Science.gov

Sample records for ruthenium-based olefin metathesis

  1. Effects of NHC-backbone substitution on efficiency in ruthenium-based olefin metathesis.

    PubMed

    Kuhn, Kevin M; Bourg, Jean-Baptiste; Chung, Cheol K; Virgil, Scott C; Grubbs, Robert H

    2009-04-15

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C-H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  2. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    PubMed Central

    Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi

    2015-01-01

    Summary Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  3. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    PubMed

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes. PMID:26425202

  4. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    NASA Astrophysics Data System (ADS)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  5. Olefin metathesis in air

    PubMed Central

    Piola, Lorenzo; Nahra, Fady

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance. PMID:26664625

  6. Olefin metathesis for chemical biology.

    PubMed

    Binder, Joseph B; Raines, Ronald T

    2008-12-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis. PMID:18935975

  7. Light-induced olefin metathesis

    PubMed Central

    Vidavsky, Yuval

    2010-01-01

    Summary Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions. PMID:21160912

  8. Methods for suppressing isomerization of olefin metathesis products

    SciTech Connect

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  9. Methods for suppressing isomerization of olefin metathesis products

    SciTech Connect

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  10. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    PubMed

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-01

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. PMID:27203528

  11. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

    PubMed Central

    2015-01-01

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  12. Highly active water-soluble olefin metathesis catalyst.

    PubMed

    Hong, Soon Hyeok; Grubbs, Robert H

    2006-03-22

    A novel water-soluble ruthenium olefin metathesis catalyst supported by a poly(ethylene glycol) conjugated saturated 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligand is reported. The catalyst displays improved activity in ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis reactions in aqueous media. PMID:16536510

  13. Thermally Stable, Latent Olefin Metathesis Catalysts.

    PubMed

    Thomas, Renee M; Fedorov, Alexey; Keitz, Benjamin K; Grubbs, Robert H

    2011-12-26

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures. PMID:22282652

  14. An Electronic Rationale for Observed Initiation Rates in Ruthenium-Mediated Olefin Metathesis: Charge Donation in Phosphine And N-Heterocyclic Carbene Ligands

    SciTech Connect

    Getty, K.; Delgado-Jaime, M.U.; Kennepohl, P.

    2009-06-01

    Ru K-edge XAS data indicate that second generation ruthenium-based olefin metathesis precatalysts (L = N-heterocyclic carbene) possess a more electron-deficient metal center than in the corresponding first generation species (L = tricyclohexylphosphine). This surprising effect is also observed from DFT calculations and provides a simple rationale for the slow phosphine dissociation kinetics previously noted for second-generation metathesis precatalysts.

  15. Synthesis of interlocked molecules by olefin metathesis

    NASA Astrophysics Data System (ADS)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  16. Iron(III)-catalysed carbonyl-olefin metathesis.

    PubMed

    Ludwig, Jacob R; Zimmerman, Paul M; Gianino, Joseph B; Schindler, Corinna S

    2016-05-19

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis. PMID:27120158

  17. Iron(III)-catalysed carbonyl–olefin metathesis

    NASA Astrophysics Data System (ADS)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon–carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl–olefin metathesis reaction can also be used to construct carbon–carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl–olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl–olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  18. Metathesis process for preparing an alpha, omega-functionalized olefin

    DOEpatents

    Burdett, Kenneth A.; Mokhtarzadeh, Morteza; Timmers, Francis J.

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  19. Cardanol-based materials as natural precursors for olefin metathesis.

    PubMed

    Vasapollo, Giuseppe; Mele, Giuseppe; Del Sole, Roberta

    2011-01-01

    Cardanol is a renewable, low cost natural material, widely available as a by-product of the cashew industry. It is a mixture of 3-n-pentadecylphenol, 3-(pentadeca-8-enyl)phenol, 3-(pentadeca-8,11-dienyl)phenol and 3-(pentadeca-8,11,14-trienyl)phenol. Olefin metathesis (OM) reaction on cardanol is an important class of reactions that allows for the synthesis of new olefins that are sometime impossible to prepare via other methods. The application of this natural and renewable material to both academic and industrial research will be discussed. PMID:25134775

  20. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  1. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  2. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  3. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    DOEpatents

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  4. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    PubMed

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone. PMID:26608162

  5. Kinetically controlled E-selective catalytic olefin metathesis.

    PubMed

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. PMID:27126041

  6. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    PubMed

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  7. A Ruthenium Catalyst for Olefin Metathesis Featuring an Anti-Bredt N-Heterocyclic Carbene Ligand

    PubMed Central

    Martin, David; Marx, Vanessa M.

    2016-01-01

    A ruthenium complex bearing an “anti-Bredt” N-heterocyclic carbene was synthesized, characterized and evaluated as a catalyst for olefin metathesis. Good conversions were observed at room temperature for the formation of di- and tri-substituted olefins by ring-closing metathesis. It also allowed for the ring-opening metathesis polymerization of cyclooctadiene, as well as for the cross-metathesis of cis-1,4-diacetoxy-2-butene with allyl-benzene, with enhanced Z/E kinetic selectivity over classical NHC-based catalysts.

  8. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOEpatents

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  9. Beyond catalyst deactivation: cross-metathesis involving olefins containing N-heteroaromatics

    PubMed Central

    Lafaye, Kevin; Bosset, Cyril; Nicolas, Lionel

    2015-01-01

    Summary Alkenes containing N-heteroaromatics are known to be poor partners in cross-metathesis reactions, probably due to catalyst deactivation caused by the presence of a nitrogen atom. However, some examples of ring-closing and cross-metathesis involving alkenes that incorporate N-heteroaromatics can be found in the literature. In addition, recent mechanistic studies have focused on the rationalization of nitrogen-induced catalysts deactivation. The purpose of this mini-review is to give a brief overview of successful metathesis reactions involving olefins containing N-heteroaromatics in order to delineate some guidelines for the use of these challenging substrates in metathesis reactions. PMID:26664645

  10. Comparative investigation of ruthenium-based metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands.

    PubMed

    Fürstner, A; Ackermann, L; Gabor, B; Goddard, R; Lehmann, C W; Mynott, R; Stelzer, F; Thiel, O R

    2001-08-01

    Exchange of one PCy3 unit of the classical Grubbs catalyst 1 by N-heterocyclic carbene (NHC) ligands leads to "second-generation" metathesis catalysts of superior reactivity and increased stability. Several complexes of this type have been prepared and fully characterized, six of them by X-ray crystallography. These include the unique chelate complexes 13 and 14 in which the NHC- and the Ru-CR entities are tethered to form a metallacycle. A particularly favorable design feature is that the reactivity of such catalysts can be easily adjusted by changing the electronic and steric properties of the NHC ligands. The catalytic activity also strongly depends on the solvent used; NMR investigations provide a tentative explanation of this effect. Applications of the "second-generation" catalysts to ring closing alkene metathesis and intramolecular enyne cycloisomerization reactions provide insights into their catalytic performance. From these comparative studies it is deduced that no single catalyst is optimal for different types of applications. The search for the most reactive catalyst for a specific transformation is facilitated by IR thermography allowing a rapid and semi-quantitative ranking among a given set of catalysts. PMID:11531110

  11. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    PubMed Central

    Marvey, Bassie B.

    2008-01-01

    Sunflower (Helianthus annuus L.) oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported. PMID:19325810

  12. The Olefin Metathesis Reactions Combined with Organo-Iron Arene Activation Towards Dendrimers, and Polymers

    NASA Astrophysics Data System (ADS)

    Astruc, Didier; Martinez, Victor

    The subjects treated in the two lectures of the North Atlantic Treaty Organization (NATO) summer course are (1) the combination of arene activation and perfunctionalization using organo-iron chemistry with olefin metathesis incuding metathesis of dendritic polyolefin molecules; (2) the synthesis of metallodendritic benzylidene complexes that catalyse ring-opening metathesis polymerization (ROMP) under ambient conditions and the formation of dendritic stars; (3) the use of stoichiometric and catalytic electron-transfer processes with standard reservoirs of electrons (reductants) or electron holes (oxidants) iron complexes to achieve noteworthy metathesis reactions or synthesize compounds that are useful in metathesis. Only the two first topics are treated in this chapter, and interested readers can find references concerning the third aspect called in the introduction and subsequently cited in the reference list.

  13. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    PubMed

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-01

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  14. Z-Selective Olefin Metathesis on Peptides: Investigation of Side-Chain Influence, Preorganization, and Guidelines in Substrate Selection

    PubMed Central

    2015-01-01

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors. PMID:25102124

  15. Profluorescent substrates for the screening of olefin metathesis catalysts

    PubMed Central

    Reuter, Raphael

    2015-01-01

    Summary Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach. PMID:26664607

  16. Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...

  17. Olefin Ring Closing Metathesis and Hydrosilylation Reaction in Aqueous Medium by Grubbs Second Generation Ruthenium Catalyst

    EPA Science Inventory

    The Grubbs second generation ruthenium catalyst was shown to catalyze various olefin ring closing metathesis and hydrosilylation reactions in aqueous medium. Reactions proceeded in pure water without any additives or co-solvents, in a short period of time. We found that inhomogen...

  18. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    ERIC Educational Resources Information Center

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  19. “Click” and Olefin Metathesis Chemistry in Water at Room Temperature Enabled by Biodegradable Micelles

    PubMed Central

    Lipshutz, Bruce H.; Bošković, Zarko; Crowe, Christopher S.; Davis, Victoria K.; Whittemore, Hannah C.; Vosburg, David A.; Wenzel, Anna G.

    2013-01-01

    The two laboratory reactions focus on teaching several concepts associated with green chemistry. Each uses a commercial, nontoxic, and biodegradable surfactant, TPGS-750-M, to promote organic reactions within the lipophilic cores of nanoscale micelles in water. These experiments are based on work by K. Barry Sharpless (an azide–alkyne “click” reaction) and Robert Grubbs (an olefin cross-metathesis reaction); both are suitable for an undergraduate organic laboratory. The copper-catalyzed azide–alkyne [3+2] cycloaddition of benzyl azide and 4-tolylacetylene is very rapid: the triazole product is readily isolated by filtration and is characterized by thin-layer chromatography and melting point analysis. The ruthenium-catalyzed olefin cross-metathesis reaction of benzyl acrylate with 1-hexene is readily monitored by thin-layer chromatography and gas chromatography. The metathesis experiment comparatively evaluates the efficacy of a TPGS-750-M/water medium relative to a traditional reaction performed in dichloromethane (a common solvent used for olefin metathesis). PMID:24324282

  20. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    PubMed

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-01-01

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions. PMID:26506329

  1. A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis.

    PubMed

    Sashuk, Volodymyr; Danylyuk, Oksana

    2016-05-01

    A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X-ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring-closing and ring-opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation. PMID:27004928

  2. Nobel Prize in Chemistry. Development of the Olefin Metathesis Method in Organic Synthesis

    NASA Astrophysics Data System (ADS)

    Casey, Charles P.

    2006-02-01

    The 2005 Nobel Prize in Chemistry was awarded to Yves Chauvin of the Institut Français du Pétrole, Robert H. Grubbs of CalTech, and Richard R. Schrock of MIT "for development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction now used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. This article tells the story of how olefin metathesis became a truly useful synthetic transformation and a triumph for mechanistic chemistry, and illustrates the importance of fundamental research. See JCE Featured Molecules .

  3. Nonproductive Events in Ring-Closing Metathesis using Ruthenium Catalysts

    PubMed Central

    Stewart, Ian C.; Keitz, Benjamin K.; Kuhn, Kevin M.; Thomas, Renee M.

    2010-01-01

    The relative TONs of productive and nonproductive metathesis reactions of diethyl diallylmalonate are compared for eight different ruthenium-based catalysts. Nonproductive cross metathesis is proposed to involve a chain-carrying ruthenium methylidene. A second more-challenging substrate (dimethyl allylmethylallylmalonate) that forms a trisubstituted olefin product is used to further delineate the effect of catalyst structure on the relative efficiencies of these processes. A steric model is proposed to explain the observed trends. PMID:20518557

  4. Formal synthesis of optically active ingenol via ring-closing olefin metathesis.

    PubMed

    Watanabe, Kazushi; Suzuki, Yuto; Aoki, Kenta; Sakakura, Akira; Suenaga, Kiyotake; Kigoshi, Hideo

    2004-11-12

    The construction of strained carbon skeletons by ring-closing olefin metathesis (RCM) was investigated. With well-designed diene 4, RCM was found to be applicable to the formation of a highly strained inside-outside bicyclo[4.4.1]undecane skeleton of ingenol, a bioactive diterpenoid, and formal total synthesis of optically active ingenol (1) was achieved. The key features of this synthesis are construction of an A-ring by spirocyclization of the ketone with an allylic chloride unit, 26, and ring closure of a B-ring by olefin metathesis. Starting from Funk's keto ester 6, the key intermediate aldehyde 9 in Winkler's total synthesis was synthesized in eight steps in 12.5% overall yield. This strategy of direct cyclization of a strained inside-outside skeleton provided the first easy access to optically active ingenol. PMID:15527254

  5. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products

    PubMed Central

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-01-01

    Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether. PMID:26556779

  6. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    PubMed Central

    Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Summary Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda–Grubbs type catalyst and zeolitic support occurred in the case of Cl− counter anion; in contrast, PF6 − counter anion underwent partial decomposition. PMID:26664629

  7. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    PubMed Central

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z

    2015-01-01

    Summary The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands. PMID:26425210

  8. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect

    SciTech Connect

    Forbees, M.D.E.; Myers, T.L.; Maynard, H.D.; Schulz, G.R. ); Patton, J.T.; Smith, D.W. Jr.; Wagener, K.B. )

    1992-12-30

    The olefin metathesis reaction is of great synthetic utility in polymer chemistry. The recent development of ring-opening (ROMP) and acyclic diene (ADMET) metathesis polymerization reactions has opened new avenues for the synthesis of novel polymeric materials. Recently the authors used ADMET to synthesize several photochemically active poly(keto olefins) using the catalyst Mo(CHCMe[sub 2]Ph)(NAr)(OCMe(CF[sub 3])[sub 2])[sub 2] (Ar = 2,6-diisopropylphenyl) (1) developed by Schrock and co-workers in 1990. In the course of that work, they discovered that neat samples of highly substituted dienes will cyclize quantitatively via metathesis to give difunctional five- and seven-membered rings instead of the expected linear polymer. Examples of substituted diene cyclizations by metathesis even in the presence of a solvent are rare. Their systematic exploitation in organic synthesis has therefore been limited to two recent studies by Fu and Grubbs, who cyclized several substituted diene ethers, amines, and amides to unsaturated oxygen and nitrogen heterocycles. Cyclization of unsubstituted dienes in various solvents has been reported, but complete conversion occurred in only a few cases. Formation of cyclic alkene oligomers from back-biting during the ROMP reaction is also known. The reactions reported here are unusual in that they are intermolecular between catalyst and substrate, yet can give 100% yield of product solely from the monomer in the absence of solvent. 13 refs.

  9. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates.

    PubMed

    Meng, Xiangtao; Matson, John B; Edgar, Kevin J

    2014-01-13

    Cross-metathesis has been shown for the first time to be a useful method for the synthesis of polysaccharide derivatives, focusing herein on preparation of cellulose ω-carboxyalkanoates. Commercially available cellulose esters were first acylated with 10-undecenoyl chloride, providing esters with olefin-terminated side chains. Subsequent cross-metathesis of these terminal olefin moieties with acrylic acid was performed in solvents including acrylic acid, THF, and CH2Cl2. Complete conversion to discrete, soluble cross-metathesis products was achieved by using the Hoveyda-Grubbs second generation ruthenium catalyst and an excess of acrylic acid. Oligomerization during storage, caused by a free radical mechanism, was observed and successfully suppressed by the addition of a free radical scavenger (BHT). Furthermore, the cross-metathesis products exhibited glass transition temperatures (Tg) that were at least 50 °C higher than ambient temperature, supporting the potential for application of these polymers as amorphous solid dispersion matrices for enhancing drug aqueous solubility. PMID:24328072

  10. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    SciTech Connect

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  11. Low catalyst loadings in olefin metathesis: synthesis of nitrogen heterocycles by ring-closing metathesis.

    PubMed

    Kuhn, Kevin M; Champagne, Timothy M; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C; Grubbs, Robert H; Pederson, Richard L

    2010-03-01

    A series of ruthenium catalysts have been screened under ring-closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate series could be run neat, the six-membered carbamate series could be run at 1.0 M, and the seven-membered carbamate series worked best at 0.2-0.05 M. PMID:20141172

  12. Olefin cross-metathesis as a tool in natural product degradation. The stereochemistry of (+)-falcarindiol.

    PubMed

    Ratnayake, Anokha S; Hemscheidt, Thomas

    2002-12-26

    [reaction: see text] There are conflicting reports in the literature concerning the absolute sterochemistry at C-3 of the common plant polyacetylene oxylipin (+)-falcarindiol. We have employed olefin cross-metathesis using Grubbs' second generation catalyst and ethylene gas to degrade falcarindiol to the symmetrical 1,9-decadiene-4,6-diyne-3,8-diol. The reaction is completely selective for net removal of the aliphatic side chain. Degradation of (+)-falcarindiol from Tetraplasandra hawaiiensis yields a meso product as shown by chiral HPLC. Hence, (+)-falcarindiol from this source has a (3R,8S)-configuration. PMID:12489956

  13. Diphenylamido Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

    PubMed Central

    Sinha, Amritanshu; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have found that Mo(NAr)(CHR′)(NPh2)2 (R′ = t-Bu or CMe2Ph) and Mo(NAr′)(CHCMe2Ph)(NPh2)2 (Ar = 2,6-i-Pr2C6H3; Ar′ = 2,6-Me2C6H3) can be prepared through addition of two equivalents of LiNPh2 to Mo(NR″)(CHR′)(OTf)2(dme) species (R″ = Ar or Ar′ dme = 1,2-dimethoxyethane), although yields are low. A high yield route consists of addition of LiNPh2 to bishexafluro-t-butoxide species. An X-ray structure of Mo(NAr)(CHCMe2Ph)(NPh2)2 reveals that the two diphenylamido groups are oriented in a manner that allows an 18 electron count to be achieved. The diphenylamido complexes react readily with t-BuOH and (CF3)2MeCOH, but not readily with the sterically demanding biphenol H2[Biphen] (Biphen2- = 3,3′-Di-t-butyl-5,5′,6,6′-tetramethyl-1,1′-Biphenyl-2,2′-diolate). The diphenylamido complexes do react with various 3,3′-disubstituted binaphthols to yield binaphtholate catalysts that can be prepared in situ and employed for a simple asymmetric ring-closing metathesis reaction. In several cases conversions and enantioselectivities were comparable to reactions in which isolated catalysts were employed. PMID:19030118

  14. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    PubMed

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-01

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. PMID:26256383

  15. Poly(fluoroalkyl acrylate)-bound ruthenium carbene complex: a fluorous and recyclable catalyst for ring-closing olefin metathesis.

    PubMed

    Yao, Qingwei; Zhang, Yiliang

    2004-01-14

    The synthesis of a fluorous olefin metathesis catalyst derived from the Grubbs second-generation ruthenium carbene complex is described. The air stable fluorous polymer-bound ruthenium carbene complex 1 shows high reactivity in effecting the ring-closing metathesis of a broad spectrum of diene and enyne substrates leading to the formation of di-, tri-, and tetrasubstituted cyclic olefins in minimally fluorous solvent systems (PhCF3/CH2Cl2, 1:9-1:49 v/v). The catalyst can be readily separated from the reaction mixture by fluorous extraction with FC-72 and repeatedly reused. The practical advantage offered by the fluorous catalyst is demonstrated by its sequential use in up to five different metathesis reactions. PMID:14709066

  16. Development of a Method for the Preparation of Ruthenium Indenylidene-Ether Olefin Metathesis Catalysts

    PubMed Central

    Jimenez, Leonel R.; Tolentino, Daniel R.; Gallon, Benjamin J.; Schrodi, Yann

    2012-01-01

    The reactions between several derivatives of 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and different ruthenium starting materials [i.e., RuCl2(PPh3)3 and RuCl2(pcymene)(L), where L is tricyclohexylphosphine di-t-butylmethylphosphine, dicyclohexylphenylphosphine, triisobutylphosphine, triisopropylphosphine, or tri-npropylphosphine] are described. Several of these reactions allow for the easy, in-situ and atom-economic preparation of olefin metathesis catalysts. Organic precursor 1-(3,5-dimethoxyphenyl)-1-phenyl-prop-2-yn-1-ol led to the formation of active ruthenium indenylidene-ether complexes, while 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and 1-(3,5-dimethoxyphenyl)-1-methyl-prop-2-yn-1-ol did not. It was also found that a bulky and strong σ-donor phosphine ligand was required to impart good catalytic activity to the new ruthenium complexes. PMID:22580400

  17. Donor/Acceptor-Stabilized 1-Silaketene: Reversible [2+2] Cycloaddition with Pyridine and Evolution by an Olefin Metathesis Reaction.

    PubMed

    Reyes, Morelia Lopez; Troadec, Thibault; Rodriguez, Ricardo; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Branchadell, Vicenç; Kato, Tsuyoshi

    2016-07-11

    The reaction of silacyclopropylidene 1 with benzaldehyde generates a 1-silaketene complex 2 by a formal atomic silicon insertion into the C=O bond of the aldehyde. The highly reactive 1-silaketene 2 undergoes a reversible [2+2] cycloaddition with pyridine to give sila-β-lactam 3. Of particular interest, in the presence of 4-dimethylaminopyridine (DMAP), 1-silaketene complex 2 evolves through an intramolecular olefin metathesis reaction, generating a new 1-silaketene complex 8 and cis-stilbene. Theoretical studies suggest that the reaction proceeds through the formation of a transient silacyclobutanone, a four-membered-ring intermediate, similar to that proposed by Chauvin and co-workers for the transition-metal-based olefin metathesis. PMID:27276000

  18. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    PubMed

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. PMID:26928967

  19. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    PubMed

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-01

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. PMID:27059290

  20. Ru alkylidene compounds bearing tridentate, dianionic ligands: Lewis acid activation and olefin metathesis.

    PubMed

    McKinty, Adam M; Stephan, Douglas W

    2016-03-01

    The series of tridentate complexes of Ru-alkylidenes (L)Ru(CHPh)(SCH2CH2)2E (E = O, L = SIMes 1, PCy3 2, E = S, L = SIMes 3, PCy3 4; E = PPh 7, L = PCy3), (L)Ru(CHPh)(SC6H4)2S (L = SIMes 5, PCy3 6), (L)Ru(CHPh) (OCH2CH2)2O (L = SIMes 8, PCy3 9) were prepared and shown to react with one equivalent of BCl3 to give the complexes (L)Ru(CHPh)Cl[E(CH2CH2S)2BCl2] (E = O, L = SIMes 10, PCy3 11, E = S, L = SIMes 12a/b, PCy3 13, E = PPh, L = PCy3 16) and (L)Ru(CHPh)(SC6H4)2O (L = SIMes 14, PCy3 15). In the case of 1 and 2 reaction with two equivalents of BCl3 affording the corresponding cation via chloride abstraction. These cations coordinate MeCN to give the six coordinate Ru cation salts [(L)Ru(CHPh)- (NCMe)(O(CH2CH2S)2BCl2)][BCl4] L = SIMes 17, PCy3 18). The generated five coordinate cations derived from 2-9 via addition of two equivalents of BCl3 were evaluated in standard preliminary tests for olefin metathesis catalysis. PMID:26822161

  1. Evolution of Catalytic Stereoselective Olefin Metathesis: From Ancillary Transformation to Purveyor of Stereochemical Identity

    PubMed Central

    2015-01-01

    There have been numerous significant advances in catalytic olefin metathesis (OM) during the past two decades. Such progress has transformed this important set of reactions to strategically pivotal processes that generate stereochemical identity while delivering molecules that cannot be easily prepared by alternative routes. In this Perspective, an analysis of the origin of the inception of bidentate benzylidene ligands for Ru-based OM catalysts is first presented. This is followed by an overview of the intellectual basis that culminated in the development of Mo-based diolates and stereogenic-at-Ru complexes for enantioselective OM. The principles accrued from the study of the latter Ru carbenes and Mo alkylidenes and utilized in the design of stereogenic-at-Mo, -W, and -Ru species applicable to enantioselective and Z-selective OM are then discussed. The influence of the recently introduced catalytic OM protocols on the design of synthesis routes leading to complex organic molecules is probed. The impact of a better understanding of the mechanistic nuances of OM toward the discovery of stereoselective catalysts is reviewed as well. PMID:24720633

  2. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    ERIC Educational Resources Information Center

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  3. Probing Stereoselectivity in Ring-Opening Metathesis Polymerization Mediated by Cyclometalated Ruthenium-Based Catalysts: A Combined Experimental and Computational Study.

    PubMed

    Rosebrugh, L E; Ahmed, T S; Marx, V M; Hartung, J; Liu, P; López, J G; Houk, K N; Grubbs, R H

    2016-02-01

    The microstructures of polymers produced by ring-opening metathesis polymerization (ROMP) with cyclometalated Ru-carbene metathesis catalysts were investigated. A strong bias for a cis,syndiotactic microstructure with minimal head-to-tail bias was observed. In instances where trans errors were introduced, it was determined that these regions were also syndiotactic. Furthermore, hypothetical reaction intermediates and transition structures were analyzed computationally. Combined experimental and computational data support a reaction mechanism in which cis,syndio-selectivity is a result of stereogenic metal control, while microstructural errors are predominantly due to alkylidene isomerization via rotation about the Ru═C double bond. PMID:26726835

  4. Preference of Ruthenium-Based Metathesis Catalysts toward Z- and E-Alkenes as a Guide for Selective Reactions to Alkene Stereoisomers.

    PubMed

    Lee, Jihong; Kim, Kyung Hwan; Lee, Ok Suk; Choi, Tae-Lim; Lee, Hee-Seung; Ihee, Hyotcherl; Sohn, Jeong-Hun

    2016-09-01

    As a guide for selective reactions toward either Z- or E-alkene in a metathesis reaction, the relative preference of metathesis Ru catalysts for each stereoisomer was determined by a method using time-dependent fluorescence quenching. We found that Ru-1 prefers the Z-isomer over the E-isomer, whereas Ru-2 prefers the E-isomer over the Z-isomer. The Z/E-alkene preference of the catalysts precisely predicted the Z/E isomeric selectivity in the metathesis reactions of diene substrates possessing combinations of Z/E-alkenes. For the diene substrates, the rate order of the reactions using Ru-1 was Z,Z-1,6-diene > Z,E-1,6-diene > E,E-1,6-diene, while the completely opposite order of E,E-1,6-diene > Z,E-1,6-diene > Z,Z-1,6-diene was exhibited in the case of Ru-2. PMID:27463964

  5. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    PubMed

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-01-01

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. PMID:27075966

  6. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides

    PubMed Central

    Cromm, Philipp M.; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N.; Waldmann, Herbert

    2016-01-01

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets. PMID:27075966

  7. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    PubMed Central

    Wappel, Julia; Fischer, Roland C; Cavallo, Luigi; Slugovc, Christian

    2016-01-01

    Summary A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations. PMID:26877818

  8. 2005 Nobel Prize in Chemistry: Development of the Olefin Metathesis Method in Organic Synthesis

    ERIC Educational Resources Information Center

    Casey, Charles P.

    2006-01-01

    The 2005 Nobel Prize in Chemistry was awarded "for the development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other…

  9. New and Concise Syntheses of the Bicyclic Oxamazin Core Using an Intramolecular Nitroso Diels-Alder Reaction and Ring-Closing Olefin Metathesis

    PubMed Central

    Watson, Kyle D.; Carosso, Serena

    2013-01-01

    Herein two new and concise synthetic approaches for making an unsaturated bicyclic oxamazin core are reported. The first involves the use of an intramolecular Diels-Alder reaction to form both of the fused rings in one step. The second approach incorporates ring-closing olefin metathesis in the final step to form the second fused ring of the core. The scope of the second approach was also expanded further to afford larger ringed bicyclic systems. PMID:23276301

  10. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    PubMed Central

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  11. Role of Tricoordinate Al Sites in CH3ReO3/Al2O3 Olefin Metathesis Catalysts.

    PubMed

    Valla, Maxence; Wischert, Raphael; Comas-Vives, Aleix; Conley, Matthew P; Verel, René; Copéret, Christophe; Sautet, Philippe

    2016-06-01

    Re2O7 supported on γ-alumina is an alkene metathesis catalyst active at room temperature, compatible with functional groups, but the exact structures of the active sites are unknown. Using CH3ReO3/Al2O3 as a model for Re2O7/Al2O3, we show through a combination of reactivity studies, in situ solid-state NMR, and an extensive series of DFT calculations, that μ-methylene structures (Al-CH2-ReO3-Al) containing a Re═O bound to a tricoordinated Al (AlIII) and CH2 bound to a four-coordinated Al (AlIVb) are the precursors of the most active sites for olefin metathesis. The resting state of CH3ReO3/Al2O3 is a distribution of μ-methylene species formed by the activation of the C-H bond of CH3ReO3 on different surface Al-O sites. In situ reaction with ethylene results in the formation of Re metallacycle intermediates, which were studied in detail through a combination of solid-state NMR experiments, using labeled ethylene, and DFT calculations. In particular, we were able to distinguish between metallacycles in TBP (trigonal-bipyramidal) and SP (square-pyramidal) geometry, the latter being inactive and detrimental to catalytic activity. The SP sites are more likely to be formed on other Al sites (AlIVa/AlIVa). Experimentally, the activity of CH3ReO3/Al2O3 depends on the activation temperature of alumina; catalysts activated at or above 500 °C contain more active sites than those activated at 300 °C. We show that the dependence of catalytic activity on the Al2O3 activation temperature is related to the quantity of available AlIII-defect sites and adsorbed H2O. PMID:27140286

  12. Shell Higher Olefins Process.

    ERIC Educational Resources Information Center

    Lutz, E. F.

    1986-01-01

    Shows how olefin isomerization and the exotic olefin metathesis reaction can be harnessed in industrial processes. Indicates that the Shell Higher Olefins Process makes use of organometallic catalysts to manufacture alpha-olefins and internal carbon-11 through carbon-14 alkenes in a flexible fashion that can be adjusted to market needs. (JN)

  13. Self-healing polymers---The importance of choosing an adequate healing monomer, and the olefin metathesis polymerization of agricultural oils

    NASA Astrophysics Data System (ADS)

    Mauldin, Timothy C.

    Modern society's immense and ill-fated reliance on petrochemical-based polymeric materials will likely necessitate a shift in polymer production paradigms in the near future. The work presented herein attempts to address this issue via a two-pronged approach. First, efforts to improve the duration of composite materials by incorporation of a self-healing function are discussed, the fruitful application of which can potentially reduce or eliminate the massive carbon footprints associated with the repair/replacement of damaged materials. And second, polymeric materials derived predominately from natural and renewable feedstock---namely vegetable oils---are developed. Early microcapsule-based self-healing materials utilized dicyclopentadiene-filled microcapsules and Grubbs' olefin metathesis catalyst to initiate the healing mechanism. However, the patent-protected catalyst, made from the precious metal ruthenium and sometimes costly ligands, will likely never be inexpensive and therefore limit large-scale applications. Hence, clever approaches to reduce the healing catalyst loading in self-healing polymers are of great interest. To this end, our efforts have revolved around solving the problem of the relatively inefficient use of Grubbs' catalyst during the healing mechanism. Given that the mismatch of the olefin metathesis polymerization and Grubbs' catalyst dissolution (in monomer) kinetics is a known cause of this inefficient use of the catalyst, we attempted to tune the "latency" (i.e. pot life) of the olefin metathesis polymerization to ensure more complete dissolution of catalyst in monomer. In an alternative approach to improving efficient catalyst dissolution, we developed a simple model to predict relative dissolution rates of Grubbs' catalyst in a small library of healing monomers. This model was shown experimentally to be able to aid in the selection of, for example, reactive monomer additives that can yield impressive improvements in catalyst dissolution

  14. New library of aminosulfonyl-tagged Hoveyda–Grubbs type complexes: Synthesis, kinetic studies and activity in olefin metathesis transformations

    PubMed Central

    Borré, Etienne; Caijo, Frederic

    2010-01-01

    Summary Seven novel Hoveyda–Grubbs precatalysts bearing an aminosulfonyl function are reported. Kinetic studies indicate an activity enhancement compared to Hoveyda’s precatalyst. A selection of these catalysts was investigated with various substrates in ring-closing metathesis of dienes or enynes and cross metathesis. The results demonstrate that these catalysts show a good tolerance to various chemical functions. PMID:21165173

  15. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    PubMed Central

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna

    2015-01-01

    Summary Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities. PMID:26664602

  16. Reactions of strained hydrocarbons with alkene and alkyne metathesis catalysts.

    PubMed

    Carnes, Matthew; Buccella, Daniela; Siegrist, Theo; Steigerwald, Michael L; Nuckolls, Colin

    2008-10-29

    Here we describe the metathesis reactions of a strained eight-membered ring that contains both alkene and alkyne functionality. We find that the alkyne metathesis catalyst produces polymer through a ring-opening alkyne metathesis reaction that is driven by the strain release from the monomer. The strained monomer provides unusual reactivity with ruthenium-based alkene metathesis catalysts. We isolate a discrete trimeric species a Dewar benzene derivative that is locked in this form through an unsaturated cyclophane strap. PMID:18826219

  17. Grubbs–Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids

    PubMed Central

    Koy, Maximilian; Altmann, Hagen J; Autenrieth, Benjamin; Frey, Wolfgang

    2015-01-01

    Summary The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2)(=CH–2-(2-PrO)-C6H4))2+ (OTf−)2] (Ru-2, H2ITapMe2 = 1,3-bis(2’,6’-dimethyl-4’-trimethylammoniumphenyl)-4,5-dihydroimidazol-2-ylidene, OTf− = CF3SO3 −) based on a dicationic N-heterocyclic carbene (NHC) ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP) under biphasic conditions using a nonpolar organic solvent (toluene) and the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM+][BF4 −]. The structure of Ru-2 was confirmed by single crystal X-ray analysis. PMID:26664582

  18. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    PubMed

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions. PMID:25212827

  19. Surface-initiated Ring-opening Metathesis Polymerization in the Vapor Phase: An Efficient Method for Grafting Cyclic Olefins of Low Strain Energies

    PubMed Central

    Lerum, Maria Felisa Z.; Chen, Wei

    2011-01-01

    Surface grafting of cyclic olefins with low strain energies, including cyclopentene (CP), 1,4-cyclohexadiene (CHD), cycloheptene (CHP), cis-cyclooctene (CO), cis,cis-1,5-cyclooctadiene (COD), 1,3,5,7-cyclooctatetraene (COT), cyclododecene (CD), and trans,trans,cis-1,5,9-cyclododecatriene (CDT), were explored using ring-opening metathesis polymerization in the vapor phase. These monomers do not polymerize when SiROMP is carried out in solution due to pronounced chain transfer on surfaces where chains are in close proximities. In the vapor phase, however, chain transfer is suppressed at the solid-vapor interfaces, which permits the polymerization of most of these monomers. A minimal required strain energy of 2.2 kcal/mol was determined in this study, which is significantly lower than the estimated 13.3 kcal/mol for SiROMP carried out in solution, indicating that the enhancement in monomer polymerizability is significant using the vapor phase approach. A series of polyalkenamers with controlled fraction of unsaturation from 8% to 50% along the polymer backbone were grafted to solid substrates. It was observed that the logarithm of largest grafted layer thickness obtained before the removal of chain transfer products – which correlates with the extent of polymerization – scales with monomer strain energy. This confirms that the release of ring strain is the thermodynamic driving force for SiROMP. It was also found that although chain transfer is suppressed in the vapor phase, it is important in monomer/polymer systems where the fraction of unsaturated bonds is high. In these cases, grafted polymer thickness is dominated by chain transfer, rather than by monomer strain energy. A quantitative relationship is established for estimating graft thickness of a particular monomer using its strain energy and fraction of unsaturated bonds in the monomer. PMID:21469729

  20. Recent Applications of Alkene Metathesis in Fine Chemical Synthesis

    NASA Astrophysics Data System (ADS)

    Bicchielli, Dario; Borguet, Yannick; Delaude, Lionel; Demonceau, Albert; Dragutan, Ileana; Dragutan, Valerian; Jossifov, Christo; Kalinova, Radostina; Nicks, François; Sauvage, Xavier

    During the last decade or so, the emergence of the metathesis reaction in organic synthesis has revolutionised the strategies used for the construction of complex molecular structures. Olefin metathesis is indeed particularly suited for the construction of small open-chain molecules and macrocycles using crossmetathesis and ring-closing metathesis, respectively. These reactions serve, inter alia, as key steps in the synthesis of various agrochemicals and pharmaceuticals such as macrocyclic peptides, cyclic sulfonamides, novel macrolides, or insect pheromones. The present chapter is aiming at illustrating the great synthetic potential of metathesis reactions. Shortcomings, such as the control of olefin geometry and the unpredictable effect of substituents on the reacting olefins, will also be addressed. Examples to be presented include epothilones, amphidinolides, spirofungin A, and archazolid. Synthetic approaches involving silicon-tethered ring-closing metathesis, relay ring-closing metathesis, sequential reactions, domino as well as tandem metathesis reactions will also be illustrated.

  1. Solid-supported cross-metathesis and a formal alkane metathesis for the generation of biologically relevant molecules.

    PubMed

    Méndez, Luciana; Mata, Ernesto G

    2015-02-01

    Solid-phase synthetic strategies toward the generation of libraries of biologically relevant molecules were developed using olefin cross-metathesis as a key step. It is remarkably the formal alkane metathesis based on a one-pot, microwave-assisted, ruthenium-catalyzed cross-metathesis and reduction to obtain Csp3-Csp3 linkages. PMID:25569690

  2. Olefin cross metathesis based de novo synthesis of a partially protected L-amicetose and a fully protected L-cinerulose derivative

    PubMed Central

    Hauke, Sylvia

    2014-01-01

    Summary Cross metathesis of a lactate derived allylic alcohol and acrolein is the entry point to a de novo synthesis of 4-benzoate protected L-amicetose and a cinerulose derivative protected at C5 and C1. PMID:24991253

  3. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    NASA Astrophysics Data System (ADS)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  4. Organometallic chemistry: A new metathesis

    NASA Astrophysics Data System (ADS)

    Hennessy, Elisabeth T.; Jacobsen, Eric N.

    2016-08-01

    Carbonyls and alkenes, two of the most common functional groups in organic chemistry, generally do not react with one another. Now, a simple Lewis acid has been shown to catalyse metathesis between alkenes and ketones in a new carbonyl olefination reaction.

  5. Increased functionality of methyl oleate using alkene metathesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of alkene cross metathesis reactions were performed using a homogeneous ruthenium based catalyst. Using this technology, a variety of functional groups can be incorporated into the biobased starting material, methyl oleate. Trans-stilbene, styrene, methyl cinnamate and hexen-3-ol were all s...

  6. CH3-ReO3 on gamma-Al2O3: understanding its structure, initiation,and reactivity in olefin metathesis

    SciTech Connect

    Salameh, Alain; Joubert, Jerome; Baudouin, Anne; Lukens, Wayne; Delbecq, Francoise; Sautet, Philippe; Basset, Jean Marie; Coperet,Christophe

    2007-01-20

    Me-ReO3 on gamma-alumina: understanding the structure, theinitiation and thereactivity of a highly active olefin metathesiscatalyst Heterolytic splitting of the C-H bond of the methyl group ofCH3ReO3 on AlsO reactive sites of alumina as a way to generate the activesite of CH3ReO3 supported on gamma-Al203.

  7. Neutral and Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes: Reactivity in Selected Olefin Metathesis Reactions and Immobilization on Silica.

    PubMed

    Sen, Suman; Schowner, Roman; Imbrich, Dominik A; Frey, Wolfgang; Hunger, Michael; Buchmeiser, Michael R

    2015-09-21

    The synthesis and single-crystal X-ray structures of the novel molybdenum imido alkylidene N-heterocyclic carbene complexes [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] (3), [Mo(N-2,6-Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] (4), [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] (5), [Mo(N-2,6-Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)](+)BArF(-) (6), [Mo(N-2,6-Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] (7) and [Mo(N-2,6-Cl2C6H3)(IMes)(CHCMe3)(OTf)2] (8) are reported (IMesH2=1,3-dimesitylimidazolidin-2-ylidene, IMes=1,3-dimesitylimidazolin-2-ylidene, BArF(-)=tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3(-)). Also, silica-immobilized versions I1 and I2 were prepared. Catalysts 3-8, I1 and I2 were used in homo-, cross-, and ring-closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω-diynes. In the RCM of α,ω-dienes, in the homometathesis of 1-alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100,000, 210,000 and 30,000, respectively, were achieved. With I1 and I2, virtually Mo-free products were obtained (<3 ppm Mo). With 1,6-hepta- and 1,7-octadiynes, catalysts 3, 4, and 5 allowed for the regioselective cyclopolymerization of 4,4-bis(ethoxycarbonyl)-1,6-heptadiyne, 4,4-bis(hydroxymethyl)-1,6-heptadiyne, 4,4-bis[(3,5-diethoxybenzoyloxy)methyl]-1,6-heptadiyne, 4,4,5,5-tetrakis(ethoxycarbonyl)-1,7-octadiyne, and 1,6-heptadiyne-4-carboxylic acid, underlining the high functional-group tolerance of these novel Group 6 metal alkylidenes. PMID:26249141

  8. Metathesis of alkanes and related reactions.

    PubMed

    Basset, Jean-Marie; Copéret, Christophe; Soulivong, Daravong; Taoufik, Mostafa; Cazat, Jean Thivolle

    2010-02-16

    The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, ([triple bond]SiO)(2)TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of alumina-supported tungsten hydride, W(H)(3)/Al(2)O(3), which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis

  9. Highly Selective Ruthenium Metathesis Catalysts for Ethenolysis

    PubMed Central

    Thomas, Renee M.; Keitz, Benjamin K.; Champagne, Timothy M.; Grubbs, Robert H.

    2011-01-01

    N-aryl, N-alkyl N-heterocyclic carbene (NHC) ruthenium metathesis catalysts are highly selective toward the ethenolysis of methyl oleate, giving selectivity as high as 95% for the kinetic, ethenolysis products over the thermodynamic, self-metathesis products. The examples described herein represent some of the most selective NHC-based ruthenium catalysts for ethenolysis reactions to date. Furthermore, many of these catalysts show unusual preference and stability toward propagating as a methylidene species, and provide good yields and turnover numbers (TONs) at relatively low catalyst loading (<500 ppm). A catalyst comparison showed that ruthenium complexes bearing sterically hindered NHC substituents afforded greater selectivity and stability, and exhibited longer catalyst lifetime during reactions. Comparative analysis of the catalyst preference for kinetic versus thermodynamic product formation was achieved via evaluation of their steady-state conversion in the cross-metathesis reaction of terminal olefins. These results coincided with the observed ethenolysis selectivities, in which the more selective catalysts reach a steady-state characterized by lower conversion to cross-metathesis products compared to less selective catalysts, which show higher conversion to cross-metathesis products. PMID:21510645

  10. Methods of making organic compounds by metathesis

    DOEpatents

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  11. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    PubMed

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  12. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    PubMed Central

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J

    2015-01-01

    Summary Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes. PMID:26664616

  13. Towards New Generations of Metathesis Metal-Carbene Pre-catalysts

    NASA Astrophysics Data System (ADS)

    Allaert, Bart; Dieltiens, Nicolai; Stevens, Chris; Drozdzak, Renata; Dragutan, Ileana; Dragutan, Valerian; Verpoort, Francis

    : A short general introduction combined with some historical milestones in the field of olefin metathesis is presented followed by an overview of recent representatives of metal carbene initiators. This paper attempts to relief the many superb contributions and overwhelming work invested in intelligent design and innovative synthesis in this area. Despites of recent advances there is still a great interest in the generation of new, better performing, and more environment friendly metathesis.

  14. Catalytic Intramolecular Ketone Alkylation with Olefins by Dual Activation.

    PubMed

    Lim, Hee Nam; Dong, Guangbin

    2015-12-01

    Two complementary methods for catalytic intramolecular ketone alkylation reactions with unactivated olefins, resulting in Conia-ene-type reactions, are reported. The transformations are enabled by dual activation of both the ketone and the olefin and are atom-economical as stoichiometric oxidants or reductants are not required. Assisted by Kool's aniline catalyst, the reaction conditions can be both pH- and redox-neutral. A broad range of functional groups are thus tolerated. Whereas the rhodium catalysts are effective for the formation of five-membered rings, a ruthenium-based system that affords the six-membered ring products was also developed. PMID:26486569

  15. The Discovery of Quinoxaline-Based Metathesis Catalysts from Synthesis of Grazoprevir (MK-5172).

    PubMed

    Williams, Michael J; Kong, Jongrock; Chung, Cheol K; Brunskill, Andrew; Campeau, Louis-Charles; McLaughlin, Mark

    2016-05-01

    Olefin metathesis (OM) is a reliable and practical synthetic methodology for challenging carbon-carbon bond formations. While existing catalysts can effect many of these transformations, the synthesis and development of new catalysts is essential to increase the application breadth of OM and to achieve improved catalyst activity. The unexpected initial discovery of a novel olefin metathesis catalyst derived from synthetic efforts toward the HCV therapeutic agent grazoprevir (MK-5172) is described. This initial finding has evolved into a class of tunable, shelf-stable ruthenium OM catalysts that are easily prepared and exhibit unique catalytic activity. PMID:27123552

  16. Design and synthesis of novel bis-annulated caged polycycles via ring-closing metathesis: pushpakenediol

    PubMed Central

    Dipak, Mirtunjay Kumar

    2014-01-01

    Summary Intricate caged molecular frameworks are assembled by an atom economical process via a Diels–Alder (DA) reaction, a Claisen rearrangement, a ring-closing metathesis (RCM) and an alkenyl Grignard addition. The introduction of olefinic moieties in the pentacycloundecane (PCUD) framework at appropriate positions followed by RCM led to the formation of novel heptacyclic cage systems. PMID:25550729

  17. Catalytic synthesis of n-alkyl arenes through alkyl group cross-metathesis.

    PubMed

    Dobereiner, Graham E; Yuan, Jian; Schrock, Richard R; Goldman, Alan S; Hackenberg, Jason D

    2013-08-28

    n-Alkyl arenes were prepared in a one-pot tandem dehydrogenation/olefin metathesis/hydrogenation sequence directly from alkanes and ethylbenzene. Excellent selectivity was observed when ((tBu)PCP)IrH2 was paired with tungsten monoaryloxide pyrrolide complexes such as W(NAr)(C3H6)(pyr)(OHIPT) (1a) [Ar = 2,6-i-Pr2C6H3; pyr = pyrrolide; OHIPT = 2,6-(2,4,6-i-Pr3C6H2)2C6H3O]. Complex 1a was also especially active in n-octane self-metathesis, providing the highest product concentrations reported to date. The thermal stability of selected olefin metathesis catalysts allowed elevated temperatures and extended reaction times to be employed. PMID:23909821

  18. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C 2-symmetric building block: a strategy for the synthesis of decanolide natural products

    PubMed Central

    Kunz, Oliver

    2013-01-01

    Summary Starting from the conveniently available ex-chiral pool building block (R,R)-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i) a site-selective cross metathesis, (ii) a highly diastereoselective extended tethered RCM to furnish a (Z,E)-configured dienyl carboxylic acid and (iii) a Ru–lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation. PMID:24367418

  19. Modification of the butenyl-spinosyns utilizing cross-metathesis.

    PubMed

    Daeuble, John; Sparks, Thomas C; Johnson, Peter; Graupner, Paul R

    2009-06-15

    The discovery of a strain of Saccharopolyspora sp. that produced a number of spinosyn analogs that had not before been seen gave an ideal opportunity for extending our knowledge of that SAR of these highly efficacious insecticides. In particular, these compounds contained a butenyl group connected to C-21 which in the regular spinosyns was substituted with a simple ethyl group. The double bond therefore gave us a handle to further modify this position allowing us to substitute different groups there. In this paper we show one of our approaches to this modification using olefin cross-metathesis. Even though the spinosyns were not highly efficient substrates for metathesis reactions, we were nevertheless successful in extending their chemistry accordingly. PMID:19303781

  20. Absence of the Thorpe–Ingold Effect by gem-Diphenyl Groups in Ring-Closing Enyne Metathesis

    PubMed Central

    Kim, Yi Jin; Grimm, Jonathan B.; Lee, Daesung

    2007-01-01

    In tandem ring-closing metathesis of alkynyl silaketals containing two different tethered olefins, the gem-dimethyl group showed the expected Thorpe-Ingold effect, thereby giving good level of group selectivity. Unexpectedly, however, the corresponding gem-diphenyl group did not show any Thorpe-Ingold effect for the ring closure reaction. PMID:18046462

  1. Prosodically Driven Metathesis in Mutsun

    ERIC Educational Resources Information Center

    Butler, Lynnika

    2013-01-01

    Among the many ways in which sounds alternate in the world's languages, changes in the order of sounds (metathesis) are relatively rare. Mutsun, a Southern Costanoan language of California which was documented extensively before the death of its last speaker in 1930, displays three patterns of synchronic consonant-vowel (CV) metathesis. Two of…

  2. Cross-metathesis of biosourced fatty acid derivatives: a step further toward improved reactivity.

    PubMed

    Vignon, Paul; Vancompernolle, Tom; Couturier, Jean-Luc; Dubois, Jean-Luc; Mortreux, André; Gauvin, Régis M

    2015-04-13

    The improved catalytic conversion of bioresources, namely unsaturated fatty acid derivatives, is presented. The targeted reaction is ruthenium-catalyzed cross-metathesis with functionalized olefins (α,β-unsaturated esters), that affords shorter diesters. These can be used as biosourced (pre)monomers for the production of polyesters. It is demonstrated that switch from terminal to internal cross-metathesis partners (that is, from methyl acrylate to methyl crotonate) allows use of ppm-level catalyst loadings, while retaining high productivity and selectivity. This was exemplified on a commercial biosourced fatty acid methyl esters mixture, using minimal purification of the substrate, on a 50 g scale. We propose that this improved catalytic behavior is due to the sole presence of more stable alkylidene intermediates, as the notoriously unstable ruthenium methylidene species are not formed using an internal functionalized olefin. PMID:25469823

  3. Metathesis depolymerizable surfactants

    DOEpatents

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  4. Metathesis catalysts and methods thereof

    DOEpatents

    Schrock, Richard Royce; Yuan, Jian

    2016-04-19

    The present application provides, among other things, novel compounds for metathesis reactions, and methods for preparing and using provided compounds. In some embodiments, the present invention provides compounds having the structure of formula I or II. In some embodiments, the present invention provides methods for preparing a compound of formula I or II. In some embodiments, the present invention provides methods for using a provided compound. In some embodiments, a provided compound is useful for stereoselective ring-opening metathesis polymerization. In some embodiments, a provided metathesis method provides cis and/or isotactic polymers.

  5. Catalytic living ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Nagarkar, Amit A.; Kilbinger, Andreas F. M.

    2015-09-01

    In living ring-opening metathesis polymerization (ROMP), a transition-metal-carbene complex polymerizes ring-strained olefins with very good control of the molecular weight of the resulting polymers. Because one molecule of the initiator is required for each polymer chain, however, this type of polymerization is expensive for widespread use. We have now designed a chain-transfer agent (CTA) capable of reducing the required amount of metal complex while still maintaining full control over the living polymerization process. This new method introduces a degenerative transfer process to ROMP. We demonstrate that substituted cyclohexene rings are good CTAs, and thereby preserve the ‘living’ character of the polymerization using catalytic quantities of the metal complex. The resulting polymers show characteristics of a living polymerization, namely narrow molecular-weight distribution, controlled molecular weights and block copolymer formation. This new technique provides access to well-defined polymers for industrial, biomedical and academic use at a fraction of the current costs and significantly reduced levels of residual ruthenium catalyst.

  6. Acrylate metathesis via the second-generation Grubbs catalyst: unexpected pathways enabled by a PCy3-generated enolate.

    PubMed

    Bailey, Gwendolyn A; Fogg, Deryn E

    2015-06-17

    The diverse applications of acrylate metathesis range from synthesis of high-value α,β-unsaturated esters to depolymerization of unsaturated polymers. Examined here are unexpected side reactions promoted by the important Grubbs catalyst GII. Evidence is presented for attack of PCy3 on the acrylate olefin to generate a reactive carbanion, which participates in multiple pathways, including further Michael addition, proton abstraction, and catalyst deactivation. Related chemistry may be anticipated whenever labile metal-phosphine complexes are used to catalyze reactions of substrates bearing an electron-deficient olefin. PMID:26030596

  7. Tandem cross enyne metathesis (CEYM)–intramolecular Diels–Alder reaction (IMDAR). An easy entry to linear bicyclic scaffolds

    PubMed Central

    Miró, Javier; Sánchez-Roselló, María; Sanz, Álvaro; Rabasa, Fernando

    2015-01-01

    Summary A new tandem cross enyne metathesis (CEYM)–intramolecular Diels–Alder reaction (IMDAR) has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM–IMDAR protocols. PMID:26425205

  8. Ruthenium Vinyl Carbene Intermediates in Enyne Metathesis

    PubMed Central

    Diver, Steven T.

    2009-01-01

    This review provides an overview of ruthenium vinyl carbene reactivity as it relates to enyne metathesis. Methods for the synthesis of metathesis-active and metathesis-inactive complexes are also summarized. Some of the early hypotheses about vinyl carbene intermediates in enyne metatheses were tested in the arena of synthetic chemistry and subsequently led to mechanistic studies. In these two areas, studies from the author's labs are described. There are still many unresolved questions in enyne metathesis that trace back to vinyl carbene reactivity. Hopefully this review will stimulate further investigation into vinyl carbene reactivity which should further refine our understanding of catalytic enyne metathesis. PMID:19590747

  9. Facile synthesis of brush poly(phosphoamidate)s via one-pot tandem ring-opening metathesis polymerization and atom transfer radical polymerization.

    PubMed

    Ding, Liang; Qiu, Jun; Wei, Jun; Zhu, Zhenshu

    2014-09-01

    Poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)-based brush poly(phosphoamidate)s are successfully synthesized by a combination of ring-opening metathesis polymerization (ROMP) and atom transfer radical polymerization (ATRP) following either a commutative two-step procedure or a straightforward one-pot process using Grubbs ruthenium-based catalysts for tandem catalysis. Compared with the traditional polymerization method, combining ROMP and ATRP in a one-pot process allows the preparation of brush copolymers characterized by a relatively moderate molecular weight distribution and quantitative conversion of monomer. Moreover, the surface morphologies and aggregation behaviors of these polymers are studied by AFM and TEM measurements. PMID:24729161

  10. Acid Mediated Ring Closing Metathesis: A Powerful Synthetic Tool Enabling the Synthesis of Clinical Stage Kinase Inhibitors.

    PubMed

    William, Anthony D; Lee, Angeline C-H

    2015-01-01

    The powerful olefin metathesis reaction was employed for the construction of late-phase clinical agents SB1317 and SB1518. In both cases RCM seems to proceed only in the presence of an acid and to predominantly furnish trans isomers. In case of SB1518 it proceeded in the presence of acid HCl, while for SB1317, it mainly proceeds in the presence of TFA (trifluroacetic acid). PMID:26507218

  11. Cascade Metathesis Reactions for the Synthesis of Taxane and Isotaxane Derivatives.

    PubMed

    Ma, Cong; Letort, Aurélien; Aouzal, Rémi; Wilkes, Antonia; Maiti, Gourhari; Farrugia, Louis J; Ricard, Louis; Prunet, Joëlle

    2016-05-10

    Tricyclic isotaxane and taxane derivatives have been synthesized by a very efficient cascade ring-closing dienyne metathesis (RCDEYM) reaction, which formed the A and B rings in one operation. When the alkyne is present at C13 (with no neighboring gem-dimethyl group), the RCEDYM reaction leads to 14,15-isotaxanes 16 a,b and 18 b with the gem-dimethyl group on the A ring. If the alkyne is at the C11 position (and thus flanked by a gem-dimethyl group), RCEDYM reaction only proceeds in the presence of a trisubstituted olefin at C13, which disfavors the competing diene ring-closing metathesis reaction, to give the tricyclic core of Taxol 44. PMID:27062670

  12. A ring closing metathesis strategy for carbapyranosides of xylose and arabinose.

    PubMed

    Mattis, Clayton E; Mootoo, David R

    2016-06-24

    The synthesis of β-carba-xylo and arabino pyranosides of cholestanol is described. The synthetic strategy, which is analogous to the Postema approach to C-glycosides, centers on the ring closing metathesis of an enol ether-alkene precursor to give a cyclic enol ether that is elaborated to a carba-pyranoside via hydroboration-oxidation on the olefin. The method, which is attractive for its modularity and stereoselectivity, may find wider applications to carba-hexopyranosides and other complex cycloalkyl ether frameworks. PMID:27236269

  13. A ring closing metathesis strategy for carbapyranosides of xylose and arabinose.

    PubMed

    Mattis, Clayton E; Mootoo, David R

    2016-04-29

    The synthesis of β-carba-xylo and arabino pyranosides of cholestanol is described. The synthetic strategy, which is analogous to the Postema approach to C-glycosides, centers on the ring closing metathesis of an enol ether-alkene precursor to give a cyclic enol ether that is elaborated to a carba-pyranoside via hydroboration-oxidation on the olefin. The method, which is attractive for its modularity and stereoselectivity, may find wider applications to carba-hexopyranosides and other complex cycloalkyl ether frameworks. PMID:27035910

  14. Preparation and characterization of active niobium, tantalum, and tungsten metathesis catalysts

    SciTech Connect

    Schrock, R.; Rocklage, S.; Wengrovius, J.; Rupprecht, G.; Fellmann, J.

    1980-03-01

    Complexes of the types M(CHCR/sub 3/)L/sub 2/X/sub 3/, M(CHCR/sub 3/)(OCR/sub 3/)/sub 2/LX, and WO(CHCR/sub 3/)L/sub 2/Cl/sub 2/, where M is Nb or Ta, R is methyl, L is a tertiary phosphine, and X is Cl or Br, showed good activities in metathesis of terminal olefins, including ethylene, propylene, styrene, 1-butene, and cis-2-pentene, at 25/sup 0/C in the presence of traces of AlCl/sub 3/.

  15. Room Temperature Ionic Liquids as Green Solvent Alternatives in the Metathesis of Oleochemical Feedstocks.

    PubMed

    Thomas, Priya A; Marvey, Bassy B

    2016-01-01

    One of the most important areas of green chemistry is the application of environmentally friendly solvents in catalysis and synthesis. Conventional organic solvents pose a threat to the environment due to the volatility, highly flammability, toxicity and carcinogenic properties they exhibit. The recently emerged room temperature ionic liquids (RTILs) are promising green solvent alternatives to the volatile organic solvents due to their ease of reuse, non-volatility, thermal stability and ability to dissolve a variety of organic and organometallic compounds. This review explores the use of RTILs as green solvent media in olefin metathesis for applications in the oleochemical industry. PMID:26861282

  16. Recovery of olefin monomers

    DOEpatents

    Golden, Timothy Christoph; Weist, Jr., Edward Landis; Johnson, Charles Henry

    2004-03-16

    In a process for the production of a polyolefin, an olefin monomer is polymerised said polyolefin and residual monomer is recovered. A gas stream comprising the monomer and nitrogen is subjected to a PSA process in which said monomer is adsorbed on a periodically regenerated silica gel or alumina adsorbent to recover a purified gas stream containing said olefin and a nitrogen rich stream containing no less than 99% nitrogen and containing no less than 50% of the nitrogen content of the gas feed to the PSA process.

  17. Selective olefin recovery

    SciTech Connect

    1996-07-01

    This report presents the results of the outstanding studies on olefin product purities, pyridine recovery, and absorber offgas utilization. Other reports issued since the May 2 technical review meeting in Grangemouth evaluated the impact of the new VLE data on the solution stripping operation and the olefin loadings in the lean and rich solutions. This report completes the bulk of Stone & Webster`s engineering development of the absorber/stripper process for Phase I. The final feasibility study report (to be issued in August) will present an updated design and economics.

  18. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  19. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  20. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  1. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  2. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  3. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis

    NASA Astrophysics Data System (ADS)

    Koh, Ming Joo; Nguyen, Thach T.; Zhang, Hanmo; Schrock, Richard R.; Hoveyda, Amir H.

    2016-03-01

    Olefin metathesis has had a large impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is limited. Here we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of a catalyst that is generated in situ and used with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents, and proceed to high conversion at ambient temperature within four hours. We obtain many alkenyl chlorides, bromides and fluorides in up to 91 per cent yield and complete Z selectivity. This method can be used to synthesize biologically active compounds readily and to perform site- and stereoselective fluorination of complex organic molecules.

  4. Direct synthesis of Z-alkenyl halides through catalytic cross-metathesis.

    PubMed

    Koh, Ming Joo; Nguyen, Thach T; Zhang, Hanmo; Schrock, Richard R; Hoveyda, Amir H

    2016-03-24

    Olefin metathesis has had a large impact on modern organic chemistry, but important shortcomings remain: for example, the lack of efficient processes that can be used to generate acyclic alkenyl halides. Halo-substituted ruthenium carbene complexes decompose rapidly or deliver low activity and/or minimal stereoselectivity, and our understanding of the corresponding high-oxidation-state systems is limited. Here we show that previously unknown halo-substituted molybdenum alkylidene species are exceptionally reactive and are able to participate in high-yielding olefin metathesis reactions that afford acyclic 1,2-disubstituted Z-alkenyl halides. Transformations are promoted by small amounts of a catalyst that is generated in situ and used with unpurified, commercially available and easy-to-handle liquid 1,2-dihaloethene reagents, and proceed to high conversion at ambient temperature within four hours. We obtain many alkenyl chlorides, bromides and fluorides in up to 91 per cent yield and complete Z selectivity. This method can be used to synthesize biologically active compounds readily and to perform site- and stereoselective fluorination of complex organic molecules. PMID:27008965

  5. Candle and candle wax containing metathesis and metathesis-like products

    SciTech Connect

    Murphy, Timothy A; Tupy, Michael J; Abraham, Timothy W; Shafer, Andy

    2014-04-01

    A wax comprises a metathesis product and/or a product that resembles, at least in part, a product which may be formed from a metathesis reaction. The wax may be used to form articles, for example, candles (container candles, votive candles, and/or a pillar candles), crayons, fire logs, or tarts. The wax commonly includes other components in addition to the metathesis product.

  6. Candle and candle wax containing metathesis and metathesis-like products

    DOEpatents

    Murphy, Timothy A; Tupy, Michael J; Abraham, Timothy W; Shafer, Andy

    2014-12-16

    A wax comprises a metathesis product and/or a product that resembles, at least in part, a product which may be formed from a metathesis reaction. The wax may be used to form articles for example, candles (container candles, votive candles, and/or a pillar candles), crayons, fire logs or tarts. The wax commonly includes other components in addition to the metathesis product.

  7. Switching on the Metathesis Activity of Re Oxo Alkylidene Surface Sites through a Tailor-Made Silica-Alumina Support.

    PubMed

    Valla, Maxence; Stadler, David; Mougel, Victor; Copéret, Christophe

    2016-01-18

    Re oxo alkylidene surface species are putative active sites in classical heterogeneous Re-based alkene-metathesis catalysts. However, the lack of evidence for such species questions their existence and/or relevance as reaction intermediates. Using Re(O)(=CH-CH=CPh2)(OtBuF6)3(THF), the corresponding well-defined Re oxo alkylidene surface species can be generated on both silica and silica-alumina supports. While inactive on the silica support, it displays very good activity, even for functionalized olefins, on the silica-alumina support. PMID:26756446

  8. Olefin recovery via chemical absorption

    SciTech Connect

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  9. Development of ruthenium-based bimetallic electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Liu, Lingyun; Lee, Jong-Won; Popov, Branko N.

    Ruthenium-based bimetallic electrocatalysts with non-noble metals such as Ti, Cr, Fe, Co and Pb were synthesized on a porous carbon support using a chelation process. Rotating ring disk electrode measurements indicated that RuFeN x/C showed the catalytic activity and selectivity toward the four-electron reduction of oxygen to water comparable to those of the conventional Pt/C catalysts. The performance of the membrane-electrode assembly prepared with the RuFeN x/C cathode catalyst was evaluated for 150 h of continuous operation.

  10. Recent applications of ring-rearrangement metathesis in organic synthesis.

    PubMed

    Kotha, Sambasivarao; Meshram, Milind; Khedkar, Priti; Banerjee, Shaibal; Deodhar, Deepak

    2015-01-01

    Ring-rearrangement metathesis (RRM) involves multiple metathesis processes such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) in a one-pot operation to generate complex targets. RRM delivers complex frameworks that are difficult to assemble by conventional methods. The noteworthy point about this type of protocol is multi-bond formation and it is an atom economic process. In this review, we have covered literature that appeared during the last seven years (2008-2014). PMID:26664603

  11. Recent applications of ring-rearrangement metathesis in organic synthesis

    PubMed Central

    Meshram, Milind; Khedkar, Priti; Banerjee, Shaibal; Deodhar, Deepak

    2015-01-01

    Summary Ring-rearrangement metathesis (RRM) involves multiple metathesis processes such as ring-opening metathesis (ROM)/ring-closing metathesis (RCM) in a one-pot operation to generate complex targets. RRM delivers complex frameworks that are difficult to assemble by conventional methods. The noteworthy point about this type of protocol is multi-bond formation and it is an atom economic process. In this review, we have covered literature that appeared during the last seven years (2008–2014). PMID:26664603

  12. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of P-Stereogenic, Z-Configured Bicyclo[7.3.1]- and Bicyclo[8.3.1]phosphates.

    PubMed

    Markley, Jana L; Maitra, Soma; Hanson, Paul R

    2016-02-01

    A phosphate tether-mediated ring-closing metathesis (RCM) study to the synthesis of Z-configured, P-stereogenic bicyclo[7.3.1]- and bicyclo[8.3.1]phosphates is reported. Investigations suggest that C3-substitution, olefin substitution, and proximity of the forming olefin to the bridgehead carbon of the bicyclic affect the efficiency and stereochemical outcome of the RCM event. This study demonstrates the utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol-containing dienes in the generation of macrocyclic phosphates with potential synthetic and biological utility. PMID:26794367

  13. An Efficient Approach to Surface-Initiated Ring-Opening Metathesis Polymerization of Cyclooctadiene

    PubMed Central

    Feng, Jianxin; Stoddart, Stephanie S.; Weerakoon, Kanchana A.; Chen, Wei

    2008-01-01

    Surface-initiated ring-opening metathesis polymerization of cyclooctadiene (COD), a low ring-strain olefin, is reported for the first time. Polymerization was carried out in the vapor phase, which is advantageous compared to conventional solution methods in terms of minimizing chain transfer by reducing polymer chain mobility at the vapor/solid interface. Attachments of a norbornenyl-containing silane and a Grubbs catalyst to silicon substrates were carried out before samples were exposed to COD vapor. The thickness of grafted 1,4-polybutadiene films was controlled by reaction time and reached ~40 nm after 7 h. The polymer films were further chemically modified to afford a new polymer, head-to-head poly(vinyl alcohol). PMID:17241005

  14. Ru-Catalyzed Isomerization Provides Access to Alternating Copolymers via Ring-Opening Metathesis Polymerization

    PubMed Central

    2016-01-01

    We describe an isomerization–alternating ROMP protocol that gives linear copolymers with rigorous sequence alternation. Bicyclo[4.2.0]oct-7-ene-7-carboxamides of primary amines are isomerized in the presence of (3-BrPyr)2Cl2(H2IMes)Ru=CHPh to the corresponding bicyclo[4.2.0]oct-1(8)-ene-8-carboxamides in which the olefinic bond is tetrasubstituted. The isomerized amides undergo alternating ring-opening metathesis polymerization with cyclohexene to provide soluble and linear copolymers with molecular weights up to ∼130 kDa. This process provides efficient entry to strictly alternating copolymers that can display diverse functional groups. PMID:26243969

  15. High-value alcohols and higher-oxidation-state compounds by catalytic Z-selective cross-metathesis

    NASA Astrophysics Data System (ADS)

    Koh, Ming Joo; Khan, R. Kashif M.; Torker, Sebastian; Yu, Miao; Mikus, Malte S.; Hoveyda, Amir H.

    2015-01-01

    Olefin metathesis catalysts provide access to molecules that are indispensable to physicians and researchers in the life sciences. A persisting problem, however, is the dearth of chemical transformations that directly generate acyclic Z allylic alcohols, including products that contain a hindered neighbouring substituent or reactive functional units such as a phenol, an aldehyde, or a carboxylic acid. Here we present an electronically modified ruthenium-disulfide catalyst that is effective in generating such high-value compounds by cross-metathesis. The ruthenium complex is prepared from a commercially available precursor and an easily generated air-stable zinc catechothiolate. Transformations typically proceed with 5.0 mole per cent of the complex and an inexpensive reaction partner in 4-8 hours under ambient conditions; products are obtained in up to 80 per cent yield and 98:2 Z:E diastereoselectivity. The use of this catalyst is demonstrated in the synthesis of the naturally occurring anti-tumour agent neopeltolide and in a single-step stereoselective gram-scale conversion of a renewable feedstock (oleic acid) to an anti-fungal agent. In this conversion, the new catalyst promotes cross-metathesis more efficiently than the commonly used dichloro-ruthenium complexes, indicating that its utility may extend beyond Z-selective processes.

  16. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, John E.; Herzog, Timothy A.

    1998-01-01

    A metallocene catalyst system for the polymerization of .alpha.-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula ##STR1## wherein: R.sup.1, R.sup.2, and R.sup.3 are independently selected from the group consisting of hydrogen, C.sub.1 to C.sub.10 alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C.sub.1 to C.sub.10 alkyls as a substituent, C.sub.6 to C.sub.15 aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R.sup.8).sub.3 where R.sup.8 is selected from the group consisting of C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; R.sup.4 and R.sup.6 are substituents both having van der Waals radii larger than the van der Waals radii of groups R.sup.1 and R.sup.3 ; R.sup.5 is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E.sup.1, E.sup.2 are independently selected from the group consisting of Si(R.sup.9).sub.2, Si(R.sup.9).sub.2 --Si(R.sup.9).sub.2, Ge(R.sup.9).sub.2, Sn(R.sup.9).sub.2, C(R.sup.9).sub.2, C(R.sup.9).sub.2 --C(R.sup.9).sub.2, where R.sup.9 is C.sub.1 to C.sub.10 alkyl, C.sub.6 to C.sub.15 aryl or C.sub.3 to C.sub.10 cycloalkyl; and the ligand may have C.sub.S or C.sub.1 -symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from .alpha.-olefin monomers.

  17. Stereospecific olefin polymerization catalysts

    DOEpatents

    Bercaw, J.E.; Herzog, T.A.

    1998-01-13

    A metallocene catalyst system is described for the polymerization of {alpha}-olefins to yield stereospecific polymers including syndiotactic, and isotactic polymers. The catalyst system includes a metal and a ligand of the formula shown wherein: R{sup 1}, R{sup 2}, and R{sup 3} are independently selected from the group consisting of hydrogen, C{sub 1} to C{sub 10} alkyl, 5 to 7 membered cycloalkyl, which in turn may have from 1 to 3 C{sub 1} to C{sub 10} alkyls as a substituent, C{sub 6} to C{sub 15} aryl or arylalkyl in which two adjacent radicals may together stand for cyclic groups having 4 to 15 carbon atoms which in turn may be substituted, or Si(R{sup 8}){sub 3} where R{sup 8} is selected from the group consisting of C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; R{sup 4} and R{sup 6} are substituents both having van der Waals radii larger than the van der Waals radii of groups R{sup 1} and R{sup 3}; R{sup 5} is a substituent having a van der Waals radius less than about the van der Waals radius of a methyl group; E{sup 1}, E{sup 2} are independently selected from the group consisting of Si(R{sup 9}){sub 2}, Si(R{sup 9}){sub 2}--Si(R{sup 9}){sub 2}, Ge(R{sup 9}){sub 2}, Sn(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}, C(R{sup 9}){sub 2}--C(R{sup 9}){sub 2}, where R{sup 9} is C{sub 1} to C{sub 10} alkyl, C{sub 6} to C{sub 15} aryl or C{sub 3} to C{sub 10} cycloalkyl; and the ligand may have C{sub S} or C{sub 1}-symmetry. Preferred metals are selected from the group consisting of group III, group IV, group V or lanthanide group elements. The catalysts are used to prepare stereoregular polymers including polypropylene from {alpha}-olefin monomers.

  18. Bond Energies in Models of the Schrock Metathesis Catalyst

    SciTech Connect

    Vasiliu, Monica; Li, Shenggang; Arduengo, Anthony J.; Dixon, David A.

    2011-06-23

    Heats of formation, adiabatic and diabatic bond dissociation energies (BDEs) of the model Schrock-type metal complexes M(NH)(CRR)(OH)₂ (M = Cr, Mo, W; CRR = CH₂, CHF, CF₂) and MO₂(OH)₂ compounds, and Brønsted acidities and fluoride affinities for the M(NH)(CH₂)(OH) ₂ transition metal complexes are predicted using high level CCSD(T) calculations. The metallacycle intermediates formed by reaction of C₂H4 with M(NH)-(CH₂)(OH)2 and MO₂(OH)₂ are investigated at the same level of theory. Additional corrections were added to the complete basis set limit to obtain near chemical accuracy ((1 kcal/mol). A comparison between adiabatic and diabatic BDEs is made and provides an explanation of trends in the BDEs. Electronegative groups bonded on the carbenic carbon lead to less stable Schrock-type complexes as the adiabatic BDEs ofMdCF₂ andMdCHF bonds are much lower than theMdCH₂ bonds. The Cr compounds have smaller BDEs than theWorMo complexes and should be less stable. Different M(NH)(OH)₂(C₃H₆) and MO(OH)₂(OC₂H4) metallacycle intermediates are investigated, and the lowest-energy metallacycles have a square pyramidal geometry. The results show that consideration of the singlet_triplet splitting in the carbene in the initial catalyst as well as in the metal product formed by the retro [2+2] cycloaddition is a critical component in the design of an effective olefin metathesis catalyst in terms of the parent catalyst and the groups being transferred.

  19. Benchmark Energetic Data in a Model System for Grubbs II Metathesis Catalysis and Their Use for the Development, Assessment, and Validation of Electronic Structure Methods

    SciTech Connect

    Zhao, Yan; Truhlar, Donald G.

    2009-01-31

    We present benchmark relative energetics in the catalytic cycle of a model system for Grubbs second-generation olefin metathesis catalysts. The benchmark data were determined by a composite approach based on CCSD(T) calculations, and they were used as a training set to develop a new spin-component-scaled MP2 method optimized for catalysis, which is called SCSC-MP2. The SCSC-MP2 method has improved performance for modeling Grubbs II olefin metathesis catalysts as compared to canonical MP2 or SCS-MP2. We also employed the benchmark data to test 17 WFT methods and 39 density functionals. Among the tested density functionals, M06 is the best performing functional. M06/TZQS gives an MUE of only 1.06 kcal/mol, and it is a much more affordable method than the SCSC-MP2 method or any other correlated WFT methods. The best performing meta-GGA is M06-L, and M06-L/DZQ gives an MUE of 1.77 kcal/mol. PBEh is the best performing hybrid GGA, with an MUE of 3.01 kcal/mol; however, it does not perform well for the larger, real Grubbs II catalyst. B3LYP and many other functionals containing the LYP correlation functional perform poorly, and B3LYP underestimates the stability of stationary points for the cis-pathway of the model system by a large margin. From the assessments, we recommend the M06, M06-L, and MPW1B95 functionals for modeling Grubbs II olefin metathesis catalysts. The local M06-L method is especially efficient for calculations on large systems.

  20. Deactivator for olefin polymerization catalyst

    SciTech Connect

    Rekers, L.J.; Speca, A.N.; Mayhew, H.W.

    1987-03-10

    A method is described comprising deactivating an olefin polymerization catalyst selected from the group consisting of Ziegler-Natta transition element catalysts and catalysts based on transition metal oxides by contacting the catalyst with a copolymer. The copolymer consists of an alpha-olefin having from 2 to about 12 carbon atoms and an unsaturated ester of a carboxylic acid. The deactivating copolymer is present in an amount such that the molar ratio of the unsaturated ester thereof to the sum of the transition element component of the polymerization catalyst and a cocatalyst for the transition element catalyst is in the range of between about 0.1 and about 6.

  1. Interplay of olefin metathesis and multiple hydrogen bonding interactions: covalently cross-linked zippers.

    PubMed

    Zeng, Jisen; Wang, Wei; Deng, Pengchi; Feng, Wen; Zhou, Jingjing; Yang, Yuanyou; Yuan, Lihua; Yamato, Kazuhiro; Gong, Bing

    2011-08-01

    Hydrogen-bonded zippers bearing terminal alkene groups were treated with Grubbs' catalyst, leading to covalently cross-linked zippers without violating H-bonding sequence specificity. The yield of a cross-linked zipper depended on the stability of its H-bonded precursor, with a weakly associating pair giving reasonable yields only at high concentrations while strongly associating pairs showed nearly quantitative yields. The integration of thermodynamic (H-bonding) and kinetic (irreversible C═C bond formation) processes suggests the possibility of developing many different covalent association units for constructing molecular structures based on a self-assembling way. PMID:21699249

  2. Kinetically Trapped Tetrahedral Cages via Alkyne Metathesis.

    PubMed

    Lee, Semin; Yang, Anna; Moneypenny, Timothy P; Moore, Jeffrey S

    2016-02-24

    In dynamic covalent synthesis, kinetic traps are perceived as disadvantageous, hindering the system from reaching its thermodynamic equilibrium. Here we present the near-quantitative preparation of tetrahedral cages from simple tritopic precursors using alkyne metathesis. While the cages are the presumed thermodynamic sink, we experimentally demonstrate that the products no longer exchange their vertices once they have formed. The example reported here illustrates that kinetically trapped products may facilitate high yields of complex products from dynamic covalent synthesis. PMID:26854552

  3. Ruthenium-based electrocatalysts supported on reduced graphene oxide for lithium-air batteries.

    PubMed

    Jung, Hun-Gi; Jeong, Yo Sub; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno; Lee, Yun Jung

    2013-04-23

    Ruthenium-based nanomaterials supported on reduced graphene oxide (rGO) have been investigated as air cathodes in non-aqueous electrolyte Li-air cells using a TEGDME-LiCF3SO3 electrolyte. Homogeneously distributed metallic ruthenium and hydrated ruthenium oxide (RuO2·0.64H2O), deposited exclusively on rGO, have been synthesized with average size below 2.5 nm. The synthesized hybrid materials of Ru-based nanoparticles supported on rGO efficiently functioned as electrocatalysts for Li2O2 oxidation reactions, maintaining cycling stability for 30 cycles without sign of TEGDME-LiCF3SO3 electrolyte decomposition. Specifically, RuO2·0.64H2O-rGO hybrids were superior to Ru-rGO hybrids in catalyzing the OER reaction, significantly reducing the average charge potential to ∼3.7 V at the high current density of 500 mA g(-1) and high specific capacity of 5000 mAh g(-1). PMID:23540570

  4. Functionalization of olefins by alkoximidoylnitrenes

    SciTech Connect

    Subbaraj, A.; Rao, O.S.; Lwowski, W. )

    1989-08-04

    (N-Cyano- and N-(methylsulfonyl)alkoxycarbimidoyl)nitrenes, generated in situ from the corresponding azides by 300-nm UV light, convert a variety of olefins cleanly and stereospecifically to the corresponding aziridines. These can readily be hydrolyzed to N-unsubstituted aziridines or ring-opened to allylic isoureas. The nitrenes can also be generated by thermolysis at 80{degree}C. The azides add to norbornene to give triazolines, which lose nitrogen to give the exo-aziridines.

  5. Intramolecular Aminoboration of Unfunctionalized Olefins.

    PubMed

    Yang, Chun-Hua; Zhang, Yu-Shi; Fan, Wen-Wen; Liu, Gong-Qing; Li, Yue-Ming

    2015-10-19

    A direct and catalyst-free method for the intramolecular aminoboration of unfunctionalized olefins is reported. In the presence of BCl3 (1 equiv) as the sole boron source, intramolecular aminoboration of sulfonamide derivatives of 4-penten-1-amines, 5-hexen-1-amines, and 2-allylanilines proceeded readily without the use of any catalyst. The boronic acids obtained after hydrolysis could be converted into the corresponding pinacol borates in a straightforward manner by treatment with pinacol under anhydrous conditions. PMID:26331979

  6. Generation of stoichiometric ethylene and isotopic derivatives and application in transition-metal-catalyzed vinylation and enyne metathesis.

    PubMed

    Min, Geanna K; Bjerglund, Klaus; Kramer, Søren; Gøgsig, Thomas M; Lindhardt, Anders T; Skrydstrup, Troels

    2013-12-16

    Ethylene is one of the most important building blocks in industry for the production of polymers and commodity chemicals. (13)C- and D-isotope-labeled ethylenes are also valuable reagents with applications ranging from polymer-structure determination, reaction-mechanism elucidation to the preparation of more complex isotopically labeled compounds. However, these isotopic derivatives are expensive, and are flammable gases, which are difficult to handle. We have developed a method for the controlled generation of ethylene and its isotopic variants including, for the first time, fully isotopically labeled ethylene, from simple alkene precursors by using Ru catalysis. Applying a two-chamber reactor allows both the synthesis of ethylene and its immediate consumption in a chemical transformation permitting reactions to be performed with only stoichiometric amounts of this two carbon olefin. This was demonstrated in the Ni-catalyzed Heck reaction with aryl triflates and benzyl chlorides, as well as Ru-mediated enyne metathesis. PMID:24243666

  7. Efficient pseudo-enantiomeric carbohydrate olefin ligands.

    PubMed

    Grugel, Holger; Albrecht, Fabian; Minuth, Tobias; Boysen, Mike M K

    2012-07-20

    Highly efficient pseudo-enantiomeric olefin ligands were designed from D-glucose and D-galactose. These ligands yield consistently excellent levels of enantioselectivity in Rh(I)-catalyzed 1,4-additions of aryl- and alkenylboronic acids to achiral enones and high diastereoselectivity with chiral substrates. Contrary to established olefin ligands, they are obtained enantiomerically pure via short syntheses without racemic resolution steps, making them a valuable addition to the arsenal of chiral ligands with olefinic donor sites. PMID:22780685

  8. Synergy between Two Metal Catalysts: A Highly Active Silica-Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane.

    PubMed

    Samantaray, Manoja K; Dey, Raju; Kavitake, Santosh; Abou-Hamad, Edy; Bendjeriou-Sedjerari, Anissa; Hamieh, Ali; Basset, Jean-Marie

    2016-07-13

    A well-defined, silica-supported bimetallic precatalyst [≡Si-O-W(Me)5≡Si-O-Zr(Np)3] (4) has been synthesized for the first time by successively grafting two organometallic complexes [W(Me)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple-quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON = 1436) than the monometallic W hydride (TON = 650) in the metathesis of n-decane at 150 °C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation that occurs on Zr. The produced olefin resulting from a β-H elimination undergoes easy metathesis on W. PMID:27248839

  9. Ring-closing metathesis reactions: interpretation of conversion-time data.

    PubMed

    Thiel, Vasco; Wannowius, Klaus-Jürgen; Wolff, Christiane; Thiele, Christina M; Plenio, Herbert

    2013-11-25

    Conversion-time data were recorded for various ring-closing metathesis (RCM) reactions that lead to five- or six-membered cyclic olefins by using different precatalysts of the Hoveyda type. Slowly activated precatalysts were found to produce more RCM product than rapidly activated complexes, but this comes at the price of slower product formation. A kinetic model for the analysis of the conversion-time data was derived, which is based on the conversion of the precatalyst (Pcat) into the active species (Acat), with the rate constant k(act), followed by two parallel reactions: 1) the catalytic reaction, which utilizes Acat to convert reactants into products, with the rate k(cat), and 2) the conversion of Acat into the inactive species (Dcat), with the rate k(dec). The calculations employ two experimental parameters: the concentration of the substrate (c(S)) at a given time and the rate of substrate conversion (-dc(S)/dt). This provides a direct measure of the concentration of Acat and enables the calculation of the pseudo-first-order rate constants k(act), k(cat), and k(dec) and of k(S) (for the RCM conversion of the respective substrate by Acat). Most of the RCM reactions studied with different precatalysts are characterized by fast k(cat) rates and by the k(dec) value being greater than the k(act) value, which leads to quasistationarity for Acat. The active species formed during the activation step was shown to be the same, regardless of the nature of different Pcats. The decomposition of Acat occurs along two parallel pathways, a unimolecular (or pseudo-first-order) reaction and a bimolecular reaction involving two ruthenium complexes. Electron-deficient precatalysts display higher rates of catalyst deactivation than their electron-rich relatives. Slowly initiating Pcats act as a reservoir, by generating small stationary concentrations of Acat. Based on this, it can be understood why the use of different precatalysts results in different substrate conversions in

  10. Direct catalytic olefination of alcohols with sulfones.

    PubMed

    Srimani, Dipankar; Leitus, Gregory; Ben-David, Yehoshoa; Milstein, David

    2014-10-01

    The synthesis of terminal, as well as internal, olefins was achieved by the one-step olefination of alcohols with sulfones catalyzed by a ruthenium pincer complex. Furthermore, performing the reaction with dimethyl sulfone under mild hydrogen pressure provides a direct route for the replacement of alcohol hydroxy groups by methyl groups in one step. PMID:25163718

  11. Separate olefin processing in sulfuric acid alkylation

    SciTech Connect

    Imhoff, S.A.; Graves, D.C.

    1995-09-01

    This paper will discuss the effects of alkylating propylene, butylenes and amylenes together and suggest alternative processing schemes which will minimize the negative synergies, improve octane and/or minimize acid consumption. The first option will show the impact of segregating the propylene and amylenes. In the second option, the benefit of alkylating the individual olefins at their optimal acid strengths will be presented. Additionally, each olefin`s optimal reaction conditions will be examined. Unfortunately, many refiners may not have the existing flexibility to take advantage of separate olefin processing. First, the majority of the propylene, butylenes and amylenes must be separate upon entry to the alkylation unit. If the olefins cannot be segregated upstream, separate olefin processing will not be as beneficial. If this is the case, then the benefits of separate olefin processing will have to be weighed versus the capital and energy costs required to separate them. In addition, small units may not have sufficient numbers of Contactors and settlers to achieve adequate segregation. Later in this paper, the modifications required in the alkylation unit for separate olefin processing will be discussed.

  12. Olefin fractionation and catalytic conversion system

    SciTech Connect

    Owen, H.; Hsia, C.H.; Wright, B.S.

    1989-05-23

    A continuous catalytic system is described for converting a fraction of olefinic feedstock comprising ethylene and C/sub 3/+ olefins to heavier liquid hydrocarbon product comprising: (a) means for prefractionating the olefinic feedstock to obtain a gaseous stream rich in ethylene and a liquid stream containing C/sub 3/+ olefin; (b) means for vaporizing and contacting the liquid stream from the prefractionating step with hydrocarbon conversion oligomerization catalyst in a catalytic reactor system to provide a heavier hydrocarbon effluent stream comprising distillate, gasoline and lighter hydrocarbons; (c) means for fractionating the effluent stream to recover distillate, gasoline and lighter hydrocarbon separately; (d) means for recycling at least a portion of the recovered gasoline as a liquid sorption stream to prefractionating step (a); and (e) means for further reacting the recycled gasoline together with sorbed C/sub 3/+ olefin in the catalytic reactor system of step (b).

  13. An alkyne metathesis-based route toortho-dehydrobenzannulenes

    SciTech Connect

    Miljanic, Ognjen S.; Vollhardt, Peter C.; Whitener, Glenn D.

    2002-11-07

    An application of alkyne metathesis to 1,2-di(prop-1-ynyl)arenes, producing dehydrobenzannulenes, is described. An efficient method for selective Sonogashira couplings of bromoiodoarenes under conditions of microwave irradiation is also reported.

  14. Methods for synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J.; Pharkya, Priti; Van Dien, Stephen J.; Burgard, Anthony P.; Schilling, Christophe H.

    2016-06-14

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  15. Deep catalytic cracking, maximize olefin production

    SciTech Connect

    Chapin, L.; Letzsch, W. )

    1994-01-01

    Recent environmental regulations coupled with lead phase out have shifted the focus of the FCC from that of an octane barrel machine to that of a light olefins generator. The light olefins are the necessary feedstock for premium reformulated gasoline (RFG) blending components such as MTBE, TAME and alkylate. The demand for these light olefins will impact the operation of the FCC and Steam Cracker (SC). There will be a need for economical olefin generating processing alternatives to supplement SC's for C[sub 3]= and FCC's for C[sub 3]= through C[sub 5]= RFG component feedstocks. To this end, Stone Webster has recently entered into an agreement with the Research Institute of Petroleum Processing (RIPP) and Sinopec International, both located in the People's Republic of China, to exclusively license RIPP's Deep Catalytic Cracking (DCC) technology outside of China. DCC is a newly developed catalytic cracking process for producing light olefins (C[sub 3]--C[sub 5]) from heavy feedstocks. DCC is a fluidized bed process for selectively cracking a variety of hydrocarbon feedstocks to light olefins. Unlike s steam cracker, the predominate products are propylenes and butylenes, the direct result of catalytic cracking rather than free radical thermal reactions. There are two distinct modes of DCC operation: maximum propylene (Type 1) and maximum iso-olefin production (Type 2). Each mode of operation employs a unique catalyst as well as reaction conditions.

  16. Alkylation of isobutane with light olefins: Yields of alkylates for different olefins

    SciTech Connect

    Albright, L.F.; Kranz, K.E.; Masters, K.R.

    1993-12-01

    For alkylation of isobutane with C{sub 3}-C{sub 5} olefins using sulfuric acid as the catalyst, the yields of alkylates with different olefins are compared as the operating conditions are changed. The results of recent pilot plant experiments with propylene, C{sub 4} olefins, and C{sub 5} olefins permit such comparisons. The yields expressed as weight of alkylate produced per 100 wt of olefin consumed varied from about 201:100 to 220:100. Weight ratios of the isobutane consumed per olefin consumed vary from about 101:100 to 120:100. differences of yield values are explained by the changes in the overall chemistry. The procedure employed to calculate yields with good accuracy is based on the analysis of the alkylate and the amount of conjunct polymers produced. Based on literature data, yields are also reported for alkylations using HF as the catalyst.

  17. A Practical and Catalytic Reductive Olefin Coupling

    PubMed Central

    2015-01-01

    A redox-economic method for the direct coupling of olefins that uses an inexpensive iron catalyst and a silane reducing agent is reported. Thus, unactivated olefins can be joined directly to electron-deficient olefins in both intra- and intermolecular settings to generate hindered bicyclic systems, vicinal quaternary centers, and even cyclopropanes in good yield. The reaction is not sensitive to oxygen or moisture and has been performed on gram-scale. Most importantly, it allows access to many compounds that would be difficult or perhaps impossible to access using other methods. PMID:24428607

  18. Two Ene-Yne Metathesis Approaches to the Total Synthesis of Amphidinolide P.

    PubMed

    Jecs, Edgars; Diver, Steven T

    2015-07-17

    The total synthesis of amphidinolide P was achieved through two different ene-yne metathesis approaches. In each approach, the metathesis step was performed at late stages in the synthesis with all other functionality present. By forging two successful pathways to the synthesis of 1, some of the strengths and weaknesses of metathesis-intensive synthetic strategies were identified. PMID:26114894

  19. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.

    PubMed

    Gong, Feiyan; Yang, Zhi; Hong, Chenggui; Huang, Weiwei; Ning, Shen; Zhang, Zhaoxia; Xu, Yong; Li, Quanxin

    2011-10-01

    Light olefins are the basic building blocks for the petrochemical industry. In this work, selective production of light olefins from catalytic cracking of bio-oil was performed by using the La/HZSM-5 catalyst. With a nearly complete conversion of bio-oil, the maximum yield reached 0.28±0.02 kg olefins/(kg bio-oil), which was close to that from methanol. Addition of La into zeolite efficiently changed the total acid amount of HZSM-5, especially the acid distribution among the strong, medium and weak acid sites. A moderate increase of the number of the medium acid sites effectively enhanced the olefins selectivity and improved the catalyst stability. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the conversion of bio-oil to light olefins was also discussed. PMID:21807503

  20. Synthesis, characterization and insights into stable and well organized hexagonal mesoporous zinc-doped alumina as promising metathesis catalysts carrier.

    PubMed

    Abidli, Abdelnasser; Hamoudi, Safia; Belkacemi, Khaled

    2015-06-01

    A series of highly ordered hexagonal mesoporous alumina and zinc-modified mesoporous alumina samples are synthesized via a sol-gel method through an evaporation-induced self-assembly process using Pluronic F127 as nonionic templating agent and several aluminum precursors. The process was mediated using several carboxylic acids along with hydrochloric acid in ethanol. Successful impregnation of ZnCl2 was achieved while maintaining the ordered structure. The surface and textural properties of the materials were investigated. N2-physisorption analysis revealed a BET surface area of 394 m(2) g(-1) and a pore volume around 0.55 cm(3) g(-1). Moreover, small-angle XRD diffraction patterns highlighted the well-organized hexagonal structure even upon the incorporation of zinc chloride. The organized-structure arrangement was further confirmed by transmission electron microscopy (TEM) analysis. The Zn/Al composition of the final materials was confirmed by EDX and XPS analysis, and the zinc amount incorporated was analyzed by ICP. Furthermore, the surface modification with zinc chloride impregnation was analyzed by XPS, (1)H and (27)Al MAS-NMR and FTIR spectroscopic techniques. In addition, the effects of synthesis conditions and the mechanism of the mesostructure formation were explored. The catalytic activity of several methyltrioxorhenium (MTO)-based catalysts supported on these hexagonal mesoporous alumina materials was tested for methyl oleate self-metathesis. The results showed improved kinetics using hexagonal alumina in comparison to those using wormhole-like alumina counterparts. This behavior could be attributed to better mass transfer features of hexagonal mesoporous alumina. The prepared materials with desirable pore size and structure are suitable candidates as catalyst supports for metathesis of bulky functionalized olefins and other catalytic transformations due to their enhanced Lewis acidity and more uniform pore networks favoring enhanced and selective mass

  1. Pulsed-addition ring-opening metathesis polymerization: catalyst-economical syntheses of homopolymers and block copolymers.

    PubMed

    Matson, John B; Virgil, Scott C; Grubbs, Robert H

    2009-03-11

    Poly(tert-butyl ester norbornene imide) homopolymers and poly(tert-butyl ester norbornene imide-b-N-methyloxanorbornene imide) copolymers were prepared by pulsed-addition ring-opening metathesis polymerization (PA-ROMP). PA-ROMP is a unique polymerization method that employs a symmetrical cis-olefin chain transfer agent (CTA) to simultaneously cap a living polymer chain and regenerate the ROMP initiator with high fidelity. Unlike traditional ROMP with chain transfer, the CTA reacts only with the living chain end, resulting in narrowly dispersed products. The regenerated initiator can then initiate polymerization of a subsequent batch of monomer, allowing for multiple polymer chains with controlled molecular weight and low polydispersity to be generated from one metal initiator. Using the fast-initiating ruthenium metathesis catalyst (H(2)IMes)(Cl)(2)(pyr)(2)RuCHPh and cis-4-octene as a CTA, the capabilities of PA-ROMP were investigated with a Symyx robotic system, which allowed for increased control and precision of injection volumes. The results from a detailed study of the time required to carry out the end-capping/initiator-regeneration step were used to design several experiments in which PA-ROMP was performed from one to ten cycles. After determination of the rate of catalyst death, a single, low polydispersity polymer was prepared by adjusting the amount of monomer injected in each cycle, maintaining a constant monomer/catalyst ratio. Additionally, PA-ROMP was used to prepare nearly perfect block copolymers by quickly injecting a second monomer at a specific time interval after the first monomer injection, such that chain transfer had not yet occurred. Polymers were characterized by gel permeation chromatography with multiangle laser light scattering. PMID:19215131

  2. Synthesis of Fluoroolefins via Julia-Kocienski Olefination

    PubMed Central

    Kumar, Rakesh

    2011-01-01

    The Julia-Kocienski olefination provides a versatile platform for the synthesis of fluorovinyl compounds. This review describes our efforts as well as those of others in the synthesis of various fluorinated aryl and heteroaryl sulfones and their utility as olefination reagents for the modular assembly of fluoroalkenes. Where data is available, the influence of the fluorine atom on the reactivity of the olefination reagents and the stereochemical outcome of the olefination are described. PMID:22544979

  3. Olefins from methanol by modified zeolites

    SciTech Connect

    Inui, T.; Takegami, Y.

    1982-11-01

    Compares the effects of modified catalysts (ZSM-34 and ZSM-5 class zeolites) on methanol conversion to olefins (MTO) with regard to olefin selectivity and cost. Presents tables with prices of olefins in the US and Japan; comparison of methanol-cracking with naphtha cracking; methanol conversion data for Type-1, Type-II and reference catalysts; hydrocarbon distribution from MTO processes; and speculative economics for MTO processes of Concept-1 and 2. Diagrams the proposed MTO process scheme. Scanning electron micrographs of the zeolite catalysts are shown. Graphs indicate the change of ethylene prices in the US since 1978 and forecast ethylene prices in several countries. Concludes that the prices of ethylene for both MTO processes examined compare favorably with products of conventional processes.

  4. Synthesis of cyclic sulfones by ring-closing metathesis.

    PubMed

    Yao, Qingwei

    2002-02-01

    A general and highly efficient synthesis of cyclic sulfones based on ring-closing metathesis has been developed. The synthetic utility of the resulting cyclic sulfones was demonstrated by their participation in stereoselective Diels-Alder reactions and transformation to cyclic dienes by the Ramberg-Bäcklund reaction. PMID:11820896

  5. Control contaminants in olefin feedstocks and products

    SciTech Connect

    Reid, J.A.; McPhaul, D.R.

    1996-07-01

    To be competitive, olefin manufacturers must use low cost feedstocks, which frequently contain contaminants. Equally important, olefin customers, who are using newer technologies, are specifying more stringent limits on contaminants when purchasing products. These contaminants affect products and catalyst systems, hinder operating processes, and impair equipment for both the manufacturers and customers. An overview of current process designs and technologies shows several cost-effective options to reduce or remove feedstock contaminants such as CO, COS, CO{sub 2}, HF, NH{sub 3}, methanol and phosphine.

  6. A water-soluble and retrievable ruthenium-based probe for colorimetric recognition of Hg(II) and Cys.

    PubMed

    Cui, Yali; Hao, Yuanqiang; Zhang, Yintang; Liu, Baoxia; Zhu, Xu; Qu, Peng; Li, Deliang; Xu, Maotian

    2016-08-01

    A new ruthenium-based complex 1 [(bis(4,4'-dimethylphosphonic-2,2'-bipyridine) dithiocyanato ruthenium (II))] was developed as a colorimetric probe for the detection of Hg(II) and Cys (Cysteine). The obtained compound 1 can give interconversional color changes upon the alternating addition of Hg(II) and Cys in 100% aqueous solution. The specific coordination between NCS groups with Hg(II) can lead to the formation of 1-Hg(2+) complex, which can induce a remarkable spectral changes of probe 1. Afterwards the formed 1-Hg(2+) complex can act as effective colorimetric sensor for Cys. Owing to the stronger binding affinity of sulfhydryl group to Hg(2+), Cys can extract Hg(2+) from 1-Hg(2+) complex resulting in the release of 1 and the revival of absorption profile of the probe 1. By introducing the hydrophilic phosphonic acid groups, the proposed probe exhibited excellent water solubility. The limits of detection (LODs) of the assay for Hg(2+) and Cys are calculated to be 15nM and 200nM, respectively. PMID:27131874

  7. A water-soluble and retrievable ruthenium-based probe for colorimetric recognition of Hg(II) and Cys

    NASA Astrophysics Data System (ADS)

    Cui, Yali; Hao, Yuanqiang; Zhang, Yintang; Liu, Baoxia; Zhu, Xu; Qu, Peng; Li, Deliang; Xu, Maotian

    2016-08-01

    A new ruthenium-based complex 1 [(bis(4,4‧-dimethylphosphonic-2,2‧-bipyridine) dithiocyanato ruthenium (II))] was developed as a colorimetric probe for the detection of Hg(II) and Cys (Cysteine). The obtained compound 1 can give interconversional color changes upon the alternating addition of Hg(II) and Cys in 100% aqueous solution. The specific coordination between NCS groups with Hg(II) can lead to the formation of 1-Hg2 + complex, which can induce a remarkable spectral changes of probe 1. Afterwards the formed 1-Hg2 + complex can act as effective colorimetric sensor for Cys. Owing to the stronger binding affinity of sulfhydryl group to Hg2 +, Cys can extract Hg2 + from 1-Hg2 + complex resulting in the release of 1 and the revival of absorption profile of the probe 1. By introducing the hydrophilic phosphonic acid groups, the proposed probe exhibited excellent water solubility. The limits of detection (LODs) of the assay for Hg2 + and Cys are calculated to be 15 nM and 200 nM, respectively.

  8. A Bicyclo[4.2.0]octene-Derived Monomer Provides Completely Linear Alternating Copolymers via Alternating Ring-Opening Metathesis Polymerization (AROMP)

    PubMed Central

    2015-01-01

    Strained bicyclic carbomethoxy olefins were utilized as substrates in alternating ring-opening metathesis polymerization and found to provide low-dispersity polymers with novel backbones. The polymerization of methyl bicyclo[4.2.0]oct-7-ene-7-carboxylate with cyclohexene in the presence of the fast-initiating Grubbs catalyst (H2IMes)(3-Br-Pyr)2Cl2Ru=CHPh leads to a completely linear as well as alternating copolymer, as demonstrated by NMR spectroscopy, isotopic labeling, and gel permeation chromatography. In contrast, intramolecular chain-transfer reactions were observed with [5.2.0] and [3.2.0] bicyclic carbomethoxy olefins, although to a lesser extent than with the previously reported monocyclic cyclobutenecarboxylic ester monomers [SongA.; ParkerK. A.; SampsonN. S.J. Am. Chem. Soc.2009, 131, 344419275253]. Inclusion of cyclohexyl rings fused to the copolymer backbone minimizes intramolecular chain-transfer reactions and provides a framework for creating alternating functionality in a one-step polymerization. PMID:25328246

  9. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  10. Synthesis of pterostilbene by Julie Olefination

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple, stereoselective route for the synthesis of the biologically active compounds trans-pterostilbene and tetramethoxy stilbene from the readily available starting materials 3,5-dimethoxy benzyl alcohol and 4-hydroxy benzaldehyde was developed using Julia olefination as a key reaction....

  11. Cyclic alkyl amino carbene (CAAC) ruthenium complexes as remarkably active catalysts for ethenolysis.

    PubMed

    Marx, Vanessa M; Sullivan, Alexandra H; Melaimi, Mohand; Virgil, Scott C; Keitz, Benjamin K; Weinberger, David S; Bertrand, Guy; Grubbs, Robert H

    2015-02-01

    An expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100,000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340,000, at a catalyst loading of only 1 ppm. This is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, with activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products. PMID:25522160

  12. Computational study of productive and non-productive cycles in fluoroalkene metathesis.

    PubMed

    Rybáčková, Markéta; Hošek, Jan; Šimůnek, Ondřej; Kolaříková, Viola; Kvíčala, Jaroslav

    2015-01-01

    A detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda-Grubbs 2(nd) generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues. PMID:26664636

  13. Computational study of productive and non-productive cycles in fluoroalkene metathesis

    PubMed Central

    Rybáčková, Markéta; Hošek, Jan; Šimůnek, Ondřej; Kolaříková, Viola

    2015-01-01

    Summary A detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda–Grubbs 2nd generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues. PMID:26664636

  14. Ruthenium Carbene Mediated Metathesis of Oleate-Type Fatty Compounds

    PubMed Central

    Marvey, Bassie B.; Segakweng, Constance K.; Vosloo, Manie H. C.

    2008-01-01

    The complexes RuCl2(PCy3)2(=CHPh), 1, and RuCl2(PCy3)(H2IMes)(=CHPh), 2, proved to be active catalysts for the self-metathesis of oleate-type fatty compounds containing the ester, hydroxyl, epoxy and carboxylic acid functional groups. At elevated reaction temperatures 2 showed a higher activity, stability and lower selectivity for primary metathesis products compared to 1. A profound influence of organic functional groups on catalyst activity and selectivity was found and from relative activities and selectivities 2 has proved to be more resistant to deactivation by polar functional groups and more inclined to promote double bond isomerisation than 1. The observed catalyst deactivation by oxygen-containing functional groups could be attributed to a phosphine displacement side reaction. PMID:19325774

  15. Rare-earth-metal nitridophosphates through high-pressure metathesis.

    PubMed

    Kloss, Simon David; Schnick, Wolfgang

    2015-09-14

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP4 N8 is reported. High-pressure solid-state metathesis between LiPN2 and NdF3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd(3+) ions were measured by SQUID magnetometry. LiNdP4 N8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. PMID:26352033

  16. A cross-metathesis approach to novel pantothenamide derivatives

    PubMed Central

    Guan, Jinming; Hachey, Matthew; Puri, Lekha; Howieson, Vanessa; Saliba, Kevin J

    2016-01-01

    Summary Pantothenamides are known for their in vitro antimicrobial activity. Our group has previously reported a new stereoselective route to access derivatives modified at the geminal dimethyl moiety. This route however fails in the addition of large substituents. Here we report a new synthetic route that exploits the known allyl derivative, allowing for the installation of larger groups via cross-metathesis. The method was applied in the synthesis of a new pantothenamide with improved stability in human blood. PMID:27340487

  17. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  18. Conversion of olefins to liquid motor fuels

    DOEpatents

    Rabo, Jule A.; Coughlin, Peter K.

    1988-01-01

    Linear and/or branched claim C.sub.2 to C.sub.12 olefins are converted to hydrocarbon mixtures suitable for use as liquid motor fuels by contact with a catalyst capable of ensuring the production of desirable products with only a relatively minor amount of heavy products boiling beyond the diesel oil range. The catalyst having desirable stability during continuous production operations, comprises a steam stabilized zeolite Y catalyst of hydrophobic character, desirably in aluminum-extracted form. The olefins such as propylene, may be diluted with inerts, such as paraffins or with water, the latter serving to moderate the acidity of the catalyst, or to further moderate the activity of the aluminum-extracted catalyst, so as to increase the effective life of the catalyst.

  19. Photochemical preparation of olefin addition catalysts

    NASA Technical Reports Server (NTRS)

    Gray, Harry B. (Inventor); Rembaum, Alan (Inventor); Gupta, Amitava (Inventor)

    1978-01-01

    Novel polymer supported catalysts are prepared by photo-irradiation of low valent transition metal compounds such as Co.sub.2 (CO).sub.8, Rh.sub.4 (CO).sub.12 or Ru.sub.3 (CO).sub.12 in the presence of solid polymers containing amine ligands such as polyvinyl pyridine. Hydroformylation of olefins to aldehydes at ambient conditions has been demonstrated.

  20. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  1. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  2. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  3. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  4. Economically recover olefins from FCC offgases

    SciTech Connect

    Netzer, D.

    1997-04-01

    The concept of ethylene and propylene recovery from fluid catalytic cracking (FCC) offgases is not new; however, its application has been infrequent. For typical catalytic cracking of atmospheric and vacuum gas oils, ethylene yields range from 2.0 to 3.5 lb/bbl of FCC feed. The ethylene typically amounts to 8 to 18 vol% of FCC offgas and is normally routed to the fuel gas system. Variations in ethylene concentrations are affected by the FCC feed composition and cracking severity. This ethylene yield is anywhere from 0.7% to 1.1% of the FCC feed, as opposed to 26% to 36% for naphtha or gas oil cracking in conventional olefin plants. Due to high FCC unit feedrates (typically 25,000 to 85,000 bpsd for most North American refineries) even with a low ethylene yield, the olefins production can be significant. Here, two approaches to olefins recovery are addressed. In the first, ethylene is recovered as a dilute gas at a concentration of about 15 vol% and serves as raw material for ethylbenzene and, subsequently, styrene. In the second approach, ethylene is recovered as a pure polymer-grade liquid. Propylene recovery is identical for both approaches. The concept for producing polymer-grade liquid ethylene is described in detail in terms of process technology, cost estimates and economic parameters.

  5. Electrophilic phosphonium cations catalyze hydroarylation and hydrothiolation of olefins.

    PubMed

    Pérez, Manuel; Mahdi, Tayseer; Hounjet, Lindsay J; Stephan, Douglas W

    2015-06-30

    Electrophilic phosphonium cations (EPCs) are efficient main group catalysts for the hydroarylation of olefins under mild conditions, providing a facile route to substituted aniline, bis-arylamine, phenol, furan, thiophene, pyrrole, and indole derivatives. Similarly, EPCs catalyze the hydrothiolation of aryl olefins with thiophenol affording a series of alkyl aryl thioethers. Experimental data support a mechanism for these reactions that involves initial activation of the olefin. PMID:26083901

  6. Tandem Ru-alkylidene-catalysed cross metathesis/hydrogenation: synthesis of lipophilic amino acids.

    PubMed

    Wang, Zhen J; Spiccia, Nicolas D; Jackson, W Roy; Robinson, Andrea J

    2013-08-01

    Highly efficient synthesis of lipidic amino acids can be achieved via Ru-alkylidene-catalysed cross metathesis of long chain alkenes with commercially available allylglycine. The resultant unsaturated analogues can be then optionally hydrogenated under mild reaction conditions by using the spent metathesis catalyst. PMID:23733491

  7. Reduction in Syllable Onsets in the Acquisition of Polish: Deletion, Coalescence, Metathesis and Gemination

    ERIC Educational Resources Information Center

    Lukaszewicz, Beata

    2007-01-01

    This paper focuses on four strategies of onset reduction employed by a single child (4;0-4;4) acquiring Polish: deletion, coalescence, metathesis, and gemination. Deletion and coalescence occur in word-initial onsets while metathesis and gemination are restricted to word-medial position. The data, which constitute an intriguing "conspiracy" case…

  8. Light olefin conversion to heavier hydrocarbons with sorption recovery of unreacted olefin vapor

    SciTech Connect

    Wright, B. S.; Hsia, Ch. H.; Owen, H.

    1985-04-16

    In the conversion of light olefins to heavier hydrocarbons, an improved recovery technique is provided for selectively removing unreacted light olefins from a catalytic reactor effluent. This system is useful in converting ethene-rich feedstocks to gasoline and/or distillate products, particularly in oligomerization processes employing shape selective siliceous catalysts such as ZSM-5 type zeolites. By recycling gasoline-range hydrocarbons as a sorbent liquid, unreacted C/sub 2/+ components may be absorbed from reactor effluent vapor and returned for further contact with the catalyst.

  9. Preparation, stability, and photoreactivity of thiolato ruthenium polypyridyl complexes: Can cysteine derivatives protect ruthenium-based anticancer complexes?

    PubMed

    van Rixel, Vincent H S; Busemann, Anja; Göttle, Adrien J; Bonnet, Sylvestre

    2015-09-01

    Ruthenium polypyridyl complexes may act as light-activatable anticancer prodrugs provided that they are protected by well-coordinated ligands that i) prevent coordination of other biomolecules to the metal center in the dark and ii) can be removed by visible light irradiation. In this paper, the use of monodentate thiol ligands RSH as light-cleavable protecting groups for the ruthenium complex [Ru(tpy)(bpy)(OH2)](PF6)2 ([1](PF6)2; tpy=2,2';6',2″-terpyridine, bpy=2,2'-bypyridine), is investigated. The reaction of [1](2+) with RSH=H2Cys (L-cysteine), H2Acys (N-acetyl-L-cysteine), and HAcysMe (N-acetyl-L-cysteine methyl ester), is studied by UV-visible spectroscopy, NMR spectroscopy, and mass spectrometry. Coordination of the monodentate thiol ligands to the ruthenium complex takes place upon heating to 353 K, but full conversion to the protected complex [Ru(tpy)(bpy)(SR)]PF6 is only possible when a large excess of ligand is used. Isolation and characterization of the two new thiolato complexes [Ru(tpy)(bpy)(κS-HCys)]PF6 ([2]PF6) and [Ru(tpy)(bpy)(κS-HAcys)]PF6 ([3]PF6) is reported. [3]PF6 shows a metal-to-ligand charge-transfer absorption band that is red shifted (λmax=492 nm in water) compared to its methionine analogue [Ru(tpy)(bpy)(κS-HAmet)](Cl)2 ([5](Cl)2, λmax=452 nm; HAmet=N-acetyl-methionine). In the dark the thiolate ligand coordinated to ruthenium is oxidized even by traces of oxygen, which first leads to the sulfenato, sulfinato, and disulfide ruthenium complexes, and finally to the formation of the aqua complex [1](2+). [3]PF6 showed slow photosubstitution of the thiolate ligand by water under blue light irradiation, together with faster photooxidation of the thiolate ligand compared to dark conditions. The use of thiol vs. thioether monodentate ligands is discussed for the protection of anticancer ruthenium-based prodrugs. PMID:26187140

  10. Practical carbon-carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation.

    PubMed

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon-carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp(2))-C(sp(3)) and C(sp(3))-C(sp(3)) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  11. Practical carbon–carbon bond formation from olefins through nickel-catalyzed reductive olefin hydrocarbonation

    PubMed Central

    Lu, Xi; Xiao, Bin; Zhang, Zhenqi; Gong, Tianjun; Su, Wei; Yi, Jun; Fu, Yao; Liu, Lei

    2016-01-01

    New carbon–carbon bond formation reactions expand our horizon of retrosynthetic analysis for the synthesis of complex organic molecules. Although many methods are now available for the formation of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds via transition metal-catalyzed cross-coupling of alkyl organometallic reagents, direct use of readily available olefins in a formal fashion of hydrocarbonation to make C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds remains to be developed. Here we report the discovery of a general process for the intermolecular reductive coupling of unactivated olefins with alkyl or aryl electrophiles under the promotion of a simple nickel catalyst system. This new reaction presents a conceptually unique and practical strategy for the construction of C(sp2)–C(sp3) and C(sp3)–C(sp3) bonds without using any organometallic reagent. The reductive olefin hydrocarbonation also exhibits excellent compatibility with varieties of synthetically important functional groups and therefore, provides a straightforward approach for modification of complex organic molecules containing olefin groups. PMID:27033405

  12. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, Jerome W.; Klingler, Robert J.

    1993-01-01

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  13. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    DOEpatents

    Rathke, J.W.; Klingler, R.J.

    1993-03-30

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  14. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    DOEpatents

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  15. Cobalt carbonyl catalyzed olefin hydroformylation in supercritical carbon dioxide

    SciTech Connect

    Rathke, J.W.; Klingler, R.J.

    1992-12-31

    A method of olefin hydroformylation is provided wherein an olefin reacts with a carbonyl catalyst and with reaction gases such as hydrogen and carbon monoxide in the presence of a supercritical reaction solvent, such as carbon dioxide. The invention provides higher yields of n-isomer product without the gas-liquid mixing rate limitation seen in conventional Oxo processes using liquid media.

  16. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  17. Highly Active Multidentate Ligand-Based Alkyne Metathesis Catalysts.

    PubMed

    Du, Ya; Yang, Haishen; Zhu, Chengpu; Ortiz, Michael; Okochi, Kenji D; Shoemaker, Richard; Jin, Yinghua; Zhang, Wei

    2016-06-01

    Alkyne metathesis catalysts composed of molybdenum(VI) propylidyne and multidentate tris(2-hydroxylbenzyl)methane ligands have been developed, which exhibit excellent stability (remains active in solution for months at room temperature), high activity, and broad functional-group tolerance. The homodimerization and cyclooligomerization of monopropynyl or dipropynyl substrates, including challenging heterocycle substrates (e.g., pyridine), proceed efficiently at 40-55 °C in a closed system. The ligand structure and catalytic activity relationship has been investigated, which shows that the ortho groups of the multidentate phenol ligands are critical to the stability and activity of such a catalyst system. PMID:27113640

  18. Process for reacting alcohols and olefins

    SciTech Connect

    Miller, J.T.; Nevitt, T.D.

    1985-01-29

    A method for producing branched aliphatic hydrocarbons by reacting H/sub 2/ with a C/sub 1/-C/sub 6/ alcohol and/or a C/sub 2/-C/sub 6/ olefin in the presence of a cadmium component and a support which comprises an amorphous refractory inorganic oxide, a pillared smectite or vermiculite clay, a molecular sieve consisting essentially of unexchanged or cation-exchanged chabazite, clinoptilite, zeolite A, zeolite L, zeolite X, zeolite Y, ultrastable zeolite Y, or crystalline borosilicate molecular sieve, or a combination thereof.

  19. Production of epoxy compounds from olefinic compounds

    SciTech Connect

    Gelbein, A.P.; Kwon, J.T.

    1985-01-29

    Chlorine and tertiary alkanol dissolved in an inert organic solvent are reacted with aqueous alkali to produce tertiary alkyl hypochlorite which is recovered in the organic solvent and reacted with water and olefinically unsaturated compound to produce chlorohydrin and tertiary alkanol. Chlorohydrin and tertiary alkanol recovered in the organic solvent are contacted with aqueous alkali to produce the epoxy compound, and tertiary alkanol recovered in the organic solvent is recycled to hypochlorite production. The process may be integrated with the electrolytic production of chlorine, with an appropriate treatment of the recycle aqueous stream when required.

  20. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  1. "Zipped Synthesis" by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model.

    PubMed

    McCune, Christopher D; Chan, Su Jing; Beio, Matthew L; Shen, Weijun; Chung, Woo Jin; Szczesniak, Laura M; Chai, Chou; Koh, Shu Qing; Wong, Peter T-H; Berkowitz, David B

    2016-04-27

    The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine β-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a "zipped" approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C 2-symmetric CBS product (l,l)-cystathionine. The "zipped" concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine-imine interchange. It is demonstrated that the most potent "zipped" inhibitor 6S reduces H2S production in SH-SY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∼70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia. PMID:27163055

  2. “Zipped Synthesis” by Cross-Metathesis Provides a Cystathionine β-Synthase Inhibitor that Attenuates Cellular H2S Levels and Reduces Neuronal Infarction in a Rat Ischemic Stroke Model

    PubMed Central

    2016-01-01

    The gaseous neuromodulator H2S is associated with neuronal cell death pursuant to cerebral ischemia. As cystathionine β-synthase (CBS) is the primary mediator of H2S biogenesis in the brain, it has emerged as a potential target for the treatment of stroke. Herein, a “zipped” approach by alkene cross-metathesis into CBS inhibitor candidate synthesis is demonstrated. The inhibitors are modeled after the pseudo-C2-symmetric CBS product (l,l)-cystathionine. The “zipped” concept means only half of the inhibitor needs be constructed; the two halves are then fused by olefin cross-metathesis. Inhibitor design is also mechanism-based, exploiting the favorable kinetics associated with hydrazine-imine interchange as opposed to the usual imine–imine interchange. It is demonstrated that the most potent “zipped” inhibitor 6S reduces H2S production in SH-SY5Y cells overexpressing CBS, thereby reducing cell death. Most importantly, CBS inhibitor 6S dramatically reduces infarct volume (1 h post-stroke treatment; ∼70% reduction) in a rat transient middle cerebral artery occlusion model for ischemia. PMID:27163055

  3. Methods for the synthesis of olefins and derivatives

    SciTech Connect

    Burk, Mark J.; Pharkya, Priti; Van Dien, Stephen J.; Burgard, Anthony P.; Schilling, Christophe H.

    2011-09-27

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  4. Methods for the synthesis of olefins and derivatives

    SciTech Connect

    Burk, Mark J; Pharkya, Priti; Van Dien, Stephen J; Burgard, Anthony P; Schilling, Christophe H

    2013-06-04

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  5. Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands

    PubMed Central

    Pribisko, Melanie A.; Ahmed, Tonia S.; Grubbs, Robert H.

    2014-01-01

    Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer. PMID:25484484

  6. Synthetic chemistry with fullerenes. Photooxygenation of olefins

    SciTech Connect

    Tokuyama, Hidetoshi; Nakamura, Eiichi

    1994-03-11

    Under irradiation with visible or UV (>290 nm) light in the presence of molecular oxygen and a minute amount of fullerenes, olefins and dienes undergo ene and Diels-Alder reactions with singlet oxygen to give photooxygenation products. The regio-and stereoselectives of the photooxygenation of {beta}-myrcene, (+)-pulegone, 4-methylpent-3-en-2-ol, and (+)-limonene were very similiar to those observed in known singlet oxygen reactions, indicating that the fullerene-sensitized reaction generates free singlet oxygen. The efficiency of fullerenes and conventional sensitizers was qualitively examined by using the Diels-Alder reaction between {sup 1}O{sub 2} and furan-2-carboxylic acid as a probe. Among those examined, C{sub 70} was found to be the most effective. The reaction was the fastest and completed with as little as 0.0001 equiv of C{sub 70}. C{sub 60} and hematoporphyrin were found to be of similiar efficiency. The methanofullerene 13, which lacks one olefinic conjunction in the C{sub 60} core, was as good as C{sub 60} itself, but the aminofullerene 14, lacking six double bonds, was quite inferior. The fullerene carboxylic acid 15, which was previously shown to show considerable biochemical activity, was found to be capable of generating singlet oxygen in aqueous DMSO. 25 refs., 1 tab.

  7. Synthesis of a tricyclic lactam via Beckmann rearrangement and ring-rearrangement metathesis as key steps

    PubMed Central

    Ravikumar, Ongolu; Majhi, Jadab

    2015-01-01

    Summary A tricyclic lactam is reported in a four step synthesis sequence via Beckmann rearrangement and ring-rearrangement metathesis as key steps. Here, we used a simple starting material such as dicyclopentadiene. PMID:26425207

  8. Application of imidazolinium salts and N-heterocyclic olefins for the synthesis of anionic and neutral tungsten imido alkylidene complexes.

    PubMed

    Imbrich, Dominik A; Frey, Wolfgang; Naumann, Stefan; Buchmeiser, Michael R

    2016-05-01

    The synthesis, single crystal X-ray structure and activity in olefin metathesis of novel anionic tungsten imido alkylidene complexes [1,3-bis-(2,4,6-trimethylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5-Me2Pyr)2Cl](-), [1,3-bis-(2,4,6-trimethylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5Me2Pyr)2(OC6F5)](-), and [1,3-bis-(2,6-diisopropylphenyl)imidazolinium](+) [W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2,5-Me2Pyr)Cl2](-) are reported. Additionally, the first example of a bis(N-heterocyclic olefinium) alkylidene tungstate, W(N-2,6-iPr2C6H3)(CHCMe2Ph)(2-methylene-1,3,4,5-tetramethyl-imidazoline)2(OTf)2, is described, including preparation, crystal structure and catalytic activity. PMID:27068323

  9. An Efficient Synthesis of (±)-Grandisol Featuring 1,5-Enyne Metathesis

    PubMed Central

    Graham, Thomas J. A.; Gray, Erin E.; Burgess, James M.; Goess, Brian C.

    2009-01-01

    An eight step synthesis of (±)-grandisol features a key sequence involving a high-yielding, microwave-assisted enyne metathesis to yield a 1-alkenylcyclobutene that is semihydrogenated to yield a silyl-protected grandisol. Metathesis catalyst screens revealed an intriguing trend whereby substrate conversion correlated strongly with the identity of the ligands on the catalyst. In addition, new reactivity of 1-alkenylcyclobutenes toward hydrogenation is described. PMID:19957923

  10. Splitting a C-O bond in dialkylethers with bis(1,2,4-tri-t-butylcyclopentadienyl) cerium-hydride does not occur by a sigma-bond metathesis pathway: a combined experimental and DFT computational study

    SciTech Connect

    Werkema, Evan; Yahia, Ahmed; Maron, Laurent; Eisenstein, Odile; Andersen, Richard

    2010-04-06

    Addition of diethylether to [1,2,4(Me3C)3C5H2]2CeH, abbreviated Cp'2CeH, gives Cp'2CeOEt and ethane. Similarly, di-n-propyl- or di-n-butylether gives Cp'2Ce(O-n-Pr) and propane or Cp'2Ce(O-n-Bu) and butane, respectively. Using Cp'2CeD, the propane and butane contain deuterium predominantly in their methyl groups. Mechanisms, formulated on the basis of DFT computational studies, show that the reactions begin by an alpha or beta-CH activation with comparable activation barriers but only the beta-CH activation intermediate evolves into the alkoxide product and an olefin. The olefin then inserts into the Ce-H bond forming the alkyl derivative, Cp'2CeR, that eliminates alkane. The alpha-CH activation intermediate is in equilibrium with the starting reagents, Cp'2CeH and the ether, which accounts for the deuterium label in the methyl groups of the alkane. The one-step sigma-bond metathesis mechanism has a much higher activation barrier than either of the two-step mechanisms.

  11. Selective conversion of syngas to light olefins.

    PubMed

    Jiao, Feng; Li, Jinjing; Pan, Xiulian; Xiao, Jianping; Li, Haobo; Ma, Hao; Wei, Mingming; Pan, Yang; Zhou, Zhongyue; Li, Mingrun; Miao, Shu; Li, Jian; Zhu, Yifeng; Xiao, Dong; He, Ting; Yang, Junhao; Qi, Fei; Fu, Qiang; Bao, Xinhe

    2016-03-01

    Although considerable progress has been made in direct synthesis gas (syngas) conversion to light olefins (C2(=)-C4(=)) via Fischer-Tropsch synthesis (FTS), the wide product distribution remains a challenge, with a theoretical limit of only 58% for C2-C4 hydrocarbons. We present a process that reaches C2(=)-C4(=) selectivity as high as 80% and C2-C4 94% at carbon monoxide (CO) conversion of 17%. This is enabled by a bifunctional catalyst affording two types of active sites with complementary properties. The partially reduced oxide surface (ZnCrO(x)) activates CO and H2, and C-C coupling is subsequently manipulated within the confined acidic pores of zeolites. No obvious deactivation is observed within 110 hours. Furthermore, this composite catalyst and the process may allow use of coal- and biomass-derived syngas with a low H2/CO ratio. PMID:26941314

  12. Olefins and chemical regulation in Europe: REACH.

    PubMed

    Penman, Mike; Banton, Marcy; Erler, Steffen; Moore, Nigel; Semmler, Klaus

    2015-11-01

    REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) is the European Union's chemical regulation for the management of risk to human health and the environment (European Chemicals Agency, 2006). This regulation entered into force in June 2007 and required manufacturers and importers to register substances produced in annual quantities of 1000 tonnes or more by December 2010, with further deadlines for lower tonnages in 2013 and 2018. Depending on the type of registration, required information included the substance's identification, the hazards of the substance, the potential exposure arising from the manufacture or import, the identified uses of the substance, and the operational conditions and risk management measures applied or recommended to downstream users. Among the content developed to support this information were Derived No-Effect Levels or Derived Minimal Effect Levels (DNELs/DMELs) for human health hazard assessment, Predicted No Effect Concentrations (PNECs) for environmental hazard assessment, and exposure scenarios for exposure and risk assessment. Once registered, substances may undergo evaluation by the European Chemicals Agency (ECHA) or Member State authorities and be subject to requests for additional information or testing as well as additional risk reduction measures. To manage the REACH registration and related activities for the European olefins and aromatics industry, the Lower Olefins and Aromatics REACH Consortium was formed in 2008 with administrative and technical support provided by Penman Consulting. A total of 135 substances are managed by this group including 26 individual chemical registrations (e.g. benzene, 1,3-butadiene) and 13 categories consisting of 5-26 substances. This presentation will describe the content of selected registrations prepared for 2010 in addition to the significant post-2010 activities. Beyond REACH, content of the registrations may also be relevant to other European activities, for

  13. Self‐Assembly of Disorazole C1 through a One‐Pot Alkyne Metathesis Homodimerization Strategy†

    PubMed Central

    Ralston, Kevin J.; Ramstadius, H. Clinton; Brewster, Richard C.; Niblock, Helen S.

    2015-01-01

    Abstract Alkyne metathesis is increasingly explored as a reliable method to close macrocyclic rings, but there are no prior examples of an alkyne‐metathesis‐based homodimerization approach to natural products. In this approach to the cytotoxic C2‐symmetric marine‐derived bis(lactone) disorazole C1, a highly convergent, modular strategy is employed featuring cyclization through an ambitious one‐pot alkyne cross‐metathesis/ring‐closing metathesis self‐assembly process. PMID:27346897

  14. Metal-free ring-opening metathesis polymerization.

    PubMed

    Ogawa, Kelli A; Goetz, Adam E; Boydston, Andrew J

    2015-02-01

    We have developed a method to achieve ring-opening metathesis polymerization (ROMP) mediated by oxidation of organic initiators in the absence of any transition metals. Radical cations, generated via one-electron oxidation of vinyl ethers, were found to react with norbornene to give polymeric species with microstructures essentially identical to those traditionally obtained via metal-mediated ROMP. We found that vinyl ether oxidation could be accomplished under mild conditions using an organic photoredox mediator. This led to high yields of polymer and generally good correlation between M(n) values and initial monomer to catalyst loadings. Moreover, temporal control over reinitiation of polymer growth was achieved during on/off cycles of light exposure. This method demonstrates the first metal-free method for controlled ROMP. PMID:25573294

  15. Low catalyst loading in ring-closing metathesis reactions.

    PubMed

    Kadyrov, Renat

    2013-01-14

    An efficient procedure is described for ring-closing metathesis reactions. A conversion of 95% for diethyl diallylmalonate in dilute solution could be achieved within a few minutes, reaching TOF = 4173 min(-1), with very low loading of commercially available Ru catalysts that contained unsaturated NHC ligands. In general, only 50 to 250 ppm of the catalyst is required to achieve near-quantitative conversion into a broad variety of 5-16-membered heterocyclic compounds. The practicality of this procedure was illustrated in the synthesis of 5-8-membered N-tert-butoxycarbonyl (N-Boc)- and N-para-toluenesulfonyl (N-Ts)-protected cyclic amines and 9-16-membered lactones. The synthesis of macrocyclic proline-based lactams required slightly higher catalyst loadings. Along with monocyclic products, oligomeric byproducts, mostly cyclodimers, were isolated and characterized. PMID:23180647

  16. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  17. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study

    PubMed Central

    Denisova, Yulia I; Gringolts, Maria L; Peregudov, Alexander S; Krentsel, Liya B; Litmanovich, Ekaterina A; Litmanovich, Arkadiy D; Finkelshtein, Eugene Sh

    2015-01-01

    Summary The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1st generation Grubbs’ catalyst Cl2(PCy3)2Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ 1H and ex situ 13C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities. PMID:26664599

  18. Cross-metathesis of polynorbornene with polyoctenamer: a kinetic study.

    PubMed

    Denisova, Yulia I; Gringolts, Maria L; Peregudov, Alexander S; Krentsel, Liya B; Litmanovich, Ekaterina A; Litmanovich, Arkadiy D; Finkelshtein, Eugene Sh; Kudryavtsev, Yaroslav V

    2015-01-01

    The cross-metathesis of polynorbornene and polyoctenamer in d-chloroform mediated by the 1(st) generation Grubbs' catalyst Cl2(PCy3)2Ru=CHPh is studied by monitoring the kinetics of carbene transformation and evolution of the dyad composition of polymer chains with in situ (1)H and ex situ (13)C NMR spectroscopy. The results are interpreted in terms of a simple kinetic two-stage model. At the first stage of the reaction all Ru-benzylidene carbenes are transformed into Ru-polyoctenamers within an hour, while the polymer molar mass is considerably decreased. The second stage actually including interpolymeric reactions proceeds much slower and takes one day or more to achieve a random copolymer of norbornene and cyclooctene. Its rate is limited by the interaction of polyoctenamer-bound carbenes with polynorbornene units, which is hampered, presumably due to steric reasons. Polynorbornene-bound carbenes are detected in very low concentrations throughout the whole process thus indicating their higher reactivity, as compared with the polyoctenamer-bound ones. Macroscopic homogeneity of the reacting media is proved by dynamic light scattering from solutions containing the polymer mixture and its components. In general, the studied process can be considered as a new way to unsaturated multiblock statistical copolymers. Their structure can be controlled by the amount of catalyst, mixture composition, and reaction time. It is remarkable that this goal can be achieved with a catalyst that is not suitable for ring-opening metathesis copolymerization of norbornene and cis-cyclooctene because of their substantially different monomer reactivities. PMID:26664599

  19. Rh catalyzed olefination and vinylation of unactivated acetanilides.

    PubMed

    Patureau, Frederic W; Glorius, Frank

    2010-07-28

    In the catalyzed oxidative olefination of acetanilides (oxidative-Heck coupling), Rh offers great advantages over more common Pd catalysts. Lower catalyst loadings, large functional group tolerance (in particular to halides), and higher reactivity of electron-neutral olefins (styrenes) are some of the attractive features. Most interestingly, even ethylene reacts to yield the corresponding acetanilido-styrene. Moreover, the Cu(II) oxidant can also be utilized in catalytic amounts with air serving as the terminal oxidant. PMID:20593901

  20. Zwitterionic Group VIII transition metal initiators supported by olefin ligands

    SciTech Connect

    Bazan, Guillermo C.; Chen, Yaofeng

    2011-10-25

    A zwitterionic Group VIII transition metal complex containing the simple and relatively small 3-(arylimino)-but-1-en-2-olato ligand that catalyzes the formation of polypropylene and high molecular weight polyethylene. A novel feature of this catalyst is that the active species is stabilized by a chelated olefin adduct. The present invention also provides methods of polymerizing olefin monomers using zwitterionic catalysts, particularly polypropylene and high molecular weight polyethylene.

  1. Kinetics and mechanism of olefin catalytic hydroalumination by organoaluminum compounds

    NASA Astrophysics Data System (ADS)

    Koledina, K. F.; Gubaidullin, I. M.

    2016-05-01

    The complex reaction mechanism of α-olefin catalytic hydroalumination by alkylalanes is investigated via mathematical modeling that involves plotting the kinetic models for the individual reactions that make up a complex system and a separate study of their principles. Kinetic parameters of olefin catalytic hydroalumination are estimated. Activation energies of the possible steps of the schemes of complex reaction mechanisms are compared and possible reaction pathways are determined.

  2. Olefin fractionation and catalytic conversion system with heat exchange means

    SciTech Connect

    Wright, B.S.; Owen, H.; Hsia, C.H

    1989-05-23

    This patent describes a continuous catalytic system for converting an olefinic feedstock comprising ethylene and C/sub 3/+ olefins to heavier liquid hydrocarbon product comprising: means for prefractionating the olefinic feedstock to obtain a gaseous stream rich in ethylene and a liquid stream containing C/sub 3/+ olefin; means for vaporizing and contacting the liquid stream from the prefractionating means with hydrocarbon conversion oligomerization catalyst in at least one exothermic catalytic reaction zone to provide a heavier hydrocarbon effluent stream comprising distillate, gasoline and lighter hydrocarbons; means for cooling and fractionating the effluent stream to recover distillate, gasoline and lighter hydrocarbons separately; means for recycling at least a portion of the recovered gasoline as a liquid sorbent stream to the prefractionating means thereby reacting the recycled gasoline together with sorbed C/sub 3/+ olefin in the catalytic reactor system; and means for exchanging heat between hot effluent from the exothermic reaction zone and fractionator liquid rich in C/sub 3/+ olefin in the prefractionator reboiler loop.

  3. Copper-catalyzed trifluoromethylation of internal olefinic C-H bonds: efficient routes to trifluoromethylated tetrasubstituted olefins and N-heterocycles.

    PubMed

    Mao, Zhifeng; Huang, Fei; Yu, Haifeng; Chen, Jiping; Yu, Zhengkun; Xu, Zhaoqing

    2014-03-17

    The functionalization of internal olefins has been a challenging task in organic synthesis. Efficient CuII-catalyzed trifluoromethylation of internal olefins, that is, α-oxoketene dithioacetals, has been achieved by using Cu(OH)2 as a catalyst and TMSCF3 as a trifluoromethylating reagent. The push-pull effect from the polarized olefin substrates facilitates the internal olefinic C-H trifluoromethylation. Cyclic and acyclic dithioalkyl α-oxoketene acetals were used as the substrates and various substituents were tolerated. The internal olefinic C-H bond cleavage was not involved in the rate-determining step, and a mechanism that involves radicals is proposed based on a TEMPO-quenching experiment of the trifluoromethylation reaction. Further derivatization of the resultant CF3 olefins led to multifunctionalized tetrasubstituted CF3 olefins and trifluoromethylated N-heterocycles. PMID:24677229

  4. Development of optically transparent cyclic olefin photoresist binder resins

    NASA Astrophysics Data System (ADS)

    Rhodes, Larry F.; Chang, Chun; Burns, Cheryl; Barnes, Dennis A.; Bennett, Brian; Seger, Larry; Wu, Xiaoming; Sobek, Andy; Mishak, Mike; Peterson, Craig; Langsdorf, Leah; Hada, Hideo; Shimizu, Hiroaki; Sasaki, Kazuhito

    2005-05-01

    Of all candidate 193 nm photoresist binder resins, transition metal catalyzed vinyl addition cyclic olefin (i.e., norbornene) polymers (PCO) hold the promise of high transparency and excellent etch resistance. In order to access lower molecular weight polymers, which are typically used in photoresists, α-olefin chain transfer agents (CTAs) are used in synthesizing vinyl addition poly(norbornenes). For example, HFANB (α,α-bis(trifluoromethyl)bicyclo [2.2.1]hept-5-ene-2-ethanol) homopolymers (p(HFANB)) with molecular weights (Mn) less than 5000 have been synthesized using such chain transfer agents. However, the optical density (OD) at 193 nm of these materials was found to rise as their molecular weights decreased consistent with a polymer end group effect. Extensive NMR and MS analysis of these polymers revealed that olefinic end groups derived from the chain transfer agent were responsible for the deleterious rise in OD. Chemical modification of these end groups by epoxidation, hydrogenation, hydrosilation, etc. lowers the OD of the polymer by removing the olefinic chromophore, however, it does require a second synthetic step. Thus a new class of non-olefinic chain transfer agents has been developed at Promerus that allow for excellent control of vinyl addition cyclic olefin polymer molecular weight and low optical density without the need of a post-polymerization chemical modification. Low molecular weight homopolymers of HFANB have been synthesized using these chain transfer agents that exhibit ODs <= 0.07 absorbance units per micron. This molecular weight control technology has been applied to both positive tone and negative tone vinyl addition cyclic olefin binder resins. Lithographic and etch performance of positive tone photoresists based on these binder resins will be presented.

  5. Hot embossing of cyclic olefin copolymers

    NASA Astrophysics Data System (ADS)

    Leech, P. W.

    2009-05-01

    The hot embossing properties of cyclic olefin copolymer (COC) have been examined as a function of comonomer content. Six standard grades of COC with varying norbornene content (61-82 wt%) were used in these experiments in order to provide a range of glass transition temperatures, Tg. All grades of COC exhibited sharp increases in embossed depth over a critical range of temperature. The transition temperature in embossed depth increased linearly with norbornene content for both 35 and 70 µm deep structures. At temperatures above this transition, the dimensions of the embossed patterns were essentially independent of the COC grade, the applied pressure and duration of loading. Channels formed above the transition in a regime of viscous liquid flow were extremely smooth in morphology for all grades. The average surface roughness, Ra, measured at the base of the channels decreased sharply at the transition temperature, with a levelling off at higher temperatures. Grades of COC with a higher norbornene content exhibited extensive micro-cracking during embossing at temperatures close to the transition temperature.

  6. Process and catalyst for carbonylating olefins

    DOEpatents

    Zoeller, Joseph Robert

    1998-06-02

    Disclosed is an improved catalyst system and process for preparing aliphatic carbonyl compounds such as aliphatic carboxylic acids, alkyl esters of aliphatic carboxylic acids and anhydrides of aliphatic carboxylic acids by carbonylating olefins in the presence of a catalyst system comprising (1) a first component selected from at least one Group 6 metal, i.e., chromium, molybdenum, and/or tungsten and (2) a second component selected from at least one of certain halides and tertiary and quaternary compounds of a Group 15 element, i.e., nitrogen, phosphorus and/or arsenic, and (3) as a third component, a polar, aprotic solvent. The process employing the improved catalyst system is carried out under carbonylating conditions of pressure and temperature discussed herein. The process constitutes and improvement over known processes since it can be carried out at moderate carbonylation conditions without the necessity of using an expensive noble metal catalyst, volatile, toxic materials such as nickel tetracarbonyl, formic acid or a formate ester. Further, the addition of a polar, aprotic solvent to the catalyst system significantly increases, or accelerates, the rate at which the carbonylation takes place.

  7. Expert systems in the olefins industry

    SciTech Connect

    Borsje, H.J.; Bowen, C.P.

    1994-12-31

    On-line Expert Systems have been used successfully in the process and manufacturing industry since the late eighties. This paper describes one of these successful applications, the Recovery Boiler Advisor{trademark}, developed for a black liquor recovery boiler in a Kraft pulp mill. The ultimate goal of this advisory system is to correctly analyze an unusual situation and help the operators make a better informed decision, and help do this quicker. The effect of the ever increasing complexity and stringency of environmental and occupational regulations in the process industry puts an additional burden on the operator that can be alleviated by smart computer systems. Advanced control algorithms process simulation, neural networks, data reconciliation and rule-based system, combined with a well designed and intuitive user interface, all contribute to the alleviation of this problem. Expert systems have found few applications in the olefins industry, despite the fact that the requirement for computer assisted plant operation has increased significantly. A number of operational issues in the ethylene plant which can benefit from on-line advisory systems are identified. It is important to recognize which necessary steps must be taken to ensure that the project results in a successful product which is accepted, understood, and properly used by the operator and by the supervisory staff. Successful projects will address an existing problem with new technology.

  8. Light olefin production, skeletal olefin isomerization and etherification for oxygenated fuel production

    SciTech Connect

    Gaffney, A.M.

    1994-12-31

    ARCO`s newly developed SUPERFLEX{sup SM} process offers opportunities to product high yields of light olefins, from a variety of readily available refinery and petrochemical feedstocks. The process is unique in that it employs a catalytic reactor system which is lower in capital and operating costs than conventional steam cracking reactors. The SUPERFLEX process is also more selective for production of propylene and butylenes (including isobutylene) than conventional steam cracking operations. The C{sub 4} product stream from the SUPERFLEX process contains about 20 to 30 percent isobutylene. The SUPERFLEX C{sub 4} product is, therefore, an excellent feedstock for producing MTBE via reaction of the contained isobutylene with methanol. After MTBE production, the isobutylene depleted C{sub 4} stream may be recycled to the SUPERFLEX process to produce additional isobutylene and propylene. This paper will focus on the chemistry and mechanism of catalytic cracking and skeletal olefin isomerization. In addition, there will be some discussion on catalyst activation, life and characterization.

  9. Organic and composite aerogels through ring opening metathesis polymerization (ROMP)

    NASA Astrophysics Data System (ADS)

    Mohite, Dhairyashil P.

    Aerogels are open-cell nanoporous materials, unique in terms of low density, low thermal conductivity, low dielectric constants and high acoustic attenuation. Those exceptional properties stem from their complex hierarchical solid framework (agglomerates of porous, fractal secondary nanoparticles), but they also come at a cost: low mechanical strength. This issue has been resolved by crosslinking silica aerogels with organic polymers. The crosslinking polymer has been assumed to form a conformal coating on the surface of the skeletal framework by covalent bridging elementary building blocks. However, "assuming" is not enough: for correlating nanostructure with bulk material properties, it is important to know the exact location of the polymer on the aerogel backbone. For that investigation, we synthesized a new norbornene derivative of triethoxysilane (Si-NAD) that can be attached to skeletal silica nanoparticles. Those norbornene-modified silica aerogels were crosslinked with polynorbornene by ring opening metathesis polymerization (ROMP). The detailed correlation between nanostructure and mechanical strength was probed with a wide array of characterization methods ranging from molecular to bulk through nano. Subsequently, it was reasoned that since the polymer dominates the exceptional mechanical properties of polymer crosslinked aerogels, purely organic aerogels with the same nanostructure and interparticle connectivity should behave similarly. That was explored and confirmed by: (a) synthesis of a difunctional nadimide monomer (bis-NAD), and preparation of robust polyimide aerogels by ROMP of its norbornene end-caps; and, (b) synthesis of dimensionally stable ROMP-derived polydicyclopentadiene aerogels by grafting the nanostructure with polymethylmethacrylate (PMMA) via free radical chemistry.

  10. Atomistic Description of Reaction Intermediates for Supported Metathesis Catalysts Enabled by DNP SENS.

    PubMed

    Ong, Ta-Chung; Liao, Wei-Chih; Mougel, Victor; Gajan, David; Lesage, Anne; Emsley, Lyndon; Copéret, Christophe

    2016-04-01

    Obtaining detailed structural information of reaction intermediates remains a key challenge in heterogeneous catalysis because of the amorphous nature of the support and/or the support interface that prohibits the use of diffraction-based techniques. Combining isotopic labeling and dynamic nuclear polarization (DNP) increases the sensitivity of surface enhanced solid-state NMR spectroscopy (SENS) towards surface species in heterogeneous alkene metathesis catalysts; this in turn allows direct determination of the bond connectivity and measurement of the carbon-carbon bond distance in metallacycles, which are the cycloaddition intermediates in the alkene metathesis catalytic cycle. Furthermore, this approach makes possible the understanding of the slow initiation and deactivation steps in these heterogeneous metathesis catalysts. PMID:26953812

  11. New application for metallocene catalysts in olefin polymerization.

    PubMed

    Kaminsky, Walter; Funck, Andreas; Hähnsen, Heinrich

    2009-11-01

    Metallocenes and other transition metal complexes, activated by methylaluminoxane allow the synthesis of polyolefins with a highly defined microstructure, tacticity, and stereoregularity. New copolymers, long chain branched polymers, and polyolefin nanocomposites are produced by these highly active catalysts. A better understanding of the structure of active sites for the olefin polymerization will lead to findings of new and simpler co-catalysts. Ethene or propene can be copolymerized with 1-olefin macromers with chain lengths up to 12,000 g mol(-1) as well as with cyclic olefins. Polypropenes of high molecular weight and filled with multi-walled carbon nanotubes show exciting new physical and mechanical properties and are prepared by in situ polymerization. These, and other polyolefin specialities, will be new future materials in a wide range of applications. PMID:19826710

  12. Low Severity Coal Liquefaction Promoted by Cyclic Olefins

    SciTech Connect

    Christine W. Curtis

    1998-04-09

    The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.

  13. Olefin hydroaryloxylation catalyzed by pincer-iridium complexes.

    PubMed

    Haibach, Michael C; Guan, Changjian; Wang, David Y; Li, Bo; Lease, Nicholas; Steffens, Andrew M; Krogh-Jespersen, Karsten; Goldman, Alan S

    2013-10-01

    Aryl alkyl ethers, which are widely used throughout the chemical industry, are typically produced via the Williamson ether synthesis. Olefin hydroaryloxylation potentially offers a much more atom-economical alternative. Known acidic catalysts for hydroaryloxylation, however, afford very poor selectivity. We report the organometallic-catalyzed intermolecular hydroaryloxylation of unactivated olefins by iridium "pincer" complexes. These catalysts do not operate via the hidden Brønsted acid pathway common to previously developed transition-metal-based catalysts. The reaction is proposed to proceed via olefin insertion into an iridium-alkoxide bond, followed by rate-determining C-H reductive elimination to yield the ether product. The reaction is highly chemo- and regioselective and offers a new approach to the atom-economical synthesis of industrially important ethers and, potentially, a wide range of other oxygenates. PMID:24028199

  14. Metal-free transfer hydrogenation of olefins via dehydrocoupling catalysis

    PubMed Central

    Pérez, Manuel; Caputo, Christopher B.; Dobrovetsky, Roman; Stephan, Douglas W.

    2014-01-01

    A major advance in main-group chemistry in recent years has been the emergence of the reactivity of main-group species that mimics that of transition metal complexes. In this report, the Lewis acidic phosphonium salt [(C6F5)3PF][B(C6F5)4] 1 is shown to catalyze the dehydrocoupling of silanes with amines, thiols, phenols, and carboxylic acids to form the Si-E bond (E = N, S, O) with the liberation of H2 (21 examples). This catalysis, when performed in the presence of a series of olefins, yields the concurrent formation of the products of dehydrocoupling and transfer hydrogenation of the olefin (30 examples). This reactivity provides a strategy for metal-free catalysis of olefin hydrogenations. The mechanisms for both catalytic reactions are proposed and supported by experiment and density functional theory calculations. PMID:25002489

  15. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  16. Ionic liquids for separation of olefin-paraffin mixtures

    DOEpatents

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2014-07-15

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  17. Effect of process conditions on olefin selectivity during conventional and supercritical Fischer-Tropsch synthesis

    SciTech Connect

    Bukur, D.B.; Lang, X.; Akgerman, A.; Feng, Z.

    1997-07-01

    A precipitated iron catalyst (100 Fe/5 Cu/4.2 K/25 SiO{sub 2} on mass basis) was tested in a fixed-bed reactor under a variety of process conditions during conventional Fischer-Tropsch synthesis (FTS) and supercritical Fischer-Tropsch synthesis (SFTS). In both modes of operation it was found that: total olefin content decreases whereas 2-olefin content increases with either increase in conversion or H{sub 2}/CO molar feed ratio. Total olefin and 2-olefin selectivities were essentially independent of reaction temperature. The effect of conversion was more pronounced during conventional FTS. Comparison of olefin selectivities in the two modes of operation reveals that total olefin content is greater while the 2-olefin content is smaller during SFTS. Also, both the decrease in total olefin content and the increase in 2-olefin content with increase in carbon number (i.e., molecular weight of hydrocarbon products) was significantly less pronounced during SFTS in comparison to the conventional FTS. The obtained results suggest that 1-olefins, and to a smaller extent n-paraffins, are the primary products of FTS. Secondary reactions (isomerization, hydrogenation, and readsorption) of high molecular weight {alpha}-olefins occur to a smaller extent during SFTS, due to higher diffusivities and desorption rates of {alpha}-olefins in the supercritical propane than in the liquid-filled catalyst pores (conventional FTS).

  18. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  19. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  20. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  1. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  2. 40 CFR 721.5425 - α-Olefin sulfonate, potassium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, potassium salts... Substances § 721.5425 α-Olefin sulfonate, potassium salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an α-olefin sulfonate, potassium salt...

  3. 40 CFR 721.10242 - Olefinic carbocycle, reaction products with alkoxysilane, polysulfurized (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10242 Olefinic carbocycle, reaction... subject to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Olefinic carbocycle, reaction...

  4. 40 CFR 721.10241 - Olefinic carbocycle, reaction products with alkoxysilane, sulfurized (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10241 Olefinic carbocycle, reaction... to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Olefinic carbocycle, reaction...

  5. 40 CFR 721.10241 - Olefinic carbocycle, reaction products with alkoxysilane, sulfurized (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10241 Olefinic carbocycle, reaction... to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Olefinic carbocycle, reaction...

  6. 40 CFR 721.10242 - Olefinic carbocycle, reaction products with alkoxysilane, polysulfurized (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10242 Olefinic carbocycle, reaction... subject to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Olefinic carbocycle, reaction...

  7. 40 CFR 721.10241 - Olefinic carbocycle, reaction products with alkoxysilane, sulfurized (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10241 Olefinic carbocycle, reaction... to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Olefinic carbocycle, reaction...

  8. 40 CFR 721.10242 - Olefinic carbocycle, reaction products with alkoxysilane, polysulfurized (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10242 Olefinic carbocycle, reaction... subject to reporting. (1) The chemical substance identified generically as olefinic carbocycle, reaction... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Olefinic carbocycle, reaction...

  9. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  10. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  11. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  12. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  13. 40 CFR 721.5450 - α-Olefin sulfonate, sodium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false α-Olefin sulfonate, sodium salt. 721... Substances § 721.5450 α-Olefin sulfonate, sodium salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as α-olefin sulfonate, sodium...

  14. Cross-metathesis reaction of α- and β-vinyl C-glycosides with alkenes.

    PubMed

    Šnajdr, Ivan; Parkan, Kamil; Hessler, Filip; Kotora, Martin

    2015-01-01

    Cross-metathesis of α- and β-vinyl C-deoxyribosides and α-vinyl C-galactoside with various terminal alkenes under different conditions was studied. The cross-metathesis of the former proceeded with good yields of the corresponding products in ClCH2CH2Cl the latter required the presence of CuI in CH2Cl2 to achieve good yields of the products. A simple method for the preparation of α- and β-vinyl C-deoxyribosides was also developed. In addition, feasibility of deprotection and further transformations were briefly explored. PMID:26425194

  15. Cross-metathesis reaction of α- and β-vinyl C-glycosides with alkenes

    PubMed Central

    Šnajdr, Ivan; Parkan, Kamil; Hessler, Filip

    2015-01-01

    Summary Cross-metathesis of α- and β-vinyl C-deoxyribosides and α-vinyl C-galactoside with various terminal alkenes under different conditions was studied. The cross-metathesis of the former proceeded with good yields of the corresponding products in ClCH2CH2Cl the latter required the presence of CuI in CH2Cl2 to achieve good yields of the products. A simple method for the preparation of α- and β-vinyl C-deoxyribosides was also developed. In addition, feasibility of deprotection and further transformations were briefly explored. PMID:26425194

  16. Iron(II)-Catalyzed Intermolecular Aminofluorination of Unfunctionalized Olefins Using Fluoride Ion.

    PubMed

    Lu, Deng-Fu; Zhu, Cheng-Liang; Sears, Jeffrey D; Xu, Hao

    2016-09-01

    We herein report a new catalytic method for intermolecular olefin aminofluorination using earth-abundant iron catalysts and nucleophilic fluoride ion. This method tolerates a broad range of unfunctionalized olefins, especially nonstyrenyl olefins that are incompatible with existing olefin aminofluorination methods. This new iron-catalyzed process directly converts readily available olefins to internal vicinal fluoro carbamates with high regioselectivity (N vs F), many of which are difficult to prepare using known methods. Preliminary mechanistic studies demonstrate that it is possible to exert asymmetric induction using chiral iron catalysts and that both an iron-nitrenoid and carbocation species may be reactive intermediates. PMID:27529196

  17. Pressure-induced metathesis reaction to sequester Cs.

    PubMed

    Im, Junhyuck; Seoung, Donghoon; Lee, Seung Yeop; Blom, Douglas A; Vogt, Thomas; Kao, Chi-Chang; Lee, Yongjae

    2015-01-01

    We report here a pressure-driven metathesis reaction where Ag-exchanged natrolite (Ag16Al16Si24O80·16H2O, Ag-NAT) is pressurized in an aqueous CsI solution, resulting in the exchange of Ag(+) by Cs(+) in the natrolite framework forming Cs16Al16Si24O80·16H2O (Cs-NAT-I) and, above 0.5 GPa, its high-pressure polymorph (Cs-NAT-II). During the initial cation exchange, the precipitation of AgI occurs. Additional pressure and heat at 2 GPa and 160 °C transforms Cs-NAT-II to a pollucite-related, highly dense, and water-free triclinic phase with nominal composition CsAlSi2O6. At ambient temperature after pressure release, the Cs remains sequestered in a now monoclinic pollucite phase at close to 40 wt % and a favorably low Cs leaching rate under back-exchange conditions. This process thus efficiently combines the pressure-driven separation of Cs and I at ambient temperature with the subsequent sequestration of Cs under moderate pressures and temperatures in its preferred waste form suitable for long-term storage at ambient conditions. The zeolite pollucite CsAlSi2O6·H2O has been identified as a potential host material for nuclear waste remediation of anthropogenic (137)Cs due to its chemical and thermal stability, low leaching rate, and the large amount of Cs it can contain. The new water-free pollucite phase we characterize during our process will not display radiolysis of water during longterm storage while maintaining the Cs content and low leaching rate. PMID:25515673

  18. Bio-olefins from unsaturated fatty acids via tandem catalysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new catalytic route to bio-olefins from unsaturated fatty acids will be described. At the heart of the process, the catalyst apparently functions in a tandem mode by both dynamically isomerizing the positions of double bonds in an aliphatic chain and, subsequently, decarboxylating specific isomers...

  19. ULTRASOUND-ASSISTED ORGANIC SYNTHESIS: ALCOHOL OXIDATION AND OLEFIN EPOXIDATION

    EPA Science Inventory

    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin Epoxidation

    Unnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis Enriquez
    U.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268
    Phone: 513-569-773...

  20. Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins.

    PubMed

    Crossley, Steven W M; Obradors, Carla; Martinez, Ruben M; Shenvi, Ryan A

    2016-08-10

    Cofactor-mimetic aerobic oxidation has conceptually merged with catalysis of syngas reactions to form a wide range of Markovnikov-selective olefin radical hydrofunctionalizations. We cover the development of the field and review contributions to reaction invention, mechanism, and application to complex molecule synthesis. We also provide a mechanistic framework for understanding this compendium of radical reactions. PMID:27461578

  1. Molecular mode of action of NKP-1339 - a clinically investigated ruthenium-based drug - involves ER- and ROS-related effects in colon carcinoma cell lines.

    PubMed

    Flocke, Lea S; Trondl, Robert; Jakupec, Michael A; Keppler, Bernhard K

    2016-06-01

    Sodium trans-[tetrachloridobis(1H-indazole)ruthenate(III)] (NKP-1339) is a clinically investigated ruthenium-based metal complex, which shows promising results in solid tumors, such as non-small cell lung cancer, colorectal carcinoma, and most distinctively in gastrointestinal neuroendocrine tumors. In previous studies, fast binding to albumin as well as transferrin could be shown. The enhanced permeability and retention (EPR) effect, which is diversely being exploited for tumor targeting, could therefore be applicable for NKP-1339. Here we studied the serum dependence of its biological activity in various methods, influencing its cellular accumulation, cytotoxicity as well as the generation of reactive oxygen species (ROS). ROS lead to Nrf2 activation, which is known to activate antioxidant response gene transcription. GRP78 down-regulation on the protein level suggests ER associated protein degradation (ERAD) as a mode of action, as RNA levels are only mildly affected. Another important part for the mode of action is endoplasmic reticulum (ER) stress, as different factors are highly upregulated on the protein level. For example PERK, a transmembrane receptor which is released by GRP78 when the ER is disturbed, is upregulated and phosphorylated. EIF2α is phosphorylated, which leads to an inhibition of CAP-dependent translation and other stress responses. The transcription factor CHOP (DDIT3), which promotes ER stress dependent apoptosis, is time and concentration dependently upregulated. Finally cytotoxicity tests could prove that inhibition of ER stress and ER stress-mediated apoptosis leads to decreased cytotoxic effects of NKP-1339, which highlights the involvement of this mechanism in the mode of action. PMID:26988975

  2. Enantioselective Synthesis of Guaianolides in the Osmitopsin Family by Domino Metathesis.

    PubMed

    Barthel, André; Kaden, Felix; Jäger, Anne; Metz, Peter

    2016-07-01

    Relay metathesis enabled an improved access from (S)-citronellal to the marine trisnorguaiane (-)-clavukerin A. This hydroazulene was applied as an advantageously functionalized building block for the asymmetric synthesis of the sesquiterpene lactone osmitopsin and the proposed structure of 4,5-epoxyosmitopsin using a chemo-, regio-, and diastereoselective diepoxide opening as the key step. PMID:27333451

  3. Synthesis of the Caeliferins, elicitors of plant immune responses: accessing Lipophilic natural products via cross metathesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report a cross metathesis- (CM-) based syn-thesis of the caeliferins, a family of sulfooxy fatty acids that elicit plant immune responses. Unexpectedly, detailed NMR-spectroscopic and mass spectrometric analyses of CM reaction mixtures revealed extensive isomerization and homologation of starting...

  4. The Acquisition of Consonant Feature Sequences: Harmony, Metathesis, and Deletion Patterns in Phonological Development

    ERIC Educational Resources Information Center

    Gerlach, Sharon Ruth

    2010-01-01

    This dissertation examines three processes affecting consonants in child speech: harmony (long-distance assimilation) involving major place features as in "coat" [kouk]; long-distance metathesis as in "cup" [p[wedge]k]; and initial consonant deletion as in "fish" [is]. These processes are unattested in adult phonology, leading to proposals for…

  5. Catalytic enantioselective synthesis of naturally occurring butenolides via hetero-allylic alkylation and ring closing metathesis.

    PubMed

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; van Zijl, Anthoni W; Fletcher, Stephen P; Minnaard, Adriaan J; Feringa, Ben L

    2011-03-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey lactone, (-)-cognac lactone, (-)-nephrosteranic acid, and (-)-roccellaric acid. PMID:21268603

  6. Ring-Closing Metathesis: An Advanced Guided-Inquiry Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Schepmann, Hala G.; Mynderse, Michelle

    2010-01-01

    The design and implementation of an advanced guided-inquiry experiment for the organic laboratory is described. Grubbs's second-generation catalyst is used to effect the ring-closing metathesis of diethyl diallylmalonate. The reaction is carried out under an inert atmosphere at room temperature and monitored by argentic TLC. The crude reaction is…

  7. Intramolecular σ-bond metathesis between carbon-carbon and silicon-silicon bonds.

    PubMed

    Ishida, Naoki; Ikemoto, Wataru; Murakami, Masahiro

    2012-06-15

    An intramolecular σ-bond metathesis between carbon-carbon and silicon-silicon bonds took place on treatment of a disilane tethered to a cyclobutanone with a palladium(0) catalyst, furnishing a silaindane skeleton as well as an acylsilane functionality at once. PMID:22651103

  8. Complex polycyclic scaffolds by metathesis rearrangement of Himbert arene/allene cycloadducts.

    PubMed

    Lam, Jonathan K; Schmidt, Yvonne; Vanderwal, Christopher D

    2012-11-01

    The intramolecular arene/allene cycloaddition first described 30 years ago by Himbert and Henn permits rapid access to strained polycyclic compounds. Alkene metathesis processes cleanly rearrange appropriately substituted cycloadducts into complex, functional-group-rich polycyclic lactams of potential utility for natural product synthesis and medicinal chemistry. PMID:23067058

  9. First preparation of low band gap fulvene-modified polynorbornene via ring-opening metathesis polymerization.

    PubMed

    Godman, Nicholas P; Balaich, Gary J; Iacono, Scott T

    2016-04-18

    New polymers containing intact pendant-fulvene moieties have been successfully prepared from 1,3-phenyl-6-norbornenylfulvene via ring-opening metathesis polymerization (ROMP). The prepared polyfulvenes have unique electrochemical and photophysical properties which make them interesting candidates for light harvesting materials. PMID:26980553

  10. Catalytic diamination of olefins via N-N bond activation.

    PubMed

    Zhu, Yingguang; Cornwall, Richard G; Du, Haifeng; Zhao, Baoguo; Shi, Yian

    2014-12-16

    CONSPECTUS: Vicinal diamines are important structural motifs present in various biologically and chemically significant molecules. Direct diamination of olefins provides an effective approach to this class of compounds. Unlike well-established oxidation processes such as epoxidation, dihydroxylation, and aminohydroxylation, direct diamination of olefins had remained a long-standing challenge and had been less well developed. In this Account, we summarize our recent studies on Pd(0)- and Cu(I)-catalyzed diaminations of olefins using di-tert-butyldiaziridinone and its related analogues as nitrogen sources via N-N bond activation. A wide variety of imidazolidinones, cyclic sulfamides, indolines, imidazolinones, and cyclic guanidines can be obtained from conjugated dienes and terminal olefins. For conjugated dienes, the diamination proceeds regioselectively at the internal double bond with the Pd(0) catalyst. Mechanistic studies show that the diamination likely involves a four-membered Pd(II) species resulting from the insertion of Pd(0) into the N-N bond of di-tert-butyldiaziridinone. Interestingly, the Cu(I)-catalyzed process occurs regioselectively at either the terminal or internal double bond depending on the reaction conditions via two mechanistically distinct pathways. The Cu(I) catalyst cleaves the N-N bond of di-tert-butyldiaziridinone to form a Cu(II) nitrogen radical and a four-membered Cu(III) species, which are likely in rapid equilibrium. The Cu(II) nitrogen radical and the four-membered Cu(III) species lead to the terminal and internal diamination, respectively. Terminal olefins are effectively C-H diaminated at the allylic and homoallylic carbons with Pd(0) as catalyst and di-tert-butyldiaziridinone as nitrogen source, likely involving a diene intermediate generated in situ from the terminal olefin via formation of a π-allyl Pd complex and subsequent β-hydride elimination. When di-tert-butylthiadiaziridine 1,1-dioxide is used as nitrogen source

  11. Catalytic Diamination of Olefins via N–N Bond Activation

    PubMed Central

    2015-01-01

    Conspectus Vicinal diamines are important structural motifs present in various biologically and chemically significant molecules. Direct diamination of olefins provides an effective approach to this class of compounds. Unlike well-established oxidation processes such as epoxidation, dihydroxylation, and aminohydroxylation, direct diamination of olefins had remained a long-standing challenge and had been less well developed. In this Account, we summarize our recent studies on Pd(0)- and Cu(I)-catalyzed diaminations of olefins using di-tert-butyldiaziridinone and its related analogues as nitrogen sources via N–N bond activation. A wide variety of imidazolidinones, cyclic sulfamides, indolines, imidazolinones, and cyclic guanidines can be obtained from conjugated dienes and terminal olefins. For conjugated dienes, the diamination proceeds regioselectively at the internal double bond with the Pd(0) catalyst. Mechanistic studies show that the diamination likely involves a four-membered Pd(II) species resulting from the insertion of Pd(0) into the N–N bond of di-tert-butyldiaziridinone. Interestingly, the Cu(I)-catalyzed process occurs regioselectively at either the terminal or internal double bond depending on the reaction conditions via two mechanistically distinct pathways. The Cu(I) catalyst cleaves the N–N bond of di-tert-butyldiaziridinone to form a Cu(II) nitrogen radical and a four-membered Cu(III) species, which are likely in rapid equilibrium. The Cu(II) nitrogen radical and the four-membered Cu(III) species lead to the terminal and internal diamination, respectively. Terminal olefins are effectively C–H diaminated at the allylic and homoallylic carbons with Pd(0) as catalyst and di-tert-butyldiaziridinone as nitrogen source, likely involving a diene intermediate generated in situ from the terminal olefin via formation of a π-allyl Pd complex and subsequent β-hydride elimination. When di-tert-butylthiadiaziridine 1,1-dioxide is used as nitrogen source

  12. Recent applications in natural product synthesis of dihydrofuran and -pyran formation by ring-closing alkene metathesis.

    PubMed

    Jacques, Reece; Pal, Ritashree; Parker, Nicholas A; Sear, Claire E; Smith, Peter W; Ribaucourt, Aubert; Hodgson, David M

    2016-07-01

    In the past two decades, alkene metathesis has risen in prominence to become a significant synthetic strategy for alkene formation. Many total syntheses of natural products have used this transformation. We review the use, from 2003 to 2015, of ring-closing alkene metathesis (RCM) for the generation of dihydrofurans or -pyrans in natural product synthesis. The strategies used to assemble the RCM precursors and the subsequent use of the newly formed unsaturation will also be highlighted and placed in context. PMID:27108941

  13. Syngas to olefins via dimethyl ether over zeolite catalysts

    SciTech Connect

    Lee, B.G.; Sardesai, A.; Lee, S.

    1998-12-31

    Coal or natural gas-based syngas can be converted to dimethyl ether (DME) in a dual catalytic, single-stage liquid phase process. The process described here converts dimethyl ether to lower olefins, such as ethylene, propylene, and butenes. Thus, a novel process of producing olefins from syngas via dimethyl ether has been introduced. The process feasibility of dimethyl ether conversion has been evaluated and the range of products of this process has also been identified. The effect of operating parameters and catalyst characteristics on product selectivity has been studied. The superior process advantages as well as its competitive economics quite clearly identify this process to be quite promising when conducted on an industrial scale.

  14. The Ziegler—Natta olefin insertion reaction for cationic metals

    NASA Astrophysics Data System (ADS)

    Jensen, Vidar R.; Siegban, Per E. M.

    1993-09-01

    The catalytic Ziegler—Natta polymerization reaction has been studied for a set of metal cations, in order to identify the role of the positive charge on this process. Geometry optimizations have been performed for the reactant metal—methyl systems, the π-coordinated olefin systems, the transition states for the olefin insertion and finally for the product metal—propyl systems. All valence electrons are correlated. The cations selected for this study are the transition metals Zr + and Ti +, the non-transition metals Be +, Mg +, Al + and finally also Si +. The transition metal cations are found to have very low barriers for the insertion, but the lowest barrier is actually found for Be +. The results are discussed in terms of the ionization energies and the accessibility to valence p and d orbitals. Comparisons are made to previous theoretical work on cationic model systems.

  15. Copper-catalyzed olefinic C-H difluoroacetylation of enamides.

    PubMed

    Caillot, Gilles; Dufour, Jérémy; Belhomme, Marie-Charlotte; Poisson, Thomas; Grimaud, Laurence; Pannecoucke, Xavier; Gillaizeau, Isabelle

    2014-06-01

    Copper-catalyzed olefinic difluoroacetylation of enamides via direct C-H bond functionalization using BrCF2CO2Et is reported for the first time. It constitutes an efficient radical-free method for the regioselective synthesis of β-difluoroester substituted enamides which exhibits broad substrate scope, and thus demonstrates its potent application in a late stage fluorination strategy. PMID:24760345

  16. Novel Cyclo Olefin Copolymer Used as Waveguide Film

    NASA Astrophysics Data System (ADS)

    Hwang, Shug-June; Yu, Hsin Her

    2005-04-01

    A novel cyclo olefin copolymer (COC) waveguide film was fabricated and characterized. The optical properties as well as the absorption spectrum of this polymer film were observed using a prism coupler and by Fourier transformation infra-red (FTIR) spectroscopy. Atomic force microscopy (AFM) was also used to monitor the morphology of the waveguide film to probe the influence of an external electric field. In addition, the moisture resistance of this waveguide film was explored by water permeation measurements.

  17. Integrated process and dual-function catalyst for olefin epoxidation

    DOEpatents

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  18. Low severity coal liquefaction promoted by cyclic olefins

    SciTech Connect

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  19. Copper-catalyzed intermolecular oxyamination of olefins using carboxylic acids and O-benzoylhydroxylamines

    PubMed Central

    Hemric, Brett N

    2016-01-01

    Summary This paper reports a novel approach for the direct and facile synthesis of 1,2-oxyamino moieties via an intermolecular copper-catalyzed oxyamination of olefins. This strategy utilizes O-benzoylhydroxylamines as an electrophilic amine source and carboxylic acids as a nucleophilic oxygen source to achieve a modular difunctionalization of olefins. The reaction proceeded in a regioselective manner with moderate to good yields, exhibiting a broad scope of carboxylic acid, amine, and olefin substrates. PMID:26877805

  20. Cu(I)-catalyzed sequential diamination and dehydrogenation of terminal olefins: a facile approach to imidazolinones.

    PubMed

    Zhu, Yingguang; Shi, Yian

    2014-10-20

    Diamination of olefins presents a powerful strategy to access vicinal diamines. During the last decade, metal-catalyzed diamination of olefins has received considerable attention. This study describes an efficient sequential diamination and dehydrogenation process of terminal olefins with CuBr as catalyst and di-tert-butyldiaziridinone as nitrogen source, providing a facile and viable approach to a variety of imidazolin-2-ones, which are important structural motifs present in various biologically active molecules. PMID:25213994

  1. Improved light olefin yield from methyl bromide coupling over modified SAPO-34 molecular sieves.

    PubMed

    Zhang, Aihua; Sun, Shouli; Komon, Zachary J A; Osterwalder, Neil; Gadewar, Sagar; Stoimenov, Peter; Auerbach, Daniel J; Stucky, Galen D; McFarland, Eric W

    2011-02-21

    As an alternative to the partial oxidation of methane to synthesis gas followed by methanol synthesis and the subsequent generation of olefins, we have studied the production of light olefins (ethylene and propylene) from the reaction of methyl bromide over various modified microporous silico-aluminophosphate molecular-sieve catalysts with an emphasis on SAPO-34. Some comparisons of methyl halides and methanol as reaction intermediates in their conversion to olefins are presented. Increasing the ratio of Si/Al and incorporation of Co into the catalyst framework improved the methyl bromide yield of light olefins over that obtained using standard SAPO-34. PMID:21203621

  2. C-84 Selective Porphyrin Macrocycle with an Adaptable Cavity Constructed Through Alkyne Metathesis

    SciTech Connect

    Zhang, C. X.; Long, H.; Zhang, W.

    2012-06-21

    A bisporphyrin macrocycle was constructed from a porphyrin-based diyne monomer in one step through alkyne metathesis. The fullerene binding studies (C{sub 60}, C{sub 70} and C{sub 84}) showed the highest binding affinity of the macrocycle for C{sub 84}, which is in great contrast to its bisporphyrin four-armed cage analogue that showed the strongest binding with C{sub 70}.

  3. A General Approach to Sequence-Controlled Polymers Using Macrocyclic Ring Opening Metathesis Polymerization

    PubMed Central

    2015-01-01

    A new and general strategy for the synthesis of sequence-defined polymers is described that employs relay metathesis to promote the ring opening polymerization of unstrained macrocyclic structures. Central to this approach is the development of a small molecule “polymerization trigger” which when coupled with a diverse range of sequence-defined units allows for the controlled, directional synthesis of sequence controlled polymers. PMID:26053158

  4. Nitrene Metathesis and Catalytic Nitrene Transfer Promoted by Niobium Bis(imido) Complexes.

    PubMed

    Kriegel, Benjamin M; Bergman, Robert G; Arnold, John

    2016-01-13

    We report a metathesis reaction in which a nitrene fragment from an isocyanide ligand is exchanged with a nitrene fragment of an imido ligand in a series of niobium bis(imido) complexes. One of these bis(imido) complexes also promotes nitrene transfer to catalytically generate asymmetric dialkylcarbodiimides from azides and isocyanides in a process involving the Nb(V)/Nb(III) redox couple. PMID:26698833

  5. Rapid assembly of structurally defined and highly functionalized conjugated dienes via tethered enyne metathesis.

    PubMed

    Yao, Q

    2001-06-28

    [reaction: see text] Conjugated dienes are versatile building blocks in organic synthesis, and the development of new methods for their synthesis remains an important topic in modern synthetic organic chemistry. We describe here an expedient synthesis of highly functionalized conjugated dienes through sequential silicon-tethered ring-closing enyne metathesis mediated by Grubbs' Ru carbene catalysts and Tamao oxidation. Notable attributes of this methodology include short synthetic manipulations and the structural complexity it confers on the resulting diene moiety. PMID:11418051

  6. [Separation and purification of Al13 by chemical precipitation and metathesis].

    PubMed

    Li, Guo-Hong; Shi, Bao-You; Wang, Dong-Sheng; Cui, Ya-Li

    2007-02-01

    PACls with different concentrations were prepared by adding sodium carbonate powder into AlCl13 solution. Medium concentration and high Al13 content of PACl was chosen to carry out Al13 separation processes. The influences of SO4/Al molar ratio and the initial total Al concentration on the precipitation reactions of sulfate with different Al species were investigated. The factors influencing the metathesis reaction between solid Al13-SO4 and Ba(NO3)2 were evaluated. Results showed that high Al13 PACl could be obtained at the medium high concentration range of 0.4 - 0.6 mol/L, the optimum SO4/Al ratio was 0.6:1 for precipitation- separation of Al13, Al13 -SO4 precipitates were mostly consisted of tetrahedral crystals. During the metathesis reaction, Ba/SO4 molar ratio of 1:1 is the optimal value. Small range temperature variation and ultrasonic action had no marked influence on metathesis reaction rate and final Al13 concentration. Higher initial Ba(NO3)2 concentration could produce higher concentration Al13 accordingly. The purity of Al13 solution could be reached to 92.1% statistically. PMID:17489196

  7. Designing Sequence Selectivity into a Ring-Opening Metathesis Polymerization Catalyst.

    PubMed

    Chen, Peter

    2016-05-17

    The development of a chemoselective catalyst for the sequence-selective copolymerization of two cycloolefins by ring-opening metathesis polymerization is described, starting with the mechanistic work that established the structure of the key metallacyclobutane intermediate. Experimental and computational investigations converged to a conclusion that the lowest energy metallacyclobutane intermediate in the ruthenium carbene-catalyzed metathesis reaction had the four-membered ring trans to the phosphine or NHC ligand. The trans-metallacyclobutane structure, for the case of a degenerate metathesis reaction catalyzed by a Grubbs first-generation complex, necessitated a rotation of the 3-fold symmetric tricyclohexylphosphine ligand, with respect to the 2-fold symmetric metallacyclobutane substructure. The degeneracy could be lifted by constraining the rotation. Lifting the degeneracy created the possibility of chemoselectivity. This mechanistic work led to a concept for the "tick-tock" catalyst for a chemoselective, alternating copolymerization of cyclooctene and norbornene from a mixture of the two monomers. The design concept could be post facto elaborated in terms of stereochemistry and topological theory, both viewpoints providing deeper insight into the design of selectivity into the catalytic reaction. The iterative interaction of theory and experiment provided the basis for the rational design and optimization of a new selectivity into an existing catalytic system with decidedly modest structural modifications of the original carbene complex. PMID:27105333

  8. A unique palladium catalyst for efficient and selective alkoxycarbonylation of olefins with formates.

    PubMed

    Fleischer, Ivana; Jennerjahn, Reiko; Cozzula, Daniela; Jackstell, Ralf; Franke, Robert; Beller, Matthias

    2013-03-01

    Forget about CO! Carbonylations are among the most important homogeneously catalyzed reactions in the chemical industry, but typically require carbon monoxide. Instead, straightforward and efficient alkoxycarbonylations of olefins can proceed with alkyl formates in the presence of a specific palladium catalyst. Aromatic, terminal aliphatic, and internal olefins are carbonylated to give industrially important linear esters at low catalyst loadings. PMID:23322709

  9. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Olefinic carbocycle, reaction...

  10. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Olefinic carbocycle, reaction...

  11. 40 CFR 721.10240 - Olefinic carbocycle, reaction products with alkoxysilane (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10240 Olefinic carbocycle, reaction products with... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Olefinic carbocycle, reaction...

  12. Beyond ketonization: selective conversion of carboxylic acids to olefins over balanced Lewis acid-base pairs.

    PubMed

    Baylon, Rebecca A L; Sun, Junming; Martin, Kevin J; Venkitasubramanian, Padmesh; Wang, Yong

    2016-04-11

    We report the direct conversion of mixed carboxylic acids to C-C olefins with up to 60 mol% carbon yield through cascade (cross) ketonization, (cross) aldolization and self-deoxygenation reactions. Co-feeding hydrogen provides an additional ketone hydrogenation/dehydration pathway to a wider range of olefins. PMID:26898532

  13. Synthesis of epoxybenzo[d]isothiazole 1,1-dioxides via a reductive-Heck, metathesis-sequestration protocol†‡

    PubMed Central

    Asad, Naeem; Hanson, Paul R.; Long, Toby R.; Rayabarapu, Dinesh K.; Rolfe, Alan

    2011-01-01

    An atom-economical purification protocol, using solution phase processing via ring-opening metathesis polymerization (ROMP) has been developed for the synthesis of tricyclic sultams. This chromatography-free method allows for convenient isolation of reductive-Heck products and reclamation of excess starting material via sequestration involving metathesis catalysts and a catalyst-armed Si-surface. PMID:21727956

  14. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2007-08-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ester formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes are estimated to potentially produce greater than 2.5 μg m-3 of SOA from the various biogenic hydrocarbons under atmospheric conditions, which can be highly significant given the large array of atmospheric olefins.

  15. Reversible and irreversible processing of biogenic olefins on acidic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.-M.

    2008-04-01

    Recent evidence has suggested that heterogeneous chemistry of oxygenated hydrocarbons, primarily carbonyls, plays a role in the formation of secondary organic aerosol (SOA); however, evidence is emerging that direct uptake of alkenes on acidic aerosols does occur and can contribute to SOA formation. In the present study, significant uptake of monoterpenes, oxygenated monoterpenes and sesquiterpenes to acidic sulfate aerosols is found under various conditions in a reaction chamber. Proton transfer mass spectrometry is used to quantify the organic gases, while an aerosol mass spectrometer is used to quantify the organic mass uptake and obtain structural information for heterogeneous products. Aerosol mass spectra are consistent with several mechanisms including acid catalyzed olefin hydration, cationic polymerization and organic ether formation, while measurable decreases in the sulfate mass on a per particle basis suggest that the formation of organosulfate compounds is also likely. A portion of the heterogeneous reactions appears to be reversible, consistent with reversible olefin hydration reactions. A slow increase in the organic mass after a fast initial uptake is attributed to irreversible reactions, consistent with polymerization and organosulfate formation. Uptake coefficients (γ) were estimated for a fast initial uptake governed by the mass accommodation coefficient (α) and ranged from 1×10-6-2.5×10-2. Uptake coefficients for a subsequent slower reactive uptake ranged from 1×10-7-1×10-4. These processes may potentially lead to a considerable amount of SOA from the various biogenic hydrocarbons under acidic conditions, which can be highly significant for freshly nucleated aerosols, particularly given the large array of atmospheric olefins.

  16. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin...

  17. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin...

  18. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin...

  19. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Reference C16-C18 Internal Olefin Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL... Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling fluid used...

  20. Catalytic Asymmetric Hydroamination of Unactivated Internal Olefins to Aliphatic Amines

    PubMed Central

    Yang, Yang; Shi, Shi-Liang; Niu, Dawen; Liu, Peng; Buchwald, Stephen L.

    2015-01-01

    Catalytic assembly of enantiopure aliphatic amines from abundant and readily available precursors has long been recognized as a paramount challenge in synthetic chemistry. Herein, we describe a mild and general copper-catalyzed hydroamination that effectively converts unactivated internal olefins, an important yet unexploited class of abundant feedstock chemicals, into highly enantioenriched α-branched amines (≥ 96% enantiomeric excess) featuring two minimally differentiated aliphatic substituents. This method provides a powerful means to access a broad range of advanced, highly functionalized enantioenriched amines of interest in pharmaceutical research and other areas. PMID:26138973

  1. Colloidal nickel boride catalyst for hydrogenation of olefins

    SciTech Connect

    Nakao, Y.; Fujishige, S.

    1981-04-01

    Colloidal nickel boride was prepared from nickel(II) chloride by reduction with sodium borohydride in the presence of polyvinylpyrrolidone in ethanol. Hydrogenation of various olefins was examined over the colloidal catalyst at 30/sup 0/C and atmospheric pressure. The colloidal nickel boride was much more effective than the precipitated nickel boride prepared in the absence of polyvinylpyrrolidone as a hydrogenation catalyst, especially for isopropenyl compounds. Additional amines and sodium acetate were slightly inhibitive to the colloidal catalyst, while, being strongly promotive to the precipitated catalyst. The colloidal nickel boride was superior to the charcoal-supported metals of the platinum group in catalytic activity for ..cap alpha..-methylstyrene.

  2. Olefins by catalytic oxidation of alkanes in fluidized bed reactors

    SciTech Connect

    Bharadwaj, S.S.; Schmidt, L.D.

    1995-09-01

    The production of ethylene or syngas from ethane and olefins from propane, n-butane, and isobutane in the presence of air or O{sub 2} at atmospheric pressure has been examined over 100 {mu}m {alpha}-Al{sub 2}O{sub 3} beads coated with noble metals in a static fluidized bed reactor at contact times from 0.05 to 0.2 s. Variations in feed composition, preheating temperature, and flow rate were examined. 21 refs., 5 figs., 1 tab.

  3. Thermoplastic Adhesives based on polyolefin and olefinic copolymers

    NASA Astrophysics Data System (ADS)

    Paul, Rituparna

    2014-03-01

    H.B. Fuller has been a leading global industrial adhesive manufacturer for over 125 years. It is a company with a rich history of consistently delivering adhesive innovations for enhancing product performance in the market place. H.B. Fuller technologies/products find application in several markets including packaging, personal hygiene and nonwovens, durable assembly and electronics. In this presentation, H. B. Fuller's technology innovation journey will be shared with emphasis on groundbreaking technologies/products based on polyolefin and olefin copolymers.

  4. Hydroformylation of Olefinic Derivatives of Isosorbide and Isomannide.

    PubMed

    Villo, Piret; Matt, Livia; Toom, Lauri; Liblikas, Ilme; Pehk, Tõnis; Vares, Lauri

    2016-09-01

    The first time application of hydroformylation on olefinic derivatives of isosorbide and isomannide is shown by which a new carbon-carbon bond is formed. Depending on the ligand and reaction conditions used, the C6 regioisomer a can be obtained in 4:1 ratio and excellent yield, whereas C5 isomer b is achieved in almost complete regioselectivity (46:1) and good yield. In the majority of cases only the exo orientation is observed for the obtained aldehydes, and the method is easily applicable also on a 1 g scale. PMID:27472019

  5. Catalytic Transformation of Bio-oil to Olefins with Molecular Sieve Catalysts

    NASA Astrophysics Data System (ADS)

    Huang, Wei-wei; Gong, Fei-yan; Zhai, Qi; Li, Quan-xin

    2012-08-01

    Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5>SAPO-34>MCM-41> Y-zeolite. The highest olefins yield from bio-oil using HZSM-5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.

  6. Chiral Phosphorus-Olefin Ligands for the Rh(I) -Catalyzed Asymmetric Addition of Aryl Boronic Acids to Electron-Deficient Olefins.

    PubMed

    Chen, Qian; Li, Liang; Zhou, Guangli; Ma, Xiaoli; Zhang, Lu; Guo, Fang; Luo, Yi; Xia, Wujiong

    2016-05-20

    New chiral phosphorus-olefin hybrid ligands derived from the rigid "privileged" l-proline have been conveniently prepared and applied in the rhodium-catalyzed asymmetric arylation of electron-deficient olefins with arylboronic acids at room temperature; this reaction provides the desired products in excellent yields and high enantioselectivities. The origin of observed stereoselectivity has been investigated by density functional theory (DFT) calculations. PMID:27017447

  7. Ruthenium-catalyzed intramolecular metathesis of dienes and its application in the synthesis of bridged and spiro azabicycles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, N. Yu; Bubnov, Yu N.

    2015-07-01

    The review presents a historical excursion into catalytic alkene metathesis, covering the problems of history of the discovery of this process, as well as investigations on the properties, structure and reactivity of the most popular ruthenium catalysts for metathesis, mechanism of their action and decomposition. The main part covers studies devoted to the syntheses of bridged azabicyclic and 1-azaspirocyclic compounds comprising the intramolecular metathesis of dienes as the key step. The formation of a bicyclic skeleton of a series of natural bridged (cocaine, ferruginine, calystegines, and anatoxin-a) and spiro (pinnaic acids, halichlorine, hystrionicotoxin, and cephalotaxine) azabicycles, as well as their analogues and compounds with larger rings is demonstrated. The methods for the synthesis of diene precursors and the conditions for final assembling of the bicyclic compounds are considered in detail. The generalization of the literature data allows one to efficiently carry out the mentioned process taking into account the most important features. The bibliography includes 129 references.

  8. Separation of Olefin/Paraffin Mixtures with Carrier Facilitated Membrane Final Report

    SciTech Connect

    Merkel, T.C.; Blanc, R.; Zeid, J.; Suwarlim, A.; Firat, B.; Wijmans, H.; Asaro, M.; Greene, M.

    2007-03-12

    This document describes the results of a DOE funded joint effort of Membrane Technology and Research Inc. (MTR), SRI International (SRI), and ABB Lummus (ABB) to develop facilitated transport membranes for olefin/paraffin separations. Currently, olefin/paraffin separation is done by distillation—an extremely energy-intensive process because of the low relative volatilities of olefins and paraffins. If facilitated transport membranes could be successfully commercialized, the potential energy savings achievable with this membrane technology are estimated to be 48 trillion Btu per year by the year 2020. We discovered in this work that silver salt-based facilitated transport membranes are not stable even in the presence of ideal olefin/paraffin mixtures. This decline in membrane performance appears to be caused by a previously unrecognized phenomenon that we have named olefin conditioning. As the name implies, this mechanism of performance degradation becomes operative once a membrane starts permeating olefins. This project is the first study to identify olefin conditioning as a significant factor impacting the performance of facilitated olefin transport membranes. To date, we have not identified an effective strategy to mitigate the impact of olefin conditioning. other than running at low temperatures or with low olefin feed pressures. In our opinion, this issue must be addressed before further development of facilitated olefin transport membranes can proceed. In addition to olefin conditioning, traditional carrier poisoning challenges must also be overcome. Light, hydrogen, hydrogen sulfide, and acetylene exposure adversely affect membrane performance through unwanted reaction with silver ions. Harsh poisoning tests with these species showed useful membrane lifetimes of only one week. These tests demonstrate a need to improve the stability of the olefin complexing agent to develop membranes with lifetimes satisfactory for commercial application. A successful effort

  9. Rheology and Structure of Molten, Olefin Multiblock Copolymers

    SciTech Connect

    Park, Heon E.; Dealy, John M.; Marchand, Gary R.; Wang, Jian; Li, Sheng; Register, Richard A.

    2010-12-07

    Several samples of a recently developed olefin multiblock copolymer were studied by means of rheology, differential scanning calorimetry (DSC) and small-angle X-ray scattering (SAXS). The synthesis involves a chain shuttling agent (CSA) that switches the growing chain between two catalysts, one that favors the incorporation of an {alpha}-olefin comonomer and one that suppresses incorporation. The data were used to determine the effect of octene comonomer content and CSA level on rheological behavior and the occurrence of mesophase separation transition (MST) in the melt. To distinguish between crystallization and MST, we made calorimetry scans and measured the density and rheological properties over a range of temperatures. Small angle X-ray scattering analysis of a sample that had undergone planar extensional flow revealed strong alignment of lamellar mesodomains, which maintained their alignment after annealing. This result confirmed the hypothesis based on rheological evidence that a lamellar mesophase is present in the melt at temperatures well above the melting point.

  10. Morphology of Novel Semicrystalline Ethylene-α-Olefin Block Copolymers

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Register, Richard; Landes, Brian

    2009-03-01

    In semicrystalline block copolymers, the solid-state structure can be set either by block incompatibility or by crystallization of one or more blocks. Depending on the block interaction strength, a wide array of solid-state morphologies may be observed, ranging from spherulitic to confined crystallization within preexisting microphase-separated domains. Dow Chemical has recently developed a novel chain shuttling polymerization process to produce olefin block copolymers with alternating amorphous and semicrystalline chain segments, where each block exhibits the most-probable distribution. We examined the melt and solid-state morphologies of these novel olefin block copolymers, having a high octene content in the amorphous block, using two- dimensional synchrotron small-angle and wide-angle x-ray scattering on specimens oriented by channel die compression. Multiblock and diblock copolymers with near-symmetric compositions showed well-ordered lamellar structures at room temperature with long periods exceeding 100 nm, with little dependence on thermal history, indicating the presence of a mesophase-separated melt which templates crystallization.

  11. Real-time optimization boosts capacity of Korean olefins plant

    SciTech Connect

    Yoon, S.; Dasgupta, S.; Mijares, G.

    1996-06-17

    Real-time optimization (RTO) of Hyundai Petrochemical Co. Ltd.`s olefins complex at Daesan, South Korea, increased ethylene capacity 4% and revenues 12%, and decreased feedstock and energy usage 2.5%, with no changes in operating conditions. The project comprised RTO and advanced process control (APC) systems for the 350,000 metric ton/year (mty) ethylene plant. A similar system was implemented in the hydrotreating and benzene recovery sections of the plant`s pyrolysis-gasoline treating unit. Hyundai Petrochemical started up its olefins complex on Korea`s western seaboard in late 1991. The Daesan complex comprises 10 plants, including naphtha cracking, monomer, and polymer units. Additional support facilities include: industrial water treatment plants; electric generators; automatic storage systems; a jetty with capacity to berth 100,000 dwt and 10,000 dwt ships simultaneously; a research and development center. The plant`s capacity is 350,000 mty ethylene and 175,000 mty propylene, based on 7,200 operating hr/year. Since start-up, naphtha has been the primary feed, but the plant was designed with flexibility to process C{sub 3}/C{sub 4} (LPG) and gas oil feeds. This paper reviews the project management and decision making process along with the computerized control system design.

  12. Hydrotreated VGO is attractive as a feedstock for olefins

    SciTech Connect

    Kaiser, V.; Barendreyt, S.; Clymans, P.J.; Froment, G.F.

    1984-10-29

    Rising naphtha prices have increased interest in higher boiling petroleum fractions as feedstock for olefins production. An interesting candidate is vacuum gas oil (VGO), particularly since the demand for this fraction is decreasing. VGO is not a particularly appropriate feedstock for olefins production, however. It has a high naphthenic and polycondensed aromatics content. Cracking virgin VGO also creates a lot of problems because of its high sulfur content and high coking potential. Also, the usual multitubular quench cooler is excluded because of excessive tar formation. Most of these drawbacks can be eliminated by catalytically hydrotreating the VGO. The profitability of cracking hydrotreated VGO depends strongly on the market situation in the refining and petrochemical industries. Nevertheless, a scheme to crack a hydrotreated VGO (HVGO) shows a profitability equal to or better than that of a naphtha cracker. For a steam cracker, a medium-to-low converted VGO appears to be the optimum feed. A hydrotreater producing such a feedstock will have a high byproduct yield, however. Depending on the market situation, it may be necessary to keep the hydrotreating conversion at a moderate level.

  13. Effect of support on metathesis of n-decane: drastic improvement in alkane metathesis with WMe5 linked to silica-alumina.

    PubMed

    Samantaray, Manoja K; Dey, Raju; Abou-Hamad, Edy; Hamieh, Ali; Basset, Jean-Marie

    2015-04-13

    [WMe6 ] (1) supported on the surface of SiO2 -Al2 O3(500) (2) has been extensively characterized by solid-state NMR spectroscopy, elemental analysis, and gas quantification, which clearly reveal the formation of a mixture of monopodal and bipodal species with the migration of methyl from W to Al. The supported species SiO2 -Al2 O3(500) (2) transformed at 120 °C into two types of carbynic centers, one of which is cationic and the other neutral. These species are very efficient for the metathesis of n-decane. Comparison with already-synthesized neutral bipodal tungsten indicates that the high increase in activity is due to the cationic character of the grafted tungsten. PMID:25760771

  14. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports.

    PubMed

    Skowerski, Krzysztof; Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina; Grela, Karol

    2016-01-01

    An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  15. Effective immobilisation of a metathesis catalyst bearing an ammonium-tagged NHC ligand on various solid supports

    PubMed Central

    Białecki, Jacek; Czarnocki, Stefan J; Żukowska, Karolina

    2016-01-01

    Summary An ammonium-tagged ruthenium complex, 8, was deposited on several widely available commercial solid materials such as silica gel, alumina, cotton, filter paper, iron powder or palladium on carbon. The resulting catalysts were tested in toluene or ethyl acetate, and found to afford metathesis products in high yield and with extremely low ruthenium contamination. Depending on the support used, immobilised catalyst 8 shows also additional traits, such as the possibility of being magnetically separated or the use for metathesis and subsequent reduction of the obtained double bond in one pot. PMID:26877803

  16. Kinetic studies of olefin binding to sulfido sites in dinuclear molybdenum complexes

    SciTech Connect

    Koval, C.R.; Lopez, L.L.; Kaul, B.B.; Renshaw, S.; Green, K.; DuBois, M.R.

    1995-07-01

    The reactions of olefins with a series of molybdenum complexes of the formula (R-CpMo-({mu}-S)){sub 2}S{sub 2}CHX, where R = H, CH{sub 3}, CO{sub 2}Na, and X = H, CN, CMe{sub 3}, have been studied. Olefin reagents have included propene, 1-butene, cis- and trans-2-butene, and isomers of hexene. Olefin additions to the sulfido ligands in the dimers result in alkanedithiolate complexes. The rates of these reactions have been monitored by visible spectroscopy, and rate constants, k{sub on}, have been compared as dimer substituent and olefin structure have been varied. The rate constants for olefin dissociation from the alkanedithiolate complexes, k{sub off}, have also been determined by NMR spectroscopy. The studies have permitted us to probe the relative contributions of k{sub on} and k{sub off} to the equilibrium constants for reversible olefin binding as inductive and steric effects are varied. The potential for using these systems in olefin separation schemes is discussed. 20 refs., 3 figs., 6 tabs.

  17. Low-Temperature Synthesis of Actinide Tetraborides by Solid-State Metathesis Reactions

    SciTech Connect

    Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB,), plutonium tetraboride (PUB,) and thorium tetraboride (ThB{sub 4}) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to {approx_equal}850 C. As an example, when UCl{sub 4}, is reacted with an excess of MgB{sub 2}, at 850 C, crystalline UB, is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl{sub 3}, as the initial step in the reaction. The UB, product is purified by washing water and drying.

  18. Rapid Solid-State Metathesis Routes to Nanostructured Silicon-Germainum

    NASA Technical Reports Server (NTRS)

    Kaner, Richard B. (Inventor); Bux, Sabah K. (Inventor); Fleurial, Jean-Pierre (Inventor); Rodriguez, Marc (Inventor)

    2014-01-01

    Methods for producing nanostructured silicon and silicon-germanium via solid state metathesis (SSM). The method of forming nanostructured silicon comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and an alkaline earth metal silicide into a homogeneous powder, and initating the reaction between the silicon tetraiodide (SiI4) with the alkaline earth metal silicide. The method of forming nanostructured silicon-germanium comprises the steps of combining a stoichiometric mixture of silicon tetraiodide (SiI4) and a germanium based precursor into a homogeneous powder, and initiating the reaction between the silicon tetraiodide (SiI4) with the germanium based precursors.

  19. Recent advances in metathesis-derived polymers containing transition metals in the side chain.

    PubMed

    Dragutan, Ileana; Dragutan, Valerian; Simionescu, Bogdan C; Demonceau, Albert; Fischer, Helmut

    2015-01-01

    This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials. PMID:26877797

  20. Recent advances in metathesis-derived polymers containing transition metals in the side chain

    PubMed Central

    Demonceau, Albert; Fischer, Helmut

    2015-01-01

    Summary This account critically surveys the field of side-chain transition metal-containing polymers as prepared by controlled living ring-opening metathesis polymerization (ROMP) of the respective metal-incorporating monomers. Ferrocene- and other metallocene-modified polymers, macromolecules including metal-carbonyl complexes, polymers tethering early or late transition metal complexes, etc. are herein discussed. Recent advances in the design and syntheses reported mainly during the last three years are highlighted, with special emphasis on new trends for superior applications of these hybrid materials. PMID:26877797

  1. Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host-Guest Binding Study.

    PubMed

    Yu, Chao; Long, Hai; Jin, Yinghua; Zhang, Wei

    2016-06-17

    Cyclic porphyrin trimers were synthesized through one-step cyclooligomerization via alkyne metathesis from diyne monomers. These macrocycles show interesting host-guest binding interactions with fullerenes, selectively binding C70 (6 × 10(3) M(-1)) over C60 and C84 (no binding observed). The fullerene-encapsulated host-guest complex can undergo guest or host exchange in the presence of another guest (2,4,6-tri(4-pyridyl)-1,3,5-triazine) or host (cage COP5) molecule with higher binding affinity. PMID:27267936

  2. Functional Materials from Nanostructured Block Polymers Prepared via Ring-opening Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    Pitet, Louis Marcel

    The structural and molecular versatility afforded to polymeric materials by ruthenium catalysts during ring-opening metathesis polymerization (ROMP) cannot be exaggerated. This dissertation describes the synthesis of functionalized polyolefins via ROMP with particular emphasis on designing straightforward approaches to materials in which the molecular structure is meticulously controlled. Moreover, large portions of the body are dedicated to describing functionalized polyolefins as precursors to more complex multicomponent block copolymers. Block copolymers having various components derived from mechanistically incompatible feedstocks were designed with translational targets in mind, including toughening agents for brittle plastics, and free-standing nanoporous membranes. Several fundamental structure-property relationships were also explored for the newly synthesized materials.

  3. Mechanism of olefin epoxidation in the presence of a titanium-containing zeolite

    NASA Astrophysics Data System (ADS)

    Danov, S. M.; Krasnov, V. L.; Sulimov, A. V.; Ovcharova, A. V.

    2013-11-01

    The effect of the nature of a solvent on the liquid-phase epoxidation of olefins with an aqueous solution of hydrogen peroxide over a titanium-containing zeolite is studied. Butanol-1, butanol-2, propanol-1, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, isobutanol, and tert-butanol are examined as solvents. A mechanism of olefin epoxidation with hydrogen peroxide in an alcohol medium over a titanium-containing zeolite is proposed. Epoxidation reactions involving hydrogen peroxide and different olefins are studied experimentally.

  4. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    DOEpatents

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  5. Oxidative trans to cis Isomerization of Olefins in Polyketide Biosynthesis.

    PubMed

    Yamamoto, Tsuyoshi; Tsunematsu, Yuta; Hara, Kodai; Suzuki, Tomohiro; Kishimoto, Shinji; Kawagishi, Hirokazu; Noguchi, Hiroshi; Hashimoto, Hiroshi; Tang, Yi; Hotta, Kinya; Watanabe, Kenji

    2016-05-17

    Geometric isomerization can expand the scope of biological activities of natural products. The observed chemical diversity among the pseurotin-type fungal secondary metabolites is in part generated by a trans to cis isomerization of an olefin. In vitro characterizations of pseurotin biosynthetic enzymes revealed that the glutathione S-transferase PsoE requires participation of the bifunctional C-methyltransferase/epoxidase PsoF to complete the trans to cis isomerization of the pathway intermediate presynerazol. The crystal structure of the PsoE/glutathione/presynerazol complex indicated stereospecific glutathione-presynerazol conjugate formation is the principal function of PsoE. Moreover, PsoF was identified to have an additional, unexpected oxidative isomerase activity, thus making it a trifunctional enzyme which is key to the complexity generation in pseurotin biosynthesis. Through the study, we identified a novel mechanism of accomplishing a seemingly simple trans to cis isomerization reaction. PMID:27072782

  6. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    PubMed

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled. PMID:27219852

  7. Catalytic Olefin Hydroamidation Enabled by Proton-Coupled Electron Transfer

    PubMed Central

    2015-01-01

    Here we report a ternary catalyst system for the intramolecular hydroamidation of unactivated olefins using simple N-aryl amide derivatives. Amide activation in these reactions occurs via concerted proton-coupled electron transfer (PCET) mediated by an excited state iridium complex and weak phosphate base to furnish a reactive amidyl radical that readily adds to pendant alkenes. A series of H-atom, electron, and proton transfer events with a thiophenol cocatalyst furnish the product and regenerate the active forms of the photocatalyst and base. Mechanistic studies indicate that the amide substrate can be selectively homolyzed via PCET in the presence of the thiophenol, despite a large difference in bond dissociation free energies between these functional groups. PMID:26439818

  8. Catalyst for converting synthesis gas to light olefins

    DOEpatents

    Rao, V. Udaya S.; Gormley, Robert J.

    1982-01-01

    A catalyst and process for making same useful in the catalytic hydrogenation of carbon monoxide in which a silicalite support substantially free of aluminum is soaked in an aqueous solution of iron and potassium salts wherein the iron and potassium are present in concentrations such that the dried silicalite has iron present in the range of from about 5 to about 25 percent by weight and has potassium present in an amount not less than about 0.2 percent by weight, and thereafter the silicalite is dried and combined with amorphous silica as a binder for pellets, the catalytic pellets are used to convert synthesis gas to C.sub.2 -C.sub.4 olefins.

  9. Process for production of iso-olefin and ether

    SciTech Connect

    Le, Q.N.; Owen, H.; Schipper, P.H.

    1992-03-31

    This patent describes a process for upgrading paraffinic naphtha to high octane fuel. It comprises: contacting a fresh naphtha feedstock stream containing a major amount of C7+ alkanes and naphthenes with medium pore acid cracking catalyst having the structure of MCM-22 under low pressure selective cracking conditions effective to produce at least 10 wt% total C4-C5 isoalkene and at lease 10 wt% total C4-C5 isoalkane, the cracking catalyst being substantially free of hydrogenation-dehydrogenation metal components and having an acid cracking activity less than 15; separating cracking effluent to obtain a light olefinic fraction rich in C4-C5 isoalkene and a C6+ liquid fraction of enhanced octane value; and etherifying the C4-C5 isoalkene fraction by catalytic reaction with lower akanol to produce tertiary-alkyl either product.

  10. New unit for sulfuric acid alkylation of isobutane by olefins

    SciTech Connect

    Khadzhiev, S.N.; Baiburskii, V.L.; Deineko, P.S.; Gruzdev, A.S.; Tagavov, I.T.

    1987-01-01

    The authors describe and illustrate a sulfuric acid alkylation unit with a horizontal contact. As a result of the use of this design solution, the isobutane/olefin ratio is 10/1 in comparison with 4/1 to 5/1 in the other types of units, namely vertical reactors and cascade tank reactors. The unit was designed to process the butane-butylene cut (BBC) and part of the propane-propylene cut (PPC) from the G-43-107 cat cracker. The unit design includes provisions for controlled caustic washing of the feed and dehydration in an electric field. The authors present the basic data obtained in the three months of unit operation after startup, in comparison with the operating indexes of a sulfuric acid alkylation unit.

  11. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents

    PubMed Central

    2016-01-01

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  12. Low Temperature Activation of Supported Metathesis Catalysts by Organosilicon Reducing Agents.

    PubMed

    Mougel, Victor; Chan, Ka-Wing; Siddiqi, Georges; Kawakita, Kento; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi; Safonova, Olga; Copéret, Christophe

    2016-08-24

    Alkene metathesis is a widely and increasingly used reaction in academia and industry because of its efficiency in terms of atom economy and its wide applicability. This reaction is notably responsible for the production of several million tons of propene annually. Such industrial processes rely on inexpensive silica-supported tungsten oxide catalysts, which operate at high temperatures (>350 °C), in contrast with the mild room temperature reaction conditions typically used with the corresponding molecular alkene metathesis homogeneous catalysts. This large difference in the temperature requirements is generally thought to arise from the difficulty in generating active sites (carbenes or metallacyclobutanes) in the classical metal oxide catalysts and prevents broader applicability, notably with functionalized substrates. We report here a low temperature activation process of well-defined metal oxo surface species using organosilicon reductants, which generate a large amount of active species at only 70 °C (0.6 active sites/W). This high activity at low temperature broadens the scope of these catalysts to functionalized substrates. This activation process can also be applied to classical industrial catalysts. We provide evidence for the formation of a metallacyclopentane intermediate and propose how the active species are formed. PMID:27610418

  13. Polymorph selectivity of superconducting CuSe₂ through kinetic control of solid-state metathesis.

    PubMed

    Martinolich, Andrew J; Kurzman, Joshua A; Neilson, James R

    2015-03-25

    Rational preparation of materials by design is a major goal of inorganic, solid-state, and materials chemists alike. Oftentimes, the use of nonmetallurgical reactions (e.g., chalcogenide fluxes, hydrothermal syntheses, and in this case solid-state metathesis) alters the thermodynamic driving force of the reaction and allows new, refractory, or otherwise energetically unfavorable materials to form under softer conditions. Taking this a step further, alteration of a metathesis reaction pathway can result in either the formation of the equilibrium marcasite polymorph (by stringent exclusion of air) or the kinetically controlled formation of the high-pressure pyrite polymorph of CuSe2 (by exposure to air). From analysis of the reaction coordinate with in situ synchrotron X-ray diffraction and pair distribution function analysis as well as differential scanning calorimetry, it is clear that the air-exposed reaction proceeds via slight, endothermic rearrangements of crystalline intermediates to form pyrite, which is attributed to partial solvation of the reaction from atmospheric humidity. In contrast, the air-free reaction proceeds via a significant exothermic process to form marcasite. Decoupling the formation of NaCl from the formation of CuSe2 enables kinetic control to be exercised over the resulting polymorph of these superconducting metal dichalcogenides. PMID:25746853

  14. Highly Tactic Cyclic Polynorbornene: Stereoselective Ring Expansion Metathesis Polymerization of Norbornene Catalyzed by a New Tethered Tungsten-Alkylidene Catalyst.

    PubMed

    Gonsales, Stella A; Kubo, Tomohiro; Flint, Madison K; Abboud, Khalil A; Sumerlin, Brent S; Veige, Adam S

    2016-04-20

    The tungsten alkylidyne [(t)BuOCO]W≡C((t)Bu) (THF)2 (1) reacts with CO2, leading to complete cleavage of one C═O bond, followed by migratory insertion to generate the tungsten-oxo alkylidene 2. Complex 2 is the first catalyst to polymerize norbornene via ring expansion metathesis polymerization to yield highly cis-syndiotactic cyclic polynorbornene. PMID:27043711

  15. A stereoselective synthesis of (+)-physoperuvine using a tandem aza-Claisen rearrangement and ring closing metathesis reaction.

    PubMed

    Zaed, Ahmed M; Swift, Michael D; Sutherland, Andrew

    2009-07-01

    A stereoselective synthesis of (+)-physoperuvine, a tropane alkaloid from Physalis peruviana Linne has been developed using a one-pot tandem aza-Claisen rearrangement and ring closing metathesis reaction to form the key amino-substituted cycloheptene ring. PMID:19532981

  16. Single-Pass Catalytic Conversion of Syngas into Olefins via Methanol.

    PubMed

    Olsbye, Unni

    2016-06-20

    All together now: Combination in a single reactor of the catalysts for converting syngas into methanol and methanol into olefins was recently reported by Cheng et al. This approach considerably simplifies the catalytic conversion of natural gas. PMID:27213983

  17. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  18. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, Ronald

    1985-01-01

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  19. Organo-Lewis acid as cocatalyst for cationic homogenous metallocene Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.

  20. Supported iron nanoparticles as catalysts for sustainable production of lower olefins.

    PubMed

    Torres Galvis, Hirsa M; Bitter, Johannes H; Khare, Chaitanya B; Ruitenbeek, Matthijs; Dugulan, A Iulian; de Jong, Krijn P

    2012-02-17

    Lower olefins are key building blocks for the manufacture of plastics, cosmetics, and drugs. Traditionally, olefins with two to four carbons are produced by steam cracking of crude oil-derived naphtha, but there is a pressing need for alternative feedstocks and processes in view of supply limitations and of environmental issues. Although the Fischer-Tropsch synthesis has long offered a means to convert coal, biomass, and natural gas into hydrocarbon derivatives through the intermediacy of synthesis gas (a mixture of molecular hydrogen and carbon monoxide), selectivity toward lower olefins tends to be low. We report on the conversion of synthesis gas to C(2) through C(4) olefins with selectivity up to 60 weight percent, using catalysts that constitute iron nanoparticles (promoted by sulfur plus sodium) homogeneously dispersed on weakly interactive α-alumina or carbon nanofiber supports. PMID:22344440

  1. Ruthenium carbonyl catalyst supported on ceric oxide for preparation of olefins from synthesis gas

    DOEpatents

    Pierantozzi, R.

    1985-04-02

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  2. Preparation of olefins from synthesis gas using ruthenium supported on ceric oxide

    DOEpatents

    Pierantozzi, R.

    1985-04-09

    A catalyst comprising a ruthenium carbonyl compound deposited on a cerium oxide-containing support material provides for the selective synthesis of low molecular weight olefinic hydrocarbons from mixtures of hydrogen and carbon monoxide.

  3. Investigation of olefinic structures in class I resinites by isolation and characterization of soluble polylabdanoids

    SciTech Connect

    Clifford, D.J.; Botto, R.E.; Anderson, K.B.

    1996-10-01

    Resinites derived from labdatriene structures (Class I) are ubiquitous throughout the geosphere. A soluble polylabdanoid material has been isolated by sequential extraction with organic solvents. Solid- and liquid-state NMR spectroscopy, and Py-GC-MS, indicate that at least for immature resinites, the extractable polymer is representative of the insoluble, polylabdanoid material, which constitutes the bulk of most Class I resinites. With increasing maturity, the dominant chemical transformation that occurs in these materials is the {open_quotes}loss{close_quotes} of exomethylene structures and depletion of olefinic character from {approximately}two to {approximately}one olefin per monomer unit. To investigate the fate of olefinic structures and to determine the nature of the residual olefin distribution in these materials, two-dimensional NMR correlation spectroscopies (COSY and HMQC) and nuclear Overhauser experiments (NOESY) have been undertaken. Results from these analyses and their implications to the maturation of Class-I resinites will be discussed.

  4. Carboxylic acylating agents substituted with olefin polymers of high molecular weight mono-olefins, derivatives thereof, and fuels and lubricants containing same

    SciTech Connect

    Hayashi, K.

    1986-06-24

    A lubricant composition is described comprising a major amount of oil of lubricating viscosity and a minor amount of the reaction product of: (A) one or more alpha-beta olefinically unsaturated carboxylic reagents containing two to about 20 carbon atoms exclusive of the carboxyl-based groups with (B) one or more olefin polymers of at least 30 carbon atoms selected from the group consisting of (i) polymers of C/sub 12/-C/sub 30/ mono-olefins with the proviso that the polymers include polymers derived from ethylene and (ii) chlorinated or brominated analogs of (i); reacted with (II) one or more amines, one or more alcohols, or a mixture of one or more amines and/or one or more alcohols.

  5. TEMPO-Mediated Aza-Diels-Alder Reaction: Synthesis of Tetrahydropyridazines Using Ketohydrazones and Olefins.

    PubMed

    Yang, Xiu-Long; Peng, Xie-Xue; Chen, Fei; Han, Bing

    2016-05-01

    A novel, facile, and efficient method for the synthesis of tetrahydropyridazines by a one-pot tandem reaction of easily accessible ketohydrazones and olefins in the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) has been successfully developed. The reaction involves the initial generation of azoalkenes from direct oxidative dehydrogenation of ketohydrazones using TEMPO as the commercially available oxidant, followed by a subsequent aza-Diels-Alder reaction with olefins. PMID:27120574

  6. Ligand-Promoted C(sp(3) )-H Olefination en Route to Multi-functionalized Pyrazoles.

    PubMed

    Yang, Weibo; Ye, Shengqing; Schmidt, Yvonne; Stamos, Dean; Yu, Jin-Quan

    2016-05-17

    A Pd-catalyzed/N-heterocycle-directed C(sp(3) )-H olefination has been developed. The monoprotected amino acid ligand (MPAA) is found to significantly promote Pd-catalyzed C(sp(3) )-H olefination for the first time. Cu(OAc)2 instead of Ag(+) salts are used as the terminal oxidant. This reaction provides a useful method for the synthesis of alkylated pyrazoles. PMID:26991450

  7. On the nature of the olefination reaction involving ditungsten hexaalkoxides and aldehydes or ketones

    SciTech Connect

    Chisholm, M.H.; Huffman, J.C.; Lucas, E.A.; Sousa, A.; Streib, W.E.

    1992-03-25

    Reductive coupling of aldehydes and ketones to olefins under the action of ditungsten hexaalkoxides was investigated. In these reactions, reductive cleavage of the aldehyde or ketone carbonyl is followed by formation of the olefinic C-C bond and breaking of the carbonyl C-O bond of the second aldehyde or ketone. Observations concerning the initial C-O bond cleavage and subsequent C-C bond formation are presented. 10 refs., 4 figs.

  8. Reactions of selected 1-olefins and ethanol added during the Fischer-Tropsch synthesis: Topical report

    SciTech Connect

    Hanlon, R.T.; Satterfield, C.N.

    1987-10-30

    The effects of addition during synthesis of C/sub 2/, C/sub 4/, C/sub 6/, C/sub 10/ or C/sub 20/, normal 1-olefins, was studied in a continuous well-stirred liquid phase reactor. Studies were at 248/sup 0/C and 0.78 to 1.48 MPa, using a reduced fused magnetite catalyst containing potassium. Incorporation of these olefins into growing chains could be detected, but was relatively minor. Instead the olefin was hydrogenated to the corresponding paraffin or isomerized to the 2-olefin. Excluding ethylene, which is unusually reactive, the reactivity of the olefins increased with molecular weight. Disappearance of all added species was much less at low synthesis conversions than at high, attributed to competitive adsorption with CO. The reactions of added ethanol were also studied. Ethanol or ethylene decreased the hydrogenation capabilities of the catalyst as reflected in decreased formation of CH/sub 4/ and increased olefin/paraffin ratio of the products. Neither addition affected the chain growth probability, ..cap alpha... 21 refs., 11 figs., 5 tabs.

  9. A Metal-Free Protocol for Aminofunctionalization of Olefins Using TsNBr2.

    PubMed

    Rajbongshi, Kamal Krishna; Saikia, Indranirekha; Chanu, Loukrakpam Dineshwori; Roy, Subhasish; Phukan, Prodeep

    2016-07-01

    N,N-Dibromo-p-toluene sulfonamide (TsNBr2) has been found to be an effective reagent for various aminofunctionalization reactions. This reagent behaves both as an electrophilic bromine source as well as amine to react with olefins under different conditions to yield aminoether, imidazoline, diamine and amino bromine. The reaction proceeds rapidly under mild conditions with high regioselectivity. Olefins react with TsNBr2 in moist THF to form δ-amino ether at room temperature. Treatment of TsNBr2 with olefin in MeCN at room temperature produced imidazoline in high yield. Further modification of the reaction condition resulted in the development of a one-step procedure for the synthesis of N-acetyl,N'-tosyl diamine derivatives directly from olefin. When the olefin was treated with 2.4 mol equiv of TsNBr2 in the presence of K2CO3, N,N'-ditosyl diamine derivative was obtained in moderate yield. Instantaneous formation of aminobromine was observed when an olefin was treated with the reagent in dry CH2Cl2 at room temperature. PMID:27269517

  10. Regioselectivity of radical attacks on substituted olefins. Application of the SCD model

    SciTech Connect

    Shaik, S.S. ); Canadell, E. )

    1990-02-14

    The SCD model is used to derive regiochemical trends in radical addition to olefins. Regiochemistry is discussed by appeal to two fundamental properties of the radical and the olefin. The first factor is the relative spin density in the {sup 3}{pi}{pi}* state of the olefin. Thus, radical attack is directed toward the olefinic carbon which possesses the highest spin density. The second factor is the relative bond strengths of the radical to the olefinic carbons. This factor directs the regiochemistry toward the olefinic terminus which forms the strongest bond with the radical. When the two effects join up, regioselectivity will be large, e.g., for CH{sub 2}=CHX (X = NR{sub 2}, CR, Cl, CN, Ph). When the two effects oppose one another, regioselectivity will be smaller, and regioselectivity crossovers are expected, e.g., for CF{sub 2}=CHF. The normal regiochemistry is shown to coincide with the spin density rule which makes identical predictions to the HOMO rule.

  11. Low-temperature synthesis of actinide tetraborides by solid-state metathesis reactions

    DOEpatents

    Lupinetti, Anthony J.; Garcia, Eduardo; Abney, Kent D.

    2004-12-14

    The synthesis of actinide tetraborides including uranium tetraboride (UB.sub.4), plutonium tetraboride (PuB.sub.4) and thorium tetraboride (ThB.sub.4) by a solid-state metathesis reaction are demonstrated. The present method significantly lowers the temperature required to .ltoreq.850.degree. C. As an example, when UCl.sub.4 is reacted with an excess of MgB.sub.2, at 850.degree. C., crystalline UB.sub.4 is formed. Powder X-ray diffraction and ICP-AES data support the reduction of UCl.sub.3 as the initial step in the reaction. The UB.sub.4 product is purified by washing water and drying.

  12. Ring-opening metathesis polymerization-based recyclable magnetic acylation reagents.

    PubMed

    Kainz, Quirin M; Linhardt, Roland; Maity, Pradip K; Hanson, Paul R; Reiser, Oliver

    2013-04-01

    An operationally simple method for the acylation of amines utilizing carbon-coated metal nanoparticles as recyclable supports is reported. Highly magnetic carbon-coated cobalt (Co/C) and iron (Fe/C) nanobeads were functionalized with a norbornene tag (Nb-tag) through a "click" reaction followed by surface activation employing Grubbs-II catalyst and subsequent grafting of acylated N-hydroxysuccinimide ROMPgels (ROMP=ring-opening metathesis polymerization). The high loading (up to 2.6 mmolg(-1) ) hybrid material was applied in the acylation of various primary and secondary amines. The products were isolated in high yields (86-99%) and excellent purities (all >95 % by NMR spectroscopy) after rapid magnetic decantation and simple evaporation of the solvents. The spent resins were successfully re-acylated by acid chlorides, anhydrides, and carboxylic acids and reused for up to five consecutive cycles without considerable loss of activity. PMID:23427021

  13. Molecular Motion of the Junction Points in Model Networks Prepared by Acyclic Triene Metathesis.

    PubMed

    da Silva, Lucas Caire; Bowers, Clifford R; Graf, Robert; Wagener, Kenneth B

    2016-03-01

    The junction dynamics in a selectively deuterated model polymer network containing junctions on every 21st chain carbon is studied by solid state (2) H echo NMR. Polymer networks are prepared via acyclic triene metathesis of deuteron-labeled symmetric trienes with deuteron probes precisely placed at the alpha carbon relative to the junction point. The effect of decreasing the cross-link density on the junction dynamics is studied by introduction of polybutadiene chains in-between junctions. The networks are characterized by swelling, gel content, and solid state (1) H MAS NMR. Line shape analysis of the (2) H quadrupolar echo spectra reveals that the degree of motion anisotropy and the distribution of motion correlation times depend on the cross-link density and structural heterogeneity of the polymer networks. A detailed model of the junction dynamics at different temperatures is proposed and explained in terms of the intermolecular cooperativity in densely-packed systems. PMID:26787457

  14. C18:1 Methyl Ester Metathesis in [bmim][X] Type Ionic Liquids

    PubMed Central

    Thomas, Priya A.; Marvey, Bassie B.

    2009-01-01

    The efficacy of [bmim][X] ionic liquids (ILs) (X = PF6−, BF4− and NTf2−) as reaction media for methyl oleate metathesis was compared with that of conventional organic solvents (PhCl, PhMe, DCM and DCE) using the well-defined first and second generation Grubbs precatalysts, RuCl2(PCy3)(L)(=CHPh) (L = PCy3 or H2IMes). Best catalytic performance, with excellent selectivity (>98%) at moderate reaction temperatures, was achieved in [bmim][X] ILs compared to conventional solvents. The effects of anion, reaction temperature, solvent polarity, solvent viscosity, and ligand-anion interaction on the reaction are also addressed. PMID:20087475

  15. Iterative Reductive Aromatization/Ring-Closing Metathesis Strategy toward the Synthesis of Strained Aromatic Belts.

    PubMed

    Golder, Matthew R; Colwell, Curtis E; Wong, Bryan M; Zakharov, Lev N; Zhen, Jingxin; Jasti, Ramesh

    2016-05-25

    The construction of all sp(2)-hybridized molecular belts has been an ongoing challenge in the chemistry community for decades. Despite numerous attempts, these double-stranded macrocycles remain outstanding synthetic challenges. Prior approaches have relied on late-state oxidations and/or acid-catalyzed processes that have been incapable of accessing the envisaged targets. Herein, we describe the development of an iterative reductive aromatization/ring-closing metathesis approach. Successful syntheses of nanohoop targets containing benzo[k]tetraphene and dibenzo[c,m]pentaphene moieties not only provide proof of principle that aromatic belts can be derived by this new strategy but also represent some of the largest aromatic belt fragments reported to date. PMID:27133789

  16. Synthesis of Carbazole Alkaloids by Ring-Closing Metathesis and Ring Rearrangement-Aromatization.

    PubMed

    Dhara, Kalyan; Mandal, Tirtha; Das, Joydeb; Dash, Jyotirmayee

    2015-12-21

    Aprocess for the assembly of carbazole alkaloids has been developed on the basis of ring-closing metathesis (RCM) and ringrearrangement-aromatization (RRA) as the key steps. This method is based on allyl Grignard addition to isatin derivatives to provide smooth access to 2,2-diallyl 3-oxindole derivatives through a 1,2-allyl shift. The diallyl derivatives were used as RCM precursors to afford a novel class of spirocyclopentene-3-oxindole derivatives, which underwent a novel RRA reaction to afford carbazole derivatives. The synthetic sequence to carbazoles was shortened by combining the RCM and RRA steps in an orthogonal tandem catalytic process. The utility of this methodology was further demonstrated by the straightforward synthesis of carbazole alkaloids, including amukonal derivative, girinimbilol, heptaphylline, and bis(2-hydroxy-3-methylcarbazole). PMID:26768698

  17. Statistical Ring Opening Metathesis Copolymerization of Norbornene and Cyclopentene by Grubbs' 1st-Generation Catalyst.

    PubMed

    Nikovia, Christiana; Maroudas, Andreas-Philippos; Goulis, Panagiotis; Tzimis, Dionysios; Paraskevopoulou, Patrina; Pitsikalis, Marinos

    2015-01-01

    Statistical copolymers of norbornene (NBE) with cyclopentene (CP) were prepared by ring-opening metathesis polymerization, employing the 1st-generation Grubbs' catalyst, in the presence or absence of triphenylphosphine, PPh₃. The reactivity ratios were estimated using the Finemann-Ross, inverted Finemann-Ross, and Kelen-Tüdos graphical methods, along with the computer program COPOINT, which evaluates the parameters of binary copolymerizations from comonomer/copolymer composition data by integrating a given copolymerization equation in its differential form. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the mean sequence length, which were derived using the monomer reactivity ratios. The kinetics of thermal decomposition of the copolymers along with the respective homopolymers was studied by thermogravimetric analysis within the framework of the Ozawa-Flynn-Wall and Kissinger methodologies. Finally, the effect of triphenylphosphine on the kinetics of copolymerization, the reactivity ratios, and the kinetics of thermal decomposition were examined. PMID:26343620

  18. Photoluminescence study of Tb3+ doped CaCO3 synthesized by solid state metathesis

    NASA Astrophysics Data System (ADS)

    Muke, A. M.; Ugemuge, N. S.; Moharil, S. V.

    2016-05-01

    Conventional solid-state reaction or simple solution precipitation techniques suffer from several limitations, i.e. a high processing temperature, relatively high preparation cost and more time of preparation, highly complicated synthesis, in-stoichiometric compositions and poor crystallinity. Preparation of inorganic phosphors by microwave assisted Solid state metathesis is one of the superior methods of synthesis. Time duration required for synthesis by microwave assisted synthesis is relatively low. The required reaction temperature can be attempted using domestic microwave oven with consumption of relatively low energy. CaCO3 is one of the most abundant biological minerals in nature and has found many important applications in industry, such as pigments, paper makings, plastics, rubbers, and so on.

  19. From Resting State to the Steady State: Mechanistic Studies of Ene-Yne Metathesis Promoted by the Hoveyda Complex.

    PubMed

    Griffiths, Justin R; Keister, Jerome B; Diver, Steven T

    2016-04-27

    The kinetics of intermolecular ene-yne metathesis (EYM) with the Hoveyda precatalyst (Ru1) has been studied. For 1-hexene metathesis with 2-benzoyloxy-3-butyne, the experimental rate law was determined to be first-order in 1-hexene (0.3-4 M), first-order in initial catalyst concentration, and zero-order for the terminal alkyne. At low catalyst concentrations (0.1 mM), the rate of precatalyst initiation was observed by UV-vis and the alkyne disappearance was observed by in situ FT-IR. Comparison of the rate of precatalyst initiation and the rate of EYM shows that a low, steady-state concentration of active catalyst is rapidly produced. Application of steady-state conditions to the carbene intermediates provided a rate treatment that fit the experimental rate law. Starting from a ruthenium alkylidene complex, competition between 2-isopropoxystyrene and 1-hexene gave a mixture of 2-isopropoxyarylidene and pentylidene species, which were trappable by the Buchner reaction. By varying the relative concentration of these alkenes, 2-isopropoxystyrene was found to be 80 times more effective than 1-hexene in production of their respective Ru complexes. Buchner-trapping of the initiation of Ru1 with excess 1-hexene after 50% loss of Ru1 gave 99% of the Buchner-trapping product derived from precatalyst Ru1. For the initiation process, this shows that there is an alkene-dependent loss of precatalyst Ru1, but this does not directly produce the active catalyst. A faster initiating precatalyst for alkene metathesis gave similar rates of EYM. Buchner-trapping of ene-yne metathesis failed to deliver any products derived from Buchner insertion, consistent with rapid decomposition of carbene intermediates under ene-yne conditions. An internal alkyne, 1,4-diacetoxy-2-butyne, was found to obey a different rate law. Finally, the second-order rate constant for ene-yne metathesis was compared to that previously determined by the Grubbs second-generation carbene complex: Ru1 was found to

  20. Thermal transitions and barrier properties of olefinic nanocomposites.

    SciTech Connect

    Chaiko, D. J.; Leyva, A. A.; Chemical Engineering

    2005-01-11

    Differential scanning calorimetry (DSC) was used to study the thermal transitions of smectite organoclays and their dispersions in olefinic systems, which included paraffinic waxes and polyethylene. The organoclays, with treatment on both the basal and edge surfaces, produced nanocscale dispersions without the aid of external coupling agents or compatibilizers. In addition to DSC measurements, the nanocomposites were further characterized using X-ray diffraction and oxygen transmission. The DSC measurements indicated that a clay/wax nanocomposite phase was generated with melt/freeze transition temperatures that were different from those of the individual components, while X-ray data indicated that the nanocomposite phase was in equilibrium with an intercalate phase. Barrier improvement of over 300x was observed and ascribed to a tortuosity effect resulting from dispersed clay platelets having a high aspect ratio and strong cohesion between the wax and the organoclay surface. Available data indicate that the barrier enhancement decreases as the difference between the freezing points of the organoclay and the wax widens. The cause of poor barrier performance in polyolefin systems is traced to the large difference in recrystallization temperatures, such that when the polymer begins to crystallize the surface of the organoclay is still in a liquid state, which leads to phase separation.

  1. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation

    PubMed Central

    Srivastava, Poonam; Yang, Hao; Ellis-Guardiola, Ken; Lewis, Jared C.

    2015-01-01

    Artificial metalloenzymes (ArMs) formed by incorporating synthetic metal catalysts into protein scaffolds have the potential to impart to chemical reactions selectivity that would be difficult to achieve using metal catalysts alone. In this work, we covalently link an alkyne-substituted dirhodium catalyst to a prolyl oligopeptidase containing a genetically encoded L-4-azidophenylalanine residue to create an ArM that catalyses olefin cyclopropanation. Scaffold mutagenesis is then used to improve the enantioselectivity of this reaction, and cyclopropanation of a range of styrenes and donor–acceptor carbene precursors were accepted. The ArM reduces the formation of byproducts, including those resulting from the reaction of dirhodium–carbene intermediates with water. This shows that an ArM can improve the substrate specificity of a catalyst and, for the first time, the water tolerance of a metal-catalysed reaction. Given the diversity of reactions catalysed by dirhodium complexes, we anticipate that dirhodium ArMs will provide many unique opportunities for selective catalysis. PMID:26206238

  2. Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.

    PubMed

    Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi

    2016-04-18

    Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. PMID:26928740

  3. Synthesis and polymerization of renewable 1,3-cyclohexadiene using metathesis, isomerization, and cascade reactions with late-metal catalysts.

    PubMed

    Mathers, Robert T; Shreve, Michael J; Meyler, Etan; Damodaran, Krishnan; Iwig, David F; Kelley, Diana J

    2011-09-01

    Synthesis and subsequent polymerization of renewable 1,3-cyclohexadiene (1,3-CHD) from plant oils is reported via metathesis and isomerization reactions. The metathesis reaction required no plant oil purification, minimal catalyst loading, no organic solvents, and simple product recovery by distillation. After treating soybean oil with a ruthenium metathesis catalyst, the resulting 1,4-cyclohexadiene (1,4-CHD) was isomerized with RuHCl(CO)(PPh3)3. The isomerization reaction was conducted for 1 h in neat 1,4-CHD with [1,4-CHD]/[RuHCl(CO)(PPh3)3] ratios as high as 5000. The isomerization and subsequent polymerization of the renewable 1,3-CHD was examined as a two-step sequence and as a one-step cascade reaction. The polymerization was catalyzed with nickel(II)acetylacetonate/methaluminoxane in neat monomer, hydrogenated d-limonene, and toluene. The resulting polymers were characterized by FTIR, DSC, and TGA. PMID:21648003

  4. Terminal Olefin (1-Alkene) Biosynthesis by a Novel P450 Fatty Acid Decarboxylase from Jeotgalicoccus Species ▿ †

    PubMed Central

    Rude, Mathew A.; Baron, Tarah S.; Brubaker, Shane; Alibhai, Murtaza; Del Cardayre, Stephen B.; Schirmer, Andreas

    2011-01-01

    Terminal olefins (1-alkenes) are natural products that have important industrial applications as both fuels and chemicals. However, their biosynthesis has been largely unexplored. We describe a group of bacteria, Jeotgalicoccus spp., which synthesize terminal olefins, in particular 18-methyl-1-nonadecene and 17-methyl-1-nonadecene. These olefins are derived from intermediates of fatty acid biosynthesis, and the key enzyme in Jeotgalicoccus sp. ATCC 8456 is a terminal olefin-forming fatty acid decarboxylase. This enzyme, Jeotgalicoccus sp. OleT (OleTJE), was identified by purification from cell lysates, and its encoding gene was identified from a draft genome sequence of Jeotgalicoccus sp. ATCC 8456 using reverse genetics. Heterologous expression of the identified gene conferred olefin biosynthesis to Escherichia coli. OleTJE is a P450 from the cyp152 family, which includes bacterial fatty acid hydroxylases. Some cyp152 P450 enzymes have the ability to decarboxylate and to hydroxylate fatty acids (in α- and/or β-position), suggesting a common reaction intermediate in their catalytic mechanism and specific structural determinants that favor one reaction over the other. The discovery of these terminal olefin-forming P450 enzymes represents a third biosynthetic pathway (in addition to alkane and long-chain olefin biosynthesis) to convert fatty acid intermediates into hydrocarbons. Olefin-forming fatty acid decarboxylation is a novel reaction that can now be added to the catalytic repertoire of the versatile cytochrome P450 enzyme family. PMID:21216900

  5. Production of light olefins by catalytic conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6wt.% lanthanum.

    PubMed

    Huang, Weiwei; Gong, Feiyan; Fan, Minghui; Zhai, Qi; Hong, Chenggui; Li, Quanxin

    2012-10-01

    Catalytic conversion of rice husk, sawdust, sugarcane bagasse, cellulose, hemicellulose and lignin into olefins was performed with HZSM-5 containing 6 wt.% lanthanum. The olefins yields for different feedstocks decreased in the order: cellulose>hemicellulose>sugarcane bagasse>rice husk>sawdust>lignin. Biomass containing higher content of cellulose or hemicellulose produced more olefins than feedstocks with higher content of lignin. Among the biomass types, sugarcane bagasse provided the highest olefin yield of 0.12 kg olefins/(kg dry biomass) and carbon yield of 21.2C-mol%. Temperature, residence time and the catalyst/feed ratio influenced olefin yield and selectivity. While the HZSM-5 zeolite was catalytically active, the incorporation of lanthanum at 2.9, and 6.0 wt.% increased the production of olefins from rice husk by 15.6% and 26.5%, respectively. The conversion of biomass to light olefins potentially provides an alternative and sustainable route for production of the key petrochemicals. PMID:22858493

  6. 78 FR 49749 - Williams Olefins Feedstock Pipelines, L.L.C.; Notice of Petition for Declaratory Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Williams Olefins Feedstock Pipelines, L.L.C.; Notice of Petition for... Practices and Procedure, 18 CFR 385.207(a)(2)(2012), Williams Olefins Feedstock Pipelines, L.L.C., filed...

  7. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL... Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling fluid used to determine the drilling fluid sediment toxicity ratio and compliance with the BAT sediment toxicity...

  8. Resonant infrared pulsed laser deposition of cyclic olefin copolymer films

    SciTech Connect

    Singaravelu, Senthil R.; Klopf, John M.; Schriver, Kenneth E.; Park, HyeKyoung; Kelley, Michael J.; Haglund, Jr., Richard F.

    2013-08-01

    Barrier materials on thin-film organic optoelectronic devices inhibit the uptake of water, oxygen, or environmental contaminants, and fabricating them is a major challenge. By definition, these barrier layers must be insoluble, so the usual routes to polymer- or organic-film deposition by spin coating are not problematic. In this paper, we report comparative studies of pulsed laser deposition of cyclic olefin copolymer (COC), an excellent moisture barrier and a model system for a larger class of protective materials that are potentially useful in organic electronic devices, such as organic light-emitting diodes (OLEDs). Thin films of COC were deposited by resonant and nonresonant infrared pulsed laser ablation of solid COC targets, using a free-electron laser tuned to the 3.43 μm C–H stretch of the COC, and a high-intensity nanosecond Q-switched laser operated at 1064 nm. The ablation craters and deposited films were characterized by scanning-electron microscopy, Fourier-transform infrared spectrometry, atomic-force microscopy, high-resolution optical microscopy, and surface profilometry. Thermal-diffusion calculations were performed to determine the temperature rise induced in the film at the C–H resonant wavelength. The results show that resonant infrared pulsed laser deposition (RIR-PLD) is an effective, low-temperature thin-film deposition technique that leads to evaporation and deposition of intact molecules in homogeneous, smooth films. Nonresonant PLD, on the other hand, leads to photothermal damage, degradation of the COC polymers, and to the deposition only of particulates.

  9. Resonant infrared pulsed laser deposition of cyclic olefin copolymer films

    NASA Astrophysics Data System (ADS)

    Singaravelu, S.; Klopf, J. M.; Schriver, K. E.; Park, H. K.; Kelley, M. J.; Haglund, R. F.

    2014-03-01

    Barrier materials on thin-film organic optoelectronic devices inhibit the uptake of water, oxygen, or environmental contaminants, and fabricating them is a major challenge. By definition, these barrier layers must be insoluble, so the usual routes to polymer- or organic-film deposition by spin coating are not problematic. In this paper, we report comparative studies of pulsed laser deposition of cyclic olefin copolymer (COC), an excellent moisture barrier and a model system for a larger class of protective materials that are potentially useful in organic electronic devices, such as organic light-emitting diodes (OLEDs). Thin films of COC were deposited by resonant and nonresonant infrared pulsed laser ablation of solid COC targets, using a free-electron laser tuned to the 3.43 μm C-H stretch of the COC, and a high-intensity nanosecond Q-switched laser operated at 1064 nm. The ablation craters and deposited films were characterized by scanning-electron microscopy, Fourier-transform infrared spectrometry, atomic-force microscopy, high-resolution optical microscopy, and surface profilometry. Thermal-diffusion calculations were performed to determine the temperature rise induced in the film at the C-H resonant wavelength. The results show that resonant infrared pulsed laser deposition (RIR-PLD) is an effective, low-temperature thin-film deposition technique that leads to evaporation and deposition of intact molecules in homogeneous, smooth films. Nonresonant PLD, on the other hand, leads to photothermal damage, degradation of the COC polymers, and to the deposition only of particulates.

  10. Phosphine-Catalyzed [4+2] Annulations of 2-Alkylallenoates and Olefins: Synthesis of Multisubstituted Cyclohexenes

    PubMed Central

    Tran, Yang S.; Martin, Tioga J.

    2014-01-01

    From our investigations on phosphine-catalyzed [4+2] annulations between α-alkyl allenoates and activated olefins for the synthesis of cyclohexenes, we discovered a hexamethylphosphorous triamide (HMPT)-catalyzed [4+2] reaction between α-alkyl allenoates 1 and arylidene malonates or arylidene cyanoacetates 2 that provides highly functionalized cyclohexenes 3 and 4 in synthetically useful yields (30–89%), with moderate to exclusive regioselectivity, and reasonable diastereoselectivity. Interestingly, the [4+2] annulations between the a-alkyl allenoates 1 and the olefins 2 manifested a polarity inversion of the 1,4-dipole synthon 1, depending on the structure of the olefin, thus providing cyclohexenes 3 exclusively when using arylidene cyanoacetates. The polarity inversion of α-alkyl allenoates from a 1,4-dipole A to B under phosphine catalysis can be explained by an equilibrium between the phosphonium dienolate C and the phosphorous ylide D. PMID:21739609

  11. Palladium-Catalyzed Allylic C-H Bond Functionalization of Olefins

    NASA Astrophysics Data System (ADS)

    Liu, Guosheng; Wu, Yichen

    Transition metal-mediated carbon-hydrogen bond cleavage and functionalization is a mechanistically interesting and synthetically attractive process. One of the important cases is the removal of a allylic hydrogen from an olefin by a PdII salt to yield a π-allylpalladium complex, followed by nucleophilic attack to efficient produce allylic derivatives. In contrast to the well-known allylic acetoxylation of cyclohexene, the reaction of open-chain olefins is fairly poor until recent several years. Some palladium catalytic systems have been reported to achieve allylic C-H functionalization, including acetoxylation, amination and alkylation of terminal alkenes. In the most of cases, ligand is crucial to the success of the transformation. This review surveys the recent development of palladium-catalyzed allylic C-H functionalziation of alkenes. These results promise a significant increase in the scope of olefin transformation.

  12. Comparative toxicity of various ozonized olefins to bacteria suspended in air

    PubMed Central

    Dark, F. A.; Nash, T.

    1970-01-01

    Air containing olefin vapour was treated with known amounts of ozone simulating natural concentrations. The bactericidal effect of the mixture was tested using microthreads sprayed with washed cultures of Escherichia coli var. communis or Micrococcus albus, aerosol strain. With 20 different olefins a wide range of activity was found, those in which the double bond formed part of a ring being the most bactericidal; petrol vapour was about as active as the average open-chain olefin. The two organisms behaved similarly at the experimental relative humidity of 80%. The estimated amount of bactericidal substance present was only about one hundredth of that required to give the same kill with a `conventional' air disinfectant; a simple physical explanation is proposed for this enhanced effect. PMID:4914088

  13. Olefins from biomass feedstocks: catalytic ester decarbonylation and tandem Heck-type coupling.

    PubMed

    John, Alex; Hogan, Levi T; Hillmyer, Marc A; Tolman, William B

    2015-02-14

    With the goal of avoiding the need for anhydride additives, the catalytic decarbonylation of p-nitrophenylesters of aliphatic carboxylic acids to their corresponding olefins, including commodity monomers like styrene and acrylates, has been developed. The reaction is catalyzed by palladium complexes in the absence of added ligands and is promoted by alkali/alkaline-earth metal halides. Combination of catalytic decarbonylation and Heck-type coupling with aryl esters in a single pot process demonstrates the viability of employing a carboxylic acid as a "masked olefin" in synthetic processes. PMID:25579879

  14. A ferroelectric olefin-copper(I) organometallic polymer with flexible organic ligand (R)-MbVBP

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Xi; Xing, Zheng; Chen, Li-Zhuang; Han, Guang-Fan

    2015-07-01

    Hydrothermal treatment of (R)-2-methyl-1,4-bis(4-vinylbenzyl)piperazine [(R)-MbVBP] and CuCl afforded a novel olefin-copper(I) coordination compound. Introducing the flexible ligand (R)-MbVBP allowed the olefin-copper(I) organometallic compound to crystallize in a polar point group P21. The compound was ferroelectric, and its electric hysteresis loop showed a remnant polarization (Pr) of 0.13-0.32 μC cm-2 and a coercive field (Ec) of 3.5-11 kV cm-1.

  15. Singlet biradical{yields}singlet zwitterion optical transition in a twisted olefin

    SciTech Connect

    Piotrowiak, P.; Strati, G.; Smirnov, S.N.; Warman, J.M.; Schuddeboom, W.

    1996-09-18

    We report the first direct observation of the singlet biradical $YLD singlet zwitterion transition in a twisted olefin, biphenanthrenylidene. Biphenanthrenylidene (full name, bi-4H-cyclopenta[def]phenanthren-4-ylidene, abbreviated as BPH) is an analogue of tetraphenylethylene (TPE) and stilbene, both of which are the favorite models of photoisomerization reactions. The investigations have been focusing on the dynamics of the twisting motion of the double bond which leads to decoupling of the two halves of the olefin and results in the formation of the D{sub 2d} 90{degree}-twisted zwitterionic or biradical excited state. 13 refs., 2 figs., 1 tab.

  16. Synthesis of unsaturated organotrifluoroborates via Wittig and Horner-Wadsworth-Emmons olefination.

    PubMed

    Molander, Gary A; Figueroa, Ruth

    2006-08-01

    The stereoselective synthesis of unsaturated organotrifluoroborates by using the Wittig and Horner-Wadsworth-Emmons olefination is described. These reactions were general for both alkyl- and aryltrifluoroborates. The synthesis of di- and trisubstituted olefins was achieved by using formyl- and acetyl-substituted organotrifluoroborates. The products were isolated in moderate to excellent yield. The Wittig reaction with nonstabilized ylides was performed under salt free conditions in most cases to obtain the Z-isomer. The E-isomer was accessed by using preformed stabilized ylides. The Horner-Wadsworth-Emmons reaction also gave the E-isomer as expected. PMID:16872197

  17. Synthesis of molybdenum nitrido complexes for triple-bond metathesis of alkynes and nitriles.

    SciTech Connect

    Wiedner, E. S.; Gallagher, K. J.; Johnson, M. A.; Kampf, J. W.

    2011-06-04

    Complexes of the type N {triple_bond} Mo(OR){sub 3} (R = tertiary alkyl, tertiary silyl, bulky aryl) have been synthesized in the search for molybdenum-based nitrile-alkyne cross-metathesis (NACM) catalysts. Protonolysis of known N {triple_bond} Mo(NMe{sub 2}){sub 3} led to the formation of N {triple_bond} Mo(O-2,6-{sup i}Pr{sub 2}C{sub 6}H{sub 3}){sub 3}(NHMe{sub 2}) (12), N {triple_bond} Mo(OSiPh{sub 3}){sub 3}(NHMe{sub 2}) (5-NHMe{sub 2}), and N {triple_bond} Mo(OCPh{sub 2}Me){sub 3}(NHMe{sub 2}) (17-NHMe{sub 2}). The X-ray structure of 12 revealed an NHMe{sub 2} ligand bound cis to the nitrido ligand, while 5-NHMe{sub 2} possessed an NHMe{sub 2} bound trans to the nitride ligand. Consequently, 17-NHMe{sub 2} readily lost its amine ligand to form N {triple_bond} Mo(OCPh{sub 2}Me){sub 3} (17), while 12 and 5-NHMe{sub 2} retained their amine ligands in solution. Starting from bulkier tris-anilide complexes, N {triple_bond} Mo(N[R]Ar){sub 3} (R = isopropyl, tert-butyl; Ar = 3,5-dimethylphenyl) allowed for the formation of base-free complexes N {triple_bond} Mo(OSiPh3)3 (5) and N {triple_bond} Mo(OSiPh{sub 2}tBu){sub 3} (16). Achievement of a NACM cycle requires the nitride complex to react with alkynes to form alkylidyne complexes; therefore the alkyne cross-metathesis (ACM) activity of the complexes was tested. Complex 5 was found to be an efficient catalyst for the ACM of 1-phenyl-1-butyne at room temperature. Complexes 12 and 5-NHMe{sub 2} were also active for ACM at 75 C, while 17-NHMe{sub 2} and 16 did not show ACM activity. Only 5 proved to be active for the NACM of anisonitrile, which is a reactive substrate in NACM catalyzed by tungsten. NACM with 5 required a reaction temperature of 180 C in order to initiate the requisite alkylidyne-to-nitride conversion, with slightly more than two turnovers achieved prior to catalyst deactivation. Known molybdenum nitrido complexes were screened for NACM activity under similar conditions, and only N {triple_bond} Mo

  18. Molybdenum Imido Alkylidene Metathesis Catalysts that Contain Electron Withdrawing Biphenolates or Binaphtholates

    PubMed Central

    Singh, Rojendra; Czekelius, Constantin; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have prepared new Mo(NR)(CHCMe2Ph)(diolate) complexes (R = 2,6-i-Pr2C6H3, 2,6-Me2C6H3, 1-Adamantyl, or 2-CF3C6H4) that contain relatively electron-withdrawing binaphtholate (3,3′-bis-(9-anthracenyl), 3,3′-bispentafluorophenyl, or 3,3′-bis(3,5-bis(trifluoromethyl)phenyl) or biphenolate (3,3′-di-tert-butyl-5,5′-bistrifluoromethyl-6,6′-dimethyl-1,1′-biphenyl-2,2′-diolate) ligands. We also have prepared new monomeric Mo(NR)(CHCMe2Ph)(2,5-dimethylpyrrolide)2 complexes and have treated them with biphenols or binaphthols in order to prepare several Mo(NR)(CHCMe2Ph)(diolate) species. In one case the new Mo(NR)(CHCMe2Ph)(diolate) complexes could be prepared only through reaction of a binaphthol [3,3′-bis(pentafluorophenyl)binaphthol] with a bis(2,5-dimethylpyrrolide) complex. The pyrrolide approach can be employed either to isolate catalysts on a preparative scale or to generate catalysts in situ. Several simple preliminary ring-closing metathesis reactions show that the new complexes are catalytically competent. PMID:18953421

  19. Molybdenum Imido Alkylidene Metathesis Catalysts that Contain Electron Withdrawing Biphenolates or Binaphtholates.

    PubMed

    Singh, Rojendra; Czekelius, Constantin; Schrock, Richard R; Müller, Peter; Hoveyda, Amir H

    2007-01-01

    We have prepared new Mo(NR)(CHCMe(2)Ph)(diolate) complexes (R = 2,6-i-Pr(2)C(6)H(3), 2,6-Me(2)C(6)H(3), 1-Adamantyl, or 2-CF(3)C(6)H(4)) that contain relatively electron-withdrawing binaphtholate (3,3'-bis-(9-anthracenyl), 3,3'-bispentafluorophenyl, or 3,3'-bis(3,5-bis(trifluoromethyl)phenyl) or biphenolate (3,3'-di-tert-butyl-5,5'-bistrifluoromethyl-6,6'-dimethyl-1,1'-biphenyl-2,2'-diolate) ligands. We also have prepared new monomeric Mo(NR)(CHCMe(2)Ph)(2,5-dimethylpyrrolide)(2) complexes and have treated them with biphenols or binaphthols in order to prepare several Mo(NR)(CHCMe(2)Ph)(diolate) species. In one case the new Mo(NR)(CHCMe(2)Ph)(diolate) complexes could be prepared only through reaction of a binaphthol [3,3'-bis(pentafluorophenyl)binaphthol] with a bis(2,5-dimethylpyrrolide) complex. The pyrrolide approach can be employed either to isolate catalysts on a preparative scale or to generate catalysts in situ. Several simple preliminary ring-closing metathesis reactions show that the new complexes are catalytically competent. PMID:18953421

  20. Rapid solid-state metathesis route to transition-metal doped titanias

    NASA Astrophysics Data System (ADS)

    Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G.

    2015-12-01

    Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M-TiO2). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M-TiO2 samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganese doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO2 was observed in all cases. The M-TiO2 samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M-TiO2 powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.

  1. Fabrication of supramolecular semiconductor block copolymers by ring-opening metathesis polymerization.

    PubMed

    Elacqua, Elizabeth; Weck, Marcus

    2015-05-01

    ω-Telechelic poly(p-phenylene vinylene) species (PPVs) are prepared by living ring-opening metathesis polymerization of a [2.2]paracyclophane-1,9-diene in the presence of Hoveyda-Grubbs 2nd generation initiator, with terminating agents based on N(1) ,N(3) -bis(6-butyramidopyridin-2-yl)-5-hydroxyisophthalamide (Hamilton wedge), cyanuric acid, Pd(II) -SCS-pincer, or pyridine moieties installing the supramolecular motifs. The resultant telechelic polymers are self-assembled into supramolecular block copolymers (BCPs) via metal coordination or hydrogen bonding and analyzed by (1) H NMR spectroscopy. The optical properties are examined, whereby individual PPVs exhibit similar properties regardless of the nature of the end group. Upon self-assembly, different behaviors emerge: the hydrogen-bonding BCP behaves similarly to the parent PPVs whereas the metallosupramolecular BCP demonstrates a hypsochromic shift and a more intense emission owing to the suppression of aggregation. These results demonstrate that directional self-assembly can be a facile method to construct BCPs with semiconducting networks, while combating solubility and aggregation. PMID:25808543

  2. Initiator Control of Conjugated Polymer Topology in Ring-Opening Alkyne Metathesis Polymerization.

    PubMed

    von Kugelgen, Stephen; Bellone, Donatela E; Cloke, Ryan R; Perkins, Wade S; Fischer, Felix R

    2016-05-18

    Molybdenum carbyne complexes [RC≡Mo(OC(CH3)(CF3)2)3] featuring a mesityl (R = Mes) or an ethyl (R = Et) substituent initiate the living ring-opening alkyne metathesis polymerization of the strained cyclic alkyne, 5,6,11,12-tetradehydrobenzo[a,e][8]annulene, to yield fully conjugated poly(o-phenylene ethynylene). The difference in the steric demand of the polymer end-group (Mes vs Et) transferred during the initiation step determines the topology of the resulting polymer chain. While [MesC≡Mo(OC(CH3)(CF3)2)3] exclusively yields linear poly(o-phenylene ethynylene), polymerization initiated by [EtC≡Mo(OC(CH3)(CF3)2)3] results in cyclic polymers ranging in size from n = 5 to 20 monomer units. Kinetic studies reveal that the propagating species emerging from [EtC≡Mo(OC(CH3)(CF3)2)3] undergoes a highly selective intramolecular backbiting into the butynyl end-group. PMID:27120088

  3. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    NASA Astrophysics Data System (ADS)

    Afanasiev, Pavel

    2015-09-01

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO4 (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O4 materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra.

  4. Metal-Free Microwave-Assisted Decarboxylative Elimination for the Synthesis of Olefins.

    PubMed

    Wu, Shu-Wei; Liu, Jia-Li; Liu, Feng

    2016-01-01

    A metal-free efficient synthesis of olefins via microwave-assisted direct decarboxylative elimination of arylacetic acids is described. This reaction, using commercially available reagent PIFA as oxidant, readily provides a variety of desired products in moderate to good yields. PMID:26652663

  5. Cross-Coupling of Acrylamides and Maleimides under Rhodium Catalysis: Controlled Olefin Migration.

    PubMed

    Sharma, Satyasheel; Han, Sang Hoon; Oh, Yongguk; Mishra, Neeraj Kumar; Lee, Suk Hun; Oh, Joa Sub; Kim, In Su

    2016-06-01

    The rhodium(III)-catalyzed direct cross-coupling reaction of electron-deficient acrylamides with maleimides is described. This protocol displays broad functional group tolerance and high efficiency, which offers a new opportunity to access highly substituted succinimides. Dependent on the substituent positions of acrylamides and reaction conditions, olefin migrated products were obtained with high regio- and stereoselectivity. PMID:27182717

  6. RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.

    EPA Science Inventory

    In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...

  7. 76 FR 65382 - Regulation of Fuel and Fuel Additives: Alternative Test Method for Olefins in Gasoline

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... correlation would be consistent with that specific facility's olefin content range. \\1\\ 76 FR 5319, January 31... rule is not a ``significant regulatory action'' under the terms of Executive Order (EO) 12866 (58 FR... 13132: Federalism Executive Order 13132, entitled ``Federalism'' (64 FR 43255, August 10,...

  8. Ionic hydrogenations of hindered olefins at low temperature. Hydride transfer reactions of transition metal hydrides

    SciTech Connect

    Bullock, R.M.; Song, J.S. )

    1994-09-21

    Sterically hindered olefins can be hydrogenated at -50[degree]C in dichloromethane using triflic acid (CF[sub 3]SO[sub 3]H) and a hydride donor. Mechanistic studies indicate that these reactions proceed by hydride transfer to the carbenium ion that is formed by protonation of the olefin. Olefins that form tertiary carbenium ions upon protonation are hydrogenated in high yields (90-100%). Styrenes generally produce lower yields of hydrogenated products (50-60%). Suitable hydride donors include HSiE[sub 3] and several transition metal carbonyl hydrides HW(CO)[sub 3]Cp, HW(CO)[sub 3]Cp[sup +], HMo-(CO)[sub 3]Cp, HMn(CO)[sub 5], HRe(CO)[sub 3], and HO[sub 3](CO)[sub 1]Cp*; Cp = [eta][sup 5]-C[sub 3]H[sub 5+], Cp* = [eta][sup 5]-C[sub 5]Me[sub 5]. A characteristic that is required for transition metal hydrides to be effective is that the cationic dihydrides (or dihydrogen complexes) that result from their protonation must have sufficient acidity to transfer a proton to the olefin, as well as sufficient thermal stability to avoid significant decomposition on the time scale of the hydrogenation reaction. Metal hydrides that fall due to insufficient stability of their protonated forms include HMo(CO)[sub 2](PPH[sub 3])Cp, HMo(CO)[sub 3]Cp*, and HFe(CO)[sub 2]Cp*. 62 refs., 2 tabs.

  9. EXPOXIDATION OF OLEFINS AND α,β-UNSATURATED KEYTONES OVER SONOCHEMICALLY PREPARED HYDROXYAPATITES USING HYDROGEN PEROXIDE

    EPA Science Inventory

    An effective and environmentally friendly protocol for the epoxidation of olefins and α,β-unsaturated ketones in the presence of hydroxyapatite as catalyst using hydrogen peroxide is described. The catalyst is active and reusable for the selective epoxidation of a variety...

  10. Catalytic deoxydehydration of diols to olefins by using a bulky cyclopentadiene-based trioxorhenium catalyst.

    PubMed

    Raju, Suresh; Jastrzebski, Johann T B H; Lutz, Martin; Klein Gebbink, Robertus J M

    2013-09-01

    A bulky cyclopentadienyl (Cp)-based trioxorhenium compound was developed for the catalytic deoxydehydration of vicinal diols to olefins. The 1,2,4-tri(tert-butyl)cyclopentadienyl trioxorhenium (2) catalyst was synthesised in a two-step synthesis procedure. Dirhenium decacarbonyl was converted into 1,2,4-tri(tert-butyl)cyclopentadienyl tricarbonyl rhenium, followed by a biphasic oxidation with H2 O2 . These two new three-legged compounds with a 'piano-stool' configuration were fully characterised, including their single crystal X-ray structures. Deoxydehydration reaction conditions were optimised by using 2 mol % loading of 2 for the conversion of 1,2-octanediol into 1-octene. Different phosphine-based and other, more conventional, reductants were tested in combination with 2. Under optimised conditions, a variety of vicinal diols (aromatic and aliphatic, internal and terminal) were converted into olefins in good to excellent yields, and with minimal olefin isomerisation. A high turnover number of 1400 per Re was achieved for the deoxydehydration of 1,2-octanediol. Furthermore, the biomass-derived polyols (glycerol and erythritol) were converted into their corresponding olefinic products by 2 as the catalyst. PMID:23843348

  11. Pyridinium hydrobromide perbromide: a versatile catalyst for aziridination of olefins using Chloramine-T.

    PubMed

    Ali, S I; Nikalje, M D; Sudalai, A

    1999-09-01

    [reaction: see text] Pyridinium hydrobromide perbromide (Py x HBr3) catalyzes effectively the aziridination of electron-deficient as well as electron-rich olefins using Chloramine-T (N-chloro-N-sodio-p-toluenesulfonamide) as a nitrogen source to afford the corresponding aziridines in moderate to good yields. PMID:16118868

  12. Mechanism of alkylation of isobutane by olefins in the presence of sulfuric acid

    SciTech Connect

    Baiburskii, V.L.; Khadzhiev, S.N.; Ovsyannikov, V.P.

    1992-05-10

    The authors attempted here to examine the mechanism of alkylation of isobutane by olefins in the presence of sulfuric acid in terms of an initial stage of activation of isoparaffin. The version of formation of tert-alkyl cations and the role of the catalyst in this stage were analyzed. 10 refs., 1 fig., 1 tab.

  13. Organo-Lewis acid as cocatalyst for cationic homogeneous metallocene Ziegler-Natta olefin polymerizations

    SciTech Connect

    Marks, T.J.; Chen, Y.X.

    2000-07-11

    The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes are disclosed for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.

  14. The Production and Recovery of C2-C4 Olefins from Syngas.

    ERIC Educational Resources Information Center

    Murchison, C. B.; And Others

    1986-01-01

    Discusses reacting coal-derived hydrogen and carbon monoxide (syngas) at relatively high selectivity to ethylene, propylene, and butenes over novel catalysts. In addition, data are given which illustrate a unique ethylene removal step which is compatible with operating the olefin synthesis at low conversion. (JN)

  15. ENVIRONMENTAL CONSIDERATIONS OF SELECTED ENERGY CONSERVING MANUFACTURING PROCESS OPTIONS: VOLUME VI. OLEFINS INDUSTRY REPORT

    EPA Science Inventory

    This study assesses the likelihood of new process technology and new practices being introduced by energy intensive industries and explores the environmental impacts of such changes. Volume 6 deals with the Olefins Industry and the utilization of naphtha and atmospheric gas oil a...

  16. Homogeneous, single-phase hydroformylation of olefins using ionic phosphines and novel catalyst/product separation

    SciTech Connect

    Abatjoglou, A.G.; Peterson, R.R.; Bryant, D.R.

    1995-12-01

    A high efficiency low pressure hydroformylation process for higher molecular weight olefins has been developed using rhodium/ionic phosphine catalyst. Catalyst solubilization in the non-polar reactants and products is achieved using specialized solubilizing agents, such as N-methyl pyrrolidone (NMP), yielding single-phase systems. Separation of catalyst from product is induced by the addition of small amounts of water outside the hydroformylation reactor. Under the two-phase conditions, most of the catalyst components are found in the polar NMP/water phase, and the products (aldehydes, olefins, reaction byproducts) in a separate, non-polar, phase. The catalyst phase is recycled to the reactors after thorough drying to ensure a single homogeneous phase at reaction conditions. Traces of catalyst and solubilizing agent are effectively recovered from the product and recycled. A major advantage of this process, over water-based two-phase systems, is the high catalytic reactivities and concomitant high olefin efficiencies (>90%) which are achieved with olefins of low, water solubility.

  17. Competitive chain transfer by [beta]-hydrogen and [beta]-methyl elimination for the model Ziegler-Natta olefin polymerization system [Me[sub 2]Si([eta][sup 5]-C[sub 5]Me[sub 4])[sub 2

    SciTech Connect

    Hajela, S.; Bercaw, J.E. )

    1994-04-01

    The reaction of OpSc(H)(PMe[sub 3]) (Op = (([eta][sup 5]-C[sub 6]Me[sub 4])[sub 2]SiMe[sub 2])) with isobutene produces OpSc(CH[sub 3])(PMe[sub 3]) along with isobutene, 2-methylpentane, isobutene, 2-methyl-1-pentene, propane, and n-pentane. These products arise from a series of reactions involving olefin insertion, [beta]-CH[sub 3] and (faster) [beta]-H elimination which proceed until only the 2-methyl-1-alkenes (C[sub 4]H[sub 8], C[sub 6]H[sub 12], etc.) and the predominant organoscandium product OpSc(CH[sub 3])(PMe[sub 3]) remain. A transient observed in the reaction sequence has been unambiguously characterized as OpSc(CH[sub 2]CH[sub 2]CH[sub 3])(PMe[sub a]). Slower [sigma] bond metathesis involving the methyl C-H bonds of PMe[sub 3] and the Sc-C bonds of the scandium alkyls accounts for the observation of saturated alkanes 2-methylalkanes (C[sub 4]H[sub 10], C[sub 6]H[sub 14], etc.), normal alkanes (C[sub 3]H[sub 8],C[sub 5]H[sub 12], etc.), and a minor organoscandium product OpScCh[sub 2]Pme[sub 2] in the product mixture. [beta]-Ethylmigration is not observed for the closely related 2-ethylbutyl derivative, OpSc(CH[sub 2]CH(C[sub 2]H[sub 5])CH[sub 2]CH[sub 3])(PMe[sub 3]), obtained from reaction of 2-ethyl-1-butene with OpSc(H)(PMe[sub 3]). 28 refs., 2 figs., 1 tab.

  18. Development of an Enyne Metathesis/Isomerization/Diels-Alder One-Pot Reaction for the Synthesis of a Novel Near-Infrared (NIR) Dye Core.

    PubMed

    Yamashita, Kohei; Fujii, Yuki; Yoshioka, Shohei; Aoyama, Hiroshi; Tsujino, Hirofumi; Uno, Tadayuki; Fujioka, Hiromichi; Arisawa, Mitsuhiro

    2015-11-23

    N-Alkyl-N-allyl-2-alkynylaniline derivatives undergo a tandem ring-closing enyne metathesis/isomerization/Diels-Alder cycloaddition sequence in the presence of a second-generation Grubbs catalyst and dienophiles. In practice, the acyclic enyne in the presence of the ruthenium alkylidene first undergoes ring-closing metathesis to generate cyclic 4-vinyl-1,2-dihydroquinolines; following diene isomerization and then the addition of a dienophile, these ring-closing metathesis products are selectively converted into a 7-methyl-4H-naphtho[3,2,1-de]quinoline-8,11-dione core. Overall, the reaction sequence converts simple aniline derivatives into π-conjugated small molecules, which have characteristic absorption in the near-infrared region, in a single operation through three unique ruthenium-catalyzed transformations. PMID:26449517

  19. Final Report: Experimental and Theoretical Studies of Surface Oxametallacycles - Connections to Heterogeneous Olefin Epoxidation

    SciTech Connect

    Mark A. Barteau

    2009-09-15

    This project has aimed at the rational design of catalysts for direct epoxidation of olefins. This chemistry remains one of the most challenging problems in heterogeneous catalysis. Although the epoxidation of ethylene by silver catalysts to form ethylene oxide (EO) has been practiced for decades, little progress has been made in expanding this technology to other products and processes. We have made significant advances through the combination of surface science experiments, Density Functional Theory (DFT) calculations, and catalytic reactor experiments, toward understanding the mechanism of this reaction on silver catalysts, and to the rational improvement of selectivity. The key has been our demonstration of surface oxametallacycle intermediates as the species that control reaction selectivity. This discovery permits the influence of catalyst promoters on selectivity to be probed, and new catalyst formulations to be developed. It also guides the development of new chemistry with potential for direct epoxidation of more complex olefins. During the award period we have focused on 1. the formation and reaction selectivity of complex olefin epoxides on silver surfaces, and 2. the influence of co-adsorbed oxygen atoms on the reactions of surface oxametallacycles on silver, and 3. the computational prediction, synthesis, characterization and experimental evaluation of bimetallic catalysts for ethylene epoxidation. The significance of these research thrusts is as follows. Selective epoxidation of olefins more complex than ethylene requires suppression of not only side reactions available to the olefin such as C-H bond breaking, but it requires formation and selective ring closure of the corresponding oxametallacycle intermediates. The work carried out under this grant has significantly advanced the field of catalyst design from first principles. The combination of computational tools, surface science, and catalytic reactor experiments in a single laboratory has few

  20. Oil compositions containing alkyl amine or alkyl mercaptan derivatives of copolymers of an alpha olefin or an alkyl vinyl ether

    SciTech Connect

    Le, H.T.

    1990-02-13

    This patent describes an oil composition. It comprises a major amount of an oil selected from a crude oil or fuel oil and a minor amount of an alkyl amine or alkyl mercaptan derivative of an alpha olefin or alkyl vinyl ether and an unsaturated alpha, beta-dicarboxylic compound copolymer having pour point depressant ;properties. The copolymer comprising the reaction product of an alpha olefin having from about 2 to about 30 carbon atoms or mixtures of alpha olefins having from about 2 to about 30 carbon atoms or an alkyl vinyl ether or mixture of alkyl vinyl ethers.

  1. Formation of C(sp(3) )-C(sp(3) ) Bonds through Nickel-Catalyzed Decarboxylative Olefin Hydroalkylation Reactions.

    PubMed

    Lu, Xi; Xiao, Bin; Liu, Lei; Fu, Yao

    2016-08-01

    Olefins and carboxylic acids are among the most important feedstock compounds. They are commonly found in natural products and drug molecules. We report a new reaction of nickel-catalyzed decarboxylative olefin hydroalkylation, which provides a novel practical strategy for the construction of C(sp(3) )-C(sp(3) ) bonds. This reaction can tolerate a variety of synthetically relevant functional groups and shows good chemo- and regioselectivity. It enables cross-coupling of complex organic molecules containing olefin groups and carboxylic acid groups in a convergent fashion. PMID:27245257

  2. α-Allyl-α-aryl α-Amino Esters in the Asymmetric Synthesis of Acyclic and Cyclic Amino Acid Derivatives by Alkene Metathesis

    PubMed Central

    2015-01-01

    Allylating agents were explored for the asymmetric synthesis of α-allyl-α-aryl α-amino acids by tandem N-alkylation/π-allylation. Cross-metathesis of the tandem product was developed to provide allylic diversity not afforded in the parent reaction; the synthesis of homotyrosine and homoglutamate analogues was completed. Cyclic α-amino acid derivatives could be accessed by ring-closing metathesis presenting a viable strategy to higher ring homologue of enantioenriched α-substituted proline. The eight-membered proline analogue was successfully converted to the pyrrolizidine natural product backbone. PMID:24828423

  3. Synthesis of 1,2,3-Substituted Pyrroles from Propargylamines via a One-Pot Tandem Enyne Cross Metathesis-Cyclization Reaction.

    PubMed

    Chachignon, Helene; Scalacci, Nicolò; Petricci, Elena; Castagnolo, Daniele

    2015-05-15

    Enyne cross metathesis of propargylamines with ethyl vinyl ether enables the one-pot synthesis of substituted pyrroles. A series of substituted pyrroles, bearing alkyl, aryl, and heteroaryl substituents, has been synthesized in good yields under microwave irradiation. The reactions are rapid and procedurally simple and also represent a facile entry to the synthetically challenging 1,2,3-substituted pyrroles. The value of the methodology is further corroborated by the conversion of pyrroles into 3-methyl-pyrrolines and the derivatization of the 3-methyl-substituent arising from the metathesis reaction. PMID:25897951

  4. Catalytic N-sulfonyliminium ion-mediated cyclizations to alpha-vinyl-substituted isoquinolines and beta-carbolines and applications in metathesis.

    PubMed

    Kinderman, Sape S; Wekking, Monique M T; van Maarseveen, Jan H; Schoemaker, Hans E; Hiemstra, Henk; Rutjes, Floris P J T

    2005-07-01

    [reaction: see text] Catalytic Sn(OTf)2-induced cyclization of linear, aryl-containing allylic N,O-acetals produced vinyl-substituted tetrahydroisoquinolines and tetrahydro-1H-beta-carbolines. The usefulness of the vinyl moiety in the resulting products was demonstrated via the synthesis of various key building blocks for alkaloid structures. The alpha-vinyl moiety was utilized in a [2,3] sigmatropic rearrangement, in ring-closing metathesis and a cross-metathesis-based synthesis of vincantril, an antianoxia agent, and a synthetic member of the vincamine type natural products. PMID:15989333

  5. Solvothermal Metal Metathesis on a Metal-Organic Framework with Constricted Pores and the Study of Gas Separation.

    PubMed

    Li, Liangjun; Xue, Haitao; Wang, Ying; Zhao, Pinhui; Zhu, Dandan; Jiang, Min; Zhao, Xuebo

    2015-11-18

    Metal-organic frameworks (MOFs) with constricted pores can increase the adsorbate density of gas and facilitate effective CO2 separation from flue gas or natural gas due to their enhanced overlapping of potential fields of the pores. Herein, an MOF with constricted pores, which was formed by narrow channels and blocks of functional groups, was fabricated from the assembly of a methyl-functionalized ligand and Zn(II) centers (termed NPC-7-Zn). Structural analysis of the as-synthesized NPC-7-Zn reveals a series of zigzag pores with pore diameters of ∼0.7 nm, which could be favorable for CO2 traps. For reinforcing the framework stability, a solvothermal metal metathesis on the pristine MOF NPC-7-Zn was performed, and a new Cu(II) MOF (termed NPC-7-Cu) with an identical framework was produced. The influence of the reaction temperatures on the metal metathesis process was investigated. The results show that the constricted pores in NPC-7-Zn can induce kinetic issues that largely slow the metal metathesis process at room temperature. However, this kinetic issue can be solved by applying higher reaction temperatures. The modified MOF NPC-7-Cu exhibits significant improvements in framework stability and thus leads to a permanent porosity for this framework. The constricted pore structure enables enhanced potential fields for these pores, rendering this MOF with high adsorbate densities for CO2 and high adsorption selectivity for a CO2/N2 gas mixture. The adsorption kinetic studies reveal that CH4 has a faster diffusion rate constant than CO2, showing a surface diffusion controlled mechanism for CO2 and CH4 adsorption. PMID:26517280

  6. Design and synthesis of polycyclic sulfones via Diels–Alder reaction and ring-rearrangement metathesis as key steps

    PubMed Central

    Gunta, Rama

    2015-01-01

    Summary Here, we describe a new and simple synthetic strategy to various polycyclic sulfones via Diels–Alder reaction and ring-rearrangement metathesis (RRM) as the key steps. This approach delivers tri- and tetracyclic sulfones with six (n = 1), seven (n = 2) or eight-membered (n = 3) fused-ring systems containing trans-ring junctions unlike the conventional all cis-ring junctions generally obtained during the RRM sequence. Interestingly the starting materials used are simple and commercially available. PMID:26425192

  7. Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group.

    PubMed

    Radzinski, Scott C; Foster, Jeffrey C; Chapleski, Robert C; Troya, Diego; Matson, John B

    2016-06-01

    Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through. PMID:27219866

  8. Non-aqueous metathesis as a general approach to prepare nanodispersed materials: Case study of scheelites

    SciTech Connect

    Afanasiev, Pavel

    2015-09-15

    A general approach to the preparation of inorganic nanoparticles is proposed, using metathesis of precursor salts in non-aqueous liquids. Nanoparticles of scheelites AMO{sub 4} (A=Ba, Sr, Ca; M=Mo, W), were obtained with a quantitative yield. Precipitations in formamide, N-methylformamide, propylene carbonate, DMSO and polyols often provide narrow particle size distributions. Advantageous morphology was explained by strong ionic association in non-aqueous solvents, leading to slow nucleation and negligible Ostwald ripening. Mean particle size below 10 nm and high specific surface areas were obtained for several Ca(Sr)Mo(W)O{sub 4} materials, making them promising for applications as adsorbents or catalysts. Zeta-potential of scheelites in aqueous suspensions showed negative values in a wide range of pH. Systematic study of optical properties demonstrated variation of optical gap in the sequences W>Mo and Ba>Sr>Ca. The observed trends were reproduced by DFT calculations. No quantum confinement effect was observed for small particles, though the surface states induce low-energy features in the optical spectra. - Graphical abstract: Scheelites AMO{sub 4} (A=Ca, Sr, Ba; M=Mo, W) were prepared in various non-aqueous liquids with high specific surface areas and narrow size distributions. The optical gap of scheelites changes in the series Ca

  9. Controlling Cesium Cation Recognition via Cation Metathesis within and Ion Pair Receptor

    SciTech Connect

    Kim, Sung Kuk; Vargas-Zuniga, Gabriela; Hay, Benjamin; Young, Neil J; Delmau, Laetitia Helene; Lee, Prof. Chang-Hee; Kim, Jong Seung; Lynch, Vincent M.; Sessler, Jonathan L.

    2012-01-01

    Ion pair receptor 3 bearing an anion binding site and multiple cation binding sites has been synthesized and shown to function in a novel binding-release cycle that does not necessarily require displacement to effect release. The receptor forms stable complexes with the test cesium salts, CsCl and CsNO{sub 3}, in solution (10% methanol-d{sub 4} in chloroform-d) as inferred from {sup 1}H NMR spectroscopic analyses. The addition of KClO{sub 4} to these cesium salt complexes leads to a novel type of cation metathesis in which the 'exchanged' cations occupy different binding sites. Specifically, K{sup +} becomes bound at the expense of the Cs{sup +} cation initially present in the complex. Under liquid-liquid conditions, receptor 3 is able to extract CsNO{sub 3} and CsCl from an aqueous D{sub 2}O layer into nitrobenzene-d{sub 5} as inferred from {sup 1}H NMR spectroscopic analyses and radiotracer measurements. The Cs{sup +} cation of the CsNO{sub 3} extracted into the nitrobenzene phase by receptor 3 may be released into the aqueous phase by contacting the loaded nitrobenzene phase with an aqueous KClO{sub 4} solution. Additional exposure of the nitrobenzene layer to chloroform and water gives 3 in its uncomplexed, ion-free form. This allows receptor 3 to be recovered for subsequent use. Support for the underlying complexation chemistry came from single-crystal X-ray diffraction analyses and gas-phase energy-minimization studies.

  10. Mild acidic pretreatment to enhance low severity coal liquefaction promoted by cyclic olefins. Quarterly report, July 1995--September 1995

    SciTech Connect

    Curtis, C.W.

    1996-03-01

    Research continued on low severity coal liquefaction. Research using high temperature infrared of cyclic olefins progressed well during this quarter. Several fluorinated solvents were found that provide a high temperature medium for isotetralin and its aromatic and aliphatic analogues.

  11. A search for thermal isomerization of olefins to carbenes: Thermal generations of the silicon-nitrogen double bond

    SciTech Connect

    Zhang, Xianping.

    1990-09-21

    The first part of this thesis will search for the thermal isomerization of olefins to carbenes which is predicted to be a high energy process by calculations and has only been observed in a few strained olefins. The possibility of thermal isomerization of simple olefins to carbenes will be explored. Substitution of a silyl group on the double bond of an olefin allows a potential intermediate which has a {beta}-radical to the silyl group during the cis-trans isomerization. The effects of a trimethylsilyl group on this isomerization are the subject of this study. The second part of this thesis will include the generation and chemistry of intermediates containing a silicon-nitrogen double bond. The isomerization of parent silanimine to the aminosilylene was calculated to be a high energy process. New approaches to the silicon-nitrogen double bond will also be presented. 92 refs., 12 figs., 11 tabs.

  12. Discovery and Development of Pyridine-bis(imine) and Related Catalysts for Olefin Polymerization and Oligomerization.

    PubMed

    Small, Brooke L

    2015-09-15

    For over 40 years following the polyolefin catalyst discoveries of Hogan and Banks (Phillips) and Ziegler (Max Planck Institute), chemists traversed the periodic table searching for new transition metal and lanthanide-based olefin polymerization systems. Remarkably, none of these "hits" employed iron, that is, until three groups independently reported iron catalysts for olefin polymerization in the late 1990's. The history surrounding the discovery of these catalysts was only the beginning of their uniqueness, as the ensuing years have proven these systems remarkable in several regards. Of primary importance are the pyridine-bis(imine) ligands (herein referred to as PDI), which produced iron catalysts that are among the world's most active for ethylene polymerization, demonstrated "staying power" despite over 15 years of ligand improvement efforts, and generated highly active polymerization systems with cobalt, chromium, and vanadium. Although many ligands have been employed in iron-catalyzed polymerization, the PDI family has thus far provided the most information about iron's capabilities and tendencies. For example, iron systems tend to be highly selective for ethylene over higher olefins, making them strong candidates for producing highly crystalline polyethylene, or highly linear α-olefins. Iron PDI polymerizes propylene with 2,1-regiochemistry via a predominantly isotactic, chain end control mechanism. Because the first insertion proceeds via 1,2-regiochemistry, iron (and cobalt) PDI systems can be tailored to make highly linear dimers of α-olefins by "head-to-head" coupling, resulting from a switch in regiochemistry after the first insertion. Finally, PDI ligands, while not being surpassed in activity, have inspired the development of related ligand families and complexes, such as pendant donor diimines (PDD), which are also highly efficient at producing linear α-olefins. This Account will detail a variety of oligomerization and polymerization results

  13. Aminoquinoline-assisted vinylic C-H arylation of unsubstituted acrylamide for the selective synthesis of Z olefins.

    PubMed

    Cheng, Xiuzhi; Chen, Zhen; Gao, Yadong; Xue, Fengtian; Jiang, Chao

    2016-03-15

    A method for Pd-catalyzed, aminoquinoline-directed arylation of vinylic C-H bonds with aryl iodides has been developed. This reaction represents a rare example of Pd-catalyzed vinylic C-H functionalization of unsubstituted acrylamide, allowing for the highly regio- and stereoselective preparation of Z-olefins. High tolerance to functional groups is observed with good yields and excellent selectivity. It offers a complementary synthetic method to traditional pathways for Z-olefins. PMID:26932744

  14. Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    James, Carrie Rae

    Inspired by naturally occurring polymers (DNA, polypeptides, polysaccharides, etc.) that can self-assemble on the nanoscale into complex, information-rich architectures, we have synthesized nucleic acid based polymers using ROMP. These polymers were synthesized using a graft-through strategy, whereby nucleic acids bearing a strained cyclic olefin were directly polymerized. This is the first example of the graft-through polymerization of nucleic acids. Our approach takes advantage of non-charged peptide nucleic acids (PNAs) as elements to incorporate into ROMP polymer backbones. PNA is a synthetic nucleic acid analogue known for its increased affinity and specificity for complementary DNA or RNA. To accomplish the graft-through polymerization of PNA, we conjugated PNA to strained cyclic olefins using solid phase peptide conjugation chemistry. These PNA monomers were then directly polymerized into homo and block copolymers forming brushes, or comb-like arrangements, of information. Block copolymer amphiphiles of these materials, where the PNA brush served as the hydrophilic portion, were capable of self-assembly into spherical nanoparticles (PNA NPs). These PNA NPs were then studied with respect to their ability to hybridize complementary DNA sequences, as well as their ability to undergo cellular internalization. PNA NPs consisting of densely packed brushes of nucleic acids possessed increased thermal stability when mixed with their complementary DNA sequence, indicating a greater DNA binding affinity over their unpolymerized PNA counterparts. In addition, by arranging the PNA into dense brushes at the surface of the nanoparticle, Cy5.5 labeled PNA NPs were able to undergo cellular internalization into HeLa cells without the need for an additional cellular delivery device. Importantly, cellular internalization of PNA has remained a significant challenge in the literature due to the neutrally charged amino-ethyl glycine backbone of PNA. Therefore, this represents a

  15. Synthesis of Cembranoid Analogues through Ring-Closing Metathesis of Terpenoid Precursors: A Challenge Regarding Ring-Size Selectivity.

    PubMed

    Heidt, Tanja; Baro, Angelika; Köhn, Andreas; Laschat, Sabine

    2015-08-24

    A systematic study on ring-closing metathesis with Grubbs II catalyst to cembranoid macrocycles is described. Acyclic terpenoids with a functional group X in the homoallylic position relative to an RCM active terminus and substituents R, R(1) directly attached to the other terminal double bond were prepared from geraniol derived trienes and fragments that are based on bromoalkenes and dimethyl malonate. Such terpenoids were suitable precursors, despite the presence of competing double bonds in their framework. The size of R and R(1) is crucial for successful macrocyclization. Whereas small alkyl substituents at the double bond directed the RCM towards six-membered ring formation, cross metathesis leading to dimers dominated for bulkier alkyl groups. A similar result was obtained for precursors without functional group X. In the case of unsymmetrically substituted terpenoid precursor (R = Et, R(1) = Me) with homoallylic OTBS or OMe group, the RCM could be controlled towards formation of macrocyclic cembranoids, which were isolated with excellent E-selectivity. The role of the substituents was further studied by quantum chemical calculations of simplified model substrates. Based on these results a mechanistic rationale is proposed. PMID:26227568

  16. Development of a General, Sequential, Ring Closing Metathesis/Intramolecular Cross-Coupling Reaction for the Synthesis of Polyunsaturated Macrolactones

    PubMed Central

    Denmark, Scott E.; Muhuhi, Joseck M.

    2010-01-01

    A general strategy for the construction of macrocyclic lactones containing conjugated Z,Z-1,3-diene subunits has been is described. The centerpiece of the strategy is a sequential ring-closing metathesis that forms an unsaturated siloxane ring followed by an intramolecular cross-coupling reaction with a pendant alkenyl iodide. A highly modular assembly of the various precursors allowed the preparation of unsaturated macrolactones containing 11-, 12-, 13- and 14-membered rings. Although the ring closing metathesis process proceeded uneventfully, the intramolecular cross-coupling required extensive optimization of palladium source, solvent, fluoride source and particularly fluoride hydration level. Under the optimal conditions (including syringe pump high dilution), the macrolactones were produced in 53-78% yield as single stereoisomers. A benzo fused 12-membered ring macrolactone containing an E,Z-1,3-diene unit was also prepared by the same general strategy. The E-2-styryl iodide was prepared by a novel Heck reaction of an aryl nonaflate with vinyltrimethylsilane followed by iododesilylation with ICl. PMID:20666473

  17. Synthesis of 2,3-dihydroquinolin-4(1H)-ones through catalytic metathesis of o-alkynylanilines and aldehydes.

    PubMed

    Saito, Akio; Kasai, Jun; Odaira, Yu; Fukaya, Haruhiko; Hanzawa, Yuji

    2009-08-01

    SbF5-MeOH catalytic system efficiently promotes the alkyne-carbonyl metathesis of o-alkynylaniline derivatives and aldehydes to afford 2,3-disubstituted dihydroquinolinones in moderate to high yields with high trans-selectivity. PMID:19496542

  18. Application of an enyne metathesis/Diels-Alder cycloaddition sequence: a new versatile approach to the syntheses of C-aryl glycosides and spiro-C-aryl glycosides.

    PubMed

    Subrahmanyam, Ayyagari V; Palanichamy, Kalanidhi; Kaliappan, Krishna P

    2010-07-26

    An efficient approach for the synthesis of a variety of C-aryl and spiro-C-aryl glycosides is described. This diversity-oriented strategy employed here relies on a sequential enyne metathesis to generate the 1,3-diene moiety and Diels-Alder reaction with different dienophiles followed by aromatisation. Whereas cross-enyne metathesis with ethylene gas is used to install the 1,3-diene moiety at the anomeric centre for the synthesis of C-aryl glycosides, an intramolecular enyne metathesis on the sugar enyne is performed to generate the 1,3-diene moiety for the synthesis of spiro-C-aryl glycosides. Efforts to extend this strategy to the synthesis of the core structure of natural C-aryl glycoside gilvocarcin are also described. A combination of both C-aryl and spiro-C-aryl glycosides in the same moiety to combine the features thereof has also been accomplished. A tandem enyne metathesis/Diels-Alder reaction/aromatisation has also been attempted to directly access the C-aryl glycosides in one pot albeit in low yield. PMID:20549721

  19. Metallocalixarene catalysts: α-olefin polymerization and ROP of cyclic esters.

    PubMed

    Redshaw, Carl

    2016-05-31

    This perspective review discusses metallocalix[n]arene complexes that have been employed in either α-olefin polymerization or in the ring opening polymerization (ROP) of cyclic esters over the last 5 years. Synthesis, molecular structure and catalytic potential are discussed. For α-olefin polymerization, systems based on early transition metals in combination with calix[n]arenes (n = 4, 6 or 8), depleted calix[4]arenes or thia/sulfinyl/sulfonyl calix[4]arenes have been reported, and in some cases, are highly active. For the ROP studies, a number of the systems, typically of the early transition metals, only exhibit activity under robust conditions, whereas other systems, for example those of magnesium, demonstrate exceptional activity, immortal behaviour and intriguing stereoselectivity. PMID:27206314

  20. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    DOEpatents

    Sen, A.; Jiang, Z.

    1996-05-28

    The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).

  1. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    DOEpatents

    Sen, Ayusman; Jiang, Zhaozhong

    1996-01-01

    The compound, [Pd(Me-DUPHOS)(MeCN).sub.2 ](BF.sub.4).sub.2, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic .alpha.-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone)

  2. Functionalized olefin cross-coupling to construct carbon–carbon bonds

    PubMed Central

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-01-01

    Carbon–carbon (C–C) bonds form the backbone of many important molecules, including polymers, dyes, and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavor heavily relies on the ability to form C–C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a fundamentally new chemical transformation that allows for the facile construction of highly substituted and uniquely functionalized C–C bonds. Using a simple iron catalyst, an inexpensive silane, and a benign solvent under an ambient atmosphere, heteroatom-substituted olefins are easily merged with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than sixty examples are presented with a wide array of substrates, demonstrating the unique chemoselectivity and mildness of this simple reaction. PMID:25519131

  3. Key product development based on cyclo olefin polymer for LCD-TV

    NASA Astrophysics Data System (ADS)

    Konishi, Yuichiro; Kobayashi, Masahi; Arakawa, Kouhei

    2006-09-01

    Cyclo Olefin Polymer (COP), which was developed by Zeon Corporation, is well known and used as an optical plastic in optical markets, having unique properties such as high light transmission, low water absorption, low birefringence etc. Optes Inc, who is ZEON CORPORATION's affiliate optical parts manufacturer, has succeeded in the development of high performance optical base films. These are used for retardation and polarizing films in LCD's (Liquid Crystal Displays), made from Cyclo Olefin Polymer with own film extrusion technologies. The Optical base film developed by Optes Inc has superior properties compared with those of existing products such as polycarbonate (PC), polyethylene terephthalate (PET) and Triacetate Cellulose (TAC) base in terms of low birefringence, high optical isotropy and high dimensional stability under high humidity and temperature conditions.

  4. Dehydrogenation of n-alkanes catalyzed by iridium ``pincer`` complexes: Regioselective formation of {alpha}-olefins

    SciTech Connect

    Liu, F.; Singh, B.; Goldman, A.S.; Pak, E.B.; Jensen, C.M.

    1999-04-28

    The development of methods for the functionalization of alkanes is of cardinal importance in catalytic chemistry. A specific functionalization of particularly great potential value is the conversion of n-alkanes to the corresponding 1-alkenes ({alpha}-olefins) since these serve as precursors for a wide range of commodity-scale chemicals (>2 {times} 10{sup 9} kg/yr). Such a conversion is also an intriguing challenge as viewed from a fundamental perspective. n-Alkanes are the simplest organic molecules with the potential to undergo regioselective transformations; {alpha}-olefins are the thermodynamically least stable of the corresponding double-bond isomers and any mechanism for their formation must presumably involve activation of the strongest bond (primary C-{single_bond}H) in the molecule.

  5. Direct Stereospecific Synthesis of Unprotected N-H/N-Me Aziridines from Olefins

    PubMed Central

    Jat, Jawahar L.; Paudyal, Mahesh P.; Gao, Hongyin; Xu, Qing-Long; Yousufuddin, Muhammed; Devarajan, Deepa; Ess, Daniel H.; Kürti, László; Falck, John R.

    2014-01-01

    Despite the prevalence of the N-H aziridine motif in bioactive natural products and the clear advantages of this unprotected parent structure over N-protected derivatives as a synthetic building block, no practical methods have emerged for direct synthesis of this compound class from unfunctionalized olefins. Here, we present a mild, versatile method for the direct stereospecific conversion of structurally diverse mono-, di-, tri- and tetra-substituted olefins to N-H aziridines using O-(2,4-dinitrophenyl)hydroxylamine (DPH) via homogeneous rhodium catalysis with no external oxidants. This method is operationally simple (i.e., one-pot), scalable and fast at ambient temperature, furnishing N-H aziridines in good-to-excellent yields. Likewise, N-alkyl aziridines are prepared from N-alkylated DPH derivatives. Quantum-mechanical calculations suggest a plausible Rh-nitrene pathway. PMID:24385626

  6. Low severity coal liquefaction promoted by cyclic olefins. Quarterly technical progress report, April--June 1996

    SciTech Connect

    Curtis, C.W.

    1997-12-31

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic olefins in situ in a high temperature and high pressure infrared cell. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9,10-hexahydroanthracene (HHA), are highly reactive donor compounds that readily donate their hydrogen to coal and model acceptors when heated to temperatures of 200{degrees}C and above. These donors are active donors in the low severity liquefaction of coal at 350{degrees}C as shown in the research performed in this project. The infrared studies are being performed in a high temperature infrared cell that was obtained from AABSPEC. Modifications to that cell have been made and have been reported in previous progress reports.

  7. Functionalized olefin cross-coupling to construct carbon-carbon bonds

    NASA Astrophysics Data System (ADS)

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-12-01

    Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.

  8. Development of group IV molecular catalysts for high temperature ethylene-α-olefin copolymerization reactions.

    PubMed

    Klosin, Jerzy; Fontaine, Philip P; Figueroa, Ruth

    2015-07-21

    This Account describes our research related to the development of molecular catalysts for solution phase olefin polymerization. Specifically, a series of constrained geometry and nonmetallocene (imino-amido-type) complexes were developed for high temperature olefin polymerization reactions. We have discovered many highly active catalysts that are capable of operating at temperatures above 120 °C and producing copolymers with a useful range of molecular weights (from medium to ultrahigh depending on precatalyst identity and polymerization conditions) and α-olefin incorporation capability. Constrained geometry catalysts (CGCs) exhibit very high activities and are capable of producing a variety of copolymers including ethylene-propylene and ethylene-1-octene copolymers at high reactor temperatures. Importantly, CGCs have much higher reactivity toward α-olefins than classical Ziegler-Natta catalysts, thus allowing for the production of copolymers with any desired level of comonomer. In search of catalysts with improved performance, we discovered 3-amino-substituted indenyl-based CGCs that exhibit the highest activity and produce copolymers with the highest molecular weight within this family of catalysts. Phenanthrenyl-based CGCs were found to be outstanding catalysts for the effective production of high styrene content ethylene-styrene copolymers under industrially relevant conditions. In contrast to CGC ligands, imino-amido-type ligands are bidentate and monoionic, leading to the use of trialkyl group IV precatalysts. The thermal instability of imino-amido complexes was addressed by the development of imino-enamido and amidoquinoline complexes, which are not only thermally very robust, but also produce copolymers with higher molecular weights, and exhibit improved α-olefin incorporation. Imido-amido and imino-enamido catalysts undergo facile chain transfer reactions with metal alkyls, as evidenced by a sharp decrease in polymer molecular weight when the

  9. Reaction of sulfur halides with unsaturated compounds. New type of reaction of sulfur dichloride with olefins

    SciTech Connect

    Tolstikov, G.A.; Lerman, B.M.; Umanskaya, L.I.; Struchkov, Y.T.

    1982-09-20

    This report focuses on a new type of reaction between sulfur dichloride and olefins which has been discovered, leading to epithio compounds and chloro-substituted olefins. Depending on conditions, the reaction between adamantylideneadamantane and SC1/sub 2/ at an equimolar ratio of the reagents leads preferably to 2,2'-epithio-2-(2'-adamantyl) adamantane, or 4e-chloro-2,2'-epithio-2-(2'-adamatyl) adamantane, or 4e-chloroadamantylideneadamantane. The structure of 4e-chloro-2,2'-epithio-2(2'-adamantyl)adamatane was confirmed by x-ray diffraction analysis. Results indicated that in the reaction between adamantylideneadamantane and an excess of SC1/sub 2/, 4e,4'e-dichloro-, 4e,4'e,8..cap alpha..-trichloro- and 4e,4'e,8..cap alpha..,8'..cap alpha..-tetrachloroadamantylideneadamatanes are formed.

  10. Titanium compounds as catalysts of higher alpha-olefin-based super-high-molecular polymers synthesis

    NASA Astrophysics Data System (ADS)

    Konovalov, K. B.; Kazaryan, M. A.; Manzhay, V. N.; Vetrova, O. V.

    2016-01-01

    The synthesis of polymers of 10 million or more molecular weight is a difficult task even in a chemical lab. Higher α-olefin-based polymer agents of such kind have found a narrow but quite important niche, the reduction of drag in the turbulent flow of hydrocarbon fluids such as oil and oil-products. In its turn, searching for a catalytic system capable to produce molecules of such a high length and to synthesize polymers of a low molecular-mass distribution is part of a global task of obtaining a high-quality product. In this paper we had observed a number of industrial catalysts with respect to their suitability for higher poly-α- olefins synthesis. A number samples representing copolymers of 1-hexene with 1-decene obtained on a previous generation catalyst, a microsphere titanium chloride catalytic agent had been compared to samples synthesized using a titanium-magnesium catalyst both in solution and in a polymer medium.

  11. Sustainable solid catalyst alkylation of commercial olefins by regeneration with supercritical isobutane

    SciTech Connect

    Daniel M. Ginosar; David N. Thompson; Kyle C. Burch

    2005-12-01

    Supercritical isobutane regeneration of a USY zeolite alkylation catalyst was examined in a continuous, automated reaction / regeneration system. Two feeds were studied; a synthetic isobutane / 2-butene blend, and a commercial refinery isoparaffin / olefin blend. The refinery blend was minimally treated, containing a variety of light olefins, and contaminants, including butadiene, oxygenates and sulfur, which are well known to cause severe catalyst deactivation. Synthetic feed experiments showed that high levels of butene conversion was maintained for more than 200 hours time on stream, and that product quality and catalyst maintenance was relatively stable over the course of the experiment using a 3 hour reaction / 3 hour regeneration cycle. Catalyst activity maintenance was lower when the commercial feed was employed. High levels of alkene conversion were maintained for 78 hours and 192 hours using a 3 hour reaction / 3 hour regeneration cycle and a 2 hour reaction / 2 hour regeneration cycle, respectively.

  12. Immobilisation of homogeneous olefin polymerisation catalysts. Factors influencing activity and stability.

    PubMed

    Severn, John R; Chadwick, John C

    2013-07-01

    The activity and stability of homogeneous olefin polymerisation catalysts, when immobilised on a support, are dependent on both chemical and physical effects. Chemical factors affecting catalyst activity include the ease of formation of the active species, which is strongly dependent on the transition metal. Catalyst productivity is dependent on the balance between activity and stability. Immobilisation can lead to a lower proportion of active species and therefore lower initial polymerisation activity, but nevertheless give higher polymer yields in cases where increased catalyst stability is obtained. Important physical factors are support porosity and the ability of a support to undergo progressive fragmentation during polymerisation, facilitating monomer diffusion through the growing catalyst/polymer particle. This article illustrates the importance of these factors in olefin polymerisation with both early- and late-transition metal catalysts, with particular reference to the use of silica and magnesium chloride supports as well as to effects of immobilisation on polymer structure and properties. PMID:23467461

  13. New sorbents for olefin/paraffin separations by adsorption via {pi}-complexation

    SciTech Connect

    Yang, R.T.; Kikkinides, E.S.

    1995-03-01

    New adsorbents for olefin paraffin separation are synthesized by effective dispersion of Ag(I) and Cu(I) cations on substrates with hydrocarbon-phobic surfaces. These cations bind olefin molecules by a {pi}-complexation bond, a weak chemical bond. Ethane/ethylene and propane/propylene separations are considered. Cation exchange resins and CuCl/{gamma}-Al{sub 2}O{sub 3} are effective substrates. On the Ag(I) resin at 25 C and 1 atm, the equilibrium adsorption ratio for C{sub 2} H{sub 4}/C{sub 2}H{sub 6} = 9.2 and C{sub 2}H{sub 4} capacity = 1.15 mmol/g; the corresponding values for C{sub 3}H{sub 6}/C{sub 3}H{sub 8} = 10.4 and C{sub 3}H{sub 6} capacity = 1.29 mmol/g. The CuCl/{gamma}-Al{sub 2}O{sub 3} sorbent shows equally promising results. The sorption rates are pore-diffusion-controlled and rapid. The olefin selectivity, capacity, and rates are much higher than all previous attempts and are suitable for applications in cyclic adsorption processes. The equilibrium data are correlated with an isotherm equation that accounts for both physical adsorption and {pi}-complexation with energy, heterogeneity, using only two true fitting parameters. Molecular orbital calculations using a C{sub 6}H{sub 5}SO{sub 3}{sup {minus}} substrate indicate that the {pi}-complexation bond is contributed mainly by the donation of olefin {pi}-bond electrons to the empty s-orbital of the metal, while the d-{pi}* back donation contributes only 16%. Moreover, the relative order of the heats of adsorption is correctly predicted.

  14. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust

    SciTech Connect

    Carlson, Torren R.; Cheng, Yu-Ting; Jae, Jungho; Huber, George W.

    2011-10-26

    Catalytic fast pyrolysis of pine wood sawdust and furan (a model biomass compound) with ZSM-5 based catalysts was studied with three different reactors: a bench scale bubbling fluidized bed reactor, a fixed bed reactor and a semi-batch pyroprobe reactor. The highest aromatic yield from sawdust of 14% carbon in the fluidized bed reactor was obtained at low biomass weight hourly space velocities (less than 0.5 h-1) and high temperature (600 °C). Olefins (primarily ethylene and propylene) were also produced with a carbon yield of 5.4% carbon. The biomass weight hourly space velocity and the reactor temperature can be used to control both aromatic yield and selectivity. At low biomass WHSV the more valuable monocyclic aromatics are produced and the formation of less valuable polycyclic aromatics is inhibited. Lowering the reaction temperature also results in more valuable monocyclic aromatics. The olefins produced during the reaction can be recycled to the reactor to produce additional aromatics. Propylene is more reactive than ethylene. Co-feeding propylene to the reactor results in a higher aromatic yield in both continuous reactors and higher conversion of the intermediate furan in the fixed bed reactor. When olefins are recycled aromatic yields from wood of 20% carbon can be obtained. After ten reaction–regeneration cycles there were metal impurities deposited on the catalyst, however, the acid sites on the zeolite are not affected. Of the three reactors tested the batch pyroprobe reactor yielded the most aromatics, however, the aromatic product is largely naphthalene. The continuous reactors produce less naphthalene and the sum of aromatics plus olefin products is higher than the pyroprobe reactor.

  15. Asymmetric Hydroformylation of Heterocyclic Olefins Mediated by Supramolecularly Regulated Rhodium-Bisphosphite Complexes.

    PubMed

    Rovira, Laura; Vaquero, Mónica; Vidal-Ferran, Anton

    2015-10-16

    Rhodium complexes derived from conformationally transformable α,ω-bisphosphite ligands combined with a suitable alkali metal BArF salt as a regulation agent (RA) provide high regio- and enantioselectivities in the asymmetric hydroformylation (AHF) of three heterocyclic olefins. The outcome of the AHF could be exquisitely regulated by choosing the appropriate RA with an increase in the ee, the reversal of the regioselectivity, or the complete suppression of one byproduct. PMID:26355601

  16. An unexpected Bromolactamization of Olefinic Amides Using a Three-Component Co-catalyst System.

    PubMed

    Cheng, Yi An; Yu, Wesley Zongrong; Yeung, Ying-Yeung

    2016-01-15

    Reaction between (N,N-dimethylamino)pyridine and isocyanate unexpectedly produced a three-component mixture. By using this mixture as an unprecedented three-component catalyst system, a facile and selective bromolactamization of olefinic amides has been developed. The protocol confers enhanced selectivity of N- over O-cyclization, leading to the formation of a structurally diverse range of lactams including both small and medium ring sizes. PMID:26679219

  17. Improving olefin tolerance and production in E. coli using native and evolved AcrB

    DOE PAGESBeta

    Mingardon, Florence; Clement, Camille; Hirano, Kathleen; Nhan, Melissa; Luning, Eric G.; Chanal, Angelique; Mukhopadhyay, Aindrila

    2015-01-20

    Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha-olefins; 1-hexene, 1-octene, and 1-nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB-TolC, in enhancing tolerance towards these olefin compounds. AcrAB-TolC is involved in the tolerance towards all four compounds in E. coli. Both styrene and 1-hexene are highly toxic to E. coli. Styrene is a model plastics precursor with an established route for productionmore » in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB-TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli. Thus we used 1-hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha-olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production.« less

  18. P450-catalyzed asymmetric cyclopropanation of electron-deficient olefins under aerobic conditions.

    PubMed

    Renata, Hans; Wang, Z Jane; Kitto, Rebekah Z; Arnold, Frances H

    2014-10-01

    A variant of P450 from Bacillus megaterium five mutations away from wild type is a highly active catalyst for cyclopropanation of a variety of acrylamide and acrylate olefins with ethyl diazoacetate (EDA). The very high rate of reaction enabled by histidine ligation allowed the reaction to be conducted under aerobic conditions. The promiscuity of this catalyst for a variety of substrates containing amides has enabled synthesis of a small library of precursors to levomilnacipran derivatives. PMID:25221671

  19. Frontiers in olefin polymerization: reinventing the world's most common synthetic polymers.

    PubMed

    Hustad, Phillip D

    2009-08-01

    Synthetic polymers are vital to our society, affecting practically every aspect of modern life. The ubiquitous nature of these materials is a result of years of collaboration between basic and applied researchers across many disciplines, resulting in economic routes to materials that meet customer needs. These considerations are exemplified by recent developments in the synthesis of block copolymers from simple olefins. The practical application of creative chemistry has produced materials with a favorable balance of desirable polymer properties and process economics. PMID:19661418

  20. P450-catalyzed asymmetric cyclopropanation of electron-deficient olefins under aerobic conditions

    PubMed Central

    Renata, Hans; Wang, Z. Jane; Kitto, Rebekah Z.

    2014-01-01

    A variant of P450 from Bacillus megaterium five mutations away from wild type is a highly active catalyst for cyclopropanation of a variety of acrylamide and acrylate olefins with ethyl diazoacetate (EDA). The very high rate of reaction enabled by histidine ligation allowed the reaction to be conducted under aerobic conditions. The promiscuity of this catalyst for a variety of substrates containing amides has enabled synthesis of a small library of precursors to levomilnacipran derivatives. PMID:25221671

  1. Determination of aromatics and olefins in wide-boiling petroleum fractions

    NASA Technical Reports Server (NTRS)

    Spakowski, A E; Evans, A; Hibbard, R R

    1950-01-01

    A chromatographic method is described herein for the analysis of aromatics and olefins in wide boiling petroleum fractions. The fuel is split into four fractions: nonaromatic, intermediate, pure aromatic, and wash. The analysis, which need be run only on the intermediate cut to determine aromatics in the fuel, is based on specific dispersion. With analysis times of less than 8 hours, accuracies of 1 percent were attained.

  2. Tacky cyclic olefin copolymer: a biocompatible bonding technique for the fabrication of microfluidic channels in COC.

    PubMed

    Keller, Nico; Nargang, Tobias M; Runck, Matthias; Kotz, Frederik; Striegel, Andreas; Sachsenheimer, Kai; Klemm, Denis; Länge, Kerstin; Worgull, Matthias; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E

    2016-04-26

    Cyclic olefin copolymer (COC) is widely used in microfluidics due to its UV-transparency, its biocompatibility and high chemical resistance. Here we present a fast and cost-effective solvent bonding technique, which allows for the efficient bonding of protein-patterned COC structures. The bonding process is carried out at room temperature and takes less than three minutes. Enzyme activity is retained upon bonding and microstructure deformation does not occur. PMID:27040493

  3. Direct Addition Mechanism during the Catalytic Hydrogenation of Olefins over Platinum Surfaces.

    PubMed

    Dong, Yujung; Ebrahimi, Maryam; Tillekaratne, Aashani; Zaera, Francisco

    2016-07-01

    The mechanism of the hydrogenation of olefins catalyzed by metal surfaces was probed by using isotope labeling in conjunction with a high-flux effusive molecular beam setup capable of sustaining steady-state conversion under well-controlled ultrahigh vacuum (UHV). The unique conditions afforded by this instrument, namely, a single collision regime and impinging frequencies equivalent to pressures in the mTorr range, led to the clear identification of two competing pathways: a multiple H-D isotope exchange channel explained by the well-known Horiuti-Polanyi mechanism but with an unusually high probability for β-hydride elimination from the alkyl surface intermediate (versus its reductive elimination to the alkane), and a direct addition route that produces dideuterated alkanes selectively. The latter may follow an Eley-Rideal mechanism involving an adsorbate (either the olefin or the hydrogen/deuterium atoms resulting from dissociative adsorption of H2/D2) and a gas-phase molecule (the other reactant), or, alternatively, it could reflect the limited diffusion of the hydrogen atoms on the surface under catalytic conditions because of site blocking by the islands of strongly bonded carbonaceous (alkylidyne) layers present during catalysis. Regardless, our data clearly show that the distribution of alkane isotopologues obtained from the conversion of olefins with deuterium can deviate significantly from statistical expectations. PMID:27309969

  4. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1995

    SciTech Connect

    Curtis, C.W.

    1995-09-01

    The research performed during the quarter, January to March 1995, focused on two areas. The first area involved completing the writing of a manuscript based on research performed on this project concerning the mild acidic pretreatment of low rank coals and their liquefaction behavior in the presence of hydrogen donors with different reactivities. The manuscript was submitted for review to Energy and Fuels. A second manuscript was begun which discussed the research involving the hydrogen donation at low severity condition by hexahydroanthracene. The catalytic enhancement of hydrogen transfer by cyclic olefins was also examined. The data from this research was reexamined; it was decided that before writing the paper than the data should be reanalyzed. Therefore, this quarter was spent taking the raw data and reanalyzing the data, putting the solvent fractionation data on a solvent-free basis. The recalculated data and the calculational method is given as Part 1 in this report. The second area that was worked on this quarter was the high temperature infrared analysis of cyclic olefins. The work is ongoing and is currently involving a considerable amount of equipment and technique development. Part 2 is the discussion on the high temperature infrared analysis of cyclic olefins.

  5. Epoxidation of olefins catalysed by vanadium-salan complexes: a theoretical mechanistic study.

    PubMed

    Kuznetsov, Maxim L; Pessoa, João Costa

    2009-07-28

    Plausible mechanisms of olefin epoxidation catalysed by a V-salan model complex [VIV(=O)(L)(H2O)] (1, L=(CH2NHCH2CH=CHO-)2) in the presence of H2O2 are investigated and compared by theoretical methods using density functional theory. Three main routes, i.e. the Mimoun, Sharpless and biradical mechanisms, were examined in detail, and the Sharpless pathway was found to be the most favourable one. The reaction starts from the formation of an active catalytic species [VV(=O)(OO)(LH)] (3c) upon interaction of 1 with H2O2, then concerted, highly synchronous attack of the olefin to 3c occurs yielding the epoxide and catalyst [VV(=O)2(LH)], the latter being oxidized by H2O2 to 3c. The activation barrier strongly depends on the proton location in the catalyst molecule and is the lowest when one of the oxygen atoms of the salan ligand is protonated and the vanadium atom is penta-coordinated with one vacant coordination position (complex 3c). The olefin in this reaction acts as an electron donor (nucleophile) rather than as an electron acceptor (electrophile). PMID:19587988

  6. Energy and materials flows in the production of olefins and their derivatives

    SciTech Connect

    Gaines, L.L.; Shen, S.Y.

    1980-08-01

    Production of olefins and their derivatives uses almost 3.5% of the oil and gas consumed annually in the United States. It is estimated that their production requires an input energy of 2 Q, which is 50% of the energy used in the production of all petrochemicals. Substantial amounts of this energy could be recovered through recycling. For example, recycling of a single plastic product, polyester soft drink bottles, could have recovered about 0.014 Q in 1979. (About 1.4 Q is used to produce plastic derivatives of olefins). Petrochemical processes use fuels as feedstocks, as well as for process energy, and a portion of this energy is not foregone and can be recovered through combustion of the products. The energy foregone in the production of ethylene is estimated to be 7800 Btu/lb. The energy foregone in plastics production ranges from 12,100 Btu/lb for the new linear low-density polyethylene to 77,200 Btu/lb for nylon 66, which is about 60% of the total energy input for that product. Further investigation of the following areas could yield both material and energy savings in the olefins industry: (1) recycling of petrochemical products to recover energy in addition to that recoverable through combustion, (2) impact of feedstock substitution on utilization of available national resources, and (3) effective use of the heat embodied in process steam. This steam accounts for a major fraction of the industry's energy input.

  7. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst.

    PubMed

    Zhang, Huiyan; Xiao, Rui; Jin, Baosheng; Xiao, Guomin; Chen, Ran

    2013-07-01

    Zeolite catalysts with micropores present good catalytic characteristics in biomass catalytic pyrolysis process. However, large-molecule oxygenates produced from pyrolysis cannot enter their pores and would form coke on their surfaces, which decreases hydrocarbon yield and deactivates catalyst rapidly. This paper proposed adding some mesoporous and macroporous catalysts (Gamma-Al2O3, CaO and MCM-41) in the microporous catalyst (LOSA-1) for biomass catalytic pyrolysis. The added catalysts were used to crack the large-molecule oxygenates into small-molecule oxygenates, while LOSA-1 was used to convert these small-molecule oxygenates into olefins and aromatics. The results show that all the additives in LOSA-1 enhanced hydrocarbon yield obviously. The maximum aromatic+olefin yield of 25.3% obtained with 10% Gamma-Al2O3/90% LOSA-1, which was boosted by 39.8% compared to that obtained with pure LOSA-1. Besides, all the additives in LOSA-1 improved the selectivities of low-carbon components in olefins and aromatics significantly. PMID:23707913

  8. Iron particle size effects for direct production of lower olefins from synthesis gas.

    PubMed

    Torres Galvis, Hirsa M; Bitter, Johannes H; Davidian, Thomas; Ruitenbeek, Matthijs; Dugulan, A Iulian; de Jong, Krijn P

    2012-10-01

    The Fischer-Tropsch synthesis of lower olefins (FTO) is an alternative process for the production of key chemical building blocks from non-petroleum-based sources such as natural gas, coal, or biomass. The influence of the iron carbide particle size of promoted and unpromoted carbon nanofiber supported catalysts on the conversion of synthesis gas has been investigated at 340-350 °C, H(2)/CO = 1, and pressures of 1 and 20 bar. The surface-specific activity (apparent TOF) based on the initial activity of unpromoted catalysts at 1 bar increased 6-8-fold when the average iron carbide size decreased from 7 to 2 nm, while methane and lower olefins selectivity were not affected. The same decrease in particle size for catalysts promoted by Na plus S resulted at 20 bar in a 2-fold increase of the apparent TOF based on initial activity which was mainly caused by a higher yield of methane for the smallest particles. Presumably, methane formation takes place at highly active low coordination sites residing at corners and edges, which are more abundant on small iron carbide particles. Lower olefins are produced at promoted (stepped) terrace sites that are available and active, quite independent of size. These results demonstrate that the iron carbide particle size plays a crucial role in the design of active and selective FTO catalysts. PMID:22953753

  9. LDRD final report on new homogeneous catalysts for direct olefin epoxidation (LDRD 52591).

    SciTech Connect

    Goldberg, Karen; Smythe, Nicole A.; Moore, Joshua T.; Stewart, Constantine A.; Kemp, Richard Alan; Miller, James Edward; Kornienko, Alexander (New Mexico Institute of Mining and Technology); Denney, Melanie C. (University of Washington); Cetto, Kara L.

    2006-02-01

    This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

  10. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, April--June 1992

    SciTech Connect

    Curtis, C.W.

    1992-07-27

    Low severity coal liquefaction allows for solubilization of coal with reduced gas make. These lower severity conditions may result in some selective bond rupture. Promotion of coal solubilization through hydrogen transfer using highly active and effective hydrogen donors is the objective of this study. The highly effective donors being tested are cyclic olefins. Representative cyclic olefins are isotetralin, which is 1,4,5,8-tetrahydronaphthalene, and 1,4,5,8,9,10-hexahydroanthracene. These compounds are hydroaromatics without aromatic rings and have been shown to be highly effective donors. The objective of the work performed in this study during this quarter was to evaluate reaction parameters for low severity liquefaction reactions using the cyclic olefin, hexahydroanthracene, and the aromatic, anthracene. These model compounds were reacted under a variety of conditions to evaluate their reactivity without coal. The reactions were performed under both thermal and catalytic conditions. Finely divided catalysts from different molybdenum precursors were used to determine their activity in promoting hydrogenation and hydrogen transfer at low severity conditions. The catalysts used were Molyvan L, sulfurized oxymolybdenum dithiocarbamate, molybdenum naphthenate, and Molyvan 822, organo molybdenum dithiocarbamate.

  11. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2007-01-09

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  12. Cyclopentadienyl-Containing Low-Valent Early Transition Metal Olefin Polymerization Catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2004-06-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C-containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  13. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-12-30

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, SnR".sub.3, and C.dbd.C containing groups (R".dbd.C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  14. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2003-04-08

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n }.sup.+ {A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 -C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 -C.sub.20 hydrocarbyl, SiR".sub.3, NR".sub.2, OR", SR", GeR".sub.3, and SnR".sub.3 containing groups (R"=C.sub.1 -C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  15. Cyclopentadienyl-containing low-valent early transition metal olefin polymerization catalysts

    DOEpatents

    Marks, Tobin J.; Luo, Lubin; Yoon, Sung Cheol

    2006-10-10

    A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR'.sub.n}.sup.+{A}.sup.- wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C.sub.1 C.sub.20 hydrocarbyl; R' are independently selected from hydride, C.sub.1 C.sub.20 hydrocarbyl, SiR''.sub.3, NR''.sub.2, OR'', SR'', GeR''.sub.3, SnR''.sub.3, and C.dbd.C-containing groups (R''=C.sub.1 C.sub.10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.

  16. Wood-derived olefins by steam cracking of hydrodeoxygenated tall oils.

    PubMed

    Pyl, Steven P; Dijkmans, Thomas; Antonykutty, Jinto M; Reyniers, Marie-Françoise; Harlin, Ali; Van Geem, Kevin M; Marin, Guy B

    2012-12-01

    Tall oil fractions obtained from Norwegian spruce pulping were hydrodeoxygenated (HDO) at pilot scale using a commercial NiMo hydrotreating catalyst. Comprehensive two dimensional gas chromatography (GC×GC) showed that HDO of both tall oil fatty acids (TOFA) and distilled tall oil (DTO) produced highly paraffinic hydrocarbon liquids. The hydrotreated fractions also contained fatty acid methyl esters and norabietane and norabietatriene isomers. Steam cracking of HDO-TOFA in a pilot plant revealed that high light olefin yields can be obtained, with 35.4 wt.% of ethene and 18.2 wt.% of propene at a coil outlet pressure (COP) of 1.7 bara, a dilution of 0.45 kg(steam)/kg(HDO-TOFA) and a coil outlet temperature (COT) of 820 °C. A pilot plant coking experiment indicated that cracking of HDO-TOFA at a COT of 850 °C results in limited fouling in the reactor. Co-cracking of HDO tall oil fractions with a typical fossil-based naphtha showed improved selectivity to desired light olefins, further demonstrating the potential of large scale olefin production from hydrotreated tall oil fractions in conventional crackers. PMID:23079410

  17. Olefin Polymerization Catalyzed by Double-Decker Dipalladium Complexes: Low Branched Poly(α-Olefin)s by Selective Insertion of the Monomer Molecule.

    PubMed

    Takano, Shigenaga; Takeuchi, Daisuke; Osakada, Kohtaro

    2015-11-01

    Dipalladium complexes of a cyclic bis(diimine) ligand with a double-decker structure catalyze polymerization of ethylene and α-olefins and copolymerization of ethylene with 1-hexene. The polymerization of 1-hexene yields a polymer that is mainly composed of the hexamethylene unit formed by 2,1-insertion of the monomer into the palladium-carbon bond, followed by chain-walking (6,1-insertion). The polymerization of 4-methyl-1-pentene proceeds by 2,1-insertion with a selectivity of 92-97 %, and affords the polymer with methyl and 2-methylhexyl branches. 2,1-Insertion occurs selectively in all of the polymerization reactions of α-olefins catalyzed by the dipalladium complexes. Ethylene polymerization with the catalyst at 100 °C lasts over 24 h, whereas the monopalladium-diimine catalyst loses its activity within 8 h at 60 °C. Polyethylene obtained by the dipalladium catalyst is less-branched and has a higher molecular weight compared to that of the monopalladium catalyst under the same conditions. Copolymerization of ethylene with 1-hexene affords solid products with melting points and molecular weights that vary depending on the polymerization time, suggesting formation of a block and/or gradient copolymer. PMID:26396067

  18. Emissions and ambient air monitoring trends of lower olefins across Texas from 2002 to 2012.

    PubMed

    Myers, Jessica L; Phillips, Tracie; Grant, Roberta L

    2015-11-01

    Texas has the largest ambient air monitoring network in the country with approximately 83 monitoring sites that measure ambient air concentrations of volatile organic compounds (VOCs). The lower olefins, including 1,3-butadiene, ethylene, isoprene, and propylene, are a group of VOCs that can be measured in both 24h/every sixth-day canister samples and continuous 1-h Automated Gas Chromatography (AutoGC) samples. Based on 2012 Toxics Release Inventory data, the total reported industrial air emissions in Texas for these olefins, as compared to total national reported air emissions, were 79% for 1,3-butadiene, 62% for ethylene, 76% for isoprene, and 54% for propylene, illustrating that Texas industries are some of the major emitters for these olefins. The purpose of this study was to look at the patterns of annual average air monitoring data from 2002 to 2012 using Texas Commission on Environmental Quality (TCEQ) data for these four lower olefins. It should be emphasized that monitors may not be located close to or downwind of the highest emitters of these lower olefins. In addition, air monitors only provide a snapshot in time of air concentrations for their respective locations, and may not be able to discriminate emissions between specific sources. In 2012, the highest annual average air concentration for 1,3-butadiene was 1.28 ppb by volume (ppbv), which was measured at the Port Neches monitoring site in Region 10-Beaumont. For ethylene, the highest 2012 annual average air concentration was 5.77 ppbv, which was measured at the Dona Park monitoring site in TCEQ Region 14-Corpus Christi. Although reported industrial emissions of isoprene are predominantly from the Houston and Beaumont regions, trees are natural emitters of isoprene, and the highest ambient air concentrations tend to be from regions with large areas of coniferous and hardwood forests. This was observed with TCEQ Region 5-Tyler, which had the two highest isoprene annual average air concentrations for

  19. Multinuclear group 4 catalysis: olefin polymerization pathways modified by strong metal-metal cooperative effects.

    PubMed

    McInnis, Jennifer P; Delferro, Massimiliano; Marks, Tobin J

    2014-08-19

    Polyolefins are produced today catalytically on a vast scale, and the manufactured polymers find use in everything from artificial limbs and food/medical packaging to automotive and electrical components and lubricants. Although polyolefin monomers are typically cheap (e.g., ethylene, propylene, α-olefins), the resulting polymer properties can be dramatically tuned by the particular polymerization catalyst employed, and reflect a rich interplay of macromolecular chemistry, materials science, and physics. For example, linear low-density polyethylene (LLDPE), produced by copolymerization of ethylene with linear α-olefin comonomers such as 1-butene, 1-hexene, or 1-octene, has small but significant levels of short alkyl branches (C2, C4, C6) along the polyethylene backbone, and is an important technology material due to outstanding rheological and mechanical properties. In 2013, the total world polyolefin production was approximately 211 million metric tons, of which about 11% was LLDPE. Historically, polyolefins were produced using ill-defined but highly active heterogeneous catalysts composed of supported groups 4 or 6 species (usually halides) activated by aluminum alkyls. In 1963, Karl Ziegler and Giulio Natta received the Nobel Prize for these discoveries. Beginning in the late 1980s, a new generation of group 4 molecule-based homogeneous olefin polymerization catalysts emerged from discoveries by Walter Kaminsky, a team led by James Stevens at The Dow Chemical Company, this Laboratory at Northwestern University, and a host of talented groups in Germany, Italy, Japan, the United Kingdom, and the United States. These new "single-site" catalysts and their activating cocatalysts were far better defined and more rationally tunable in terms of structure, mechanism, thermodynamics, and catalyst activity and selectivity than ever before possible. An explosion of research advances led to new catalysts, cocatalysts, deeper mechanistic understanding of both the

  20. At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles.

    PubMed

    Rangheard, Claudine; de Julián Fernández, César; Phua, Pim-Huat; Hoorn, Johan; Lefort, Laurent; de Vries, Johannes G

    2010-09-28

    The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C-C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl(3) reduced by 3 equivalents of EtMgCl forms an active catalyst for the hydrogenation of a range of olefins and alkynes. Olefin hydrogenation is relatively fast at 5 bar using 5 mol% of catalyst. The catalyst is also active for terminal olefins and 1,1' and 1,2-cis disubstituted olefins while trans-olefins react much slower. 1-Octyne is hydrogenated to mixtures of 1-octene and octane. Kinetic studies led us to propose a mechanism for this latter transformation where octane is obtained by two different pathways. Characterization of the nanoparticles via TEM, magnetic measurements and poisoning experiments were undertaken to understand the true nature of our catalyst. PMID:20714614

  1. The issue of 'molecular radiators' in microwave-assisted reactions. Computational calculations on ring closing metathesis (RCM).

    PubMed

    Rodríguez, A M; Prieto, P; de la Hoz, A; Díaz-Ortiz, A; García, J I

    2014-04-21

    A DFT computational mechanistic study of the ring closing metathesis (RCM) reaction of diallyl ether or N,N-diallyl-p-toluenesulfonamide catalyzed by a second generation Grubbs-type ruthenium carbene complex has been carried out. This study was performed at the PCM(CH2Cl2)-B3LYP/6-311+G(2d,p)//B3LYP/SDD theory level. The aim of this work was to shed light on the influence that microwave irradiation has on these reactions and to gain insight into the so-called 'molecular radiator' effect. The outcomes obtained indicate that thermal effects induced by microwave irradiation decrease the catalytic induction period. The presence of a polar reagent and/or polar species in the reaction that increases the polarity of the medium may enhance this thermal effect. PMID:24599220

  2. Chemical synthesis of porous hierarchical Ge-Sn binary composites using metathesis reaction for rechargeable Li-ion batteries.

    PubMed

    Lin, Ning; Zhou, Jie; Han, Ying; Zhang, Kailong; Zhu, Yongchun; Qian, Yitai

    2015-12-14

    Direct metathesis reaction between Mg2Ge and SnCl4 is introduced to prepare porous hierarchical Ge-Sn binary composites, in which the Ge and Sn components are distributed uniformly, with a tap density of 2.3 g cm(-3). As an anode for LIBs, the Ge-Sn composite displays a specific capacity of 980 mA h g(-1) at 0.5 A g(-1) after 250 cycles, and 890 mA h g(-1) at 3 A g(-1) over 1700 cycles. When paired with a commercial LiCoO2 cathode, a 3.6 V full battery with a capacity of 830 mA h g(-1) is obtained. PMID:26455516

  3. A large-molecular-weight polyanion, synthesized via ring-opening metathesis polymerization, as a lubricant for human articular cartilage.

    PubMed

    Wathier, Michel; Lakin, Benjamin A; Bansal, Prashant N; Stoddart, Stephanie S; Snyder, Brian D; Grinstaff, Mark W

    2013-04-01

    A large-molecular-weight polyanion is found to possess lubricating properties for cartilage. The polyanion, sodium poly(7-oxanorbornene-2-carboxylate), is synthesized by ring-opening metathesis polymerization of methyl 5-oxanorbornene-2-carboxylate. When dissolved in aqueous solution and applied to the surface of human cartilage it reduces the friction at the interface and acts as a lubricant. Its performance is similar to that of synovial fluid and superior to those of saline and Synvisc in an ex vivo human cartilage plug-on-plug model. The polymer is also not readily degraded by hyaluronidase or cytotoxic to human chondrocytes in vitro. As such, this polymer is a new type of viscosupplement, and the results provide insight into the design requirements for synthesizing highly efficacious synthetic biolubricants. PMID:23496043

  4. Identification of a Grain Beetle Macrolide Pheromone and Its Synthesis by Ring-Closing Metathesis Using a Terminal Alkyne.

    PubMed

    Hötling, Susann; Bittner, Celine; Tamm, Matthias; Dähn, Sonja; Collatz, Jana; Steidle, Johannes L M; Schulz, Stefan

    2015-10-16

    A major C18-macrolide was found during analysis of the frass of the storage beetle Oryzaephilus surinamensis to be (9Z,12Z,15R)-octadeca-9,12-dien-15-olide (10, cucujolide XI). The synthesis used ring-closing alkyne metathesis as a key step. The highly active 2,4,6-trimethylbenzylidyne molybdenum complex [MesCMo{OC(CF3)2Me}3] (12) allowed the use of a terminal alkyne and afforded the product in excellent yield. Bioassays proved the activity of the R-enantiomer 10 in the aggregation of the beetle. Cucujolide XI is the first macrolide pheromone oxidized at the ω-4 position. PMID:26406161

  5. Synthesis of densely functionalized enantiopure indolizidines by ring-closing metathesis (RCM) of hydroxylamines from carbohydrate-derived nitrones

    PubMed Central

    Bonanni, Marco; Marradi, Marco; Cardona, Francesca; Cicchi, Stefano; Goti, Andrea

    2007-01-01

    Background Indolizidine alkaloids widely occur in nature and display interesting biological activity. This is the reason for which their total synthesis as well as the synthesis of non-natural analogues still attracts the attention of many research groups. To establish new straightforward accesses to these molecules is therefore highly desirable. Results The ring closing metathesis (RCM) of enantiopure hydroxylamines bearing suitable unsaturated groups cleanly afforded piperidine derivatives in good yields. Further cyclization and deprotection of the hydroxy groups gave novel highly functionalized indolizidines. The synthesis of a pyrroloazepine analogue is also described. Conclusion We have developed a new straightforward methodology for the synthesis of densely functionalized indolizidines and pyrroloazepine analogues in 6 steps and 30–60% overall yields from enantiopure hydroxylamines obtained straightforwardly from carbohydrate-derived nitrones. PMID:18076753

  6. Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization: the importance of removing trace linear contaminants.

    PubMed

    Bielawski, Christopher W; Benitez, Diego; Grubbs, Robert H

    2003-07-16

    The synthesis of cyclic polybutadienes using ring-opening metathesis polymerization (ROMP) was accomplished. A cyclic Ru alkylidene catalyst, where a terminal ligand was covalently linked to the Ru alkylidene, was used to polymerize either 1,5-cyclooctadiene (COD) or 1,5,9-trans-cis-trans-cyclododecatriene (CDT). Trace amounts of an acyclic impurity, 4-vinylcyclohexene, found in the COD led to samples which were contaminated with linear polymer. In contrast, CDT, which was free of the impurity, afforded pure cyclic polymer. These results provide a convenient method for discerning samples of pure cyclic polymer from those which contain trace to large amounts of linear polymer. Furthermore, they emphasize the need to use monomers that are free of acyclic impurities when preparing cyclic polymers using ROMP. PMID:12848534

  7. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies. PMID:26878670

  8. Synthesis gas and olefins from the catalytic autothermal reforming of volatile and non-volatile liquids

    NASA Astrophysics Data System (ADS)

    Dreyer, Bradon Justin

    2007-12-01

    The research presented in this thesis develops an understanding of a clean energy process technology, catalytic partial oxidation (CPO). CPO is a process in which a carbon containing fuel, such as a hydrocarbon, is passed over a noble metal catalyst (e.g. rhodium and platinum) to efficiently generate synthesis gas (H2 and CO) and olefins (e.g. ethylene and propylene) in millisecond contact times. Chapter 1 introduces CPO and compares this technology with conventional methods for synthesis gas and olefin production. CPO has several advantages over the traditional synthesis gas and olefin production methods. One advantage includes autothermal operation, requiring no external heat input from furnaces or heat exchangers. Autothermal operation allows these reactors to be built compactly. The short contact-times associated with CPO further enable for high throughput in relatively small reactor systems, and more compact reactors typically translate to faster response times if transient operation is required. Nobel metal based CPO catalysts are also resistant to deactivation, resulting in less catalyst replacement, regeneration, and maintenance, and an increase in operating efficiency. An overview of the many applications of the chemicals produced from CPO is also presented in Chapter 1. The chemicals produced are crucial in generating valuable chemical intermediates that are eventually incorporated in consumer products, medical devices, building structures, and fertilizers. Additionally, H2 can be used as a source of energy in mobile fuel applications. Fuel cells convert H2 and O2 into electricity and water at higher efficiencies than thermal engine generators. Due to the difficulties in H2 storage, these more efficient energy generators are dependent on hydrogen obtained from synthesis gas production in compact, portable fuel reformers, such as CPO reactors. Furthermore, H2 and CO can be used in reducing environmentally harmful emissions. Particularly, the implementation

  9. Application of the entropy theory of glass formation to poly(α-olefins)

    NASA Astrophysics Data System (ADS)

    Stukalin, Evgeny B.; Douglas, Jack F.; Freed, Karl F.

    2009-09-01

    The entropy theory of glass formation, which has previously been developed to describe general classes of polymeric glass-forming liquids, is extended here to model the thermodynamic and dynamic properties of poly(α-olefins). By combining this thermodynamic theory with the Adam-Gibbs model (which relates the configurational entropy to the rate of structural relaxation), we provide systematic computations for all four characteristic temperatures (TA, Tc, Tg, T0), governing the position and breadth of the glass transition, and the fragility parameters (D,m) describing the strength of the temperature dependence of the structural relaxation time, where TA is the temperature below which the relaxation is non-Arrhenius, Tc is the crossover or empirical mode-coupling temperature, Tg is the glass transition temperature, and T0 is the temperature at which the extrapolated relaxation time diverges. These temperatures and fragility parameters are evaluated as a function of molar mass, pressure, and the length n of the α-olefin side chains. The nearest neighbor interaction energy and local chain rigidities are found to strongly influence the four characteristic temperatures and the low temperature fragility. We also observe an "internal plasticization" of the poly(α-olefins) wherein the fragility decreases as the number n of "flexible" side group units increases. Our computations provide solid support for a pressure counterpart of the Vogel-Fulcher-Tammann relation. The entropy theory of glass formation predicts systematic changes in fragility with chain stiffness, cohesive energy, polymerization index, and side chain length, and qualitative trends in these parameters are discussed.

  10. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  11. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, October 1995--December 1995

    SciTech Connect

    Curtis, C.W.

    1995-12-31

    The goal of this research is to develop a methodology for analyzing the reactivity of cyclic olefins in situ in a high temperature and high pressure infrared cell. Cyclic olefins, such as 1,4,5,8-tetrahydronaphthalene (isotetralin) and 1,4,5,8,9,10-hexahydroanthracene (HHA), are highly reactive donor compounds that readily donate their hydrogen to coal and model acceptors when heated to temperatures of 200{degrees}C and above. These donors are active donors in the low severity liquefaction of coal at 350{degrees}C as shown in the research performed in this project. The infrared studies are being performed in a high temperature infrared cell that was obtained from AABSPEC. Modifications to that cell have been made and have been reported in previous progress reports. During this last quarter the useful temperature range of the high temperature infrared cell was extended to 230{degrees}C through the use of a high-boiling perfluorocarbon solvent. The solvent used was an Air Products and Chemicals Company proprietary product trade named Multifluor APF-240. Solubilities of aromatics and cyclic olefins were quite low in APF-240, usually less than 0.1 wt% at room temperature, but were found to be a strong function of temperature, increasing markedly when the mixtures were heated to 65{degrees}C. Spectra have been obtained of n-hexadecane and naphthalene at temperatures of 65, 100, 125, 150, 175, 200 and 230{degrees}C. This demonstration of the safe operation of the high temperature IR cell and the acquisition of spectra at elevated temperatures paves the way for kinetic studies of the hydrogen donor capability of isotetralin. A perfluoroether has been obtained from Dupont which should extend the useful temperature range of the high temperature IR cell to 350{degrees}C.

  12. Improvements in FCC catalysts and operations for maximum iso-olefins

    SciTech Connect

    Li, C.Y.; Li, Z.T.; Zhong, X.X.; Chen, Z.B. )

    1994-01-01

    To meet the increasing demand of isobutylene and isoamylenes in oxygenated gasoline era, RIPP has developed a new MIO series catalysts and a MIO process. The process is mainly a modification of conventional CC. The test results of pilot unit show: the total gaseous olefin content in MIO gas is around 80%; the total yield of isobutylene and isoamylenes can be up to 12 wt% (on feed); gasoline yield is about 40 wt% with RON over 95 and MON over 80. The MIO process will go on commercial trial in late 1954.

  13. Effects of Process Parameters on Replication Accuracy of Microinjection Molded Cyclic Olefins Copolymers Parts

    NASA Astrophysics Data System (ADS)

    Lin, Hsuan-Liang; Chen, Chun-Sheng; Lee, Ruey-Tsung; Chen, Shia-Chung; Chien, Rean-Der; Jeng, Ming-Chang; Hwang, Jiun-Ren

    2013-04-01

    In this study, the effects of various processing parameters of microinjection molding on the replication accuracy of the micro featured fluidic platform used for DNA/RNA tests are investigated. LIGA-like processes were utilized to prepare a silicon-based SU-8 photoresist, followed by electroforming to make a Ni-Co-based stamp. A cyclic olefin copolymer (COC) was used as the injection molding material. The molding parameters associated with the replication accuracy of micro channel parts were investigated. It was found that for microinjection molded devices, the replication accuracies of the imprint width and depth increase with increasing of mold temperature, melt temperature, injection velocity, and packing pressure.

  14. Transition-metal-catalyzed carbonylation reactions of olefins and alkynes: a personal account.

    PubMed

    Wu, Xiao-Feng; Fang, Xianjie; Wu, Lipeng; Jackstell, Ralf; Neumann, Helfried; Beller, Matthias

    2014-04-15

    Carbon monoxide was discovered and identified in the 18th century. Since the first applications in industry 80 years ago, academic and industrial laboratories have broadly explored CO's use in chemical reactions. Today organic chemists routinely employ CO in organic chemistry to synthesize all kinds of carbonyl compounds. Despite all these achievements and a century of carbonylation catalysis, many important research questions and challenges remain. Notably, apart from academic developments, industry applies carbonylation reactions with CO on bulk scale. In fact, today the largest applications of homogeneous catalysis (regarding scale) are carbonylation reactions, especially hydroformylations. In addition, the vast majority of acetic acid is produced via carbonylation of methanol (Monsanto or Cativa process). The carbonylation of olefins/alkynes with nucleophiles, such as alcohols and amines, represent another important type of such reactions. In this Account, we discuss our work on various carbonylations of unsaturated compounds and related reactions. Rhodium-catalyzed isomerization and hydroformylation reactions of internal olefins provide straightforward access to higher value aldehydes. Catalytic hydroaminomethylations offer an ideal way to synthesize substituted amines and even heterocycles directly. More recently, our group has also developed so-called alternative metal catalysts based on iridium, ruthenium, and iron. What about the future of carbonylation reactions? CO is already one of the most versatile C1 building blocks for organic synthesis and is widely used in industry. However, because of CO's high toxicity and gaseous nature, organic chemists are often reluctant to apply carbonylations more frequently. In addition, new regulations have recently made the transportation of carbon monoxide more difficult. Hence, researchers will need to develop and more frequently use practical and benign CO-generating reagents. Apart from formates, alcohols, and metal

  15. A CO-derived Fe Dicarbyne that Releases Olefin upon Hydrogenation

    PubMed Central

    Suess, Daniel L. M.; Peters, Jonas C.

    2013-01-01

    An Fe diphosphineborane platform that was previously reported to facilitate a high degree of N2 functionalization is herein shown to effect reductive CO coupling. Disilylation of an Fe dicarbonyl precursor furnishes a structurally unprecedented Fe dicarbyne complex. Several complexes related to this process are also characterized which allows for a comparative analysis of their respective Fe–B and Fe–C bonding. Facile hydrogenation of the Fe dicarbyne at ambient temperature and 1 atm H2 results in release of a CO-derived olefin. PMID:23931747

  16. Synthesis of Chiral, Enantiopure Allylic Amines by the Julia Olefination of α-Amino Esters.

    PubMed

    Benedetti, Fabio; Berti, Federico; Fanfoni, Lidia; Garbo, Michele; Regini, Giorgia; Felluga, Fulvia

    2016-01-01

    The four-step conversion of a series of N-Boc-protected l-amino acid methyl esters into enantiopure N-Boc allylamines by a modified Julia olefination is described. Key steps include the reaction of a lithiated phenylalkylsulfone with amino esters, giving chiral β-ketosulfones, and the reductive elimination of related α-acetoxysulfones. The overall transformation takes place under mild conditions, with good yields, and without loss of stereochemical integrity, being in this respect superior to the conventional Julia reaction of α-amino aldehydes. PMID:27338326

  17. How the Proximal Pocket May Influence the Enantiospecificities of Chloroperoxidase-Catalyzed Epoxidations of Olefins

    PubMed Central

    Morozov, Alexander N.; Chatfield, David C.

    2016-01-01

    Chloroperoxidase-catalyzed enantiospecific epoxidations of olefins are of significant biotechnological interest. Typical enantiomeric excesses are in the range of 66%–97% and translate into free energy differences on the order of 1 kcal/mol. These differences are generally attributed to the effect of the distal pocket. In this paper, we show that the influence of the proximal pocket on the electron transfer mechanism in the rate-limiting event may be just as significant for a quantitatively accurate account of the experimentally-measured enantiospecificities. PMID:27517911

  18. Comparison of Topas cyclic olefin copolymers to BK7 glass in night vision goggle objectives

    NASA Astrophysics Data System (ADS)

    Stevens, James S.

    2004-09-01

    The objective of this study was to determine the suitability of Topas cyclic olefin copolymers (COC) as an optical plastic for use in military-grade night vision goggle (NVG) lens objectives. Test objective lenses that could include either a Topas COC window element or BK7 glass window element were manufactured. The test objectives were evaluated for low light resolution, MTF, off-axis veiling glare, and on-axis stray light. Additionally, the spectral transmittance of the individual windows elements was measured. This paper compares the evaluation results of test objectives containing Topas COC with test objectives containing BK7 glass.

  19. Manganese(II)/Picolinic Acid Catalyst System for Epoxidation of Olefins.

    PubMed

    Moretti, Ross A; Du Bois, J; Stack, T Daniel P

    2016-06-01

    An in situ generated catalyst system based on Mn(CF3SO3)2, picolinic acid, and peracetic acid converts an extensive scope of olefins to their epoxides at 0 °C in <5 min, with remarkable oxidant efficiency and no evidence of radical behavior. Competition experiments indicate an electrophilic active oxidant, proposed to be a high-valent Mn = O species. Ligand exploration suggests a general ligand sphere motif contributes to effective oxidation. The method is underscored by its simplicity and use of inexpensive reagents to quickly access high value-added products. PMID:27191036

  20. Development and Applications of Transesterification Reactions Catalyzed by N-Heterocyclic Olefins.

    PubMed

    Blümel, Marcus; Noy, Janina-Miriam; Enders, Dieter; Stenzel, Martina H; Nguyen, Thanh V

    2016-05-01

    A novel method to utilize N-heterocyclic olefins (NHOs), the alkylidene derivatives of N-heterocycic carbenes, as organocatalysts to promote transesterification reactions has been developed. Because of their strong Brønsted/Lewis basicity, NHOs can enhance the nucleophilicity of alcohols for their acylation reactions with carboxylic esters. This transformation can be employed in industrially relevant processes such as the production of biodiesel, the depolymerization of polyethylene terephthalate (PET) from plastic bottles for recycling purposes, and the ring-opening polymerization of cyclic esters to form biodegradable polymers such as polylactide (PLA) and polycaprolactone (PCL). PMID:27115463

  1. Lewis Base Activation of Silyl Acetals: Iridium-Catalyzed Reductive Horner-Wadsworth-Emmons Olefination.

    PubMed

    Dakarapu, Udaya Sree; Bokka, Apparao; Asgari, Parham; Trog, Gabriela; Hua, Yuanda; Nguyen, Hiep H; Rahman, Nawal; Jeon, Junha

    2015-12-01

    A Lewis base promoted deprotonative pronucleophile addition to silyl acetals has been developed and applied to the iridium-catalyzed reductive Horner-Wadsworth-Emmons (HWE) olefination of esters and the chemoselective reduction of the resulting enoates. Lewis base activation of silyl acetals generates putative pentacoordinate silicate acetals, which fragment into aldehydes, silanes, and alkoxides in situ. Subsequent deprotonative metalation of phosphonate esters followed by HWE with aldehydes furnishes enoates. This operationally convenient, mechanistically unique protocol converts the traditionally challenging aryl, alkenyl, and alkynyl esters to homologated enoates at room temperature within a single vessel. PMID:26566189

  2. Dismantlable Thermosetting Adhesives Composed of a Cross-Linkable Poly(olefin sulfone) with a Photobase Generator.

    PubMed

    Sasaki, Takeo; Hashimoto, Shouta; Nogami, Nana; Sugiyama, Yuichi; Mori, Madoka; Naka, Yumiko; Le, Khoa V

    2016-03-01

    A novel photodetachable adhesive was prepared using a photodepolymerizable cross-linked poly(olefin sulfone). A mixture of a cross-linkable poly(olefin sulfone), a cross-linking reagent, and a photobase generator functioned as a thermosetting adhesive and exhibited high adhesive strength on quartz plates comparable to that obtained for commercially available epoxy adhesives. The cured resin was stable in the absence of UV light irradiation but completely lost its adhesive strength upon exposure of glued quartz plates to UV light in conjunction with heating to 100 °C. PMID:26872271

  3. Development of a ruthenium/phosphite catalyst system for domino hydroformylation-reduction of olefins with carbon dioxide.

    PubMed

    Liu, Qiang; Wu, Lipeng; Fleischer, Ivana; Selent, Detlef; Franke, Robert; Jackstell, Ralf; Beller, Matthias

    2014-06-01

    An efficient domino ruthenium-catalyzed reverse water-gas-shift (RWGS)-hydroformylation-reduction reaction of olefins to alcohols is reported. Key to success is the use of specific bulky phosphite ligands and triruthenium dodecacarbonyl as the catalyst. Compared to the known ruthenium/chloride system, the new catalyst allows for a more efficient hydrohydroxymethylation of terminal and internal olefins with carbon dioxide at lower temperature. Unwanted hydrogenation of the substrate is prevented. Preliminary mechanism investigations uncovered the homogeneous nature of the active catalyst and the influence of the ligand and additive in individual steps of the reaction sequence. PMID:24811949

  4. Extrudate versus powder silica alumina as support for Re₂O₇ catalyst in the metathesis of seed oil-derivatives - a comparison.

    PubMed

    Marvey, Bassie B

    2009-01-01

    Self- and cross-metathesis of fatty acid methyl esters (FAMEs) was investigated using a silica alumina supported Re(2)O(7) catalyst. Although a 3 wt% Re(2)O(7)/SiO(2)-Al(2)O(3)/SnBu(4) is already active for the metathesis of unsaturated FAMEs, the results have shown that particle size of silica alumina support has a profound influence on its activity and selectivity. Consequently, high substrate conversions coupled with improved product yields (for mono- and diesters) and reaction rates were obtained upon using powder, as opposed to extrudate silica alumina as the support material. Diesters are platform compounds for the synthesis of polymers and fragrances. In this paper a comparative outline of the influence of particle size of silica alumina (extrudate versus powder) on catalytic performance of a 3 wt% Re(2)O(7)/SiO(2)-Al(2)O(3)/SnBu(4) for self- and cross-metathesis of FAMEs is made. Low surface area and diffusion constraints associated with extrudates were identified as some of the factors leading to low catalytic activity and selectivity. PMID:19333442

  5. Insertion and isomerisation of internal olefins at alkylaluminium hydride: catalysis with zirconocene dichloride.

    PubMed

    Weliange, Nandita M; McGuinness, David S; Gardiner, Michael G; Patel, Jim

    2015-12-14

    The insertion of internal olefins (hydroalumination) and chain walking isomerisation at di-n-octylaluminium hydride [Al(Oct)2H], promoted by zirconocene dichloride [Cp2ZrCl2] has been studied. The reaction between [Cp2ZrCl2] and [Al(Oct)2H] in non-polar solvents leads to clusters containing bridging hydride ligands between Zr and Al. This system promotes hydroalumination of 1-octene but is largely ineffective for internal octenes (2-, 3-, 4-octene). In tetrahydrofuran the Zr-Al hydride clusters formed are more reactive and catalyse insertion and isomerisation of internal olefins to primary metal-alkyls, although this is accompanied by catalyst deactivation. Elimination and removal of 1-octene from the system post insertion/isomerisation was attempted, but it was found that the presence of the Zr catalyst leads to back-isomerisation to internal octenes, along with further decomposition with n-octane formation. Some possible pathways of catalyst decomposition, involving reduction of Zr and alkane elimination, have been studied theoretically. PMID:26530377

  6. Laser micro-engineering of functionalised cyclic olefin polymers for microfluidic applications

    NASA Astrophysics Data System (ADS)

    McCann, Ronan; Bagga, Komal; Stalcup, Apryll; Vázquez, Mercedes; Brabazon, Dermot

    2015-03-01

    Direct-write laser processing has been demonstrated to be capable of both surface patterning of micro- and nanoscale structures on polymer surfaces without significant modification of the surface chemistry or optical transmission of the laser processed area. In this work, the creation of microchannels via direct-write laser processing of 188 μm thickness cyclic olefin polymers is demonstrated, along with a route towards channel functionalization. Cyclic olefin polymers (COP) are an emerging class of polymers noted for their high chemical resistance, biocompatibility and higher optical transparency when compared to other common polymers. These properties make them excellent substrates for the fabrication of microfluidic devices. This paper presents the first investigation into infrared laser processing of COP using a 1064 nm Nd:YAG laser. Scanning electron microscopy and Raman spectroscopy were utilized to investigate the morphology and composition of these laser textured surfaces. A route for functionalization of these substrates for chemical and biological speciation and separation was examined using carbon nanoparticles. The nanoparticles were produced using pulsed laser ablation in liquid (PLAL) which has been reported as a fast and adaptable method for nanoparticle production. The nanoparticles produced were using transmission electron microscopy while the coating of substrates with these CNPs was examined using SEM. These results are discussed in the context of development of a new route for achieving surfaces optimized for microfluidicbased separations and speciation.

  7. Effect of electron beam radio sterilization on cyclic olefin copolymers used as pharmaceutical storage materials

    NASA Astrophysics Data System (ADS)

    Barakat, Hala; Aymes-Chodur, Caroline; Saunier, Johanna; Yagoubi, Najet

    2013-03-01

    The aim of this work was to study the effect of radio-sterilization on cyclo olefin copolymers (COC), that can be used as pharmaceutical storage materials, both on the surface and in the volume of the material, and to investigate the impact of the presence of a lubricant. A cyclo olefin copolymer (TOPAS® 8007) was treated with an electron beam radio-sterilization at different doses ranging from 25 to 150 kGy. Polymer structure and bulk properties were evaluated by Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Size Exclusion Chromatography (SEC). A good correlation between those analytical techniques was observed: oxidation products were formed and crosslinking of chains occured. Although these modifications were important, the effect on the thermal properties was weak. The analysis by Reversed Phase High Performance Liquid Chromatography (RP-HPLC) of extraction's solutions of COC after irradiation showed both a remarkable decrease of the extractable amount of polyphenolic antioxidant (Irganox 1010®) initially present in the matrix, and a generation of an important number of degradation products that represent potential migrants for pharmaceutical formulations. Surface modifications were evidenced by both (FTIR/ATR) and contact angle measurements of COC films. An increase in surface polarity of COC after radio-sterilization was observed.

  8. The reaction of nitroso oxides with olefins: Concerted or nonconcerted addition?

    NASA Astrophysics Data System (ADS)

    Talipov, M. R.; Khursan, S. L.; Safiullin, R. L.

    2011-03-01

    The mechanism of the interaction of nitroso oxides (RNOO) with olefins was studied at MCQDPT2/6-311+G(3 df, 2 p)//CASSCF(10; 9)/6-311G( d) level of theory. The following reaction channels were considered: ( 1) (3 + 2)-cycloaddition and nonconcerted biradical addition of nitroso oxide ( 2) through the terminal oxygen atom and ( 3) through the nitrogen atom to the C=C multiple bond. It was shown for the cases of ( A) cis/trans-HNOO + C2H4, ( B) cis/trans-HNOO + C2F4, ( C) cis/trans-PhNOO + C2H4, and ( D) cis/trans-PhNOO + C2H3CH3 model systems that the typical reaction of nitroso oxides with alkenes was cycloaddition. For olefins with a decreased electron density at the multiple bond, as in system B, a substantial contribution of the one-center mechanism with the formation of biradical intermediates is possible.

  9. Metal catalyzed synthesis of hyperbranched ethylene and/or .alpha.-olefin polymers

    DOEpatents

    Sen, Ayusman; Kim, Jang Sub; Pawlow, James H.; Murtuza, Shahid; Kacker, Smita; Wojcinski, III, Louis M.

    2001-01-01

    Oily hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin, and a method for their synthesis, are disclosed. The polymers have non-regular microstructures and are characterized by a ratio ({character pullout})of methyl hydrogens centered around 0.85 ppm on the 1H-NMR spectra of the polymers relative to total aliphatic hydrogens of from about 0.40 to about 0.65 for polymers derived from ethylene or butene, and a ratio ({character pullout})of from greater than 0.50 to about 0.65 for polymers derived from propylene. A method for grafting hyperbranched polymers derived from ethylene, propylene, butene and/or a C.sub.5 -C.sub.24 .alpha.-olefin onto aromatic rings in organic molecules and polymers, and the resulting grafted materials, are also disclosed. The hyperbranched polymers and grafted materials are useful, for example, as lubricants and lubricant additives.

  10. Polymerization of olefins employing a catalyst containing a titanium component derived from hydroxyalkyl aromatic compounds

    SciTech Connect

    Coleman, W.M. III; Edmondson, M.S.

    1986-03-18

    A process is described for polymerizing at least one ..cap alpha..-olefin or a mixture of at least one ..cap alpha..-olefin and at least one polymerizable ethylenically unsaturated monomer in the presence of a supported Ziegler-Natta catalyst; the improvement which comprises employing as the transition metal component of such catalyst that which results from reacting (A) at least one titanium compound represented by the formula Ti(OR)/sub X/X/sub 4//sub -X/ wherein each R is independently a hydrocarbyl group having from 1 to about 20 carbon atoms; X is a halogen and x has a value from zero to 4; with (B) at least one compound containing at least one aliphatic hydroxyl group represented by the formula wherein each A is independently a divalent hydrocarbyl group having from 1 to about 10 carbon atoms; is independently hydrogen, a halogen atom, a hydrocarbyl group, a hydrocarbyloxy group or a halogen, nitro or hydrocarbyloxy substituted hydrocarbyl group or a halogen, nitro or hydrocarbyloxy substituted hydrocarbyloxy group, each such hydrocarbyl or hydrocarbyloxy groups having from 1 to about 20 carbon atoms; n' has a value of from 1 to 5, and each x independently has a value of from zero to 4; and wherein components (A) and (B) are employed in quantities which provide a molar ratio of (B):(A) of 0.1:1 to about 10:1.

  11. Ziegler-Natta polymerization of {alpha}-olefins with organoyttrium compounds

    SciTech Connect

    Coughlin, E.B.; Bercaw, J.E.

    1993-12-31

    The single component iso-specific olefin polymerization catalyst [rac-Me{sub 2}Si(2-SiMe{sub 3}-4-CMe{sub 3}-C{sub 5}H{sub 2})Y-H]{sub 2}, [rac-BpY-H]{sub 2}, has recently been described. {sup 13}C NMR spectra of the resulting polymers show a high degree of isotacticity for all polymer samples, >97% mmmm for polypropylene. A preliminary X-ray crystal structure determination of the bridging hydride dimer, [rac-BpY-H]{sup 2}, has shown it to be homochiral (RR and SS enantiomers) as expected based upon steric considerations. Improved polymerization rates can be acheived by the hydrogenolysis of rac-BpY-CH(SiMe{sub 3}){sub 2}, in the presence of an {alpha}-olefin, without adversely effecting the polymer isotactivity. The alkyl, rac-BpY-CH(SiMe{sub 3}){sub 2}, is also an excellent catalyst for the copolymerization of ethylene and 1-butene. The synthesis and polymerization activity of various rac-BpY-R catalysts will be presented, as well as efforts designed towards probing the factors responsible for the resulting high isotacticities.

  12. Process, hydrotreating options give olefins plants more heavy-oil-cracking flexibility

    SciTech Connect

    Mol, A.; Renjun, Z.; Zuozheng, L.

    1986-06-02

    Atmospheric gas oil (AGO) has not become as important an olefins feedstock as expected. It does not appear that this will change markedly. However, in central Europe, mildly hydrocracked vacuum gas oil (VGO) has rapidly become important. One of its advantages is that no major revamp of the AGO steam crackers is necessary. In China, sweet, straight-run paraffinic VGO is also used as an olefins feedstock. Now, two-stage heavy oil cracking processes have emerged, which will permit use of even heavier oils. With these processes, the first stage is low conversion precracking and product separation into a cracked oil and highly aromatic pitch. The cracked oil can be subjected to conventional tubular steam cracking. Liquid feed steam crackers designed since the mid-1970s have almost all been capable of butane/naphtha AGO feed flexibility. Many of the older European crackers have been revamped to incorporate AGO feed processing capability. By having feed flexibility, operators have been able to benefit from seasonal and cyclical feedstock price variations. In spite of the major AGO cracking capability, AGO has not become a common feed.

  13. Structure-property relationships in novel polymers and block copolymers from ring-opening metathesis polymerization

    NASA Astrophysics Data System (ADS)

    Bishop, John Paul

    2011-12-01

    The desire to tune macroscopic properties by controlling the underlying microscopic structure is a driving force in many different areas of scientific research, including polymer science. In living ring-opening metathesis polymerization (ROMP), the subject of this dissertation, there are a variety of different ways to alter the microscopic structure through synthesis. This is in part due to the presence of double bonds in the polymeric backbone, which can influence properties both through their isomeric structures (cis vs. trans) and through their removal by catalytic hydrogenation. Here, we demonstrate the ability to tune a variety of microstructural parameters of our ROMP polymers through synthesis, and investigate the resulting effects on macroscopic properties. ROMP and subsequent hydrogenation provide access to crystalline, glassy, and rubbery polymers, representing essentially the entire spectrum of polymer properties. These include hydrogenated polynorbornene (hPN), a highly crystalline polymer with Tm° = 156°C; hydrogenated poly(5-hexylnorbornene) (hPHN), a rubbery amorphous polymer with Tg = -22°C; and hydrogenated polymethyltetracyclododecene (hPMTD), a glassy polymer with Tg = 163°C. The microstructure of block copolymers of hPN, hPHN, and hPMTD can be controlled by varying block sequence, block lengths, and number of blocks. We used this control to design and synthesize thermoplastic elastomers (TPEs) containing both crystalline and glassy hard segments, with the aim of capturing the mechanical properties of conventional all-amorphous triblock TPEs, while forming the solid-state structure by crystallization from a single-phase melt. To accomplish this, we synthesized symmetric pentablock copolymers with the architecture crystalline-glassy-rubbery-glassy-crystalline. With this pentablock architecture and appropriate selection of block lengths, crystallization from a single-phase melt causes a layer rich in the glassy block to form around the

  14. Stereodivergent route to the carbocyclic core of 2',3'-olefinic carbanucleosides: toward the synthesis of (L)-(+)- and (D)-(-)-carbovir.

    PubMed

    Chattopadhyay, Angshuman; Tripathy, Sibanarayan

    2011-07-15

    (R)-2,3-Cyclohexylideneglyceraldehyde (1) has been elegantly exploited for a stereodivergent construction of the potential precursors (11a and 11b) of (L)-(+)- and (D)-(-)-carbovirs, respectively. The key steps in this approach were Luche's allylation of formaldehyde with allylic bromide 4c to produce 5 and ring-closing metathesis of 10b using Grubbs' first-generation catalyst to obtain 11. The moderate stereoselectivity of Luche's allylation reaction resulted in attaining stereodivergence in this approach which could be realized finally through easy chromatographic separation of the two isomers of the metathesis product to obtain homochiral precursors 11a and 11b in good amounts. PMID:21612257

  15. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio

    SciTech Connect

    Zhang, Huiyan; Cheng, Yu-Ting; Vispute, Tushar P.; Xiao, Rui; Huber, George W.

    2011-01-01

    Catalytic conversion of ten biomass-derived feedstocks, i.e.glucose, sorbitol, glycerol, tetrahydrofuran, methanol and different hydrogenated bio-oil fractions, with different hydrogen to carbon effective (H/C{sub eff}) ratios was conducted in a gas-phase flow fixed-bed reactor with a ZSM-5 catalyst. The aromatic + olefin yield increases and the coke yield decreases with increasing H/C{sub eff} ratio of the feed. There is an inflection point at a H/C{sub eff} ratio = 1.2, where the aromatic + olefin yield does not increase as rapidly as it does prior to this point. The ratio of olefins to aromatics also increases with increasing H/C{sub eff} ratio. CO and CO₂ yields go through a maximum with increasing H/C{sub eff} ratio. The deactivation rate of the catalyst decreases significantly with increasing H/C{sub eff} ratio. Coke was formed from both homogeneous and heterogeneous reactions. Thermogravimetric analysis (TGA) for the ten feedstocks showed that the formation of coke from homogeneous reactions decreases with increasing H/C{sub eff} ratio. Feedstocks with a H/C{sub eff} ratio less than 0.15 produce large amounts of undesired coke (more than 12 wt%) from homogeneous decomposition reactions. This paper shows that the conversion of biomass-derived feedstocks into aromatics and olefins using zeolite catalysts can be explained by the H/C{sub eff} ratio of the feed.

  16. Tandem isomerization-decarboxylation of unsaturated fatty acids to olefins via ruthenium metal-as-ligand catalysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new facile Ru-catalyzed route to bio-olefins3 from unsaturated fatty acids via readily accessible metal-as-ligand type catalyst precursors, [Ru(CO)2RCO2]n and Ru3(CO)12, will be described. The catalyst apparently functions in a tandem mode by dynamically isomerizing the positions of double bonds i...

  17. Asymmetric Synthesis of (-)-Incarvillateine Employing an Intramolecular Alkylation via Rh-Catalyzed Olefinic C-H Bond Activation

    SciTech Connect

    Tsai, Andy; Bergman, Robert; Ellman, Jonathan

    2008-02-18

    An asymmetric total synthesis of (-)-incarvillateine, a natural product having potent analgesic properties, has been achieved in 11 steps and 15.4% overall yield. The key step is a rhodium-catalyzed intramolecular alkylation of an olefinic C-H bond to set two stereocenters. Additionally, this transformation produces an exocyclic, tetrasubstituted alkene through which the bicyclic piperidine moiety can readily be accessed.

  18. Ligand-Enabled γ-C–H Olefination and Carbonylation: Construction of β-Quaternary Carbon Centers

    PubMed Central

    2015-01-01

    Monoselective γ-C–H olefination and carbonylation of aliphatic acids has been accomplished by using a combination of a quinoline-based ligand and a weakly coordinating amide directing group. The reaction provides a new route for constructing richly functionalized all-carbon quaternary carbon centers at the β-position of aliphatic acids. PMID:24666182

  19. Photochemical reactions of electron-deficient olefins with N,N,N‧,N‧-tetramethylbenzidine via photoinduced electron-transfer

    NASA Astrophysics Data System (ADS)

    Pan, Yang; Zhao, Junshu; Ji, Yuanyuan; Yan, Lei; Yu, Shuqin

    2006-01-01

    Photoinduced electron transfer reactions of several electron-deficient olefins with N, N, N', N'-tetramethylbenzidine (TMB) in acetonitrile solution have been studied by using laser flash photolysis technique and steady-state fluorescence quenching method. Laser pulse excitation of TMB yields 3TMB* after rapid intersystem crossing from 1TMB*. The triplet which located at 480 nm is found to undergo fast quenching with the electron acceptors fumaronitrile (FN), dimethyl fumarate (DMF), diethyl fumarate (DEF), cinnamonitrile (CN), α-acetoxyacrylonitrile (AAN), crotononitrile (CrN) and 3-methoxyacrylonitrile (MAN). Substituents binding to olefin molecule own different electron-donating/withdrawing powers, which determine the electron-deficient property (π-cloud density) of olefin molecule as well as control the electron transfer rate constant directly. The detection of ion radical intermediates in the photolysis reactions confirms the proposed electron transfer mechanism, as expected from thermodynamics. The quenching rate constants of triplet TMB by these olefins have been determined at 510 nm to avoid the disturbance of formed TMB cation radical around 475 nm. All the kqT values approach or reach to the diffusion-controlled limit. In addition, fluorescence quenching rate constants kqS have been also obtained by calculating with Stern-Volmer equation. A correlation between experimental electron transfer rate constants and free energy changes has been explained by Marcus theory of adiabatic outer-sphere electron transfer. Disharmonic kq values for CN and CrN in endergonic region may be the disturbance of exciplexs formation.

  20. Production of Light Olefins Through Catalytic Cracking of C5 Raffinate Over Surface-Modified ZSM-5 Catalyst.

    PubMed

    Lee, Joongwon; Park, Seungwon; Hong, Ung Gi; Jun, Jin Oh; Song, In Kyu

    2015-10-01

    Surface modification of phosphorous-containing porous ZSM-5 catalyst (P/C-ZSM5-Sil.(X)) was carried out by a chemical liquid deposition (CLD) method using tetraethyl orthosilicate (TEOS) as a silylation agent. Different amount of TEOS (X = 5, 10, 20, and 30 wt%) was introduced into P/C-ZSM5il.(X) catalysts for surface modification. The catalysts were used for the production of light olefins (ethylene and propylene) through catalytic cracking of C5 raffinate. It was found that external surface acidity of P/C-ZSM5-Sil.(X) catalysts significantly decreased with increasing TEOS content. In the catalytic reaction, both conversion of C5 raffinate and yield for light olefins showed volcano-shaped curves with respect to TEOS content. Among the catalysts tested, P/C-ZSM5-Sil.(20) catalyst exhibited the best catalytic performance in terms of conversion of C5 raffinate and yield for light olefins. Thus, an optimal TEOS content was required for CLD treatment to maximize light olefin production in the catalytic cracking of C5 raffinate over P/C-ZSM5-Sil.(X) catalysts. PMID:26726509