Science.gov

Sample records for rutherford type superconducting

  1. Current loop decay in Rutherford-type cables

    SciTech Connect

    Akhmetov, A.A.; Devred, A.; Schermer, R.I.; Mints, R.G.

    1993-05-01

    Recent measurements of superconducting panicle accelerator magnets made of multistrand Rutherford-type cable have shown that the magnetic field and its main harmonics oscillate along the magnet axis with a wavelength nearly equal to the cable transposition. It was also observed that, at low transport current, the periodic magnetic pitch length. It was also observed that, at low transport current, the periodic magnetic field patterns can persist without any significant decay for more than 12 hours. The coincidence of the wavelength of the magnetic field oscillations with the cable transposition pitch suggests that slowly decaying current loops exist in the cable even at zero transport current. These loops consist of currents flowing along the cable through one set of strands and returning through another set of strands. In this paper, we consider the process of current loop decay in a Rutherford-type cable.

  2. FEM Analysis of Nb-Sn Rutherford-type Cables

    SciTech Connect

    Barzi, Emanuela; Gallo, Giuseppe; Neri, Paolo; /Fermilab

    2011-01-01

    An important part of superconducting accelerator magnet work is the conductor. To produce magnetic fields larger than 10 T, brittle conductors are typically used. For instance, for Nb{sub 3}Sn the original round wire, in the form of a composite of Copper, Niobium and Tin, is assembled into a so-called Rutherford-type cable, which is used to wind the magnet. The magnet is then subjected to a high temperature heat treatment to produce the chemical reactions that make the material superconducting. At this stage the superconductor is brittle and its superconducting properties sensitive to strain. This work is based on the development of a 2D finite element model, which simulates the mechanical behavior of Rutherford-type cable before heat treatment. The model was applied to a number of different cable architectures. To validate a critical criterion adopted into the single Nb-Sn wire analysis, the results of the model were compared with those measured experimentally on cable cross sections.

  3. Heat transfer through Rutherford superconducting cable with novel pattern of polyimide electrical insulation in pressurized superfluid helium environment

    NASA Astrophysics Data System (ADS)

    Chorowski, Maciej; Polinski, Jaroslaw; Strychalski, Michal

    2012-06-01

    Future LHC accelerator luminosity upgrade will increase a beam losses heat deposition in the superconducting magnet coils. Main barrier of the heat evacuation from the coils made of Rutherford type cables is a cable electrical insulation. The insulation is made of polyimide tapes wrapped around the cable in a special configuration. Presently used insulation wrapping schemes constitute very good electrical insulation with relatively low heat transport ability. Therefore a new insulation wrapping schemes with enhanced helium permeability and adequate dielectric properties have been developed at CERN. An experimental comparative study of heat transfer perpendicular to the Rutherford type cable, for an old and new insulation wrapping schemes have been accomplished at Wroclaw University of Technology. The tests have been performed in pressurized superfluid helium conditions, and at 60 MPa of the sample applied external pressure simulating the Lorentz forces. This paper presents the measurements methodology and gives experimental results.

  4. Heat transfer through the flat surface of Rutherford superconducting cable samples with novel pattern of electrical insulation immersed in He II

    NASA Astrophysics Data System (ADS)

    Strychalski, M.; Chorowski, M.; Polinski, J.

    2014-05-01

    Future accelerator magnets will be exposed to heat loads that exceed even by an order of magnitude presently observed heat fluxes transferred to superconducting magnet coils. To avoid the resistive transition of the superconducting cables, the efficiency of heat transfer between the magnet structure and the helium must be significantly increased. This can be achieved through the use of novel concepts of the cable’s electrical insulation wrapping, characterized by an enhanced permeability to helium while retaining sufficient electrical resistivity. This paper presents measurement results of the heat transfer through Rutherford NbTi cable samples immersed in a He II bath and subjected to the pressure loads simulating the counteracting of the Lorentz forces observed in powered magnets. The Rutherford cable samples that were tested used different electrical insulation wrapping schemes, including the scheme that is presently used and the proposed scheme for future LHC magnets. A new porous polyimide cable insulation with enhanced helium permeability was proposed in order to improve the evacuation of heat form the NbTi coil to He II bath. These tests were performed in a dedicated Claudet-type cryostat in pressurized He II at 1.9 K and 1 bar.

  5. Rutherford's war

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2016-02-01

    Seagulls, sea lions and the comic-book hero Professor Radium were all recruited to fight the threat of submarines during the First World War. But as John Campbell explains, it was Ernest Rutherford who led the way a century ago in using acoustics to deter these deadly craft.

  6. Development of Rutherford-type cables for high field accelerator magnets at Fermilab

    SciTech Connect

    Andreev, N.; Barzi, E.; Borissov, E.; Elementi, L.; Kashikhin, V.S.; Lombardo, V.; Rusy, A.; Turrioni, D.; Yamada, R.; Zlobin, A.V.; /Fermilab

    2006-08-01

    Fermilab's cabling facility has been upgraded to a maximum capability of 42 strands. This facility is being used to study the effect of cabling on the performance of the various strands, and for the development and fabrication of cables in support of the ongoing magnet R&D programs. Rutherford cables of various geometries, packing factors, with and without a stainless steel core, were fabricated out of Cu alloys, NbTi, Nb{sub 3}Al, and various Nb{sub 3}Sn strands. The parameters of the upgraded cabling machine and results of cable R&D efforts at Fermilab are reported.

  7. Measurements of Rrr Variation in Strands Extracted from Nb3Sn-TYPE Rutherford Cables

    NASA Astrophysics Data System (ADS)

    Sumption, M. D.; Nazareth, V.; Barzi, E.; Turrioni, D.; Yamada, R.; Zlobin, A. V.; Collings, E. W.

    2008-03-01

    Modern high-Jc Nb3Sn strands and cables for use in high field accelerator magnets suffer from flux jump-related instabilities at low magnetic fields. These instabilities are determined by the values of Jc, deff, and RRR. It has been postulated that local RRR is a more relevant parameter than average RRR for stability considerations, but the range of RRR values present in a cable has not yet been quantified. Thus, longitudinal variations of RRR were estimated from multiple-tap measurements along the length of strands extracted from mixed strand cables. The cables had either 27 or 28 strands, two different keystone angles, and four different levels of compaction. One type of RRP strand was extracted from each cable, reacted, and then measured. RRR of the straight sections (on the faces) was above 100, while that at the edges of the strand was estimated to be an order of magnitude smaller ≈10. Selected regions of the strand with locally depressed RRR were examined by SEM and EDS to check for Sn leakage and examine the type of strand failure present. The implications of these measurements for stability were then discussed.

  8. Fabrication and testing of Rutherford-type cables for react and wind accelerator magnets

    SciTech Connect

    Bauer, P.; Ambrosio, G.; Andreev, N.; Barzi, E.; Dietderich, D.; Ewald, K.; Fratini, M.; Ghosh, A.K.; Higley, H.C.; Kim, S.W.; Miller, G.; Miller, J.; Ozelis, J.; Scanlan, R.M.

    2000-09-11

    A common coil design for a high-field accelerator dipole magnet using a Nb{sub 3}Sn cable with the React-and-Wind approach is pursued by a collaboration between Fermilab and LBNL. The design requirements for the cable include a high operating current so that a field of 10-11 T can be produced, together with a low critical current degradation due to bending around a 90 mm radius. A program, using ITER strands of the internal tin type, was launched to develop the optimal cable design for React-and-Wind common coil magnets. Three prototype cable designs, all 15 mill wide, were fabricated: a 41-strand cable with 0.7 mm diameter strands; a 57-strand cable with 0.5 mm diameter strands; and a 259 strand multi-level cable with a 6-around-1 sub-element using 0.3 mm diameter wire. Two versions of these cables were fabricated: one with no core and one with a stainless steel core. Additionally, the possibility of a wide (22 mm) cable made from 0.7 mm strand was explored. This paper describes the first results of the cable program including reports on cable fabrication and reaction, first winding tests and first results of the measurement of the critical current degradation due to cabling and bending.

  9. Rutherford's Nuclear Model

    NASA Astrophysics Data System (ADS)

    Heibron, John

    2011-04-01

    Rutherford's nuclear model originally was a theory of scattering that represented both the incoming alpha particles and their targets as point charges. The assumption that the apha particle, which Rutherford knew to be a doubly ionized helium atom, was a bare nucleus, and the associated assumption that the electronic structure of the atom played no significant role in large-angle scattering, had immediate and profound consequences well beyond the special problem for which Rutherford introduced them. The group around him in Manchester in 1911/12, which included Niels Bohr, Charles Darwin, Georg von Hevesy, and Henry Moseley, worked out some of these consequences. Their elucidation of radioactivity, isotopy, atomic number, and quantization marked an epoch in microphysics. Rutherford's nuclear model was exemplary not only for its fertility and picturability, but also for its radical simplicity. The lecturer will not undertake to answer the baffling question why such simple models work.

  10. Rutherford's Nuclear World

    NASA Astrophysics Data System (ADS)

    Bingwa, Fidele

    2012-03-01

    The goals of the Center for History of Physics at the American Institute of Physics (AIP) are to preserve and make known the historical record of modern physics and allied science. 2011 marked the 100th anniversary of the discovery of the atomic Nucleus by Lord Rutherford which is why Center for History of Physics decided to create the ``Rutherford's Nuclear World'' web exhibit. Lord Rutherford was a great scientist and he is considered the father of Nuclear Physics. My research for the web exhibit focused on Lord Rutherford's early life and his time as director of the Cavendish Laboratory. For most scientific breakthroughs, only the scientists' names and the time of the breakthroughs seem to matter. The goal of my research was to put stories behind Rutherford's scientific discoveries, to know what was the atmosphere in his lab, what was going on in his personal life before and after the discovery, and also to understand the man he was by looking back at his early life, and the journey that made him one of the elites. All the information found during the research came from the resources of the Niels Bohr Library which include microfilms of Lord Rutherford's correspondence, oral history interviews of his closest collaborators, books written by his students and biographers, and pictures from the visual archives. The exhibit will highlight the importance of education in Rutherford's upbringing, his passion and enthusiasm for research, his scientific insight, his warm personality that made him a great educator, friend, and mentor. In addition, the exhibit, through Rutherford's interactions with fellow scientists, offers a unique perspective of the early 20^th century scientific community.

  11. Effects of core type, placement, and width on the estimated interstrand coupling properties of QXF-type Nb3Sn Rutherford cables

    DOE PAGES

    Collings, E. W.; Sumption, M. D.; Majoros, M.; Wang, X.; Dietderich, D. R.

    2015-01-12

    The coupling magnetization of a Rutherford cable is inversely proportional to an effective interstrand contact resistance Reff , a function of the crossing-strand resistance Rc, and the adjacent strand resistance Ra. In cored cables, Reff continuously varies with W, the core width expressed as percent interstrand cover. For a series of un-heat-treated stabrite-coated NbTi LHC-inner cables with stainless-steel (SS, insulating) cores, Reff (W) decreased smoothly as W decreased from 100%, whereas for a set of research-wound SS-cored Nb3Sn cables, Reff plummeted abruptly and remained low over most of the range. The difference is due to the controlling influence of Rcmore » - 2.5 μΩ for the stabrite/NbTi and 0.26 μΩ for Nb3Sn. The experimental behavior was replicated in the Reff (W)’s calculated by the program CUDI, which (using the basic parameters of the QXF cable) went on to show in terms of decreasing W that: 1) in QXF-type Nb3Sn cables (Rc = 0.26 μΩ), Reff dropped even more suddenly when the SS core, instead of being centered, was offset to one edge of the cable; 2) Reff decreased more gradually in cables with higher Rc’s; and 3) a suitable Reff for a Nb3Sn cable can be achieved by inserting a suitably resistive core rather than an insulating (SS) one.« less

  12. Effects of core type, placement, and width on the estimated interstrand coupling properties of QXF-type Nb3Sn Rutherford cables

    SciTech Connect

    Collings, E. W.; Sumption, M. D.; Majoros, M.; Wang, X.; Dietderich, D. R.

    2015-01-12

    The coupling magnetization of a Rutherford cable is inversely proportional to an effective interstrand contact resistance Reff , a function of the crossing-strand resistance Rc, and the adjacent strand resistance Ra. In cored cables, Reff continuously varies with W, the core width expressed as percent interstrand cover. For a series of un-heat-treated stabrite-coated NbTi LHC-inner cables with stainless-steel (SS, insulating) cores, Reff (W) decreased smoothly as W decreased from 100%, whereas for a set of research-wound SS-cored Nb3Sn cables, Reff plummeted abruptly and remained low over most of the range. The difference is due to the controlling influence of Rc - 2.5 μΩ for the stabrite/NbTi and 0.26 μΩ for Nb3Sn. The experimental behavior was replicated in the Reff (W)’s calculated by the program CUDI, which (using the basic parameters of the QXF cable) went on to show in terms of decreasing W that: 1) in QXF-type Nb3Sn cables (Rc = 0.26 μΩ), Reff dropped even more suddenly when the SS core, instead of being centered, was offset to one edge of the cable; 2) Reff decreased more gradually in cables with higher Rc’s; and 3) a suitable Reff for a Nb3Sn cable can be achieved by inserting a suitably resistive core rather than an insulating (SS) one.

  13. Rutherford-Bohr atom

    NASA Astrophysics Data System (ADS)

    Heilbron, J. L.

    1981-03-01

    Bohr used to introduce his attempts to explain clearly the principles of the quantum theory of the atom with an historical sketch, beginning invariably with the nuclear model proposed by Rutherford. That was sound pedagogy but bad history. The Rutherford-Bohr atom stands in the middle of a line of work initiated by J.J. Thomson and concluded by the invention of quantum mechanics. Thompson's program derived its inspiration from the peculiar emphasis on models characteristic of British physics of the 19th century. Rutherford's atom was a late product of the goals and conceptions of Victorian science. Bohr's modifications, although ultimately fatal to Thomson's program, initially gave further impetus to it. In the early 1920s the most promising approach to an adequate theory of the atom appeared to be the literal and detailed elaboration of the classical mechanics of multiply periodic orbits. The approach succeeded, demonstrating in an unexpected way the force of an argument often advanced by Thomson: because a mechanical model is richer in implications than the considerations for which it was advanced, it can suggest new directions of research that may lead to important discoveries.

  14. Preisach-type modeling of high-temperature superconducting hysteresis

    NASA Astrophysics Data System (ADS)

    ElBidweihy, Hatem

    2016-05-01

    Even though Isaak Mayergoyz described it as: "much more accurate for the description of superconducting hysteresis than for the description of hysteresis of magnetic materials", Preisach modeling of superconducting hysteresis is not a popular investigative tool. This might be due to the complexity of identifying the Preisach distribution function or due to lack of convincing physical reasoning behind pure phenomenological versions. In this paper, a two-component Preisach-type model is presented which is computationally-efficient and physically-sound. The change in the slope of the minor hysteresis loops is incorporated in the model and is attributed to reversible fluxoid motion. The model presented is clearly capable of simulating various shapes of superconducting hysteresis loops and could be easily coupled with finite element method (FEM) numerical software.

  15. 27 CFR 9.133 - Rutherford.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rutherford. 9.133 Section... Rutherford. (a) Name. The name of the viticultural area described in this section is “Rutherford.” (b) Approved maps. The appropriate maps for determining the boundary of the Rutherford viticultural area...

  16. Type-I superconductivity in KBi2 single crystals

    NASA Astrophysics Data System (ADS)

    Sun, Shanshan; Liu, Kai; Lei, Hechang

    2016-03-01

    We report on the detailed transport, magnetic, thermodynamic properties and theoretical calculation of KBi2 single crystals in superconducting and normal states. KBi2 exhibits metallic behavior at a normal state and enters the superconducting state below {{T}\\text{c}}=3.573 K. Moreover, KBi2 exhibits low critical fields in all measurements, field-induced crossover from second- to first-order phase transition in specific heat measurements, the typical magnetization isotherms of type-I superconductors, and a small Ginzburg-Landau parameter {κ\\text{GL}}=0.611 . These results clearly indicate that KBi2 is a type-I superconductor with a thermodynamic critical field {{H}\\text{c}}=234.3(3) Oe.

  17. Type-I superconductivity in KBi₂ single crystals.

    PubMed

    Sun, Shanshan; Liu, Kai; Lei, Hechang

    2016-03-01

    We report on the detailed transport, magnetic, thermodynamic properties and theoretical calculation of KBi2 single crystals in superconducting and normal states. KBi2 exhibits metallic behavior at a normal state and enters the superconducting state below T(c) = 3.573 K. Moreover, KBi2 exhibits low critical fields in all measurements, field-induced crossover from second- to first-order phase transition in specific heat measurements, the typical magnetization isotherms of type-I superconductors, and a small Ginzburg-Landau parameter κ(GL) = 0.611. These results clearly indicate that KBi2 is a type-I superconductor with a thermodynamic critical field H(c) = 234.3(3) Oe.

  18. Anisotropic criteria for the type of superconductivity

    SciTech Connect

    Kogan, Vladimir G; Prozorov, Ruslan

    2014-08-01

    The classical criterion for classification of superconductors as type I or type II based on the isotropic Ginzburg-Landau theory is generalized to arbitrary temperatures for materials with anisotropic Fermi surfaces and order parameters. We argue that the relevant quantity for this classification is the ratio of the upper and thermodynamic critical fields Hc2/Hc, rather than the traditional ratio of the penetration depth and the coherence length λ/ξ. Even in the isotropic case, Hc2/Hc coincides with 2√λ/ξ only at the critical temperature Tc and they differ as T decreases, the long-known fact. Anisotropies of Fermi surfaces and order parameters may amplify this difference and render false the criterion based on the value of κ=λ/ξ.

  19. A Rutherford Scattering Simulation with Microcomputer Graphics.

    ERIC Educational Resources Information Center

    Calle, Carlos I.; Wright, Lavonia F.

    1989-01-01

    Lists a program for a simulation of Rutherford's gold foil experiment in BASIC for both Apple II and IBM compatible computers. Compares Rutherford's model of the atom with Thompson's plum pudding model of the atom. (MVL)

  20. Two types of superconducting domes in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Panagopoulos, Christos

    In this talk, we present a comprehensive analysis of the SC properties and phase diagrams across several families of unconventional superconductors within the copper-oxides, heavy-fermions, organics, and the recently discovered iron-pnictides, iron-chalcogenides, and oxybismuthides. We find that there are two types of SC domes present in all families of SC materials, arising sometimes as completely isolated, or merged into one, or in some materials only any one of them appears. One of the SC dome appearing at or near a possible QCP usually possesses a lower transition temperature (Tc) . The other SC dome appearing at a different value of the tuning parameter around a non-Fermi liquid (NFL) state often has higher Tc. Both SC domes are not necessarily linked to each other, and so does the QCP and NFL state. In materials, where both domes are present, they can be isolated by multiple tuning (such as such as disorder, or pressure, or magnetic field in addition to doping, and vice versa), giving a unique opportunity to decouple the relationship between QCP, NFL, and their role on superconductivity. The systematic study the NFL state might be a generic route to higher-Tc superconductivity.

  1. Rutherford, Maestro of the Atom

    SciTech Connect

    Campbell, John

    2003-12-10

    This talk will cover some of the lesser known aspects of Rutherford's work, including his early work in wireless signaling and his later encouragement of radio studies of the ionosphere, the development of what was later improved to be now called the Geiger-Muller tube, his acoustic work for submarine detection during the First World War, the development of particle accelerators and the race to splitting the atom, the first use of coincidence detectors, and why he received just one Nobel Prize.

  2. Superconductivity:

    NASA Astrophysics Data System (ADS)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  3. Rutherford scattering of electron vortices

    NASA Astrophysics Data System (ADS)

    Van Boxem, Ruben; Partoens, Bart; Verbeeck, Johan

    2014-03-01

    By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.

  4. Study on Recovery Performance of High Tc Superconducting Tapes for Resistive Type Superconducting Fault Current Limiter Applications

    NASA Astrophysics Data System (ADS)

    kar, Soumen; Kulkarni, Sandeep; Dixit, Manglesh; Singh, Kuwar Pal; Gupta, Alok; Balasubramanyam, P. V.; Sarangi, S. K.; Rao, V. V.

    Recent advances in reliable production of long length high temperature superconducting (HTS) tapes have resulted in commercial application of superconducting fault current limiters (SFCLs) in electrical utility networks. SFCL gives excellent technical performance when compared to conventional fault current limiters. The fast self-recovery from normal state to superconducting state immediately after the fault removal is an essential criterion for resistive type SFCL operation. In this paper, results on AC over-current testing of 1st generation (1G) Bi2223 tapes and 2nd generation (2G) YBCO coated conductors operating at 77 K are reported. From these results, the recovery time is estimated for different available HTS tapes in the market. The current limiting tests have also been performed to study the effective current limitation. Further, the recovery characteristics after the current limitation are quantitatively discussed for repetitive faults for different time intervals in the range of 100 ms to few seconds.

  5. Nb3Sn RRP® strand and Rutherford cable development for a 15 T dipole demonstrator

    DOE PAGES

    Barzi, E.; Andreev, N.; Li, P.; Lombardo, V.; Turrioni, D.; Zlobin, A. V.

    2016-03-16

    Keystoned Rutherford cables made of 28 strands and with a stainless steel core were developed and manufactured using 1 mm Nb3Sn composite wires produced by Oxford Superconducting Technology with 127 and 169 restacks using the Restacked-Rod-Process®. Furthermore, the performance and properties of these cables were studied to evaluate possible candidates for 15 T accelerator magnets.

  6. Design and comparative analysis of 10 MW class superconducting wind power generators according to different types of superconducting wires

    NASA Astrophysics Data System (ADS)

    Sung, Hae-Jin; Kim, Gyeong-Hun; Kim, Kwangmin; Park, Minwon; Yu, In-Keun; Kim, Jong-Yul

    2013-11-01

    Wind turbine concepts can be classified into the geared type and the gearless type. The gearless type wind turbine is more attractive due to advantages of simplified drive train and increased energy yield, and higher reliability because the gearbox is omitted. In addition, this type resolves the weight issue of the wind turbine with the light weight of gearbox. However, because of the low speed operation, this type has disadvantage such as the large diameter and heavy weight of generator. Super-Conducting (SC) wind power generator can reduce the weight and volume of a wind power system. Properties of superconducting wire are very different from each company. This paper considers the design and comparative analysis of 10 MW class SC wind power generators according to different types of SC wires. Super-Conducting Synchronous Generators (SCSGs) using YBCO and Bi-2223 wires are optimized by an optimal method. The magnetic characteristics of the SCSGs are investigated using the finite elements method program. The optimized specifications of the SCSGs are discussed in detail, and the optimization processes can be used effectively to develop large scale wind power generation systems.

  7. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    SciTech Connect

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; Ballard, Joshua T.; Young, Glenn R.; Elouadrhiri, Latifa; Rode, Claus H.

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located in close proximity.

  8. Rutherford's curriculum vitae, 1894-1907.

    PubMed

    Cohen, M

    1995-06-01

    A single page, handwritten document was discovered when the Macdonald Physics building of McGill University in Montreal was gutted in 1978. This proved to be the draft of Ernest Rutherford's curriculum vitae (C.V.) covering the years 1894-1907, probably written in the autumn of 1906 when Rutherford was preparing to leave McGill. The C.V. contains 21 headings in chronological order, referring to research and other activities of Rutherford and his coauthors (especially Soddy and Barnes), plus a further set of headings relating to the associated investigations of Rutherford's team, including Eve and Hahn. A transcript of the document is provided, although in several places, Rutherford's handwriting is difficult to interpret, and the significance of his abbreviations is not always clear. Each of the items in the C.V. is discussed briefly in this review, in the light both of Rutherford's personal career and of the contribution of his team to the development and understanding of radioactivity. This contribution included the cause and nature of radioactivity (with Soddy), energy aspects of radioactive decay (with Barnes), elucidation of the uranium-radium, thorium and actinium series (Godlewski and Hahn), the radioactivity of the earth and atmosphere (Eve), the nature of the gamma rays (Eve) and, perhaps most important of all, the nature and properties of the alpha particle (Rutherford himself). The latter investigations led directly to Rutherford's later work in Manchester, including the nuclear model of the atom and artificial disintegration of the nucleus.

  9. Rutherford's curriculum vitae, 1894-1907.

    PubMed

    Cohen, M

    1995-06-01

    A single page, handwritten document was discovered when the Macdonald Physics building of McGill University in Montreal was gutted in 1978. This proved to be the draft of Ernest Rutherford's curriculum vitae (C.V.) covering the years 1894-1907, probably written in the autumn of 1906 when Rutherford was preparing to leave McGill. The C.V. contains 21 headings in chronological order, referring to research and other activities of Rutherford and his coauthors (especially Soddy and Barnes), plus a further set of headings relating to the associated investigations of Rutherford's team, including Eve and Hahn. A transcript of the document is provided, although in several places, Rutherford's handwriting is difficult to interpret, and the significance of his abbreviations is not always clear. Each of the items in the C.V. is discussed briefly in this review, in the light both of Rutherford's personal career and of the contribution of his team to the development and understanding of radioactivity. This contribution included the cause and nature of radioactivity (with Soddy), energy aspects of radioactive decay (with Barnes), elucidation of the uranium-radium, thorium and actinium series (Godlewski and Hahn), the radioactivity of the earth and atmosphere (Eve), the nature of the gamma rays (Eve) and, perhaps most important of all, the nature and properties of the alpha particle (Rutherford himself). The latter investigations led directly to Rutherford's later work in Manchester, including the nuclear model of the atom and artificial disintegration of the nucleus. PMID:7565376

  10. Performance of a 14-T CuNb/Nb3Sn Rutherford coil with a 300 mm wide cold bore

    NASA Astrophysics Data System (ADS)

    Oguro, Hidetoshi; Watanabe, Kazuo; Awaji, Satoshi; Hanai, Satoshi; Ioka, Shigeru; Sugimoto, Masahiro; Tsubouchi, Hirokazu

    2016-08-01

    A large-bore 14-T CuNb/Nb3Sn Rutherford coil was developed for a 25 T cryogen-free superconducting magnet. The magnet consisted of a low-temperature superconducting (LTS) magnet of NbTi and Nb3Sn Rutherford coils, and a high-temperature superconducting magnet. The Nb3Sn Rutherford coil was fabricated by the react-and-wind method for the first time. The LTS magnet reached the designed operation current of 854 A without a training quench at a 1 h ramp rate. The central magnetic field generated by the LTS magnet was measured by a Hall sensor to be 14.0 T at 854 A in a 300 mm cold bore.

  11. Topological Odd-Parity Superconductivity Close to Type-II 2D Van Hove Singularities

    NASA Astrophysics Data System (ADS)

    Yao, Hong; Yang, Fan

    2014-03-01

    We study unconventional superconductivity induced by weak repulsive interactions in 2D electronic systems at Van Hove singularity (VHS) where electronic density of states is logarithmically divergent. We define two types of VH saddle points. For type-I VH systems, weak repulsive interactions generically induce unconventional singlet pairing. However and more interestingly, for type-II VH systems renormalization group treatment shows that weak repulsive interactions favor triplet pairing (e.g. p-wave) when the Fermi surface has no good nesting. When such type-II VH systems respecting tetragonal or hexagonal point group symmetry, topological superconductivity (chiral p +ip or time reversal invariant Z2 p +ip pairing) will generally occur. We shall also discuss implications of this study to recently discovered BiS2-based superconductors and other superconducting materials that host type-II VH singularities in their Fermi surfaces.

  12. The Hydrogen Atom: The Rutherford Model

    NASA Astrophysics Data System (ADS)

    Tilton, Homer Benjamin

    1996-06-01

    Early this century Ernest Rutherford established the nuclear model of the hydrogen atom, presently taught as representing the best visual model after modification by Niels Bohr and Arnold Sommerfeld. It replaced the so-called "plum pudding" model of J. J. Thomson which held sway previously. While the Rutherford model represented a large step forward in our understanding of the hydrogen atom, questions remained, and still do.

  13. CORED RUTHERFORD CABLES FOR THE GSI FAST RAMPING SYNCHROTRON.

    SciTech Connect

    WILSON,M.N.; GHOSH,A.K.; TEN HAKEN,B.; HASSENZAHL,W.V.; KAUGERTS,J.; MORITZ,G.; MUEHLE,C.; DEN OUDEN,A.; SOIKA,R.; WANDERER,P.; WESSEL,W.A.J.

    2002-08-04

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 200T-m and 100T.m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of s c loss and field distortion. This paper discusses the 200T.m ring, which will use Cos0 magnets based on the RHIC dipole design. We discuss the reasons for choosing Rutherford cable with a resistive core and report loss measurements carried out on cable samples. These measurements are compared with theoretical calculations using measured values of inter-strand resistance. Reasonably good agreement is found, but there are indications of non-uniformity in the adjacent resistance R,. Using these measured parameters, losses and temperature rise are calculated for a RHIC dipole in the operating cycle of the accelerator. A novel insulation scheme designed to promote efficient cooling is described.

  14. Superconductivity of Au-Ge-Yb Approximants with Tsai-Type Clusters

    NASA Astrophysics Data System (ADS)

    Deguchi, Kazuhiko; Nakayama, Mika; Matsukawa, Shuya; Imura, Keiichiro; Tanaka, Katsumasa; Ishimasa, Tsutomu; Sato, Noriaki K.

    2015-02-01

    We report the emergence of bulk superconductivity in Au64.0Ge22.0Yb14.0 and Au63.5Ge20.5Yb16.0 below 0.68 and 0.36 K, respectively. This is the first observation of superconductivity in Tsai-type crystalline approximants of quasicrystals. The Tsai-type cluster center is occupied by Au and Ge ions in the former approximant, and by an Yb ion in the latter. For magnetism, the latter system shows a larger magnetization than the former. To explain this observation, we propose a model that the cluster-center Yb ion is magnetic. The relationship between the magnetism and the superconductivity is also discussed.

  15. A brief history of Lord Rutherford's radium.

    PubMed

    Todd, Neil

    2014-09-20

    In this paper I give a brief summary of what is known about the acquisition, use and fate of the radium sources that were in the possession of Lord Rutherford during his lifetime. The account is written in two parts, corresponding to the periods from the discovery of radium in 1898 until his death in 1937 and then from 1937 until recent times. The history of Rutherford's radium closely shadows the history of radioactivity, the evolution of nuclear physics, the race for the bomb, and the development of the nuclear industry.

  16. A brief history of Lord Rutherford's radium

    PubMed Central

    Todd, Neil

    2014-01-01

    In this paper I give a brief summary of what is known about the acquisition, use and fate of the radium sources that were in the possession of Lord Rutherford during his lifetime. The account is written in two parts, corresponding to the periods from the discovery of radium in 1898 until his death in 1937 and then from 1937 until recent times. The history of Rutherford's radium closely shadows the history of radioactivity, the evolution of nuclear physics, the race for the bomb, and the development of the nuclear industry. PMID:25254280

  17. A new type of superconducting journal bearing using high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Komori, M.; Kitamura, T.

    The characteristics between a set of alternating-polarity ring magnets and a superconductor are studied. The magnets have strong repulsion and attraction forces with the superconductor owing to the pinning effect. Using these characteristics a prototype of a superconducting journal bearing with a magnet shaft supported by a cylindrical housing has been developed. The superconductors (type-II superconductors) and a magnet shaft as the rotor of alternating-polarity ring magnets of the same size. The magnet shaft can be levitated in the center of the housing without contact. Levitation and drag forces of the superconducting journal bearing are investigated. The levitation force shows circular hysteresis loops depending on the displacement because of the flux pinning effect. Owing to the simple and useful structure of the superconducting journal bearing it is applicable to practical devices in the industrial field.

  18. On the Rutherford-Santilli neutron model

    SciTech Connect

    Burande, Chandrakant S.

    2015-03-10

    In 1920 H. Rutherford conjectured that the first particle synthesized in stars is neutron from a proton and an electron after which all known matter is progressively synthesized. However, Pauli objected Rutherford’s version of neutron synthesis because inability to represent spin 1/2 of the neutron. Using this objection E. Fermi proposed emission of massless particle, called “neutrino”. However, Santilli has dismissed the neutrino hypothesis following certain ambiguities such as positive binding energy required in synthesis of neutron. He found that celebrated Schrödinger’s equation of quantum physics is not suitable for obtaining positive binding energy for bound state at the dimension of 10{sup −13}cm. In order to remove these shortcomings, Santilli has developed isomathematics and then hadronic mechanics, which allowed the time invariant representation of Hamiltonian and non-Hamiltonian interactions as needed for the neutron synthesis (see for example: References cited at [1]).Thus the anomalies pertaining to the binding energy, the spin and the magnetic moment got resolved. He successfully calculated missing positive binding energy via isonormalization of the mass for electron when totally immersed within the hyper-dense medium inside the proton. Considering Rutherford’s compression of the isoelectron within the proton in the singlet coupling, he also identified the spin 1/2 for neutron and calculated the magnetic moment of the neutron. In order to verify his logical concept, he repeated the Don Carlo Borghi experiment of synthesis of the neutron from proton and electrons and verified that the said setup indeed produces neutron-type particles called “neutroids” which latter is absorbed by the activated detector substances that produces known nuclear reactions. He dismissed the neutrino hypothesis and replaced it with a longitudinal impulse originating from the ether as a universal substratum, named, “etherino”. He pointed out that all the

  19. Pressure-enhanced superconductivity in A15-type Nb3 Ge via increased Fermi surface nesting

    NASA Astrophysics Data System (ADS)

    Stillwell, Ryan; Jeffries, Jason; McCall, Scott; Jenei, Zsolt; Weir, Sam; Vohra, Yogesh

    The A15-type superconductors are the most widely used superconductors in industrial applications yet the physics behind maximizing the superconducting transition temperature is still not completely understood. The highest transition temperatures found to date have recently been reported for high-pressure hydride materials and it is believed that they too are BCS-type phonon-mediated superconductors, just like the A15-type superconductors. Understanding the electron-phonon coupling has therefore been brought front stage in the search to understand the mechanisms for optimizing high-temperature superconductors. Using a multi-faceted suite of high-pressure techniques we found that Nb3Ge has an isostructural phase transition at high pressure that correlates directly with a bandstructure change seen in high-pressure magnetotransport measurements. Our results suggest that A15-type superconductivity is not only phonon-mediated but that the degree of Fermi surface nesting is a controlling parameter for maximizing the superconducting transition temperature. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

  20. Ernest Rutherford, Avogadro's Number, and Chemical Kinetics

    NASA Astrophysics Data System (ADS)

    Leenson, I. A.

    1998-08-01

    The paper presents a way for students to use data from Rutherford's works (1908 - 1911) in order to determine one of the most precise values of Avogadro Constant available at the beginning of the century. A brief discussion of earlier and modern methods for the determination of this fundamental constant is followed by vast quotations from the works of Rutherford, Boltwood and Geiger. Then there are given a dozen of problems and questions for students about these classical experiments; they vary in complexity from rather simple to quite challenging. Additional information and hints are provided to help the students in solving the problems. The last part contains detailed answers and solutions to all problems. The article will be useful for students of general chemistry, radiochemistry and physical chemistry (kinetics).

  1. Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits.

    PubMed

    Xu, H K; Song, C; Liu, W Y; Xue, G M; Su, F F; Deng, H; Tian, Ye; Zheng, D N; Han, Siyuan; Zhong, Y P; Wang, H; Liu, Yu-xi; Zhao, S P

    2016-01-01

    Stimulated Raman adiabatic passage offers significant advantages for coherent population transfer between uncoupled or weakly coupled states and has the potential of realizing efficient quantum gate, qubit entanglement and quantum information transfer. Here we report on the realization of the process in the superconducting Xmon and phase qutrits--two ladder-type three-level systems in which the ground state population is coherently transferred to the second excited state via the dark state subspace. We demonstrate that the population transfer efficiency is no less than 96% and 67% for the two devices, which agree well with the numerical simulation of the master equation. Population transfer via stimulated Raman adiabatic passage is significantly more robust against variations of the experimental parameters compared with that via the conventional resonant π pulse method. Our work opens up a new venue for exploring the process for quantum information processing using the superconducting artificial atoms. PMID:27009972

  2. Three-dimensional MgB2-type superconductivity in hole-doped diamond.

    PubMed

    Boeri, Lilia; Kortus, Jens; Andersen, O K

    2004-12-01

    We substantiate by numerical and analytical calculations that the recently discovered superconductivity below 4 K in 3% boron-doped diamond is caused by electron-phonon coupling of the same type as in MgB2, albeit in three dimensions. Holes at the top of the zone-centered, degenerate sigma-bonding valence-band couple strongly to the optical bond-stretching modes. The increase from two to three dimensions reduces the mode softening crucial for T(c) reaching 40 K in MgB2. Even if diamond had the same bare coupling constant as MgB2, which could be achieved with 10% doping, T(c) would be only 25 K. Superconductivity above 1 K in Si (Ge) requires hole doping beyond 5% (10%).

  3. Coherent population transfer between uncoupled or weakly coupled states in ladder-type superconducting qutrits

    PubMed Central

    Xu, H. K.; Song, C.; Liu, W. Y.; Xue, G. M.; Su, F. F.; Deng, H.; Tian, Ye; Zheng, D. N.; Han, Siyuan; Zhong, Y. P.; Wang, H.; Liu, Yu-xi; Zhao, S. P.

    2016-01-01

    Stimulated Raman adiabatic passage offers significant advantages for coherent population transfer between uncoupled or weakly coupled states and has the potential of realizing efficient quantum gate, qubit entanglement and quantum information transfer. Here we report on the realization of the process in the superconducting Xmon and phase qutrits—two ladder-type three-level systems in which the ground state population is coherently transferred to the second excited state via the dark state subspace. We demonstrate that the population transfer efficiency is no less than 96% and 67% for the two devices, which agree well with the numerical simulation of the master equation. Population transfer via stimulated Raman adiabatic passage is significantly more robust against variations of the experimental parameters compared with that via the conventional resonant π pulse method. Our work opens up a new venue for exploring the process for quantum information processing using the superconducting artificial atoms. PMID:27009972

  4. Proposal of rectifier type superconducting fault current limiter with non-inductive reactor (SFCL)

    NASA Astrophysics Data System (ADS)

    Mohammad Salim, Khosru; Muta, Itsuya; Hoshino, Tsutomu; Nakamura, Taketsune; Yamada, Masato

    2004-03-01

    A rectifier type superconducting fault current limiter (SFCL) with non-inductive reactor has been proposed. The concept behind this SFCL is the appearance of high impedance during non-superconducting state of the coil. In a hybrid bridge circuit, two superconducting coils connected in anti-parallel: a trigger coil and a limiting coil. Both the coils are magnetically coupled with each other and have same number of turns. There is almost zero flux inside the core and therefore the total inductance is small during normal operation. At fault time when the trigger coil current reaches to a certain level, the trigger coil changes from superconducting state to normal state. This super-to-normal transition of the trigger coil changes the current ratio of the coils and therefore the flux inside the reactor is no longer zero. So, the equivalent impedance of both the coils increased thus limits the fault current. We have carried out computer simulation using EMTDC and observed the results. A preliminary experiment has already been performed using copper wired reactor with simulated super-to-normal transition resistance and magnetic switches. Both the simulation and preliminary experiment shows good results. The advantage of using hybrid bridge circuit is that the SFCL can also be used as circuit breaker. Two separate bridge circuit can be used for both trigger coil and the limiter coil. In such a case, the trigger coil can be shutdown immediately after the fault to reduce heat and thus reduce the recovery time. Again, at the end of fault when the SFCL needs to re-enter to the grid, turning off the trigger circuit in the two-bridge configuration the inrush current can be reduced. This is because the current only flows through the limiting coil. Another advantage of this type of SFCL is that no voltage sag will appear during load increasing time as long as the load current stays below the trigger current level.

  5. Design optimization of superconducting magnetic energy storage coil

    NASA Astrophysics Data System (ADS)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-05-01

    An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb-Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  6. Superconductivity in layered ZrP2-x Se x with PbFCl-type structure

    NASA Astrophysics Data System (ADS)

    Ishida, Shigeyuki; Fujihisa, Hiroshi; Hase, Izumi; Yanagi, Yousuke; Kawashima, Kenji; Oka, Kunihiko; Gotoh, Yoshito; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi; Kito, Hijiri

    2016-05-01

    We performed a systematic study of the crystal structure, physical properties, and electronic structure of PbFCl-type ZrP2-x Se x (0.3 ≤ x ≤ 0.9). We successfully synthesized single-phase polycrystalline samples for the Se substitution range of 0.4 ≤ x ≤ 0.8. The crystal structure of the compound is characterized by the alternate stacking of a two-dimensional P square net and a Zr-(P1-x Se x ) network. ZrP2-x Se x exhibits a dome-like superconductivity phase diagram and has a maximum superconducting transition temperature (T c) of 6.3 K for x ≈ 0.6. Resistivity and Hall measurements indicated that electron-phonon scattering plays a dominant role and that electron-type carriers dominate charge transport. Specific heat measurements confirmed that ZrP2-x Se x exhibits bulk superconductivity. Further, the value of the specific heat jump at T c (ΔC/γT c ≈ 1.35) is in keeping with the BCS weak-coupling model. These facts suggest a rather conventional pairing mechanism in ZrP2-x Se x . The x dependence of T c can be explained on the basis of the density of states (DOS) for x ≤ 0.7, whereas the decrease in T c with an increase in the DOS for x = 0.8 needs further investigation. One possible reason for the suppression of superconductivity is that the PbFCl-type structure becomes unstable for x ≥ 0.8. The results of electronic structure calculations agree reasonably well with those of the experimental observations, suggesting that the Zrd band plays a primary role in determining the physical properties. Further, the calculations predict a significant change in the Fermi-surface topology for x ≥ 0.8 this is a probable reason for the decrease in T c as well as the instability of the PbFCl-type structure.

  7. Design of magnetic traps for neutral atoms with vortices in type-II superconducting microstructures

    SciTech Connect

    Zhang, B.; Dumke, R.; Fermani, R.; Mueller, T.; Lim, M. J.

    2010-06-15

    We design magnetic traps for atoms based on the average magnetic field of vortices induced in a type-II superconducting thin film. This magnetic field is the critical ingredient of the demonstrated vortex-based atom traps, which operate without transport current. We use Bean's critical-state method to model the vortex field through mesoscopic supercurrents induced in the thin strip. The resulting inhomogeneous magnetic fields are studied in detail and compared to those generated by multiple normally conducting wires with transport currents. Various vortex patterns can be obtained by programing different loading-field and transport-current sequences. These variable magnetic fields are employed to make versatile trapping potentials.

  8. Reflection type of terahertz imaging system using a high-T{sub c} superconducting oscillator

    SciTech Connect

    Kashiwagi, T.; Minami, H.; Kadowaki, K.; Nakade, K.; Saiwai, Y.; Kitamura, T.; Watanabe, C.; Ishida, K.; Sekimoto, S.; Asanuma, K.; Yasui, T.; Shibano, Y.; Marković, B.; Mirković, J.; Tsujimoto, M.; Yamamoto, T.

    2014-01-13

    A reflection type of imaging system is shown at sub-terahertz frequencies generated from high-T{sub c} superconducting intrinsic Josephson junction mesa structures fabricated by single crystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} to demonstrate how the sub-terahertz imaging technique using monochromatic radiation is powerful and unique for the variety of practical applications. Several examples are discussed in detail and are compared to other terahertz imaging systems.

  9. Cable deformation simulation and a hierarchical framework for Nb3Sn Rutherford cables

    NASA Astrophysics Data System (ADS)

    Arbelaez, D.; Prestemon, S. O.; Ferracin, P.; Godeke, A.; Dietderich, D. R.; Sabbi, G.

    2010-06-01

    Knowledge of the three-dimensional strain state induced in the superconducting filaments due to loads on Rutherford cables is essential to analyze the performance of Nb3Sn magnets. Due to the large range of length scales involved, we develop a hierarchical computational scheme that includes models at both the cable and strand levels. At the Rutherford cable level, where the strands are treated as a homogeneous medium, a three-dimensional computational model is developed to determine the deformed shape of the cable that can subsequently be used to determine the strain state under specified loading conditions, which may be of thermal, magnetic, and mechanical origins. The results can then be transferred to the model at the strand/macro-filament level for rod restack process (RRP) strands, where the geometric details of the strand are included. This hierarchical scheme can be used to estimate the three-dimensional strain state in the conductor as well as to determine the effective properties of the strands and cables from the properties of individual components. Examples of the modeling results obtained for the orthotropic mechanical properties of the Rutherford cables are presented.

  10. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    SciTech Connect

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. The range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.

  11. Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented applied magnetic field

    DOE PAGES

    Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.

    2013-09-04

    The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less

  12. FMEA on the superconducting torus for the Jefferson Lab 12 GeV accelerator upgrade

    DOE PAGES

    Ghoshal, Probir K.; Biallas, George H.; Fair, Ruben J.; Rajput-Ghoshal, Renuka; Schneider, William J.; Legg, Robert A.; Kashy, David H.; Hogan, John P.; Wiseman, Mark A.; Luongo, Cesar; et al

    2015-01-16

    As part of the Jefferson Lab 12GeV accelerator upgrade project, Hall B requires two conduction cooled superconducting magnets. One is a magnet system consisting of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration and the second is an actively shielded solenoidal magnet system consisting of 5 coils. Both magnets are to be wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. This paper describes the various failure modes in torus magnet along with the failure modes that could be experienced by the torus and its interaction with the solenoid which is located inmore » close proximity.« less

  13. PREFACE: Rutherford Centennial Conference on Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Freeman, Sean

    2012-09-01

    Just over one hundred years ago, Ernest Rutherford presented an interpretation of alpha-particle scattering experiments, performed a couple of years earlier by Geiger and Marsden, to the Manchester Literary and Philosophical Society. The work was summarised shortly afterwards in a paper in the Philosophical Magazine. He postulated that a dense speck of matter must exist at the centre of an atom (later to become known as the nucleus) if the details of the experiments, particularly the yield of alpha particles scattered through large angles, were to be explained. The nuclear hypothesis, combined with the experimental work by Moseley on X-rays and Bohr's theoretical ideas, both also initiated at the Victoria University of Manchester, established our view of atomic structure and gave birth to the field of nuclear physics. The Rutherford Centennial Conference on Nuclear Physics was held at The University of Manchester in August 2011 to celebrate this anniversary by addressing the wide range of contemporary topics that characterise modern nuclear physics. This set of proceedings covers areas including nuclear structure and astrophysics, hadron structure and spectroscopy, fundamental interactions studied within the nucleus and results of relativistic heavy-ion collisions. We would like to thank all those who presented their recent research results at the conference; the proceedings stand as a testament to the excitement and interest that still pervades the pursuit of this field of physics. We would also like to thank those who contributed in other ways to the conference. To colleagues at the Manchester Museum of Science and Industry for putting together an exhibition to coincide with the conference that included the manuscript of the 1911 paper, letters, notebooks and equipment used by Rutherford. These items were kindly loaned by Cambridge and Manchester Universities. Winton Capital generously supported this exhibition. We would also like to thank Professor Mary Fowler

  14. Secret in the Margins: Rutherford's Gold Foil Experiment

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Hanuscin, Deborah L.

    2011-01-01

    In this article, the authors describe a lesson that uses the 5E Learning Cycle to help students not only understand the atomic model but also how Ernest Rutherford helped develop it. The lesson uses Rutherford's gold foil experiment to focus on three aspects of the nature of science: the empirical nature of science, the tentativeness of scientific…

  15. Semi-Meissner state and neither type-I nor type-II superconductivity in multicomponent superconductors

    SciTech Connect

    Babaev, Egor; Speight, Martin

    2005-11-01

    Traditionally, superconductors are categorized as type I or type II. Type-I superconductors support only Meissner and normal states, while type-II superconductors form magnetic vortices in sufficiently strong applied magnetic fields. Recently there has been much interest in superconducting systems with several species of condensates, in fields ranging from condensed matter to high energy physics. Here we show that the classification into types I and II is insufficient for such multicomponent superconductors. We obtain solutions representing thermodynamically stable vortices with properties falling outside the usual type-I/type-II dichotomy, in that they have the following features: (i) Pippard electrodynamics, (ii) interaction potential with long-range attractive and short-range repulsive parts, (iii) for an n-quantum vortex, a nonmonotonic ratio E(n)/n where E(n) is the energy per unit length, (iv) energetic preference for nonaxisymmetric vortex states, 'vortex molecules'. Consequently, these superconductors exhibit an emerging first order transition into a 'semi-Meissner' state, an inhomogeneous state comprising a mixture of domains of two-component Meissner state and vortex clusters.

  16. Operational research on a high-T c rectifier-type superconducting flux pump

    NASA Astrophysics Data System (ADS)

    Geng, Jianzhao; Matsuda, K.; Fu, Lin; Shen, Boyang; Zhang, Xiuchang; Coombs, T. A.

    2016-03-01

    High-T c superconducting (HTS) flux pumps are capable of injecting flux into a superconducting circuit, which can achieve persistent current operation for HTS magnets. In this paper, we studied the operation of a rectifier-type HTS flux pump. The flux pump employs a transformer to generate high alternating current in its secondary winding, which is connected to an HTS load shorted by an HTS bridge. A high frequency ac field is intermittently applied perpendicular to the bridge, thus, generating flux flow. The dynamic resistance caused by the flux flow ‘rectifies’ the secondary current, resulting in a direct current in the load. We have found that the final load current can easily be controlled by changing the phase difference between the secondary current and the bridge field. The bridge field of frequency ranging from 10 to 40 Hz and magnitude ranging from 0 to 0.66 T was tested. Flux pumping was observed for field magnitudes of 50 mT or above. We have found that both higher field magnitude and higher field frequency result in a faster pumping speed and a higher final load current. This can be attributed to the influence of dynamic resistance. The dynamic resistance measured in the flux pump is comparable with the theoretical calculation. The experimental results fully support a first order circuit model. The flux pump is much more controllable than the traveling wave flux pumps based on permanent magnets, which makes it promising for practical use.

  17. PREFACE: Rutherford Centennial Conference on Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Freeman, Sean

    2012-09-01

    Just over one hundred years ago, Ernest Rutherford presented an interpretation of alpha-particle scattering experiments, performed a couple of years earlier by Geiger and Marsden, to the Manchester Literary and Philosophical Society. The work was summarised shortly afterwards in a paper in the Philosophical Magazine. He postulated that a dense speck of matter must exist at the centre of an atom (later to become known as the nucleus) if the details of the experiments, particularly the yield of alpha particles scattered through large angles, were to be explained. The nuclear hypothesis, combined with the experimental work by Moseley on X-rays and Bohr's theoretical ideas, both also initiated at the Victoria University of Manchester, established our view of atomic structure and gave birth to the field of nuclear physics. The Rutherford Centennial Conference on Nuclear Physics was held at The University of Manchester in August 2011 to celebrate this anniversary by addressing the wide range of contemporary topics that characterise modern nuclear physics. This set of proceedings covers areas including nuclear structure and astrophysics, hadron structure and spectroscopy, fundamental interactions studied within the nucleus and results of relativistic heavy-ion collisions. We would like to thank all those who presented their recent research results at the conference; the proceedings stand as a testament to the excitement and interest that still pervades the pursuit of this field of physics. We would also like to thank those who contributed in other ways to the conference. To colleagues at the Manchester Museum of Science and Industry for putting together an exhibition to coincide with the conference that included the manuscript of the 1911 paper, letters, notebooks and equipment used by Rutherford. These items were kindly loaned by Cambridge and Manchester Universities. Winton Capital generously supported this exhibition. We would also like to thank Professor Mary Fowler

  18. Photonic Rutherford scattering: A classical and quantum mechanical analogy in ray and wave optics

    NASA Astrophysics Data System (ADS)

    Selmke, Markus; Cichos, Frank

    2013-06-01

    Using Fermat's least-optical-path principle, the family of ray trajectories through a special (but common) type of a gradient refractive index lens n(r)=n0+ΔnR /r is solved analytically. The solution gives a ray equation r(ϕ) that is closely related to Rutherford scattering trajectories; we therefore refer to this refraction process as "photonic Rutherford scattering." It is shown that not only do the classical limits correspond but also the wave-mechanical pictures coincide—the time-independent Schrödingier equation and the Helmholtz equation permit the same mapping between the scattering of massive particles and optical scalar waves. Scattering of narrow beams of light finally recovers the classical trajectories. The analysis suggests that photothermal single-particle microscopy measures photonic Rutherford scattering in specific limits and allows for an individual single-scatterer probing. A macroscopic experiment is demonstrated to directly measure the scattering angle to impact parameter relation, which is otherwise accessible only indirectly in Rutherford-scattering experiments.

  19. Influence of the heat-treatment conditions on various types of multifilamentary Nb-46.5%Ti superconducting wires

    NASA Astrophysics Data System (ADS)

    Shin, Ik Sang; Sim, Ki Hong; Hwang, Duck Young; Jang, Kyeong Ho; Na, Sin Hye; Park, Pyeong Yeol

    2016-08-01

    Unlike the NbTi superconducting wires used for high critical current density, NbTi wires for Magnetic resonance imaging (MRI) magnets have larger and fewer NbTi monofilaments and different cross sections, which show different superconducting properties. This study investigated the effects of varying the temperature, number of heat-treatment cycles, and total strain over a wide range for multifilamentary Nb-46.5%Ti wires on a mass production scale for use in MRI magnets. The heat-treatment conditions were optimized for an NbTi superconducting wire and the critical current density and the n-value were measured as functions of the final strain at temperatures of 4.2 K and 7 T. We noticed that the superconducting properties increased with increasing final strain of the multifilamentary NbTi wire. The microstructure and the effects of the size and the distribution of α-Ti precipitates on the individual heat-treatment steps were observed by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). We, consequently, found the heat-treatment conditions that provided the highest superconducting performance for the two types of NbTi wires used in this study, and the results of the study are expected to very helpful in establishing not only the heat-treatment conditions but also important manufacturing parameters, such as the total strain, even as the design of NbTi wires for used in MRI magnets as changing with industrial demand.

  20. Influences of non-uniformities and anisotropies on the flux avalanche behaviors of type-II superconducting films

    NASA Astrophysics Data System (ADS)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2016-10-01

    In this paper, the anisotropic flux avalanche processes in thin square-shaped type-II superconducting films are numerically investigated by solving the coupled nonlinear Maxwell’s equations and the thermal diffusion equations. Influences of the non-uniformities and intrinsic critical current density anisotropies originate from the manufacturing process are considered in the simulation. In addition, we also studied the effect of the extrinsic anisotropy induced by the in-plane magnetic field. The results demonstrate that the non-uniformities and anisotropies of the critical current density play significant roles in the flux avalanche process of the thin film superconductors. Slight anisotropy (either intrinsic or extrinsic) can dramatically change the propagation direction of avalanches in the superconducting film, which is consistent with the experimental results. Simulations on the thin square-shaped isotropic superconducting films show that the threshold magnetic field for the flux avalanches increases with the angle between the applied field and the superconducting film-plane. In addition, the flux avalanche patterns change with the angular variation of the in-plane component of external magnetic field. When the in-plane magnetic field component is along the diagonal lines of the superconducting square, symmetric flux avalanche penetration patterns occur to the film.

  1. Atomic Energy is "Moonshine": What did Rutherford Really Mean?

    NASA Astrophysics Data System (ADS)

    Jenkin, John G.

    2011-06-01

    In the 1930s Ernest Rutherford (1871-1937) repeatedly suggested, sometimes angrily, that the possibility of harnessing atomic energy was "moonshine." Yet, as war approached he secretly advised the British government to "keep an eye on the matter." I suggest that Rutherford did not really believe his "moonshine" claim but did have profound reasons for making it. If I am correct, then this casts additional light on his personality, stature, and career.

  2. Velocity dependence of rotational loss in Evershed-type superconducting bearings

    SciTech Connect

    Hull, J.R.; Mulcahy, T.M.; Labataille, J.F.

    1997-02-01

    Results of free spin down in vacuum are reported for an Evershed-type superconducting bearing in which a permanent magnet (PM) ring is levitated over an array of high-temperature superconductors (HTSs) and under a similar PM ring in magnetic attraction. The velocity dependence of the rotational loss strongly suggests that the observed velocity-dependent losses are primarily due to eddy currents induced in the PM by inhomogeneity of the field produced by the magnetized HTS array. The results show that the Evershed-type bearing is capable of reducing these eddy-current losses to an extremely low level, so that at a maximum magnet rim velocity of 28 m/s, the fractional kinetic-energy loss per hour was 2.4{times}10{sup {minus}4}. Significant levitation heights are also possible, and at a 23 mm height, we measured a low-speed coefficient of friction of 3{times}10{sup {minus}8}. {copyright} {ital 1997 American Institute of Physics.}

  3. Supercooling of the normal state of a type I superconductor in the presence of surface superconductivity

    SciTech Connect

    Berezin, V. A. Khlyustikov, I. N.

    2009-05-15

    Supercooling of the normal state of lead single crystals is studied experimentally in the range of surface superconductivity. The supercooling field is plotted on the phase diagram of the superconductor. The experimental data are compared with the results of theoretical calculations.

  4. Experimenting from a Distance in the Case of Rutherford Scattering

    ERIC Educational Resources Information Center

    Grober, S.; Vetter, M.; Eckert, B.; Jodl, H. -J.

    2010-01-01

    The Rutherford scattering experiment plays a central role in working out atomic models in physics and chemistry. Nevertheless, the experiment is rarely performed at school or in introductory physics courses at university. Therefore, we realized this experiment as a remotely controlled laboratory (RCL), i.e. the experiment is set up in reality and…

  5. PREFACE: Superconducting materials Superconducting materials

    NASA Astrophysics Data System (ADS)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    and by invited authors selected by the editor. We are grateful to IUPAP, ICTP and the European Office of Aerospace Research and Development, Air Force Office of Scientific Research, United States Air Force Laboratory. We would like to acknowledge the authors for their careful work, and finally we thank Dr L Smith the publisher of Journal of Physics: Condensed Matter for her patience and help. Superconducting materials contents Raman spectrum in the pseudogap phase of the underdoped cuprates: effect of phase coherence and the signature of the KT-type superconducting transitionTao Li and Haijun Liao Pressure effects on Dirac fermions in α-(BEDT-TTF)2I3Takahiro Himura, Takao Morinari and Takami Tohyama Effect of Zn doping in hole-type 1111 phase (Pr, Sr)FeAsOXiao Lin, Chenyi Shen, Chen Lv, Jianjian Miao, Hao Tan, Guanghan Cao and Zhu-An Xu Superconductivity and ferromagnetism in EuFe2(As1 - xPx)2*Guanghan Cao, Shenggao Xu, Zhi Ren, Shuai Jiang, Chunmu Feng and Zhu'an Xu OInhomogeneous superconductivity in organic conductors: the role of disorder and magnetic fieldS Haddad, S Charfi-Kaddour and J-P Pouget

  6. Alexander Cameron Rutherford: A Gentleman and a Scholar. Documents in the Classroom.

    ERIC Educational Resources Information Center

    Hodysh, Henry W.

    2000-01-01

    Provides information about Alexander Cameron Rutherford, a provincial politician. Includes a letter written by Rutherford in 1912 that provides insights into his responsibilities to the general public, information about Rutherford himself, the economic conditions of Alberta, Canada in 1912, and information about the individual to whom it was…

  7. Magnetic field and temperature dependence of the critical vortex velocity in type-II superconducting films.

    PubMed

    Grimaldi, G; Leo, A; Cirillo, C; Attanasio, C; Nigro, A; Pace, S

    2009-06-24

    We study the vortex dynamics in the instability regime induced by high dissipative states well above the critical current in Nb superconducting strips. The magnetic field and temperature behavior of the critical vortex velocity corresponding to the observed dynamic instability is ascribed to intrinsic non-equilibrium phenomena. The Larkin-Ovchinnikov (LO) theory of electronic instability in high velocity vortex motion has been applied to interpret the temperature dependence of the critical vortex velocity. The magnetic field dependence of the vortex critical velocity shows new features in the low-field regime not predicted by LO.

  8. Critical state stability in type-II superconductors and superconducting--normal-metal composites

    SciTech Connect

    Mints, R.G.; Rakhmanov, A.L.

    1981-07-01

    This review is devoted to the problem of critical state stability in hard superconductors and superconducting normal composites. An introduction is given to the properties of hard and composite superconductors, and to the qualitative nature of the physical processes that occur in these materials in the critical state. The dynamics of the development of instabilities of various kinds are treated in detail. Stability criteria are obtained and discussed, and theory is compared with experiment. The interaction between flux jumps and plastic strain jerks and the training phenomenon in superconductors are also covered.

  9. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    NASA Astrophysics Data System (ADS)

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.

    2016-03-01

    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  10. Investigation on Prototype Superconducting Linear Synchronous Motor (LSM) for 600-km/h Wheel-Type Railway

    NASA Astrophysics Data System (ADS)

    Eom, Beomyong; Lee, Changhyeong; Kim, Seokho; Lee, Changyoung; Yun, Sangwon

    The existing wheel-type high-speed railway with a rotatable motor has a limit of 600 km/h speed. The normal conducting electromagnet has several disadvantages to realize 600 km/h speed. Several disadvantages are the increased space and weight, and the decreased electric efficiency to generate the required high magnetic field. In order to reduce the volume and weight, superconducting electromagnets can be considered for LSM (Linear Synchronous Motor). Prior to the fabrication of the real system, a prototype demo-coil is designed and fabricated using 2G high temperature superconducting wire. The prototype HTS coil is cooled by the conduction using a GM cryocooler. To reduce the heat penetration, thermal design was performed for the current leads, supporting structure and radiation shield considering the thermal stress. The operating temperature and current are 30∼40 K and 100 A. The coil consists of two double pancake coils (N, S pole, respectively) and it is driven on a test rail, which is installed for the test car. This paper describes the design and test results of the prototype HTS LSM system. Thermal characteristics are investigated with additional dummy thermal mass on the coil after turning off the cryocooler.

  11. Feasibility analysis of a novel hybrid-type superconducting circuit breaker in multi-terminal HVDC networks

    NASA Astrophysics Data System (ADS)

    Khan, Umer Amir; Lee, Jong-Geon; Seo, In-Jin; Amir, Faisal; Lee, Bang-Wook

    2015-11-01

    Voltage source converter-based HVDC systems (VSC-HVDC) are a better alternative than conventional thyristor-based HVDC systems, especially for developing multi-terminal HVDC systems (MTDC). However, one of the key obstacles in developing MTDC is the absence of an adequate protection system that can quickly detect faults, locate the faulty line and trip the HVDC circuit breakers (DCCBs) to interrupt the DC fault current. In this paper, a novel hybrid-type superconducting circuit breaker (SDCCB) is proposed and feasibility analyses of its application in MTDC are presented. The SDCCB has a superconducting fault current limiter (SFCL) located in the main current path to limit fault currents until the final trip signal is received. After the trip signal the IGBT located in the main line commutates the current into a parallel line where DC current is forced to zero by the combination of IGBTs and surge arresters. Fault simulations for three-, four- and five-terminal MTDC were performed and SDCCB performance was evaluated in these MTDC. Passive current limitation by SFCL caused a significant reduction of fault current interruption stress in the SDCCB. It was observed that the DC current could change direction in MTDC after a fault and the SDCCB was modified to break the DC current in both the forward and reverse directions. The simulation results suggest that the proposed SDCCB could successfully suppress the DC fault current, cause a timely interruption, and isolate the faulty HVDC line in MTDC.

  12. The Occurrence of Superconductivity in the TlBa2CuO5-δ-Type (1021) System

    NASA Astrophysics Data System (ADS)

    Ku, H. C.; Tai, M. F.; Shi, J. B.; Shieh, M. J.; Hsu, S. W.; Hwang, G. H.; Ling, D. C.; Watson-Yang, T. J.; Lin, T. Y.

    1989-06-01

    Stable and reproducible superconductivity in the Tl(Ba2-xLax)CuO5-δ (0.0≤x≤0.6) system with the tetragonal TlBa2CuO5-δ-type (1021) structure was reported. A Prototype compound TlBa2CuO5-δ had shown a metastable superconducting onset around 25 K, with zero resistivity at 10 K. With partial substitution of La for Ba ions, Tc (50% resistivity drop) increases to 45 K, Tc0 (zero resistivity) to 42 K and onset around 50 K. A diamagnetic signal was observed with onset as high as 57 K. Tetragonal lattice parameters decrease with the increasing La concentration due to the partial replacement of larger Ba2+ ions by smaller La3+ ions. The Pairing field energy of 170 K and electron-elementary excitation coupling constant λ of 0.76 were derived from the BCS-like Tc formula through comparison with other single Tl-O layer systems TlCan-1Ba2CunO2n+3-δ.

  13. Novel superconducting skutterudite-type phosphorus nitride at high pressure from first-principles calculations

    PubMed Central

    Raza, Zamaan; Errea, Ion; Oganov, Artem R.; Saitta, A. Marco

    2014-01-01

    State of the art variable composition structure prediction based on density functional theory demonstrates that two new stoichiometries of PN, PN3 and PN2, become viable at high pressure. PN3 has a skutterudite-like Immm structure and is metastable with positive phonon frequencies at pressures between 10 and 100 GPa. PN3 is metallic and is the first reported nitrogen-based skutterudite. Its metallicity arises from nitrogen p-states which delocalise across N4 rings characteristic of skutterudites, and it becomes a good electron-phonon superconductor at 10 GPa, with a Tc of around 18 K. The superconductivity arises from strongly enhanced electron-phonon coupling at lower pressures, originating primarily from soft collective P-N phonon modes. The PN2 phase is an insulator with P2/m symmetry and is stable at pressures in excess of 200 GPa. PMID:25074347

  14. Dynamic response characteristics of high temperature superconducting maglev systems: Comparison between Halbach-type and normal permanent magnet guideways

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zheng, J.; Che, T.; Zheng, B. T.; Si, S. S.; Deng, Z. G.

    2015-12-01

    The permanent magnet guideway (PMG) is very important for the performance of the high temperature superconducting (HTS) system in terms of electromagnetic force and operational stability. The dynamic response characteristics of a HTS maglev model levitating on two types of PMG, which are the normal PMG with iron flux concentration and Halbach-type PMG, were investigated by experiments. The dynamic signals for different field-cooling heights (FCHs) and loading/unloading processes were acquired and analyzed by a vibration analyzer and laser displacement sensors. The resonant frequency, stiffness and levitation height of the model were discussed. It was found that the maglev model on the Halbach-type PMG has higher resonant frequency and higher vertical stiffness compared with the normal PMG. However, the low lateral stiffness of the model on the Halbach-type PMG indicates poor lateral stability. Besides, the Halbach-type PMG has better loading capacity than the normal PMG. These results are helpful to design a suitable PMG for the HTS system in practical applications.

  15. Characteristics of round and extracted strands of Nb3Al Rutherford cable

    SciTech Connect

    Kikuchi, A.; Yamada, R.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Iijima, Y.; Kobayashi, M.; Kitaguchi, H.; Nimori, S.; Lamm, M.; Tagawa, K.; Takeuchi, T.; Tsuchiya, K.; Turrioni, D.; Wake, M.; Zlobin, A.V.; /NIMC, Tsukuba /Fermilab /KEK, Tsukuba

    2006-08-01

    Long Nb{sub 3}Al strands with copper stabilizer are promising for future high field accelerator magnets. A 1.2 kilometer Nb{sub 3}Al strand with Cu stabilizer was fabricated at the National Institute for Materials Science in Japan. Using this strand a 30 meter Cu stabilized Nb{sub 3}Al Rutherford cable was made for the first time by a collaboration of NIMS and Fermilab. The Nb{sub 3}Al strands extracted from cable with a relatively low packing factor showed almost no J{sub c} degradation. But the extracted strands from the highly compacted cable showed some degradation in both J{sub c} and n value, which may be caused by local separation of the copper stabilizer. Still, its J{sub c} degradation is lower than that of typical Nb{sub 3}Sn strands. The current limit due to magnetic instability in low field is about 500 A at 4.2 K. The magnetization of the strands, which was measured with balanced coils at 4.2 K, showed large flux jumps, usually around 1.5 T. This value is much larger than the B{sub c2} (4.2 K) of the Nb matrix, which is around 0.4 Tesla. The magnetic instability of the Nb{sub 3}Al strand at low field is not completely understood, but it might be explained by the superconducting coupling current through the Nb matrix.

  16. Dimensional changes of Nb3Sn Rutherford cables during heat treatment

    DOE PAGES

    Rochepault, E.; Ferracin, P.; Ambrosio, G.; Anerella, M.; Ballarino, A.; Bonasia, A.; Bordini, B.; Cheng, D.; Dietderich, D. R.; Felice, H.; et al

    2016-06-01

    In high field magnet applications, Nb3Sn coils undergo a heat treatment step after winding. During this stage, coils radially expand and longitudinally contract due to the Nb3Sn phase change. In order to prevent residual strain from altering superconducting performances, the tooling must provide the adequate space for these dimensional changes. The aim of this paper is to understand the behavior of cable dimensions during heat treatment and to provide estimates of the space to be accommodated in the tooling for coil expansion and contraction. In addition, this paper summarizes measurements of dimensional changes on strands, single Rutherford cables, cable stacks,more » and coils performed between 2013 and 2015. These samples and coils have been performed within a collaboration between CERN and the U.S. LHC Accelerator Research Program to develop Nb3Sn quadrupole magnets for the HiLumi LHC. The results are also compared with other high field magnet projects.« less

  17. Experimenting from a distance in the case of Rutherford scattering

    NASA Astrophysics Data System (ADS)

    Gröber, S.; Vetter, M.; Eckert, B.; Jodl, H.-J.

    2010-07-01

    The Rutherford scattering experiment plays a central role in working out atomic models in physics and chemistry. Nevertheless, the experiment is rarely performed at school or in introductory physics courses at university. Therefore, we realized this experiment as a remotely controlled laboratory (RCL), i.e. the experiment is set up in reality and can be operated by a computer via the Internet. We present results of measurements and supplementary didactical material. In addition, we make suggestions on how to use the RCL in class and we describe the added value of performing this experiment as an RCL.

  18. Radiation and Thermal Analysis of Superconducting Quadrupoles in the Interaction Region of Linear Collider

    SciTech Connect

    Drozhdin, A.I.; Kashikhin, V.V.; Kashikhin, V.S.; Lopes, M.L.; Mokhov, N.V.; Zlobin, A.V.; Seryi, Andrei; /SLAC

    2011-10-14

    Radiation heat deposition in the superconducting magnets of the Interaction Region (IR) of a linear collider can be a serious issue that limits the magnet operating margins and shortens the material lifetime. Radiation and thermal analyses of the IR quadrupoles in the incoming and extraction beam lines of the ILC are performed in order to determine the magnet limits. This paper presents an analysis of the radial, azimuthal and longitudinal distributions of heat deposition in the incoming and disrupted beam doublets. Operation margins of the magnets based on NbTi superconductor are calculated and compared. The radiation and thermal analysis of the ILC IR quadrupoles based on Rutherford type cables was performed. It was found that the peak radiation heat deposition takes place in the second extraction quadrupole QFEX2. The maximum power density in the coil is {approx}17mW/g. This is rather high, comparing to the proton machines (LHC). However, the fast radial decay of the heat deposition together with the high thermal conductivity of the Rutherford type cable limits the coil temperatures to a moderate level. It was determined that both 2-layer and 4-layer QFEX2 magnet designs have thermal margins of a factor of {approx}4 at the nominal gradient of 31.3 T/m. Because of the large margins, these magnets can easily accommodate possible changes in the IR optics and heat deposition levels.

  19. Pareto optimal design of sectored toroidal superconducting magnet for SMES

    NASA Astrophysics Data System (ADS)

    Bhunia, Uttam; Saha, Subimal; Chakrabarti, Alok

    2014-10-01

    A novel multi-objective optimization design approach for sectored toroidal superconducting magnetic energy storage coil has been developed considering the practical engineering constraints. The objectives include the minimization of necessary superconductor length and torus overall size or volume, which determines a significant part of cost towards realization of SMES. The best trade-off between the necessary conductor length for winding and magnet overall size is achieved in the Pareto-optimal solutions, the compact magnet size leads to increase in required superconducting cable length or vice versa The final choice among Pareto optimal configurations can be done in relation to other issues such as AC loss during transient operation, stray magnetic field at outside the coil assembly, and available discharge period, which is not considered in the optimization process. The proposed design approach is adapted for a 4.5 MJ/1 MW SMES system using low temperature niobium-titanium based Rutherford type cable. Furthermore, the validity of the representative Pareto solutions is confirmed by finite-element analysis (FEA) with a reasonably acceptable accuracy.

  20. Low temperature superconducting phase of the ternary pnictide SrPd2Sb2 with CaBe2Ge2-type structure

    NASA Astrophysics Data System (ADS)

    Kase, N.; Suzuki, H.; Tsukamoto, T.; Nakano, T.; Takeda, N.

    2016-02-01

    We find that low temperature superconducting phase (LSP) of SrPd2Sb2 with the CaBe2Ge2-type structure at Tc = 1.4 K. Superconducting transition is found at Tc = 1.4 K in electrical resistivity ρ(T). Specific heat C(T) shows a clear anomaly at Tc = 1.2 K, which shows that superconductivity is of bulk nature. From ρ(T) in several magnetic fields, the upper critical field μ0Hc2(0) is estimated to be 36 mT, which is strongly suppressed, and is 16.7 times smaller than that of 1.9 K phase.

  1. Rutherford backscattering analysis of the failure of chlorine anodes

    SciTech Connect

    Tilak, B.V.; Vallet, C.E.

    1996-06-01

    Rutherford Backscattering Spectrometry, carried out at the ORNL Surface Modification And Characterization Collaborative Research Center (SMAC) facility, has been applied to the nondestructive analysis of Ru02-Ti02 electrodes of 5000A, which mimic the DSA anodes in composition and the method of preparation. Occidental Chemical Corporation provided electrodes, which had been subjected to lifetime testing in H2S04 solution, for analysis by ORNL. The results were used to test the hypothesis of degradation of these, and similar electrodes, from a process involving a decrease in the Ru02:Ti02 ratio at and near the electrode surface and the related decrease in the electrode electrical conductivity. The drop in electrode activity is closely linked to a decrease in Ru content, and the measured profiles show that the loss takes place across the thin Ru02-Ti02 coating. No buildup of a pure Ti02 layer is apparent. The data agree quantitatively with the critical concentration previously reported by ORNL for materials produced by ion implantation and characterized by Rutherford Backscattering Spectrometry and Photoacoustic Spectrometry. The study has brought a better understanding of the degradation process in electrodes of great technological importance, and has given a more solid background in designing new fabrication procedures for improved electrodes.

  2. Superconductivity in carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  3. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  4. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  5. Superconducting transistor

    DOEpatents

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  6. Is the term "type-1.5 superconductivity" warranted by Ginzburg-Landau theory?

    SciTech Connect

    Kogan, V.G.; Schmalian, J.

    2011-01-03

    It is shown that within the Ginzburg-Landau (GL) approximation the order parameters {Delta}{sub 1}(r,T) and {Delta}{sub 2}(r,T) in two-band superconductors vary on the same length scale, the difference in zero-T coherence lengths {zeta}{sub 0{nu}} {approx} {h_bar}{nu}{sub F}/{Delta}{sub {nu}}(0), {nu} = 1,2 notwithstanding. This amounts to a single physical GL parameter {kappa} and the classic GL dichotomy: {kappa} < 1/{radical}2 for type I and {kappa} > 1/{radical}2 for type II.

  7. Superconductivity at 31 K in the "111"-type iron arsenide superconductor Na[subscript 1−x] FeAs induced by pressure

    SciTech Connect

    Zhang, S.J.; Wang, X.C.; Liu, Q.Q.; Lv, Y.X.; Yu, X.H.; Lin, Z.J.; Zhao, Y.S.; Wang, L.; Ding, Y.; Mao, H.K.; Jin, C.Q.

    2010-05-25

    The effect of pressure on the superconductivity of '111'-type Na{sub 1-x}FeAs is investigated through temperature-dependent electrical-resistance measurements in a diamond anvil cell. The superconducting transition temperature (T{sub c}) increases from 26 K to a maximum of 31 K as the pressure increases from ambient pressure to 3 GPa. Further increasing pressure suppresses T{sub c} drastically. The behavior of pressure-tuned T{sub c} in Na{sub 1-x}FeAs is much different from that in Li{sub x}FeAs, although they have the same Cu{sub 2}Sb-type structure.

  8. Photoemission, Correlation and Superconductivity:

    NASA Astrophysics Data System (ADS)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  9. 77 FR 61653 - Notice of Intent To Rule on Request To Release Airport Property at the Smyrna-Rutherford County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-10

    ... Smyrna-Rutherford County Airport, Smyrna, TN AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... the release of land at the Smyrna-Rutherford County Airport, Smyrna, Tennessee. This property... review at the Smyrna--Rutherford County Airport, 278 Doug Warpoole Road, Smyrna, Tennessee 37167 and...

  10. Quench tests and FEM analysis of Nb3Al Rutherford cables and small racetrack magnets

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Chlachidze, G.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikin, V.V.; Kotelnikov, S.; Lamm, M.; Novitski, I.; /Fermilab /Tsukuba Magnet Lab. /KEK, Tsukuba

    2008-12-01

    In collaboration between NIMS and Fermilab, we have made copper stabilized Nb{sub 3}Al Rutherford cables, using Nb-matrixed and Ta-matrixed strands. First these cables were investigated at high current in low self field using a flux pump. Using these Rutherford cables, we built and tested small racetrack magnets. The magnet made with the Nb-matrixed strand showed the flux jump instability in low field. The small racetrack magnet wound with the Ta-matrixed Nb{sub 3}Al Rutherford cable was very stable at 4.5 K operation without any instability, as well as at 2.2 K operation. With the successful operation of the small racetrack magnet up to its short sample data, the feasibility of the Nb{sub 3}Al strand and its Rutherford cable for their application to high field magnets is established. The characteristics of Nb{sub 3}Al Rutherford cable is compared with that of the Nb{sub 3}Sn Rutherford cable and the advantages of Nb{sub 3}Al Rutherford cable are discussed.

  11. Identification of specific phonon contributions in BCS-type superconductivity of boride-carbide crystals with a layer-like structure

    NASA Astrophysics Data System (ADS)

    Uzunok, H. Y.; Tütüncü, H. M.; Özer, S.; Ugˇur, Ş.; Srivastava, G. P.

    2015-03-01

    We report on an ab initio study of the BCS-type superconductivity in the intermetallic borocarbides YPd2B2C, YPt2B2C and LaPt2B2C with a layer-like structure. The largest contribution to the electron-phonon coupling constant λ is identified to come from transverse acoustic phonons at a zone-edge, arising from the atomic vibrations in the boron-transition metal layer. A detailed examination of the atomic geometry in the boron-transition metal layer, the electron-phonon coupling constant λ, and the logarithmically averaged phonon frequency ωln helps explain the relatively higher superconducting temperature Tc of YPd2B2C (20.6 K) compared to that of YPt2B2C (11.3 K) and LaPt2B2C (10.40 K).

  12. Magnetic nanowire arrays in anodic alumina membranes: Rutherford backscattering characterization

    NASA Astrophysics Data System (ADS)

    Hernández-Vélez, M.; Pirota, K. R.; Pászti, F.; Navas, D.; Climent, A.; Vázquez, M.

    2005-05-01

    Systematic study of magnetic nanowire arrays grown in anodic alumina membranes (AAM) has been done by means of Rutherford backscattering spectroscopy (RBS). The AAM used as templates were morphologically characterized by using high resolution scanning electron microscopy (HRSEM), fast Fourier transform (FFT) and atomic force microscopy (AFM). The highly ordered templates with a mean pore diameter size of 30 nanometers, a mean inter-pore spacing of 100 nm and lengths ranging from 4 to 180 microns were obtained through two-steps anodization process, and the Ni and Co nanowire arrays were grown by electrodeposition techniques. The main attention is addressed to Ni nanowire arrays. RBS results allowed us to determine the real depth profile of atomic composition of the obtained nanowire arrays. In addition, the RBS spectra fitting showed that the porosity increased from the top to the bottom of the samples. Two phenomenological models are proposed to understand the apparition of that secondary porosity and a linear relation between the total amount of electrodeposited Ni and the electrodeposition time was obtained. As an example, it is also reported the relation between RBS results and magnetic properties, such as coercive field and remanence/saturation magnetization ratio of the samples. Particularly, for Ni nanowires arrays obtained by using voltage pulses, it is demonstrated that the larger the nanowires, the higher the definition for easy axis parallel to the nanowire length is possible.

  13. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    SciTech Connect

    Kugel, H.W.; Kaita, R.; Gammel, G.; Williams, M.D.

    1984-12-01

    This work describes a new in situ method for measuring the neutral particle fractions in high power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 msec, 1.6 MW, were Rutherford backscattered at 135/sup 0/ from TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with microchannel plates. Complete energy scans were made every 20 msec and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D/sup 0/(E):D/sup 0/(E/2):D/sup 0/(E/3)=53:32:15. The corresponding neutral power fractions were P/sup 0/(E):P/sup 0/(E/2):P/sup 0/(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D/sub 1//sup +/(E):D/sub 2//sup +/(E):D/sub 3//sup +/(E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full energy component in the outer regions of the beam was observed. Other possible experimental configurations and geometries are discussed.

  14. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    SciTech Connect

    Kugel, H.W.; Kaita, R.; Gammel, G.; Williams, M.D.

    1985-05-01

    This work describes a new in situ method for measuring the neutral particle fractions in high-power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 ms, 1.6 MW, were Rutherford backscattered at 135/sup 0/ from the TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with a microchannel plate. Complete energy scans were made every 20 ms and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D/sup 0/(E):D/sup 0/(E/2):D/sup 0/(E/3) = 53:32:15. The corresponding neutral power fractions were P/sup 0/(E):P/sup 0/(E/2):P/sup 0/(E/3) = 72:21:7, and the associated ionic fractions at the output of the ion source were D/sup +//sub 1/ (E):D/sup +//sub 2/ (E):D/sup +//sub 3/ (E) = 74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full-energy component in the outer regions of the beam was observed.

  15. Neutral beam species measurements using in situ Rutherford backscatter spectrometry

    NASA Astrophysics Data System (ADS)

    Kugel, H. W.; Kaita, R.; Gammel, G.; Williams, M. D.

    1985-05-01

    This work describes a new in situ method for measuring the neutral particle fractions in high-power deuterium neutral beams, used to heat magnetically confined fusion plasmas. Deuterium beams, of variable energies, pulse lengths, and powers up to 47 keV, 100 ms, 1.6 MW, were Rutherford backscattered at 135° from the TiC inner neutral beam armor of the PDX, and detected using an electrostatic analyzer with a microchannel plate. Complete energy scans were made every 20 ms and data were obtained simultaneously from five different positions across the beam profile. The neutral particle fractions were measured to be D0(E):D0(E/2):D0(E/3)=53:32:15. The corresponding neutral power fractions were P0(E):P0(E/2):P0(E/3)=72:21:7, and the associated ionic fractions at the output of the ion source were D+1 (E):D+2 (E):D+3 (E)=74:20:6. The measured neutral particle fractions were relatively constant over more than 70% of the beam power distribution. A decrease in the yield of the full-energy component in the outer regions of the beam was observed.

  16. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy

    SciTech Connect

    Hashimoto, H.; Nakajima, K.; Suzuki, M.; Kimura, K.; Sasakawa, K.

    2011-06-15

    The sensitivity (limit of detection) of high-resolution Rutherford backscattering spectroscopy (HRBS) is mainly determined by the background noise of the spectrometer. There are two major origins of the background noise in HRBS, one is the stray ions scattered from the inner wall of the vacuum chamber of the spectrometer and the other is the dark noise of the microchannel plate (MCP) detector which is commonly used as a focal plane detector of the spectrometer in HRBS. In order to reject the stray ions, several barriers are installed inside the spectrometer and a thin Mylar foil is mounted in front of the detector. The dark noise of the MCP detector is rejected by the coincidence measurement with the secondary electrons emitted from the Mylar foil upon the ion passage. After these improvements, the background noise is reduced by a factor of 200 at a maximum. The detection limit can be improved down to 10 ppm for As in Si at a measurement time of 1 h under ideal conditions.

  17. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-07-22

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  18. Superconducting Cable

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-08

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  19. Design of a 4.5 MJ/1 MW sectored toroidal superconducting energy storage magnet

    NASA Astrophysics Data System (ADS)

    Bhunia, Uttam; Akhter, Javed; Nandi, Chinmay; Pal, Gautam; Saha, Subimal

    2014-09-01

    A 4.5 MJ/1 MW superconducting magnetic energy storage (SMES) system is being developed at VECC centre, Kolkata. The magnet system consists of the cryostat and coil assembly comprising eight superconducting solenoid coils made of custom-made NbTi based Rutherford-type cable and arranged in toroidal fashion with finite inter-sector gap. Since the strong electromagnetic force distributed to the coil is asymmetric and non-uniform in nature, a precise 3-D finite element analysis (FEA) has been carried out to design a mechanically stable coil and support structure under various operational scenarios. The results reveal that maximum stress developed on coil and its support structure is below allowable stress limit. Extensive transient analysis has also been carried out to evaluate transient loss and assess the feasibility of using helium re-condensation technology with commercially available cryo-refrigerators. Finally, quench protection scenario has also been discussed suitable for this toroidal-type SMES system. The article investigates the design concept of the cryostat and coil assembly.

  20. Rutherford's Enlarged: A Content-Embedded Activity To Teach about Nature of Science.

    ERIC Educational Resources Information Center

    Abd-El-Khalick, Fouad

    2002-01-01

    Describes an activity that can be used to help middle and secondary school students develop more informed understandings of some important aspects of the nature of science in the context of teaching Rutherford's experiments and atomic structure. (Author/MM)

  1. Atomic Poetry: Using Poetry To Teach Rutherford's Discovery of the Nucleus.

    ERIC Educational Resources Information Center

    Abisdris, Gil; Casuga, Adele

    2001-01-01

    Points out how Rutherford's discovery of the nucleus changed ideas about the structure of the atom and influenced poetry. Uses Robert Frost's poems "Version" and "The Secret Sits" to teach a physical science class about atomic theory. (YDS)

  2. Big Science and its Problems:The Development of the Rutherford Appleton Laboratory

    NASA Astrophysics Data System (ADS)

    Meadows, Jack

    2012-08-01

    Research establishments have to cope with a continually changing environment. Available funding and research imperatives change with time. The question is how an establishment can remain viable throughout these changes. The Rutherford Appleton Laboratory provides an interesting case study of one establishment that has managed to survive and flourish for over fifty years despite the problems. The Rutherford Laboratory was set up in the 1950s to provide facilities for high-energy physics in the UK. By the 1970s, the need for a British accelerator had declined because of the facilities offered by CERN. The Rutherford Laboratory therefore branched out into other areas of particle physics. A major development at the end of the 1970s saw the Appleton Laboratory merged with the Rutherford Laboratory. The Appleton Laboratory had started life as an ionospheric research station. With the dawn of the space age, it became involved in satellite tracking. The growing demands of space research strained its resources and the merger with the Rutherford Laboratory was intended to strengthen its capabilities, especially in dealing with NASA. The combined Rutherford Appleton Laboratory is now the main government research establishment in physics-related areas in the UK. The joint Laboratory has proved very adaptable: the research emphasis now differs greatly from the original motivations for either component part.

  3. Superconducting Structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2005-09-13

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  4. Superconducting structure

    DOEpatents

    Kwon, Chuhee; Jia, Quanxi; Foltyn, Stephen R.

    2003-04-01

    A superconductive structure including a dielectric oxide substrate, a thin buffer layer of a superconducting material thereon; and, a layer of a rare earth-barium-copper oxide superconducting film thereon the thin layer of yttrium-barium-copper oxide, the rare earth selected from the group consisting of samarium, gadolinium, ytterbium, erbium, neodymium, dysprosium, holmium, lutetium, a combination of more than one element from the rare earth group and a combination of one or more elements from the rare earth group with yttrium, the buffer layer of superconducting material characterized as having chemical and structural compatibility with the dielectric oxide substrate and the rare earth-barium-copper oxide superconducting film is provided.

  5. Reduce Nb3Sn Strand Deformation when Fabricating High Jc Rutherford Cables

    SciTech Connect

    Peng, Xuan

    2012-12-17

    During Phase I, our efforts were to reduce subelements deformation when fabricating Nb3Sn Rutherford cables. Our first focus is on 217-sublement tube type strand. We successfully made a few billets in OD tube with different Cu spacing between subelements, and supplied the strands to Fermi Lab for cabling. Through the rolling test characterization, these types of strands did not have enough bonding between subelements to withstand the deformation. We saw copper cracking between subelements in the deformed strands. We scaled up the billet from OD to 1.5 OD, and made two billets. This greatly improves the bonding. There is no copper cracking in the deformed strands when we scaled up the diameter of the billets. Fermi Lab successfully made cables using one of this improved strands. In their cables, no Cu cracking and no filament bridging occurred. We also successfully made a couple of billets with hex OD and round ID subelements for 61-subelement restack. Due to the lack of bonding, we could not judge its cabling property properly. But we know through this experiment, we could keep the Nb round, once we select the proper Cu spacing.

  6. Method and apparatus for making multistrand superconducting cable

    DOEpatents

    Royet, John M.; Armer, Rollin A.

    1990-01-01

    Improved multistrand Rutherford-type superconducting cable (42) is produced in a flattened form with two layers of helically wound strands (33) and in which the strands are alternately twisted about their lengths equally and in opposite directions to provide a flat cable with improved stability. In particular, the cable (42) is made by guiding multifilament wire strands (33) from spools (32) on a rotating turret (11) to a fixed tapered forming mandrel (22) where they are wound diagonally around the mandrel and then rolled into a flattened shape. The spools (32) are located around the periphery of the turret and are rotatable about axes in a plane parallel to the turret (11) to unroll the wire. Sprocket assemblies (48 and 49) are driven by drive chains (68 and 76) to rotate alternate spools (32) equally and in opposite directions relative to the forming mandrel (22) so that the wire strands (33) are twisted prior to being wound on the mandrel (22). The rate of rotation of the spools (32) in one direction is different than the rate of rotation of the spools (32) in the opposite direction to compensate for the rate of rotation of the turret (11) so that all strands (33) have the same degree of twist about their lengths.

  7. Bipolaronic superconductivity

    NASA Astrophysics Data System (ADS)

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose systems. They represent an example of the "molecular" superconductivity proposed by Schafroth, Butler, and Blatt

    [Helv. Phys. Acta 30 93 (1957)]
    . The Meissner effect and the penetration depth of bipolaronic superconductors are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  8. Bipolaronic superconductivity

    SciTech Connect

    Alexandrov, A.; Ranninger, J.

    1981-08-01

    Superconducting properties of narrow-band electrons are examined in the strong-coupling limit. It is shown that bipolarons (localized spatially nonoverlapping Cooper pairs) formed by strong electron-phonon interaction have under certain conditions superconducting properties which are characteristic of superfluid charged Bose system. They represent an example of the ''molecular'' superconductivity proposed by Schafroth, Butler, and Blatt. The Meissner effect and the penetration depth of bipolaronic superconductor are examined. The relationship between Bardeen-Cooper-Schrieffer superconductors and bipolaronic ones is discussed.

  9. Construction of a 25-T cryogen-free superconducting magnet

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Awaji, S.; Oguro, H.; Tsuchiya, Y.; Hanai, S.; Miyazaki, H.; Tosaka, T.; Takahashi, M.; Ioka, S.

    2014-12-01

    The construction of a 25-T cryogen-free superconducting magnet (25T-CSM) has started in 2013 at the High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University. The 25T-CSM consists of a low-T superconducting (LTS) coil and a high-Tc superconducting (HTS) coil. A high-strength CuNb/Nb3Sn Rutherford cable with the reinforcing stabilizer CuNb composite is adopted for the middle LTS section coil. The characteristic feature of the new technology using a CuNb/Nb3Sn Rutherford cable is a react-and-wind method for the coil-winding process. The LTS coil of 300-mm winding inner diameter is fabricated, and a central magnetic field of 14 T is generated at an operation current of 851 A. The HTS insert coil wound with GdBa2Cu3Oy (Gd123) tape has a 52-mm experimental room temperature bore, and a central magnetic field of 25.5 T will be generated at an operation current of 150 A in a background field of 14 T.

  10. Type-I superconductor pick-up coil in superconducting quantum interference device-based ultra-low field nuclear magnetic resonance

    SciTech Connect

    Hwang, Seong-min Kim, Kiwoong; Kyu Yu, Kwon; Lee, Seong-Joo; Hyun Shim, Jeong; Körber, Rainer; Burghoff, Martin

    2014-02-10

    In ultra-low field nuclear magnetic resonance (ULF-NMR) with strong prepolarization field (B{sub p}), type-II superconducting pick-up coils may be vulnerable to flux pinning from the strong B{sub p}. Pick-up coils made of NbTi, Nb, and Pb were evaluated in terms of acquired NMR signal quality. The type-II pick-up coils showed degraded signals above 61 mT maximum exposure, while the Pb pick-up coil exhibited no such degradation. Furthermore, a negative counter pulse following a strong B{sub p} was shown to follow magnetic hysteresis loop to unpin the trapped flux in the type-II pick-up coil and restore the NMR signal.

  11. Superconductivity in Opal-based superconducting nanocomposites

    NASA Astrophysics Data System (ADS)

    Lee, M. K.; Charnaya, E. V.; Chang, L. J.; Kumzerov, Yu. A.; Lin, M. F.

    2015-03-01

    In this study, we investigate superconducting nanocomposites (SCNCs) to elucidate superconductivity in nanostructured type I superconductor. In, Sn and Hg are loaded into opal matrices by high pressure up to 10kbar, in which introducing superconducting metals into templates preserves their own 3D nanostructures. The opal matrices is adopted because it is a well-developed nanoconfinement and widely used in the studies of photonic crystal due to its periodically-superlatticed nanoporous structure. The SCNCs are then measured by Quantum Design MPMS 3 under different external magnetic fields reveal the field dependences of Tc and irreversibility temperature (Tirr). Next, AC susceptibility measurements of SCNCs determine grain coupling, vortex dynamics and field dependence of activation barrier (Ua) as well as Tc. Additionally, the phase diagrams of these SCNCs are analyzed to study superconductivity for a system with similar nanogeometry. Exotic phase diagrams in the opal SCNC studies reveal an enhanced upper critical field (Hc2 (0)) and curvature crossover of upper critical field line. Additionally, according to the field dependence of Ua(H), curvature crossover of the upper critical field line can occur, owing to vortex phase transition.

  12. AlPd15B7: a new superconducting cage-compound with an anti-Yb3Rh4Sn13-type of structure.

    PubMed

    Zheng, Qiang; Schnelle, Walter; Prots, Yurii; Bobnar, Matej; Burkhardt, Ulrich; Leithe-Jasper, Andreas; Gumeniuk, Roman

    2016-03-01

    A new intermetallic compound AlPd15B7 was synthesized by arc-melting the stoichiometric mixture of the elements. Single crystal X-ray diffraction data of ternary metal-rich boride reveal a new type of structure with the space group Ia3d and the lattice parameter a = 16.4466(3) Å. It adopts a filled anti-Yb3Rh4Sn13-type structure, where the positions corresponding to 3Yb, 4Rh and 13Sn atoms are occupied by 3Pd, 4B, and 1Al + 12 Pd, respectively and 3B additionally at interstitial sites. Magnetic susceptibility, electrical resistivity, and specific heat measurements reveal bulk superconductivity with a critical temperature Tc ≈ 2.9 K. Electronic structure calculations show that Pd 4d and B 2p states dominate the density of states (DOS) at the Fermi level EF. PMID:26831121

  13. Electrodynamic stabilization conditions for high-temperature superconducting composites with different types of current-voltage characteristic nonlinearity

    NASA Astrophysics Data System (ADS)

    Arkharov, A. M.; Lavrov, N. A.; Romanovskii, V. R.

    2014-06-01

    The current instability is studied in high-temperature superconducting current-carrying elements with I- V characteristics described by power or exponential equations. Stability analysis of the macroscopic states is carried out in terms of a stationary zero-dimensional model. In linear temperature approximation criteria are derived that allow one to find the maximum allowable values of the induced current, induced electric field intensity, and overheating of the superconductor. A condition is formulated for the complete thermal stabilization of the superconducting composite with regard to the nonlinearity of its I- V characteristic. It is shown that both subcritical and supercritical stable states may arise. In the latter case, the current and electric field intensity are higher than the preset critical parameters of the superconductor. Conditions for these states depending on the properties of the matrix, superconductor's critical current, fill factor, and nonlinearity of the I- V characteristic are discussed. The obtained results considerably augment the class of allowable states for high-temperature superconductors: it is demonstrated that there exist stable resistive conditions from which superconductors cannot pass to the normal state even if the parameters of these conditions are supercritical.

  14. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron pnictide single crystals

    SciTech Connect

    Lu, Xin; Park, W. K.; Yuan, H. Q.; Chen, G. F,; Luo, G. L.; Wang, N. L.; Sefat, A. S.; McGuire, Michael A; Jin, R.; Sales, Brian C; Mandrus, David; Gillett, J; Sebastian, Suchitra; Greene, L. H.

    2010-01-01

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe{sub 2}As{sub 2} (A = Ba, Sr) family (Fe-122). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} and Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, and the other with a V{sup 2/3} background conductance universally observed, extending even up to 100 meV for Sr{sub 0.6}Na{sub 0.4}Fe{sub 2}As{sub 2} and Sr(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe{sub 2}As{sub 2} and superconducting (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder-Tinkham-Klapwijk model, the data show a gap size of {approx} 3.0-4.0 meV with 2{Delta}{sub 0}/k{sub B}T{sub c} {approx} 2.0-2.6, consistent with the smaller gap size reported for the LnFeAsO family (Fe-1111). For the Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, the G(V) curves typically display a zero-bias conductance peak.

  15. Point-contact spectroscopic studies on normal and superconducting AFe2As2-type iron-pnictide single crystals

    SciTech Connect

    Lu, Xin; Park, W.K.; Yuan, H.Q.; Chen, G.F.; Luo, G.L.; Wang, N.L.; Sefat, A.S.; McGuire, M.A.; Jin, R.; Sales, B.C.; Mandrus, D.; Gillett, J.; Sebastian, Suchitra E.; Greene, L.H.

    2010-04-23

    Point-contact Andreev reflection spectroscopy is applied to investigate the gap structure in iron pnictide single-crystal superconductors of the AFe{sub 2}As{sub 2} (A = Ba, Sr) family ('Fe-122'). The observed point-contact junction conductance curves, G(V), can be divided into two categories: one where Andreev reflection is present for both (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} and Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, and the other with a V{sup 2/3} background conductance universally observed, extending even up to 100 meV for Sr{sub 0.6}Na{sub 0.4}Fe{sub 2}As{sub 2} and Sr(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}. The latter is also observed in point-contact junctions on the nonsuperconducting parent compound BaFe{sub 2}As{sub 2} and superconducting (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2} crystals. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors in the superconducting samples. For Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, double peaks due to Andreev reflection with a strongly sloping background are frequently observed for point contacts on freshly cleaved c-axis surfaces. If normalized using a background baseline and analyzed using the Blonder–Tinkham–Klapwijk model, the data show a gap size of ~ 3.0–4.0 meV with 2Δ{sub 0}/k{sub B}T{sub c} ~ 2.0–2.6, consistent with the smaller gap size reported for the LnFeAsO family ('Fe-1111'). For the Ba(Fe{sub 0.9}Co{sub 0.1}){sub 2}As{sub 2}, the G(V) curves typically display a zero-bias conductance peak.

  16. Development of Aluminum Stabilized Superconducting Cables for the Mu2e Detector Solenoid

    SciTech Connect

    Lombardo, Vito; Buehler, M.; Lamm, M.; Page, T.; Curreli, S.; Fabbricatore, P.; Musenich, R.

    2015-10-16

    The Mu2e experiment at Fermilab is designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to an aluminum stopping target, while minimizing the associated background. The Detector Solenoid (DS) is the last magnet in the transport line and its main functions are to provide a graded field in the region of the stopping target as well as a precision magnetic field in a volume large enough to house the tracker downstream of the stopping target. The Detector Solenoid coils are designed to be wound using NbTi Rutherford cables conformed in high purity aluminum for stabilization and then cold-worked for strength. Two types of Al-stabilized conductor are required to build the DS coils, one for the gradient section and one for the spectrometer section of the solenoid. The dimensions are optimized to generate the required field profile when the same current is transported in both conductors. The conductors contain NbTi Rutherford cables with 12 (DS1) and 8 (DS2) strands respectively and are manufactured by two different vendors. This paper describes the results of the manufacturing of production lengths of the Al-stabilized cables needed to build the Mu2e Detector Solenoid as well as the testing campaigns and main results. The main cable properties and results of electrical and mechanical tests are summarized and discussed for each stage of the cable development process. Results are compared to design values to show how the production cables satisfy all the design criteria starting from the NbTi wires to the Al-stabilized cables.

  17. Development of aluminum-stabilized superconducting cables for the Mu2e detector solenoid

    DOE PAGES

    Lombardo, Vito; Buehler, M.; Lamm, M.; Page, T.; Curreli, S.; Fabbricatore, P.; Musenich, R.

    2016-06-01

    Here, the Mu2e experiment at Fermilab is designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to an aluminum stopping target, while minimizing the associated background. The Detector Solenoid (DS) is the last magnet in the transport line and its main functions are to provide a graded field in the region of the stopping target as well as a precision magnetic field in a volume large enough to house the tracker downstream ofmore » the stopping target. The Detector Solenoid coils are designed to be wound using NbTi Rutherford cables conformed in high purity aluminum for stabilization and then cold-worked for strength. Two types of Al-stabilized conductor are required to build the DS coils, one for the gradient section and one for the spectrometer section of the solenoid. The dimensions are optimized to generate the required field profile when the same current is transported in both conductors. The conductors contain NbTi Rutherford cables with 12 (DS1) and 8 (DS2) strands respectively and are manufactured by two different vendors. This paper describes the results of the manufacturing of production lengths of the Al-stabilized cables needed to build the Mu2e Detector Solenoid as well as the testing campaigns and main results. The main cable properties and results of electrical and mechanical tests are summarized and discussed for each stage of the cable development process. Results are compared to design values to show how the production cables satisfy all the design criteria starting from the NbTi wires to the Al-stabilized cables.« less

  18. Development of Aluminum Stabilized Superconducting Cables for the Mu2e Detector Solenoid

    SciTech Connect

    Lombardo, Vito; Buehler, M.; Lamm, M.; Page, T.; Curreli, S.; Fabbricatore, P.; Musenich, R.

    2016-01-01

    The Mu2e experiment at Fermilab is designed to measure the rare process of direct muon-to-electron conversion in the field of a nucleus. The experiment comprises a system of three superconducting solenoids, which focus secondary muons from the production target and transport them to an aluminum stopping target, while minimizing the associated background. The Detector Solenoid (DS) is the last magnet in the transport line and its main functions are to provide a graded field in the region of the stopping target as well as a precision magnetic field in a volume large enough to house the tracker downstream of the stopping target. The Detector Solenoid coils are designed to be wound using NbTi Rutherford cables conformed in high purity aluminum for stabilization and then cold-worked for strength. Two types of Al-stabilized conductor are required to build the DS coils, one for the gradient section and one for the spectrometer section of the solenoid. The dimensions are optimized to generate the required field profile when the same current is transported in both conductors. The conductors contain NbTi Rutherford cables with 12 (DS1) and 8 (DS2) strands respectively and are manufactured by two different vendors. This paper describes the results of the manufacturing of production lengths of the Al-stabilized cables needed to build the Mu2e Detector Solenoid as well as the testing campaigns and main results. The main cable properties and results of electrical and mechanical tests are summarized and discussed for each stage of the cable development process. Results are compared to design values to show how the production cables satisfy all the design criteria starting from the NbTi wires to the Al-stabilized cables.

  19. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    SciTech Connect

    Lawrie, Scott R.; Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor

    2015-04-08

    In order to facilitate the testing of advanced H{sup −} ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H{sup −} ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H{sup −} production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H{sup −} source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  20. First beam measurements on the vessel for extraction and source plasma analyses (VESPA) at the Rutherford Appleton Laboratory (RAL)

    NASA Astrophysics Data System (ADS)

    Lawrie, Scott R.; Faircloth, Daniel C.; Letchford, Alan P.; Perkins, Mike; Whitehead, Mark O.; Wood, Trevor

    2015-04-01

    In order to facilitate the testing of advanced H- ion sources for the ISIS and Front End Test Stand (FETS) facilities at the Rutherford Appleton Laboratory (RAL), a Vessel for Extraction and Source Plasma Analyses (VESPA) has been constructed. This will perform the first detailed plasma measurements on the ISIS Penning-type H- ion source using emission spectroscopic techniques. In addition, the 30-year-old extraction optics are re-designed from the ground up in order to fully transport the beam. Using multiple beam and plasma diagnostics devices, the ultimate aim is improve H- production efficiency and subsequent transport for either long-term ISIS user operations or high power FETS requirements. The VESPA will also accommodate and test a new scaled-up Penning H- source design. This paper details the VESPA design, construction and commissioning, as well as initial beam and spectroscopy results.

  1. A feasibility study of full-bridge type superconducting fault current controller on electric machine power stability

    NASA Astrophysics Data System (ADS)

    Jang, J. Y.; Hwang, Y. J.; Lee, J.; Ko, T. K.

    2016-02-01

    Recently, because of the advent of Smart Grid and integration of distributed generations, electrical power grids are facing uncountable challenges. Increase of fault current is one of such serious challenges and there are some fault current limiters (FCLs) that can limit the fault current. Existing grid protection FCLs, however, simply limit the fault current passively and can allow the existing protection coordination schemes to fail. This phenomenon leads to catastrophic failure in the complex system and may cause unpredictable power grid operation. Unlike a FCL, a superconducting fault current controller (SFCC) employs a full-bridge thyristor rectifier, a high temperature superconducting (HTS) DC reactor, and an embedded control unit to maintain the fault current level at a proper value by adjusting the phase angle of thyristors. This paper contains experimental and numerical analysis to design and fabricate a SFCC system for protection and stability improvement in power grids. At first, fundamental characteristics of a SFCC system were introduced. System circuit diagram and operational principles were proposed. Secondly, the developed small-scale SFCC system was introduced and verified. A 40 Vrms/30 Arms class prototype SFCC employing HTS DC reactor was fabricated and short circuit tests that simulate various fault conditions were implemented to verify the control performance of the fault current. Finally, the practical feasibility of application of the SFCC system to the power system was studied. The problems caused by three-phase faults from the power grid were surveyed and transient stability analysis of the power system was conducted by simulations. From the experimental and simulation results, we can verify the feasibility of the SFCC in power system.

  2. Superconducting multipole corrector magnet

    SciTech Connect

    Kashikhin, Vladimir; /Fermilab

    2004-10-01

    A novel concept of superconducting multipole corrector magnet is discussed. This magnet assembled from 12 identical racetrack type coils and can generate any combination of dipole, quadrupole and sextupole magnetic fields. The coil groups are powered from separate power supplies. In the case of normal dipole, quadrupole and sextupole fields the total field is symmetrical relatively the magnet median plane and there are only five powered separately coil groups. This type multipole corrector magnet was proposed for BTeV, Fermilab project and has following advantages: universal configuration, simple manufacturing and high mechanical stability. The results of magnetic design including the field quality and magnetic forces in comparison with known shell type superconducting correctors are presented.

  3. A Strange Box and a Stubborn Brit: Rutherford's Experiments with Alpha Particles.

    ERIC Educational Resources Information Center

    Digilov, M.

    1991-01-01

    Discusses 5 innovative experiments conducted by Rutherford in early 1900s utilizing the 30 milligrams of radium salt he personally carried from Europe to Canada in 1903. Traces his work with alpha particles from his original results which determined their nature, charge, and mass, to his technique of backscattering which helped to advance…

  4. S.T.E.P. in Bay County. The Rutherford Project.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Office of Environment Education.

    This document presents an explanation, illustration, and evaluation of a Students Toward Environmental Participation (S.T.E.P.) Project at Rutherford High School in Bay County, Florida. The main objective of this S.T.E.P. Project was to train high school students to teach environmental awareness activities to elementary students. This booklet…

  5. Rutherford B. Hayes Presidential Center Library and Archives: Patron Use of Collections and Services.

    ERIC Educational Resources Information Center

    Grove, Myrna J.

    The Rutherford B. Hayes Library opened in 1916, when the building in Fremont, Ohio was dedicated as the first presidential library and museum. The library's original purpose was to preserve the 12,000 volume personal library of President Hayes along with archival material from his careers in law, the military, and politics. This was a radical idea…

  6. Substance Abuse among Health-Care Professionals in Rutherford and Surrounding Counties.

    ERIC Educational Resources Information Center

    Edwards, Sherri Reid; Heritage, Jeannette G.

    Drug abuse is a serious problem in today's work force. It is found in every occupation, from the entry-level employee to the chief executive officer. Among health care professionals alcohol is the number-one substance abused, prescription drugs are second, and cocaine is third. Substance abuse among health-care professionals in Rutherford,…

  7. Physics for Teachers: Understanding Physics: David Cassidy, Gerald Holton, & James Rutherford

    NASA Astrophysics Data System (ADS)

    Hubisz, John L.

    2009-11-01

    Physics for Teachers: Understanding Physics, by David Cassidy, Gerald Holton, & James Rutherford and published by Springer Verlag, New York, NY 10010 (2002), pp. xxiii + 851 80.00 hardback. ISBN 0-387-98756-8. Student Guide & Instructor Guide are also available. The text and Instructor Guide are available online at http://www.dcassidybooks.com/up.html

  8. Turning Plastic into Gold: An Analogy to Demonstrate The Rutherford Gold Foil Experiment

    ERIC Educational Resources Information Center

    Gregory, Robert B.

    2007-01-01

    The Rutherford-Geiger-Marsden gold foil experiment is demonstrated to give students a useful mental image of the concept or principle of chemistry. The experiment shows students that in a short time one unexpected result can change the way science looks at the world.

  9. Superconducting materials

    SciTech Connect

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La{sub 2-x}Sr{sub x}CuO{sub 4}; source of high transition temperatures; and prospects for new superconductors.

  10. Superconducting Microelectronics.

    ERIC Educational Resources Information Center

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  11. Superconducting magnets

    SciTech Connect

    Not Available

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-{Tc} superconductor at low temperature.

  12. Crystal growth by the TSFZ method and superconducting properties of the tetragonal 1-2-3 type cuprates

    SciTech Connect

    Noji, T.; Akagawa, H.; Iokawa, T.; Ono, Y.; Koike, Y.

    1999-11-01

    Single crystals of Ca{sub 0.5}La{sub 1.25}Ba{sub 1.25}Cu{sub 3}O{sub y} and NdBaSrCu{sub 3}O{sub y} with the dimensions of the order of 1x1x0.5 mm{sup 3} have been drown by the traveling-solvent floating zone method. As-grown single-crystals are tetragonal and non-superconducting. Through the annealing in oxygen, single crystals of Ca{sub 0.5}La{sub 1.25}Ba{sub 1.25}Cu{sub 3}O{sub y} have become superconductors with {Tc} = 55--65 K, keeping the tetragonal structure. On the other hand, single crystals of NdBaSrCu{sub 3}O{sub y} have changed from tetragonal to orthorhombic through the annealing in oxygen, though they have become superconductors with {Tc} = 55 K.

  13. A current limiter with superconducting coil for magnetic field shielding

    NASA Astrophysics Data System (ADS)

    Kaiho, K.; Yamaguchi, H.; Arai, K.; Umeda, M.; Yamaguchi, M.; Kataoka, T.

    2001-05-01

    The magnetic shield type superconducting fault current limiter have been built and successfully tested in ABB corporate research and so on. The device is essentially a transformer in which the secondary winding is the superconducting tube. However, due to the large AC losses and brittleness of the superconducting bulk tube, they have not yet entered market. A current limiter with superconducting coil for the magnetic field shielding is considered. By using the superconducting coil made by the multi-filamentary high Tc superconductor instead of the superconducting bulk tube, the AC losses can be reduced due to the reduced superconductor thickness and the brittleness of the bulk tube can be avoidable. This paper presents a preliminary consideration of the magnetic shield type superconducting fault current limiter with superconducting coil as secondary winding and their AC losses in comparison to that of superconducting bulk in 50 Hz operation.

  14. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  15. Helical superconducting black holes.

    PubMed

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  16. Color superconductivity

    SciTech Connect

    Wilczek, F.

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  17. SUPERCONDUCTING PHOTOCATHODES.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  18. Superconductivity from Emerging Magnetic Moments.

    PubMed

    Hoshino, Shintaro; Werner, Philipp

    2015-12-11

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649

  19. Superconductivity from Emerging Magnetic Moments

    NASA Astrophysics Data System (ADS)

    Hoshino, Shintaro; Werner, Philipp

    2015-12-01

    Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.

  20. Superconducting magnet

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  1. Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na(1-x)FeAs.

    PubMed

    Liu, Qingqing; Yu, Xiaohui; Wang, Xiancheng; Deng, Zheng; Lv, Yuxi; Zhu, Jinlong; Zhang, Sijia; Liu, Haozhe; Yang, Wenge; Wang, Lin; Mao, Hokwang; Shen, Guoyin; Lu, Zhong-Yi; Ren, Yang; Chen, Zhiqiang; Lin, Zhijun; Zhao, Yusheng; Jin, Changqing

    2011-05-25

    The effect of pressure on the crystalline structure and superconducting transition temperature (T(c)) of the 111-type Na(1-x)FeAs system using in situ high-pressure synchrotron X-ray powder diffraction and diamond anvil cell techniques is studied. A pressure-induced tetragonal to tetragonal isostructural phase transition was found. The systematic evolution of the FeAs(4) tetrahedron as a function of pressure based on Rietveld refinements on the powder X-ray diffraction patterns was obtained. The nonmonotonic T(c)(P) behavior of Na(1-x)FeAs is found to correlate with the anomalies of the distance between the anion (As) and the iron layer as well as the bond angle of As-Fe-As for the two tetragonal phases. This behavior provides the key structural information in understanding the origin of the pressure dependence of T(c) for 111-type iron pnictide superconductors. A pressure-induced structural phase transition is also observed at 20 GPa.

  2. Pressure-induced isostructural phase transition and correlation of FeAs coordination with the superconducting properties of 111-type Na

    SciTech Connect

    Liu, Qingqing; Yu, Xiaohui; Wang, Xiancheng; Deng, Zheng; Lv, Yuxi; Zhu, Jinlong; Zhang, Sijia; Liu, Haozhe; Yang, Wenge; Wang, Lin; Mao, Hokwang; Shen, Guoyin; Lu, Zhong-Yi; Ren, Yang; Chen, Zhiqiang; Lin, Zhijun; Zhao, Yusheng; Jin, Changqing

    2011-05-25

    The effect of pressure on the crystalline structure and superconducting transition temperature (T{sub c}) of the 111-type Na{sub 1–x}FeAs system using in situ high-pressure synchrotron X-ray powder diffraction and diamond anvil cell techniques is studied. A pressure-induced tetragonal to tetragonal isostructural phase transition was found. The systematic evolution of the FeAs{sub 4} tetrahedron as a function of pressure based on Rietveld refinements on the powder X-ray diffraction patterns was obtained. The nonmonotonic T{sub c}(P) behavior of Na{sub 1–x}FeAs is found to correlate with the anomalies of the distance between the anion (As) and the iron layer as well as the bond angle of As–Fe–As for the two tetragonal phases. This behavior provides the key structural information in understanding the origin of the pressure dependence of T{sub c} for 111-type iron pnictide superconductors. A pressure-induced structural phase transition is also observed at 20 GPa.

  3. Superconductivity in Hole-Doped La1.8-xEu0.2CaxCuO4 with the Nd2CuO4-Type Structure

    NASA Astrophysics Data System (ADS)

    Takamatsu, Tomohisa; Kato, Masatsune; Noji, Takashi; Koike, Yoji

    We have succeeded in synthesizing hole-doped bulk superconductors of La1.8-xEu0.2CaxCuO4 (x = 0.05 and 0.10) with the Nd2CuO4-type structure by means of the structural transformation at low temperatures from the K2NiF4-type structure via the Nd4Cu2O7-type structure. Superconductivity has appeared through the removal of excess oxygen by the reduction annealing in vacuum. Values of the superconducting transition temperature, Tc, are 13 and 6 K for x = 0.05 and 0.10, respectively. These values are smaller than those of T'-La1.8-xEu0.2SrxCuO4.

  4. Rutherford Backscattering Spectrometry Channeling Study of Ion-Irradiated 6H-SiC

    SciTech Connect

    Jiang, Weilin; Weber, William J.; Thevuthasan, Suntharampillai; McCready, David E.

    1999-04-01

    Studies damage accumulation and defect annealing (up to 1170 K) using in-situ 2.0 MeV He Rutherford Backscattering Spectrometry combined with ion channeling methods. Observes that the defect concentration at the damage peak increases sigmoidally with increasing ion fluence during irradiation at low temperatures and that the isochronal recovery of the damage induced at low temperatures follows an exponential dependence on temperature.

  5. High-field superconducting nested coil magnet

    NASA Technical Reports Server (NTRS)

    Laverick, C.; Lobell, G. M.

    1970-01-01

    Superconducting magnet, employed in conjunction with five types of superconducting cables in a nested solenoid configuration, produces total, central magnetic field strengths approaching 70 kG. The multiple coils permit maximum information on cable characteristics to be gathered from one test.

  6. Sinkhole flooding in Murfreesboro, Rutherford County, Tennessee, 2001-02

    USGS Publications Warehouse

    Bradley, Michael W.; Hileman, Gregg Edward

    2006-01-01

    The U.S. Geological Survey, in cooperation with the City of Murfreesboro, Tennessee, conducted an investigation from January 2001 through April 2002 to delineate sinkholes and sinkhole watersheds in the Murfreesboro area and to characterize the hydrologic response of sinkholes to major rainfall events. Terrain analysis was used to define sinkholes and delineate the sinkhole drainage areas. Flooding in 78 sinkholes in three focus areas was identified and tracked using aerial photography following three major storms in February 2001, January 2002, and March 2002. The three focus areas are located to the east, north, and northwest of Murfreesboro and are underlain primarily by the Ridley Limestone with some outcrops of the underlying Pierce Limestone. The observed sinkhole flooding is controlled by water inflow, water outflow, and the degree of the hydraulic connection (connectivity) to a ground-water conduit system. The observed sinkholes in the focus areas are grouped into three categories based on the sinkhole morphology and the connectivity to the ground-water system as indicated by their response to flooding. The three types of sinkholes described for these focus areas are pan sinkholes with low connectivity, deep sinkholes with high connectivity, and deep sinkholes with low connectivity to the ground-water conduit system. Shallow, broad pan sinkholes flood as water inflow from a storm inundates the depression at land surface. Water overflow from one pan sinkhole can flow downgradient and become inflow to a sinkhole at a lower altitude. Land-surface modifications that direct more water into a pan sinkhole could increase peak-flood altitudes and extend flood durations. Land-surface modifications that increase the outflow by overland drainage could decrease the flood durations. Road construction or alterations that reduce flow within or between pan sinkholes could result in increased flood durations. Flood levels and durations in the deeper sinkholes observed in

  7. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  8. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  9. Novel Flux Matching Effects in Potentially Type-I Superconducting Au/Pb Bilayers Patterned with Antidot Lattices

    NASA Astrophysics Data System (ADS)

    de Long, Lance; Kryukov, Sergiy; Metlushko, Vitali

    2007-03-01

    We report AC and DC SQUID magnetometer data for Au(25nm)/Pb(x) bilayers (x = 50, 100 nm) patterned with square antidot (AD) lattices having AD diameter D = 600 nm and AD separation d = 1 micron, in DC magnetic fields applied perpendicular to the film plane. Both AC and DC data for x = 100 nm samples exhibit a ``two-horned'' magnetization m(H) well below TC, with small, sharp cusps having DC field spacings near 3 Oe. Just below TC = 6.2 K, m(H) is highly reversible, and exhibits at least two matching fields Hn = (20 Oe)n. This striking behavior is compared with recent theoretical models for flux matching in patterned films in the Type-I intermediate state, for which formation of ``giant vortices'' or pinning of normal domains by AD are possible. In contrast, data for x = 50 nm samples exhibit smooth (no small cusps) m(H) behavior with sharp matching peaks and highly irreversible behavior just below TC, typical of extensively studied, Type-II patterned films.

  10. Superconducting cable

    SciTech Connect

    Benz, H.

    1983-03-22

    A superconducting cable containing a plurality of individual wires which are stranded or plaited to wire bundles and ropes, wherein in order to avoid relative movement and/or deformation between the wire bundles and/or ropes as, for example, may otherwise be caused by high current loading, the individual wire bundles and the ropes are materially joined together at their points of contact, preferably by soldering, to form a mechanically rigid structure, in which the parts between the soldered areas can as well as possible deform elastically, thereby avoiding all disadvantages associated with freely movable wire bundles. In a preferred embodiment, the ropes are made from wire bundles arranged in a lattice.

  11. Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application

    SciTech Connect

    Yamada, R.; Kikuchi, A.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Takeuchi, T.; Tartaglia, M.; Turrioni, D.; Verweij, A.P.; Wake, M.; Willering, G; Zlobin, A.V.; /Fermilab

    2006-08-01

    Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

  12. High field superconducting magnets

    NASA Technical Reports Server (NTRS)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  13. Study of cerium diffusion in undoped lithium-6 enriched glass with Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.

    2016-07-01

    Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.

  14. Superconductivity by rare earth doping in the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) with RE=Y, La-Nd, Sm-Lu

    NASA Astrophysics Data System (ADS)

    Stürzer, Tobias; Derondeau, Gerald; Bertschler, Eva-Maria; Johrendt, Dirk

    2015-01-01

    We report superconductivity in polycrystalline samples of the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) up to Tc=35 K with RE=Y, La-Nd, Sm, Gd-Lu. The critical temperatures are nearly independent of the trivalent rare earth element used, yielding a common Tc(xRE) phase diagram for electron doping in all these systems. The absence of superconductivity in Eu2+ doped samples, as well as the close resemblance of (Ca1-xREx) 10(FeAs)10(Pt3As8) to the 1048 compound substantiate that the electron doping scenario in the RE-1038 and 1048 phases is analogous to other iron-based superconductors with simpler crystal structures.

  15. Scaling of divertor power footprint width in RF-heated type-III ELMy H-mode on the EAST superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Wang, L.; Guo, H. Y.; Xu, G. S.; Liu, S. C.; Gan, K. F.; Wang, H. Q.; Gong, X. Z.; Liang, Y.; Zou, X. L.; Hu, J. S.; Chen, L.; Xu, J. C.; Liu, J. B.; Yan, N.; Zhang, W.; Chen, R.; Shao, L. M.; Ding, S.; Hu, G. H.; Feng, W.; Zhao, N.; Xiang, L. Y.; Liu, Y. L.; Li, Y. L.; Sang, C. F.; Sun, J. Z.; Wang, D. Z.; Ding, H. B.; Luo, G. N.; Chen, J. L.; Gao, X.; Hu, L. Q.; Wan, B. N.; Li, J.; the EAST Team

    2014-11-01

    Dedicated experiments for the scaling of divertor power footprint width have been performed in the ITER-relevant radio-frequency (RF)-heated H-mode scheme under the lower single null, double null and upper single null divertor configurations in the Experimental Advanced Superconducting Tokamak (EAST) under lithium wall coating conditioning. A strong inverse scaling of the edge localized mode (ELM)-averaged power fall-off width with the plasma current (equivalently the poloidal field) has been demonstrated for the attached type-III ELMy H-mode as λq \\propto Ip-1.05 by various heat flux diagnostics including the divertor Langmuir probes (LPs), infra-red (IR) thermograph and reciprocating LPs on the low-field side. The IR camera and divertor LP measurements show that λq,IR ≈ {λq,div{-LPs}}/{1.3}=1.15Bp,omp-1.25 , in good agreement with the multi-machine scaling trend during the inter-ELM phase between type-I ELMs or ELM-free enhanced Dα (EDA). H-mode. However, the magnitude is nearly doubled, which may be attributed to the different operation scenarios or heating schemes in EAST, i.e., dominated by electron heating. It is also shown that the type-III ELMs only broaden the power fall-off width slightly, and the ELM-averaged width is representative for the inter-ELM period. Furthermore, the inverse Ip (Bp) scaling appears to be independent of the divertor configurations in EAST. The divertor power footprint integral width, fall-off width and dissipation width derived from EAST IR camera measurements follow the relation, λint ≅ λq + 1.64S, yielding λ_intEAST =(1.39+/- 0.03)λqEAST +(0.97+/- 0.35) mm . Detailed analysis of these three characteristic widths was carried out to shed more light on their extrapolation to ITER.

  16. STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS

    SciTech Connect

    TRANQUADA, J.M.

    2005-08-22

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  17. Superconducting magnet

    DOEpatents

    Satti, John A.

    1980-01-01

    A superconducting magnet designed to produce magnetic flux densities of the order of 4 to 5 Webers per square meter is constructed by first forming a cable of a plurality of matrixed superconductor wires with each wire of the plurality insulated from each other one. The cable is shaped into a rectangular cross-section and is wound with tape in an open spiral to create cooling channels. Coils are wound in a calculated pattern in saddle shapes to produce desired fields, such as dipoles, quadrupoles, and the like. Wedges are inserted between adjacent cables as needed to maintain substantially radial placement of the long dimensions of cross sections of the cables. After winding, individual strands in each of the cables are brought out to terminals and are interconnected to place all of the strands in series and to maximize the propagation of a quench by alternating conduction from an inner layer to an outer layer and from top half to bottom half as often as possible. Individual layers are separated from others by spiraled aluminum spacers to facilitate cooling. The wound coil is wrapped with an epoxy tape that is cured by heat and then machined to an interference fit with an outer aluminum pipe which is then affixed securely to the assembled coil by heating it to make a shrink fit. In an alternate embodiment, one wire of the cable is made of copper or the like to be heated externally to propagate a quench.

  18. Magnetization anomaly of Nb3Al strands and instability of Nb3Al Rutherford cables

    SciTech Connect

    Yamada, Ryuji; Kikuchi, Akihiro; Wake, Masayoshi; /KEK, Tsukuba

    2006-08-01

    Using a Cu stabilized Nb{sub 3}Al strand with Nb matrix, a 30 meter long Nb{sub 3}Al Rutherford cable was made by a collaboration of Fermilab and NIMS. Recently the strand and cable were tested. In both cases instability was observed at around 1.5 Tesla. The magnetization of this Nb{sub 3}Al strand was measured first using a balanced coil magnetometer at 4.2 K. Strands showed an anomalously large magnetization behavior around at 1.6 T, which is much higher than the usual B{sub c2} {approx} 0.5 Tesla (4.2 K) of Nb matrix. This result is compared with the magnetization data of short strand samples using a SQUID magnetometer, in which a flux-jump signal was observed at 0.5 Tesla, but not at higher field. As a possible explanation for this magnetization anomaly, the interfilament coupling through the thin Nb films in the strands is suggested. The instability problem observed in low field tests of the Nb{sub 3}Al Rutherford cables is attributed to this effect.

  19. Superconducting magnets for MRI

    SciTech Connect

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  20. Effective carrier type and field dependence of the reduced- Tc superconducting state in SrFe2-xNixAs2

    NASA Astrophysics Data System (ADS)

    Butch, N. P.; Saha, S. R.; Zhang, X. H.; Kirshenbaum, K.; Greene, R. L.; Paglione, J.

    2010-01-01

    Measurements of the Hall effect, thermoelectric power, magnetic susceptibility, and upper and lower critical fields were performed on single crystals of SrFe2-xNixAs2 , an FeAs-based superconducting system that exhibits a reduced superconducting transition temperature Tc in comparison to most other iron-pnictide superconductors. Studies of the Hall and thermoelectric responses indicate that Ni substitution in this system results in a dominant electronlike response, consistent with electron doping in other similar systems but with a weaker change in the Hall coefficient and a more gradual change in the thermoelectric response with Ni concentration. For optimally doped samples with full superconducting volume fraction, the lower and upper critical fields were determined to be Hc1(1.8K)=0.08T and Hc2(0)=25T , respectively, with lower- Tc samples showing reduced values and indications of inhomogeneous superconductivity. Comparable to other higher- Tc FeAs-based materials, the temperature dependence of the upper critical field, ∂Hc2/∂T , is linear over a wide temperature range, and the large values of Hc2(0) greatly exceed conventional estimates of paramagnetic and orbital limits.

  1. Superconductivity: Squash and sandwiches

    NASA Astrophysics Data System (ADS)

    Tosatti, Erio

    2008-12-01

    Externally applied pressure induces superconductivity in the layer compound 1T-TaS2. Similarities to, and differences from, other superconducting systems promise exciting future experiments on this old, but suddenly rejuvenated, compound.

  2. Simple Superconducting "Permanent" Electromagnet

    NASA Technical Reports Server (NTRS)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  3. Trapped magnetic-field properties of prototype for Gd-Ba-Cu-O/MgB2 hybrid-type superconducting bulk magnet

    NASA Astrophysics Data System (ADS)

    Naito, Tomoyuki; Mochizuki, Hidehiko; Fujishiro, Hiroyuki; Teshima, Hidekazu

    2016-03-01

    We have studied experimentally and numerically the trapped magnetic-field properties of a hybrid-type superconducting bulk magnet, which comprised an inner Gd-Ba-Cu-O (GdBCO) disk-bulk and an outer MgB2 ring-bulk, under field-cooled magnetization (FCM) and pulsed-field magnetization (PFM). The trapped field by FCM at the center of the hybrid bulk was 4.5 T at 20 K, which was 0.2 T higher than that of the inner GdBCO disk-bulk without MgB2 ring-bulk. The experimental results by FCM were quantitatively reproduced by the numerical estimations for a model, which makes it possible to understand the trapped field properties of the hybrid bulk. The total magnetic flux by FCM, which was estimated numerically, was enhanced by about 1.7 times from 0.91 mWb of the single GdBCO bulk to 1.53 mWb of the hybrid bulk. We also succeeded in magnetizing the whole hybrid bulk by applying multi-pulsed-fields. The central trapped field of 1.88 T was not enhanced, but the total magnetic flux, which was obtained experimentally, was evidently increased by 2.5 times (0.25 \\to 0.62 mWb) for the hybrid bulk. The obtained results suggest that the hybridization is effective to enhance the total magnetic flux. To confirm the reinforcing effect of the MgB2 ring to the GdBCO disk during the cooling and magnetization processes, we have measured the thermal dilatation, {\\text{}}{dL}({\\text{}}T)/{\\text{}}L(300 K), of the GdBCO, MgB2 and stainless steel. As a result, the thermal dilatation of MgB2 was smaller than that of GdBCO. MgB2 ring-bulk shows no compression effect to resist the hoop stress of the GdBCO disk-bulk during the FCM process. The reinforcing material such as the stainless steel ring must be set outside the GdBCO disk-bulk.

  4. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; Mickel, Patrick R.; Stevens, Jim E.; Marinella, Matthew J.

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  5. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    SciTech Connect

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; Mickel, Patrick R.; Stevens, Jim E.; Marinella, Matthew J.

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems.

  6. Superconductivity in the ferromagnetic semiconductor samarium nitride

    NASA Astrophysics Data System (ADS)

    Anton, E.-M.; Granville, S.; Engel, A.; Chong, S. V.; Governale, M.; Zülicke, U.; Moghaddam, A. G.; Trodahl, H. J.; Natali, F.; Vézian, S.; Ruck, B. J.

    2016-07-01

    Conventional wisdom expects that making semiconductors ferromagnetic requires doping with magnetic ions and that superconductivity cannot coexist with magnetism. However, recent concerted efforts exploring new classes of materials have established that intrinsic ferromagnetic semiconductors exist and that certain types of strongly correlated metals can be ferromagnetic and superconducting at the same time. Here we show that the trifecta of semiconducting behavior, ferromagnetism, and superconductivity can be achieved in a single material. Samarium nitride (SmN) is a well-characterized intrinsic ferromagnetic semiconductor, hosting strongly spin-ordered 4 f electrons below a Curie temperature of 27 K. We have now observed that it also hosts a superconducting phase below 4 K when doped to electron concentrations above 1021cm-3 . The large exchange splitting of the conduction band in SmN favors equal-spin triplet pairing with p -wave symmetry. Significantly, superconductivity is enhanced in superlattices of gadolinium nitride (GdN) and SmN. An analysis of the robustness of such a superconducting phase against disorder leads to the conclusion that the 4 f bands are crucial for superconductivity, making SmN a heavy-fermion-type superconductor.

  7. Driven superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasunobu

    2014-03-01

    Driven nonlinear quantum systems show rich phenomena in various fields of physics. Among them, superconducting quantum circuits have very attractive features such as well-controlled quantum states with design flexibility, strong nonlinearity of Josephson junctions, strong coupling to electromagnetic driving fields, little internal dissipation, and tailored coupling to the electromagnetic environment. We have investigated properties and functionalities of driven superconducting quantum circuits. A transmon qubit coupled to a transmission line shows nearly perfect spatial mode matching between the incident and scattered microwave field in the 1D mode. Dressed states under a driving field are studied there and also in a semi-infinite 1D mode terminated by a resonator containing a flux qubit. An effective Λ-type three-level system is realized under an appropriate driving condition. It allows ``impedance-matched'' perfect absorption of incident probe photons and down conversion into another frequency mode. Finally, the weak signal from the qubit is read out using a Josephson parametric amplifier/oscillator which is another nonlinear circuit driven by a strong pump field. This work was partly supported by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST), Project for Developing Innovation Systems of MEXT, MEXT KAKENHI ``Quantum Cybernetics,'' and the NICT Commissioned Research.

  8. Superconductivity fact vs. fancy

    SciTech Connect

    Fitzgerald, K.

    1988-05-01

    The author says great advances have been made in superconductivity. However, the rush to secure recognition combined with public confusion over superconductivity has tainted the field with misconceptions. Some people are saying little progress towards practical use of the ceramics has been made over the last year and many researchers have left what they were doing to study superconductivity. All the hype surrounding the new found ceramic superconductors could give way to a period of disillusionment and frustration. This article discusses recent work in the field of superconductivity. IEEE Spectrum has adopted an attitude of ''just the facts'' in reporting superconductivity news.

  9. Protective link for superconducting coil

    DOEpatents

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  10. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  11. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. PMID:25666075

  12. Experimental observation of the strong influence of crystal orientation on Electron Rutherford Backscattering Spectra

    NASA Astrophysics Data System (ADS)

    Vos, Maarten; Aizel, Koceila; Winkelmann, Aimo

    2010-06-01

    In Electron Rutherford Backscattering Spectroscopy (ERBS) energetic electrons (in our case up to 40 keV) impinge on a target and one measures the energy of elastically scattered electrons. This energy depends on the mass of the scattering atom, due to the recoil effect. This technique thus provides information about the sample composition. For single crystals the interaction of the projectile electron with the crystal potential modifies the angular intensity distribution of the scattered electrons. This leads, for example, to the well-known Kikuchi patterns. Here we investigate if such modified angular distribution has any influence on the intensity ratio of the observed elastic peaks in ERBS. Dramatic effects are found. Implications of these observations for quantitative surface analysis using energetic electrons are discussed.

  13. Correction of energy shift in measurements of solute segregation by Rutherford backscattering spectroscopy

    SciTech Connect

    Erck, R.A.

    1991-02-01

    Rutherford backscattering spectrometry (RBS) is a sensitive technique for measuring the elemental composition of a specimen in the near-surface region. Studies of radiation effects in materials, such as radiation-induced segregation of solute elements to the external surface, often employ RBS to measure specimen composition because the high-energy ions can be used to produce radiation damage and also serve as the RBS profile ions. When small amounts of segregation are being measured, a shift in energy calibration renders the acquired data meaningless: the resulting edge shift in the spectra produces spurious contributions near the elemental leading edges that may greatly exceed the amount of segregation being measured. A simple method is proposed for correcting errors in measurement due to energy shift.

  14. Passive energy dump for superconducting coil protection

    DOEpatents

    Luton, J.N. Jr.

    1973-01-16

    The patent describes a passive resistance type energy dump for the protection of the coils of a superconducting magnet. Insertion heaters are immersed in a rigid container filled with a fusible alloy. The energy dump is connected across the coils of the superconducting magnet wherein individual heater elements are connected singly to the windings or otherwise according to the energy dumping requirements upon transition of the magnet to a normal state.

  15. Demonstration of superconducting micromachined cavities

    SciTech Connect

    Brecht, T. Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  16. Demonstration of superconducting micromachined cavities

    NASA Astrophysics Data System (ADS)

    Brecht, T.; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J.

    2015-11-01

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  17. Lord Rutherford of Nelson, his 1908 Nobel Prize in Chemistry, and why he didn't get a second prize

    NASA Astrophysics Data System (ADS)

    Jarlskog, Cecilia

    2008-11-01

    'I have dealt with many different transformations with various periods of time, but the quickest that I have met was my own transformation in one moment from a physicist to a chemist.' Ernest Rutherford (Nobel Banquet, 1908) This article is about how Ernest Rutherford (1871-1937) got the 1908 Nobel Prize in Chemistry and why he did not get a second Prize for his subsequent outstanding discoveries in physics, specially the discovery of the atomic nucleus and the proton. Who were those who nominated him and who did he nominate for the Nobel Prizes? In order to put the Prize issue into its proper context, I will briefly describe Rutherford's whereabouts. Rutherford, an exceptionally gifted scientist who revolutionized chemistry and physics, was moulded in the finest classical tradition. What were his opinions on some scientific issues such as Einstein's photon, uncertainty relations and the future prospects for atomic energy? What would he have said about the 'Theory of Everything'? Extended version of an invited talk presented at the conference 'Neutrino 2008', Christchurch, NZ, 25-31 May 2008

  18. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  19. Superconducting magnetic coil

    DOEpatents

    Aized, Dawood; Schwall, Robert E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  20. Superconducting magnetic coil

    DOEpatents

    Aized, D.; Schwall, R.E.

    1999-06-22

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.

  1. Superconductivity in Ternary Rare-Earth Transition Metal Silicides and Germanides with the SCANDIUM(5) COBALT(4) SILICON(10)-TYPE Structure.

    NASA Astrophysics Data System (ADS)

    Berg, Linda Sue

    A systematic study of the superconducting and normal state properties of some ternary rare earth transition metal silicides and germanides of the Sc(,5)Co(,4)Si(,10) -type is reported in this work. Low temperature heat capacity measurements indicate the presence of a complicated phonon density of states in these structurally complex compounds. A better description of the phonon spectrum of the high T(,c) materials, Sc(,5)Rh(,4)Si(,10), Sc(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10), given by a model proposed by Junod et al.('1), is presented and discussed. The large values of (DELTA)C/(gamma)(,n)T(,c) and the electron-phonon coupling constant for these high T(,c) compounds indicate that they are strong-coupled superconductors. Relative to other ternary superconductors, many of these materials have large Debye temperatures. The BSC theory does not seem to afford an adequate description of the supercon- ducting state in these compounds. DC electrical resistivity measurements on these compounds show resistivity behaviors deviating from those exhibited by simple metals. The (rho)(T) data for Y(,5)Ir(,4)Si(,10), Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10), indicate the presence of anomalies. Static molar magnetic susceptibility measurements performed on these compounds indicate (1) a small effective magnetic moment of 0.26(mu)(,B) on the Co atom and (2) anomalous behaviors in the Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), Y(,5)Ir(,4)Si(,10), Lu(,5)Ir(,4)Ge(,10), and Y(,5)Rh(,4)Ge(,10) data. It is suggested that the same mechanism, namely, the forma- tion of a charge- or spin-density wave, is causing the anomalous behaviors in both the resistivity and susceptibility data. Lastly, upper critical magnetic field measurements were performed on Sc(,5)Co(,4)Si(,10), Sc(,5)Rh(,4)Si(,10), Sc(,5)Ir(,4)Si(,10), Lu(,5)Rh(,4)Si(,10), Lu(,5)Ir(,4)Si(,10), and Y(,5)Os(,4)Ge(,10). Relative to the other five samples, Y(,5)Os(,4)Ge(,10) exhibits very high values for (-d

  2. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  3. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  4. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  5. Superconducting inductive displacement detection of a microcantilever

    SciTech Connect

    Vinante, A.

    2014-07-21

    We demonstrate a superconducting inductive technique to measure the displacement of a micromechanical resonator. In our scheme, a type I superconducting microsphere is attached to the free end of a microcantilever and approached to the loop of a dc Superconducting Quantum Interference Device (SQUID) microsusceptometer. A local magnetic field as low as 100 μT, generated by a field coil concentric to the SQUID, enables detection of the cantilever thermomechanical noise at 4.2 K. The magnetomechanical coupling and the magnetic spring are in good agreement with image method calculations assuming pure Meissner effect. These measurements are relevant to recent proposals of quantum magnetomechanics experiments based on levitating superconducting microparticles.

  6. Co-co-doping Effect on Superconducting Properties of 112-Type Ca0.8La0.2FeAs2 Single Crystals

    NASA Astrophysics Data System (ADS)

    Xing, Xiangzhuo; Zhou, Wei; Xu, Baozhang; Li, Na; Sun, Yiran; Zhang, Yufeng; Shi, Zhixiang

    2015-07-01

    We systematically investigated the Co-co-doping effects in Ca0.8La0.2FeAs2 superconductors. The superconducting transition temperature (Tc) decreases almost linearly with increasing Co content. Simultaneously, it is found that the (Ca,La)112 phase is so sensitive to the Co doping level that chemical phase separation becomes more and more apparent as a result of formation of the (Ca,La)122 phase. The maximum Co doping level for 112 phase seems very low, indicating a quite cruel growth condition for 112 compared with other IBSs.

  7. High-Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  8. Superconducting energy recovery linacs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  9. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  10. Superconductive imaging surface magnetometer

    DOEpatents

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  11. Superconducting imaging surface magnetometer

    SciTech Connect

    Overton, W.C. Jr.; van Hulsteyn, D.B.; Flynn, E.R.

    1991-04-16

    This patent describes an improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. Another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  12. Superconducting heavy ion injector linac

    SciTech Connect

    Shepard, K.W.

    1985-01-01

    A conceptual design for a very low velocity (.007 < v/c < .07) superconducting heavy-ion linac is reviewed. This type of linac may have significant cost and performance advantages over room-temperature linacs, at least for applications requiring modest beam currents. Some general features of the design of very-low velocity superconducting accelerating structures are discussed and a design for a 48.5 MHz, v/c = .009 structure, together with the status of a niobium prototype, is discussed in detail. Preliminary results of a beam dynamics study indicate that the low velocity linac may be able to produce heavy-ion beams with time-energy spreads of a few keV-nsec. 11 refs, 4 figs.

  13. Characterizing Ensembles of Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  14. Superconductivity in carrier-doped silicon carbide

    NASA Astrophysics Data System (ADS)

    Muranaka, Takahiro; Kikuchi, Yoshitake; Yoshizawa, Taku; Shirakawa, Naoki; Akimitsu, Jun

    2008-12-01

    We report growth and characterization of heavily boron-doped 3C-SiC and 6H-SiC and Al-doped 3C-SiC. Both 3C-SiC:B and 6H-SiC:B reveal type-I superconductivity with a critical temperature Tc=1.5 K. On the other hand, Al-doped 3C-SiC (3C-SiC:Al) shows type-II superconductivity with Tc=1.4 K. Both SiC:Al and SiC:B exhibit zero resistivity and diamagnetic susceptibility below Tc with effective hole-carrier concentration n higher than 1020 cm-3. We interpret the different superconducting behavior in carrier-doped p-type semiconductors SiC:Al, SiC:B, Si:B and C:B in terms of the different ionization energies of their acceptors.

  15. Depth distribution of silver particulate films deposited in softened polystyrene substrates studied through Rutherford backscattering spectrometry

    SciTech Connect

    Thompson, Richard L.; Gurumurthy, S. C.; Pattabi, Manjunatha

    2011-08-15

    The depth distribution of silver particulate films deposited on softened polystyrene substrates has been studied through Rutherford backscattering spectrometry (RBS). 150 nm thick silver films were deposited on polystyrene (PS) coated glass substrates held at 455 K and 490 K in a vacuum of 8 x 10{sup -6} Torr. The substrates were irradiated with 8 MeV electrons to a dose of 25 kGy prior to deposition. Ion scattering measurements indicated that the silver particulates are formed at a few tens of nanometers beneath the PS surface for both unirradiated and irradiated substrates. The particulate structure seems to be a two-dimensional array rather than a three-dimensional distribution. The morphology of the particulate structure, the depth of maximum concentration of the particles as well as the width of the distribution seems to depend on the deposition rate and substrate temperature. The electron irradiation of the PS substrate gives rise to the modification of the morphology of the particulate structure due to the induced polymer-metal interaction arising from the free radicals created by the irradiation.

  16. Computer simulation program for medium-energy ion scattering and Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Nishimura, Tomoaki

    2016-03-01

    A computer simulation program for ion scattering and its graphical user interface (MEISwin) has been developed. Using this program, researchers have analyzed medium-energy ion scattering and Rutherford backscattering spectrometry at Ritsumeikan University since 1998, and at Rutgers University since 2007. The main features of the program are as follows: (1) stopping power can be chosen from five datasets spanning several decades (from 1977 to 2011), (2) straggling can be chosen from two datasets, (3) spectral shape can be selected as Gaussian or exponentially modified Gaussian, (4) scattering cross sections can be selected as Coulomb or screened, (5) simulations adopt the resonant elastic scattering cross section of 16O(4He, 4He)16O, (6) pileup simulation for RBS spectra is supported, (7) natural and specific isotope abundances are supported, and (8) the charge fraction can be chosen from three patterns (fixed, energy-dependent, and ion fraction with charge-exchange parameters for medium-energy ion scattering). This study demonstrates and discusses the simulations and their results.

  17. Rutherford backscattering study of sputtered CdTe/CdS bilayers

    NASA Astrophysics Data System (ADS)

    Grecu, D.; Compaan, A. D.

    2000-02-01

    Rutherford backscattering (RBS) and x-ray photoelectron spectroscopy (XPS) were used to investigate interdiffusion and surface properties of CdS/CdTe bilayers. The films were grown by radio-frequency sputtering and received postdeposition heat treatments similar to the ones employed in CdTe solar cell fabrication. It is found that a CdCl2 anneal strongly enhances both the diffusion of S into the CdTe layer and the surface oxidation. The diffusion of S in CdTe in this process can be described by a constant surface source model with the diffusivity given by D=3.2×10-5 exp(-1.2 eV/kT) cm2 s-1 in the temperature range studied. The change in the chemical composition of the surface following the CdCl2 anneal was analyzed by XPS showing that Te oxides and residual compounds containing Cl were present which could account for the straggling in the RBS spectrum. An HCl etch completely removes oxides and residues leaving a smooth surface.

  18. Duration and Frequency Analysis of Lowland Flooding in Western Murfreesboro, Rutherford County, Tennessee, 1998-2000

    USGS Publications Warehouse

    Law, George S.

    2002-01-01

    Periodic flooding occurs at lowlands and sinkholes in and adjacent to the flood plain of the West Fork Stones River in the western part of Murfreesboro, Tennessee. Flooding in this area commonly occurs during the winter months from December through March. The maximum water level that flood waters will reach in a lowland or sinkhole is controlled by the elevation of the land surrounding the site or the overflow outlet. Maximum water levels, independent of overflow from the river, were estimated to be reached in lowlands and sinkholes in the study area every 1 to 4 years. Minor overflow from the West Fork Stones River (less than 1 foot in depth) into the study area has been estimated to occur every 10 to 20 years. Moderate overflow from the river (1 to 2 feet in depth) occurs on average every 20 to 50 years, while major river overflow (in excess of 2 feet in depth) can be expected every 50 years. Rainfall information for the area, and streamflow and water-level measurements from the West Fork Stones River, lowlands, sinkholes, caves, and wells in the study area were used to develop a flood-prone area map, independent of overflow from the river, for the study area. Water-level duration and frequency relations, independent of overflow from the river, were estimated for several lowlands, sinkholes, and wells in the study area. These relations are used to characterize flooding in lowland areas of western Murfreesboro, Rutherford County, Tennessee.

  19. Profiling measurements of metal ion distribution in thin polymer inclusion membranes by Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Guedioura, B.; Bendjaballah, N.; Alioui, N.

    2014-05-01

    Polymer inclusion membranes (PIMs) composed of a homogeneous mixture of cellulose triacetate matrix, 2-nitro-phenyl-octyl-ether as plasticizer and tri-octyl-phosphine-oxyde as carrier were synthesized by the spin coating method. Synthesized membranes were doped with molybdenum metal ions and then characterized by four experimental techniques: thermo gravimetric and differential analyses, scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and Rutherford backscattering (RBS) spectrometry using a 3.2 MeV He+ ion beam. The RBS analysis has established both the elemental composition as well as the Mo+ metal profiling of the studied PIMs. The experimental irradiation conditions were optimized in order to determine the ion fluence thresholds resulting in measurable changes in elemental composition of membranes. Changes in physico-chemical properties of the irradiated PIMs vs He+ ion fluence were observed with the ATR-FTIR analysis. Also, the SEM analysis of PIMs surfaces has revealed a porous texture, while the thermal analysis of annealed PIMs at 105°C has showed no significant changes of mass (∼1%) of the studied samples.

  20. Mode locking and island suppression by resonant magnetic perturbations in Rutherford regime

    SciTech Connect

    Huang, Wenlong; Zhu, Ping

    2015-03-15

    We demonstrate in theory that tearing mode locking and magnetic island suppression by resonant magnetic perturbations (RMPs) can correspond to different states of a same dynamic system governed by the torque balance and the nonlinear island evolution in the Rutherford regime. In particular, mode locking corresponds to the exact steady state of this system. A new exact analytic solution has been obtained for such a steady state, which quantifies the dependence of the locked mode island width on RMP amplitude in different plasma regimes. Furthermore, two different branches of mode locking have been revealed with the new analytic solution and the branch with suppressed island width turns out to be unstable in general. On the other hand, the system also admits stable states of island suppression achieved through the RMP modulation of tearing mode rotational frequency. When the RMP amplitude is above a certain threshold, the island suppression is transient until the tearing mode eventually gets locked. When the RMP amplitude is below the mode locking threshold, the island can be suppressed in a steady state on time-average, along with transient oscillations in rotational frequency and island width due to the absence of mode locking.

  1. Rutherford Backscattering Spectrometry analysis of iron-containing Bi2Se3 topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Alarcon-Diez, V.; Eddrief, M.; Vickridge, I.

    2016-03-01

    Fe-containing Bi2Se3 topological insulators (TI) thin films have been grown to investigate the intricate interplay between topological order and the incorporation of ferromagnetic atoms. Here we present the quantitative characterisation of the Bi2Se3 thin films with up to 16 at% Fe incorporated during the growth process on GaAs (1 1 1) substrate by Molecular Beam Epitaxy. We report the elemental composition and depth profiles of the Bi2Se3:Fe films obtained using Rutherford Backscattering Spectrometry (RBS) and their formed crystalline phase obtained by X-ray diffraction (XRD). Resistance of the TI to beam-induced damage was investigated by channelling RBS. Using the elemental composition from RBS and the thickness from XRD measurements the Fe-free film density was deduced. For Fe-containing samples, the diffraction reveals the formation of two distinct crystalline phases, as well as their intergrowth pattern, in which the basal planes of Bi2Se3 coexist with an additional Fe-Se phase. This intergrown composite, with chemical compatibility of the Fe-Se phase with the crystalline Bi2Se3 structure, preserves the intrinsic topological surface states of the TI component despite the inhomogeneous distribution of the constituent phases. RBS analysis gives the stoichiometry of the Bi2Se3, and Bi2Se3:Fe samples (estimated between 0 and 16 at% Fe) and gives insights into the composition of FeSex phases present.

  2. Measurement of inter-strand contact resistance in epoxy impregnated Nb3Sn Rutherford cables

    SciTech Connect

    Giorgio Ambrosio et al.

    2003-10-07

    An apparatus for the measurement, under transverse pressure, of the inter-strand contact resistance in epoxy-impregnated Nb{sub 3}Sn Rutherford cables has been recently assembled at Fermilab. Procedures have been developed to instrument and measure samples extracted from Nb{sub 3}Sn coils. Samples were extracted from coils fabricated with the Wind-and-React and the React-and-Wind technology, both presently under development at Fermilab. A ceramic binder is used to improve the insulation and to simplify the fabrication of coils using the Wind-and-React technology. Synthetic oil is used to prevent sintering during the heat treatment of coils to be wound after reaction. In order to evaluate the effects of the ceramic binder and of the synthetic oil on the inter-strand resistance, measurements of samples extracted from coils were compared with measurements of cable stacks with varying characteristics. In this paper we describe the apparatus, the sample preparation, the measurement procedure, and the results of the first series of tests.

  3. Matching an H{sup –} beam into a radio frequency quadrupole at Rutherford Appleton Laboratory

    SciTech Connect

    Gabor, C. Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.; Back, J. J.

    2014-02-15

    A major component of work being carried out to upgrade the ISIS spallation neutron source at Rutherford Appleton Laboratory (RAL) is the Front End Test Stand (FETS). FETS is aimed at improving the luminosity of the linac, and consists of a Penning ion source, Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ), and Medium Energy Beam Transport (MEBT). It may serve as a first part of the accelerator chain providing a 60 mA, 3 MeV H{sup –} beam up to a 10% duty cycle. The current output of the source and the transmission of the LEBT are reasonable, but there are issues with the alignment to provide a centred beam matched into the acceptance of the RFQ. Improvements have been made to the post acceleration to address this problem. Measurements with a collimated beam have been performed to understand the behaviour of the solenoids and steerer magnets. Comparing these results with simulations proved that, besides possible mechanical imperfections of the ion source and post acceleration assembly, agreement can only be achieved if the magnetic fields are distorted.

  4. Matching an H(-) beam into a radio frequency quadrupole at Rutherford Appleton Laboratory.

    PubMed

    Gabor, C; Back, J J; Faircloth, D C; Lawrie, S R; Letchford, A P

    2014-02-01

    A major component of work being carried out to upgrade the ISIS spallation neutron source at Rutherford Appleton Laboratory (RAL) is the Front End Test Stand (FETS). FETS is aimed at improving the luminosity of the linac, and consists of a Penning ion source, Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ), and Medium Energy Beam Transport (MEBT). It may serve as a first part of the accelerator chain providing a 60 mA, 3 MeV H(-) beam up to a 10% duty cycle. The current output of the source and the transmission of the LEBT are reasonable, but there are issues with the alignment to provide a centred beam matched into the acceptance of the RFQ. Improvements have been made to the post acceleration to address this problem. Measurements with a collimated beam have been performed to understand the behaviour of the solenoids and steerer magnets. Comparing these results with simulations proved that, besides possible mechanical imperfections of the ion source and post acceleration assembly, agreement can only be achieved if the magnetic fields are distorted. PMID:24593479

  5. Matching an H- beam into a radio frequency quadrupole at Rutherford Appleton Laboratory

    NASA Astrophysics Data System (ADS)

    Gabor, C.; Back, J. J.; Faircloth, D. C.; Lawrie, S. R.; Letchford, A. P.

    2014-02-01

    A major component of work being carried out to upgrade the ISIS spallation neutron source at Rutherford Appleton Laboratory (RAL) is the Front End Test Stand (FETS). FETS is aimed at improving the luminosity of the linac, and consists of a Penning ion source, Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ), and Medium Energy Beam Transport (MEBT). It may serve as a first part of the accelerator chain providing a 60 mA, 3 MeV H- beam up to a 10% duty cycle. The current output of the source and the transmission of the LEBT are reasonable, but there are issues with the alignment to provide a centred beam matched into the acceptance of the RFQ. Improvements have been made to the post acceleration to address this problem. Measurements with a collimated beam have been performed to understand the behaviour of the solenoids and steerer magnets. Comparing these results with simulations proved that, besides possible mechanical imperfections of the ion source and post acceleration assembly, agreement can only be achieved if the magnetic fields are distorted.

  6. Superconductivity in bad metals

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is argued that many synthetic metals, including high temperature superconductors are ``bad metals`` with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described.

  7. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element.

  8. Graphene: Carbon's superconducting footprint

    NASA Astrophysics Data System (ADS)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  9. Superconducting properties of protactinium.

    PubMed

    Smith, J L; Spirlet, J C; Müller, W

    1979-07-13

    The superconducting transition temperature and upper critical magnetic field of protactinium were measured by alternating-current susceptibility techniques. Since the superconducting behavior of protactinium is affected by its 5f electron character, it is clear now that protactinium is a true actinide element. PMID:17750320

  10. Superconductivity of magnesium diboride

    SciTech Connect

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  11. Superconductivity of magnesium diboride

    DOE PAGES

    Bud’ko, Sergey L.; Canfield, Paul C.

    2015-07-15

    Over the past 14 years MgB2 has gone from a startling discovery to a promising, applied superconductor. In our article we present a brief overview of the synthesis and the basic superconducting properties of this remarkable compound. Specifically, the effect of pressure, substitutions and neutron irradiation on superconducting properties are discussed.

  12. Superconducting gyroscope research

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.; Karr, G. R.

    1985-01-01

    Four basic areas of research and development of superconducting gyroscopes are studied. Chapter 1 studies the analysis of a SQUID readout for a superconducting gyroscope. Chapter 2 studies the dependence of spin-up torque on channel and gas properties. Chapter 3 studies the theory of super fluid plug operation. And chapter 4 studies the gyro rotor and housing manufacture.

  13. Rapid cycling superconducting magnets

    NASA Astrophysics Data System (ADS)

    Fabbricatore, P.; Farinon, S.; Gambardella, U.; Greco, M.; Volpini, G.

    2006-04-01

    The paper deals with the general problematic related to the development of fast cycled superconducting magnets for application in particle accelerator machines. Starting from the requirements of SIS300 synchrotron under design at GSI and an envisaged future Super-SPS injector at CERN, it is shown which developments are mandatory in the superconducting wire technology and in the magnet design field.

  14. Superconductivity: Finding a direction

    NASA Astrophysics Data System (ADS)

    Fu, Liang

    2016-09-01

    The experimental observation of superconductivity that breaks spin-rotation symmetry in copper-doped Bi2Se3 provides a qualitatively distinct kind of unconventional superconducting behaviour -- one that brings the importance of the spin-orbit interaction to the fore.

  15. Controlling superconductivity by tunable quantum critical points.

    PubMed

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  16. Controlling superconductivity by tunable quantum critical points.

    PubMed

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-01-01

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5. PMID:25737108

  17. Ion beam analysis and EPR studies for GdBa2Cu3-xRuxO7-δ superconducting phase

    NASA Astrophysics Data System (ADS)

    Awad, R.; Abou-Aly, A. I.; Roumié, M.; Mahmoud, S. A.; Barakat, M. ME.

    2012-07-01

    Superconducting samples of the type GdBa2Cu3-xRuxO7-δ with 0.000 ⩽ x ⩽ 0.300 were prepared by the conventional solid-state reaction technique. The phase formation percentage, lattice parameters, orthorhombic distortion and oxygen-content were calculated using X-ray powder diffraction (XRD) data. The real elemental-content of the prepared samples was estimated from particle induced X-ray emission (PIXE). In addition, the oxygen-content was determined using elastic Rutherford backscattering spectroscopy (RBS) technique at 3 MeV proton beam and Rietveld XRD analysis. Moreover, the prepared samples were investigated using electron paramagnetic resonance (EPR) measurements. The number of spins N participating in EPR resonance and the paramagnetic susceptibility χ were calculated as a function of both Ru-content and temperature. In addition, the activation energy Ea, Curie constant C, Curie temperature θ, the effective magnetic moment μ and the electronic specific heat coefficient γ were estimated as a function of Ru-content.

  18. AAAS News: Questions of Science Literacy Addressed by Rutherford/AAAS; 1982 Exhibit; Energy and Health to Be Discussed in Berkeley; Short Courses at Pacific Division, Annual Meeting.

    ERIC Educational Resources Information Center

    Science, 1981

    1981-01-01

    Presents the views of F. James Rutherford concerning the status of science education and his role as advisor on science education to the Board of Directors of the American Association for the Advancement of Science. (SK)

  19. Rutherford Backscattering and Channeling Studies of Mg and Fe Diffusion at the Interface of gamma-Fe₂O₃(001)/MgO(001)

    SciTech Connect

    Thevuthasan, Suntharampillai; Jiang, Weilin; McCready, David E.; Chambers, Scott A.

    1999-12-01

    Investigates the crystalline quality of an epitaxially grown gamma-FeO(001) film on Mg/O(001) substrate along with the Mg and Fe inter-diffusion using Rutherford Backscattering and channeling experiments.

  20. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  1. Ferromagnetic/Superconducting Multilayers

    NASA Astrophysics Data System (ADS)

    Bader, S. D.

    1998-03-01

    Although it is well known that magnetism influences superconductivity, the converse issue has been less well explored. Recent theoretical predictions for ferromagnetic/ superconducting/ ferromagnetic trilayers exhibiting interlayer magnetic coupling in the normal state indicate that the coupling should be suppressed below the superconducting transition temperature.(C.A. R. Sá de Melo, Phys. Rev. Lett. 79), 1933 (1997); O. Sipr, B.L. Györffy, J. Phys. Cond. Matt. 7, 5239 (1995). To realize such a situation, a requirement (when the magnetic layers are thick) is that the superconducting layer thickness must simultaneously be less than the range over which the magnetic interlayer coupling decays, but greater than the superconducting coherence length. This introduces serious materials constraints. The present work describes initial explorations of three sputtered multilayer systems in an attempt to observe coupling of the ferromagnetic layers across a superconducting spacer:((a) J.E. Mattson, R.M. Osgood III, C.D. Potter, C.H. Sowers, and S.D. Bader, J. Vac. Sci. Technol. A 15), 1774 (1997); (b) J.E. Mattson, C.D. Potter, M.J. Conover, C.H. Sowers, and S.D. Bader, Phys. Rev. B 55, 70 (1997), and (c) R.M. Osgood III, J.E. Pearson, C.H. Sowers, and S.D. Bader, submitted (1997). (a) Ni/Nb, (b) Fe_4N/NbN, and (c) GdN/NbN. In these systems we have retained thinner superconducting layers than had been achieved previously, but interlayer magnetic coupling is not observed even in the normal state. For Ni/Nb the interfacial Ni loses its moment, which also reduces the superconducting pair-breaking. GdN is an insulating ferromagnet, so itinerancy is sacrificed, and, probably as a result of this, no coupling is observed. Each system gives rise to interesting and anisotropic superconducting properties. Thus, although the goal remains elusive, our search highlights the challenges and opportunities.

  2. Proton irradiation induced defects in GaN: Rutherford backscattering and thermally stimulated current studies

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishikata, N.; Kamioka, K.; Kuriyama, K.; Kushida, K.

    2016-03-01

    The proton irradiation induced defects in GaN are studied by combining elastic recoil detection analysis (ERDA), thermally stimulated current (TSC), and Rutherford backscattering spectroscopy (RBS) measurements. The proton irradiation (peak concentration: 1.0 × 1015 cm-2) into GaN films with a thickness of 3 μm is performed using a 500 keV implanter. The proton concentration by a TRIM simulation is maximum at 3600 nm in depth, which means that the proton beam almost passes through the GaN film. The carrier concentration decreases three orders of magnitude to 1015 cm-3 by the proton irradiation, suggesting the existence of the proton irradiation-induced defects. The ERDA measurements using the 1.5 MeV helium beam can evaluate hydrogen from the surface to ∼300 nm. The hydrogen concentration at ∼220 nm is ∼8.3 × 1013 cm-2 and ∼1.0 × 1014 cm-2 for un-irradiated and as-irradiated samples, respectively, suggesting that electrical properties are almost not affected by hydrogen. TSC measurements show a broad spectrum at around 110 K which can be divided into three traps, P1 (ionization energy 173 meV), P2 (251 meV), and P3 (330 meV). The peak intensity of P1 is much larger than that of P2 and P3. These traps are related to the N vacancy and/or complex involving N vacancy (P1), neutral Ga vacancy (VGa) (P2), and complex involving VGa (P3). The Ga displacement concentration evaluated by RBS measurements is 1.75 × 1019 cm-3 corresponding to 1/1000 of the Ga concentration in GaN. The observed Ga displacement may be origins of P2 and P3 traps.

  3. Rutherford backscattering analysis of multilayered CrNi structures to be used for sputtering standards

    NASA Astrophysics Data System (ADS)

    Simons, Donald G.; Brown, Matt D.; Fine, Joseph; Andreadis, Tim D.; Navinšek, Boris

    1983-12-01

    Rutherford backscattering spectrometry (RBS) has been used to characterize multilayered Cr/Ni structures which are being prepared for future distribution as sputter profiling standards. The multilayered structures were prepared by alternately sputter depositing layers of approximately 60 nm each of Ni and Cr for a total of nine layers; these fine structured films were prepared under high vacuum conditions. Samples from three batches of 100 specimens each were analyzed using RBS from 2 MeV 4He projectiles scattered at 165°. Although the kinematic factors for these scattering parameters would indicate that individual Ni and Cr layers should not be resolved, bilayers of Ni and Cr were clearly resolved in the RBS spectra. That is, the unresolved energy group formed from 4He scattered from the 1st layer of Cr and 1st layer of Ni is completely resolved from the energy group formed from scattering from the 2nd layer of Cr and the 2nd layer of Ni and so forth for all deeper layers. The ability to resolve the periodic bilayered structure provides a sensitive determination of the component film thickness by direct comparison with computer simulated spectra. The RBS analyses show that the sample preparation was well controlled and that film thicknesses of like layers of any one as well as between any two samples were uniform to better than 3%. This latter accuracy holds for any two samples within one batch or from batch to batch. Results from Auger sputter-depth ptofile measurements of the uniformity of individual layer thickness and periodicity support these conclusions.

  4. Oxidation of SiC investigated by ellipsometry and Rutherford backscattering spectrometry

    SciTech Connect

    Szilagyi, E.; Petrik, P.; Lohner, T.; Koos, A. A.; Fried, M.; Battistig, G.

    2008-07-01

    Oxidation of SiC was performed in Ar-O{sub 2} mixture of atmospheric pressure at 1100 deg. C and compared with that of Si. The partial pressure of O{sub 2} varied from 100 to 1000 mbar, while the oxidation time ranged from 0.5 to 45 h. The thickness of the oxide films was determined by spectroscopic ellipsometry and Rutherford backscattering spectrometry. The time and the pressure dependence of the oxidation kinetics of SiC are well described by the modified Deal-Grove model. In the diffusion-limited region, even for the faster case, the oxidation kinetics of the C-terminated face of SiC is not clearly limited by oxygen indiffusion, as for pure silicon. To interpret the ellipsometry spectra, two models of possible structure were used. In the case of the one-layer model, for layer thicknesses above 30 nm, the refractive index of the oxide layers is identical to that of thermally oxidized Si, and it increases rapidly with decreasing thickness below about 15 nm. This increase is significantly larger for C-terminated than for Si-terminated faces, and this difference can be explained by a transition layer introduced into the two-layer model. This model contains a pure SiO{sub 2} layer and a transition layer modeled by a mixture of 50 % SiO{sub 2} and 50 % SiC. The transition layer is thicker on the C-terminated surface than on the Si-terminated one. The thickness ratio of the transition layers is slightly larger than the surface roughness ratio on the two different sides determined by atomic force microscopy. The density of the oxide films, which can be determined from the backscattering and spectroscopic ellipsometry spectra, decreases with decreasing thickness below about 30 nm. For thicker films, the density of the oxide is equal to the bulk density of SiO{sub 2}.

  5. Superconductivity in cubic noncentrosymmetric PdBiSe Crystal

    NASA Astrophysics Data System (ADS)

    Joshi, B.; Thamizhavel, A.; Ramakrishnan, S.

    2015-03-01

    Mixing of spin singlet and spin triplet superconducting pairing state is expected in noncentrosymmetric superconductors (NCS) due to the inherent presence of Rashba-type antisymmetric spin-orbit coupling. Unlike low symmetry (tetragonal or monoclinic) NCS, parity is isotropicaly broken in space for cubic NCS and can additionally lead to the coexistence of magnetic and superconducting state under certain conditions. Motivated with such enriched possibility of unconventional superconducting phases in cubic NCS we are reporting successful formation of single crystalline cubic noncentrosymmetric PdBiSe with lattice parameter a = 6.4316 Å and space group P21 3 (space group no. 198) which undergoes to superconducting transition state below 1.8 K as measured by electrical transport and AC susceptibility measurements. Significant strength of Rashba-type antisymmetric spin-orbit coupling can be expected for PdBiSe due to the presence of high Z (atomic number) elements consequently making it potential candidate for unconventional superconductivity.

  6. Routes to heavy-fermion superconductivity

    NASA Astrophysics Data System (ADS)

    Steglich, F.; Stockert, O.; Wirth, S.; Geibel, C.; Yuan, H. Q.; Kirchner, S.; Si, Q.

    2013-07-01

    Superconductivity in lanthanide- and actinide-based heavy-fermion (HF) metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave (SDW) quantum critical point (QCP). The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown QCP has so far not shown any sign of superconductivity down to T ≈ 10 mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic QCP beyond the SDW type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced QCP of SDW type is extrapolated to exist inside the superconducting phase.

  7. Superconducting active impedance converter

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Martens, Jon S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  8. Superconductivity in doped insulators

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  9. Superconducting active impedance converter

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-11-16

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures.

  10. Tunneling in superconducting structures

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  11. RIA Superconducting Drift Tube Linac R & D

    SciTech Connect

    J. Popielarski; J. Bierwagen; S. Bricker; C. Compton; J. DeLauter; P. Glennon; T. Grimm; W. Hartung; D. Harvell; M. Hodek; M. Johnson; F. Marti; P. Miller; A. Moblo; D. Norton; L. Popielarski; J. Wlodarczak; R. C. York; A. Zeller

    2009-05-22

    Cavity and cryomodule development work for a superconducting ion linac has been underway for several years at the National Superconducting Cyclotron Laboratory. The original application of the work was the proposed Rare Isotope Accelerator. At present, the work is being continued for use with the Facility for Rare Isotope Beams (FRIB). The baseline linac for FRIB requires 4 types of superconducting cavities to cover the velocity range needed to accelerate an ion beam to 200 MeV/u: 2 types of quarter-wave resonator (QWR) and 2 types of half-wave resonator (HWR). Superconducting solenoids are used for focussing. Active and passive shielding is required to ensure that the solenoids’ field does not degrade the cavity performance. First prototypes of both QWR types and one HWR type have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated and tested. The test cryomodule contains one QWR, one HWR, one solenoid, and one super-ferric quadrupole. This report covers the design, fabrication, and testing of this cryomodule

  12. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  13. Superconducting thermoelectric generator

    DOEpatents

    Metzger, John D.; El-Genk, Mohamed S.

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  14. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  15. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  16. Superconductivity and its devices

    NASA Astrophysics Data System (ADS)

    Forbes, D. S.

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles.

  17. Photoinduced superconductivity in semiconductors

    NASA Astrophysics Data System (ADS)

    Goldstein, Garry; Aron, Camille; Chamon, Claudio

    2015-02-01

    We show that optically pumped semiconductors can exhibit superconductivity. We illustrate this phenomenon in the case of a two-band semiconductor tunnel-coupled to broad-band reservoirs and driven by a continuous wave laser. More realistically, we also show that superconductivity can be induced in a two-band semiconductor interacting with a broad-spectrum light source. We furthermore discuss the case of a three-band model in which the middle band replaces the broad-band reservoirs as the source of dissipation. In all three cases, we derive the simple conditions on the band structure, electron-electron interaction, and hybridization to the reservoirs that enable superconductivity. We compute the finite superconducting pairing and argue that the mechanism can be induced through both attractive and repulsive interactions and is robust to high temperatures.

  18. Stacked magnet superconducting bearing

    SciTech Connect

    Rigney, T.K. II; Saville, M.P.

    1993-06-15

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines.

  19. Making Superconducting Welds between Superconducting Wires

    NASA Technical Reports Server (NTRS)

    Penanen, Konstantin I.; Eom, Byeong Ho

    2008-01-01

    A technique for making superconducting joints between wires made of dissimilar superconducting metals has been devised. The technique is especially suitable for fabrication of superconducting circuits needed to support persistent electric currents in electromagnets in diverse cryogenic applications. Examples of such electromagnets include those in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) systems and in superconducting quantum interference devices (SQUIDs). Sometimes, it is desirable to fabricate different parts of a persistent-current-supporting superconducting loop from different metals. For example, a sensory coil in a SQUID might be made of Pb, a Pb/Sn alloy, or a Cu wire plated with Pb/Sn, while the connections to the sensory coil might be made via Nb or Nb/Ti wires. Conventional wire-bonding techniques, including resistance spot welding and pressed contact, are not workable because of large differences between the hardnesses and melting temperatures of the different metals. The present technique is not subject to this limitation. The present technique involves the use (1) of a cheap, miniature, easy-to-operate, capacitor-discharging welding apparatus that has an Nb or Nb/Ti tip and operates with a continuous local flow of gaseous helium and (2) preparation of a joint in a special spark-discharge welding geometry. In a typical application, a piece of Nb foil about 25 m thick is rolled to form a tube, into which is inserted a wire that one seeks to weld to the tube (see figure). The tube can be slightly crimped for mechanical stability. Then a spark weld is made by use of the aforementioned apparatus with energy and time settings chosen to melt a small section of the niobium foil. The energy setting corresponds to the setting of a voltage to which the capacitor is charged. In an experiment, the technique was used to weld an Nb foil to a copper wire coated with a Pb/Sn soft solder, which is superconducting. The joint was evaluated as

  20. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  1. Electron pairing without superconductivity.

    PubMed

    Cheng, Guanglei; Tomczyk, Michelle; Lu, Shicheng; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Lee, Hyungwoo; Eom, Chang-Beom; Hellberg, C Stephen; Levy, Jeremy

    2015-05-14

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. PMID:25971511

  2. Superconducting radiofrequency window assembly

    DOEpatents

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  3. Superconductive radiofrequency window assembly

    DOEpatents

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  4. Electron pairing without superconductivity

    NASA Astrophysics Data System (ADS)

    Levy, Jeremy

    Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances--paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity. Support from AFOSR, ONR, ARO, NSF, DOE and NSSEFF is gratefully acknowledged.

  5. Superconducting transmission line particle detector

    DOEpatents

    Gray, K.E.

    1988-07-28

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non- superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propagating in a superconducting transmission line are used to resolve N/sup 2/ ambiguity of charged particle events. 6 figs.

  6. Superconducting transmission line particle detector

    DOEpatents

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  7. Superconductivity at Dawn of the Iron Age

    ScienceCinema

    Tesanovic, Zlatko [Johns Hopkins University, Baltimore, Maryland, United States

    2016-07-12

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  8. Superconductivity at Dawn of the Iron Age

    SciTech Connect

    Tesanovic, Zlatko

    2010-03-03

    Superconductivity is a stunning quantum phenomenon and among the deepest paradigms in all of physics. From fundamental theories of the universe to strange goings-on in exotic materials to medical imaging and cell phones, its conceptual and practical dimensions span a reach as wide as anything in science. Twenty-odd years ago, the discovery of copper oxides ushered in a new era of high-temperature superconductivity, and the joyous exuberance that followed - with physicists throwing everything from fancy gauge theories to synchrotron radiation into its kitchen sink - only recently began to show any signs of waning. In the spring of 2008, as if on cue, a new family of iron pnictide high-temperature superconductors burst on the scene, hinting at an alternative route to room-temperature superconductivity and all of its momentous consequences. Fueled by genuine excitement - and a bit of hype - the iron-based superconductivity turned into a science blockbuster of 2009. I will present a pedagogical review of this new field, contrast the physics of iron- and copper-based systems, and speculate on the microscopic origins of the two types of high-temperature superconductivity.

  9. Superconducting circuitry for quantum electromechanical systems

    NASA Astrophysics Data System (ADS)

    LaHaye, Matthew D.; Rouxinol, Francisco; Hao, Yu; Shim, Seung-Bo; Irish, Elinor K.

    2015-05-01

    Superconducting systems have a long history of use in experiments that push the frontiers of mechanical sensing. This includes both applied and fundamental research, which at present day ranges from quantum computing research and e orts to explore Planck-scale physics to fundamental studies on the nature of motion and the quantum limits on our ability to measure it. In this paper, we first provide a short history of the role of superconducting circuitry and devices in mechanical sensing, focusing primarily on efforts in the last decade to push the study of quantum mechanics to include motion on the scale of human-made structures. This background sets the stage for the remainder of the paper, which focuses on the development of quantum electromechanical systems (QEMS) that incorporate superconducting quantum bits (qubits), superconducting transmission line resonators and flexural nanomechanical elements. In addition to providing the motivation and relevant background on the physical behavior of these systems, we discuss our recent efforts to develop a particular type of QEMS that is based upon the Cooper-pair box (CPB) and superconducting coplanar waveguide (CPW) cavities, a system which has the potential to serve as a testbed for studying the quantum properties of motion in engineered systems.

  10. Superconducting mirror for laser gyroscope

    SciTech Connect

    Wang, X.

    1991-05-14

    This paper describes an apparatus for reflecting a light beam. It comprises: a mirror assembly comprising a substrate and a superconductive mirror formed on such substrate, wherein: the substrate is optically transparent to the light beam and has a thickness of from about 0.5 to about 1.0 millimeter, and the superconductive mirror has a thickness of from about 0.5 to about 1.0 microns; means for cooling the superconductive mirror; means for measuring the temperature of the superconductive mirror; means for determining the reflectivity of the superconductive mirror; and means for varying the reflectivity of the superconductive mirror.

  11. Thermodynamic critical fields in high T c superconductivity

    NASA Astrophysics Data System (ADS)

    Clougherty, Dennis P.; Johnson, Keith H.

    1988-06-01

    Using the free electron approximation, a real space mechanism of how magnetic fields of sufficient strength destroy the superconducting state is outlined. Using the resultant equation together with the molecular orbital model of superconductivity 1,2, the thermodynamic critical magnetic field is calculated and compared to experiment for type I elemental superconductors and type II superconductors, including high-Tc superconductors. The expression for critical field compares favorably with an expression derived by Schrieffer.

  12. Superconducting wind turbine generators

    NASA Astrophysics Data System (ADS)

    Abrahamsen, A. B.; Mijatovic, N.; Seiler, E.; Zirngibl, T.; Træholt, C.; Nørgård, P. B.; Pedersen, N. F.; Andersen, N. H.; Østergård, J.

    2010-03-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  13. Superconducting nanostructured materials.

    SciTech Connect

    Metlushko, V.

    1998-07-13

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines.

  14. The 40 and 50 GHz propagation experiments at the Rutherford Appleton Laboratory, UK, using the ITALSAT beacons

    NASA Technical Reports Server (NTRS)

    Woodroffe, J. M.; Davies, P. G.; Ladd, D. N.; Norbury, John R.

    1994-01-01

    This paper describes the current experimental program and future plans for the reception of transmissions from the 18.7, 39.6, and 49.5 GHz beacons from the ITALSAT satellite by the Radio Communications Research Unit at Rutherford Appleton Laboratory, UK. The Radio Communications Research Unit, which has had considerable experience in developing experimental millimetric equipment for propagation studies, has initiated the development of a single-channel receiver and a triple-channel receiver to measure propagation effects at 49.5 GHz and 39.6 GHz respectively. The initial location of the receivers will be at Chilbolton, Hampshire, UK.

  15. Characterization of gold nanoparticle films: Rutherford backscattering spectroscopy, scanning electron microscopy with image analysis, and atomic force microscopy

    SciTech Connect

    Lansåker, Pia C. Niklasson, Gunnar A.; Granqvist, Claes G.; Hallén, Anders

    2014-10-15

    Gold nanoparticle films are of interest in several branches of science and technology, and accurate sample characterization is needed but technically demanding. We prepared such films by DC magnetron sputtering and recorded their mass thickness by Rutherford backscattering spectroscopy. The geometric thickness d{sub g}—from the substrate to the tops of the nanoparticles—was obtained by scanning electron microscopy (SEM) combined with image analysis as well as by atomic force microscopy (AFM). The various techniques yielded an internally consistent characterization of the films. In particular, very similar results for d{sub g} were obtained by SEM with image analysis and by AFM.

  16. Surface Induced Anomalous Superconductivity

    NASA Astrophysics Data System (ADS)

    Fink, Herman J.; Haley, Stephen B.

    The Ginzburg Landau (GL) theory is recast using a Hamiltonian involving the complete kinetic energy density which requires that the surface energy must contain a term ∇∣ψ∣2 to support superconducting (SC) states. The GL equations contain two temperature t dependent parameters α(t) and β(t), which are respectively the coefficients of the SC pair density ∝∣ψ∣2, and the pair interaction term ∝∣ψ∣4 in the free energy density. The sign of these parameters, which defines distinct solution classes, and the ratio s(t)=√ {|α |/|β |} are governed by the characteristics of the surface energy density. In addition to the conventional bulk superconducting states with (α < 0, β > 0), anomalous superconducting states exist for all other sign combinations, including cases with β < 0 which may exist only when surface pair interactions are significant. All possible solutions of our generalized nonlinear, one-dimensional GL equations are found analytically and applied to a thin superconducting slab which manifests the possibility of states exhibiting enhanced, diminished, and pre-wetting superconductivity. Critical currents are determined as functions of s(t) and surface parameters. The results are applied to critical current experiments on SNS systems.

  17. High temperature superconductive flux gate magnetometer

    SciTech Connect

    Gershenson, M. )

    1991-03-01

    This paper proposes a different type of HTS superconducting magnetometer based on the non-linear magnetic behavior of bulk HTS materials. The device design is based on the generation of second harmonics which arise as a result of non-linear magnetization observed in Type-II superconductors. Even harmonics are generated from the non-linear interaction of an ac excitation signal with an external DC magnetic field which acts as a bias signal.

  18. Superconducting tensor gravity gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1981-01-01

    The employment of superconductivity and other material properties at cryogenic temperatures to fabricate sensitive, low-drift, gravity gradiometer is described. The device yields a reduction of noise of four orders of magnitude over room temperature gradiometers, and direct summation and subtraction of signals from accelerometers in varying orientations are possible with superconducting circuitry. Additional circuits permit determination of the linear and angular acceleration vectors independent of the measurement of the gravity gradient tensor. A dewar flask capable of maintaining helium in a liquid state for a year's duration is under development by NASA, and a superconducting tensor gravity gradiometer for the NASA Geodynamics Program is intended for a LEO polar trajectory to measure the harmonic expansion coefficients of the earth's gravity field up to order 300.

  19. Superconducting active impedance converter

    SciTech Connect

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1992-12-31

    This invention is comprised of a transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductor allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10--80 K temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology.

  20. Nonlinear terahertz superconducting plasmonics

    SciTech Connect

    Wu, Jingbo; Liang, Lanju; Jin, Biaobing E-mail: tonouchi@ile.osaka-u.ac.jp Kang, Lin; Xu, Weiwei; Chen, Jian; Wu, Peiheng E-mail: tonouchi@ile.osaka-u.ac.jp; Zhang, Caihong; Kawayama, Iwao; Murakami, Hironaru; Tonouchi, Masayoshi E-mail: tonouchi@ile.osaka-u.ac.jp; Wang, Huabing

    2014-10-20

    Nonlinear terahertz (THz) transmission through subwavelength hole array in superconducting niobium nitride (NbN) film is experimentally investigated using intense THz pulses. The good agreement between the measurement and numerical simulations indicates that the field strength dependent transmission mainly arises from the nonlinear properties of the superconducting film. Under weak THz pulses, the transmission peak can be tuned over a frequency range of 145 GHz which is attributed to the high kinetic inductance of 50 nm-thick NbN film. Utilizing the THz pump-THz probe spectroscopy, we study the dynamic process of transmission spectra and demonstrate that the transition time of such superconducting plasmonic device is within 5 ps.

  1. Ion-reversibility studies in amorphous solids using the two-atom scattering model. [Rutherford backscattering from disordered solids

    SciTech Connect

    Oen, O.S.

    1981-06-01

    An analytical two-atom scattering model has been developed to treat the recent discovery of the enhancement near 180/sup 0/ of Rutherford backscattering yields from disordered solids. In contrast to conventional calculations of Rutherford backscattering that treat scattering from a single atom only (the backscattering atom), the present model includes the interaction of a second atom lying between the target surface and the backscattering plane. The projectile ion makes a glancing collision with this second atom both before and after it is backscattered. The model predicts an enhancement effect whose physical origin arises from the tolerance of path for those ions whose inward and outward trajectories lie in the vicinity of the critical impact parameter. Results using Moliere scattering show how the yield enhancement depends on ion energy, backscattering depth, exit angle, scattering potential, atomic numbers of the projectile and target, and target density. In the model the critical impact parameter and critical angle play important roles. It is shown that these quantities depend on a single dimensionless parameter and analytical expressions for them are given which are accurate to better than 1%.

  2. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  3. Technology of RF superconductivity

    SciTech Connect

    1995-08-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams.

  4. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  5. Exact Results on Superconductivity due to Interband Coupling

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Hatsugai, Yasuhiro; Kohmoto, Mahito

    1996-03-01

    We have constructed exactly solvable models at arbitrary filling in any dimensions which exhibit novel superconductivity with interband pairing. By the use of the hidden SU algebra the Hamiltonians are diagonalized explicitly. The zero-temperature phase diagrams and the thermodynamic properties are obtained. Several new properties are revealed which are totally different from those of the BCS-type superconductors. For example, superconductivity without a Fermi surface, which was proposed by Kohmoto and Takada footnote M. Kohmoto and Y. Takada, J. Phys. Soc. Jpn. 59, 1541 (1990)., is realized and a finite strength of attraction is needed to produce the superconductivity.

  6. Superconductivity by means of the subquantum medium coherence

    NASA Astrophysics Data System (ADS)

    Agop, M.; Ioannou, P. D.; Nica, P.

    2005-06-01

    In the hydrodynamic formulation of the scale relativity theory one shows that a stable vortices distribution of bipolaron type induces superconducting pairs by means of the quantum potential. Then, usual mechanisms (as, for example, the exchange interaction used in the bipolaron theory) are reduced to the coherence on the subquantum medium, the superconducting pairs resulting as a one-dimensional projection of a fractal. The temperature dependences of the superconducting parameters (coherence length, critical speed, pair breaking time, carriers concentration, penetration depth, critical field, critical current) and the concordance with the experimental data and other theories are analyzed.

  7. Recent developments in superconducting receivers

    SciTech Connect

    Richards, P.L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high {Tc} superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high {Tc} bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  8. Resource Letter Scy-3: Superconductivity

    NASA Astrophysics Data System (ADS)

    Butch, N. P.; de Andrade, M. C.; Maple, M. B.

    2008-02-01

    This Resource Letter provides a guide to the literature on superconductivity. Since the last Resource Letter on superconductivity, Scy-2, was published in 1970, there have been dramatic advances in our basic understanding of superconductivity, discovery of new superconducting materials, and improved technological exploitation of superconductors. We review basic phenomenology, followed by concise descriptions of several main classes of superconductors recognized today. Journal articles and books are cited for the following topics: Conventional superconductors, paramagnetic impurities in superconductors, magnetically ordered superconductors, heavy fermion superconductors, high Tc superconductors, organic superconductors, applications of superconductivity, and laboratory demonstrations of superconductivity. Owing to the large volume of available literature on superconductivity, the journal articles and books we discuss constitute good starting points for further exploration of particular topics.

  9. Review of new energy. Superconductivity

    NASA Astrophysics Data System (ADS)

    1989-03-01

    An summary is given of the research and development on high temperature superconductivity. It begins with a description of superconducting state and enumerates chemical elements, in particular oxides, associated with high temperature superconductivity. A brief account is next given on the progress of research and development on the present subject. Some of well known topics associated with superconductivity are described shortly, namely Meissner effect, quenching (transition to normal conducting state from superconducting one), Perovskite structure, positive hole earrier, Josephson effect, SQUID (superconducting quantum interference device) and so on. Various devices or technology are enumerated, to which superconductivity, in particular high temperature one, is proposed to apply, namely electromagnet, MRI (magnetic resonance imaging), particle accelerator, linear motor car, electric power storage and so on. The summary is finished with a future outlook.

  10. Nonequilibrium superconducting detectors

    NASA Astrophysics Data System (ADS)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  11. Superconducting thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Pietropaolo, A.; Celentano, G.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Salvato, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.

    2016-09-01

    A neutron detection concept is presented that is based on superconductive niobium nitride (NbN) strips coated by a boron (B) layer. The working principle is well described by a hot spot mechanism: upon the occurrence of the nuclear reactions n + 10B → α + 7Li + 2.8 MeV, the energy released by the secondary particles into the strip induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T below 11K and current-biased below the critical current IC, are driven into the normal state upon thermal neutron irradiation. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed and compared to those of a borated Nb superconducting strip.

  12. Levitation Kits Demonstrate Superconductivity.

    ERIC Educational Resources Information Center

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  13. Applications of Superconductivity

    ERIC Educational Resources Information Center

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  14. SUPERCONDUCTING VANADIUM BASE ALLOY

    DOEpatents

    Cleary, H.J.

    1958-10-21

    A new vanadium-base alloy which possesses remarkable superconducting properties is presented. The alloy consists of approximately one atomic percent of palladium, the balance being vanadium. The alloy is stated to be useful in a cryotron in digital computer circuits.

  15. Langmuir vacuum and superconductivity

    SciTech Connect

    Veklenko, B. A.

    2012-06-15

    It is shown that, in the 'jelly' model of cold electron-ion plasma, the interaction between electrons and the quantum electromagnetic vacuum of Langmuir waves involves plasma superconductivity with an energy gap proportional to the energy of the Langmuir quantum.

  16. Hybrid superconducting neutron detectors

    SciTech Connect

    Merlo, V.; Lucci, M.; Ottaviani, I.; Salvato, M.; Cirillo, M.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  17. New research in Superconductivity

    NASA Astrophysics Data System (ADS)

    Khorrami, Mona

    2013-03-01

    Superconductors are materials that have no resistance to electricity's flow; they are one of the last great frontiers of scientific discovery. The theories that explain superconductor behavior seem to be constantly under review. In 1911 superconductivity was first observed in mercury by Dutch physicist Heike Kamerlingh Onnes When he cooled it to the temperature of liquid helium, 4 degrees Kelvin (-452F, -269C), its resistance suddenly disappeared. It was necessary for Onnes to come within 4 degrees of the coldest temperature that is theoretically attainable to witness the phenomenon of superconductivity. In 1933 German researchers Walther Meissner and Robert Ochsenfeld discovered that a superconducting material will repel a magnetic field. A magnet moving by a conductor induces currents in the conductor, but, in a superconductor the induced currents exactly mirror the field that would have otherwise penetrated the superconducting material - causing the magnet to be repulsed. This phenomenon is known as strong diamagnetism and is today often referred to as the ``Meissner effect'' (an eponym). Later on the theory developed by American physicists John Bardeen, Leon Cooper, and John Schrieffer together with extensions and refinements of the theory, which followed in the years after 1957, succeeded in explaining in considerable detail the properties of superconductors.

  18. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  19. Hybrid superconducting neutron detectors

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Cirillo, M.; Lucci, M.; Ottaviani, I.; Scherillo, A.; Celentano, G.; Pietropaolo, A.

    2015-03-01

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, 10B + n → α + 7Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  20. Superconducting magnets 1992

    SciTech Connect

    Not Available

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T{sub c} at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design.

  1. Superconducting thermometer for cryogenics

    NASA Technical Reports Server (NTRS)

    White, F. A.

    1977-01-01

    Digital electronic device uses superconducting filaments as sensors. Simple solid-state circuitry combined with filaments comprise highly-reliable temperature monitor. Device has ability to track very fast thermal transients and "on/off" output is adaptable to remote sensing and telemetry.

  2. Superconducting thermoelectric generator

    DOEpatents

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  3. A SQUID readout system for a superconducting gyroscope. [superconducting quantum interference device

    NASA Technical Reports Server (NTRS)

    Hendricks, J. B.

    1975-01-01

    A design of a read out system for a superconducting gyroscope to be used in an orbiting gyroscope relativity experiment is discussed. The 'London Moment' of the superconducting rotor, which lies along the spin axis of the rotor, will be measured with a SQUID-type magnetometer. The SQUID will be built around the gyro rotor, with a very close spacing to give an inductance between 10 millionths and 1 millionth Hy. A SQUID of this design should resolve 2.07 times 10 to the minus 19th weber. The angular resolution of the gyroscope will then be 0.0035 arc-second, which is sufficient for the intended experiment.

  4. Usage of scientific and technological information in developing superconducting materials

    NASA Astrophysics Data System (ADS)

    Inamura, Takahiro

    An experience of successful scientific information acquisition through the JICST File at an earliest stage of superconductivity boom, when only newspaper articles were source of information, is described. The results of the online retrieval of the JICST File told us that the crystal structure of the superconducting materials in question is K2NiF4 type, which was new information not known yet in research community in common.

  5. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  6. Cosmological constraints on superconducting dark energy models

    NASA Astrophysics Data System (ADS)

    Keresztes, Zoltán; Gergely, László Á.; Harko, Tiberiu; Liang, Shi-Dong

    2015-12-01

    We consider cosmological tests of a scalar-vector-tensor gravitational model, in which the dark energy is included in the total action through a gauge-invariant, electromagnetic type contribution. The ground state of dark energy, corresponding to a constant potential V , is a Bose-Einstein type condensate with spontaneously broken U(1) symmetry. In other words, dark energy appears as a massive vector field emerging from a superposition of a massless vector and a scalar field, the latter corresponding to the Goldstone boson. Two particular cosmological models, corresponding to pure electric and pure magnetic type potentials, respectively, are confronted with type IA supernovae and Hubble parameter data. In the electric case, a good fit is obtained along a narrow inclined stripe in the Ωm-ΩV parameter plane, which includes the Λ cold dark matter limit as the best fit. The other points on this admissible region represent superconducting dark energy as a sum of a cosmological constant and a time-evolving contribution. In the magnetic case the cosmological test selects either (i) parameter ranges of the superconducting dark energy allowing for the standard baryonic sector plus dark matter or (ii) a unified superconducting dark matter and dark energy model, additionally including only the baryonic sector.

  7. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2010-08-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  8. Superconducting link bus design for the accelerator project for upgrade of LHC

    SciTech Connect

    Nobrega, F.; Brandt, J.; Cheban, S.; Feher, S.; Kaducak, M.; Kashikhin, V.; Peterson, T.; /Fermilab

    2011-06-01

    The Accelerator Project for Upgrade of LHC (APUL) is a U.S. project participating in and contributing to CERN's Large Hadron Collider (LHC) upgrade program. Fermi National Accelerator Laboratory in collaboration with Brookhaven National Laboratory was developing sub-systems for the upgrade of the LHC final focus magnet systems. Part of the upgrade called for various lengths of superconducting power transmission lines known as SC Links which were up to 100 m long. The SC Link electrically connects the current leads in the Distribution Feed Boxes to the interaction region magnets. The SC Link is an extension of the magnet bus housed within a cryostat. The present concept for the bus consists of 22 power cables, 4 x 13 kA, 2 x 7 kA, 8 x 2.5 kA and 8 x 0.6 kA bundled into one bus. Different cable and strand possibilities were considered for the bus design including Rutherford cable. The Rutherford cable bus design potentially would have required splices at each sharp elbow in the SC Link. The advantage of the round bus design is that splices are only required at each end of the bus during installation at CERN. The round bus is very flexible and is suitable for pulling through the cryostat. Development of the round bus prototype and of 2 splice designs is described in this paper. Magnetic analysis and mechanical test results of the 13 kA cable and splices are presented.

  9. Electrodeposition and characterisation of lead tin superconducting films for application in heavy ion booster

    NASA Astrophysics Data System (ADS)

    Lobanov, Nikolai R.

    2015-12-01

    The ANU has developed experimental systems and procedures for lead-tin (PbSn) film deposition and characterisation. The 12 split loop resonators have been electroplated with 96%Pb4%Sn film to the final thickness of 1.5 micron using methanesulfonic acid (MSA) chemistry. As a result, an average acceleration field of 3.6 MV/m off-line at 6 W rf power was achieved at extremely low technological cost. Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Heavy Ion Elastic Detection Analyses (HIERDA), Rutherford Backscattering Spectroscopy (RBS), Secondary Ion Mass Spectroscopy (SIMS) and Electron Backscattering Diffraction (EBSD) revealed correlation between the substrate and film structure, morphology and the rf performance of the cavity. The PbSn plating, exercised on the existing split loop resonators (SLR), has been extended to the two stub quarter wave resonator (QWR) as a straightforward step to quickly explore the superconducting performance of the new geometry. The oxygen free copper (OHFC) substrate for two stub QWR was prepared by reverse pulse electropolishing. The ultimate superconducting properties and long-term stability of the coatings have been assessed by operation of the ANU superconducting linac over the last few years.

  10. In-air Rutherford Backscattering and Particle Induced X-ray Emission for Biophysics and Material Science Research

    NASA Astrophysics Data System (ADS)

    Becker, James

    2015-03-01

    Rutherford Backscattering (RBS) and Particle Induced X-ray Emission (PIXE) are methods of nondestructive analysis of elemental composition. Rebounding particles or emitted x-rays can be ``collected'' and then analyzed to reveal the number ratio of the elements in a sample. Due to the nondestructive feature of these processes, RBS and PIXE are useful in many diverse fields of study such as archaeology, art, and biology; however, these experiments usually require large, expensive particle accelerators and detectors. Instead, I am attempting to use a radioactive source, photodiodes, and computer software to perform the same methods at a fraction of the cost. I am exploring cost, time, and resolution benefits and losses of my approach versus the traditional accelerator-based approach.

  11. Lattice location of O18 in ion implanted Fe crystals by Rutherford backscattering spectrometry, channeling and nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Vairavel, Mathayan; Sundaravel, Balakrishnan; Panigrahi, Binaykumar

    2016-09-01

    There are contradictory theoretical predictions of lattice location of oxygen interstitial atom at tetrahedral and octahedral interstices in bcc Fe. For validating these predictions, 300 keV O18 ions with fluence of 5 × 1015 ions/cm2 are implanted into bcc Fe single crystals at room temperature and annealed at 400 °C. The Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA)/channeling measurements are carried out with 850 keV protons. The lattice location of implanted O18 is analysed using the α-particles yield from O18(p,α)N15 nuclear reaction. The tilt angular scans of α-particle yield along <110> and <100> axial directions are performed at room temperature. Lattice location of O18 is found to be at tetrahedral interstitial site by comparing the experimental scan with simulated scans using FLUX7 software.

  12. Field errors in superconducting magnets

    SciTech Connect

    Barton, M. Q.

    1982-01-01

    The mission of this workshop is a discussion of the techniques for tracking particles through arbitrary accelerator field configurations to look for dynamical effects that are suggested by various theoretical models but are not amenable to detailed analysis. A major motivation for this type of study is that many of our accelerator projects are based on the use of superconducting magnets which have field imperfections that are larger and of a more complex nature than those of conventional magnets. Questions such as resonances, uncorrectable closed orbit effects, coupling between planes, and diffusion mechanisms all assume new importance. Since, simultaneously, we are trying to do sophisticated beam manipulations such as stacking, high current accelerator, long life storage, and low loss extraction, we clearly need efficient and accurate tracking programs to proceed with confidence.

  13. Advanced Manufacturing of Superconducting Magnets

    NASA Technical Reports Server (NTRS)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  14. PROGRESS ON LEAD PHOTOCATHODES FOR SUPERCONDUCTING INJECTORS.

    SciTech Connect

    SMEDLEY, J.; RAO, T.; SEKUTOWICZ, J.; KNEISEL, P.; LANGNER, J.; STRZYZEWSKI, P.; LEFFERTS, R.; LIPSKI, A.

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead-plated cathode is underway.

  15. Progress on lead photocathodes for superconducting injectors

    SciTech Connect

    Smedley, John; Rao, Triveni; Sekutowicz, Jacek; Kneisel, Peter; Langner, J; Strzyzewski, P; Lefferts, Richard; Lipski, Andrzej

    2005-05-16

    We present the results of our investigation of bulk lead, along with various types of lead films, as suitable photocathode materials for superconducting RF injectors. The quantum efficiency of each sample is presented as a function of the photon energy of the incident light, from 3.9 eV to 6.5 eV. Quantum efficiencies of 0.5% have been obtained. Production of a niobium cavity with a lead plated cathode is underway.

  16. Induced spectral gap and pairing correlations from superconducting proximity effect

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Cole, William S.; Das Sarma, S.

    2016-09-01

    We theoretically consider superconducting proximity effect, using the Bogoliubov-de Gennes (BdG) theory, in heterostructure sandwich-type geometries involving a normal s -wave superconductor and a nonsuperconducting material with the proximity effect being driven by Cooper pairs tunneling from the superconducting slab to the nonsuperconducting slab. Applications of the superconducting proximity effect may rely on an induced spectral gap or induced pairing correlations without any spectral gap. We clarify that in a nonsuperconducting material the induced spectral gap and pairing correlations are independent physical quantities arising from the proximity effect. This is a crucial issue in proposals to create topological superconductivity through the proximity effect. Heterostructures of three-dimensional topological insulator (TI) slabs on conventional s -wave superconductor (SC) substrates provide a platform, with proximity-induced topological superconductivity expected to be observed on the "naked" top surface of a thin TI slab. We theoretically study the induced superconducting gap on this naked surface. In addition, we compare against the induced spectral gap in heterostructures of SC with a normal metal or a semiconductor with strong spin-orbit coupling and a Zeeman splitting potential (another promising platform for topological superconductivity). We find that for any model for the non-SC metal (including metallic TI) the induced spectral gap on the naked surface decays as L-3 as the thickness (L ) of the non-SC slab is increased in contrast to the slower 1 /L decay of the pairing correlations. Our distinction between proximity-induced spectral gap (with its faster spatial decay) and pairing correlation (with its slower spatial decay) has important implications for the currently active search for topological superconductivity and Majorana fermions in various superconducting heterostructures.

  17. Energy losses in superconductive DC-electromagnets due to ferromagnetic movement

    SciTech Connect

    Ciesla, A.; Matras, A.

    1996-05-01

    A DC-current, superconductive electromagnet is a source of the magnetic field in a separator matrix. This type of separator operates in a cyclic way. Therefore, it appears as very important to ensure the electromagnet stability during operation, i.e., range of parameters` changes that could maintain the magnet winding in the superconductive state. This means selecting parameter changes representing the magnet winding in the superconductive state.

  18. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  19. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  20. Superconductivity in graphite intercalation compounds

    DOE PAGES

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic statesmore » and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.« less

  1. Superconductivity in graphite intercalation compounds

    SciTech Connect

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P. M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-02-26

    This study examines the field of superconductivity in the class of materials known as graphite intercalation compounds which has a history dating back to the 1960s. This paper recontextualizes the field in light of the discovery of superconductivity in CaC₆ and YbC₆ in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how this relates to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  2. Superconducting magnet wire

    DOEpatents

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  3. Superconducting terahertz metamaterials

    SciTech Connect

    Chen, Hou-tong; Singh, Ranjan; O' Hara, John F; Azad, Abul K; Trugman, Stuart A; Jia, Quanxi; Taylor, Antoinette J

    2010-01-01

    During the past ten years subwavelength metallic structures have enabled metamaterials exhibiting exotic physical properties that are not possible or difficult to realize using naturally occurring materials, This bottom-up metamaterial approach is particularly attractive in the terahertz (THz) frequency range, where the THz gap is inherently associated with the lack of materials with appropriate reponse. In fact THz metamaterial devices have accomplished unprecedented performance towards practical applications. In these devices, the key is to incorporate natural materials, e,g, semiconductors, as the metamaterial substrates or integration parts of metamaterial structures. The active or dynamic tunability of metamaterials is through the application of external stimuli such as temperature, photoexcitation, or electric field. to modify the capacitive gaps in split-ring resonators (SRRs), It becomes clear that we would not be able to do much on the metallic SRRs, i.e. the metal conductivity and therefore the inductance largely remain constant not affected by external stimuli. Recently, there has been increasing interest in superconducting metamaterials towards loss reduction. Significant Joule losses have often prevented resonant metal metamaterials from achieving proposed applications. particularly in the optical frequency range. At low temperatures, superconducting materials possess superior conductivity than metals at frequencies up to THz. and therefore it is expected that superconducting melamaterials will have a lower loss than metal metamatetials, More interestingly, superconductors exhibit tunable complex conductivity over a wide range of values through change of temperature and application of photoexcitation, electrical currents and magnetic fields. Therefore, we would expect correspondingly tunable metamaterials. which originate from the superconducting materials composing the metamaterial, in contrast to tuning the metamaterial embedded environment.

  4. Superconducting Magnetic Projectile Launcher

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Lawson, Daniel D.

    1991-01-01

    Proposed projectile launcher exploits Meissner effect to transfer much of kinetic energy of relatively massive superconducting plunger to smaller projectile, accelerating projectile to high speed. Because it operates with magnetic fields, launcher not limited by gas-expansion thermodynamics. Plunger energized mechanically and/or chemically, avoiding need for large electrical power supplies and energy-storage systems. Potential applications include launching of projectiles for military purposes and for scientific and industrial tests of hypervelocity impacts.

  5. Topological confinement and superconductivity

    SciTech Connect

    Al-hassanieh, Dhaled A; Batista, Cristian D

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  6. Strong superconducting strength in ε-PbBi microcubes

    NASA Astrophysics Data System (ADS)

    Gandhi, Ashish Chhaganlal; Wu, Sheng Yun

    2016-06-01

    Single phase ε-PbBi microcubes were synthesized using a simple thermal evaporation method. Synchrotron x-ray measurement of the crystal structure of the ε-PbBi microcubes revealed a space group of P63/mmc. Enhanced superconducting transitions were observed from the temperature dependent magnetization, showing a main diamagnetic Meissner state below a TC of ~8.66(2) K. An extremely strong superconducting strength (α=2.51(1)) and electron-phonon constant (λEP=2.25) are obtained from the modified Allen and Dynes theory, which give rise to higher TC superconductivity in this type of structure. The electron-phonon coupling to low lying phonons is found to be the leading mechanism for the observed strong-coupling superconductivity in the PbBi system.

  7. Navy superconductivity efforts

    NASA Technical Reports Server (NTRS)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  8. US Navy superconductivity program

    NASA Technical Reports Server (NTRS)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  9. Silicon superconducting quantum interference device

    SciTech Connect

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F.; Chiodi, F.; Débarre, D.; Hasselbach, K.; Kirtley, J. R.

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  10. Effects of v- or Cr-DOPING on Phase Formation, Electric Properties and Superconductivity of the 3212-TYPE Phase Pb2Sr2(Ca0.5Y0.5)Cu3Oz

    NASA Astrophysics Data System (ADS)

    Chen, Z. Y.; Qian, Y. T.; Luo, H. M.; Qu, B.; Sheng, Z. Z.; Wang, L. M.

    The effects of vanadium or chromium on the formation, electric properties and superconductivity of Pb-3212 phase (Pb2Cu)Sr2(Ca0.5Y0.5)Cu2Oz are studied. The sites of V or Cr in PbO-CuOδ-PbO structure unit for Pb-3212 phase is also investigated. Compared with the effects of Cr-doping, V can totally substitute Ca to form a new compound Pb2Sr2(V0.5Y0.5)Cu3Oz, and V has relatively greater substitution amount in (Pb2-xMx)Sr2(Ca0.5Y0.5)Cu3Oz (M = Cr or V). Moreover, the resistivity and superconductivity of the above samples decrease with increasing V or Cr amount. Among them, the effects of V is greater, and its location (in Pb or Ca site) also affects greatly the superconductivity.

  11. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    SciTech Connect

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-05-16

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  12. CABLE DESIGN FOR FAST RAMPED SUPERCONDUCTING MAGNETS (COS-0 DESIGN).

    SciTech Connect

    GHOSH,A.

    2004-03-22

    The new heavy ion synchrotron facility proposed by GSI will have two superconducting magnet rings in the same tunnel, with rigidities of 300 T-m and 100 T-m. Fast ramp times are needed, which can cause significant problems for the magnets, particularly in the areas of ac loss and magnetic field distortion. The development of the low loss Rutherford cable that can be used is described, together with a novel insulation scheme designed to promote efficient cooling. Measurements of contact resistance in the cable are presented and the results of these measurements are used to predict the ac losses, in the magnets during fast ramp operation. For the high energy ring, a lm model dipole magnet was built, based on the RHIC dipole design. This magnet was tested under boiling liquid helium in a vertical cryostat. The quench current showed very little dependence on ramp rate. The ac losses, measured by an electrical method, were fitted to straight line plots of loss/cycle versus ramp rate, thereby separating the eddy current and hysteresis components. These results were compared with calculated values, using parameters which had previously been measured on short samples of cable. Reasonably good agreement between theory and experiment was found, although the measured hysteresis loss is higher than expected in ramps to the highest field levels.

  13. Superconducting tape characterization under flexion

    NASA Astrophysics Data System (ADS)

    Álvarez, A.; Suárez, P.; Cáceres, D.; Pérez, B.; Cordero, E.; Castaño, A.

    2002-08-01

    Electrotechnical applications of high temperature superconducting materials are limited by the difficulty of constructing classical windings with ceramic materials. While Bi-2223 tape may be a solution, it cannot be bent to radii less than a certain value since its superconducting capacity disappears. We describe an automated measurement system of the characteristics of this tape under flexion. It consists of a device that coils the tape over cylinders with different radii. At the same time, the parameters of its superconducting behaviour (e.g. resistance) are taken and processed. This system was developed at the “Benito Mahedero Laboratory of Superconducting Electrical Applications” in the University of Extremadura.

  14. Topological Superconductivity in Dirac Semimetals

    NASA Astrophysics Data System (ADS)

    Sato, Masatoshi; Kobayashi, Shingo

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd3As2.

  15. Superconducting magnet development in Japan

    SciTech Connect

    Yasukochi, K.

    1983-05-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb/sub 3/Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting ..mu.. meson channel and ..pi.. meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration.

  16. Cosmic sparks from superconducting strings.

    PubMed

    Vachaspati, Tanmay

    2008-10-01

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents approximately 10{5} GeV. The superconducting string model predicts an event rate that falls off only as S{-1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model. PMID:18851517

  17. Cosmic Sparks from Superconducting Strings

    SciTech Connect

    Vachaspati, Tanmay

    2008-10-03

    We investigate cosmic sparks from cusps on superconducting cosmic strings in light of the recently discovered millisecond radio burst by Lorimer et al.. We find that the observed duration, fluence, spectrum, and event rate can be reasonably explained by grand unification scale superconducting cosmic strings that carry currents {approx}10{sup 5} GeV. The superconducting string model predicts an event rate that falls off only as S{sup -1/2}, where S is the energy flux, and hence predicts a population of very bright bursts. Other surveys, with different observational parameters, are shown to impose tight constraints on the superconducting string model.

  18. Korea's developmental program for superconductivity

    NASA Technical Reports Server (NTRS)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  19. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, J.R.

    1996-09-17

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings are disclosed. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures. 20 figs.

  20. Concerning superconducting inertial guidance gyroscopes inside superconducting magnetic shields

    SciTech Connect

    Satterthwaite, J.C.; Gawlinski, E.T.

    1997-12-01

    Superconductors can in theory be used to detect rotation by Josephson interference or by detection of the London field, a magnetic induction that fills the interior of any rotating bulk superconductor. One might hope to use these properties of superconductors to build a practical inertial guidance gyroscope. A problem arises from the necessity of surrounding the device with superconducting magnetic shielding: the London field generated by a co-rotating shield eliminates the response of the superconducting device within the shield. The present article demonstrates this point more rigorously than has been done before, discussing solutions of Ampere`s law for rotating and nonrotating superconductors and paying careful attention to boundary conditions. Beginning with a supercurrent density derivable from either the Ginzburg-Landau or the London theory of superconductivity, the article shows: (1) that a superconducting device cannot distinguish between rotation and an applied magnetic field; (2) that a superconducting device surrounded by a co-rotating superconducting shield cannot detect rotation. The term `superconducting gyroscope` in this article refers only to a device whose working principle is the response of the superconductor itself to rotation, not to any device in which superconducting electronic components are used to detect some other effect. {copyright} {ital 1997 American Institute of Physics.}

  1. Optimization of superconducting tiling pattern for superconducting bearings

    DOEpatents

    Hull, John R.

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  2. Magnetic profiles in ferromagnetic/superconducting superlattices.

    SciTech Connect

    te Velthuis, S. G. E.; Hoffmann, A.; Santamaria, J.; Materials Science Division; Univ. Complutense de Madrid

    2007-02-28

    The interplay between ferromagnetism and superconductivity has been of longstanding fundamental research interest to scientists, as the competition between these generally mutually exclusive types of long-range order gives rise to a rich variety of physical phenomena. A method of studying these exciting effects is by investigating artificially layered systems, i.e. alternating deposition of superconducting and ferromagnetic thin films on a substrate, which enables a straight-forward combination of the two types of long-range order and allows the study of how they compete at the interface over nanometer length scales. While originally studies focused on low temperature superconductors interchanged with metallic ferromagnets, in recent years the scope has broadened to include superlattices of high T{sub c} superconductors and colossal magnetoresistance oxides. Creating films where both the superconducting as well as the ferromagnetic layers are complex oxide materials with similar crystal structures (Figure 1), allows the creation of epitaxial superlattices, with potentially atomically flat and ordered interfaces.

  3. A superconducting large-angle magnetic suspension

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Torti, Richard

    1991-01-01

    The component technologies were developed required for an advanced control moment gyro (CMG) type of slewing actuator for large payloads. The key component of the CMG is a large-angle magnetic suspension (LAMS). The LAMS combines the functions of the gimbal structure, torque motors, and rotor bearings of a CMG. The LAMS uses a single superconducting source coil and an array of cryoresistive control coils to produce a specific output torque more than an order of magnitude greater than conventional devices. The designed and tested LAMS system is based around an available superconducting solenoid, an array of twelve room-temperature normal control coils, and a multi-input, multi-output control system. The control laws were demonstrated for stabilizing and controlling the LAMS system.

  4. Mesoscopic magnetism and superconductivity: recent perspectives.

    SciTech Connect

    Basaran, Ali C.; Villegas, Javier E.; Jiang, J. S.; Hoffmann, Axel; Schuller, Ivan K.

    2015-11-01

    Mesoscopic Superconductivity and Magnetism at intermediate (“Mesoscopic”) length scales between atomic and bulk, have a long history of interesting new science. The existence of multiple length scales allows for the development of new science when different length scales become comparable to relevant geometric sizes. Different new phenomena appear due to topological interactions, geometric confinement, proximity between dissimilar materials, dimensional crossover, and collective effects induced by the periodicity. In this brief review we are not able to cover comprehensively this vast field. Instead we select a few recent exciting highlights, which illustrate the type of novel science which can be accomplished in superconducting and magnetic structures. Superconductors and magnetic materials can serve as model systems and provide new ideas, which can be extended to other systems such as ferroelectrics and multiferroics. In this paper we also highlight general open questions and new directions in which the field may move.

  5. The superconducting solenoid magnets for MICE

    SciTech Connect

    Green, Michael A.

    2002-12-22

    The Muon Ionization Cooling Experiment (MICE) is a channel of superconducting solenoid magnets. The magnets in MICE are around the RF cavities, absorbers (liquid or solid) and the primary particle detectors [1], [2]. The MICE superconducting solenoid system consists of eighteen coils that are grouped in three types of magnet assemblies. The cooling channel consists of two complete cell of an SFOFO cooling channel. Each cell consists of a focusing coil pair around an absorber and a coupling coil around a RF cavity that re-accelerates the muons to their original momentum. At the ends of the experiment are uniform field solenoids for the particle detectors and a set of matching coils used to match the muon beam to the cooling cells. Three absorbers are used instead of two in order to shield the detectors from dark currents generated by the RF cavities at high operating acceleration gradients.

  6. Magnetic field evolution in superconducting neutron stars

    NASA Astrophysics Data System (ADS)

    Graber, Vanessa; Andersson, Nils; Glampedakis, Kostas; Lander, Samuel K.

    2015-10-01

    The presence of superconducting and superfluid components in the core of mature neutron stars calls for the rethinking of a number of key magnetohydrodynamical notions like resistivity, the induction equation, magnetic energy and flux-freezing. Using a multifluid magnetohydrodynamics formalism, we investigate how the magnetic field evolution is modified when neutron star matter is composed of superfluid neutrons, type-II superconducting protons and relativistic electrons. As an application of this framework, we derive an induction equation where the resistive coupling originates from the mutual friction between the electrons and the vortex/fluxtube arrays of the neutron and proton condensates. The resulting induction equation allows the identification of two time-scales that are significantly different from those of standard magnetohydrodynamics. The astrophysical implications of these results are briefly discussed.

  7. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  8. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-06-10

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  9. Power superconducting power transmission cable

    DOEpatents

    Ashworth, Stephen P.

    2003-01-01

    The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

  10. A superconducting magnetic gear

    NASA Astrophysics Data System (ADS)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  11. Superconducting Magnets for RIA

    NASA Astrophysics Data System (ADS)

    Zeller, A. F.

    2004-06-01

    The highest priority for new construction for the nuclear physics community is the Rare Isotope Accelerator. This project's goal is to produce up to 400 kW of beams from protons to uranium. Beam transport at the high-energy end has to deal with high radiation fields and high beam rigidities. Superconducting magnets are being designed to fulfill both these requirements. The quadrupoles in the fragment separator will use superferric design with pole tip fields of up to 2.5 T to produce the required gradients in the large apertures. Several techniques are presented that deal with making the magnets radiation resistant.

  12. Superconducting magnet cooling system

    DOEpatents

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  13. Superconducting dipole electromagnet

    DOEpatents

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  14. Superconducting pairing in resonant inelastic x-ray scattering

    NASA Astrophysics Data System (ADS)

    Shi, Yifei; Benjamin, David; Demler, Eugene; Klich, Israel

    2016-09-01

    We develop a method to study the effect of the superconducting transition on the resonant inelastic x-ray scattering (RIXS) signal in superconductors with an order parameter with an arbitrary symmetry within a quasiparticle approach. As an example, we compare the direct RIXS signal below and above the superconducting transition for p -wave-type order parameters. For a p -wave order parameter with a nodal line, we show that, counterintuitively, the effect of the gap is most noticeable for momentum transfers in the nodal direction. This phenomenon may be naturally explained as a type of nesting effect.

  15. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  16. Superconducting Bolometer Array Architectures

    NASA Technical Reports Server (NTRS)

    Benford, Dominic; Chervenak, Jay; Irwin, Kent; Moseley, S. Harvey; Shafer, Rick; Staguhn, Johannes; Wollack, Ed; Oegerle, William (Technical Monitor)

    2002-01-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT (Green Bank Telescope) and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorncoupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of -10(exp 17) W/square root of Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below IfW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity.

  17. Preliminary results on the use of Rutherford forward scattering for the elemental analysis of liquid organic samples

    NASA Astrophysics Data System (ADS)

    Liendo, J. A.; González, A. C.; Castelli, C.; Gómez, J.; Jiménez, J.; Marcó, L.; Sajo-Bohus, L.; Greaves, E. D.; Fletcher, N. R.; Lee, C.; Caussyn, D. D.; Myers, S. H.; Barber, P.

    1998-05-01

    A new method proposed for the elemental analysis of liquid organic samples has been used in this pilot investigation to determine the concentration of several non-volatile light elements contained in human amniotic fluid (AF) from a single measurement. The technique is based on Rutherford forward scattering (RFS) at 28° of a 16 MeV 7Li beam from vacuum dried AF samples deposited on a formvar support. The risk of contamination of the AF sample due to its manipulation is minimum since it is not required to treat the sample chemically. Statistically significant yields were obtained for beam currents of 5 nA and irradiation periods of 30 min approximately. An energy calibration with the spectrum obtained from the irradiation of an AF target was carried out to take into account any effect due to the AF organic matrix. AF spectra were quantified by a chi square fitting of Gaussian curves to element signals. According to this study, the RFS method may be considered as a potential method for light trace element analysis of non-volatile fractions where standard techniques such as PIXE/PIGE and TXRF are difficult to apply.

  18. New insights into the generalized Rutherford equation for nonlinear neoclassical tearing mode growth from 2D reduced MHD simulations

    NASA Astrophysics Data System (ADS)

    Westerhof, E.; de Blank, H. J.; Pratt, J.

    2016-03-01

    Two dimensional reduced MHD simulations of neoclassical tearing mode growth and suppression by ECCD are performed. The perturbation of the bootstrap current density and the EC drive current density perturbation are assumed to be functions of the perturbed flux surfaces. In the case of ECCD, this implies that the applied power is flux surface averaged to obtain the EC driven current density distribution. The results are consistent with predictions from the generalized Rutherford equation using common expressions for Δ \\text{bs}\\prime and Δ \\text{ECCD}\\prime . These expressions are commonly perceived to describe only the effect on the tearing mode growth of the helical component of the respective current perturbation acting through the modification of Ohm’s law. Our results show that they describe in addition the effect of the poloidally averaged current density perturbation which acts through modification of the tearing mode stability index. Except for modulated ECCD, the largest contribution to the mode growth comes from this poloidally averaged current density perturbation.

  19. Stoichiometry and local bond configuration of In2S3:Cl thin films by Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Juma, Albert O.

    2016-10-01

    In2S3 thin films deposited using chemical methods always contain residual elements from the precursors, which modify their properties. As buffer layers in solar cells, the residual elements in the In2S3 layer affect the performance of these devices. The stoichiometry of In2S3 thin films deposited by spray ion layer gas reaction (ILGAR) was studied as a function of the residual Cl from InCl3 precursor by varying the deposition parameters. The chemical formula was deduced from the elemental composition determined using Rutherford backscattering (RBS). Incomplete sulfurization of the precursor implies that residual Cl- remains bonded to the In3+ ions while some occupy interstitial and/or antisite positions in the In2S3 matrix. This results in thin films with different stoichiometry, described by the formula In4S6-xCl2x+2y. This changes the local bond configuration and geometry and underpins the influence of residual Cl on the physical properties of In2S3 thin films.

  20. Rutherford backscattering investigation of radiation damage effects on the leaching of sphene and sphene-based glass-ceramics

    NASA Astrophysics Data System (ADS)

    Stevanovic, D. V.; Thompson, D. A.; Vance, E. R.

    1989-02-01

    Ion implantation techniques, using markers of 2 to 6×10 15/cm 2 of 280 keV Bi ions, and Rutherford backscattering depth profile analysis have been used to study radiation effects on the short-term leaching behaviour in aqueous media of sphene (CaTiSiO 5) and sphene-based glass-ceramics designed for the immobilization of radioactive waste. Such heavy ion implantation of sphene is sufficient to have metamictized the top ~ 1000 Å layer. Leaching in distilled water or a 4 mol/1 NaCl solution, led to surface depletion of Ca and Si and to enrichment of Ti, in agreement with previous reported measurements made by other techniques on unirradiated sphene. Average leach rates of the amorphized sphene decreased with time, reaching a steady-state value after ~ 48 h. As deduced from annealing experiments, radiation damage induced by the ion-implanted marker results in an increase in leach rate of as much as an order of magnitude. The results on the glass-ceramics were similar to those obtained on the sphene.

  1. Role of superconductivity in superconducting transmission line resonator

    NASA Astrophysics Data System (ADS)

    Qin, Xiao-Ke

    2016-06-01

    In order to understand the role of superconductivity in superconducting transmission line resonator, we derive the mode equations using the macroscopic wavefunction of the Cooper pairs. We make an appropriate scaling to obtain the dimensionless form of equations and establish the validity of good conductor approximation under most circumstances. Quantization of superconducting transmission line resonator is realized by the black-box principle. We also briefly discuss that the deviation from good conductor behavior would result in the observable effects, such as the considerable decrease of phase velocity and the soliton.

  2. Optimized Geometry for Superconducting Sensing Coils

    NASA Technical Reports Server (NTRS)

    Eom, Byeong Ho; Pananen, Konstantin; Hahn, Inseob

    2008-01-01

    An optimized geometry has been proposed for superconducting sensing coils that are used in conjunction with superconducting quantum interference devices (SQUIDs) in magnetic resonance imaging (MRI), magnetoencephalography (MEG), and related applications in which magnetic fields of small dipoles are detected. In designing a coil of this type, as in designing other sensing coils, one seeks to maximize the sensitivity of the detector of which the coil is a part, subject to geometric constraints arising from the proximity of other required equipment. In MRI or MEG, the main benefit of maximizing the sensitivity would be to enable minimization of measurement time. In general, to maximize the sensitivity of a detector based on a sensing coil coupled with a SQUID sensor, it is necessary to maximize the magnetic flux enclosed by the sensing coil while minimizing the self-inductance of this coil. Simply making the coil larger may increase its self-inductance and does not necessarily increase sensitivity because it also effectively increases the distance from the sample that contains the source of the signal that one seeks to detect. Additional constraints on the size and shape of the coil and on the distance from the sample arise from the fact that the sample is at room temperature but the coil and the SQUID sensor must be enclosed within a cryogenic shield to maintain superconductivity.

  3. Spin Orbit Effects and Superconductivity in Oxide Materials

    SciTech Connect

    Chapline, G F

    2005-09-29

    In a variety of materials superconductivity is associated with the existence of a quantum critical point (QCP). In the case of the hole doped cuprates there is evidence which suggests that the important quantum degrees of freedom near the superconducting critical point are localized charge and spin density fluctuations. We argue that if these degrees of freedom are strongly coupled by spin-orbit interactions, a new type of quantum criticality arises with monopole-like quasi-particles as the important quantum degrees of freedom,. In layered material this type of quantum criticality can be modeled using a 2-dimensional non-linear Schrodinger equation with an SU(N) gauge field. We exhibit a pairing wave function for quasi-particles that has topological order and anisotropic properties. The superconducting transition would in some respects resemble a KT transition.

  4. Spin-orbit-coupled superconductivity.

    PubMed

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T < T(c), the resistivity peak can still be observed; however, its line-shape is now affected by the onset of the quasi two-dimensional superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  5. Operational Merits of Maritime Superconductivity

    NASA Astrophysics Data System (ADS)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  6. Growth structure and superconductivity of Bi1.7Bi0.3Sr2Ca2Cu3O10+δ ceramics synthesized from glass-crystal precursors processed in solar type ovens

    NASA Astrophysics Data System (ADS)

    Acrivos, J. V.; Gulamova, D. D.; Chigvinadze, J. G.; Loy, D.

    2010-03-01

    The growth structure as well as the superconductivity of Bi/Pb2223 alloys is reported. Periodic lattice distortions (PLD) along the ab plane diagonal, direction of superconducting transport at the transition temperature, Tc=107K are found to dominate the growth. Trransport induced by the PLD may be responsible for the sharp Tc transitions, and the bursts of frequency and Abrikosov oscillations observed above the transition temperature up to 150K. Chemical synthesis in a heliostat oven was followed by fast quenching of the melt and annealing at 840-850K, XRD near the Cu K-edge, and Tc measured by axial-torsional vibrations in transverse magnetic fields. Tc and phaase purity obtained by green solid state chemistry, in a solar spectrum, will be discussed.

  7. Position resolution of a double junction superconductive detector based on a single material

    NASA Astrophysics Data System (ADS)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  8. Pressure-induced superconductivity in topological parent compound Bi2Te3

    SciTech Connect

    Zhang, J. L.; Zhang, S. J.; Weng, H. M.; Zhang, W.; Yang, L. X.; Liu, Q. Q.; Feng, S. M.; Wang, X. C.; Yu, R. C.; Cao, L. Z.; Wang, L.; Yang, W. G.; Liu, H. Z.; Zhao, W. Y.; Zhang, S. C.; Dai, X.; Fang, Z.; Jin, C. Q.

    2011-01-04

    We report a successful observation of pressure-induced superconductivity in a topological compound Bi₂Te₃ with Tc of ~3 K between 3 to 6 GPa. The combined high-pressure structure investigations with synchrotron radiation indicated that the superconductivity occurred at the ambient phase without crystal structure phase transition. The Hall effects measurements indicated the hole-type carrier in the pressure-induced superconducting Bi₂Te₃ single crystal. Consequently, the first-principles calculations based on the structural data obtained by the Rietveld refinement of X-ray diffraction patterns at high pressure showed that the electronic structure under pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi₂Te₃ due to the proximity effect between superconducting bulk states and Dirac-type surface states. We also discuss the possibility that the bulk state could be a topological superconductor.

  9. Measurement of InAsBi mole fraction and InBi lattice constant using Rutherford backscattering spectrometry and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Shalindar, A. J.; Webster, P. T.; Wilkens, B. J.; Alford, T. L.; Johnson, S. R.

    2016-10-01

    Several 1 μm thick, nearly lattice-matched InAsBi layers grown on GaSb are examined using Rutherford backscattering spectrometry and X-ray diffraction. Random Rutherford backscattering measurements indicate that the average Bi mole fraction ranges from 0.0503 to 0.0645 for the sample set, and ion-channeling measurements indicate that the Bi atoms are substitutional. The X-ray diffraction measurements show a diffraction sideband near the main (004) diffraction peak, indicating that the Bi mole fraction is not laterally uniform in the layer. The average out-of-plane tetragonal distortion is determined by modeling the main and sideband diffraction peaks, from which the average unstrained lattice constant of each sample is determined. By comparing the Bi mole fraction measured by random Rutherford backscattering with the InAsBi lattice constant for the sample set, the lattice constant of zinc blende InBi is determined to be 6.6107 Å.

  10. Protection circuits for superconducting magnets

    SciTech Connect

    Parsons, W.M.; Wood, R.J.

    1980-01-01

    As the technology of controlled nuclear fusion progresses, plans for new experimental reactors include much longer duty cycles than those of earlier experiments. Many of the magnet systems for these reactors must be superconducting due to the prolonged or continuous high current levels required. The large initial investment of a superconducting magnet system justifies a protective dump circuit. This circuit must operate if the magnet goes normal or in the event of failure of some of the critical auxiliary equipment. This paper examines two applications of superconducting magnet protection for fusion experiments. A novel dc interrupter being developed especially for this purpose is also discussed.

  11. Nozzle for superconducting fiber production

    DOEpatents

    Righi, Jamal

    1992-11-17

    A nozzle apparatus for producing flexible fibers of superconducting material receives melted material from a crucible for containing a charge of the superconducting material. The material is melted in the crucible and falls in a stream through a bottom hole in the crucible. The stream falls through a protecting collar which maintains the stream at high temperatures. The stream is then supplied through the downwardly directed nozzle where it is subjected to a high velocity air flow which breaks the melted superconducting material into ligaments which solidify into the flexible fibers. The fibers are collected by blowing them against a porous cloth.

  12. Spinning superconducting electrovacuum soliton

    NASA Astrophysics Data System (ADS)

    Dymnikova, Irina

    2006-08-01

    In nonlinear electrodynamics coupled to general relativity and satisfying the weak energy condition, a spherically symmetric electrically charged electrovacuum soliton has obligatory de Sitter center in which the electric field vanishes while the energy density of electromagnetic vacuum achieves its maximal value. De Sitter vacuum supplies a particle with the finite positive electromagnetic mass related to breaking of space-time symmetry from the de Sitter group in the origin. By the Gürses-Gürsey algorithm based on the Newman-Trautman technique it is transformed into a spinning electrovacuum soliton asymptotically Kerr-Newman for a distant observer. De Sitter center becomes de Sitter equatorial disk which has both perfect conductor and ideal diamagnetic properties. The interior de Sitter vacuum disk displays superconducting behavior within a single spinning soliton. All this concerns both black hole and particle-like structures.

  13. Superconducting energy storage

    SciTech Connect

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  14. Negative refraction and superconductivity

    NASA Astrophysics Data System (ADS)

    Amariti, Antonio; Forcella, Davide; Mariotti, Alberto; Siani, Massimo

    2011-10-01

    We discuss exotic properties of charged hydrodynamical systems, in the broken superconducting phase, probed by electromagnetic waves. Motivated by general arguments from hydrodynamics, we observe that negative refraction, namely the propagation in opposite directions of the phase velocities and of the energy flux, is expected for low enough frequencies. We corroborate this general idea by analyzing a holographic superconductor in the AdS/CFT correspondence, where the response functions can be explicitly computed. We study the dual gravitational theory both in the probe and in the backreacted case. We find that, while in the first case the refractive index is positive at every frequency, in the second case there is negative refraction at low enough frequencies. This is in agreement with hydrodynamic considerations.

  15. Mixed-mu superconducting bearings

    SciTech Connect

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  16. Mixed-mu superconducting bearings

    SciTech Connect

    Hull, J.R.; Mulcahy, T.M.

    1998-03-03

    A mixed-mu superconducting bearing is disclosed including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure. 9 figs.

  17. Search for Superconductivity in Micrometeorites

    PubMed Central

    Guénon, S.; Ramírez, J. G.; Basaran, Ali C.; Wampler, J.; Thiemens, M.; Taylor, S.; Schuller, Ivan K.

    2014-01-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10−12 cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures. PMID:25476841

  18. Superconductivity: A celebration of pairs

    NASA Astrophysics Data System (ADS)

    Norman, Michael R.

    2007-12-01

    It is fifty years since John Bardeen, Leon Cooper and Bob Schrieffer presented the microscopic theory of superconductivity. At a wonderful conference in Urbana the 'good old days' were remembered, and the challenges ahead surveyed.

  19. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1-xKxFe2As2.

    PubMed

    Böhmer, A E; Hardy, F; Wang, L; Wolf, T; Schweiss, P; Meingast, C

    2015-07-31

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1-xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition.

  20. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1-xKxFe2As2

    NASA Astrophysics Data System (ADS)

    Böhmer, A. E.; Hardy, F.; Wang, L.; Wolf, T.; Schweiss, P.; Meingast, C.

    2015-07-01

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1-xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition.

  1. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1-xKxFe2As2.

    PubMed

    Böhmer, A E; Hardy, F; Wang, L; Wolf, T; Schweiss, P; Meingast, C

    2015-01-01

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1-xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition. PMID:26227915

  2. Fluctuation spectroscopy of granularity in superconducting structures.

    SciTech Connect

    Lerner, I. V.; Varlamov, A. A.; Vinokur, V. M.; Materials Science Division; Univ. of Birmingham; Viale del Politecnico

    2008-03-01

    We suggest to use 'fluctuation spectroscopy' as a method to detect granularity in a disordered metal close to a superconducting transition. We show that with lowering temperature T the resistance R(T) of a system of relatively large grains initially grows due to the fluctuation suppression of the one-electron tunneling but decreases with further lowering T due to the coherent charge transfer of the fluctuation Cooper pairs. Under certain conditions, such a maximum in R(T) turns out to be sensitive to weak magnetic fields due to a novel Maki-Thompson-type mechanism.

  3. Preliminary studies for the development of superconducting composite wires

    SciTech Connect

    Provenzano, V.; Henshaw, W.F.; Edelstein, A.S.; Imam, M.A.; Osofsky, M.S.; Skelton, E.F.; Qadri, S.B.; Singh, A.K.

    1989-03-01

    The results presented in this paper are part of a larger research and development effort, the basic aim of which is to develop high T/sub c/ superconducting wires and thin-gauge panels with large current carrying capacity. This research and development uses some of the knowledge and experience gained during the past several years in developing and optimizing fiber-reinforced metal matrix composites (MMCs). That is, deposition and consolidation techniques, similar to those employed for MMCs, allow the synthesis of high T/sub c/ superconducting components with engineered thermal and mechanical properties. In this initial study Bi-Sr-Ca-Cu-O films were deposited by magnetron sputtering on MgO coupons, on pyrolytic graphite and on silicon wafers. Also, Bi-Sr-Ca-Cu-O layers were deposited on platinum wires and MgO coupons by dipping the wires and the coupons into a molten pool of the superconducting oxide. It was found that the morphology and the superconducting properties of the sputtered films on the MgO substrates were strongly dependent on the sputtering conditions and the post-annealing treatments, whereas the sputtered films on graphite and silicon did not superconduct. Sputtering of films on MgO in argon resulted in the formation of crystallites in the form of terraced islands with a preferred orientation. Sputtering in a mixture of argon and oxygen resulted in films which were more uniform. Annealing the films in the temperature range of 750 to 865/sup 0/C resulted in highly textured crystallites with part of the film becoming superconducting at 115K. The dipped wires and MgO coupons were annealed for 12 hours at 850/sup 0/C followed by air quench to room temperature. The onset of superconductivity occurred at 115K for the wire and at 110K for the MgO coupons with zero resistance for both types of specimens at about 80K.

  4. Entanglement witnessing in superconducting beamsplitters

    NASA Astrophysics Data System (ADS)

    Soller, H.; Hofstetter, L.; Reeb, D.

    2013-06-01

    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.

  5. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, R.C.; McConnell, B.W.; Phillips, B.A.

    1996-07-02

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit. 6 figs.

  6. Hermetically sealed superconducting magnet motor

    DOEpatents

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  7. The analysis and measurement of composite coil properties of Jefferson Lab's super high momentum spectrometer (SHMS) superconducting magnet coils

    SciTech Connect

    P. Brindza, E. Sun, S. Lassiter, M. Fowler, G. Dickson

    2010-04-01

    Jefferson Lab's 11 GeV/c Super High Momentum Spectrometer's superconducting cosine(2theta) quadrupole magnets and the cosine(theta) dipole use a Nb-Ti, 36-strand Rutherford style cable wave-solder to a copper extruded substrate as their conductor. These magnets will operate at 4.4 K. Accurate analysis of the mechanical performance of the magnets under Lorentz forces and thermal stresses requires that the composite coil's physical properties at cryogenic temperatures be known. The composite coil design details including the geometry, components, epoxy glass, and its electrical insulation will be presented. The derivation of the composite coil's calculated physical properties values, using a mixing rule and by Finite Element Analysis (FEA) modeling of a sample coil will be given. The calculated values will be compared to recent measured values of representative samples of the composite coils. Comparison of the composite built up coil sample, measurements and calculated values will be discussed

  8. Electrodynamics of superconducting pnictide superlattices

    SciTech Connect

    Perucchi, A.; Pietro, P. Di; Capitani, F.; Lupi, S.; Lee, S.; Kang, J. H.; Eom, C. B.; Jiang, J.; Weiss, J. D.; Hellstrom, E. E.; Dore, P.

    2014-06-02

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  9. Tuning the Superconducting Properties of Magnesium Diboride

    SciTech Connect

    Rudeger Heinrich Theoderich Wilke

    2005-12-17

    This work is presented in the following order: A review of the relevant physics and discussion of theoretical predictions for a two gap superconducting compound is given in chapter 2. Chapter 3 provides a review of the basic properties of MgB{sub 2}. Details of sample synthesis and characterization are given in chapter 4. Chapter 5 presents normal state and superconducting properties of Mg(B{sub 1-x}C{sub x}){sub 2} wires. Attempts to increase critical current densities in filaments via titanium additions are discussed in chapter 6. In chapters 7 and 8 alternative methods for synthesizing doped MgB{sub 2} powders are explored. In chapter 7 we synthesize Mg(B{sub 1-x}C{sub x}){sub 2} up to x=0.069 using a mixture of Mg, B, and the binary compound B{sub 4}C. Chapter 8 explores an alternative method, plasma spray synthesis, to produce nanometer sized doped boron powders for powder-in-tube applications. The effects of neutron irradiation on pure MgB{sub 2} wires is discussed in chapter 9. This is followed by a study of the effects of neutron irradiation on Mg(B{sub .962}C{sub .038}){sub 2} wires, presented in chapter 10. I will summarize the results of all of these studies in chapter 11 and discuss future directions for research in understanding the physics behind this novel material as well as its development for practical applications. In this thesis I have presented the results of investigations into the changes in the superconducting properties of MgB{sub 2} as a function of carbon doping and neutron irradiation. The goal has been to understand the physics underlying this unique two-gap superconductor as different types of perturbations are made to the system. Such knowledge not only contributes to our understanding of two-gap superconductivity, but could potentially lead to the development of superconducting MgB{sub 2} wires for the use in power applications near 20 K.

  10. The characteristic electronic structure needed for high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Pyper, N. C.; Edwards, P. P.

    1991-01-01

    It is shown that the magnon mechanism proposed by Goddard and co-workers to explain high-temperature superconductivity in oxidized cuprates can also account for such superconductivity in both oxidized barium bismuthate and the electron superconductors based on neodynium cuprate. The specific and characteristic electronic structure required for the operation of the magnon mechanism naturally accounts for why only a small number of basic types of high-temperature superconductors are currently known. This mechanism can readily explain the effects of doping cuprate superconductors with both magnetic and non-magnetic ions.

  11. Charge sensitivity of superconducting single-electron transistor

    NASA Astrophysics Data System (ADS)

    Korotkov, Alexander N.

    1996-10-01

    It is shown that the noise-limited charge sensitivity of a single-electron transistor using superconductors (of either SISIS- or NISIN-type) operating near the threshold of quasiparticle tunneling, can be considerably higher than that of a similar transistor made of normal metals or semiconductors. The reason is that the superconducting energy gap, in contrast to the Coulomb blockade, is not smeared by the finite temperature. We also discuss the increase of the maximum operation temperature due to superconductivity and the peaklike features on the I-V curve of SISIS structures.

  12. Superconducting properties of MgB2 from first principles.

    PubMed

    Floris, A; Profeta, G; Lathiotakis, N N; Lüders, M; Marques, M A L; Franchini, C; Gross, E K U; Continenza, A; Massidda, S

    2005-01-28

    Solid MgB(2) has rather interesting and technologically important properties, such as a very high superconducting transition temperature. Focusing on this compound, we report the first nontrivial application of a novel density-functional-type theory for superconductors, recently proposed by the authors. Without invoking any adjustable parameters, we obtain the transition temperature, the gaps, and the specific heat of MgB(2) in very good agreement with experiment. Moreover, our calculations show how the Coulomb interaction acts differently on sigma and pi states, thereby stabilizing the observed superconducting phase.

  13. Superconducting drift-tube cavity development for the RIA driver.

    SciTech Connect

    Shepard, K. W.; Kelly, M. P.; Fuerst, J. D.

    2002-09-23

    This paper reports the design and development of two intermediate-velocity superconducting cavities and design of an associated cryomodule for the RIA driver linac. The two cavity types are a 115 MHz, {beta}{sub GEOM} = 0.15 quarter-wave resonant (QWR) cavity, and a 173 MHz, {beta}{sub GEOM} = 0.26 half-wave loaded cavity. Both cavities are well-corrected for dipole and quadrupole asymmetries in the accelerating field. The cryomodule is being designed to incorporate a separate vacuum system for cavity vacuum to provide a particulate-free environment for the superconducting cavities.

  14. Controllable injector for local flux entry into superconducting films

    NASA Astrophysics Data System (ADS)

    Carmo, D.; Colauto, F.; de Andrade, A. M. H.; Oliveira, A. A. M.; Ortiz, W. A.; Johansen, T. H.

    2016-09-01

    A superconducting flux injector (SFI) has been designed to allow for controlled injections of magnetic flux into a superconducting film from a predefined location along the edge. The SFI is activated by an external current pulse, here chosen to be 200 ms long, and it is demonstrated on films of Nb that the amount of injected flux is controlled by the pulse height. Examples of injections at two different temperatures where the flux enters by stimulated flux-flow and by triggered thermomagnetic avalanches are presented. The boundary between the two types of injection is determined and discussed. The SFI opens up for active use of phenomena which up to now have been considered hazardous for a safe operation of superconducting devices.

  15. Superconductivity in layered BiS2-based compounds

    DOE PAGES

    Yazici, D.; Jeon, I.; White, B. D.; Maple, M. B.

    2015-02-25

    Here, a novel family of superconductors based on BiS2-based superconducting layers were discovered in 2012. In short order, other BiS2-based superconductors with the same or related crystal structures were discovered with superconducting critical temperatures Tc of up to 10 K. Many experimental and theoretical studies have been carried out with the goal of establishing the basic properties of these new materials and understanding the underlying mechanism for superconductivity. In this selective review of the literature, we distill the central discoveries from this extensive body of work, and discuss the results from different types of experiments on these materials within themore » context of theoretical concepts and models.« less

  16. Color symmetrical superconductivity in a schematic nuclear quark model

    NASA Astrophysics Data System (ADS)

    Bohr, H.; Providência, C.; da Providência, J.

    2010-02-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color charge is automatically insured. We stress that the present note is concerned with the description of quark matter in terms of effective models, such as the NJL model, which are solely expressed in terms of fermion operators, so that in them the gluonic gauge fields are not present.

  17. Fractal superconductivity near localization threshold

    SciTech Connect

    Feigel'man, M.V.; Ioffe, L.B.; Kravtsov, V.E.; Cuevas, E.

    2010-07-15

    We develop a semi-quantitative theory of electron pairing and resulting superconductivity in bulk 'poor conductors' in which Fermi energy E{sub F} is located in the region of localized states not so far from the Anderson mobility edge E{sub c}. We assume attractive interaction between electrons near the Fermi surface. We review the existing theories and experimental data and argue that a large class of disordered films is described by this model. Our theoretical analysis is based on analytical treatment of pairing correlations, described in the basis of the exact single-particle eigenstates of the 3D Anderson model, which we combine with numerical data on eigenfunction correlations. Fractal nature of critical wavefunction's correlations is shown to be crucial for the physics of these systems. We identify three distinct phases: 'critical' superconductive state formed at E{sub F} = E{sub c}, superconducting state with a strong pseudo-gap, realized due to pairing of weakly localized electrons and insulating state realized at E{sub F} still deeper inside a localized band. The 'critical' superconducting phase is characterized by the enhancement of the transition temperature with respect to BCS result, by the inhomogeneous spatial distribution of superconductive order parameter and local density of states. The major new feature of the pseudo-gapped state is the presence of two independent energy scales: superconducting gap {Delta}, that is due to many-body correlations and a new 'pseudo-gap' energy scale {Delta}{sub P} which characterizes typical binding energy of localized electron pairs and leads to the insulating behavior of the resistivity as a function of temperature above superconductive T{sub c}. Two gap nature of the pseudo-gapped superconductor is shown to lead to specific features seen in scanning tunneling spectroscopy and point-contact Andreev spectroscopy. We predict that pseudo-gapped superconducting state demonstrates anomalous behavior of the optical

  18. Rutherford scattering on nickel

    SciTech Connect

    Lars, L.K.; Collins, W.E.; Rambabu, B.

    1986-01-01

    The study of 5 keV Ne/sup +/ ions on a Ni(110) surface have been studied by the Time-of-Flight (TOF) method. The effect of crystal orientation on neutral and ion yield have been investigated. 2 refs. 5 figs.

  19. Electromagnetically superconducting phase of QCD vacuum induced by strong magnetic field

    SciTech Connect

    Chernodub, M. N.

    2011-05-23

    In this talk we discuss our recent suggestion that the QCD vacuum in a sufficiently strong magnetic field (stronger than 10{sup 16} Tesla) may undergo a spontaneous transition to an electromagnetically superconducting state. The possible superconducting state is anisotropic (the vacuum exhibits superconductivity only along the axis of the uniform magnetic field) and inhomogeneous (in the transverse directions the vacuum structure shares similarity with the Abrikosov lattice of an ordinary type-II superconductor). The electromagnetic superconductivity of the QCD vacuum is suggested to occur due to emergence of specific quark-antiquark condensates which carry quantum numbers of electrically charged rho mesons. A Lorentz-covariant generalization of the London transport equations for the magnetic-field-induced superconductivity is given.

  20. The road to superconducting spintronics

    NASA Astrophysics Data System (ADS)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  1. Superconductivity in doped fullerenes

    SciTech Connect

    Hebard, A.F. )

    1992-11-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C[sub 60], further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I[sub h], its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C[sub 60] (and the higher fullerenes, such as C[sub 70] and C[sub 84]) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs.

  2. Improved superconducting magnet wire

    DOEpatents

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  3. Demons and superconductivity

    SciTech Connect

    Ihm, J.; Cohen, M.L.; Tuan, S.F.

    1981-04-01

    Model calculations are used to explore the role of demons (acoustic plasmons involving light and heavy mass carriers) in superconductivity. Heavy d electrons and light s and p electrons in a transition metal are used for discussion, but the calculation presented is more general, and the results can be applied to other systems. The analysis is based on the dielectric-function approach and the Bardeen-Cooper-Schrieffer theory. The dielectric function includes intraband and interband s-d scattering, and a tight-binding model is used to examine the role of s-d hybridization. The demon contribution generally reduces the Coulomb interaction between the electrons. Under suitable conditions, the model calculations indicate that the electron-electron interaction via demons can be attractive, but the results also suggest that this mechanism is probably not dominant in transition metals and transition-metal compounds. An attractive interband contribution is found, and it is proposed that this effect may lead to pairing in suitable systems.

  4. Superconducting Cable Termination

    DOEpatents

    Sinha, Uday K.; Tolbert, Jerry

    2005-08-30

    Disclosed is a termination that connects high temperature superconducting (HTS) cable immersed in pressurized liquid nitrogen to high voltage and neutral (shield) external bushings at ambient temperature and pressure. The termination consists of a splice between the HTS power (inner) and shield (outer) conductors and concentric copper pipes which are the conductors in the termination. There is also a transition from the dielectric tape insulator used in the HTS cable to the insulators used between and around the copper pipe conductors in the termination. At the warm end of the termination the copper pipes are connected via copper braided straps to the conventional warm external bushings which have low thermal stresses. This termination allows for a natural temperature gradient in the copper pipe conductors inside the termination which enables the controlled flashing of the pressurized liquid coolant (nitrogen) to the gaseous state. Thus the entire termination is near the coolant supply pressure and the high voltage and shield cold bushings, a highly stressed component used in most HTS cables, are eliminated. A sliding seal allows for cable contraction as it is cooled from room temperature to ˜72-82 K. Seals, static vacuum, and multi-layer superinsulation minimize radial heat leak to the environment.

  5. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  6. Interplay between superconductivity and magnetism in Fe(1-x)Pd(x)Te.

    PubMed

    Karki, Amar B; Garlea, V Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E W; Jin, Rongying

    2013-06-01

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As(1-x)P(x))2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe(1-x)Pd(x)Te. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature T(N/S), and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T'(N). Superconductivity sets in when T'(N) reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions.

  7. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    DOEpatents

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  8. Interplay between superconductivity and magnetism in Fe1−xPdxTe

    PubMed Central

    Karki, Amar B.; Garlea, V. Ovidiu; Custelcean, Radu; Stadler, Shane; Plummer, E. W.; Jin, Rongying

    2013-01-01

    The attractive/repulsive relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions, and Fe pnictides, showed superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. However, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds [RRh4B4 (R = Nd, Sm, Tm, Er), R′Mo6X8 (R′ = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As1−xPx)2, etc.], providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe1−xPdxTe. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature TN/S, and turns into short-range AFM correlation with a characteristic peak in magnetic susceptibility at T′N. Superconductivity sets in when T′N reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (short-range) cross-over regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic (FM and AFM) interactions. PMID:23690601

  9. Interplay between Superconductivity and Magnetism in Fe1-xPdxTe

    SciTech Connect

    Karki, A B; Garlea, Vasile O; Custelcean, Radu; Stadler, S.; Plummer, E. W.; Jin, Rongying

    2013-01-01

    The love/hate relationship between superconductivity and magnetic ordering has fascinated the condensed matter physics community for a century. In the early days, magnetic impurities doped into a superconductor were found to quickly suppress superconductivity. Later, a variety of systems, such as cuprates, heavy fermions and Fe pnictides, show superconductivity in a narrow region near the border to antiferromagnetism (AFM) as a function of pressure or doping. On the other hand, the coexistence of superconductivity and ferromagnetic (FM) or AFM ordering is found in a few compounds (RRh4B4 (R = Nd, Sm, Tm, Er), R'Mo6X8 (R' = Tb, Dy, Er, Ho, and X = S, Se), UMGe (M = Ge, Rh, Co), CeCoIn5, EuFe2(As1-xPx)2 etc.), providing evidence for their compatibility. Here, we present a third situation, where superconductivity coexists with FM and near the border of AFM in Fe1-xPdxTe. The doping of Pd for Fe gradually suppresses the first-order AFM ordering at temperature TN/S, and turns into short-range (SR) AFM correlation with a characteristic peak in magnetic susceptibility at T'N. Superconductivity sets in when T'N reaches zero. However, there is a gigantic ferromagnetic dome imposed in the superconducting-AFM (SR) crossover regime. Such a system is ideal for studying the interplay between superconductivity and two types of magnetic interactions (FM and AFM).

  10. Superconductivity in CaBi2.

    PubMed

    Winiarski, M J; Wiendlocha, B; Gołąb, S; Kushwaha, S K; Wiśniewski, P; Kaczorowski, D; Thompson, J D; Cava, R J; Klimczuk, T

    2016-08-01

    Superconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is ΔC/γTc = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol(-1) K(-2) and the Debye temperature ΘD = 157 K. The electron-phonon coupling strength is λel-ph = 0.59, and the thermodynamic critical field Hc is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin-orbit coupling and electronic property anisotropy. We find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material. PMID:27435423

  11. Superconductivity in CaBi2.

    PubMed

    Winiarski, M J; Wiendlocha, B; Gołąb, S; Kushwaha, S K; Wiśniewski, P; Kaczorowski, D; Thompson, J D; Cava, R J; Klimczuk, T

    2016-08-01

    Superconductivity is observed with critical temperature Tc = 2.0 K in self-flux-grown single crystals of CaBi2. This material adopts the ZrSi2 structure type with lattice parameters a = 4.696(1) Å, b = 17.081(2) Å and c = 4.611(1) Å. The crystals of CaBi2 were studied by means of magnetic susceptibility, specific heat and electrical resistivity measurements. The heat capacity jump at Tc is ΔC/γTc = 1.41, confirming bulk superconductivity; the Sommerfeld coefficient γ = 4.1 mJ mol(-1) K(-2) and the Debye temperature ΘD = 157 K. The electron-phonon coupling strength is λel-ph = 0.59, and the thermodynamic critical field Hc is low, between 111 and 124 Oe CaBi2 is a moderate coupling type-I superconductor. Results of electronic structure calculations are reported and charge densities, electronic bands, densities of states and Fermi surfaces are discussed, focusing on the effects of spin-orbit coupling and electronic property anisotropy. We find a mixed quasi-2D + 3D character in the electronic structure, which reflects the layered crystal structure of the material.

  12. Superconducting six-axis accelerometer

    NASA Technical Reports Server (NTRS)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  13. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  14. Fast superconducting magnetic field switch

    SciTech Connect

    Goren, Y.; Mahale, N.K.

    1995-12-31

    The superconducting magnetic switch or fast kicker magnet is employed with an electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater than the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. Magnetic switches and particularly fast kicker magnets are used in the accelerator industry to quickly deflect particle beams into and out of various transport lines, storage rings, dumps, and specifically to differentially route individual bunches of particles from a train of bunches which are injected or ejected from a given ring.

  15. Fast superconducting magnetic field switch

    DOEpatents

    Goren, Y.; Mahale, N.K.

    1996-08-06

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs.

  16. The Superconducting Bird: A Didactical Toy.

    ERIC Educational Resources Information Center

    Guarner, E.; Sanchez, A. M.

    1992-01-01

    Describes the design of the superconducting bird, a device to demonstrate the phenomenon of superconductivity. Discusses the utilization of the device as an example of a motor and compares it to the toy called the drinking bird. (MDH)

  17. Superconducting PM undiffused machines with stationary superconducting coils

    DOEpatents

    Hsu, John S.; Schwenterly, S. William

    2004-03-02

    A superconducting PM machine has a stator, a rotor and a stationary excitation source without the need of a ferromagnetic frame which is cryogenically cooled for operation in the superconducting state. PM material is placed between poles on the rotor to prevent leakage or diffusion of secondary flux before reaching the main air gap, or to divert PM flux where it is desired to weaken flux in the main air gap. The PM material provides hop-along capability for the machine in the event of a fault condition.

  18. Superconducting NbTiN thin films for superconducting radio frequency accelerator cavity applications

    DOE PAGES

    Burton, Matthew C.; Beebe, Melissa R.; Yang, Kaida; Lukaszew, Rosa A.; Valente-Feliciano, Anne -Marie; Reece, Charles

    2016-02-12

    Current superconducting radio frequency technology, used in various particle accelerator facilities across the world, is reliant upon bulk niobium superconducting cavities. Due to technological advancements in the processing of bulk Nb cavities, the facilities have reached accelerating fields very close to a material-dependent limit, which is close to 50 MV/m for bulk Nb. One possible solution to improve upon this fundamental limitation was proposed a few years ago by Gurevich [Appl. Phys. Lett. 88, 012511 (2006)], consisting of the deposition of alternating thin layers of superconducting and insulating materials on the interior surface of the cavities. The use of type-IImore » superconductors with Tc > TcNb and Hc > HcNb, (e.g., Nb3Sn, NbN, or NbTiN) could potentially greatly reduce the surface resistance (Rs) and enhance the accelerating field, if the onset of vortex penetration is increased above HcNb, thus enabling higher field gradients. Although Nb3Sn may prove superior, it is not clear that it can be grown as a suitable thin film for the proposed multilayer approach, since very high temperature is typically required for its growth, hindering achieving smooth interfaces and/or surfaces. On the other hand, since NbTiN has a smaller lower critical field (Hc1) and higher critical temperature (Tc) than Nb and increased conductivity compared to NbN, it is a promising candidate material for this new scheme. Here, the authors present experimental results correlating filmmicrostructure with superconducting properties on NbTiN thin film coupon samples while also comparing filmsgrown with targets of different stoichiometry. In conclusion, it is worth mentioning that the authors have achieved thin films with bulk-like lattice parameter and transition temperature while also achieving Hc1 values larger than bulk for films thinner than their London penetration depths.« less

  19. Magnetism and Superconductivity in Iron Pnictides

    SciTech Connect

    Singh, David J

    2012-01-01

    The discovery of high temperature superconductivity in iron pnictides and chalcogenides has resulted in surprising new insights into high temperature superconductivity and its relationship with magnetism. Here we provide an overview of some of what is known about these materials and in particular about the interplay of magnetism and superconductivity in them. Similarities and contrasts with cuprate superconductors are emphasized and the superconducting pairing is discussed within the framework of spin fluctuation induced pairing.

  20. Space applications of superconductivity - Digital electronics

    NASA Technical Reports Server (NTRS)

    Harris, R. E.

    1980-01-01

    Superconducting electronics offers a variety of remarkable properties including high speed and low dissipation. The paper discusses fundamental considerations which appear to suggest that superconducting (cryogenic) technology will offer significant advantages for future digital devices. It shows how the active element in superconducting electronics, the Josephson junction, works and discusses the technology for fabricating the devices. The characteristics of published circuits are briefly reviewed, and the capabilities of future superconducting computers and instruments are projected.

  1. Superconductive articles including cerium oxide layer

    DOEpatents

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  2. Strain tolerant microfilamentary superconducting wire

    DOEpatents

    Finnemore, Douglas K.; Miller, Theodore A.; Ostenson, Jerome E.; Schwartzkopf, Louis A.; Sanders, Steven C.

    1993-02-23

    A strain tolerant microfilamentary wire capable of carrying superconducting currents is provided comprising a plurality of discontinuous filaments formed from a high temperature superconducting material. The discontinuous filaments have a length at least several orders of magnitude greater than the filament diameter and are sufficiently strong while in an amorphous state to withstand compaction. A normal metal is interposed between and binds the discontinuous filaments to form a normal metal matrix capable of withstanding heat treatment for converting the filaments to a superconducting state. The geometry of the filaments within the normal metal matrix provides substantial filament-to-filament overlap, and the normal metal is sufficiently thin to allow supercurrent transfer between the overlapped discontinuous filaments but is also sufficiently thick to provide strain relief to the filaments.

  3. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  4. Superconductivity in magnetic multipole states

    NASA Astrophysics Data System (ADS)

    Sumita, Shuntaro; Yanase, Youichi

    2016-06-01

    Stimulated by recent studies of superconductivity and magnetism with local and global broken inversion symmetry, we investigate the superconductivity in magnetic multipole states in locally noncentrosymmetric metals. We consider a one-dimensional zigzag chain with sublattice-dependent antisymmetric spin-orbit coupling and suppose three magnetic multipole orders: monopole order, dipole order, and quadrupole order. It is demonstrated that the Bardeen-Cooper-Schrieffer state, the pair-density wave (PDW) state, and the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state are stabilized by these multipole orders, respectively. We show that the PDW state is a topological superconducting state specified by the nontrivial Z2 number and winding number. The origin of the FFLO state without macroscopic magnetic moment is attributed to the asymmetric band structure induced by the magnetic quadrupole order and spin-orbit coupling.

  5. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  6. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improves the strain characteristics of the wire.

  7. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, Thomas; Klamut, Carl J.; Suenaga, Masaki; Welch, David

    1982-01-01

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  8. Superconducting wire with improved strain characteristics

    DOEpatents

    Luhman, T.; Klamut, C.J.; Suenaga, M.; Welch, D.

    1979-12-19

    A superconducting wire comprising a superconducting filament and a beryllium strengthened bronze matrix in which the addition of beryllium to the matrix permits a low volume matrix to exhibit reduced elastic deformation after heat treating which increases the compression of the superconducting filament on cooling and thereby improve the strain characteristics of the wire.

  9. A systematic study of superconductivity in BiPb(Sn)-Sb Sr-Ca-Cu-O systems

    NASA Technical Reports Server (NTRS)

    Akbar, Sheikh A.; Botelho, M. J.; Wong, M. S.; Alauddin, M.

    1990-01-01

    Superconducting transition above 160 K has been reported in the Bi-Pb-Sb-Sr-Ca-Cu-O system. Results of a systematic study emphasizing the correlations between the type and amount of dopant, and superconducting transition is presented. The effect of Sn (instead of Pb) substitution is also highlighted.

  10. Searching for Superconductivity in Micrometeorites

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Guenon, S.; Ramirez, J. G.; Basaran, A. C.; Taylor, S.; Schuller, I.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening natural materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cm3of a superconductor embedded in a non-superconducting matrix. We applied our technique to search for superconductivity in micrometeorites, small extraterrestrial (ET) particles that add most of the ET mass to the present day Earth. We measured approximately 65 micrometeorites and compared their spectra with those of eight reference materials.Micrometeorites (MMs) are ideal samples with which to test our highly sensitive superconductivity probe, as individual MMs weigh 10-5 g and the large number of micrometeorites arriving on Earth, suggests some contain minerals formed under conditions that cannot be replicated in the laboratory. Minerals in meteorites formed during planetary processes associated with accretion/condensation, planetary differentiation, and segregation. Other components such as pre-solar grains, SiC, diamonds, graphite, Si3N4, and deuterium enriched organics formed under some of the most intense physical-chemical environments in the Universe, including supernovae and stellar outflows. It is during such severe processes that exotic superconducting species may have been created.The research presented here established the methodology and proved the ultrahigh sensitivity of the technique by detecting the presence of the Verwey-transition of the magnetite present in these micrometeorites. The investigated micrometeorites contained no superconducting phases. This work was supported by an AFOSR MURI grant no. F49550-09-1-0577.

  11. Superconductivity in CVD Diamond Films

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2005-03-01

    The recent news of superconductivity 2.3K in heavily boron-doped diamond synthesized by high pressure sintering was received with considerable surprise (1). Opening up new possibilities for diamond-based electrical devices, a systematic investigation of these phenomena clearly needs to be achieved. Application of diamond to actual devices requires it to be made into the form of wafers or thin films. We show unambiguous evidence for superconductivity in a heavily boron-doped diamond thin film deposited by the microwave plasma assisted chemical vapor deposition (MPCVD) method (2). An advantage of the MPCVD deposited diamond is that it can control boron concentration in its wider range, particularly in (111) oriented films. The temperature dependence of resistivity for (111) and (100) homoepitaxial thin films were measured under several magnetic fields. Superconducting transition temperatures of (111) homoepitaxial film are determined to be 11.4K for Tc onset and 7.2K for zero resistivity. And the upper critical field is estimated to be about 8T. These values are 2-3 times higher than these ever reported (1,3). On other hand, for (100) homoepitaxial film, Tc onset and Tc zero resistivity were estimated to be 6.3 and 3.2K respectively. The superconductivity in (100) film was strongly suppressed even at the same boron concentration. These differences of superconductivity in film orientation will be discussed. These findings established the superconductivity as a universal property of boron-doped diamond, demonstrating that device application is indeed a feasible challenge. 1. E. A. Ekimov et al. Nature, 428, 542 (2004). 2. Y. Takano et al., Appl. Phys. Lett. 85, 2851 (2004). 3. E. Bustarret et al., ond-mat 0408517.

  12. Exotic s-wave superconductivity in alkali-doped fullerides.

    PubMed

    Nomura, Yusuke; Sakai, Shiro; Capone, Massimo; Arita, Ryotaro

    2016-04-20

    Alkali-doped fullerides (A3C60 with A = K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature (Tc) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-Tc superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund's coupling within the C60 molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-Tc superconductivity.

  13. Exotic s-wave superconductivity in alkali-doped fullerides

    NASA Astrophysics Data System (ADS)

    Nomura, Yusuke; Sakai, Shiro; Capone, Massimo; Arita, Ryotaro

    2016-04-01

    Alkali-doped fullerides ({{A}3}{{\\text{C}}60} with A  =  K, Rb, Cs) show a surprising phase diagram, in which a high transition-temperature ({{T}\\text{c}} ) s-wave superconducting state emerges next to a Mott insulating phase as a function of the lattice spacing. This is in contrast with the common belief that Mott physics and phonon-driven s-wave superconductivity are incompatible, raising a fundamental question on the mechanism of the high-{{T}\\text{c}} superconductivity. This article reviews recent ab initio calculations, which have succeeded in reproducing comprehensively the experimental phase diagram with high accuracy and elucidated an unusual cooperation between the electron-phonon coupling and the electron-electron interactions leading to Mott localization to realize an unconventional s-wave superconductivity in the alkali-doped fullerides. A driving force behind the exotic physics is unusual intramolecular interactions, characterized by the coexistence of a strongly repulsive Coulomb interaction and a small effectively negative exchange interaction. This is realized by a subtle energy balance between the coupling with the Jahn-Teller phonons and Hund’s coupling within the {{\\text{C}}60} molecule. The unusual form of the interaction leads to a formation of pairs of up- and down-spin electrons on the molecules, which enables the s-wave pairing. The emergent superconductivity crucially relies on the presence of the Jahn-Teller phonons, but surprisingly benefits from the strong correlations because the correlations suppress the kinetic energy of the electrons and help the formation of the electron pairs, in agreement with previous model calculations. This confirms that the alkali-doped fullerides are a new type of unconventional superconductors, where the unusual synergy between the phonons and Coulomb interactions drives the high-{{T}\\text{c}} superconductivity.

  14. Microwave-stimulated superconductivity due to presence of vortices

    PubMed Central

    Lara, Antonio; Aliev, Farkhad G.; Silhanek, Alejandro V.; Moshchalkov, Victor V.

    2015-01-01

    The response of superconducting devices to electromagnetic radiation is a core concept implemented in diverse applications, ranging from the currently used voltage standard to single photon detectors in astronomy. Suprisingly, a sufficiently high power subgap radiation may stimulate superconductivity itself. The possibility of stimulating type II superconductors, in which the radiation may interact also with vortex cores, remains however unclear. Here we report on superconductivity enhanced by GHz radiation in type II superconducting Pb films in the presence of vortices. The stimulation effect is more clearly observed in the upper critical field and less pronounced in the critical temperature. The magnetic field dependence of the vortex related microwave losses in a film with periodic pinning reveals a reduced dissipation of mobile vortices in the stimulated regime due to a reduction of the core size. Results of numerical simulations support the validy of this conclusion. Our findings may have intriguing connections with holographic superconductors in which the possibility of stimulation is under current debate. PMID:25778446

  15. Parameters of high-temperature superconducting transformers

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Dzhafarov, E. A.

    2015-12-01

    Parameters of the high-temperature superconducting (HTSC) transformer with a core-type magnetic circuit and with coaxial and symmetrical interleaved windings made of the first-generation HTSC wire with a localized magnetic field are considered. The parameters of the most widespread core-type transformer with a coaxial HTSC winding are compared with those of a conventional transformer with a copper wire winding. Advantages of the HTSC transformers, such as reduction in the leakage inductive reactance and the HTSC winding's cross section, volume, and mass, as compared with the same parameters of conventional transformers with a copper wire winding are demonstrated. The efficiency of the HTSC transformers has proven to be determined predominantly by the core loss. In order to increase the efficiency of the HTSC transformer, it is proposed to use the amorphous electrical steel as the material of its magnetic circuit.

  16. Superconductivity in topological insulator Sb2Te3 induced by pressure.

    PubMed

    Zhu, J; Zhang, J L; Kong, P P; Zhang, S J; Yu, X H; Zhu, J L; Liu, Q Q; Li, X; Yu, R C; Ahuja, R; Yang, W G; Shen, G Y; Mao, H K; Weng, H M; Dai, X; Fang, Z; Zhao, Y S; Jin, C Q

    2013-01-01

    Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb2Te3 when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb2Te3 retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature.

  17. Superconductivity in Topological Insulator Sb2Te3 Induced by Pressure

    PubMed Central

    Zhu, J.; Zhang, J. L.; Kong, P. P.; Zhang, S. J.; Yu, X. H.; Zhu, J. L.; Liu, Q. Q.; Li, X.; Yu, R. C.; Ahuja, R.; Yang, W. G.; Shen, G. Y.; Mao, H. K.; Weng, H. M.; Dai, X.; Fang, Z.; Zhao, Y. S.; Jin, C. Q.

    2013-01-01

    Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb2Te3 when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb2Te3 retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature. PMID:23783511

  18. Superconductivity in topological insulator Sb2Te3 induced by pressure.

    PubMed

    Zhu, J; Zhang, J L; Kong, P P; Zhang, S J; Yu, X H; Zhu, J L; Liu, Q Q; Li, X; Yu, R C; Ahuja, R; Yang, W G; Shen, G Y; Mao, H K; Weng, H M; Dai, X; Fang, Z; Zhao, Y S; Jin, C Q

    2013-01-01

    Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2Se3 topological compound or a Bi2Te3 topological compound at high pressure. Here we report the discovery of superconductivity in the topological compound Sb2Te3 when pressure was applied. The crystal structure analysis results reveal that superconductivity at a low-pressure range occurs at the ambient phase. The Hall coefficient measurements indicate the change of p-type carriers at a low-pressure range within the ambient phase, into n-type at higher pressures, showing intimate relation to superconducting transition temperature. The first principle calculations based on experimental measurements of the crystal lattice show that Sb2Te3 retains its Dirac surface states within the low-pressure ambient phase where superconductivity was observed, which indicates a strong relationship between superconductivity and topology nature. PMID:23783511

  19. Freely oriented portable superconducting magnet

    SciTech Connect

    Schmierer, Eric N.; Prenger, F. Coyne; Hill, Dallas D.

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  20. Four-junction superconducting circuit

    PubMed Central

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  1. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  2. Four-junction superconducting circuit.

    PubMed

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J Q

    2016-06-30

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit.

  3. Superconducting Resonators: Protecting Schrodinger's Cat

    NASA Astrophysics Data System (ADS)

    Chavez, Jose; Mauskopf, Philip

    2015-03-01

    Over the past decade, superconducting resonators have played a fundamental role in various novel astronomical detectors and quantum information processors. One example is the microwave kinetic inductance detector that is able to resolve photon energies by measuring shifts in its resonant frequency. Similar resonators have been integrated with superconducting qubits, specifically the transmon, to substantially improve quantum coherence times. The purpose of this investigation is to survey various resonant structures within the requirements of circuit quantum electrodynamics giving special attention to quality factors, TLS noise, and quasi-particle generation. Specifically, planar and three dimensional cavities with varying geometries and materials are characterized - primarily focusing on NbTiN and Nb.

  4. Superconducting augmented rail gun (SARG)

    SciTech Connect

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1986-11-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities and launch efficiencies increase significantly depending on the magnetic coupling between the rail and augmentation circuits. Previous work evaluated an idealized system by neglecting energy dissipation effects. In this paper, the authors extend the analysis to include the neglected terms and show improved actual launch efficiencies for the SARG configuration. In this paper, the authors discuss details of projectile design in depth and present preliminary results of rail gun performance.

  5. First-principles theory of electron-spin fluctuation coupling and superconducting instabilities in iron selenide

    NASA Astrophysics Data System (ADS)

    Lischner, Johannes; Bazhirov, Timur; MacDonald, Allan H.; Cohen, Marvin L.; Louie, Steven G.

    2015-01-01

    We present first-principles calculations of the coupling of quasiparticles to spin fluctuations in iron selenide and discuss which types of superconducting instabilities this coupling gives rise to. We find that strong antiferromagnetic stripe-phase spin fluctuations lead to large coupling constants for superconducting gaps with s± symmetry, but these coupling constants are significantly reduced by other spin fluctuations with small wave vectors. An accurate description of this competition and an inclusion of band-structure and Stoner parameter renormalization effects lead to a value of the coupling constant for an s±-symmetric gap which can produce a superconducting transition temperature consistent with experimental measurements.

  6. Performance of R and D sextupole trim coils for SSC (Superconducting Super Collider) dipoles

    SciTech Connect

    Wanderer, P.; Herrera, J.; Thompson, P.; Willen, E.

    1987-01-01

    For the proposed Superconducting Super Collider (SSC), trim coils placed inside the main coils of the dipoles are needed to correct for field nonuniformities due to superconducting magnetization, iron saturation, and systematic construction errors. Four 4.5 m superconducting sextupole trim coils have been made using methods adapted from printed circuit technology and suitable for mass production. This paper presents measurements of the multipoles and quench currents and compares them with SSC requirements. Based on these results, this type of trim coil (''Multiwire'') looks quite promising for use in the SSC.

  7. A quantum galvanometer with high-energy resolution based on a superconducting interferometer circuit

    SciTech Connect

    Bakhtin, P.A.; Makhov, V.I.; Masalov, V.V.; Sretenskii, V.N.; Tyablikov, A.V.; Vasenkov, A.A.

    1985-07-01

    The authors make a comprehensive analysis of principles of constructing measurement systems based on the superconducting quantum interferometer (SQUID) implemented in integrated form. They note trends of promising applications for galvanometric measurement systems. They describe the two types of SQUID, one-junction and two junction. They analyze the processing and formation of superconducting ion chemical signals and structures. And they present their results in a series of charts and diagrams. They conclude that quantum galvanometry using superconducting microcircuits allows one to propose new experimental studies in microelectronics, the techniques of high-precision measurements, and equipment for metrological work.

  8. Status of the SUNY superconducting RFQ

    SciTech Connect

    Jain, A.; Ben-Zvi, I.; Paul, P.; Wang, H. ); Lombardi, A. . Lab. Nazionale di Legnaro)

    1991-01-01

    A RFQ resonator is presently being developed at SUNY. This resonator is a prototype for a chain of six short ({approximately}0.5m long), superconducting (Pb plated Cu), 50 MHz resonators designed to accelerate beam from {beta} = 0.01 to 0.05. The chain accepts a prebunched beam to save on superconducting length. The resonators are of four-rods type with vane-like electrodes. The prototype resonator is designed to accelerate ions of q/A = 1/6 from {beta} = 0.030 to 0.036, operating at a peak surface electric field of 16 MV/m. The electrodes have a rather high modulation parameter of 4 and a wide aperture of 1.57 cm radius. These values are chosen to maximize the accelerating field (E{sub a}) for a given peak surface electric field (E{sub s}). At the design value of E{sub s} = 16 MV/m, the resonator is estimated to have E{sub a} = 2.0 MV/m, stored energy of 4 J, peak surface magnetic field of 360 Gauss, and inter-vane voltage of 0.42 MV. Results of RF tests on this prototype resonator will be presented. 7 refs., 3 figs.

  9. Superconducting graphite intercalation compounds with calcium

    NASA Astrophysics Data System (ADS)

    Emery, N.; Hérold, C.; Marêché, J.-F.; Lagrange, P.; Bellouard, C.; Lamura, G.; Di Gennaro, E.; Andreone, A.

    2008-04-01

    In the graphite-lithium-calcium system, four well-defined intercalation compounds were synthesised. Two of them, CaC 6 and Li 3Ca 2C 6, exhibit superconducting properties at 11.5 K and 11.15 K, respectively, the highest critical temperatures among those of graphite intercalation compounds. The samples are synthesised using a liquid-solid method allowing the preparation of pure bulk samples, auspicious for crystallographic and magnetic measurements. The crystal structure of CaC 6 was entirely specified; this compound crystallises in the R-3 m space group. The two-dimensional unit cell of Li 3Ca 2C 6 is hexagonal and commensurate with that of graphite and the intercalated sheets, very rich in metal, are seven-layered. The magnetic properties of these phases were studied with an applied field parallel and perpendicular to the graphene sheets. In both cases the magnetic phase diagram indicates that these compounds are type II superconducting materials slightly anisotropic in spite of their lamellar structure. In the case of CaC 6, in-plane magnetic penetration depth measurements show a clear exponential behaviour at low temperatures, consistent with an s-wave symmetry of the gap function, well fitted by the standard BCS theory in the dirty limit.

  10. Superconducting heterostructures: from antipinning to pinning potentials

    NASA Astrophysics Data System (ADS)

    Carreira, S. J.; Chiliotte, C.; Bekeris, V.; Rosen, Y. J.; Monton, C.; Schuller, Ivan K.

    2014-08-01

    We study vortex lattice dynamics in a heterostructure that combines two type-II superconductors: a niobium film and a dense triangular array of submicrometric vanadium (V) pillars. Magnetic ac susceptibility measurements reveal a sudden increase in ac penetration, related to an increase in vortex mobility above a magnetic field, {{H}^{*}}\\left( T \\right), that decreases linearly with temperature. Additionally, temperature independent matching effects that occur when the number of vortices in the sample is an integer of the number of V pillars, strongly reduce vortex mobility, and were observed for the first and second matching fields, {{H}_{1}} and {{H}_{2}}. The angular dependence of {{H}_{1}}, {{H}_{2}} and {{H}^{*}}\\left( T \\right) shows that matching is determined by the normal applied field component, while {{H}^{*}}\\left( T \\right) is independent of the applied field orientation. This important result identifies {{H}^{*}}\\left( T \\right) with the critical field boundary for the normal to superconducting transition of V pillars. Below {{H}^{*}}\\left( T \\right), superconducting V pillars repel vortices, and the array becomes an ‘antipinning’ landscape that is more effective in reducing vortex mobility than the ‘pinning’ landscape of the normal V sites above {{H}^{*}}\\left( T \\right). Matching effects are observed both below and above {{H}^{*}}\\left( T \\right), implying the presence of ordered vortex configurations for ‘antipinning’ or ‘pinning’ arrays.

  11. Free-standing oxide superconducting articles

    DOEpatents

    Wu, X.D.; Muenchausen, R.E.

    1993-12-14

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template layer.

  12. Status of superconducting power transformer development

    SciTech Connect

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P.

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  13. Cosmic String Global Superconducting Dirac Born Infeld

    NASA Astrophysics Data System (ADS)

    Ikrima, Ika; Ramadhan, Handhika S.; Mart, Terry

    2016-08-01

    Superconducting cosmic string possibly plays an important role in the formation of the universe structure. The physics of this phenomenon has been explored by studying the field theory in the string interior. Numerical solutions of superconducting strings with all relevant fields are presented in this paper. The field is constructed from a generalization of the usual field theory of superconducting global string, but the kinetic term consists of the Dirac Born Infeld (DBI). Some changes in the characteristic of the superconducting string DBI from the usual superconducting string case have been observed. The observation includes physical mechanism of all related fields.

  14. Study of asymmetries of Cd(Zn)Te devices investigated using photo-induced current transient spectroscopy, Rutherford backscattering, surface photo-voltage spectroscopy, and gamma ray spectroscopies

    SciTech Connect

    Crocco, J.; Bensalah, H.; Zheng, Q.; Dieguez, E.; Corregidor, V.; Avles, E.; Castaldini, A.; Fraboni, B.; Cavalcoli, D.; Cavallini, A.; Vela, O.

    2012-10-01

    Despite these recent advancements in preparing the surface of Cd(Zn)Te devices for detector applications, large asymmetries in the electronic properties of planar Cd(Zn)Te detectors are common. Furthermore, for the development of patterned electrode geometries, selection of each electrode surface is crucial for minimizing dark current in the device. This investigation presented here has been carried out with three objectives. Each objective is oriented towards establishing reliable methods for the selection of the anode and cathode surfaces independent of the crystallographic orientation. The objectives of this study are (i) investigate how the asymmetry in I-V characteristics of Cd(Zn)Te devices may be associated with the TeO2 interfacial layer using Rutherford backscattering to study the structure at the Au-Cd(Zn)Te interface, (ii) develop an understanding of how the concentration of the active traps in Cd(Zn)Te varies with the external bias, and (iii) propose non-destructive methods for selection of the anode and cathode which are independent of crystallographic orientation. The spectroscopic methods employed in this investigation include Rutherford backscattering spectroscopy, photo-induced current transient spectroscopy, and surface photo-voltage spectroscopy, as well as gamma ray spectroscopy to demonstrate the influence on detector properties.

  15. Superconductivity in highly disordered dense carbon disulfide.

    PubMed

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  16. Unconventional superconductivity in heavy-fermion compounds

    SciTech Connect

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  17. Unconventional superconductivity in heavy-fermion compounds

    DOE PAGES

    White, B. D.; Thompson, J. D.; Maple, M. B.

    2015-02-27

    Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion com- pounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates andmore » iron-based superconductors. Lastly, we conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.« less

  18. Nonlinear diffusion and superconducting hysteresis

    SciTech Connect

    Mayergoyz, I.D.

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  19. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, V.M.; Martens, J.S.; Zipperian, T.E.

    1995-02-14

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs) are disclosed. Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics. 8 figs.

  20. Superconducting flux flow digital circuits

    DOEpatents

    Hietala, Vincent M.; Martens, Jon S.; Zipperian, Thomas E.

    1995-01-01

    A NOR/inverter logic gate circuit and a flip flop circuit implemented with superconducting flux flow transistors (SFFTs). Both circuits comprise two SFFTs with feedback lines. They have extremely low power dissipation, very high switching speeds, and the ability to interface between Josephson junction superconductor circuits and conventional microelectronics.

  1. Hitachi develops ceramic superconducting device

    NASA Astrophysics Data System (ADS)

    1987-09-01

    A ceramic superconducting quantum interference device (squid) made into the form of a fine film by applying its semiconductor fine process technology was tested. The squid, which reached its superconducting temperature through cooling with a cheap liquid nitrogen at minus 196 C, can detect faint magnetic fields with a strength only a millionth that of the Earth's magnetic field. This means that the squid can be incorporated into medical diagnostic equipment intended for diagnosing brain and heart disorders by catching changes in the extremely weak magnetic fields these organs generate. Hitachi's squid is made using a high frequency sputtering process to form a thin film of yttrium-barium-copper oxide onto a substrate of magnesium oxide, which is then heat treated in an oxygen environment. The resulting superconducting film is one to two microns thick and superconducts at minus 187 C, at which temperature it has a maximum current density in excess of 6,000 amperes per square centimeter. Optical exposure and chemical etching process are then used to make a hole in the middle of the film, after which two Josephson junctions are connected to both of the holes to form a squid.

  2. Spontaneous Electromagnetic Superconductivity of Vacuum in a Strong Magnetic Field: Evidence from the Nambu-Jona-Lasinio Model

    SciTech Connect

    Chernodub, M. N.

    2011-04-08

    Using an extended Nambu-Jona-Lasinio model as a low-energy effective model of QCD, we show that the vacuum in a strong external magnetic field (stronger than 10{sup 16} T) experiences a spontaneous phase transition to an electromagnetically superconducting state. The unexpected superconductivity of, basically, empty space is induced by emergence of quark-antiquark vector condensates with quantum numbers of electrically charged rho mesons. The superconducting phase possesses an anisotropic inhomogeneous structure similar to a periodic Abrikosov lattice in a type-II superconductor. The superconducting vacuum is made of a new type of vortices which are topological defects in the charged vector condensates. The superconductivity is realized along the axis of the magnetic field only. We argue that this effect is absent in pure QED.

  3. Superconductivity: The persistence of pairs

    SciTech Connect

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  4. The generation of rolling moments with the superconducting solenoid model

    NASA Technical Reports Server (NTRS)

    Goodyear, M. J.

    1985-01-01

    The superconducting solenoid model is a pilot model core for levitation in a wind tunnel magnetic suspension system. This type of core would replace the ferromagnetic core typically installed in the model fuselage. For suspension purposes, the solenoid is operated upon by a set of electromagnets surrounding the wind tunnel which are to support and restrain the model at required positions and orientations under the influence of powerful aerodynamic disturbances. The subject of providing sources of magnets rolling moment for use when spanwise magnets, which can be used for winged models, are not available is covered. Several methods have emerged for generating a rolling moment based on the use of additional superconducting loops or magnetic poles positioned around or within the solenoid. Predictions of the moment capacities of superconducting loops in models sized for a large wind tunnel are presented. An existing prototype superconducting model proved a suitable vehicle for demonstrating and calibrating, at a smaller scale, some of the other roll elements based on magnetic pole devices. Calibration data are included.

  5. Superconductivity in the splat-cooled UMo alloys

    NASA Astrophysics Data System (ADS)

    Kim-Ngan, N.-T. H.; Sowa, S.; Krupska, M.; Paukov, M.; Tkach, I.; Havela, L.

    2015-03-01

    We have investigated the superconductivity in splat-cooled UMo alloys by low-temperature resistivity and specific-heat measurements down to 0.4 K. The γ-U materials, such as U-Mo15 (with 15 at.% Mo doping), exhibit a conventional BCS superconductivity with Tc = 2.1 K and upper critical field exceeding 5 T, much higher than that for α-U materials. The alloys with <10 at.% Mo doping consist of a mixed γ + α-U phase. The superconducting transition in the U-Mo6 revealed by a smooth decrease below 1.5 K and a sharp drop at 0.6 K in the resistivity indicating that γ-U grains are embedded in the α-U matrix. The superconductivity transition was revealed by λ-type peak at Tc in the C(T) curve only for U-Mo15, while only one broad peak at Tc in the C(T) curves were observed for other UMo splats. With applying the magnetic fields, the resistivity jumps and specific-heat peaks move to lower temperatures. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam.

  6. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    PubMed

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-01-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780

  7. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    PubMed Central

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-01-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing. PMID:27403780

  8. Superconductivity in the noncentrosymmetric compound Re6Hf

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Guo, Yang; Wang, Hangdong; Su, Qiping; Mao, Qianhui; Du, Jianhua; Zhou, Yuxing; Yang, Jinhu; Fang, Minghu

    2016-07-01

    Re6Hf , which crystallizes in α -Mn structure(space group I 4 ¯3 m ) without a spatial inversion center, is a superconductor with a superconducting transition temperature Tc≈6.2 K . The measurements of magnetic susceptibility (χ ), resistivity (ρ ), and specific heat capacity (C ) were carried out. Bulk superconductivity is revealed by the jump at Tc of the specific heat with Δ C /γnTc≈1.63 , suggesting moderate electron-electron coupling strength in this system. The upper critical field μ0Hc2 W H H(0 ) was estimated to be of 89 kOe, and μ0Hc2 G L(0 ) =107 kOe, which is close to the Pauli limiting field. The Ginzburg Landau parameter κG L=50.2 , indicates that Re6Hf is a type-II superconductor. The temperature dependence of the electronic specific heat Ce l(T ) in the superconducting state can be explained by BCS theory. Furthermore, the magnetic-field dependence of γ (H ) is found to be linear with respect to H . These results imply a dominant s -wave superconductivity in Re6Hf .

  9. Comparing superconducting and permanent magnets for magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Nielsen, K. K.; Bahl, C. R. H.; Smith, A.; Wulff, A. C.

    2016-05-01

    We compare the cost of a high temperature superconducting (SC) tape-based solenoid with a permanent magnet (PM) Halbach cylinder for magnetic refrigeration. Assuming a five liter active magnetic regenerator volume, the price of each type of magnet is determined as a function of aspect ratio of the regenerator and desired internal magnetic field. It is shown that to produce a 1 T internal field in the regenerator a permanent magnet of hundreds of kilograms is needed or an area of superconducting tape of tens of square meters. The cost of cooling the SC solenoid is shown to be a small fraction of the cost of the SC tape. Assuming a cost of the SC tape of 6000 /m2 and a price of the permanent magnet of 100 /kg, the superconducting solenoid is shown to be a factor of 0.3-3 times more expensive than the permanent magnet, for a desired field from 0.5-1.75 T and the geometrical aspect ratio of the regenerator. This factor decreases for increasing field strength, indicating that the superconducting solenoid could be suitable for high field, large cooling power applications.

  10. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    NASA Astrophysics Data System (ADS)

    Ivić, Z.; Lazarides, N.; Tsironis, G. P.

    2016-07-01

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980’s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound ”quantum breather” that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  11. Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials.

    PubMed

    Ivić, Z; Lazarides, N; Tsironis, G P

    2016-07-12

    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980's, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound "quantum breather" that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing.

  12. Interaction of superconductivity and magnetism in borocarbide superconductors

    NASA Astrophysics Data System (ADS)

    Müller, K.-H.; Narozhnyi, V. N.

    2001-08-01

    The interaction of rare-earth magnetism and superconductivity has been a topic of interest for many years. In classical magnetic superconductors (Chevrel phases, ternary rhodium borides, etc) as well as in the high-Tc cuprates the superconducting state usually coexists with antiferromagnetic order on the rare-earth sublattice. In these compounds the magnetic ordering temperature TN is much below the superconducting transition temperature Tc. The discovery of superconducting borocarbides RT2B2C with R = Sc, Y, La, Th, Dy, Ho, Er, Tm or Lu and T = Ni, Ru, Pd or Pt (where not all of these combinations of R and T result in superconductivity) has reanimated the research on the coexistence of superconductivity and magnetic order. Most of these borocarbides crystallize in the tetragonal LuNi2B2C type structure which is an interstitial modification of the ThCr2Si2 type. Contrary to the behaviour of Cu in the cuprates Ni does not carry a magnetic moment in the borocarbides. Various types of antiferromagnetic structures on the rare-earth sublattice have been found to coexist with superconductivity in RNi2B2C for R = Tm, Er, Ho and Dy. Particularly of interest is the case of HoNi2B2C for which three different types of antiferromagnetic structures have been observed: (i) a commensurate one with Ho moments aligned ferromagnetically within layers perpendicular to the tetragonal c axis where consecutive layers are aligned in opposite directions, (ii) an incommensurate spiral along the c axis and (iii) an incommensurate a-axis-modulated structure with a modulation vector τ≈(0.55,0,0). This wave vector emerges in various RNi2B2C compounds with magnetic as well as nonmagnetic R elements and is connected with Fermi surface nesting. Both incommensurate magnetization structures have been shown to be related to the near-reentrant behaviour observed in HoNi2B2C whereas the commensurate structure coexists well with the superconducting state in this compound. The variation of TN and Tc

  13. Design Issues for the Superconducting Magnet that Goes Around theLiquid Hydrogen Absorber for the Muon Ionization Cooling Experiment(MICE)

    SciTech Connect

    Barr, G.; Cobb, J.H.; Green, M.A.; Lau, W.; Senanayake R.S.; Yang, S.Q.; Baynham, D.E.; Bradshaw, T.W.; Drum, P.V.; Rochford, J.H.; Chilton, Didcot

    2004-06-15

    This report describes the design issues that are associated with a superconducting focusing solenoid that goes around a liquid hydrogen absorber for the Muon Ionization Cooling Experiment (MICE) proposed for the Rutherford Appleton Laboratory. The solenoid consists of two superconducting coils that may operated at the same polarity or at opposite polarities. As a result, the coils and their support structure must be designed to carry a 360-ton inter-coil force that is forcing the coils apart along their axis. The basic design parameters for the focusing magnet are discussed. The magnet and its cryostat are designed so that the absorber can be assembled and tested before installation into the pre-tested focusing solenoid. Safety requirements for MICE dictate that the insulating vacuum for the superconducting magnet be separated from the insulating vacuum for the absorber and that both vacuum be separated from the experiment vacuum and the vacuum within adjacent RF cavities. The safety issues associated with the arrangement of the various vacuums in the MICE focusing modules are presented. The effect of magnet operation and magnet quench on the liquid hydrogen absorber is also discussed.

  14. Space applications of superconductivity - Low frequency superconducting sensors

    NASA Technical Reports Server (NTRS)

    Zimmerman, J. E.

    1980-01-01

    Although this paper deals with several low-frequency instruments and devices, most of the discussion relates to SQUID (Superconducting QUantum Interference Device) magnetometers and gradiometers, since these are perceived as the instruments with the greatest potential for space applications. The discussion covers SQUID for magnetic field measurements; present state of the art of SQUID technology; ultimate potential performance; applications to magnetic measurements in space; SQUID galvanometers, voltage and current sensors, and wide-band amplifiers; magnetic shielding, and superconducting dc transformer. SQUIDS are superior to all other magnetic sensors in sensitivity, frequency response, range, and linearity. It is suggested that SQUID instruments, both magnetometers and gradiometers, would be valuable in studies of the dynamics of interplanetary and planetary fields. SQUID gradiometers are useful for detection and mapping of magnetic anomalies at short to moderate ranges.

  15. Numerical analysis of magnetic field in superconducting magnetic energy storage

    SciTech Connect

    Kanamaru, Y. ); Amemiya, Y. )

    1991-09-01

    This paper reports that the superconducting magnetic energy storage (SMES) is more useful than the other systems of electric energy storage because of larger stored energy and higher efficiency. The other systems are the battery, the flywheel, the pumped-storage power station. Some models of solenoid type SMES are designed in U.S.A. and Japan. But a high magnetic field happens by the large scale SMES in the living environment, and makes the erroneous operations of the computer display, the pacemaker of the heart and the electronic equipments. We study some fit designs of magnetic shielding of the solenoidal type SMES for reduction of the magnetic field in living environment. When some superconducting shielding coils are over the main storage coil, magnetic field reduces remarkably than the case of non shielding coil. The calculated results of the magnetic field are obtained y the finite element method.

  16. A fully superconducting bearing system for flywheel applications

    NASA Astrophysics Data System (ADS)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  17. Torus CLAS12-Superconducting Magnet Quench Analysis

    SciTech Connect

    Kashikhin, V S; Elouadhiri, L; Ghoshal, P K; Kashy, D; Makarov, A; Pastor, O; Quettier, L; Velev, G; Wiseman, M

    2014-06-01

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.

  18. SSC (Superconducting Super Collider) magnet technology

    NASA Astrophysics Data System (ADS)

    Taylor, C.

    1987-09-01

    To minimize cost of the SSC facility, small-bore high field dipole magnets have been developed; some of the new technology that has been developed at several U.S. national laboratories and in industry is summarized. Superconducting wire with high J(sub c) and filaments as small as 5 micron diameter is not produced with mechanical properties suitable for reliable cable production. A variety of collar designs of both aluminum and stainless steel have been used in model magnets. A low-heat leak post-type cryostat support system is used and a system for accurate alignment of coil-collar-yoke in the cryostat has been developed. Model magnets of 1 , 1.8 m, 4.5 m, and 17 m lengths have been build during the past two years.

  19. Torus CLAS12-Superconducting Magnet Quench Analysis

    SciTech Connect

    Kashikhin, V. S.; Elouadhiri, L.; Ghoshal, P. K.; Kashy, D.; Makarov, A.; Pastor, O.; Quettier, L.; Velev, G.; Wiseman, M.

    2014-01-01

    The JLAB Torus magnet system consists of six superconducting trapezoidal racetrack-type coils assembled in a toroidal configuration. These coils are wound with SSC-36 Nb-Ti superconductor and have the peak magnetic field of 3.6 T. The first coil manufacturing based on the JLAB design began at FNAL. The large magnet system dimensions (8 m diameter and 14 MJ of stored energy) dictate the need for quench protection. Each coil is placed in an aluminum case mounted inside a cryostat and cooled by 4.6 K supercritical helium gas flowing through a copper tube attached to the coil ID. The large coil dimensions and small cryostat thickness drove the design to challenging technical solutions, suggesting that Lorentz forces due to transport currents and eddy currents during quench and various failure scenarios are analyzed. The paper covers the magnet system quench analysis using the OPERA3d Quench code.

  20. Superconducting Cavities for Proton and Ion Linacs

    SciTech Connect

    Jean Delayen

    2005-05-22

    In the last decade, one of the most active areas in the applications of the superconducting rf (SRF) technology has been for the acceleration of ions to medium energy ({approx}1 GeV/amu) and high power. One such accelerator is under construction in the US while others are being proposed in the US, Japan, and Europe. These new facilities require SRF accelerating structures operating in a velocity region that has until recently been unexplored, and new types of structures optimized for the velocity range from {approx}0.2 to {approx}0.8 c have been developed. We will review the requirements imposed by such applications, the properties of the low- and intermediate-velocity structures which have been developed for them and the status of their development.

  1. Superconductivity-induced re-entrance of the orthorhombic distortion in Ba1−xKxFe2As2

    PubMed Central

    Böhmer, A. E.; Hardy, F.; Wang, L.; Wolf, T.; Schweiss, P.; Meingast, C.

    2015-01-01

    Detailed knowledge of the phase diagram and the nature of the competing magnetic and superconducting phases is imperative for a deeper understanding of the physics of iron-based superconductivity. Magnetism in the iron-based superconductors is usually a stripe-type spin-density-wave, which breaks the tetragonal symmetry of the lattice, and is known to compete strongly with superconductivity. Recently, it was found that in some systems an additional spin-density-wave transition occurs, which restores this tetragonal symmetry, however, its interaction with superconductivity remains unclear. Here, using thermodynamic measurements on Ba1−xKxFe2As2 single crystals, we show that the spin-density-wave phase of tetragonal symmetry competes much stronger with superconductivity than the stripe-type spin-density-wave phase, which results in a novel re-entrance of the latter at or slightly below the superconducting transition. PMID:26227915

  2. Surface superconductivity and twinning-plane superconductivity in aluminum

    SciTech Connect

    Khlyustikov, I. N.

    2006-02-15

    The critical supercooling field H{sub sc} is measured in aluminum single crystals and twinned bicrystals in a temperature range slightly below T{sub c0} (T{sub c0} - 0.055 K < T < T{sub c0}), where T{sub c0} is the critical superconducting transition temperature. It is found that, even in this small temperature range, the H{sub sc}(H{sub c}) dependence, which is considered to be identical to the H{sub c3}(H{sub c}) dependence for single crystals, is substantially nonlinear. The H{sub sc}(H{sub c}) dependences of the twinned bicrystals and single crystals are shown to be significantly different. The qualitative features of the phase diagram of the twinned aluminum bicrystals coincide with those of the phase diagram of twinning-plane superconductivity obtained earlier. These findings allow the conclusion that the phenomenon of twinning-plane superconductivity also exists in face-centered cubic crystal lattices.

  3. Shielding Studies for Superconducting RF Cavities at Fermilab

    SciTech Connect

    Ginsburg, Camille; Rakhno, Igor; /Fermilab

    2010-07-20

    A semi-empirical method that allows us to predict intensity of generated field emission in superconducting RF cavities is described. Spatial, angular and energy distributions of the generated radiation are calculated with the FISHPACT code. The Monte Carlo code MARS15 is used for modeling the radiation transport in matter. A comparison with dose rate measurements performed in the Fermilab Vertical Test Facility for ILC-type cavities with accelerating gradients up to 35 MV/m is presented as well.

  4. Superconducting magnet technology for accelerators

    SciTech Connect

    Palmer, R.; Tollestrup, A.V.

    1984-03-01

    A review article on superconducting magnets for accelerators should first answer the question, why superconductivity. The answer revolves around two pivotal facts: (1) fields in the range of 2 T to 10 T can be achieved; and (2) the operating cost can be less than conventional magnets. The relative importance of these two factors depends on the accelerator. In the case where an upgrade of an accelerator at an existing facility is planned, the ability to obtain fields higher than conventional magnets leads directly to an increase in machine energy for the given tunnel. In the case of a new facility, both factors must be balanced for the most economical machine. Ways to achieve this are discussed.

  5. Perturbative nature of color superconductivity

    SciTech Connect

    Brown, William E.; Liu, James T.; Ren, Hai-cang

    2000-06-01

    Color superconductivity is a possible phase of high density QCD. We present a systematic derivation of the transition temperature T{sub C} from the QCD Lagrangian through study of the di-quark proper vertex. With this approach, we confirm the dependence of T{sub C} on the coupling g, namely T{sub C}{approx}{mu}g{sup -5}e{sup -{kappa}}{sup /g}, previously obtained from the one-gluon exchange approximation in the superconducting phase. The diagrammatic approach we employ allows us to examine the perturbative expansion of the vertex and the propagators. We find an additional O(1) contribution to the prefactor of the exponential from the one-loop quark self energy and that the other one-loop radiative contributions and the two gluon exchange vertex contribution are subleading. (c) 2000 The American Physical Society.

  6. Superconductivity in the Tungsten Bronzes

    NASA Astrophysics Data System (ADS)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  7. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress.

  8. Tunable high-q superconducting notch filter

    DOEpatents

    Pang, C.S.; Falco, C.M.; Kampwirth, R.T.; Schuller, I.K.

    1979-11-29

    A superconducting notch filter is made of three substrates disposed in a cryogenic environment. A superconducting material is disposed on one substrate in a pattern of a circle and an annular ring connected together. The second substrate has a corresponding pattern to form a parallel plate capacitor and the second substrate has the circle and annular ring connected by a superconducting spiral that forms an inductor. The third substrate has a superconducting spiral that is placed parallel to the first superconducting spiral to form a transformer. Relative motion of the first substrate with respect to the second is effected from outside the cryogenic environment to vary the capacitance and hence the frequency of the resonant circuit formed by the superconducting devices.

  9. Superconducting Cable Having A Felexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-03-15

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  10. Superconducting Cable Having A Flexible Former

    DOEpatents

    Hughey, Raburn L.; Sinha, Uday K.; Reece, David S.; Muller, Albert C.

    2005-08-30

    In order to provide a flexible oxide superconducting cable which is reduced in AC loss, tape-shaped superconducting wires covered with a stabilizing metal are wound on a flexible former. The superconducting wires are preferably laid on the former at a bending strain of not more than 0.2%. In laying on the former, a number of tape-shaped superconducting wires are laid on a core member in a side-by-side manner, to form a first layer. A prescribed number of tape-shaped superconducting wires are laid on top of the first layer in a side-by-side manner, to form a second layer. The former may be made of a metal, plastic, reinforced plastic, polymer, or a composite and provides flexibility to the superconducting wires and the cable formed therewith.

  11. Surface superconductivity in thin cylindrical Bi nanowire.

    PubMed

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress. PMID:25658139

  12. The Signature of Inhomogeneous Superconductivity

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Bishop-Van Horn, Logan; Newman, Max

    2016-11-01

    Superconductivity can be inhomogeneous, having a periodically modulated order parameter, in materials that have long electronic mean free paths and where the effects of vortices are suppressed. One class of materials that has these properties is crystalline organic superconductors. They are stoichiometric compounds and highly anisotropic crystals such that the vortices that form can hide in the least conducting layers. We analyze recent data to look for complexity in the inhomogeneous states, such as changes in the order parameter nodal structure.

  13. The Signature of Inhomogeneous Superconductivity

    NASA Astrophysics Data System (ADS)

    Agosta, Charles C.; Bishop-Van Horn, Logan; Newman, Max

    2016-09-01

    Superconductivity can be inhomogeneous, having a periodically modulated order parameter, in materials that have long electronic mean free paths and where the effects of vortices are suppressed. One class of materials that has these properties is crystalline organic superconductors. They are stoichiometric compounds and highly anisotropic crystals such that the vortices that form can hide in the least conducting layers. We analyze recent data to look for complexity in the inhomogeneous states, such as changes in the order parameter nodal structure.

  14. Medium Beta Superconducting Accelerating Structures

    SciTech Connect

    Jean Delayen

    2001-09-01

    While, originally, the development of superconducting structures was cleanly divided between low-beta resonators for heavy ions and beta=1 resonators for electrons, recent interest in protons accelerators (high and low current, pulsed and cw) has necessitated the development of structures that bridge the gap between the two. These activities have resulted both in new geometries and in the adaptation of well-known geometries optimized to this intermediate velocity range. Their characteristics and properties are reviewed.

  15. Stimulated Superconductivity at Strong Coupling

    SciTech Connect

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  16. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-02-02

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  17. Processing method for superconducting ceramics

    DOEpatents

    Bloom, Ira D.; Poeppel, Roger B.; Flandermeyer, Brian K.

    1993-01-01

    A process for preparing a superconducting ceramic and particularly YBa.sub.2 Cu.sub.3 O.sub.7-.delta., where .delta. is in the order of about 0.1-0.4, is carried out using a polymeric binder which decomposes below its ignition point to reduce carbon residue between the grains of the sintered ceramic and a nonhydroxylic organic solvent to limit the problems with water or certain alcohols on the ceramic composition.

  18. Superconductivity of composite particles in a two-channel Kondo lattice.

    PubMed

    Hoshino, Shintaro; Kuramoto, Yoshio

    2014-04-25

    Emergence of odd-frequency s-wave superconductivity is demonstrated in the two-channel Kondo lattice by means of the dynamical mean-field theory combined with the continuous-time quantum Monte Carlo method. Around half filling of the conduction bands, divergence of an odd-frequency pairing susceptibility is found, which signals instability toward the superconductivity. The corresponding order parameter is equivalent to a staggered composite-pair amplitude with even frequencies, which involves both localized spins and conduction electrons. A model wave function is constructed for the composite order with the use of symmetry operations such as charge conjugation and channel rotations. Given a certain asymmetry of the conduction bands, another s-wave superconductivity is found that has a uniform order parameter. The Kondo effect in the presence of two channels is essential for both types of unconventional superconductivity.

  19. Time-reversal symmetry breaking superconductivity in the coexistence phase with magnetism in Fe pnictides.

    PubMed

    Hinojosa, Alberto; Fernandes, Rafael M; Chubukov, Andrey V

    2014-10-17

    We argue that superconductivity in the coexistence region with spin-density-wave (SDW) order in weakly doped Fe pnictides erdiffers qualitatively from the ordinary s(+-) state outside the coexistence region as it develops an additional gap component which is a mixture of intrapocket singlet (s(++)) and interpocket spin-triplet pairings (the t state). The coupling constant for the t channel is proportional to the SDW order and involves interactions that do not contribute to superconductivity outside of the SDW region. We argue that the s(+-)- and t-type superconducting orders coexist at low temperatures, and the relative phase between the two is, in general, different from 0 or π, manifesting explicitly the breaking of the time-reversal symmetry promoted by long-range SDW order. We argue that time reversal may get broken even before true superconductivity develops.

  20. Superconducting Phase in λ-(BEDT-STF)2GaCl4 at High Pressures

    NASA Astrophysics Data System (ADS)

    Minamidate, Takaaki; Oka, Yuki; Shindo, Hironori; Yamazaki, Toshitaka; Matsunaga, Noriaki; Nomura, Kazushige; Kawamoto, Atsushi

    2015-06-01

    Electrical resistivity measurements under pressure were conducted on the organic conductor λ-(BEDT-STF)2GaCl4, which is situated between λ-(ET)2GaCl4 and λ-(BETS)2GaCl4. Magnetic susceptibility was also measured at ambient pressure. A drop in resistivity, which is associated with the superconducting transition, was observed at Tc ≈ 5 K above 1.22 GPa. The superconducting phase was confirmed by pair-breaking under a magnetic field. This is the first observation of superconductivity in λ-(BEDT-STF)2GaCl4. The temperature dependence of spin susceptibility suggests a two-dimensional antiferromagnetic spin system without any magnetic ordering. The phase adjacent to the superconducting phase in λ-type systems is not the antiferromagnetic phase, unlike the case for κ-(ET)2X.

  1. Observation of superconductivity in the intermetallic compound β-IrSn4.

    PubMed

    Tran, Vinh Hung; Bukowski, Zbigniew; Wiśniewski, Piotr; Tran, Lan Maria; Zaleski, Andrzej J

    2013-04-17

    Low-temperature dc-magnetization, ac electrical resistivity and specific heat measurements were performed on single crystals of the intermetallic compound β-IrSn4. The compound crystallizes in the tetragonal MoSn4-type structure (space group I41/acd) and exhibits superconductivity below Tc = 0.9 ± 0.05 K. Further, the magnitude of the ratios ΔCp/(γnkBTc) = 1.29, 2Δ/(kBTc) = 3.55 and of the electron-phonon coupling λ[overline](e-ph) = 0.5 imply that superconductivity in β-IrSn4 can be ascribed to a s-wave weak coupling regime. We determined crucial thermodynamic characteristics of the superconducting state. It turned out that depending on the assumption of either a spherical or non-spherical Fermi surface, the superconductivity can be ascribed to either a type-I and type-II/1 or type-II in clean limit, respectively. However, the behavior of the upper critical field and the anisotropic crystalline structure of the studied compound provide strong support to the type-II superconductivity. In the normal state the resistivity exhibits a prominent quadratic temperature dependence, which together with a large Kadowaki-Woods ratio and with the enhanced effective mass indicate that the electrons in β-IrSn4 are strongly correlated.

  2. Ellipsometric and Rutherford Back scattering Spectrometry studies of SiO(X)N(Y) films elaborated by plasma-enhanced chemical vapour deposition technique.

    PubMed

    Mahamdi, R; Boulesbaa, M; Saci, L; Mansour, F; Molliet, C; Collet, M; Temple-Boyer, P

    2011-10-01

    Silicon oxynitride (SiO(X)N(Y)) thin films were deposited by plasma-enhanced chemical vapour deposition technique (PECVD) from silane (SiH4), nitrous oxide (N2O), ammonia (NH3) and nitrogen (N2) mixture. Spectroscopic ellipsometry (SE), in the range of wavelengths 450-900 nm, was used to define the film thickness and therefore the deposition rate, as well as the refractive index as a function of the N2O gaseous flow. While considering the (Si3N4, SiO2, H2 or void) heterogeneous mixture, Maxwell Garnett (MG) theory allows to fit the SE measurements and to define the volume fraction of the different phases. Finally, Rutherford Backscattering Spectrometry (RBS) results showed that x = O/Si ratio increases gradually with increasing the N2O flow, allowing the correlation of the SiO(X)N(Y) films main parameters. PMID:22400311

  3. Photoluminescence spectroscopy and Rutherford backscattering channeling evaluation of various capping techniques for rapid thermal annealing of ion-implanted ZnSe

    SciTech Connect

    Allen, E.L.; Zach, F.X.; Yu, K.M.; Bourret, E.D.

    1994-05-01

    We report on the effectiveness of proximity caps and PECVD Si{sub 3}N{sub 4}caps during annealing of implanted ZnSe films. OMVPE ZnSe films were grown using diisopropylselenide (DIPSe) and diethylzinc (DEZn) precursors, then ion-implanted with 1 {times} 10{sup 14} cm{sup {minus}2} N (33 keV) or Ne (45 keV) at room temperature and liquid nitrogen temperature, and rapid thermal annealed at temperatures between 200C and 850C. Rutherford backscattering spectrometry in the channeling orientation was used to investigate damage recovery, and photoluminescence spectroscopy was used to investigate crystal quality and the formation of point defects. Low temperature implants were found to have better luminescence properties than room temperature implants, and results show that annealing, time and temperature may be more important than capping material in determining the optical properties. Effects of various caps, implant and annealing temperature are discussed in terms of photoluminescence spectra.

  4. Development of the front end test stand and vessel for extraction and source plasma analyses negative hydrogen ion sources at the Rutherford Appleton Laboratory

    SciTech Connect

    Lawrie, S. R.; Faircloth, D. C.; Letchford, A. P.; Perkins, M.; Whitehead, M. O.; Wood, T.; Gabor, C.; Back, J.

    2014-02-15

    The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.

  5. Evaluation of the interface of thin GaN layers on c- and m-plane ZnO substrates by Rutherford backscattering

    SciTech Connect

    Izawa, Y.; Oga, T.; Ida, T.; Kuriyama, K.; Hashimoto, A.; Kotake, H.; Kamijoh, T.

    2011-07-11

    Lattice distortion at the interfaces between thin GaN layers with {approx}400 nm in thickness and ZnO substrates with non-polar m-plane (10-10) and polar c-plane (0001) is studied using Rutherford backscattering/ion channeling techniques. The interface between GaN/m-plane ZnO is aligned clearly to m-axis, indicating no lattice distortion, while between GaN/c-plane ZnO causes the lattice distortion in the GaN layer due to the piezoelectric field. The range of distortion exceeds {approx}90 nm from the interface of GaN/c-plane ZnO. These results are confirmed by x-ray diffraction and reflection high energy electron diffraction studies.

  6. Dual control active superconductive devices

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1993-07-20

    A superconducting active device has dual control inputs and is constructed such that the output of the device is effectively a linear mix of the two input signals. The device is formed of a film of superconducting material on a substrate and has two main conduction channels, each of which includes a weak link region. A first control line extends adjacent to the weak link region in the first channel and a second control line extends adjacent to the weak link region in the second channel. The current flowing from the first channel flows through an internal control line which is also adjacent to the weak link region of the second channel. The weak link regions comprise small links of superconductor, separated by voids, through which the current flows in each channel. Current passed through the control lines causes magnetic flux vortices which propagate across the weak link regions and control the resistance of these regions. The output of the device taken across the input to the main channels and the output of the second main channel and the internal control line will constitute essentially a linear mix of the two input signals imposed on the two control lines. The device is especially suited to microwave applications since it has very low input capacitance, and is well suited to being formed of high temperature superconducting materials since all of the structures may be formed coplanar with one another on a substrate.

  7. Superconducting compounds and alloys research

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1975-01-01

    Resistivity measurements as a function of temperature were performed on alloys of the binary material system In sub(1-x) Bi sub x for x varying between 0 and 1. It was found that for all single-phase alloys (the pure elements, alpha-In, and the three intermetallic compounds) at temperatures sufficiently above the Debye-temperature, the resistivity p can be expressed as p = a sub o T(n), where a sub o and n are composition-dependent constants. The same exponential relationship can also be applied for the sub-system In-In2Bi, when the two phases are in compositional equilibrium. Superconductivity measurements on single and two-phase alloys can be explained with respect to the phase diagram. There occur three superconducting phases (alpha-In, In2Bi, and In5Bi3) with different transition temperatures in the alloying system. The magnitude of the transition temperatures for the various intermetallic phases of In-Bi is such that the disappearance or occurrence of a phase in two component alloys can be demonstrated easily by means of superconductivity measurements.

  8. Coupled Array of Superconducting Nanowires

    NASA Astrophysics Data System (ADS)

    Ursache, Andrei

    2005-03-01

    We present experiments that investigate the collective behavior of arrays of superconducting lead nanowires with diameters smaller than the coherence length. The ultrathin (˜15nm) nanowires are grown by pulse electrodeposition into porous self-assembled P(S-b-MMA) diblock copolymer templates. The closely packed (˜24 nm spacing) 1-D superconducting nanowires stand vertically upon a thin normal (Au or Pt) film in a brush-like geometry. Thereby, they are coupled to each other by Andreev reflection at the S-N (Pb-Au) point contact interfaces. Magnetization measurements reveal that the ZFC/FC magnetic response of the coupled array system can be irreversible or reversible, depending on the orientation, perpendicular or parallel, of the applied magnetic field with respect to the coupling plane. As found by electric transport measurements, the coupled array system undergoes an in plane superconducting resistive transition at a temperature smaller than the Tc of an individual nanowire. Current-voltage characteristics throughout the transition region are also discussed. This work was supported by NSF grant DMI-0103024 and DMR-0213695.

  9. Superconducting electron and hole lenses

    NASA Astrophysics Data System (ADS)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  10. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  11. Superconducting magnet for the Maglev transport system

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiroshi

    1994-07-01

    Magnetically levitated vehicles (Maglev) using superconducting magnets have been under development in Japan for the past 23 years. The superconducting magnets for the Maglev system are used in a special environment compared to other applications. They have to work stably subject to both mechanical and electromagnetic disturbances. The brief history of the Maglev development in Japan, the planning of new test line, the superconducting magnet's stability and the on-board refrigeration system will be presented.

  12. Superconductivity in the palladium-hydrogen system

    NASA Technical Reports Server (NTRS)

    Papaconstantopoulos, D. A.; Klein, B. M.

    1975-01-01

    Band theory and phonon measurements are used to calculate the electron-phonon coupling constant wavelength for Pd and PdD. The results indicate that superconductivity is absent in Pd metal because of the large value of the Coulomb pseudopotential, and that superconductivity occurs in PdD primarily because of coupling with the optic phonons. These results are consistent with superconducting transition-temperature measurements for these systems.

  13. Quantum fluctuations of the superconducting cosmic string

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  14. Magnesium diboride superconducting devices and circuits

    NASA Astrophysics Data System (ADS)

    Galan, Elias

    While magnesium diboride (MgB2) was first synthesized in the 1950s, MgB2's superconductive properties were not discovered until 2001. It has the highest superconducting transition temperature of all the metallic superconductors at ~39 K at atmospheric pressure. MgB2 is also unique in that it has a two superconductive gaps, a pi gap at 2 meV and a sigma gap at 7.1 meV. There are a theoretical models discussing the inter- and intra- gap scattering of the superconductivity of MgB2 and the Josephson transport of MgB2 Josephson Junctions. The focus of this work is to further the study of all-MgB2 Josephson junctions and quantum interference device technology. This work discusses the transport in all-MgB2 Josephson junctions and designing, fabricating, and measuring multi-junction devices. The junctions studied include all-MgB2 sandwich-type Josephson junctions (one with TiB2 normal conducting barrier and another with an MgO insulating barrier). The junction MgB2 films were deposited by hyprid physical-vapor deposition and the junction barrier were deposited by sputtering. The junctions were patterned and etched with UV photolithography and argon ion milling. With the TiB2 barrier we studied Josephson transport by the proximity effect. With these junctions, we also observed complete suppression of the critical current by an applied magnetic field showing for the first time a leakage free barrier in an all-MgB2 Josephson junction with a single ultrathin barrier. We also studied junctions utilizing MgO barrier deposited by reactive sputtering which gave a larger characteristic voltage of 1-3 mV compared to TiB2 barriers. By connecting several SQUIDs with varying loop areas we developed of two types of superconducting quantum interference filters (SQIFs). The first SQIF designed with 21 SQUIDs connected in parallel and the SQUID loops are sensitive to magnetic fields applied parallel to the substrate. The SQUID loop areas were designed to vary in such a way that the voltage

  15. Superconducting fault current limiter for railway transport

    NASA Astrophysics Data System (ADS)

    Fisher, L. M.; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-01

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  16. Superconducting fault current limiter for railway transport

    SciTech Connect

    Fisher, L. M. Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V.

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  17. New Advance in SuperConducting Materials

    SciTech Connect

    2009-03-02

    Superconducting materials will transform the world's electrical infrastructure, saving billions of dollars once the technical details and installation are in place. At Los Alamos National Laborator...  

  18. Superconductivity and ferromagnetism in topological insulators

    NASA Astrophysics Data System (ADS)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  19. Design study of the KIRAMS-430 superconducting cyclotron magnet

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Wook; Kang, Joonsun; Hong, Bong Hwan; Jung, In Su

    2016-07-01

    Design study of superconducting cyclotron magnet for the carbon therapy was performed at the Korea Institute of Radiological and Medical Science (KIRAMS). The name of this project is The Korea Heavy Ion Medical Accelerator (KHIMA) project and a fixed frequency cyclotron with four spiral sector magnet was one of the candidate for the accelerator type. Basic parameters of the cyclotron magnet and its characteristics were studied. The isochronous magnetic field which can guide the 12C6+ ions up to 430 MeV/u was designed and used for the single particle tracking simulation. The isochronous condition of magnetic field was achieved by optimization of sector gap and width along the radius. Operating range of superconducting coil current was calculated and changing of the magnetic field caused by mechanical deformations of yokes was considered. From the result of magnetic field design, structure of the magnet yoke was planned.

  20. Superconducting properties of the noncentrosymmetric superconductor Re6Hf

    NASA Astrophysics Data System (ADS)

    Singh, D.; Hillier, A. D.; Thamizhavel, A.; Singh, R. P.

    2016-08-01

    We report synthesis and detailed characterization of the noncentrosymmetric superconductor Re6Hf using powder x-ray diffraction (XRD), magnetization, transport, and thermodynamic measurements. XRD confirmed the noncentrosymmetric, α -Mn cubic structure in Re6Hf with the cubic cell parameter a =9.6850 (3 ) Å. Resistivity, DC, and AC magnetization measurements confirmed the type-II superconductivity in Re6Hf with the transition temperature Tconset˜5.96 K, having the lower critical field Hc 1(0 ) 5.6 mT and upper critical field Hc 2(0 ) 12.2 T. The electronic specific heat data fits well with the single-gap BCS model. The Sommerfeld coefficient (γ ) also shows linear relation with the magnetic field. All above results suggest s -wave superconductivity in Re6Hf .