10 and 11 at Mayak, Andreev Bay, Krasnokamensk Mining Enterprise (Siberia), Almaz Mining Enterprise (North Caucasus), and one site for testing peaceful nuclear explosions. Roy lead the Russian Research Center-Kurchatov Institute review session and wrote an assessment ofmore » key cleanup issues. Kurchatov is the leading institute in the Former Soviet Union devoted to military and civilian nuclear programs. Founded in 1943 in the outskirts of Moscow, this 100 hectare site of nearly undeveloped, prime real estate is now surrounded by densely populated urban and business districts. Today there are growing concerns over the public safety and environmental security of the site resulting from increasingly obsolete nuclear facilities and a legacy of inadequate waste management practices that resulted in contaminant releases and challenging remediation problems. In addition, there is growing concern over the presence of nuclear facilities within urban areas creating potential targets for terrorist attacks.« less

  4. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are STS-91 Pilot Dominic Gorie, STS-91 Commander Charles Precourt, Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, Boeing SPACEHAB Program Senior Engineer Shawn Hicks, Boeing SPACEHAB Program Specialist in Engineering Ed Saenger, STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency, Boeing SPACEHAB Program Manager in Engineering Brad Reid, and Russian Interpreter Olga Belozerova.

  5. Rocketry, film and fiction: the road to Sputnik

    NASA Astrophysics Data System (ADS)

    Brake, Mark; Hook, Neil

    2007-07-01

    The launch of Sputnik 1 in 1957 was fuelled by science fiction as well as science fact. The field of early rocketry included the work of Russians Nikolai Rynin and Konstantin Tsiolkovsky, American Robert Goddard, and German engineers Herman Oberth and Wernher Von Braun. All were directly inspired and influenced by early science fiction that heralded a space age decades ahead of time. The work of these pioneers led directly to the development of the technology needed to boost Sputnik skyward. After the launch of Sputnik, the context of the nuclear arms race opened the floodgates for a new wave of apocalyptic fiction.

  6. [The thirty years of Acta Genetica Sinica].

    PubMed

    Li, Shao-Wu; Zhou, Su; Xue, Yong-Biao; Zhu, Li-Huang

    2003-04-01

    Acta Genetica Sinica (AGS) is sponsored by the Genetics Society of China and the Institute of Genetics and Developmental Biology of Chinese Academy of Sciences, and is published by Science Press. The journal is a leading national academic periodical and one of the Chinese key periodicals of natural sciences. Currently, AGS is being indexed by several well-known domestic and international indexing systems, such as the American Chemical Digest (CA), BIOSIS database, Biological Digest (BA), Medical Index and Russian Digest (P [symbol: see text]). Papers in the areas of genetics, developmental biology, cell molecular biology and evolution are regularly published by AGS.

  7. SAO/NASA ADS at SAO: Mirror Sites

    Science.gov Websites

    , Garching, Germany Astronomisches Rechen-Institut, Heidelberg, Germany Institute of Astronomy of the Russian Observatory, Chinese Academy of Science, Beijing, China Inter-University Centre for Astronomy and Astrophysics Intensive Astronomy, South Africa [ADS] ADS [CfA] CfA [NASA] NASA ads at cfa.harvard.edu

  8. Final Report from the Department of Kinetics of Chemical and Biological Processes, Institute of Chemical Physics of Russian Academy of Sciences

    DTIC Science & Technology

    1994-01-01

    from polymer systems. Investigation of mechanisms of high-temperature pyrolysis and combustion reactions of network polymethacrylates. Rubailo V.L...are widely spread among agricultural important crops (i.e. cereals, fruits, grapevine, potato, cotton, tomato , leguminous) and ornamental plants

  9. Effects of space flights on human allergic status (IgE-mediated sensitivity)

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Rykova, M. P.; Gertsik, Y. G.; Antropova, E. N.

    2007-02-01

    Suppression of the immune system after space flights of different duration has been reported earlier by Konstantinova [Immune system in extreme conditions, Space immunology. B. 59. M. Science 1988. 289p. (in Russian) [4]; Immunoresistance of man in space flight, Acta Astronautica 23 (1991) 123-127 [5

  10. Blunt trauma and operative care in microgravity: a review of microgravity physiology and surgical investigations with implications for critical care and operative treatment in space.

    PubMed

    Kirkpatrick, A W; Campbell, M R; Novinkov, O L; Goncharov, I B; Kovachevich, I V

    1997-05-01

    The assembly of the International Space Station in a low earth orbit will soon become a reality. The National Aeronautics and Space Administration envisions inhabited lunar bases and staffed missions to Mars in the future. Increasing numbers of astronauts, construction of high-mass structures, increased extra-vehicular activity, and prolonged if not prohibitive medical evacuation times to earth underscore the need to address requirements for trauma care in nonterrestrial environments. A search was carried out to review the relevant literature in the MEDLINE and SPACELINE databases. All related Technical, Corporate, and Flight Test Reports in the KRUG Life Sciences corporate library were also reviewed. Bibliographies of all articles were then reviewed from these papers to identify additional pertinent literature. Senior Russian investigators reviewed the Russian literature and translated Russian publications when appropriate. Personal communication and discussion with active microgravity investigators and ongoing microgravity research supplemented published reports. A large volume of data exist to document the multiple detrimental physiologic effects of microgravity exposure on human physiology. Organs systems such as cardiovascular, neurohumoral, immune, hematopoetic, and musculoskeletal systems may be particularly affected. These physiologic changes suggest an impaired ability to withstand major systemic trauma. Observational data also suggest adverse changes in numerous aspects of response to wounding and injury, and in areas such as the behavior of hemorrhage, microbiologic flora, and wound healing. In addition to an increased volume of ongoing and anticipated basic science research in microgravity physiology, preliminary studies of clinical diagnosis and therapy have been carried out in microgravity and microgravity laboratories. The feasibility of a wide range of ancillary critical care techniques has been verified in the parabolic flight model of microgravity. Although Russian investigators first performed laparotomies on rabbits in parabolic flight in 1967, only recently have American investigators demonstrated the reproducible feasibility of open and endoscopic surgical procedures under general anesthetic in animal models in a microgravity environment. With appropriate instrumentation and personnel, the majority of resuscitative and surgical interventions required to stabilize a severely injured astronaut are feasible in a microgravity environment. Onboard limitations in mass, volume, and power that are ever present in any spacecraft design will limit the realistic capabilities of the medical system. Standard proved and tested trauma and operative management protocols will constitute the basis for extra-terrestrial care. Surgeons should familiarize themselves with the microgravity environment and remain active in planning trauma care for the continued exploration of space.

  11. Influence of spatial beam inhomogeneities on the parameters of a petawatt laser system based on multi-stage parametric amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, S A; Trunov, V I; Pestryakov, Efim V

    2013-05-31

    We have developed a technique for investigating the evolution of spatial inhomogeneities in high-power laser systems based on multi-stage parametric amplification. A linearised model of the inhomogeneity development is first devised for parametric amplification with the small-scale self-focusing taken into account. It is shown that the application of this model gives the results consistent (with high accuracy and in a wide range of inhomogeneity parameters) with the calculation without approximations. Using the linearised model, we have analysed the development of spatial inhomogeneities in a petawatt laser system based on multi-stage parametric amplification, developed at the Institute of Laser Physics, Siberianmore » Branch of the Russian Academy of Sciences (ILP SB RAS). (control of laser radiation parameters)« less

  12. Russian-American health care: bridging the communication gap between physicians and patients.

    PubMed

    Shpilko, Inna

    2006-12-01

    The objectives of this article are two-fold: (1) to gather in one place reliable information about Russian-Americans' past medical practices and their current outlook on health care and to provide health care professionals with an overview of the major afflictions suffered by this ethnic group; and (2) to educate Russian-speaking patients about the American heath care system and social services geared towards immigrants by locating and evaluating free, culturally appropriate patient education Web sites available in Russian. In order to draw data on specific diseases and conditions affecting the Russian-speaking population, the author searched various scholarly health-related electronic databases. A number of well-established U.S. government consumer-health Web sites were searched to locate patient education resources that can be utilized by recent Russian immigrants. The author provides an overview of the major health problems encountered by the Russian-speaking population before emigration and potential health concerns for Russian immigrant communities. In addition, the author provides a scholarly exploration of patient education materials available in Russian. In this increasingly diverse society, physicians are faced with the challenge of providing culturally sensitive health care. Multicultural Web-based health resources can serve as a valuable tool for reducing communication barriers between patients and health care providers, thus improving the delivery of quality health care services. Recommendations for further research are indicated. The author offers recommendations for practitioners serving Russian-speaking immigrants. Suggestions on utilization of Web resources are also provided.

  13. Urinary nickel excretion in populations living in the proximity of two russian nickel refineries: a Norwegian-Russian population-based study.

    PubMed Central

    Smith-Sivertsen, T; Tchachtchine, V; Lund, E; Bykov, V; Thomassen, Y; Norseth, T

    1998-01-01

    The Russian nickel refineries located in the cities of Nikel and Zapolyarny close to the Norwegian border are responsible for extensive sulfur dioxide and nickel pollution, as well as severe ecological damage in both countries. The aim of our study was to investigate human nickel exposure in the populations living on both sides of the Norwegian-Russian border. The design was a cross-sectional population-based study of adults aged 18-69 years residing in Sor-Varanger municipality, Norway, and Nikel and Zapolyarny, Russia, during 1994 and 1995. Individual exposure to nickel was assessed by measurements of nickel in urine using electrothermal atomic absorption spectrometry. For controls, urine was collected from adults in the Russian cities of Apatity and Umba (Kola Peninsula) and the Norwegian city of Tromso, all of which are locations without nearby point sources of nickel. Altogether 2,233 urine specimens were analysed for nickel. People living in Nikel had the highest concentrations (median 3.4 microg/l), followed by Umba (median 2.7 microg/l), Zapolyarny (median 2.0 microg/l), Apatity (median 1.9 microg/l), Tromso (median 1.2 microg/l), and Sor-Varanger (median 0.6 microg/l). Regardless of geographical location, the Russian study groups all had a higher urinary-nickel average than those in Norway (p<0.001). With the exception of Nikel, neither the Russian nor the Norwegian urinary-nickel levels were associated with residence location near a Russian nickel refinery. We concluded that industrial nickel pollution alone could not explain the observed discrepancy between Norway and Russia; we also discuss other possible nickel exposure sources that may account for the high urinary levels found in Russia. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:9681979

  14. PIRE Experience Reaches out to the Russian Far East and Augments Graduate Education Abroad

    NASA Astrophysics Data System (ADS)

    Almberg, L. D.; Eichelberger, J. C.; Izbekov, P.; Ushakov, S.; Vesna, E.

    2006-12-01

    NSF's Partners in International Research and Education (PIRE) program seeks to introduce American students to collaborative international science early in their graduate careers. The intent is that the next generation of American scientists will be better prepared to work at the international level. The emphases on partnership and learning about the culture of the host country is a welcome and productive change from the `grab and dash' approach that can characterize `Winter national' projects. Our PIRE project, US-Russia-Japan Partnership in Volcanological Research and Education, is an interdisciplinary investigation of the magma systems at Bezymianny and Shiveluch Volcanoes in Kamchatka, Russia and Mount St Helens in Washington, USA. We wish to understand how massive edifice collapse at all three volcanoes perturbed the magma systems and influenced subsequent and continuing eruptive behavior. Seven American graduate students from the universities of Alaska, Hawaii, Washington, Oregon, and Stanford embarked on a personal and professional development adventure in July and August, 2006. Their experience began in Fairbanks, AK with preparations for remote foreign field work and research planning with mentor scientists. The adventure continued in Petropavlosk-Kamchatsky, Kamchatka, which required circumnavigation of the world as no airlines fly between Anchorage and Petropavlovsk. Faculty at Kamchatka State University provided intensive short courses for two weeks, introducing students to Russian language, culture, geography and history while they adjusted to the new environment and met Russian counterparts at the Institute of Volcanology and Seismology. Afternoon discussions with Russian experts in volcanology, seismology, tectonics and tephrachronology were enlightening and influenced the research plans. Russian graduate and advanced undergraduate students joined the group at the helicopter accessed camp on Bezymianny volcano. Two young Russian scientists headed the field team. Students learned from one another and the accompaning senior scientists. This year of the five-year program was focused on sampling for petrology and geochemistry and establishment of continuous GPS sites. The team conducted the first work on products of the large eruption of May 9, 2006. The experience concluded with a one-week visit to Mount St Helens and the Cascade Volcano Observatory for a workshop with American students and scientists working on the current eruption there. Next year a new team will be fielded on a similar schedule. However, we will keep the 2006 team together with web-based video conferencing as the work progresses through laboratory analysis and interpretation and publication of results.

  15. Effective teaching in the contexts of Internet science projects: American and Russian teachers' perspectives of best practices

    NASA Astrophysics Data System (ADS)

    Mumma, Brian

    Statement of the problem. Science education literature had agreed that an important goal in students' learning is the development of scientific and technological literacy. One effort that teachers have integrated into their practices for addressing this goal has been teaching within the contexts of Internet Science Projects. Greater awareness of teachers' perspectives of their best practices and their beliefs and reasons for these practices in the contexts of Internet Science Projects can improve the quality of science education programs. Methods. A series of pilot interviews was conducted during the 2000--2001 school year to develop the guiding questions for inquiring into teachers' perspectives of their best practices within the contexts of Internet Science Projects. This series of interviews resulted in the understanding of the need to select teachers with experiences with Internet Science Projects and to conduct in-depth phenomenological interviews for learning from their voices. Two teachers were purposefully selected as the participant-informants for this study, one an American elementary teacher from Walker County, Georgia, and one a Russian teacher from St. Petersburg, Russia. The study was conducted from October through December 2001. The data collected for this qualitative study consisted of a series of in-depth phenomenological interviews, classroom observations, and the collection and analysis of various artifacts including teacher journals, student products, and e-mail/bulletin board transcripts. The interview structure was based upon a modification of expanding Seidman's (1998) three interview series into multiple interviews concluded upon the determination of saturation of the topic. The series of interviews were composed of (1) life history focus; (2) the details of the experience of teaching within the contexts of Internet Science Projects; and (3) reflection on the meanings. The data analysis consisted of applying Strauss & Corbin's (1990) open coding structure. Results. The results of this study revealed that these teachers carried their best practices from traditional teaching into their practices in the contexts of Internet Science Projects. The teachers created student-centered learning environments by focusing upon their classroom structure over that of the Internet Science Project. The teachers created strong local learning experiences inside an outside of their classroom environments where students were able to build strong understandings of the topic area before becoming engaged in virtual collaborations and Internet communications. This engagement allowed success in the face of any contingencies that might prevent or limit the ability for the teachers' classrooms to actively collaborate across the Internet. The teachers built their practices in Internet Science Projects upon questions prompted by their students' real world experiences, developed local understandings before progressing into exchanges for global collaborations, and built worldview perspectives.

  16. Feasibility of commercialization of Russian thistle, Salsola kali L. , as a fuel source. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpiscak, M.M.; Foster, K.E.; Rawles, R.L.

    1981-10-01

    The use of Russian thistle as an energy resource has been demonstrated. Russian thistle biomass can be harvested, stored and transported using readily available machinery. Propagation seed can be harvested, cleaned and sown using commercially available machines and traditional techniques. In addition, preliminary tests did not detect that burning Russian thistle biomass causes any major toxicological or immunological problems. Many questions remain to be answered, however, concerning use of Russian thistle as a biomass fuel. The lack of confirmed, long-term data, on the agronomics of Russian thistle makes additional research necessary. Additional data are required to produce a sound datamore » base for evaluating the economics of Russian thistle production, for improving agricultural methods, and for fully evaluating the toxic and immunologic properties of Russian thistle. In conclusion, it appears that Russian thistle biomass has a great potential for becoming a fuel source in arid areas that are lacking fossil fuel reserves or where possible reduction of environmental problems associated with the use of fossil fuels is desired. Analyses of economic and energy factors show that there is a significant net gain in energy with the production and processing of Russia thistle biomass into synthetic logs (Tumblelogs), although the cost of Tumblelogs is slightly higher than that of synthetic logs made from wood waste. 10 refs., 12 figs., 17 tabs.« less

  17. Space Science

    NASA Image and Video Library

    1994-11-01

    An international effort to learn more about the complex interaction between the Earth and Sun took another step forward with the launch of WIND spacecraft from Kennedy Space Center (KSC). WIND spacecraft is studded with eight scientific instruments - six US, one French, and one - the first Russian instrument to fly on a US spacecraft - that collected data about the influence of the solar wind on the Earth and its atmosphere. WIND is part of the Global Geospace Science (GGS) initiative, the US contribution to NASA's International Solar Terrestrial Physics (ISTP) program.

  18. JPRS Report, Science & Technology, USSR: Life Sciences

    DTIC Science & Technology

    1989-03-07

    BIOORGANICHESKAYA KHIMIYA, Vol 14 No 4, Apr 88] 19 Intrinsic Fluorescence Studies on Effects of pH on Structure of Mistletoe Lectin [T. L. Bushuyeva, A. G...Figures 2; references 15: 3 Russian, 12 Western. UDC 576.8.097.29:547.962.3 Intrinsic Fluorescence Studies on Effects of pH on Structure of Mistletoe ...characteristics of the mistletoe lectin I (MLI), a molecule consisting of A (29 kD) and a B (34 kD) subunit, were used in assessing the structural

  19. Launching partnership in optics and photonics education between University of Rochester and Moscow Engineering Physics Institute NRNU MEPhI

    NASA Astrophysics Data System (ADS)

    Lukishova, Svetlana G.; Zavestovskaya, Irina N.; Zhang, Xi-Cheng; Aleshchenko, Yury A.; Konov, Vitaly I.

    2017-08-01

    A collaboration in education between the oldest and one of the most comprehensive Optics schools in U.S., the Institute of Optics (IO), University of Rochester (UR), and one of the most recognized Russian university, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) was started in 2015 by signing an agreement on a double-Master's degree program in optics. It was based on earlier collaboration between research groups in both universities. In summer of 2016, nine UR Optics undergraduate students participated with MEPhI students at the International School on Optics and Laser Physics in MEPhI. During five days they were immersed into the world of cutting edge research, technologies and ideas that Russian, European and U.S. scientists offered them. This School also included tours of MEPhI Nanotechnologies and Lasers Centers and Nano-bioengineering Laboratory as well as of scientific laboratories of the leading institutes in optics, photonics and laser physics of the Russian Academy of Sciences. In December of 2015, one MEPhI Master student visited IO UR for one month for a research project with results presented later at a MEPhI conference. Samples prepared by MEPhI researchers are used in IO students teaching laboratories. One Master student from MEPhI is working now towards the Master's degree at the IO UR. In this paper benefits and pitfalls of a cross-border collaboration are discussed as well as different directions of such a collaboration to provide a high-quality specialization for the students of the 21 century which includes international cooperation.

  20. Paleomagnetism and Geochronology of the Precambrian Dikes in NE Fennoscandia, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Veselovskiy, R. V.; Samsonov, A.; Stepanova, A.

    2017-12-01

    Paleomagnetism of Proterozoic dikes of Scandinavia, Karelia, and southern part of the Kola Peninsula is extensively explored in many studies (Veikkolainen et al., 2014). In particular, the paleomagnetism of intrusive formations in the southern part of the Kola Peninsula is thoroughly scrutinized in the study authored by Alexey Khramov and his colleagues (Khramov et al., 1997). However, information about the systematic paleomagnetic studies of the Archaean and Proterozoic dikes of the Central Kola block and, especially, Murmansk block are absent. Based on the results of preliminary paleomagnetic investigation of 57 Precambrian dikes of the Kola Peninsula, in 31 of them a stable monopolar component of natural remanent magnetization is revealed. The peculiarities of distribution of this magnetization component within the Kola Peninsula and the rock magnetic characteristics of the dikes in which this component is isolated suggest its secondary nature and relate the mechanism and formation time to the remagnetization processes which took place in the northwest of Fennoscandia about 1.8 Ga during the Svecofennian orogeny. The corresponding geomagnetic pole of Fennoscandia is located in the immediate vicinity of the known Paleoproterozoic (1.9-1.7 Ga) poles of Baltica (Khramov et al., 1997; Veikkolainen et al., 2014). We also present the new geochronological Ar/Ar, Sm-Nd, Rb-Sr and U-Pb data which allow to determine the age of remagnetization as 1.86 Ga. The studies were supported by the Russian Science Foundation (project no. 16-17-10260), partially supported by the Russian Federation Government (project no. 14.Z50.31.0017) and Russian Foundation for Basic Research (project no. 17-05-01121a).

  1. Professional development of Russian HEIs' management and faculty in CDIO standards application

    NASA Astrophysics Data System (ADS)

    Chuchalin, Alexander; Malmqvist, Johan; Tayurskaya, Marina

    2016-07-01

    The paper presents the approach to complex training of managers and faculty staff for system modernisation of Russian engineering education. As a methodological basis of design and implementation of the faculty development programme, the CDIO (Conceive-Design-Implement-Operate) Approach was chosen due to compliance of its concept to the purposes and tasks of engineering education development in Russia. The authors describe the structure, the content and implementation technology of the programme designed by Tomsk Polytechnic University and Skolkovo Institute of Science and Technology with the assistance of Chalmers University of Technology and KTH Royal Institute of Technology and other members of the CDIO Initiative. The programme evaluation based on the questionnaire results showed that the programme content is relevant, has high practical value and high level of novelty for all categories of participants. Therefore, the CDIO approach was recommended for implementation to improve various elements of the engineering programme such as learning outcomes, content and structure, teaching, learning and assessment methods. Besides, the feedback results obtained through programme participants' survey contribute to identification of problems preventing development of engineering education in Russia and thus serve as milestones for further development of the programme.

  2. Word Order in Russian Sign Language

    ERIC Educational Resources Information Center

    Kimmelman, Vadim

    2012-01-01

    In this paper the results of an investigation of word order in Russian Sign Language (RSL) are presented. A small corpus of narratives based on comic strips by nine native signers was analyzed and a picture-description experiment (based on Volterra et al. 1984) was conducted with six native signers. The results are the following: the most frequent…

  3. Literature on Early Literacy Instruction in Four Languages (Chinese, Korean, Navajo, Russian).

    ERIC Educational Resources Information Center

    Thurlow, Martha; Liu, Kristin; Albus, Debra; Shyyan, Vitaliy

    2003-01-01

    This report, sponsored by the Office of English Language Acquisition (OELA), is a summary of evidence-based research on teaching reading to Chinese, Korean, Navajo, and Russian children. It complements a recent summary of the literature on teaching reading to Spanish speaking students. There is a significant need for evidence-based research on…

  4. Young Talented Future Geoscientists (YTFG): Seven Exclusive Tips on how to Construct Them

    NASA Astrophysics Data System (ADS)

    Rakhmenkulova, I.; Zhitova, L.; Gavrilov, V.; Zhitov, E.

    2007-12-01

    Young talented specialists in geologic companies and research institutions seem to be wanted nowadays. At present employers need graduates in Earth Sciences having good mathematical background and computing, to say nothing that geologic knowledge is a must. Companies and universities seem to head-hunt YTFG. What are the tips to get YTFG? 1) To get future YTFG ready, somewhere, even before the university level. There is a special school of Physics and Mathematics in Novosibirsk Academgorodok. All the talented young stars are found in all Siberian, Far East regions, and even in ex-Soviet countries, to study there. They can enter the university with no entrance exams. 2) To have free education. Education at NSU is really free if a student has very good grades. (Otherwise students have to pay much (75,000 rubles per year, which is very expensive for Russia)). 3) To have a special curriculum at the university. At NSU the curriculum is not standard, different from other Russian universities, with an accent to individual teaching/studying and having very high scientific standards. 4) To have unrestricted possibilities to teach geology in situ. There is a geologic museum at NSU. Students can also use the Central Siberian Geologic Museum of the Institute of Geology and Mineralogy. The university has special locations (camps) for students' field trips. 5) To get enthusiastic lecturers, tutors and instructors, who are ready to work not only for money. Most of them graduated from this very university and work in scientific institutions in Academgorodok. Teaching in this university is an honorable tradition and a very prestigious job, rather a way of living, not working for money. 6) To have a certain financial support from the Government. Recently the Russian Government understood that the financial system should be changed. NSU received a 960 million innovation grant from the Government. There are also many Grants from the Russian Ministry for Science and Education, aimed to support the most competitive universities and particular departments. 7) To live in Siberia. Welcome to Siberia! You can see everything with your own eyes! www.ggd.nsu.ru This work was supported by the Russian Ministry for Science and Education (Grant DSP.2.1.1.702).

  5. Launch and Landing of Russian Soyuz - Medical Support for US and Partner Astronauts

    NASA Technical Reports Server (NTRS)

    Menon, Anil

    2017-01-01

    Launching, landing, flight route, expeditions, Soyuz, near Kazakhstan USOS Crew Surgeon -Quarantine and direct care to crew before launch, then present in close proximity to launch for abort. IP Crew Surgeon -same Deputy Crew Surgeon -Back up for crew surgeon, care for immediate family, stationed at airport for helicopter abort response Russian based US doctor -Coordinate with SOS staff USOS Crew Surgeon -Nominal helicopter response and initial medical care and support during return on gulfstreamIPcenter dotP Crew Surgeon -same Deputy Crew Surgeon -Ballistic helicopter support Russian based US doctor -Coordinate with SOS staff Direct return doctor -Direct medical care on return flight

  6. 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics

    NASA Astrophysics Data System (ADS)

    Suris, Robert A.; Vorobjev, Leonid E.; Firsov, Dmitry A.

    2015-01-01

    The 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics was held on November 24 - 28 at St. Petersburg Polytechnic University. The program of the Conference included semiconductor technology, heterostructures with quantum wells and quantum dots, opto- and nanoelectronic devices, and new materials. A large number of participants with about 200 attendees from many regions of Russia provided a perfect platform for the valuable discussions between students and experienced scientists. The Conference included two invited talks given by a corresponding member of RAS P.S. Kopyev ("Nitrides: the 4th Nobel Prize on semiconductor heterostructures") and Dr. A.V. Ivanchik ("XXI century is the era of precision cosmology"). Students, graduate and postgraduate students presented their results on plenary and poster sessions. The total number of accepted papers published in Russian (the official conference language) was 92. Here we publish 18 of them in English. Like previous years, the participants were involved in the competition for the best report. Certificates and cash prizes were awarded to a number of participants for the presentations selected by the Program Committee. Two special E.F. Gross Prizes were given for the best presentations in semiconductor optics. Works with potential applications were recommended for participation in the following competition for support from the Russian Foundation for Assistance to Small Innovative Enterprises in Science and Technology. The Conference was supported by the Russian Foundation for Basic Research, the "Dynasty" foundation and the innovation company "ATC - Semiconductor Devices", St. Petersburg. The official Conference website is http://www.semicond.spbstu.ru/conf2014-eng.html

  7. 100th anniversary of the birth of V L Ginzburg (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 5 October 2016)

    NASA Astrophysics Data System (ADS)

    2017-04-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) devoted to the centenary of the birth of V L Ginzburg was held on 5 October 2016 in the conference hall of the Lebedev Physical Institute, RAS. The agenda posted on the website of the RAS Physical Sciences Division http://www.gpad.ac.ru comprised the following reports: (1) Ritus V I (Lebedev Physical Institute, RAS, Moscow), "V L Ginzburg and the Atomic project"; (2) Dremin I M (Lebedev Physical Institute, RAS, Moscow), "Unexpected interaction properties between high-energy protons"; (3) Kocharovsky Vl V, Zheleznyakov V V (Institute of Applied Physics, RAS, Nizhny Novgorod), Belyanin A A (Institute of Applied Physics, RAS, Nizhny Novgorod and Texas A \\&M University, USA), Kocharovskaya E R, Kocharovsky V V (Institute of Applied Physics, RAS, Nizhny Novgorod), "Superradiance: the principles of generation and implementation in lasers"; (4) Pudalov V M (Lebedev Physical Institute, RAS, Moscow), "Structure of the superconducting order parameter in high-temperature Fe-based superconductors"; (5) Sadovski M V (Institute of Electrophysics, UB RAS, Ekaterinburg; M N Mikheev Institute of Metal Physics, UB RAS, Ekaterinburg), "High-temperature superconductivity in an FeSe monolayer: Why is T_c so high?" The paper versions of reports 1 and 4 are presented in this Phys. Usp. issue (see pp. 414 and 420, respectively). Report 2, with its content expanded but title unchanged, is to be published as a review paper in Usp. Fiz. Nauk 187 (4) 353 (2017); Phys. Usp. 60 (4) 333 (2017). Report 3, with its content expanded, is to be published as a review paper in Usp. Fiz. Nauk 187 (4) 367 (2017); Phys. Usp. 60 (4) 345 (2017). Report 5, with its content expanded, was published as a review paper in Usp. Fiz. Nauk 186 (10) 1035 (2016); Phys. Usp. 59 (10) 947 (2016). • V L Ginzburg and the Atomic Project, V I Ritus Physics-Uspekhi, 2017, Volume 60, Number 4, Pages 413-418 • On the structure of the superconducting order parameter in high-temperature Fe-based superconductors, T E Kuzmicheva, A V Muratov, S A Kuzmichev, A V Sadakov, Yu A Aleshchenko, V A Vlasenko, V P Martovitsky, K S Pervakov, Yu F Eltsev, V M Pudalov Physics-Uspekhi, 2017, Volume 60, Number 4, Pages 419-429

  8. Can Western quality improvement methods transform the Russian health care system?

    PubMed

    Tillinghast, S J

    1998-05-01

    The Russian health care system largely remains the same system that was in place during the existence of the Soviet Union. It is almost entirely state owned and operated, although ownership and management have developed from the central government to the oblast (province). The ZdravReform (Health Reform) Program (ZRP) in Russia, which began in 1993, included the goal of improving the quality and cost-effectiveness of the health care system. Work on introducing continuous quality improvement (CQI), evidence-based practice guidelines, and indicators of quality was conducted in 1995-1996. INTRODUCING EVIDENCE-BASED MEDICINE: As a result of the poor quality of Russian-language medical journals and the inability to gain access to the knowledge available in Western medical literature, Russian medical practices have not kept up with the rapid evolution of evidence-based medical practice that has begun transforming Western medicine. A number of evidence-based clinical practice guidelines were translated and disseminated to Russian-speaking physicians working in facilities participating in ZRP in Russia and Central Asia. Given the limitations of existing measures of the quality of care, indicators were developed for participating ambulatory polyclinics in several oblasts in Siberia. Russian physicians responsible for quality of care for their respective oblasts formed a working group to develop the indicators. A clinical information system that would provide automated collection and analysis of the indicator data-as well as additional patient record information-was also developed. CQI activities, entailing a multidisciplinary, participatory team approach, were conducted in four oblasts in western Siberia. Projects addressed the management of community-acquired pneumonia and reduction of length of stay after myocardial infarction (MI). One of the oblasts provided an example of a home-grown evidence-based protocol for post-MI care, which was adopted in the other three oblasts. Evidence-based medicine is critically needed to improve the quality of research and publications, medical education, and medical practice. Physicians everywhere are data driven; they change their practices when convinced by good data. The key to successful introduction of evidence-based medicine is understanding the fundamentals of good scientific method as applied to medicine. The Russian health care system's experience in reporting to higher authorities' process and outcomes data that resemble our modern indicators can provide the basis for accurate and valid measures of quality. In contrast with American expectations that a significant cultural change in an organization could take years, even with great effort, Russian physicians and other clinicians rapidly assimilated the new concepts of QI and put them to use. More on-site assistance by international medical consultants will still be needed for several years to hasten the process of change and ensure that it does not become stalled.

  9. The Glinka Memorial Soil Monolith Collection: a treasure of Soil Science

    NASA Astrophysics Data System (ADS)

    Muggler, C. C.; Spaargaren, O.; Hartemink, A. E.

    2012-04-01

    The first World Congress of Soil Science, held in 1927 in Washington DC, USA, had as one of its highlights the exposition of soils from all over the world. The Russian delegation had planned the presentation of 50 soil monoliths. The soil profiles were collected under the supervision of Konstantin D. Glinka, then director of the Leningrad Agricultural Institute. The soil profiles included a geographical sequence form St Petersburg to the Caucasus and soils from Georgia, Azerbaijan, Kazakhstan, the Amu Darya region and the Siberian Far East. Due to shipping problems they did not arrive on time for the congress, and ended up in an USDA storage facility, where they remained untouched in their original wooden boxes. At first congress Glinka gave a lecture on Dokuchaev's ideas and the Russian developments on soil science, and joined the transcontinental field trip of 30 days that followed the congress. At that congress, Glinka was elected president of the International Soil Science Society, and was in charge to organize the next congress in Russia. However, he passed away a few months after the congress. In the 1970s, after a consultation with Wim Sombroek, then director of the International Soil Museum (ISM) in the Netherlands, the collection was donated to ISRIC by the US Soil Conservation Service. The soil profiles were shipped over in 1980 to become part of the collection of the Museum. The collection was named as "Glinka Memorial Collection" in agreement with the Dokuchaev Soil Institute, Moscow and the U.S. Soil Conservation Service, Washington. The monoliths were treated with a sugar solution by the Russians before shipment to the USA, this way keeping a good preservation quality. They were aimed for a single exhibition and for that they were poorly documented and lacked additional samples. In the early 1990s a project for revisit the sites was set up and six sites around St Petersburg were sampled for a comparative study of the soils within a time span of 70 years of great environmental change. The Glinka Memorial Collection is a special collection of the World Soil Museum, a scientific and historical treasure that offers possibilities to dig into the history of soil science and the history of the soils themselves.

  10. Barriers beyond words: cancer, culture, and translation in a community of Russian speakers.

    PubMed

    Dohan, Daniel; Levintova, Marya

    2007-11-01

    Language and culture relate in complex ways. Addressing this complexity in the context of language translation is a challenge when caring for patients with limited English proficiency (LEP). To examine processes of care related to language, culture and translation in an LEP population is the objective of this study. We used community based participatory research to examine the experiences of Russian-speaking cancer patients in San Francisco, California. A Russian Cancer Information Taskforce (RCIT), including community-based organizations, local government, and clinics, participated in all phases of the study. A purposeful sample of 74 individuals were the participants of the study. The RCIT shaped research themes and facilitated access to participants. Methods were focus groups, individual interviews, and participant observation. RCIT reviewed data and provided guidance in interpreting results. Four themes emerged. (1) Local Russian-language resources were seen as inadequate and relatively unavailable compared to other non-English languages; (2) a taboo about the word "cancer" led to language "games" surrounding disclosure; (3) this taboo, and other dynamics of care, reflected expectations that Russian speakers derived from experiences in their countries of origin; (4) using interpreters as cultural brokers or establishing support groups for Russian speakers could help address barriers. The language barriers experienced by this LEP population reflect cultural and linguistic issues. Providers should consider partnering with trained interpreters to address the intertwining of language and culture.

  11. Expedition 10 Preflight

    NASA Image and Video Library

    2004-10-08

    Flight Engineer and Soyuz Commander Salizhan Sharipov, right, Expedition 10 Commander and NASA Science Officer Leroy Chiao and Russian Space Forces cosmonaut Yuri Shargin, left, toured a museum bearing the name of historic Russian rocket designer Sergei Korolev, Saturday, October 9, 2004, at the Baikonur Cosmodrome in Kazakhstan prior to their liftoff to the International Space Station October 14. The traditional visit included the signing of their names in commemorative books and a wall at the museum, and touring the cottages nearby where Korolev and Yuri Gagarin slept on the eve of Gagarin's launch April 12, 1961 to become the first human in space. The tour guide points out a piece of art made entirely of painted grains of rice depicting Yuri Gargarin and Korolev. Photo Credit: (NASA/Bill Ingalls)

  12. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    European Space Agency astronaut Roberto Vittori, right, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Vittori, along with Expedition 11 Commander Sergei Krikalev and Flight Engineer and NASA Science Officer John Phillips were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  13. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    Expedition 11 Commander Sergei Krikalev, seated, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Krikalev, along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori, of Italy, were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  14. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    Expedition 11 Commander Sergei Krikalev, left, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Krikalev, along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori, of Italy, were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  15. Expedition 11 Press Conference

    NASA Image and Video Library

    2005-04-13

    Expedition 11 backup crew Robert Thirsk of Canada, left, American Dan Tani, Russian Commander Mikhail Tyurin and prime Expedition 11 crew Commander Sergei Krikalev, fourth from left, Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori of Italy, right, talk to the press, Thursday, April 14, 2005, prior to the April 15 launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan. Krikalev and Phillips will spend six months on the Station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  16. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    Expedition 11 Commander Sergei Krikalev, right, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Krikalev, along with Flight Engineer and NASA Science Officer John Phillips and European Space Agency Astronaut Roberto Vittori of Italy were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  17. Expedition 11 Launch Day

    NASA Image and Video Library

    2005-04-15

    European Space Agency astronaut Roberto Vittori, of Italy, is outfitted in his Russian Sokol suit, Friday, April 15, 2005, in Baikonur, Kazakhstan. Vittori, along with Expedition 11 Commander Sergei Krikalev and Flight Engineer and NASA Science Officer John Phillips were preparing for launch aboard the Soyuz TMA-6 spacecraft from the Baikonur Cosmodrome in Kazakhstan at daybreak on April 15 for a two-day trip to the International Space Station. Krikalev and Phillips will spend six months on the station, replacing Expedition 10 Commander Leroy Chiao and Flight Engineer Salizhan Sharipov, while Vittori will spend eight days on the Station under a commerical contract between ESA and the Russian Federal Space Agency, returning to Earth with Chiao and Sharipov on April 25. Photo Credit: (NASA/Bill Ingalls)

  18. SPACEHAB is moved by crane in the SSPF before installation in the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is moved by crane over the payload canister in KSC's Space Station Processing Facility. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  19. Russian Module Photography of the Service Module (SM) during Russian Extravehicular Activity (EVA) 21A

    NASA Image and Video Library

    2009-03-10

    ISS018-E-039022 (10 March 2009) --- Astronaut Michael Fincke, Expedition 18 commander, participates in a session of extravehicular activity (EVA) to perform maintenance on the International Space Station. During the 4-hour, 49-minute spacewalk, Fincke and cosmonaut Yury Lonchakov (out of frame) reinstalled the Exposing Specimens of Organic and Biological Materials to Open Space (Expose-R) experiment on the universal science platform mounted to the exterior of the Zvezda Service Module. The spacewalkers also removed straps, or tape, from the area of the docking target on the Pirs airlock and docking compartment. The tape was removed to ensure it does not get in the way during the arrival of visiting Soyuz or Progress spacecraft.

  20. KSC-98pc542

    NASA Image and Video Library

    1998-04-28

    The SPACEHAB Single Module is raised by crane from a transporter in KSC's Space Station Processing Facility, where it will be moved to the payload canister. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth

  1. Congress Examines NASA Budget, Space Station, and Relations With Russia

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2014-04-01

    Concerns about recent Russian activities related to Ukraine loomed over an 8 April congressional hearing focusing on NASA's fiscal year (FY) 2015 budget request. Rep. Frank Wolf (R-Va.), chair of the House of Representatives Appropriations Subcommittee on Commerce, Justice, Science, and Related Agencies, and several other committee members questioned NASA administrator Charles Bolden about the agency's contingency plans if tensions between Russia and the United States cause key joint scientific endeavors between the two countries to break off. That concern is particularly critical given the countries' longtime partnership on the International Space Station (ISS) and with the United States currently relying on Russian transport to and from the station until U.S. commercial vehicles are ready to transport astronauts back and forth.

  2. USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences. Number 73

    DTIC Science & Technology

    1977-06-09

    decrease in men and women in the 75-89 year bracket. Tables 3; References: 12 Russian. USSR UDC 616.2-002.582 SARCOIDOSIS OF THE RESPIRATORY ORGANS...with sarcoidosis of the respiratory organs- one of the problems of modern pneumology—asserts that some aspects of this problem, particularly the

  3. What Are University Instructors Paid For: An Analysis of Compensation and Benefits Policies

    ERIC Educational Resources Information Center

    Rodina, N. V.

    2016-01-01

    This article presents an analysis of criteria for the material incentive of university instructors. These results were obtained from the compensation and benefits policies of 70 educational institutions under the jurisdiction of the Russian Ministry of Education and Science. Foreign researchers have shown that the appraisal systems used in…

  4. The Current State and Problems of the Upbringing Process Today: A Roundtable

    ERIC Educational Resources Information Center

    Russian Education and Society, 2006

    2006-01-01

    This article presents a roundtable discussion on the current state and problems of the upbringing process. The participants were professors from different universities in Russia. In his opening remarks, Zh.T. Toshchenko, editor in chief of Sotsiologicheskie issledovaniia and a corresponding member of the Russian Academy of Sciences, emphasized the…

  5. Using TIMSS and PISA Results to Inform Educational Policy: A Study of Russia and Its Neighbours

    ERIC Educational Resources Information Center

    Carnoy, Martin; Khavenson, Tatiana; Ivanova, Alina

    2015-01-01

    In this paper, we develop a multi-level comparative approach to analyse Trends in International Mathematics and Science Survey (TIMSS) and Programme of International Student Achievement (PISA) mathematics results for a country, Russia, where the two tests provide contradictory information about students' relative performance. Russian students do…

  6. On the Shoulders of Giants? Global Science, Resource Asymmetries, and Repositioning of Research Universities in China and Russia

    ERIC Educational Resources Information Center

    Oleksiyenko, Anatoly

    2014-01-01

    Chinese and Russian universities are increasingly drawn into center-periphery repositioning, as they compete for symbolic, financial, and intellectual resources locally and globally. However, their strategies on national and institutional linkages differ with regards to the individual scientist's powers in knowledge production. As global…

  7. Great Expectations? Variation in Educational Plans of Students in Post-Socialist Eastern Europe

    ERIC Educational Resources Information Center

    Chykina, Volha; Chung, Hee Jin; Bodovski, Katerina

    2016-01-01

    Using all available waves of the Trends in International Mathematics and Science Study (TIMSS) from 1995 to 2011, this study examines the factors influencing educational expectations of students in five Eastern European countries (Hungary, Lithuania, the Russian Federation, Romania, and Slovenia). We consistently find across countries and waves…

  8. Updates to the Nomenclature of Platygastroidea in the Zoological Institute of the Russian Academy of Sciences

    USDA-ARS?s Scientific Manuscript database

    Parabaryconus Kozlov & Kononova n. syn. is treated as a junior synonym of Cremastobaeus Ashmead; Cremastobaeus artus (Kozlov & Kononova) n. comb. is transferred from Parabaryconus; Paridris macrurous Kozlov & Le n. syn. and P. taekuli Talamas & Masner n. syn. are treated as junior synonyms of P. bis...

  9. The Teaching of the Natural Science Disciplines in the Schools

    ERIC Educational Resources Information Center

    Lisichkin, G. V.

    2007-01-01

    There are no fewer than three dozen scientific groups dealing with problems of the development of methods of teaching physics, chemistry, and biology in this country; they are working in pedagogical and classical universities and in institutes of the Russian Academy of Education. Innovative schoolteachers are involved in this endeavor as they…

  10. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 41

    DTIC Science & Technology

    1978-08-08

    ELEKTRICHESKIYE STANTSII In Russian No 3, Mar 78 pp 70-71 KUZNETSOV, Vi P., Z0B0LÖTNIK0V, V. I. and MAKEYEV , V. P., engineers, Doltekhenergo...after completion 25 Mar 76 LEYTMAN, MIKHAIL BORISOVICH, candidate in technical sciences, dotsent, Smolensk Affiliate of Moscow Power Engineering

  11. Young People in the Information Society

    ERIC Educational Resources Information Center

    Lebedeva, E. V.

    2011-01-01

    In the summer of 2007, the Laboratory for the Social Problems of the Development of the Information Society, Institute for Socioeconomic Studies of the Population, Russian Academy of Sciences, in collaboration with the Modern Academy of the Humanities, carried out a survey of the level of use of information and communication technologies (ICT) by…

  12. [Development of clinical radiology in the Military field therapy Department of the Military Medical Academy (the 90th anniversary of the birth of G. I. Alekseyev)].

    PubMed

    Khalimov, Iu Sh; Vlasenko, A N; Matveev, S Iu

    2012-08-01

    On August 18, 2012, 90 years have passed since the birth of the former head of the Military field therapy Department of The Military-Medical Academy named after S. M. Kirov--the main radiologist of the Ministry of Defence of Russian Federation, the corresponding member of the Soviet Union Academy of Medical Science and the Russian Academy of Medical Science, the major- general of a medical service G. I. Alekseyev, who had been working in the department since its foundation till the last day of his life. Being the head of the department for twelve years, G. I. Alekseyev made a considerable contribution to the formation and development of native military radiology, training of medical and scientific skilled specialists. Professor G. I. Alekseyev's scientific ideas and views in the sphere of radiology were realized and developed in further educational, research and medical work of the department. Nowadays the staff of the Military field therapy Department remembers G. I. Alekseyev with special gratitude and appreciation and successfully realizes his ideas and plans in work.

  13. [Analysis of genetic diversity of Russian regional populations based on common STR markers used in DNA identification].

    PubMed

    Pesik, V Yu; Fedunin, A A; Agdzhoyan, A T; Utevska, O M; Chukhraeva, M I; Evseeva, I V; Churnosov, M I; Lependina, I N; Bogunov, Yu V; Bogunova, A A; Ignashkin, M A; Yankovsky, N K; Balanovska, E V; Orekhov, V A; Balanovsky, O P

    2014-06-01

    We conducted the first genetic analysis of a wide a range of rural Russian populations in European Russia with a panel of common DNA markers commonly used in criminalistics genetic identification. We examined a total of 647 samples from indigenous ethnic Russian populations in Arkhangelsk, Belgorod, Voronezh, Kursk, Rostov, Ryazan, and Orel regions. We employed a multiplex genotyping kit, COrDIS Plus, to genotype Short Tandem Repeat (STR) loci, which included the genetic marker panel officially recommended for DNA identification in the Russian Federation, the United States, and the European Union. In the course of our study, we created a database of allelic frequencies, examined the distribution of alleles and genotypes in seven rural Russian populations, and defined the genetic relationships between these populations. We found that, although multidimensional analysis indicated a difference between the Northern gene pool and the rest of the Russian European populations, a pairwise comparison using 19 STR markers among all populations did not reveal significant differences. This is in concordance with previous studies, which examined up to 12 STR markers of urban Russian populations. Therefore, the database of allelic frequencies created in this study can be applied for forensic examinations and DNA identification among the ethnic Russian population over European Russia. We also noted a decrease in the levels of heterozygosity in the northern Russian population compared to ethnic populations in southern and central Russia, which is consistent with trends identified previously using classical gene markers and analysis of mitochondrial DNA.

  14. HIGHLIGHTS OF THE RUSSIAN HEALTH STUDIES PROGRAM AND UPDATED RESEARCH FINDINGS.

    PubMed

    Fountos, Barrett N

    2017-04-01

    Recognized for conducting cutting-edge science in the field of radiation health effects research, the Department of Energy's (DOE) Russian Health Studies Program has continued to generate excitement and enthusiasm throughout its 23-year mission to assess worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The three goals of the Program are to: (1) clarify the relationship between health effects and chronic, low-to-medium dose radiation exposure; (2) estimate the cancer risks from exposure to gamma, neutron, and alpha radiation; and (3) provide information to the national and international organizations that determine radiation protection standards and practices. Research sponsored by DOE's Russian Health Studies Program is conducted under the authority of the Joint Coordinating Committee for Radiation Effects Research (JCCRER), a bi-national committee representing Federal agencies in the United States and the Russian Federation. Signed in 1994, the JCCRER Agreement established the legal basis for the collaborative research between USA and Russian scientists to determine the risks associated with working at or living near Russian former nuclear weapons production sites. The products of the Program are peer-reviewed publications on cancer risk estimates from worker and community exposure to ionizing radiation following the production of nuclear weapons in Russia. The scientific return on investment has been substantial. Through 31 December 2015, JCCRER researchers have published 299 peer-reviewed publications. To date, the research has focused on the Mayak Production Association (Mayak) in Ozersk, Russia, which is the site of the first Soviet nuclear weapons production facility, and people in surrounding communities along the Techa River. There are five current projects in the Russian Health Studies Program: two radiation epidemiology studies; two historical dose reconstruction studies and a worker biorepository. National and international standard-setting organizations use cancer risk estimates computed from epidemiological and historical dose reconstruction studies to validate or revise radiation protection standards. An overview of the most important research results will be presented. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  15. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  16. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  17. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  18. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  20. The Relative Performance of High Resolution Quantitative Precipitation Estimates in the Russian River Basin

    NASA Astrophysics Data System (ADS)

    Bytheway, J. L.; Biswas, S.; Cifelli, R.; Hughes, M.

    2017-12-01

    The Russian River carves a 110 mile path through Mendocino and Sonoma counties in western California, providing water for thousands of residents and acres of agriculture as well as a home for several species of endangered fish. The Russian River basin receives almost all of its precipitation during the October through March wet season, and the systems bringing this precipitation are often impacted by atmospheric river events as well as the complex topography of the region. This study will examine the performance of several high resolution (hourly, < 5km) estimates of precipitation from observational products and forecasts over the 2015-2016 and 2016-2017 wet seasons. Comparisons of event total rainfall as well as hourly rainfall will be performed using 1) rain gauges operated by the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences Division (PSD), 2) products from the Multi-Radar/Multi-Sensor (MRMS) QPE dataset, and 3) quantitative precipitation forecasts from the High Resolution Rapid Refresh (HRRR) model at 1, 3, 6, and 12 hour lead times. Further attention will be given to cases or locations representing large disparities between the estimates.

  1. Radioactive waste management and plutonium recovery within the context of the development of nuclear energy in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kushnikov, V.

    1996-05-01

    The Russian strategy for radioactive waste and plutonium management is based on the concept of the closed fuel cycle that has been adopted in Russia, and, to a great degree, falls under the jurisdiction of the existing Russian nuclear energy structures. From its very beginning, Russian atomic energy policy was based on finding the most effective method of developing the new fuel direction with the maximum possible utilization of the energy potential from the fission of heavy atoms and the achievement of fuel self-sufficiency through the recycling of secondary fuel. Although there can be no doubt about the importance ofmore » economic considerations (for the future), concerns for the safety of the environment are currently of the utmost importance. In this context, spent NPP fuel can be viewed as a waste to be buried only if there is persuasive evidence that such an approach is both economically and environmentally sound. The production of I GW of energy per year is accompanied by the accumulation of up to 800-1000 kg of highly radioactive fission products and approximately 250 kg of plutonium. Currently, spent fuel from the VVER 100 and the RBNK reactors contains approximately 25 tons of plutonium. There is an additional 30 tons of fuel-grade plutonium in the form of purified oxide, separated from spent fuels used in VVER440 reactors and other power production facilities, as well as approximately 100 tons of weapons-grade plutonium from dismantled warheads. The spent fuel accumulates significant amounts of small actinoids - neptunium americium, and curium. Science and technology have not yet found technical solutions for safe and secure burial of non-reprocessed spent fuel with such a broad range of products, which are typically highly radioactive and will continue to pose a threat for hundreds of thousands of years.« less

  2. The biological component of the life support system for a Martian expedition.

    PubMed

    Sychev, V N; Levinskikh, M A; Shepelev, Ye Ya

    2003-01-01

    Ground-based experiments at RF SSC-IBMP RAS (State Science Center of Russian Federation--Institute of Biomedical Problems of Russian Academia of Science) were aimed at overall studies of a human-unicellular algae-mineralization LSS (life support system) model. The system was 15 m3 in volume. It contained 45 L of algal suspension with a dry substance density of 10-12 g per liter; water volume, including the algal suspension, was 59 L. More sophisticated model systems with partial substitution of unicellular algae with higher plates (crop area of 15 m2) were tested in three experiments from 1.5 to 2 months in duration. The experiments demonstrated that LSS employing the unicellular algae play not only a macrofunction (regeneration of atmosphere and water) but also carry some other functions (purification of atmosphere, formation of microbial cenosis etc.) providing an adequate human environment. It is also important that functional reliability of the algal regenerative subsystem is secured by a huge number of cells able, in the event of death of a part of population, to recover in the shortest possible time the size of population and, hence, functionality of the LSS autotrophic component. For a long period of time a Martian crew will be detached from Earth's biosphere and for this reason LSS of their vehicle must be highly reliable, robust and redundant. One of the approaches to LSS redundancy is installation of two systems with different but equally efficient regeneration technologies, i.e. physical-chemical and biological. At best, these two systems should operate in parallel sharing the function of regeneration of the human environment. In case of failure or a sharp deterioration in performance of one system the other will, by way of redundancy, increase its throughput to make up for the loss. This LSS design will enable simultaneous handling of a number of critical problems including adequate satisfaction of human environmental needs. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  3. Challenges to overcome: energy supply for remote consumers in the Russian Arctic

    NASA Astrophysics Data System (ADS)

    Morgunova, M. O.; Solovyev, D. A.

    2017-11-01

    The paper explores challenges of power supply for remote users through the case of the Northern Sea Route (NSR) supportive infrastructure development and specially nature protected areas (NPA) of the Russian Arctic. The study is based on a comprehensive analysis of relevant data of the state of renewable energy in the Russian Arctic. The paper gives policy recommendations on how to extend the use of renewable energy power plants in the region, optimize their input and increase cost-effectiveness and safety.

  4. An improved Four-Russians method and sparsified Four-Russians algorithm for RNA folding.

    PubMed

    Frid, Yelena; Gusfield, Dan

    2016-01-01

    The basic RNA secondary structure prediction problem or single sequence folding problem (SSF) was solved 35 years ago by a now well-known [Formula: see text]-time dynamic programming method. Recently three methodologies-Valiant, Four-Russians, and Sparsification-have been applied to speedup RNA secondary structure prediction. The sparsification method exploits two properties of the input: the number of subsequence Z with the endpoints belonging to the optimal folding set and the maximum number base-pairs L. These sparsity properties satisfy [Formula: see text] and [Formula: see text], and the method reduces the algorithmic running time to O(LZ). While the Four-Russians method utilizes tabling partial results. In this paper, we explore three different algorithmic speedups. We first expand the reformulate the single sequence folding Four-Russians [Formula: see text]-time algorithm, to utilize an on-demand lookup table. Second, we create a framework that combines the fastest Sparsification and new fastest on-demand Four-Russians methods. This combined method has worst-case running time of [Formula: see text], where [Formula: see text] and [Formula: see text]. Third we update the Four-Russians formulation to achieve an on-demand [Formula: see text]-time parallel algorithm. This then leads to an asymptotic speedup of [Formula: see text] where [Formula: see text] and [Formula: see text] the number of subsequence with the endpoint j belonging to the optimal folding set. The on-demand formulation not only removes all extraneous computation and allows us to incorporate more realistic scoring schemes, but leads us to take advantage of the sparsity properties. Through asymptotic analysis and empirical testing on the base-pair maximization variant and a more biologically informative scoring scheme, we show that this Sparse Four-Russians framework is able to achieve a speedup on every problem instance, that is asymptotically never worse, and empirically better than achieved by the minimum of the two methods alone.

  5. Evaluation of six nucleic acid amplification tests used for diagnosis of Neisseria gonorrhoeae in Russia compared with an international strictly validated real-time porA pseudogene polymerase chain reaction.

    PubMed

    Shipitsyna, E; Zolotoverkhaya, E; Hjelmevoll, S O; Maximova, A; Savicheva, A; Sokolovsky, E; Skogen, V; Domeika, M; Unemo, M

    2009-11-01

    In Russia, laboratory diagnosis of gonorrhoea has been mainly based on microscopy only and, in some settings, relatively rare suboptimal culturing. In recent years, Russian developed and manufactured nucleic acid amplification tests (NAAT) have been implemented for routine diagnosis of Neisseria gonorrhoeae. However, these NAATs have never been validated to any international well-recognized diagnostic NAAT. This study aims to evaluate the performance characteristics of six Russian NAATs for N. gonorrhoeae diagnostics. In total, 496 symptomatic patients were included. Five polymerase chain reaction (PCR) assays and one real-time nucleic acid sequence based amplification (NASBA) assay, developed by three Russian companies, were evaluated on urogenital samples, i.e. cervical and first voided urine (FVU) samples from females (n = 319), urethral and FVU samples from males (n = 127), and extragenital samples, i.e. rectal and pharyngeal samples, from 50 additional female patients with suspicion of gonorrhoea. As reference method, an international strictly validated real-time porA pseudogene PCR was applied. The prevalence of N. gonorrhoeae was 2.7% and 16% among the patients providing urogenital and extragenital samples, respectively. The Russian NAATs and the reference method displayed high level of concordance (99.4-100%). The sensitivities, specificities, positive predictive values and negative predictive values of the Russian tests in different specimens were 66.7-100%, 100%, 100%, and 99.4-100%, respectively. Russian N. gonorrhoeae diagnostic NAATs comprise relatively good performance characteristics. However, larger studies are crucial and, beneficially, the Russian assays should also be evaluated to other international highly sensitive and specific, and ideally Food and Drug Administration approved, NAATs such as Aptima Combo 2 (Gen-Probe).

  6. Objectives and Design of the Russian Acute Coronary Syndrome Registry (RusACSR).

    PubMed

    Gridnev, Vladimir I; Kiselev, Anton R; Posnenkova, Olga M; Popova, Yulia V; Dmitriev, Viktor A; Prokhorov, Mikhail D; Dovgalevsky, Pavel Ya; Oschepkova, Elena V

    2016-01-01

    The Russian Acute Coronary Syndrome Registry (RusACSR) is a retrospective, continuous, nationwide, Web-based registry of patients with acute coronary syndromes (ACS). The RusACSR is a database that uses a secure Web-based interface for data entry by individual users. Participation in the RusACSR is voluntary. Any clinical center that provides health care to ACS patients can take part in the RusACSR. The RusACSR enrolls ACS patients who have undergone care in Russian hospitals from February 2008 to the present. Key data elements and methods of data analysis in the RusACSR are presented in this article. Up to 2015, 213 clinical centers from 36 regions of Russia had participated in the RusACSR. Currently, the database contains data on more than 250 000 ACS patients who underwent care from 2008 to 2015. Some current problems are highlighted in this article. The RusACSR is a perspective project for different epidemiologic studies in Russian ACS patients. © 2015 Wiley Periodicals, Inc.

  7. Russians in treatment: the evidence base supporting cultural adaptations.

    PubMed

    Jurcik, Tomas; Chentsova-Dutton, Yulia E; Solopieieva-Jurcikova, Ielyzaveta; Ryder, Andrew G

    2013-07-01

    Despite large waves of westward migration, little is known about how to adapt services to assist Russian-speaking immigrants. In an attempt to bridge the scientist-practitioner gap, the current review synthesizes diverse literatures regarding what is known about immigrants from the Former Soviet Union. Relevant empirical studies and reviews from cross-cultural and cultural psychology, sociology, psychiatric epidemiology, mental health, management, linguistics, history, and anthropology literature were synthesized into three broad topics: culture of origin issues, common psychosocial challenges, and clinical recommendations. Russian speakers probably differ in their form of collectivism, gender relations, emotion norms, social support, and parenting styles from what many clinicians are familiar with and exhibit an apparent paradoxical mix of modern and traditional values. While some immigrant groups from the Former Soviet Union are adjusting well, others have shown elevated levels of depression, somatization, and alcoholism, which can inform cultural adaptations. Testable assessment and therapy adaptations for Russians were outlined based on integrating clinical and cultural psychology perspectives. © 2013 Wiley Periodicals, Inc.

  8. Social Sciences Support to Military Personnel Engaged in Counter-Insurgency and Counter-Terrorism Operations (Soutien en sciences sociales apporte au personnel militaire engage dans des operations de contre-insurrection et de contre-terrorisme)

    DTIC Science & Technology

    2011-11-01

    Aleksanin, M.D., Ph.D., Director of the Nikiforov Russian Centre of Emergency and Radiation Medicine: Dr. Aleksanin has worked as a therapist and served as a...four components of being combat ready: psychological health, physical health, combat skills and physical training. The combat potential of the...clear that participation in armed conflict affects mental and physical health adversely. Studies have shown that certain personality changes take

  9. USSR Space Life Sciences Digest, issue 32

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Rowe, Joseph (Editor)

    1992-01-01

    This is the thirty-second issue of NASA's USSR Space Life Sciences Digest. It contains abstracts of 34 journal or conference papers published in Russian and of 4 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 18 areas of space biology and medicine. These areas include: adaptation, aviation medicine, biological rhythms, biospherics, cardiovascular and respiratory systems, developmental biology, exobiology, habitability and environmental effects, human performance, hematology, mathematical models, metabolism, microbiology, musculoskeletal system, neurophysiology, operational medicine, and reproductive system.

  10. Lobachevsky Year at Kazan University: Center of Science, Education, Intellectual-Cognitive Tourism "Kazan - GeoNa - 2020+" and "Kazan-Moon-2020+" projects

    NASA Astrophysics Data System (ADS)

    Gusev, A.; Trudkova, N.

    2017-09-01

    Center "GeoNa" will enable scientists and teachers of the Russian universities to join to advanced achievements of a science, information technologies; to establish scientific communications with foreign colleagues in sphere of the high technology, educational projects and Intellectual-Cognitive Tourism. The Project "Kazan - Moon - 2020+" is directed on the decision of fundamental problems of celestial mechanics, selenodesy and geophysics of the Moon(s) connected to carrying out of complex theoretical researches and computer modelling.

  11. Vavilov and FIAN: a perspective from 2016

    NASA Astrophysics Data System (ADS)

    Vitukhnovsky, A. G.

    2016-12-01

    The 2016 celebration of the 125th anniversary of the birth of Academician S I Vavilov, the outstanding physicist of the last century, provides an opportunity to compare what is going on today at the Russian Academy of Sciences (reforms, new members election, etc.) to the days long ago that preceded the foundation of the P N Lebedev Physical Institute (FIAN). The role of S I Vavilov and his academician colleagues in fighting bureaucracy and bureaucrats to create real academic science in our country is examined in this short paper.

  12. [The formation of medical knowledges in Russia before 1800: contributions of German speaking physicians].

    PubMed

    Henning, Aloys

    2004-01-01

    Under the Moscovian grand duke VASILIJ III (1505-1533) the physician NICOLAUS BüLOW from Lübeck translated into Russian "Gaerde der Suntheit" (The garden of health), printed at Lübeck in 1492. Many German oral and literal medical transfers to Russia are documented since, amongst those from whole Europe, which SABINE DUMSCHAT has actually investigates (1998; 2003). At the end of the 16th century the German translation fo JOHANN REMMELINS (1583-1632) "catoptron microcosmicum" (1661) was translated into Russian for teaching the first Russian military surgeons (fel'dshery). JOSIAS WEITBRECHT (1702-1747) from Württemberg, member of the Imperial Academy of Science at St Petersburg since 1725, created a catalog of the anatomical preparations in the Petersburg Chamber of Arts, which Peter I let buy from FREDERIK RUYSCH in 1717 at Amersterdamn. WEITBRECHT lectured on anatomy and physiology at the Academy since 1730, what DANIEL BERNOULLI (1700-1782) had done there before. JOHANN BLATHASAR HANHART (1704-1739) from Winterthur, surgeon since 1733 at the new Petersburg Admiralty's hospital was ordered to create the Latin terminology for the first anatomical atlas, ever printed in Russia (1744). When HANHART had died, the surgeon from Petersburg Army's hospital CHRISTOPH JAKOB VON MELLEN (1705-1765) from Lübeck finished his work. In 1757 and 1761 the chief-surgeon at the Admiralty's hospital MARTIN SHEIN (1712-1762) published the first textbooks on anatomy and surgery in Russian, having translated JOHANN ZACHARIAS PLATNERS 'Institutiones chirurgicae", Lipsiae 1745. In 1764 the accoucheur-surgeon JOHANN PAGENKAMPF, Personal surgeon of EKATERINA II, translated and published a German textbook from JOHANN HORN for accoucheuses into Russian for teaching at the Moscow school for accoucheuses under JOHANN FRIEDRICH ERASMUS from Strasburg, founded in 1757.

  13. Infrared Imaging Camera Final Report CRADA No. TC02061.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roos, E. V.; Nebeker, S.

    This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cordin Company (Cordin) to enhance the U.S. ability to develop a commercial infrared camera capable of capturing high-resolution images in a l 00 nanoseconds (ns) time frame. The Department of Energy (DOE), under an Initiative for Proliferation Prevention (IPP) project, funded the Russian Federation Nuclear Center All-Russian Scientific Institute of Experimental Physics (RFNC-VNIIEF) in Sarov. VNIIEF was funded to develop a prototype commercial infrared (IR) framing camera and to deliver a prototype IR camera to LLNL. LLNL and Cordin were partners with VNIIEF onmore » this project. A prototype IR camera was delivered by VNIIEF to LLNL in December 2006. In June of 2007, LLNL and Cordin evaluated the camera and the test results revealed that the camera exceeded presently available commercial IR cameras. Cordin believes that the camera can be sold on the international market. The camera is currently being used as a scientific tool within Russian nuclear centers. This project was originally designated as a two year project. The project was not started on time due to changes in the IPP project funding conditions; the project funding was re-directed through the International Science and Technology Center (ISTC), which delayed the project start by over one year. The project was not completed on schedule due to changes within the Russian government export regulations. These changes were directed by Export Control regulations on the export of high technology items that can be used to develop military weapons. The IR camera was on the list that export controls required. The ISTC and Russian government, after negotiations, allowed the delivery of the camera to LLNL. There were no significant technical or business changes to the original project.« less

  14. Sedimentary Cover of the Central Arctic

    NASA Astrophysics Data System (ADS)

    Kireev, Artem; Poselov, Viktor; Butsenko, Viktor; Smirnov, Oleg

    2017-04-01

    Partial revised Submission of the Russian Federation for establishment of the OLCS (outer limit of the continental shelf) in the Arctic Ocean is made to include in the extended continental shelf of the Russian Federation, in accordance with article 76 of the Convention, the seabed and its subsoil in the central Arctic Ocean which is natural prolongation of the Russian land territory. To submit partial revised Submission in 2016, in 2005 - 2014 the Russian organizations carried out a wide range of geophysical studies, so that today over 23000 km of MCS lines, over hundreds of wide-angle reflection/refraction seismic sonobuoy soundings and 4000 km of deep seismic sounding are accomplished. All of these MCS and seismic soundings data were used to establish the seismic stratigraphy model of the Arctic region. Stratigraphy model of the sedimentary cover was successively determined for the Cenozoic and pre-Cenozoic parts of the section and was based on correlation of the Russian MCS data and seismic data documented by existing boreholes. Interpretation of the Cenozoic part of the sedimentary cover was based on correlation of the Russian MCS data and AWI91090 section calibrated by ACEX-2004 boreholes on the Lomonosov Ridge for Amerasia basin and by correlation of onlap contacts onto oceanic crust with defined magnetic anomalies for Eurasia basin, while interpretation of the Pre-Cenozoic part of the sedimentary cover was based on correlation with MCS and boreholes data from Chukchi sea shelf. Six main unconformities were traced: regional unconformity (RU), Eocene unconformity (EoU) (for Eurasia basin only), post-Campanian unconformity (pCU), Brookian (BU - base of the Lower Brookian unit), Lower Cretaceous (LCU) and Jurassic (JU - top of the Upper Ellesmerian unit). The final step in our research was to estimate the total thickness of the sedimentary cover of the Arctic Ocean and adjacent Eurasian shelf using top of acoustic basement correlation data and bathymetry data. Structural prolongation of the shallow shelf into deep-water could be observed on this sedimentary map.

  15. Distribution and diversity of Russian wheat aphid (Hemiptera: Aphididae) biotypes in South Africa and Lesotho.

    PubMed

    Jankielsohn, Astrid

    2011-10-01

    Russian wheat aphid, Diuraphis noxia (Kurdjumov) (Hemiptera: Aphididae) was recorded for the first time in South Africa in 1978. In 2005, a second biotype, RWASA2, emerged, and here we report on the emergence of yet another biotype, found for the first time in 2009. The discovery of new Russian wheat aphid biotypes is a significant challenge to the wheat, Triticum aestivum L., industry in South Africa. Russian wheat aphid resistance in wheat, that offered wheat producers a long-term solution to Russian wheat aphid control, may no longer be effective in areas where the new biotypes occur. It is therefore critical to determine the diversity and extent of distribution of biotypes in South Africa to successfully deploy Russian wheat aphid resistance in wheat. Screening of 96 Russian wheat aphid clones resulted in identification of three Russian wheat aphid biotypes. Infestations of RWASA1 caused susceptible damage symptoms only in wheat entries containing the Dn3 gene. Infestations of RWASA2 caused susceptible damage symptoms in wheat entries containing Dn1, Dn2, Dn3, and Dn9 resistant genes. Based on the damage-rating scores for the seven resistance sources, a new biotype, which caused damage rating scores different from those for RWASA1 and RWASA2, was evident among the Russian wheat aphid populations tested. This new biotype is virulent to the same resistance sources as RWASA2 (Dn1, Dn2, Dn3, and Dn9), but it also has added virulence to Dn4, whereas RWASA2 is avirulent to this resistance source.

  16. Linkages of fracture network geometry and hydro-mechanical properties to spatio-temporal variations of seismicity in Koyna-Warna Seismic Zone

    NASA Astrophysics Data System (ADS)

    Selles, A.; Mikhailov, V. O.; Arora, K.; Ponomarev, A.; Gopinadh, D.; Smirnov, V.; Srinu, Y.; Satyavani, N.; Chadha, R. K.; Davulluri, S.; Rao, N. P.

    2017-12-01

    Well logging data and core samples from the deep boreholes in the Koyna-Warna Seismic Zone (KWSZ) provided a glimpse of the 3-D fracture network responsible for triggered earthquakes in the region. The space-time pattern of earthquakes during the last five decades show strong linkage of favourably oriented fractures system deciphered from airborne LiDAR and borehole structural logging to the seismicity. We used SAR interferometry data on surface displacements to estimate activity of the inferred faults. The failure in rocks at depths is largely governed by overlying lithostatic and pore fluid pressure in the rock matrix which are subject to change in space and time. While lithostatic pressure tends to increase with depth pore pressure is prone to fluctuations due to any change in the hydrological regime. Based on the earthquake catalogue data, the seasonal variations in seismic activity associated with annual fluctuations in the reservoir water level were analyzed over the time span of the entire history of seismological observations in this region. The regularities in the time changes in the structure of seasonal variations are revealed. An increase in pore fluid pressure can result in rock fracture and oscillating pore fluid pressures due to a reservoir loading and unloading cycles can cause iterative and cumulative damage, ultimately resulting in brittle failure under relatively low effective mean stress conditions. These regularities were verified by laboratory physical modeling. Based on our observations of main trends of spatio-temporal variations in seismicity as well as the spatial distribution of fracture network a conceptual model is presented to explain the triggered earthquakes in the KWSZ. The work was supported under the joint Russian-Indian project of the Russian Science Foundation (RSF) and the Department of Science and Technology (DST) of India (RSF project no. 16-47-02003 and DST project INT/RUS/RSF/P-13).

  17. Barriers Beyond Words: Cancer, Culture, and Translation in a Community of Russian Speakers

    PubMed Central

    Levintova, Marya

    2007-01-01

    BACKGROUND Language and culture relate in complex ways. Addressing this complexity in the context of language translation is a challenge when caring for patients with limited English proficiency (LEP). OBJECTIVE To examine processes of care related to language, culture and translation in an LEP population is the objective of this study. DESIGN We used community based participatory research to examine the experiences of Russian-speaking cancer patients in San Francisco, California. A Russian Cancer Information Taskforce (RCIT), including community-based organizations, local government, and clinics, participated in all phases of the study. PARTICIPANTS A purposeful sample of 74 individuals were the participants of the study. APPROACH The RCIT shaped research themes and facilitated access to participants. Methods were focus groups, individual interviews, and participant observation. RCIT reviewed data and provided guidance in interpreting results. RESULTS Four themes emerged. (1) Local Russian-language resources were seen as inadequate and relatively unavailable compared to other non-English languages; (2) a taboo about the word “cancer” led to language “games” surrounding disclosure; (3) this taboo, and other dynamics of care, reflected expectations that Russian speakers derived from experiences in their countries of origin; (4) using interpreters as cultural brokers or establishing support groups for Russian speakers could help address barriers. CONCLUSIONS The language barriers experienced by this LEP population reflect cultural and linguistic issues. Providers should consider partnering with trained interpreters to address the intertwining of language and culture. PMID:17957415

  18. The Sociopedagogical Resource of the Countryside as a Factor in Its Development

    ERIC Educational Resources Information Center

    Gur'ianova, M. P.

    2014-01-01

    The study of the sociopedagogical resources of the countryside, the village ["selo"], is of vital importance both for science and for the revival of the Russian countryside; for the upbringing, education, and social protection of the new generation of citizens; and for the creation of a socially safe environment in which the population…

  19. Friends in need

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    With supplies of food and fuel set to run out within days, scientists at the Russian Antarctic station at Mirny received some welcome relief on June 13. The National Science Foundation's icebreaking vessel, Nathaniel B. Palmer, delivered four tons of emergency food supplies to the 38 researchers wintering over at the station, which has not seen a supply ship in nearly a year.

  20. Siegfried S. Hecker, Plutonium, and Nonproliferation

    Science.gov Websites

    controversy involving the stability of certain structures (or phases) in plutonium alloys near equilibrium Cold War is Over. What Now?, DOE Technical Report, April, 1995 6th US-Russian Pu Science Workshop * Aging of Plutonium and Its Alloys * A Tale of Two Diagrams * Plutonium and Its Alloys-From Atoms to

  1. Protecting ecotourism resources in a time of rapid economic and environmental transformation in Asia

    Treesearch

    Alan Watson; Dave Ostergren; Peter Fix; Bill Overbaugh; Dan McCollum; Linda Kruger; Martha Madsen; He Yang

    2009-01-01

    In the Far East of Russia, similar to many places in Asia, ecotourism and the environment are in transition. A science team, cooperating with the United Nations Development Programme project "Demonstrating Sustainable Conservation of Biological Diversity in Four Protected Territories in the Kamchatka Region, Russian Federation," is working to provide vital...

  2. The Scientific Pedagogical Cadres of Russia: Quality of Life, Moods, and Expectations

    ERIC Educational Resources Information Center

    Varshavskii, A. E.; Vinokurova, N. A.; Nikonova, M. A.

    2011-01-01

    Russian science is in need of serious reforms if it is to provide the research and development needed for economic health. Issues of increasing average age of scientific personnel, poor working conditions, low salaries, and relatively low social prestige need to be addressed. This article reviews a questionnaire survey conducted in 2008 that aimed…

  3. Comparative planetology - Basic concepts, terminology, and definitions

    NASA Astrophysics Data System (ADS)

    Sliuta, Evgenii N.; Ivanov, Mikhail A.; Ivanov, Andrei V.

    The book presents an alphabetical list of Russian terms, and their English equivalents, used in comparative planetology, space chemistry, and meteoritics, as well as many terms used in geology, geophysics, geochemistry, and sciences related to space studies. Besides giving the definitions of these terms, this work also contains basic information on planets, their satellites, and the largest asteroids.

  4. Gas-analytic measurement complexes of Baikal atmospheric-limnological observatory

    NASA Astrophysics Data System (ADS)

    Pestunov, D. A.; Shamrin, A. M.; Shmargunov, V. P.; Panchenko, M. V.

    2015-11-01

    The paper presents the present-day structure of stationary and mobile hardware-software gas-analytical complexes of Baikal atmospheric-limnological observatory (BALO) Siberian Branch Russian Academy of Sciences (SB RAS), designed to study the processes of gas exchange of carbon-containing gases in the "atmosphere-water" system, which are constantly updated to include new measuring and auxiliary instrumentation.

  5. Race, urban context, and Russian roulette: findings from the National Violent Death Reporting System, 2003-2006.

    PubMed

    Wasserman, Ira; Stack, Steven

    2011-02-01

    Previous work on Russian roulette has focused on data from large cities. It is unclear if the epidemiological patterns based on large cities will replicate for the nation as a whole, and if the influence of minority status will be moderated by urban context. The present investigation fills these gaps by providing descriptive epidemiological data on Russian roulette for 17 states, and testing a hypothesis on urbanism as a moderator of the race-Russian roulette relationship. Data were taken from the National Violent Death Reporting System (2003-2006). They refer to 71 Russian roulette cases and a matched control group of 284 males who committed suicide by a gunshot wound to the head. Russian roulette suicides were more apt to be of minority status, younger, had a lower incidence of mental health problems, and were more likely to be utilizing alcohol than the controls. Differentiating the sample into larger and smaller urban areas, it was found that the risk of Russian roulette for African Americans was higher in larger urban areas. Epidemiological patterns in previous research on large city samples are largely replicated. The moderating influence of urban context is related to differential opportunity structures for risk-taking behavior. © 2011 The American Association of Suicidology.

  6. SPACEHAB is raised by crane in the SSPF before installation in the payload canister

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The SPACEHAB Single Module is raised by crane from a transporter in KSC's Space Station Processing Facility, where it will be moved to the payload canister. It will be joined in the canister by the Alpha Magnetic Spectrometer-01 payload before being moved to Launch Pad 39A for the STS-91 mission, scheduled to launch June 2 at around 6:04 p.m. EDT. SPACEHAB is used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to return the sixth American, Mission Specialist Andrew Thomas, Ph.D., aboard the Russian orbiting outpost safely to Earth.

  7. China Naval Modernization: Implications for U.S. Navy Capabilities-Background and Issues for Congress

    DTIC Science & Technology

    2012-02-08

    carried by 8 of China’s 12 Russian-made Kilo-class submarines). China’s large inventory of ASCMs also includes several indigenous designs. DOD states that... inventory of mines.40 39 Lyle Goldstein and Shannon Knight, “Coming Without Shadows...with modern ASCMs. China’s land-based naval aircraft inventory includes, among other things, 24 Russian- made Su-30 MKK 2 Flanker land-based fighters

  8. Pence, Putin, Mbeki and Their HIV/AIDS-Related Crimes Against Humanity: Call for Social Justice and Behavioral Science Advocacy.

    PubMed

    Kalichman, Seth C

    2017-04-01

    Indiana, a large rural state in the Midwestern United States, suffered the worst North American HIV outbreak among injection drug users in years. The Indiana state government under former Governor and current US Vice President Mike Pence fueled the HIV outbreak by prohibiting needle/syringe exchange and failed to take substantive action once the outbreak was identified. This failure in public health policy parallels the HIV epidemics driven by oppressive drug laws in current day Russia and is reminiscent of the anti-science AIDS denialism of 1999-2007 South Africa. The argument that Russian President Putin and former South African President Mbeki should be held accountable for their AIDS policies as crimes against humanity can be extended to Vice President Pence. Social and behavioral scientists have a responsibility to inform the public of HIV prevention realities and to advocate for evidence-based public health policies to prevent future outbreaks of HIV infection.

  9. Cognitive methodology for forecasting oil and gas industry using pattern-based neural information technologies

    NASA Astrophysics Data System (ADS)

    Gafurov, O.; Gafurov, D.; Syryamkin, V.

    2018-05-01

    The paper analyses a field of computer science formed at the intersection of such areas of natural science as artificial intelligence, mathematical statistics, and database theory, which is referred to as "Data Mining" (discovery of knowledge in data). The theory of neural networks is applied along with classical methods of mathematical analysis and numerical simulation. The paper describes the technique protected by the patent of the Russian Federation for the invention “A Method for Determining Location of Production Wells during the Development of Hydrocarbon Fields” [1–3] and implemented using the geoinformation system NeuroInformGeo. There are no analogues in domestic and international practice. The paper gives an example of comparing the forecast of the oil reservoir quality made by the geophysicist interpreter using standard methods and the forecast of the oil reservoir quality made using this technology. The technical result achieved shows the increase of efficiency, effectiveness, and ecological compatibility of development of mineral deposits and discovery of a new oil deposit.

  10. MDS-Multifunctional Dynamometer for Application in Space

    NASA Astrophysics Data System (ADS)

    Adamcik, G.; Barta, N.; Talla, R.; Angeli, T.; Kozlovskaya, I. B.; Grigoriev, A. I.; Tschan, H.; Bachl, N.

    2008-06-01

    The project MDS (Multifunctional Dynamometer for Application in Space) is an international collaboration of the University of Vienna (Faculty of Sport Science, Department of Sport and Exercise Physiology), the Russian Academy of Sciences (Institute of Biomedical Problems) and the Technical University of Vienna (Institute for Engineering Design and Logistics Engineering) with the aim to develop a training and diagnostic device that counteracts the muscle and bone loss during long term space flights. Due to the scientific results of the last years research in space medicine, it is well known, that the muscles and bones of the lower extremities and the trunk are most affected by the atrophy. Based on this knowledge a various number of resistance exercises can be done in order to train the muscles of these parts of the body and to increase the efficiency of the training by intra- and intermuscular coordination. The resisting power for the training is provided by an electric motor, thereby force, position and speed of the training can be well-regulated for different training modes.

  11. The Phobos Atlas and Geo-portal: geodesy and cartography approach for planetary exploration

    NASA Astrophysics Data System (ADS)

    Karachevtseva, Irina; Kozlova, Natalia; Kokhanov, Alexander; Oberst, Jürgen; Zubarev, Anatoliy; Nadezhdina, Irina; Patraty, Vyacheslav; Konopikhin, Anatoliy; Garov, Andrey

    New Phobos mapping. Methods of image processing and modern GIS technologies provide the opportunity for high quality planetary mapping. The new Phobos DTM and global orthomosaic have been used for developing a geodatabase (Karachevtseva et al., 2012) which provides data for various surface spatial analyses: statistics of crater density, as well as studies of gravity field, geomorphology, and photometry. As mapping is the best way to visualize results of research based on spatial context we created the Phobos atlas. The new Phobos atlas includes: control points network which were calculated during photogrammetry processing of SRC images (Zubarev et al., 2012) and fundamental body parameters as a reference basis for Phobos research as well as GIS analyses of surface objects and geomorphologic studies. According to the structure of the atlas we used various scales and projections based on different coordinate system, including three-axial ellipsoid which parameters (a=13.24 km, b=11.49 km, c=9.48 km) derived from new Phobos shape model (Nadezhdina and Zubarev, 2014). The new Phobos atlas includes about 30 thematic original maps that illustrate the surface of the small body based on Mars Express data (Oberst et al., 2008) and illustrates results of various studies of Phobos:, geomorphology parameters of craters (Basilevsky et al., 2014), morphometry studies (Koknanov et al., 2012), statistics of crater size-frequency distributions based on multi-fractal approach (Uchaev Dm. et al., 2012). Phobos Geo-portal. The spatial data products which used for preparing maps for the Phobos atlas are available at the planetary data storage with access via Geo-portal (http://cartsrv.mexlab.ru/geoportal/), based on modern spatial and web-based technologies (Karachevtseva et al., 2013). Now we are developing Geodesy and Cartography node which can integrate various types of information not only for Phobos data, but other planets and their satellites, and it can be used for geo-spatial support of future missions to celestial bodies. Our technological solutions are open-source, which makes it possible to increase the functionality of the system, for example, using 3D-modeling. Phobos Geo-portal provides access to results of calculation of the gravity field parameters (Uchaev Dm. et al., 2013); catalog of craters and calculations of surface roughness (Karachevtseva et al., 2012); surface compositional studies based on HRSC color-channel data (Patsyn et al., 2012). Acknowledgments: The Phobos study was supported by RBRF under grant for “Geodesy, cartography and research satellites Phobos and Deimos” (Helmholtz-Russia Joint Research Group), grant agreement No. 11-05-91323. References: Basilevsky A.T., Lorenz C.A., Shingareva T.V., Head J.W., Ramsley K.R., Zubarev A.E. Surface Geology and Geomorphology of Phobos, 2014, Elsevier, Planetary and Space Science, in press. Karachevtseva I. P., Shingareva K. B., Konopikhin A. A., Mukabenova B. V., Nadezhdina I. E., Zubarev A. E., 2012. GIS mapping of Phobos on the results of data processing of remote sensing satellite Mars Express, Modern problems of remote sensing of the Earth from Space. Space Research Institute, Moscow, 304-311 (in Russian). Karachevtseva I.P., Oberst J., Zubarev A.E., Nadezhdina I.E., Kokhanov A.A., Garov A. S. Uchaev D.V., Uchaev Dm.V., Malinnikov V.A., Klimkin N.D. 2014, The Phobos information system. Elsevier, Planetary and Space Science. http://dx.doi.org/10.1016/j.pss.2013.12.015 Kokhanov A.A., Basilevsky A.T., Karachevtseva I.P., Nadezhdina I.E., Zubarev A.E. Depth/Diameter Ratio and Inner Walls Steepness of Large Phobos Craters. The 44th Lunar and Planetary Science Conference, The Woodlands, Texas, USA, March 18-22, 2013. Abstracts [#2289]. Nadezhdina I.E., Zubarev A.E. Create reference coordinate network as a basis for studying the physical parameters of Phobos. 2014, Solar System Research, Moscow, Nauka, in press. Oberst J., Schwarz, G., Behnke, T., Hoffmann, H., Matz, K.-D., Flohrer, J., Hirsch, H., Roatsch, T., Scholten, F., Hauber, E., Brinkmann, B., Jaumann, R., Williams, D., Kirk, R., Duxbury, T., Leu, C., Neukum, G., 2008. The imaging performance of the SRC on Mars Express. Planet. Space Sci. 56, 473-491. Patsyn V.S, Malinnikov V.A., Grechishev A.V. Research of spectrometric characteristics of the surface of Phobos on the HRSC data from the Mars Express spacecraft // Modern problems of remote the earth sensing from space, Space Research Institute, Moscow, 2012, V. 9, No. 4, pp. 312-318. (in Russian). Uchaev, Dm.V., Malinnikov, V.A., Oberst, J., 2012. Multifractal approach to crater distribution modelling according to their diameters. Izv. Vyssh. Uchevn. Zaved., Geod. Aerofotos"emka 6, 3-8. (in Russian). Uchaev, Dm.V., Uchaev, D. V., Prutov, I., 2013. Multiscale representation of gravitational fields of small celestial bodies. Izv. Vyssh. Uchevn. Zaved., Geod. Aerofotos"emka 4, 3-8. (In Russian). Zubarev, A. E., Nadezhdina, I.E., Konopikhin, A. A., 2012. Problems of processing of remote sensing data for modeling shapes of small bodies in the Solar system, Modern problems of remote sensing of the Earth from Space. Space Research Institute, Moscow, 277-285 (in Russian).

  12. Biological warfare warriors, secrecy and pure science in the Cold War: how to understand dialogue and the classifications of science.

    PubMed

    Bud, Robert

    2014-01-01

    This paper uses a case study from the Cold War to reflect on the meaning at the time of the term 'Pure Science'. In 1961, four senior scientists from Britain's biological warfare centre at Porton Down visited Moscow both attending an International Congress and visiting Russian microbiological and biochemical laboratories. The reports of the British scientists in talking about a limited range of topics encountered in the Soviet Union expressed qualities of openness, sociologists of the time associated with pure science. The paper reflects on the discourses of "Pure Science", secrecy and security in the Cold War. Using Bakhtin's approach, I suggest the cordial communication between scientists from opposing sides can be seen in terms of the performance, or speaking, of one language among several at their disposal. Pure science was the language they were allowed to share outside their institutions, and indeed political blocs.

  13. Out-migration and depopulation of the Russian North during the 1990s.

    PubMed

    Heleniak, T

    1999-01-01

    The large-scale out-migration from Russia's northern regions that has taken place over the course of the 1990s is analyzed. "The study is based on unpublished oblast-level migration data compiled by the Russian Government, field work by the author, as well as two extensive 1998 surveys of recent and potential migrants, respectively. Age, gender, and educational level of migrants are analyzed to determine the extent of change in Northern population structure attributable to migration. A concluding section presents Russian Government projections of the North's population to 2010." excerpt

  14. A taxonomic note on Homorosoma horridulum Voss, 1958 (Coleoptera: Curculionidae), with new records from Taiwan.

    PubMed

    Korotyaev, Boris A; Yoshitake, Hiraku; Huang, Junhao

    2014-04-08

    Homorosoma horridulum Voss 1958 (Curculionidae: Ceutorhynchinae) was described from Kuatun, China, based on two specimens in the J. Klapperich collection. Since that time it has been uninvestigated for more than half a century, except by Colonnelli (2004), who listed it in his world catalogue of the subfamily. The recent examination of the holotype of H. horridulum revealed that it should be placed in the genus Scleropteroides Colonnelli 1979. In addition, Scleropteroides specimens from Taiwan agree well with the holotype of H. horridulum not only in general appearance but also in male genital structures. Here we transfer Homorosoma horridulum Voss 1958 to the genus Scleropteroides Colonnelli 1979 as Scleropteroides horridulus (Voss 1958) and record the species from Taiwan for the first time. Depositories of specimens examined are abbreviated as follows: CMNC: Canadian Museum of Nature, Ottawa; CWOB: C.W. O'Brien collection, Green Valley, Arizona, USA; EUMJ: Laboratory of Environmental Entomology, Faculty of Agriculture, Ehime University, Matsuyama, Japan; NIAES: National Institute for Agro-Environmental Sciences, Tsukuba, Japan; SMNH: Swedish Museum of Natural History, Stockholm, Sweden; and ZIN: Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia. Before going further, we wish to express our cordial thanks to R. S. Anderson, François Génier (CMNC), H. Kojima (Tokyo University of Agriculture), M. Sakai (Ehime University), C.W. O'Brien, and B. Viklund (SMNH) for the loan or donation of specimens examined. The first author thanks the late P. Lindskog (SMNH) for the help during his first visit to Stockholm. The study by the first author was supported by Grant No 13-04-01002 from the Russian Foundation for Basic Research.

  15. Experimental investigation of the impulse gas injection into liquid and the use of experimental data for verification of the HYDRA-IBRAE/LM thermohydraulic code

    NASA Astrophysics Data System (ADS)

    Lobanov, P. D.; Usov, E. V.; Butov, A. A.; Pribaturin, N. A.; Mosunova, N. A.; Strizhov, V. F.; Chukhno, V. I.; Kutlimetov, A. E.

    2017-10-01

    Experiments with impulse gas injection into model coolants, such as water or the Rose alloy, performed at the Novosibirsk Branch of the Nuclear Safety Institute, Russian Academy of Sciences, are described. The test facility and the experimental conditions are presented in details. The dependence of coolant pressure on the injected gas flow and the time of injection was determined. The purpose of these experiments was to verify the physical models of thermohydraulic codes for calculation of the processes that could occur during the rupture of tubes of a steam generator with heavy liquid metal coolant or during fuel rod failure in water-cooled reactors. The experimental results were used for verification of the HYDRA-IBRAE/LM system thermohydraulic code developed at the Nuclear Safety Institute, Russian Academy of Sciences. The models of gas bubble transportation in a vertical channel that are used in the code are described in detail. A two-phase flow pattern diagram and correlations for prediction of friction of bubbles and slugs as they float up in a vertical channel and of two-phase flow friction factor are presented. Based on the results of simulation of these experiments using the HYDRA-IBRAE/LM code, the arithmetic mean error in predicted pressures was calculated, and the predictions were analyzed considering the uncertainty in the input data, geometry of the test facility, and the error of the empirical correlation. The analysis revealed major factors having a considerable effect on the predictions. The recommendations are given on updating of the experimental results and improvement of the models used in the thermohydraulic code.

  16. A Mars Rover Mission Simulation on Kilauea Volcano

    NASA Technical Reports Server (NTRS)

    Stoker, Carol; Cuzzi, Jeffery N. (Technical Monitor)

    1995-01-01

    A field experiment to simulate a rover mission on Mars was performed using the Russian Marsokhod rover deployed on Kilauea Volcano HI in February, 1995. A Russian Marsokhod rover chassis was equipped with American avionics equipment, stereo cameras on a pan and tilt platform, a digital high resolution body-mounted camera, and a manipulator arm on which was mounted a camera with a close-up lens. The six wheeled rover is 2 meters long and has a mass of 120 kg. The imaging system was designed to simulate that used on the planned "Mars Together" mission. The rover was deployed on Kilauea Volcano HI and operated from NASA Ames by a team of planetary geologists and exobiologists. Two modes of mission operations were simulated for three days each: (1) long time delay, low data bandwidth (simulating a Mars mission), and (2) live video, wide-bandwidth data (allowing active control simulating a Lunar rover mission or a Mars rover mission controlled from on or near the Martian surface). Simulated descent images (aerial photographs) were used to plan traverses to address a detailed set of science questions. The actual route taken was determined by the science team and the traverse path was frequently changed in response to the data acquired and to unforeseen operational issues. Traverses were thereby optimized to efficiently answer scientific questions. During the Mars simulation, the rover traversed a distance of 800 m. Based on the time delay between Earth and Mars, we estimate that the same operation would have taken 30 days to perform on Mars. This paper will describe the mission simulation and make recommendations about incorporating rovers into the Mars surveyor program.

  17. Mental Programs and Social Behavior Patterns in Russian Society

    ERIC Educational Resources Information Center

    Lubsky, Anatoly Vladimirovich; Kolesnykova, Elena Yuryevna; Lubsky, Roman Anatolyevich

    2016-01-01

    The objective of the article is to reconstruct the mental programs, their cognitive, axiological and connotative structures, and construction on this basis of various modal patterns of social behavior in Russian society. Methodology of the article is based on an interdisciplinary scientific approach making it possible to conceptually disclose the…

  18. Mark Smith's Diary.

    ERIC Educational Resources Information Center

    Lord, Natalia; Shektman, Boris

    Instructional materials for use in the U.S. Foreign Service Institute's Russian language training program are based on the diary of a fictional foreign service officer stationed in Moscow. The materials, written in both English and Russian, are organized as chapters in the diary. A quiz accompanies each chapter and focuses on the influence of…

  19. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  20. Planetary protection implementation on future Mars lander missions

    NASA Astrophysics Data System (ADS)

    Howell, Robert; Devincenzi, Donald L.

    1993-06-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bio-assays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  1. Planetary protection implementation on future Mars lander missions

    NASA Technical Reports Server (NTRS)

    Howell, Robert; Devincenzi, Donald L.

    1993-01-01

    A workshop was convened to discuss the subject of planetary protection implementation for Mars lander missions. It was sponsored and organized by the Exobiology Implementation Team of the U.S./Russian Joint Working Group on Space Biomedical and Life Support Systems. The objective of the workshop was to discuss planetary protection issues for the Russian Mars '94 mission, which is currently under development, as well as for additional future Mars lander missions including the planned Mars '96 and U.S. MESUR Pathfinder and Network missions. A series of invited presentations was made to ensure that workshop participants had access to information relevant to the planned discussions. The topics summarized in this report include exobiology science objectives for Mars exploration, current international policy on planetary protection, planetary protection requirements developed for earlier missions, mission plans and designs for future U.S. and Russian Mars landers, biological contamination of spacecraft components, and techniques for spacecraft bioload reduction. In addition, the recent recommendations of the U.S. Space Studies Board (SSB) on this subject were also summarized. Much of the discussion focused on the recommendations of the SSB. The SSB proposed relaxing the planetary protection requirements for those Mars lander missions that do not contain life detection experiments, but maintaining Viking-like requirements for those missions that do contain life detection experiments. The SSB recommendations were found to be acceptable as a guide for future missions, although many questions and concerns about interpretation were raised and are summarized. Significant among the concerns was the need for more quantitative guidelines to prevent misinterpretation by project offices and better access to and use of the Viking data base of bioassays to specify microbial burden targets. Among the questions raised were how will the SSB recommendations be integrated with existing Committee on Space Research (COSPAR) policy and how will they apply to and affect Mars '94, Mars '96, MESUR Pathfinder, and MESUR Network missions? One additional topic briefly considered at the workshop was the identification of some issues related to planetary protection considerations for Mars sample return missions. These issues will form the basis for a follow-on joint U.S./Russian workshop on that subject.

  2. Geological Mapping Uses Landsat 4-5TM Satellite Data in Manlai Soum of Omnogovi Aimag

    NASA Astrophysics Data System (ADS)

    Norovsuren, B.

    2014-12-01

    Author: Bayanmonkh N1, Undram.G1, Tsolmon.R2, Ariunzul.Ya1, Bayartungalag B31 Environmental Research Information and Study Center 2NUM-ITC-UNESCO Space Science and Remote Sensing International Laboratory, National University of Mongolia 3Geology and Hydrology School, Korea University KEY WORDS: geology, mineral resources, fracture, structure, lithologyABSTRACTGeologic map is the most important map for mining when it does exploration job. In Mongolia geological map completed by Russian geologists which is done by earlier technology. Those maps doesn't satisfy for present requirements. Thus we want to study improve geological map which includes fracture, structural map and lithology use Landsat TM4-5 satellite data. If we can produce a geological map from satellite data with more specification then geologist can explain or read mineralogy very easily. We searched all methodology and researches of every single element of geological mapping. Then we used 3 different remote sensing methodologies to produce structural and lithology and fracture map based on geographic information system's softwares. There can be found a visible lithology border improvement and understandable structural map and we found fracture of the Russian geological map has a lot of distortion. The result of research geologist can read mineralogy elements very easy and discovered 3 unfound important elements from satellite image.

  3. Bonds to the homeland: Patterns and determinants of women's transnational travel frequency among three immigrant groups in Germany.

    PubMed

    Iarmolenko, Svitlana; Titzmann, Peter F; Silbereisen, Rainer K

    2016-04-01

    Technology developments have changed immigrants' adaptation patterns in modern societies, allowing immigrants to sustain dense, complex connections with homeland while adjusting in the host country, a new phenomenon termed transnationalism. As empirical studies on immigrant transnationalism are still scarce, the purpose of this study was to investigate mean levels and determinants of a core component of transnationalism-transnational travel. Hypotheses were based on context of exiting homeland, living conditions in Germany and demographic and sociocultural variables. Transnational travel behaviour was assessed as frequency of return trips in three immigrant groups in Germany: ethnic Germans, Russian Jews and Turks. Interviews were conducted with 894 women participants from these groups. Results showed substantial transnational travel behaviour in all groups with Turks reporting higher levels than ethnic Germans and Russian Jews. Interindividual differences in transnational travel within groups were also examined. Results indicated similarities (e.g. network size in home country related positively to transnational travel frequency in all groups) and group-specific associations (e.g. co-ethnic identifying related positively to transnational travel frequency among Turks, but negatively for the other groups). Our study highlights the need for a new understanding of immigration and emphasises the consideration of group-specific mechanisms in transnational travel behaviour. © 2015 International Union of Psychological Science.

  4. [The Russian consensus on the diagnosis and treatment of chronic pancreatitis: Enzyme replacement therapy].

    PubMed

    Khatkov, I E; Maev, I V; Bordin, D S; Kucheryavyi, Yu A; Abdulkhakov, S R; Alekseenko, S A; Alieva, E I; Alikhanov, R B; Bakulin, I G; Baranovsky, A Yu; Beloborodova, E V; Belousova, E A; Buriev, I M; Bystrovskaya, E V; Vertyankin, S V; Vinokurova, L V; Galperin, E I; Gorelov, A V; Grinevich, V B; Danilov, M V; Darvin, V V; Dubtsova, E A; Dyuzheva, T G; Egorov, V I; Efanov, M G; Zakharova, N V; Zagainov, V E; Ivashkin, V T; Izrailov, R E; Korochanskaya, N V; Kornienko, E A; Korobka, V L; Kokhanenko, N Yu; Livzan, M A; Loranskaya, I D; Nikolskaya, K A; Osipenko, M F; Okhlobystin, A V; Pasechnikov, V D; Plotnikova, E Yu; Polyakova, S I; Sablin, O A; Simanenkov, V I; Ursova, N I; Tsvirkun, V V; Tsukanov, V V; Shabunin, A V

    Pancreatology Club Professional Medical Community, 1A.S. Loginov Moscow Clinical Research and Practical Center, Moscow Healthcare Department, Moscow; 2A.I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow; 3Kazan State Medical University, Ministry of Health of Russia, Kazan; 4Kazan (Volga) Federal University, Kazan; 5Far Eastern State Medical University, Ministry of Health of Russia, Khabarovsk; 6Morozov City Children's Clinical Hospital, Moscow Healthcare Department, Moscow; 7I.I. Mechnikov North-Western State Medical University, Ministry of Health of Russia, Saint Petersburg; 8Siberian State Medical University, Ministry of Health of Russia, Tomsk; 9M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow; 10Maimonides State Classical Academy, Moscow; 11V.I. Razumovsky State Medical University, Ministry of Health of Russia, Saratov; 12I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow; 13S.M. Kirov Military Medical Academy, Ministry of Defense of Russia, Saint Petersburg; 14Surgut State Medical University, Ministry of Health of Russia, Surgut; 15City Clinical Hospital Five, Moscow Healthcare Department, Moscow; 16Nizhny Novgorod Medical Academy, Ministry of Health of Russia, Nizhny Novgorod; 17Territorial Clinical Hospital Two, Ministry of Health of the Krasnodar Territory, Krasnodar; 18Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia, Saint Petersburg; 19Rostov State Medical University, Ministry of Health of Russia, Rostov-on-Don; 20Omsk Medical University, Ministry of Health of Russia, Omsk; 21Russian Medical Academy of Postgraduate Education, Ministry of Health of Russia, Moscow; 22Novosibirsk State Medical University, Ministry of Health of Russia, Novosibirsk; 23Stavropol State Medical University, Ministry of Health of Russia, Stavropol; 24Kemerovo State Medical University, Ministry of Health of Russia, Kemerovo; 25N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia, Moscow; 26A.M. Nikiforov All-Russian Center of Emergency and Radiation Medicine, Russian Ministry for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, Saint Petersburg; 27Research Institute for Medical Problems of the North, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk; 28S.P. Botkin City Clinical Hospital, Moscow Healthcare Department, Moscow; 29Tver State Medical University, Ministry of Health of Russia, Tver The Russian consensus on the diagnosis and treatment of chronic pancreatitis has been prepared on the initiative of the Russian Pancreatology Club to clarify and consolidate the opinions of Russian specialists (gastroenterologists, surgeons, and pediatricians) on the most significant problems of diagnosis and treatment of chronic pancreatitis. This article continues a series of publications explaining the most significant interdisciplinary consensus statements and deals with enzyme replacement therapy.

  5. Muon–hadron detector of the carpet-2 array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzhappuev, D. D.; Kudzhaev, A. U., E-mail: kudjaev@mail.ru; Klimenko, N. F.

    The 1-GeV muon–hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01)more » code package and performed for primary protons and iron nuclei.« less

  6. Experience of validation and tuning of turbulence models as applied to the problem of boundary layer separation on a finite-width wedge

    NASA Astrophysics Data System (ADS)

    Babulin, A. A.; Bosnyakov, S. M.; Vlasenko, V. V.; Engulatova, M. F.; Matyash, S. V.; Mikhailov, S. V.

    2016-06-01

    Modern differential turbulence models are validated by computing a separation zone generated in the supersonic flow past a compression wedge lying on a plate of finite width. The results of three- and two-dimensional computations based on the ( q-ω), SST, and Spalart-Allmaras turbulence models are compared with experimental data obtained for 8°, 25°, and 45° wedges by A.A. Zheltovodov at the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences. An original law-of-the-wall boundary condition and modifications of the SST model intended for improving the quality of the computed separation zone are described.

  7. Fbis report. Science and technology: Economic review, September 19, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-19

    ;Partial Contents: Germany: Braunschweig University Tests Organic Semiconductors; France: Ariane-5 Tests Suspended; First Tests in Euro-Russian RECORD Rocket Engine Program; France: Renault`s Multi-Model Assembly Line Presented; Germany: New High Speed Trains Under Development; France: Matra Test Drone, Missile Systems; France: Experimental Project for Automobile Recycling; Germany: Survey of Flexible Manufacturing Developments; Germany: Heinrich Hertz Institute Produces Polymer-Based Circuit; French Firms Introduce Computerized Control Room for Nuclear Plants; German Machine Tool Industry Calls for Information Technology Projects; Germany: R&D Achievements in Digital HDTV Reported; Hungary: Secondary Telecommunications Networks Described; EU: Mergers in Pharmaceutical Industry Reported; SGS-Thomson Business Performance Analyzed; Germany`s Siemensmore » Invest Heavily in UK Semiconductor Plant.« less

  8. UTC(SU) and EOP(SU) - the only legal reference frames of Russian Federation

    NASA Astrophysics Data System (ADS)

    Koshelyaevsky, Nikolay B.; Blinov, Igor Yu; Pasynok, Sergey L.

    2015-08-01

    There are two legal time reference frames in Russian Federation. UTC(SU) deals with atomic time and play a role of reference for legal timing through the whole country. The other one, EOP(SU), deals with Earth's orientation parameters and provides the official EOP data for scientific, technical and metrological applications in Russia.The atomic time is based on two essential hardware components: primary Cs fountain standards and ensemble of continuously operating H-masers as a time unit/time scale keeper. Basing on H-maser intercomparison system data, regular H-maser frequency calibration against Cs standards and time algorithm autonomous TA(SU) time scale is maintained by the Main Metrological Center. Since 2013 time unit in TA(SU) is the second (SU) reproduced independently by VNIIFTRI Cs primary standards in accordance to it’s definition in the SI. UTC(SU) is relied on TA(SU) and steering to UTC basing on TWSTFT/GNSS time link data. As a result TA(SU) stability level relative to TT considerably exceeds 1×10-15 for sample time one month and more, RMS[UTC-UTC(SU)] ≤ 3 ns for the period of 2013-2015. UTC(SU) is broadcasted by different national means such as specialized radio and TV stations, NTP servers and GLONASS. Signals of Russian radio stations contains DUT1 and dUT1 values at 0.1s and 0.02s resolution respectively.The definitive EOP(SU) are calculated by the Main Metrological Center basing on composition of the eight independent individual EOP data streams delivered by four Russian analysis centers: VNIIFTRI, Institute of Applied Astronomy, Information-Analytical Center of Russian Space Agency and Analysis Center of Russian Space Agency. The accuracy of ultra-rapid EOP values for 2014 is estimated ≤ 0.0006" for polar motion, ≤ 70 microseconds for UT1-UTC and ≤ 0.0003" for celestial pole offsets respectively.The other VNIIFTRI EOP activities can be grouped in three basic directions:- arrangement and carrying out GNSS and SLR observations at five institutes- processing GNSS, SLR and VLBI observation data for EOP evaluation- combination of GLONASS satellites orbit/clocks.The paper will deliver more detailed and particular information on Russian legal reference frames.

  9. Celebrating 50 years of the laser (Scientific session of the general meeting of the Physical Sciences Division of the Russian Academy of Sciences, 13 December 2010)

    NASA Astrophysics Data System (ADS)

    2011-08-01

    A scientific session of the general meeting of the Physical Sciences Division of the Russian Academy of Sciences (RAS) dedicated to the 50th anniversary of the creation of lasers was held in the Conference Hall of the Lebedev Physical Institute, RAS, on 13 December 2010. The agenda of the session announced on the website www.gpad.ac.ru of the RAS Physical Sciences Division listed the following reports: (1) Matveev V A, Bagaev S N Opening speech; (2) Bratman V L, Litvak A G, Suvorov E V (Institute of Applied Physics, RAS, Nizhny Novgorod) "Mastering the terahertz domain: sources and applications"; (3) Balykin V I (Institute of Spectroscopy, RAS, Troitsk, Moscow region) "Ultracold atoms and atom optics"; (4) Ledentsov N N (Ioffe Physical Technical Institute, RAS, St. Petersburg) "New-generation surface-emitting lasers as the key element of the computer communication era"; (5) Krasil'nik Z F (Institute for the Physics of Microstructures, RAS, Nizhny Novgorod) "Lasers for silicon optoelectronics"; (6) Shalagin A M (Institute of Automation and Electrometry, Siberian Branch, RAS, Novosibirsk) "High-power diode-pumped alkali metal vapor lasers"; (7) Kul'chin Yu N (Institute for Automation and Control Processes, Far Eastern Branch, RAS, Vladivostok) "Photonics of self-organizing biomineral nanostructures"; (8) Kolachevsky N N (Lebedev Physical Institute, RAS, Moscow) "Laser cooling of rare-earth atoms and precision measurements". The papers written on the basis of reports 2-4, 7, and 8 are published below.Because the paper based on report 6 was received by the Editors late, it will be published in the October issue of Physics-Uspekhi together with the material related to the Scientific Session of the Physical Sciences Division, RAS, of 22 December 2010. • Mastering the terahertz domain: sources and applications, V L Bratman, A G Litvak, E V Suvorov Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 837-844 • Ultracold atoms and atomic optics, V I Balykin Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 844-852 • New-generation vertically emitting lasers as a key factor in the computer communication era, N N Ledentsov, J A Lott Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 853-858 • The photonics of self-organizing biomineral nanostructures, Yu N Kulchin Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 858-863 • Laser cooling of rare-earth atoms and precision measurements, N N Kolachevsky Physics-Uspekhi, 2011, Volume 54, Number 8, Pages 863-870

  10. Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia

    USGS Publications Warehouse

    Grosse, Guido; Robinson, Joel E.; Bryant, Robin; Taylor, Maxwell D.; Harper, William; DeMasi, Amy; Kyker-Snowman, Emily; Veremeeva, Alexandra; Schirrmeister, Lutz; Harden, Jennifer

    2013-01-01

    This digital database is the product of collaboration between the U.S. Geological Survey, the Geophysical Institute at the University of Alaska, Fairbanks; the Los Altos Hills Foothill College GeoSpatial Technology Certificate Program; the Alfred Wegener Institute for Polar and Marine Research, Potsdam, Germany; and the Institute of Physical Chemical and Biological Problems in Soil Science of the Russian Academy of Sciences. The primary goal for creating this digital database is to enhance current estimates of soil organic carbon stored in deep permafrost, in particular the late Pleistocene syngenetic ice-rich permafrost deposits of the Yedoma Suite. Previous studies estimated that Yedoma deposits cover about 1 million square kilometers of a large region in central and eastern Siberia, but these estimates generally are based on maps with scales smaller than 1:10,000,000. Taking into account this large area, it was estimated that Yedoma may store as much as 500 petagrams of soil organic carbon, a large part of which is vulnerable to thaw and mobilization from thermokarst and erosion. To refine assessments of the spatial distribution of Yedoma deposits, we digitized 11 Russian Quaternary geologic maps. Our study focused on extracting geologic units interpreted by us as late Pleistocene ice-rich syngenetic Yedoma deposits based on lithology, ground ice conditions, stratigraphy, and geomorphological and spatial association. These Yedoma units then were merged into a single data layer across map tiles. The spatial database provides a useful update of the spatial distribution of this deposit for an approximately 2.32 million square kilometers land area in Siberia that will (1) serve as a core database for future refinements of Yedoma distribution in additional regions, and (2) provide a starting point to revise the size of deep but thaw-vulnerable permafrost carbon pools in the Arctic based on surface geology and the distribution of cryolithofacies types at high spatial resolution. However, we recognize that the extent of Yedoma deposits presented in this database is not complete for a global assessment, because Yedoma deposits also occur in the Taymyr lowlands and Chukotka, and in parts of Alaska and northwestern Canada.

  11. International Symposium on Optics and its Applications (OPTICS-2011)

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Aranya B.; Calvo, Maria L.; Kazaryan, Eduard M.; Papoyan, Aram V.; Sarkisyan, Hayk A.

    2012-03-01

    OPTICS Logo PREFACE The papers selected for this volume were reported at the International Symposium 'Optics and its applications' (OPTICS-2011, Yerevan & Ashtarak, Armenia, September 5-9, 2011), http://www.ipr.sci.am/optics2011/. The Symposium was organized by the SPIE Armenian Student Chapter and major Armenian R&D organizations, universities and industrial companies working in the field of basic and applied optics: Institute for Physical Research of the National Academy of Sciences of Armenia, Yerevan State University, Russian-Armenian (Slavonic) University, and LT-PYRKAL Closed Joint Stock Company. OPTICS-2011 was primarily intended to support and promote the involvement of students and young scientists in various fields of modern optics, giving them the possibility to attend invited talks by prominent scientists and to present and discuss their own results. Furthermore, the Symposium allowed foreign participants from 14 countries to become acquainted with the achievements of optical science and technology in Armenia, which became a full member of the International Commission for Optics (ICO) in 2011. To follow this concept, the Symposium sessions were held in various host institutions. The creative and friendly ambience established at OPTICS-2011 promoted further international collaboration in the field and motivated many students to take up research in optics and photonics as a career. This volume of Journal of Physics: Conference Series covers thematic sections of the Symposium (both oral and poster), which represent the main fields of interest in optics for Armenian scientists: quantum optics & information, laser spectroscopy, optical properties of nanostructures, photonics & fiber optics, and optics of liquid crystals. Such wide coverage is consistent with the general scope of the Symposium, allowing all the students involved in optics to present, discuss and publish their recent results, and for those who are making their first steps in science to choose the direction of their further studies. We are confident that the publication of the Symposium proceedings in JPCS, a worldwide-known open access journal, will help to disseminate and promote current activities in optics, thus facilitating international cooperation and the integration of Armenian scientists into the worldwide optical community. We would like to thank the sponsors of the Symposium: National Foundation of Science and Advanced Technologies (NFSAT), The Abdus Salam International Centre for Theoretical Physics (ICTP), LT-PYRKAL, State Committee of Science of Armenia, Russian-Armenian (Slavonic) University, and Devout Generation Foundation. We also express our gratitude to the members of the Program Committee for their organization of the manuscript reviewing. Special thanks go to Narine Gevorgyan, Lilit Mantashyan and Paytsar Mantashyan for their invaluable assistance in the compilation of this issue. The Editors, Aranya B Bhattacherjee, University of Delhi, India Maria L Calvo, Universidad Complutense de Madrid, Spain Eduard M Kazaryan, Russian-Armenian (Slavonic) University, Armenia Aram V Papoyan, Institute for Physical Research of NAS, Armenia Hayk A Sarkisyan, Russian-Armenian (Slavonic) University, Armenia OPTICS group photograph Participants of OPTICS-2011 in front of Yerevan State University Group in Khor Virap Participants of OPTICS-2011 in Khor Virap The PDF also contains additional photographs from the Symposium.

  12. Seismicity of the North of the Russian Plate: Relocation of Recent Earthquakese

    NASA Astrophysics Data System (ADS)

    Morozov, A. N.; Vaganova, N. V.; Asming, V. E.; Mikhailova, Ya. A.

    2018-03-01

    The hypocenters of the earthquakes recorded in the north of the Russian Plate from 1982 to 2013 are relocated. The relocation of the hypocenters is based on the common velocity section, common methodology, and the entire set of the initial data and bulletins available from the Russian and foreign seismic stations. The efficiency of the algorithm for calculating the hypocentral parameters and the velocity section is demonstrated by the example of two nonmilitary nuclear explosions in July 18, 1985 and September 6, 1988 in the northern part of the European Russia. For the first time, two earthquakes of July 19, 1982 and October 7, 2012, which have not been previously reported in the catalogs for the north of the Russian plate, are included in the seismic catalog.

  13. A synopsis of original research projects published in scientific database in the Russian Federation.

    PubMed

    Smirnova, Daria; Pavlichenko, Alexey; Karpenko, Olga; Schmeleva, Liubov; Morozov, Petr

    2015-06-01

    The article describes the current state of scientific publications in the field of psychiatry in the Russian Federation. Issues of academic dissertations, lack of access to recent Russian language research in foreign databases, and recent reforms in the Ministry of Education and Science for overcoming these limitations are discussed in detail. Four exemplary dissertation studies published in Russian language are summarized. The first research examines the contribution of patient's verbal behavior to the reliable diagnosis of mild depression, identifying objective signs for distinguishing it from normal sadness; the mood component influenced the whole mental status and was represented in both structure and semantics of patients' speech. The second paper describes the course of panic disorder with agoraphobia, with the notable results that debut of panic disorder with full-blown panic attacks, often declines to a second accompanied with agoraphobia, which after several years gives way to limited symptom attacks and decreased agoraphobic avoidance. The third study describes the high prevalence of affective and anxiety disorders in patients with diabetes mellitus type 1 and 2, and the role of personality traits in adherence to treatment in patients with poor glucose control. The fourth project uses functional MRI for probing the features of neuronal resting-state networks in patients with temporal lobe epilepsy; the association with affective symptoms provides a model for investigating the pathophysiology of mood disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. USSR and Eastern Europe Scientific Abstracts, Chemistry, Number 60

    DTIC Science & Technology

    1978-07-12

    OF AROMATIC AND HETEROCYCLIC ANALOGUES OF THE NATURAL GROWTH INHIBITOR - ABSCISIC ACID Tashkent KHIMIYA PRIRODNYKH SOYEDINENIY in Russian No 1, 1978...Chemistry of Natural Products, Academy of Sciences UzSSR, Tashkent [Abstract] Aryl analogues of abscisic acid were obtained by the Reformatskii...heterocyclic nuclei with carboethoxy-methylene- triphenylphosphorane led to the formation of furyl and hetero-cyclic analogues of abscisic acid . The

  15. The Contribution of M.N. Skatkin to the Advancement of Didactic Ideas about the Developmental Role of Education (1950s to Early 1960s)

    ERIC Educational Resources Information Center

    Selivyorstova, E. N.

    2015-01-01

    The article analyzes the research that M.N. Skatkin conducted during the 1950s and early 1960s and describes its contribution to the elabortion of Russian teaching science approaches towards understanding of the developmental role of education. [This article was translated by Kenneth Cargill.

  16. The Formation of Russian Christian Psychology: Problems and Prospects for Future Development

    ERIC Educational Resources Information Center

    Slobodchikov, Viktor Ivanovich

    2016-01-01

    This article deals with the place of Christian psychology in the system of psychological knowledge. The author points to the need to distinguish between the two systems of knowledge: the psychology of the mind and the psychology of the person. The psychology of the mind is the science devoted to the process of the formation of a particular mental…

  17. A Special Section on International Education--What We Can Learn from Russia's Schools

    ERIC Educational Resources Information Center

    Post, Becky

    2005-01-01

    Russia's educational system has been successful in producing graduates who excel in mathematics, the sciences, and foreign languages, but these are not the only areas that we might look to as models. Russian and American cultures and educational practices differ in significant ways, and not all of the practices described here would be workable in…

  18. 75 FR 20873 - Culturally Significant Objects Imported for Exhibition Determinations: “The Glory of Ukraine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-21

    ... that the exhibition or display of the exhibit objects at the Museum of Russian Art, Minneapolis, MN, from on or about September 3, 2010, until on or about January 23, 2011; the Joslyn Museum of Art, Omaha, NE, from on or about January 2011 until on or about May 2011; the Houston Museum of Natural Science...

  19. Erratum: Erratum to: Investigation of the Helicon Discharge Plasma Parametersin a Hybrid RF Plasma System

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. F.; Petrov, A. K.; Vavilin, K. V.; Kralkina, E. A.; Neklyudova, P. A.; Nikonov, A. M.; Pavlov, V. B.; Ayrapetov, A. A.; Odinokov, V. V.; Sologub, V. A.; Pavlov, G. Ya.

    2017-12-01

    The following must be added at the end of Acknowledgments: The study by JSC Research Institute of Precision Machine Manufacturing was supported by the Ministry of Education and Science of the Russian Federation, Agreement no. 14.576.21.0021 dated June 30, 2014. The unique identifier of this applied research project is RFMEF157614X0021.

  20. USSR Report, Political and Sociological Affairs.

    DTIC Science & Technology

    1984-05-14

    22 Mar 84) 8 Academy Discusses Marxism-Leninism, Global Problems (V. Los’ OBSHCHESTVENNYYE NAUKI, No 1, Jan -Feb 84) 12 New DRA Local...Ideological Education in Ukraine Viewed (PRAVDA UKRAINY, 19 Jan 84) 57 Turkmen Supreme Soviet Presidium Discusses Judicial Affairs...MARXISM-LENINISM, GLOBAL PROBLEMS Moscow OBSHCHESTVENNYYE NAUKI in Russian No 1, Jan -Feb 84 pp 202-208 [Article by Candidate of Philosophical Sciences

  1. 30 years of the Vega mission: Comparison of some properties of the 1P/Halley and 67P/Churyumov-Gerasimenko comets

    NASA Astrophysics Data System (ADS)

    Ksanfomality, L. V.

    2017-06-01

    On March 6 and 9, 1986, for the first time in the history of science, the Russian spacecraft Vega-1 and Vega-2 approached and closely passed by the nucleus of Halley’s comet (1P/Halley). A few days later, on March 14, 1986, the same was done by the European Space Agency’s (ESA) Giotto spacecraft. These missions, together with the Japanese Suisei (JAXA), marked a successful start to spacecraft exploration of cometary nuclei. Subsequent missions to other comets have been aimed at directly studying cometary bodies carrying signs of the formation of the Solar System. The Rosetta spacecraft, inserted into a low orbit around the nucleus of the 67P/Churyumov-Gerasimenko comet, performed its complex measurements from 2014 to September 2016. In this review, some of the data from these missions are compared. The review draws on the proceedings of the Vega 30th anniversary conference held at the Space Research Institute (IKI) of the Russian Academy of Sciences in March 2016 and is not meant to be exhaustive in describing mission results and problems in the physics of comets.

  2. Chewing lice of genus Ricinus (Phthiraptera, Ricinidae) deposited at the Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russia, with description of a new species

    PubMed Central

    2016-01-01

    We revised a collection of chewing lice deposited at the Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, Russia. We studied 60 slides with 107 specimens of 10 species of the genus Ricinus (De Geer, 1778). The collection includes lectotype specimens of Ricinus ivanovi Blagoveshtchensky, 1951 and of Ricinus tugarinovi Blagoveshtchensky, 1951. We registered Ricinus elongatus Olfers, 1816 ex Turdus ruficollis, R. ivanovi ex Leucosticte tephrocotis and Ricinus serratus (Durrant, 1906) ex Calandrella acutirostris and Calandrella cheleensis which were not included in Price’s world checklist. New records for Russia are R. elongatus ex Turdus ruficollis; Ricinus fringillae De Geer, 1778 ex Emberiza aureola, Emberiza leucocephalos, Emberiza rustica, Passer montanus and Prunella modularis; Ricinus rubeculae De Geer, 1778 ex Erithacus rubecula and Luscinia svecica; Ricinus serratus (Durrant, 1906) ex Alauda arvensis. New records for Kyrgyzstan are R. fringillae ex E. leucocephalos and ex Fringilla coelebs. A new record for Tajikistan is R. serratus ex Calandrella acutirostris. The new species Ricinus vaderi Valan n. sp. is described with Calandra lark, Melanocorypha calandra; from Azerbaijan, as a type host. PMID:26902646

  3. Educational process in modern climatology within the web-GIS platform "Climate"

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Gorbatenko, Valentina; Gordov, Evgeny; Martynova, Yulia; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2013-04-01

    These days, common to all scientific fields the problem of training of scientists in the environmental sciences is exacerbated by the need to develop new computational and information technology skills in distributed multi-disciplinary teams. To address this and other pressing problems of Earth system sciences, software infrastructure for information support of integrated research in the geosciences was created based on modern information and computational technologies and a software and hardware platform "Climate» (http://climate.scert.ru/) was developed. In addition to the direct analysis of geophysical data archives, the platform is aimed at teaching the basics of the study of changes in regional climate. The educational component of the platform includes a series of lectures on climate, environmental and meteorological modeling and laboratory work cycles on the basics of analysis of current and potential future regional climate change using Siberia territory as an example. The educational process within the Platform is implemented using the distance learning system Moodle (www.moodle.org). This work is partially supported by the Ministry of education and science of the Russian Federation (contract #8345), SB RAS project VIII.80.2.1, RFBR grant #11-05-01190a, and integrated project SB RAS #131.

  4. Ilya Mikhailovich Lifshitz — 100th birthday anniversary

    NASA Astrophysics Data System (ADS)

    Grosberg, A. Y.

    2018-01-01

    On 18 January 2017, a scientific session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) was held at the conference hall of the P N Lebedev Physical Institute, RAS, in honor of the 100th anniversary of the birth of I M Lifshitz. The following reports were put on the session agenda as posted on the PSD website http://www.gpad.ac.ru: (1) Grosberg A Yu (New York University, USA) "Ilya Mikhailovich Lifshitz and physics of biopolymers"; (2) Pastur L A (B I Verkin Institute for Low Temperature Physics \\& Engineering, National Academy of Sciences of Ukraine, Kharkiv) "Disordered fermions"; (3) Volovik G E (L D Landau Institute for Theoretical Physics, RAS, Moscow; Aalto University, Finland) "Exotic Lifshitz transitions in topological materials"; (4) Krapivskii P (Boston University, USA) "Lifshitz-Slyozov-Wagner theory and social dynamics"; (5) Gorsky A S (Institute for Information Transmission Problems, Moscow) "New critical phenomena in random networks and multiparticle localization"; (6) Nechaev S K (P N Lebedev Physical Institute, RAS, Moscow; Interdisciplinary Scientific Center Poncelet, Moscow) "Rare event statistics and hierarchy: from Lifshitz tails to modular invariance". Papers based on oral reports 1, 3, and 6 are given below.

  5. Biomedical journals and databases in Russia and Russian language in the former Soviet Union and beyond

    PubMed Central

    Vlassov, Vasiliy V; Danishevskiy, Kirill D

    2008-01-01

    In the 20th century, Russian biomedical science experienced a decline from the blossom of the early years to a drastic state. Through the first decades of the USSR, it was transformed to suit the ideological requirements of a totalitarian state and biased directives of communist leaders. Later, depressing economic conditions and isolation from the international research community further impeded its development. Contemporary Russia has inherited a system of medical education quite different from the west as well as counterproductive regulations for the allocation of research funding. The methodology of medical and epidemiological research in Russia is largely outdated. Epidemiology continues to focus on infectious disease and results of the best studies tend to be published in international periodicals. MEDLINE continues to be the best database to search for Russian biomedical publications, despite only a small proportion being indexed. The database of the Moscow Central Medical Library is the largest national database of medical periodicals, but does not provide abstracts and full subject heading codes, and it does not cover even the entire collection of the Library. New databases and catalogs (e.g. Panteleimon) that have appeared recently are incomplete and do not enable effective searching. PMID:18826569

  6. STS-89 M.S. Dunbar and Sharipov chat under the orbiter after landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    STS-89 Mission Specialist Bonnie Dunbar, Ph.D., at left, discusses the mission with Mission Specialist Salizhan Sharipov of the Russian Space Agency under the orbiter Endeavour after it landed on Runway 15 at KSCs Shuttle Landing Facility Jan. 31. The 89th Space Shuttle mission was the 42nd (and 13th consecutive) landing of the orbiter at KSC, and STS-89 was the eighth of nine planned dockings of the orbiter with the Russian Space Station Mir. STS-89 Mission Specialist Andrew Thomas, Ph.D., succeeded NASA astronaut and Mir 24 crew member David Wolf, M.D., who was on the Russian space station since late September 1997. Dr. Wolf returned to Earth on Endeavour with the remainder of the STS-89 crew, including Commander Terrence Wilcutt; Pilot Joe Edwards Jr.; and Mission Specialists James Reilly, Ph.D.; Michael Anderson; Dr. Dunbar; and Sharipov. Dr. Thomas is scheduled to remain on Mir until the STS-91 Shuttle mission returns in June 1998. In addition to the docking and crew exchange, STS-89 included the transfer of science, logistical equipment and supplies between the two orbiting spacecrafts.

  7. The STS-91 crew participate in the CEIT for their mission

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The STS-91 crew participate in the Crew Equipment Interface Test (CEIT) for their upcoming Space Shuttle mission at the SPACEHAB Payload Processing Facility in Cape Canaveral. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. STS-91 will be the ninth and final scheduled Mir docking and will include a single module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Discovery and the Russian Space Station Mir. The nearly 10-day flight of STS-91 also is scheduled to include the return of the last astronaut to live and work aboard the Russian orbiting outpost, Mission Specialist Andy Thomas, Ph.D. Liftoff of Discovery and its six-member crew is targeted for May 28, 1998, at 8:05 p.m. EDT from Launch Pad 39A. From left to right are Boeing SPACEHAB Payload Operations Senior Engineer Jim Behling, STS-91 Pilot Dominic Gorie, Boeing SPACEHAB Program Principal Engineer Lynn Ashby, STS-91 Commander Charles Precourt, and STS-91 Mission Specialist Valery Ryumin with the Russian Space Agency.

  8. STS-89 crew and technicians participate in the CEIT

    NASA Technical Reports Server (NTRS)

    1997-01-01

    STS-89 crew members participate with trainers in the Crew Equipment Interface Test (CEIT) at the SPACEHAB Payload Processing Facility at Port Canaveral in preparation for the mission, slated to be the first Shuttle launch of 1998. The CEIT gives astronauts an opportunity to get a hands-on look at the payloads with which they will be working on-orbit. From left to right are Mission Specialists Michael Anderson and Bonnie Dunbar, Ph.D.; Commander Terry Wilcutt; Boeing SPACEHAB Operations Engineer Jim Behling; Boeing SPACEHAB Crew Trainer Laura Keiser; an unidentified staff member (with mustache); Mission Specialist Salizhan Sharipov of the Russian Space Agency; and Pilot Joe Edwards. STS-89 will be the eighth of nine scheduled Mir dockings and will include a double module of SPACEHAB, used mainly as a large pressurized cargo container for science, logistical equipment and supplies to be exchanged between the orbiter Endeavour and the Russian Space Station Mir. The nine- day flight of STS-89 also is scheduled to include the transfer of the seventh American to live and work aboard the Russian orbiting outpost. Liftoff of Endeavour and its seven- member crew is targeted for Jan. 15, 1998, at 1:03 a.m. EST from Launch Pad 39A.

  9. Biomedical journals and databases in Russia and Russian language in the former Soviet Union and beyond.

    PubMed

    Vlassov, Vasiliy V; Danishevskiy, Kirill D

    2008-09-30

    In the 20th century, Russian biomedical science experienced a decline from the blossom of the early years to a drastic state. Through the first decades of the USSR, it was transformed to suit the ideological requirements of a totalitarian state and biased directives of communist leaders. Later, depressing economic conditions and isolation from the international research community further impeded its development. Contemporary Russia has inherited a system of medical education quite different from the west as well as counterproductive regulations for the allocation of research funding. The methodology of medical and epidemiological research in Russia is largely outdated. Epidemiology continues to focus on infectious disease and results of the best studies tend to be published in international periodicals. MEDLINE continues to be the best database to search for Russian biomedical publications, despite only a small proportion being indexed. The database of the Moscow Central Medical Library is the largest national database of medical periodicals, but does not provide abstracts and full subject heading codes, and it does not cover even the entire collection of the Library. New databases and catalogs (e.g. Panteleimon) that have appeared recently are incomplete and do not enable effective searching.

  10. Investigation of the foam influence on the wind-wave momentum exchange and cross-polarization microwave radar return within laboratory modeling of atmosphere-ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim; Ermoshkin, Alexey

    2016-04-01

    The effect of foam presence on the transfer processes and the parameters of the surface roughness within the laboratory simulation of wind-wave interaction was carried out on the Thermostratified Wind-Wave Tank (TSWiWaT) IAP, using a specially designed foam generator. The parameters of air flow profiles and waves elevation were measured with scanning Pitot gauge and wire wave gauges respectively in the range of equivalent wind speed U10 from 12 to 38 m/s (covering strong winds) on the clean water and with foam. It was shown that the foam reduces the amplitudes and slopes of the waves in comparison with the clean water in the hole range of wind speeds investigated, and the peak frequency and wave numbers remain almost constant. The drag coefficient calculating by profiling method demonstrated similar behavior (almost independent on U10) for case of foam and increased compared with clear water, particularly noticeable for low wind speeds. Simultaneously the investigations of influence of the foam on the peculiarity of the microwave radio back scattering of X-diapason was investigated. These measurements were carried for different sensing angles (30, 40 i 50 degrees from vertical) and for four polarizations: co-polarized HH and VV, and de-polarized HV and VH. It was shown that foam leads to decrease of specific radar cross section of the wavy surface in comparison with clean water. The work was supported by the Russian Foundation for Basic Research (grants No. 15-35-20953, 14-05-00367, 16-55-52022) and project ASIST of FP7. The experiment is supported by Russian Science Foundation (Agreement No. 15-17-20009), radilocation measurments are partially supported by Russian Science Foundation (Agreement No. 14-17-00667).

  11. Influence of academical institutes on educational processes

    NASA Astrophysics Data System (ADS)

    Chernyakov, S. M.

    Murmansk is in the most northern European part of Russia and has problems with a higher educational system and with preparation of some necessary specialists for organizations of our region. They are consequencies of social and economical changes in the Russian society. But it gives a chance to revalue our system of higher education and a role of society and academical institutes in the process of education. During several years the Russian government supports a program ``Integration of basic science and higher school'' which has an aim to unite efforts of educational and academical organizations for to solve some educational and scientific problems of higher school using a potential of academical society. We decided to use the support of our government for solving of the part of our problems. In 1999 we had offered to organize a regional scientific student conference devoted to natural-science problems of the Arctic region and the project was supported. The first experience of the conference was obtained during the May 2000 when in Murmansk it was conducted the 1st regional scientific student conference devoted to physics and methods investigation of high-latitude atmosphere. The conference was organized by the Polar Geophysical Institute of the Kola Scientific Centre of the Russian Academy of Sciences together with the Murmansk State Pedagogical University and the Murmansk State Technical University. It had a broad response and continuation. This year we shall conduct already the 5th conference ''Natural-science problems of the Arctic region'' which will take place in April. We receive reports of students from the Murmansk region and also from Arkhangelsk, Novgorod, Petrozavodsk, Sankt-Petersburg, Tumen, Yakutsk and other regions of Russia. It is experience of involving in the conference students from other regions of Russia which do investigations in the field. We plan to organize during the conference (as a part of it) a videoconference. We hope that those students which shall not be able to be at our conference will have the possibility to take part in it through an Internet connection. Nowadays a situation in education of northern regions needs that educational higher school organizations as well as a society must work together more closely for to strengthen educational level of our regions and to give more sustainable development of them.

  12. Evidence-Based Research Study of the Russian Vocational Pedagogy and Education Motivational Potential in the Internationalisation Projection

    ERIC Educational Resources Information Center

    Chigisheva, Oksana

    2012-01-01

    The paper reveals research results of the pedagogical mechanisms influencing the increase of professional motivation of the new century Russian academics within additional vocational training program "Lecturer in higher educational establishments" focusing on the efficient work in the international educational environment as an outcome.…

  13. The Russian Academy of Education's Centers for Innovative Development

    ERIC Educational Resources Information Center

    Martirosian, B. P.; Rubtsova, N. E.; Shapovalova, I. A.

    2014-01-01

    The article presents a review of the experience of practical testing (based in 385 experimental sites of the Russian Academy of Education) of current achievements of scientific academic schools that are developing the traditions of education. The organization of the innovative scientific and practical activity of the experimental sites of the…

  14. Automated interference tools of the All-Russian Research Institute for Optical and Physical Measurements

    NASA Astrophysics Data System (ADS)

    Vishnyakov, G. N.; Levin, G. G.; Minaev, V. L.

    2017-09-01

    A review of advanced equipment for automated interference measurements developed at the All-Russian Research Institute for Optical and Physical Measurements is given. Three types of interference microscopes based on the Linnik, Twyman-Green, and Fizeau interferometers with the use of the phase stepping method are presented.

  15. Psycholinguistic Correlates of Progress in Literature of Students of Russian Vocational Training School

    ERIC Educational Resources Information Center

    Nuriakhmetov, Aidar

    2012-01-01

    The article describes psycholinguistic correlates of progress in literature, discovered on the basis of correlation analysis of grades, and results of several psychological and psycholinguistic tests were taken in the context of comprehensive psycholinguistic research based on one of Russian vocational training schools. Analysis revealed a list of…

  16. A Model for Applying Lexical Approach in Teaching Russian Grammar.

    ERIC Educational Resources Information Center

    Gettys, Serafima

    The lexical approach to teaching Russian grammar is explained, an instructional sequence is outlined, and a classroom study testing the effectiveness of the approach is reported. The lexical approach draws on research on cognitive psychology, second language acquisition theory, and research on learner language. Its bases in research and its…

  17. Exploring Constructivist Social Learning Practices in Aiding Russian-Speaking Teachers to Learn Estonian: An Action Research Approach

    ERIC Educational Resources Information Center

    Kiilo, Tatjana; Kutsar, Dagmar

    2012-01-01

    Based on appreciative inquiry and threshold concepts from an intercultural learning perspective, the article makes insights into the constructivist social learning practice of Estonian language learning amongst Russian-speaking teachers in Estonia. The application of educational action research methodology, more specifically that of Bridget…

  18. Russian military in the year 2000. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIlmail, J.F.; Jaworski, J.L.

    Through the use of content analysis, this paper attempts to paint a picture of the Russian military in the year 2000 and its impact on the US national security strategy. The research begins by defining the origin of Russian national security policy and how that translates into military policy and doctrine. A framework for evaluating Russian military doctrines is provided with a chronology of the military reform process and the related doctrinal reforms that has its birth in the 1987 announcement of a defensive-defense. Following from the doctrinal variant framework the new strategic missions of the 1992 draft military doctrinemore » are presented with an analysis that shows they are a clear departure from the past and truly represent a defensive-defense type doctrine. Additionally, a comparison is made with the current military reform ongoing in Russia with the historical precedent of the Russian military reform of 1924-25. A rough outline of the separate branches of the Russian military both present and future is provided based on the ongoing trends in the reform process. This thumbnail sketch of the Russian military then assists in the analysis and conclusion that even after a possible 50% cutback in US military spending, in the year 2000 the Russian military will not pose a threat to US national security. The major caveat to this conclusion is in the realm of nuclear weapons and this issue is therefore discussed in some length....Former Soviet Union, Russia, Commonwealth of Independent States (CIS), Conventional Forces in Europe treaty (CFE), European Security, New National Security Strategy, Nuclear Weapons, Nuclear Strategy.« less

  19. Physics of magnetic materials: A scientific school of E. A. Turov

    NASA Astrophysics Data System (ADS)

    Ustinov, V. V.; Kurkin, M. I.; Tankeyev, A. P.

    2014-11-01

    This article is dedicated to Evgenii Akimovich Turov, a well-known scientist in the field of physics of magnetic phenomena and Corresponding Member of the Russian Academy of Sciences. The article includes an analysis of the key problems of the physics of magnetism in the early 21st century, as well as E.A. Turov's and his school's contributions to the science of magnetism. In 2014, we commemorate the 90th anniversary of the birthday of Evgenii Akimovich, and this article is timed to this memorable date. The article also contains a list of the basic works of the scientist.

  20. USSR Space Life Sciences Digest, issue 28

    NASA Technical Reports Server (NTRS)

    Stone, Lydia Razran (Editor); Teeter, Ronald (Editor); Rowe, Joseph (Editor)

    1990-01-01

    This is the twenty-eighth issue of NASA's Space Life Sciences Digest. It contains abstracts of 60 journal papers or book chapters published in Russian and of 3 Soviet monographs. Selected abstracts are illustrated with figures and tables from the original. The abstracts in this issue have been identified as relevant to 20 areas of space biology and medicine. These areas include: adaptation, aviation medicine, botany, cardiovascular and respiratory systems, developmental biology, endocrinology, enzymology, equipment and instrumentation, hematology, human performance, immunology, life support systems, mathematical modeling, musculoskeletal system, neurophysiology, personnel selection, psychology, radiobiology, reproductive system, and space medicine.

Top